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Abstract

Micro aerial vehicles (MAVs) are gaining importance as image acquisition tools in pho-

togrammetry, but also for industrial applications such as power pylon inspection or con-

struction site monitoring. Areas of interest for these tasks are often close to buildings,

to the ground, and to other obstacles. Therefore, we see the need for systems which can

navigate accurately and safely in an urban outdoor environment.

In this thesis, we present a scalable framework for visual navigation of micro aerial

vehicles. The proposed algorithms facilitate autonomous flight in cluttered urban outdoor

environments based on a monocular camera as the main exteroceptive sensor of the MAV.

In contrast to systems which are based on monocular Simultaneous Localization and Map-

ping (SLAM), our approach incorporates the rich set of already available knowledge about

geometric structures in the world to enhance localization quality and robustness.

Our first contribution is a toolbox of approaches for modeling geometric prior knowl-

edge, including the reconstruction of 3D point clouds and lines, dense volumetric and

mesh-based geometry, and 2.5D digital surface models. We further present quality mea-

sures which support users during the difficult task of acquiring all necessary images for

reconstructing a scene.

Second, we contribute a multi-scale framework for visual localization and mapping

which exploits the previously modeled geometric priors. We automatically align multiple

3D models in a global coordinate system and then partition the search space for local-

ization using virtual views. Our method is not affected by drift and delivers positioning

accuracies comparable to differential GPS. It achieves a constant localization framerate in

completely scalable environments, and it supports the integration of in-flight information

to improve the initial scene representation. As global localization is still too computation-

ally heavy to run onboard micro aerial vehicles, we show how to deliberately distribute

the computational load between the mobile device and a powerful server. Moreover, we

present a distributed SLAM system capable of generating dense volumetric reconstructions

in real-time, thus enabling fast collision avoidance and user interaction.

Finally, our third contribution is the application of computer vision methods to path

planning and control. We show that digital surface models can be used as prior knowledge

for high-level path and view planning, and we combine localization methods with fuzzy

control techniques to build a full visual navigation system. Furthermore, we combine



viii

state-of-the-art imitation learning techniques with visual input to demonstrate high-speed,

autonomous MAV flight through a dense forest.

The proposed algorithms are quantitatively and qualitatively evaluated on a variety of

datasets. Our experiments demonstrate that geometric prior knowledge helps to build a

scalable, accurate, and computationally feasible visual navigation system for micro aerial

vehicles.

Keywords. Computer vision, mobile robots, visual navigation, Micro Aerial Vehicle

(MAV), geometric prior knowledge, 3D reconstruction, Structure from Motion (SfM),

image-based localization, Simultaneous Localization and Mapping (SLAM), distributed

system, vision-based control.
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In the past decade Unmanned Aerial Vehicles (UAVs) have enjoyed considerable success

in many civil and military applications such as search and rescue, monitoring, exploration,

and mapping. Today, UAVs are deployed in many different shapes and sizes, ranging from

25m wingspan and a payload of several tons in the case of the General Atomics Predator

and Reaper series to a wingspan of 7.5 cm and negligible payload in the case of the DARPA

Nano Air Vehicles program. The largest of these UAVs can fly at altitudes of 15000

meters for 30 hours, while the smallest can fly at a few meters altitude for only a couple

of minutes. Additionally, the degree of autonomy varies considerably. While UAVs were

historically remotely piloted, recently a trend towards autonomous control and navigation

can be observed. This development is driven by increasingly powerful onboard computing

possibilities as well as improved sensing technologies such as the global positioning system

(GPS), radar, or optical sensors.

In this thesis we focus on Micro Aerial Vehicles (MAVs) with a mass of less than 5 kg

and outdoor flight within line of sight. We discuss the design of a scalable visual navigation

system which incorporates the rich set of already available knowledge about geometric

structures in the world to enhance localization quality and robustness. The presented

algorithms facilitate autonomous flight in cluttered urban outdoor environments based on

a monocular camera as the main exteroceptive sensor of the MAV.



2 Chapter 1. Introduction

1.1 Micro Aerial Vehicle: An Emerging Robotic Platform

Micro aerial vehicles are gaining importance as image acquisition tools in photogramme-

try [128] (Figure 1.1), but also for industrial applications such as power pylon inspection

or construction site monitoring [54, 74, 117]. A variety of remotely piloted aerial vehicles

is used for these applications, including airplanes as well as helicopters, quad-rotors, and

octo-rotors. While fixed-wing vehicles offer the advantage of fast rectilinear flight to cover

an extended area quickly and systematically, rotary aircraft provide the flexibility to ex-

plore a smaller area from multiple vantage points. In both cases, MAVs offer a significant

advantage over traditional methods for image acquisition in terms of costs, as not only

the vehicle itself is comparably cheap but also the deployment is fast and simple.

Figure 1.1: Reconstruction of the clocktower in Graz, Austria. An MAV allows to acquire
imagery from new points of view which cannot be reached otherwise. The imagery can
then be used for 3D reconstruction to visualize landmarks, for inspection of industrial
structures, for photogrammetrical measurements, or as maps for autonomous navigation.

The usage of unmanned aerial vehicles for photogrammetric applications started as

early as 1979 with the work of Przybilla and Wester-Ebbinghaus [163]. Their aircraft had a

length of 3m and a wing span of 2.6m, and imagery was acquired from an altitude of 150m

above ground at a speed of 40 km/h. About 15 years later, Conway [30] presented a system

for autonomous control of a small-scale helicopter based on an integrated GPS, which later

enabled automated aerial image acquisition using UAVs [52]. With the advent of MAVs

in form of very small and light aircraft or quad-rotor helicopters it became possible to

fly much closer to the ground. Areas of interest are often in urban environments, close

to buildings, and possibly close to human beings. While the new technology permits to

obtain high–quality, close–up images of scenes, the new environment poses a problem for

localization. GPS can be replaced by much more accurate differential GPS [104], if high

costs are acceptable; still, both technologies are not able to detect obstacles and are prone

to shadowing effects caused by neighboring buildings. Therefore, we see the need for

intelligent autonomy in terms of systems which can navigate accurately and safely in an

urban outdoor environment.
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1.2 Visual Navigation: Localization, Mapping, and Control

Micro aerial vehicle navigation, or robot navigation in general, involves three key compo-

nents which are highly dependent on each other. First, the robot needs to know where it

is located in the world. Without proper localization, neither a map can be created nor a

path planned. Second, to avoid obstacles the robot needs to know how the world in the

vicinity of its location looks like, and for heading towards the intended target location

it needs to know as much detail as possible about the rest of the world. Acquiring this

knowledge and storing it in a consistent representation is called mapping. Due to the high

interconnectivity, localization and mapping are often treated as a joint problem called

Simultaneous Localization and Mapping (SLAM) [50]. Finally, given a proper localization

and an accurate map, path planning and control approaches make the robot move towards

the target location. However, actions might not be executed as planned, so the control

strategy affects localization and mapping as well. A more detailed overview of a typical

system architecture for navigation is given in Figure 1.2.

Figure 1.2: Typical system architecture for robot navigation. Maintaining a global map is
important for defining a target where the robot should navigate to. In combination with
high-level path planning, these two parts form the basis for user interaction. Once a goal
is set, the robot needs to track its progress in reaching it with a trajectory controller. It
thus needs to compare high-level commands with a sensor-based localization to come up
with a suitable command for the position controller. Most systems also feature a collision
avoidance component, which can be connected directly to a reactive controller.
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For visual navigation of micro aerial vehicles, these key components need to be cov-

ered as well. However, the explicit implementation of the parts differs according to the

sensors and actuators. For instance, when using laser range finders [8, 180] for localization

and mapping, the distance between the sensor and the scene is directly obtained. Both

sensor localization and measurement are noisy though, so a Bayesian probabilistic frame-

work [200] is employed to keep track of the uncertainty. In contrast, monocular cameras as

used in this thesis only provide a 2D projection of the scene at a given sensor position, and

the 3D information needs to be extracted by matching and triangulating identical points

in different views [80]. This process is called Structure-from-Motion (SfM). When applied

to image sequences, the technique is also known in robotics as Incremental SfM or Monoc-

ular Visual SLAM. Clearly, an even tighter interaction of the localization algorithms and

the 2D/3D information in the map than for other sensing modalities is necessary.

For successful visual Simultaneous Localization and Mapping, the obtained images

need to be processed in an online fashion. Recently, considerable progress has been made

towards fast and robust monocular visual SLAM [51, 113], but tracking corresponding

points in the image sequence and optimizing the map is computationally heavy. More-

over, when the map grows and an increasing amount of observations is added, solving the

involved optimization problems gets infeasible. This behavior conflicts with typical appli-

cations of mobile visual localization and mapping in augmented reality and autonomous

robotics, where the computational resources are often much lower than in a desktop set-

ting, and the outdoor environments are much larger than what can be handled by current

algorithms in reasonable time.

1.3 The Importance of Geometric Prior Knowledge

Simultaneous Localization and Mapping techniques have initially been developed for ap-

plications in completely unknown terrain. However, when navigating a robot or localizing

mobile devices in urban outdoor environments, a large amount of knowledge about the

geometry is readily available. Sources include mapping services such as Google Street

View or Microsoft Bing Streetside, public geographic data sources such as the NASA

Shuttle Radar Topography Mission [55] or local governmental providers, crowd-sourcing

projects [68, 206], internet photo collections [69, 186, 187], imagery from aerial sur-

veys [127], or simply images taken manually on ground level with a consumer camera.

Generating 3D models from a set of images has become a widely studied field of research

over the last few years, and good progress has been made to reconstruct and represent a

variety of different environments.

In this thesis we focus on exploiting the multitude of geometric prior knowledge for

improving visual navigation of mobile robots. More specifically, we observe that significant

parts of urban scenes such as buildings do not alter their geometry for months, sometimes

even years, and can therefore serve as natural landmarks. In our experience visual SLAM
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can compete with a model-based method in the local environment it is initialized, but not

on a larger scale. A direct experimental comparison such as the one depicted in Figure 1.3

shows that the visual SLAM approach misses to reconstruct large parts of the flight. As

soon as the track is lost, the incremental pose update cannot be established anymore

and localization fails. Especially in outdoor environments this issue occurs frequently,

for instance when the MAV turns towards an open space where no textural features can

be found, due to motion blur caused by fast rotations, or when direct sunlight hits the

camera for a few frames. The repetitiveness of a scene causes further problems and inhibits

successful relocalization within a larger space. We thus want to emphasize the importance

of prior knowledge for vision-based navigation tasks and present scalable techniques for

localization, mapping, and control.

Figure 1.3: Comparison of flight trajectories in an atrium scene, overhead view. The
overlay of the flight trajectories reconstructed using a visual SLAM approach (PTAM [113],
blue) compared to a multi-scale, model-based method (red) as presented in this thesis
shows that SLAM is not suitable for every outdoor environment. PTAM has lost track of
its initial map at some point during the flight and is not able to recover. Note that this
is an unfair comparison as the prior map is given in our case but needs to be obtained in
case of PTAM; it demonstrates the benefits of incorporating geometric priors, though.

1.4 Contributions of the Thesis

Visual navigation for MAVs based on a monocular camera is a challenging task, and

several problems have to be tackled to enable autonomous flight. In this thesis, we propose

to exploit geometric prior knowledge to build a scalable, accurate, and computationally

feasible visual navigation system. In the following, we summarize our key contributions

towards this goal.
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Modeling Geometric Prior Knowledge. Geometric prior knowledge can be repre-

sented in various forms, including 3D point clouds, 3D lines, dense volumetric or mesh-

based geometry, and 2.5D digital surface models. We present a toolbox of techniques to

accurately model the different priors for visual navigation. While these methods typi-

cally run offline, we also present a reconstruction approach which allows to receive online

feedback about the expected quality and completeness of a reconstruction.

Scalable Global Localization. Monocular SLAM approaches have to create maps

while localizing at the same time, which causes problems with scalability, drifting pose

estimates over time, metrical scale estimation, and relocalization, as will be discussed in

Section 2. In contrast, we incorporate prior knowledge and are thus able to present a

multi-scale approach for monocular visual localization with an accuracy comparable to

differential GPS. We first align geometric priors in a global coordinate system and then

employ the concept of virtual views in 3D spaces to partition the search space. Our

method is neither prone to drift nor bias, it achieves a constant localization framerate in

large environments, and it supports the integration of in-flight information to improve the

initial scene representation. Localization results generated by our algorithm are in a world

coordinate system, which allows the MAV to incorporate additional sensors and to switch

seamlessly between GPS and visual localization.

Distributed SLAM and Live Dense Reconstruction. Combined with a global lo-

calization approach, SLAM is very beneficial to handle partially or unknown parts of the

scene, and to cope with changed conditions with respect to the prior. However, mobile

devices such as micro aerial vehicles lack the necessary computational power to run monoc-

ular SLAM in real-time. We thus present a novel approach to visual SLAM for devices

with low computational capabilities. Instead of reducing the map size and simplifying the

optimization as in other approaches, we deliberately distribute the computational load be-

tween the mobile device and a powerful server. We further introduce the first system that

is capable of generating dense volumetric reconstructions in real-time based on monocular

input provided by a mobile platform. Creating dense models on-the-fly facilitates visual

obstacle modeling for MAVs.

Line-based Reconstruction and Tracking. In man-made scenes, line features are of-

ten more prevalent than distinctive point features. We thus present a model-based tracking

method which builds on visual SLAM but incorporates line-based priors for refinement and

in case point-based localization fails. Motivated by the application of power pylon inspec-

tion using MAVs, we also present an approach for line-based 3D scene modeling without

explicit appearance-based matching of the lines. Power pylons are wiry structures where

the background is more dominant than the foreground, thus we align the cameras based

on features in the background and exploit geometrical constraints to find suitable line

segments. Both approaches work for wiry structures as well as solid objects.
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Vision for Path Planning and Control. Navigation involves not only localization

and mapping, but also path planning and control. We investigate how prior knowledge in

form of digital surface models can be used for high-level path planning, as well as for view

planning for optimized image acquisition. Moreover, we present a visual servoing system

for MAVs based on a fuzzy logic controller which is designed to adhere the properties of

visual pose estimates.

Vision-based Reactive Control. When encountering scenes where local features are

not discriminative enough, such as a dense forest environment, it is necessary to rely

on purely reactive control. We adapt a state-of-the-art imitation learning technique to

train reactive heading policies based on the knowledge of a human pilot. Visual features

extracted from the corresponding image are mapped to the control input provided by the

expert. In contrast to straight-forward supervised learning, our policies are iteratively

learned and exploit corrective input at later iterations to boost the overall performance of

the predictor, especially in situations which would not be encountered by a human pilot.

1.5 Outline

This thesis is organized as follows. Chapter 2 introduces the state-of-the-art in visual

localization and mapping, as well as in path planning and control. Further, a review of

visual localization methods which incorporate prior knowledge is given. We then define

four different kinds of geometric prior knowledge in Chapter 3, and we explain how the

3D model data can be obtained from imagery. We also discuss optimized strategies for

image acquisition, as this task is often not straight-forward for laymen. In Chapter 4

we introduce our novel multi-scale approach to visual localization and mapping. The

layers include global alignment of geometric priors, point and line-based localization within

such priors, and a distributed system for incorporating real-time visual SLAM in this

framework. While the thesis is focused on localization and mapping, we present several

ideas and algorithms on visual input for path planning and control in Chapter 5. Again,

we follow a multi-scale approach from global path planning in digital surface models to

very local, high-framerate reactive control. Our framework is evaluated in Chapter 6. We

show quantitative experiments for prior model accuracy and localization accuracy, as well

as qualitative examples of successful flights with visual navigation. We conclude the thesis

in Chapter 7 and provide an outlook to future work.
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An impressive body of research on navigation of micro aerial vehicles has been pub-

lished within the last few years. Several state-of-the-art approaches for MAV control would

be desirable for navigation in urban outdoor environments as they feature impressive ag-

gressive maneuvers [137, 143] or can even be used for formation flight with large swarms

of MAVs [122]. However, these methods still require the real-time, accurate state feedback

delivered by a motion-capture system inside a laboratory and are therefore unsuitable for

our purpose.

For being able to navigate in urban outdoor scenes, 3D perception directly on the

robot is a necessity. Early work on autonomous navigation such as the well-known

NAVLAB [199] system for road-following already incorporated 3D sensing for obstacle

detection and terrain modeling. More recently, the successful implementation of large,

complex robotic systems for autonomous driving during the DARPAGrand Challenge [202]

and the DARPA Urban Challenge [208] has demonstrated the potential of current sensors

and algorithms. Ever since a combination of multiple high-quality active and passive 3D

sensors have been successfully applied, a major research focus is to simplify such systems

and to reduce the costs [40].

In this thesis, we focus on low-cost but highly informative sensors for navigation:

Passive, monocular cameras. Visual sensors deliver the richest representation of a scene,

are light-weight, require little power, and can be used for indoor as well as for outdoor
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applications. As a result, cameras are perfectly suited for the autonomous navigation of

an MAV. A single visual sensor is enough to map large-scale environments and to estimate

motion in 6 degrees of freedom with a higher precision than low-cost GPS sensors [221, 222].

The only two drawbacks are that visual input requires the most algorithmic intelligence

and computational power to process the data, and that it might not work in scenes with

very little textural features.

In the following, we will review the key components of a navigation system which

have been introduced in the previous section. We start with an overview of Simultaneous

Localization and Mapping approaches, then present related algorithms for localization in

a known model, and finally give an introduction to path planning methods and control

strategies.

2.1 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) addresses the problem of exploring a

previously unknown environment. This requires to determine the sensor pose given an es-

timated map, and to optimize the map given the sensor information at the estimated pose;

two tasks which highly depend on each other and thus have to be solved simultaneously.

The SLAM problem can be treated in a Bayesian framework where sensor poses and

map points are connected by sensor measurements [49, 50, 201]. As these measurements

are affected by noise, typically modeled as Gaussian distribution, a maximum likelihood

solution to the pose and structure problem is desired. Early SLAM methods were based on

successive measurements of geometric beacons [131], ultra-sonic scans [32], or laser range

scans [136], and they updated probability distributions over map points and sensor poses

accordingly. These approaches first established the group of recursive filtering techniques,

which lead to the seminal work of Dissanayake et al. [44] on radar-based SLAM using a

Kalman Filter, and the FastSLAM algorithm of Montemerlo et al. [146] for robot pose

estimation with a Particle Filter.

While recursive filtering techniques are not restricted to certain sensors, the most

popular sensors to carry on-board MAVs are laser range finders (LiDARs) and RGB-D

sensors. Both deliver quite accurate depth estimates at a high framerate without any

additional processing effort. He et al. [81] as well as Bachrach et al. [8] demonstrated

using scanning LiDARs for SLAM in unknown indoor environments, and Bry et al. [24]

showed how to use the same sensor for fast flight in indoor environments. The trend in

indoor active sensing goes towards RGB-D sensors [9] that allow more detailed and faster

scans. Real-time 3D reconstruction using a Microsoft Kinect system has already been

demonstrated [152]. Unluckily, the structured light pattern projected by Kinect is only

suitable for indoor usage and in general, all currently available RGB-D sensors suffer from

very limited range in outdoor environments. Therefore, Vandapel et al. [210] proposed

outdoor planning approaches in three dimensions for UAV navigation using lidar data,

and Scherer et al. [180] achieved fast obstacle avoidance using a Yamaha RMax helicopter
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and a 2-axis scanning LiDAR. For carrying outdoor LiDAR systems and the corresponding

power supplies, larger and more expensive aerial vehicles than what we aim for are required.

A suitable alternative is passive vision as presented in the next paragraph.

2.1.1 Visual SLAM

Accurate depth estimation and localization is also possible purely based on passive visual

sensors, and several state-of-the-art approaches exist. An important technique is stereo

imaging, which has been successfully used in real–time, outdoor SLAM systems [61, 142].

Stereo systems use two cameras with a fixed, known distance (baseline) between them.

This has the essential benefit that the depth measurements are retrieved in metrical scale.

When using only one camera, the relative transform between individual camera poses can

be estimated as well, but the overall scale factor remains unobservable unless at least one

metrical distance between poses or map points is known. However, on the one hand the

baseline available to most micro aerial vehicles is quite small and thus there is little benefit

for outdoor usage, and on the other hand the required processing power for stereo image

acquisition and processing is typically higher than for monocular vision.

Early visual SLAM systems using a single camera as the main perceptual sensor were

inspired by traditional SLAM methods using recursive filtering approaches. The Bayesian

network allows handling of uncertainties in position and scale in a way that robust lo-

calization is possible. Davison [37] fused measurements from a sequence of images by

updating probability distributions over features and extrinsic camera parameters using an

Extended Kalman Filter (EKF). This requires tracking and mapping to be closely linked,

as the camera pose and feature locations are updated together at every single frame. Based

on this approach Davison et al. [38] proposed MonoSLAM. They extend the previously

proposed method of monocular feature initialization by a feature orientation estimation.

This successfully increased the range in which landmarks are detected and hence improved

tracking. However, MonoSLAM only worked for slow camera motions or in combination

with additional sensors.

In contrast to the incremental processing pipelines in robotics, the photogrammetry

community focused on batch optimization techniques [203] to solve for extrinsic camera

parameters and 3D points. The key idea is again to formulate the problem as a Bayesian

network, but to minimize an image-based error. Additionally, obtaining the measurements

is a more complicated process: One needs to match points in a given collection of unordered

images, estimate pairwise relative camera configurations (again up to scale), find the

position of the 3D points using triangulation, group the set of measurements and 3D

points, and finally optimize the resulting Bayesian network by minimizing the distance

between reprojected 3D points and the corresponding points in the image. As a result,

the camera poses as well as the 3D points are obtained.

For a long time, batch optimization techniques were computationally too intensive for

real-time operation. However, advances in computing hardware and a deliberate imple-
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mentation of Klein and Murray [113, 114] made it possible to develop a real-time visual

SLAM system based on keyframes named Parallel Tracking and Mapping. PTAM employs

two separate threads, one for tracking the camera pose in every single frame, and another

for mapping the environment by applying bundle adjustment [203] to a set of spatially

distributed keyframes. Keyframes thus correspond to the collection of images used for

bundle adjustment as mentioned before. The major drawback of filtering approaches,

namely the limited number of features that can be updated in between two frames, is

circumvented in PTAM by leaving more time to the parallel mapping process. To keep

the computation time roughly constant even when the number of keyframes gets large,

local bundle adjustment for a subset of frames is performed [149].

More recently, Newcombe et al. [153] introduced a system which is capable of dense

tracking and mapping, meaning that their system does not rely on sparse feature tracking

anymore. Their approach is highly sophisticated and delivers accurate depth maps based

on all captured frames. However, it also requires a considerable amount of processing power

to be available on-site, which in our case means that it would be needed on-board the micro

aerial vehicle. In fact, all currently available live dense reconstruction systems exploit

general-purpose graphics processing units (GPGPUs) to achieve real-time performance

and are therefore not directly applicable on an MAV. The only exception is our own

work [223] as presented in Section 4.3.

2.1.2 Visual SLAM for Devices with Low Computational Power

When the computational resources are less than in a desktop setting, only few suitable

visual SLAM approaches remain, and the typical research areas are augmented reality

and robotics. Klein and Murray [115] extended the original PTAM approach to work

with mobile phone cameras. To compensate for the lack of processing power they had to

introduce several simplifications: First, they require corners to be detected over multiple

scales; this leads to less but more stable features. Second, measurements are thinned

rather than densified as in original PTAM to limit the map size. As a result, the pose

estimate is far less robust and a considerable amount of texture is required in the scene

for the tracking to work at all. In robotics, the problem of visual navigation for MAVs

in unstructured environments has been addressed only recently. PTAM has been used for

providing position estimates for visual control in indoor and outdoor settings [2, 21, 218,

224], but again simplifications in tracking and bundle adjustment were necessary for the

approach to run on a quad–rotor helicopter.

2.1.3 Challenges in Visual SLAM

Strasdat et al. [194] experimentally showed that monocular visual localization using a

large amount of features measured at low temporal frequency is in general superior to a

small amount of features measured at every frame, thus keyframe-based methods typically

outperform filtering approaches. Still, in both cases the mapping process is affected by ac-
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cumulated noise of sensor measurements, called drift, which leads to a significant difference

between the pose estimate and the true pose after some time. When the SLAM approach

is built on a monocular camera system where pose and point estimates are available only

up to scale, the resulting maps are even less constrained than when using a sensor which

directly delivers metric measurements, and thus drift is more likely to occur.

While small measurement uncertainties are in general unavoidable when tracking in the

discretized image space, severe drift occurs for two major reasons. First, the camera motion

might be degenerate (Figure 2.1). Pure forward motion leads to an ill-posed problem when

triangulating 3D points, because the triangulation angle is very small and thus the position

uncertainty is very large. The same problem can be observed when rotating around the

camera’s center as no baseline between individual views is created. Second, the mapped

structures can be degenerate. Outdoor scenes typically contain lots of features, but they

might not be very distinctive as in Figure 2.2(a). As soon as tracking is lost the incremental

pose update cannot be established anymore, and localization as well as mapping fails.

Especially in outdoor environments this issue occurs frequently, for instance when the

MAV turns towards an open space where no textural features can be found, due to motion

blur caused by fast rotations, or when direct sunlight hits the camera for a few frames.

Also, occluders might suddenly cover the already created map (Figure 2.2(b)). While most

SLAM systems feature recovery strategies based on image retrieval approaches [156], those

still just work when an overlap to the obtained map is found. Even then, repetitive scenes

as in Figure 2.2(c) often inhibit successful relocalization and can even cause misleading

map updates.

(a) (b)

Figure 2.1: Degenerate motions in visual SLAM. (a) Pure forward motion leads to an
ill-posed problem when triangulating 3D points because the triangulation angle is very
small and thus the position uncertainty is very large. (b) The same problem occurs when
rotating around the camera’s center as no baseline between individual views is created.
Especially fast rotations are critical when using tracking-based pose estimation.
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(a) (b) (c)

Figure 2.2: Degenerate structures in visual SLAM. (a) Indiscriminative features, (b) loss
of tracking due to sudden occluders, (c) and repetitive scenes are just some examples for
situations which cause problems when creating visual maps online.

The drift problem can only be tackled to a certain degree on a small scale using

measurements which are as accurate as possible. On a larger scale, a loop closure is applied

to correct for the drift when revisiting previously mapped areas. Similar to relocalization,

appearance-based methods [33] are used to detect already visited areas. Then, the loop

consisting of camera poses and relative transforms in between is closed and the error is

distributed over all relative constraints [51, 193]. While such an approach theoretically

ensures consistent maps, in practice three issues need to be discussed. First, the loop

optimization can of course only be performed if the robot returns to a previously visited

3D position with a similar 3D camera orientation, which is not necessarily the case in

many MAV applications. Second, the graph of poses and relative constraints can get very

large in outdoor environments. In this case, most current systems revert to approximate

or simplified optimization problems [149] to guarantee computational feasibility. Finally,

the localization can be significantly wrong before a loop closure, so a direct relation to

global coordinates cannot be established. This prevents an MAV to switch seamlessly

between GPS-based and visual navigation.

We thus want to emphasize the importance of prior knowledge for vision–based navi-

gation tasks. In this thesis, several scalable algorithms for incorporating geometric priors

into online localization and mapping are proposed, and a multi-scale framework which

combines the techniques is presented. We tackle the drift and scaling problems by localiz-

ing selected keyframes in a global coordinate system relative to previously reconstructed,

optimized, and aligned visual maps.



2.2. Visual Localization in a Known Model 15

2.2 Visual Localization in a Known Model

The problem of determining the position and orientation of a camera relative to an already

known model is called pose estimation. When the camera intrinsics have been calibrated

beforehand [80, 100], six degrees of freedom (DoF) remain; three DoF for position and

another three DoF for the orientation of the camera. In the following, we distinguish

between three different methods for pose estimation.

Typically, methods for pose estimation rely on local image descriptors [12, 84, 135] to

establish correspondences between a model view and a query view. Initially, a large number

of images of the model from different, known points of view are created, and descriptors are

extracted at salient image locations. During the query phase, descriptors are extracted in

the query view as well, and then matched against the set of model views to find the best fit.

If the 2D to 3D correspondences for the points in the model view are known, an absolute

6 DoF pose can be computed [118]. While descriptor-based methods have proven to be

efficient in many scenarios, they have problems with weakly textured scenes and changes in

illumination. Unluckily, such changes often occur in outdoor environments due to weather

and seasonal variations. Moreover, establishing correspondences might fail if the viewing

angle between model and query image is too large. State-of-the-art keypoint detectors

and image descriptors are robust to a certain degree of variation in appearance [145], but

this is still a major issue which needs to be tackled by the localization framework.

In contrast, correspondence-based approaches [20, 35, 39, 58, 148] use point configu-

rations and therefore circumvent the appearance-based matching problem. While being

ideal in weakly textured regions, they have to deal with the large search space resulting

from establishing all possible point correspondences if no pose prior is given. The search

space can get even bigger when additional features are introduced by clutter. This can

be avoided by choosing more complex features such as lines or other geometric primitives,

which reduces the search space on the one hand but makes the algorithm less robust, for

instance to partial occlusions of the model. RANdom SAmple Consensus (RANSAC) [58]

style approaches are successfully applied to problems where correspondences have to be

hypothesized, but they are not suitable for time-critical applications as the number of it-

erations needed to obtain satisfactory results is quickly increasing with the number of 3D

model points and detected 2D image points. Due to the fact that we need to estimate the

pose not only for single images but for a continuous sequence, tracking the correspondences

is more suitable.

Tracking-based visual pose estimation approaches [20, 46, 112, 155, 168] can rely on

the fact that the images are only subject to small changes from one frame to the next.

In turn, the framerate delivered by the camera needs to be high enough with respect to

its motion and the distance to the scene. Also, the pose estimation needs to be done in

real-time as the algorithm relies on this prior when coping with the next frame. Such

approaches are very similar, and in most cases even identical, to what is used in visual

SLAM systems; thus they suffer from the same drawbacks.
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In our work, we focus on tracking-based methods for continuous pose estimation in

point-based and wireframe model-based SLAM, but correct for the resulting drift using

descriptor-based methods during global localization. To cope with severe appearance

changes, we propose to create several prior models which are acquired in different condi-

tions, and align them in the same coordinate system (Section 4.1.3).

2.3 Path Planning

Path and mission planning have a long history in robotics. Classical algorithms such as

Dijkstra’s algorithm [43] and the A* algorithm [78] apply global graph search to find the

least-cost path from a given starting point to a target. Other algorithms [121, 126] sample

the local environment to find the least-cost path. The best path is often considered to

be the shortest path, but it could also be the path with maximum coverage of an area,

minimal energy use, or optimized predicted perception quality. In some cases it is even

most beneficial to choose from a given set of trajectories which can be followed by the

robot’s controller rather than planning a specific and maybe impossible path [42]. For

this reason, different path planning algorithms are used based on the situation. In the

following, we introduce two major groups of techniques, namely heuristic and probabilistic

methods.

2.3.1 Heuristic Path Planning Methods

Heuristic methods use an estimated cost function for target-oriented path searching, which

considerably reduces the computation time. The heuristic function includes the cost from

the starting node to the current location, c(s, s′), and the estimated cost from the current

location to the goal, h(s′). Path planning employs consistent heuristics which are based

on two conditions: First, the estimate must never overestimate the costs of any vertex s.

Second, it needs to satisfy h(s) ≤ c(s, s′) + h(s′) for all vertices s ∈ S and s′ ∈ Succ(s),

where h(s) is the estimated cost of a vertex s, c(s, s′) is the true cost between two vertices

and Succ(s) denotes a set of successors of vertex s. If only the first condition is satisfied

the heuristic is said to be admissible. The advantage of heuristic methods is that they are

complete, i.e., they always find a solution if one exists.

A well-known heuristic path planner is the A* algorithm [78]. A* follows the path

with the lowest expected total cost c(s, s′) + h(s′) as it traverses the graph towards the

goal node. To keep track of alternate paths, a priority queue is maintained. A* is similar

to Dijkstra’s algorithm [43] except that it guides its search towards the most promising

states, which can save a significant amount of computation effort.

The limitation of the above approaches is that they need a full map of the area under

exploration. However, when operating in real-world scenarios, new information might be

added to the map so replanning is essential. While A* could be used to plan from scratch

for every update, this is computationally very expensive. Instead, Focussed Dynamic
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A* (D*) [191] and D* Lite [119] search for a path from the goal towards the start, and

nodes are only updated when changes occur. An updated path is calculated based on the

previous path, which is much more effective.

Finally, Field D* is an interpolation based path planning and re-planning

algorithm [57]. In contrast to other methods where nodes are defined as the centers of

grids, field D* defines nodes on corners of grids. Linear interpolation is then used to

create waypoints which are located along the edges of grids. This allows to plan direct,

low-cost, and smooth paths in non-uniform environments. D* and its variants are widely

used for autonomous robots, including Mars rovers and autonomous cars [192, 208].

2.3.2 Probabilistic Path Planning Methods

Heuristic methods are not efficient in high-dimensional spaces as there are too many

possible states. Probabilistic approaches avoid these problems by randomly sampling the

configuration space. While this helps to decrease planning time and memory usage, the

main disadvantage is that an optimal path cannot be guaranteed anymore.

One of the most popular methods is the Probabilistic Roadmap (PRM) algorithm [105,

106]. PRM planning generally consists of two phases: First, the roadmap graph is built by

randomly sampling points in the configuration space. Then, the sampled configurations

are connected to their neighbors. Different strategies to connect the nodes exist, but

typically the k-nearest neighbors are added to the graph. Second, in the query phase,

the start node and the goal node are connected to their nearest neighbors in the graph,

and the path is calculated using a heuristic method. PRMs are provably probabilistically

complete [27], meaning that with an increasing number of samples any existent path will

be found. However, situations such as narrow corridors in large environments can increase

the path planning time rapidly and thus deliberate sampling strategies are necessary.

PRMs allow multiple queries to be executed on the same graph but need some pre-

processing. Typically, obstacles are defined during this preprocessing phase. When using

visual input for path planning, it is important to close the gaps between individual points

in a point cloud so that no path can be planned in between. In other words, dense models

are required for proper collision avoidance. In this thesis, we present algorithms to create

dense digital surface models as prior knowledge which can be used for large-scale path

planning, but also methods to estimate watertight surfaces on-the-fly based on input from

visual SLAM.

2.4 Control Strategies

Control theory tackles the problem of influencing the dynamic behavior of a system to

reach a certain target state. In general, one can distinguish between open-loop control

systems which excite the system without measuring the output, and feedback control

systems which use the error between measured output and expected output for control.
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A large body of research regarding stability, observability, and system identification is

available [45, 89, 189]. However, in this thesis we will only focus on control to an extent

that is necessary for implementing our visual navigation strategies on micro aerial vehicles.

2.4.1 Cascaded Control

In general, feedback controllers are used for autonomous robots. The goal is to minimize

the error between a desired system state and the noisy measured system state by con-

trolling the system’s input variables. Because MAVs are in general highly unstable and

nonlinear systems, typically a cascaded control structure is used [15, 21]. In such systems

the outer control loops view inner loops as quasi-static systems, thus inner loops need to

operate much faster. The individual parts, from inner to outer loops, are introduced in

the following.

For MAVs such as quad-rotor helicopters, it is feasible to control the speed of four

rotors independently, or on a higher level to control the three system angles roll Φ, pitch

Θ, and yaw Ψ, as well as the thrust T . Many commercially available MAVs, such as

the Ascending Technologies Pelican, Falcon, and Parrot AR.Drone quad-rotors used in

our work, already come with an attitude controller which translates angular and thrust

commands into rotational speeds [73] at control cycles up to 1000Hz. Attitude control is

based on IMU and accelerometer readings and provides a good basis for robust and stable

flight. However, due to the lack of exteroceptive sensors it is prone to drift, and depends

on the accuracy of the system model.

Visual servoing techniques use visual input to control the motion of a robot. Given a

6 degrees of freedom (DOF) visual pose estimate, it is possible to control the position of

the MAV in space using Position-Based Visual Servoing (PBVS). A position controller has

four inputs, namely the desired position (x∗, y∗, z∗) and the desired yaw angle Ψ∗. Roll Φ

and pitch Θ depend on the position commands, as the MAV has to nick or roll to obtain a

certain position. To cope with the drift of pure attitude control, control commands should

be sent at a rate of approximately 20-100Hz. By changing the desired values accordingly,

the position controller is used to control an autonomous MAV during take-off, hovering,

and landing; in other words, a desired trajectory could be followed. The trajectory is

typically defined by the path planning algorithm as discussed in the previous section.

Typical trajectory control rates depend on the inner loops and the path replanning speed,

but should be around 0.2-5Hz.

Cascaded control is a concept which works with various kinds of controllers on each

nesting level. Often, variants of the well-known PID controller are employed; for instance,

the realization of the attitude controller mentioned above is based on a PD controller [73].

We therefore briefly introduce this control design next.
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2.4.2 PID Control

The proportional-integral-derivative (PID) controller is the most popular and widely used

controller in industrial applications. For a PID controller, the relationship between the

error term e(t) at the input of the controller and the output u(t) (corresponding to the

system input) is

u(t) = kP e(t) + kI

∫ t

0
e(τ) dτ + kD

de(t)

dt
, (2.1)

where kP is the proportional gain, kI is the integral gain, and kD is the differential gain.

The proportional term kP e(t) represents the present error. While too high values of kP
cause a system to turn unstable, low values affect the responsiveness of the system. The

integral term kI
∫ t

0e(τ) dτ accumulates the past errors and thus eliminates steady-state

errors of purely proportional controllers. However, setting kI too large causes overshoots.

Finally, the differential term kD predicts future errors and thus can improve settling time

and stability. The differential term is sensitive to noise, so large amounts of noise and

a high kD value can turn the controller unstable as well. Many theoretical methods for

estimating the three parameters exist [45, 89], but in practice the parameters are often

found experimentally.

The PID control design appears in many MAV controllers [111, 217, 225] due to its

relatively simple implementation procedure. The controller is well suited to follow pre-

planned trajectories [14], especially when GPS is used for sensing. However, when trying

to fly based on visual input the pose estimation noise causes problems in the differential

term [108], and high-accuracy flights are hard to achieve. Most recent approaches to

MAV control thus use more sophisticated but strictly modeled systems such as the Linear

Quadratic Gaussian controller with Loop Transfer Recovery (LQG/LTR) [2, 21], or a more

flexible control strategy such as fuzzy control [224, 236] which simplifies parameter tuning.

2.5 Summary

In this chapter, we have introduced state-of-the-art approaches for micro aerial vehicle

navigation, as well as for the major components of such a system including localization,

mapping, path planning, and control. A large amount of previous work relies on Simul-

taneous Localization and Mapping (SLAM) techniques to tackle the perception part of

the navigation problem. However, especially monocular visual SLAM techniques require

considerable amounts of computational power to operate in real-time. The few available

methods suffer from error accumulation during tracking and from missing robustness to

cope with large-scale outdoor environments. In contrast, suitable algorithms for path

planning and control are readily available, but need to be chosen wisely depending on the

application at hand.

In the next chapters we thus present tools for modeling geometric prior knowledge,

a robust localization framework, and path planning as well as control approaches which
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are adapted to visual input. We aim to tackle the major challenges presented in this

chapter including missing scale information in monocular SLAM, drift, global relocaliza-

tion when losing track, appearance changes, repetitive structures, weakly textured models,

and scalability given the low computational power onboard MAVs.
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Generating 3D models from a set of images has become a widely studied field of research

over the last few years, and good progress has been made to reconstruct and represent a

variety of different environments [160]. In this thesis we focus on exploiting the multitude

of prior knowledge in form of such models that is often readily available for improving visual

navigation of mobile robots. More specifically, we observe that significant parts of urban

scenes such as buildings do not alter their geometry for months, sometimes even years,

and can therefore serve as natural landmarks. Imagery for our approach can be collected

from many sources such as Microsoft Bing Streetside or Google Street View, or by taking

pictures of the area with a consumer camera. Additionally, one can exploit novel image

acquisition tools such as micro aerial vehicles to take pictures from completely different

viewpoints with ground sampling distances below 1 cm. In the following, we survey the

different classes of algorithms which can be used to create geometric prior knowledge.

3D Point Clouds. The majority of available algorithms for 3D reconstruction in the

context of mobile robots is based on point correspondences between multiple views using

various local descriptors such as the Scale-Invariant Feature Transform (SIFT) [135] in

order to obtain a 3D point cloud while simultaneously solving for camera orientations.

This process is called Structure-from-Motion (SfM). It is a fundamental and well studied
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problem in both computer vision and photogrammetry [80]. In contrast to approaches

which directly estimate a dense depth map for every acquired frame, for instance by using

stereo imaging [142] or active sensing [152], SfM systems extract depth information from a

set of images which are acquired one after another. SfM has reached maturity over the past

years, and meanwhile fully automatic pipelines for ordered [161] and unordered [186, 187]

image collections exist. Processing is typically done offline, which allows to quickly capture

images in the field and then do the processing in the lab with powerful hardware. An

overview of a typical SfM pipeline can be found in Figure 3.1.

Figure 3.1: Overview of a point-based Structure-from-Motion pipeline. After extracting
and matching interest points, hypothesis for pairwise epipolar geometries are verified. The
resulting camera poses are greedily added to the reconstruction and bundle adjustment is
used to optimize the result. After densification and georeferencing, a suitable representa-
tion of geometric prior knowledge is available.

3D Lines. The density of the resulting point clouds highly depends on the amount of

texture available in the images. Therefore, point-based SfM may deliver poor results in

environments with a low amount of distinctive interest points. To tackle this issue, many

line-based reconstruction approaches have been presented over the years. Especially build-

ings and indoor environments can often be represented by a set of 3D line segments. Similar

to traditional SfM it is necessary to match 2D line segments from various views to trian-

gulate a 3D line segment. This can be done using appearance-based similarity measures,

for instance normalized cross-correlation (NCC) or line descriptors [110, 241], possibly

combined with additional geometric constraints [19]. Since the endpoints of matched line

segments usually do not correspond to each other due to inexact line segment detection or

occlusions, creating 3D line segments from matched 2D lines is much more difficult than

traditional point-to-point matching.
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Dense Multi-view Stereo Geometry. Another method of acquiring geometric knowl-

edge is dense scene reconstruction. Classical point-based or line-based Structure-from-

Motion yields camera orientations and a sparse set of triangulated primitives, and this

is sufficient for a localization task. However for geo-referencing, occlusion handling, or

simply user-friendly presentation a denser model is required. Dense models are typically

obtained using two-view or multi-view stereo estimation based on given camera orienta-

tions, where one camera serves as the so-called key view and the other(s) as the sensor

view(s). As a result one obtains a 2.5D representation of the scene where every pixel in

the key view holds an assigned depth. The individual depth maps finally have to be fused

into a single 3D representation.

Digital Surface Models. A digital surface model (DSM) is a 2.5D height representa-

tion of the Earth’s surface and all objects on it as seen from an orthogonal aerial viewpoint.

In contrast to a full 3D model, just the maximum height over ground is considered, rather

than looking at all structures that might be below. Digital surface models are typically cre-

ated from large-format aerial images with up to 250Mpx with a ground sampling distance

of 8-10 cm/pixel. While DSMs can also be obtained using modern tools such as fixed-wing

MAVs, classical aerial images provide the advantage that they cover a very large area on

the ground and thus the resulting reconstructions are inherently geometrically consistent.

The aerial images are typically geo-referenced, either by using a high-quality GPS receiver

in the plane or by using ground control points on the surface. DSMs therefore provide a

good basis for the global localization of point clouds and for high-level path planning.

Other Priors. Several other forms of prior knowledge are often readily available. Mobile

robots typically carry additional sensors such as an inertial measurement unit (IMU), a

3D magnetic compass, and a global positioning system (GPS) receiver. Also, a robot

has several motion constraints which allow to reason about the current position given the

previous location estimate. Finally, visual semantics and behavioral data can be exploited

for visual navigation. The experience of a human expert, as well as the experience of other

robots traversing a certain path previously, could be shared amongst robots as geometric

prior knowledge.

In the following sections we will review algorithms for successful modeling of these

different geometric priors. In contrast to visual navigation algorithms, where low compu-

tational costs and real-time capability are required, the modeling approaches presented

in this chapter focus on accuracy and are meant to run offline. However, receiving online

feedback about the expected quality and completeness of a reconstruction is important

when processing imagery offline. We thus conclude the chapter with a section on optimized

strategies for manual and automated image acquisition.
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3.1 Point-based Scene Reconstruction

For sparse 3D model reconstruction we rely on a Structure from Motion (SfM) approach

that is able to reconstruct a scene from unorganized image sets. Our solution to the 3D

reconstruction problem is based on the work of [98] and [221]. It is widely applicable since

no prior knowledge about the scene is necessary (i.e., no sequential ordering of the input

images has to be provided) and can therefore be used to create 3D models from terrestrial

as well as aerial imagery. To accelerate the computations we take advantage of graphic

processing units (GPUs) for efficient parallelized computing.

3.1.1 Related Work

The recent success of Structure from Motion techniques can be traced back to significant

advances in wide-baseline feature matching [135] and multiple-view geometry [154, 203].

Also, the advent of much more powerful computational hardware, and especially general-

purpose graphic processing units (GPGPU) [59], supported the applicability of 3D re-

construction from image sequences. Still, exhaustive pairwise feature matching to find

correspondences in the individual views is the most time demanding task in today’s re-

construction pipelines. To circumvent this issue, Agarwal et al. [3] introduced a two-stage

matching approach which is now considered best practice. First, every image is described

by a single feature vector and coarse matches between images are detected. This process

is based on image retrieval and bag-of-words concepts [185]. Then, only those image pairs

which achieve a high similarity score are used for detailed feature matching. Our pipeline

incorporates all of these ideas to create robust and accurate 3D models.

3.1.2 Establishing the Epipolar Graph

A typical SfM framework consists of three processing steps, namely feature extraction,

matching, and geometry estimation. These steps are summarized in the following para-

graphs.

First, salient features are extracted from each frame. Our method utilizes the very

effective combination of DoG keypoint detector and SIFT descriptor [135] which achieves

excellent repeatability performance for wide baseline image matching [145]. In particular

we rely on the publicly available SiftGPU [232] software.

We then match keypoint descriptors between each pair of images. A variety of ap-

proaches has been proposed to speedup nearest neighbor matching in high-dimensional

spaces (like the 128-dimensional SIFT descriptor space). Among the most promising meth-

ods are randomized kd-trees [5] with priority search and hierarchical k-means trees [63].

These algorithms are in general designed to run on a single CPU and are known to pro-

vide speedups of about one or two orders of magnitude over linear search, but the speedup

comes with the cost of a potential loss in accuracy [150]. On the other hand, given that the

number of features is limited to some thousands, nearest neighbor search, implemented
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as a dense matrix multiplication on recent graphics hardware, can achieve an equivalent

speedup but delivers the exact solution. Hence, we employ a GPU-accelerated feature

matching approach based on the CUBLAS library with subsequent instructions to apply

the distance ratio test and to report the established correspondences.

After matching relevant images to each query view, geometric verification based on

the Five-Point algorithm [154] is performed. Given five corresponding points in two cali-

brated viewpoints with unknown extrinsic parameters, the Five-Point algorithm recovers

the relative 3D positions of the points, as well as the pose of the second camera P1 relative

to the first camera P0.

Since matches that arise from descriptor comparisons are often highly contaminated

by outliers, we employ the random sample consensus (RANSAC) [58] algorithm for ro-

bust estimation. In its basic implementation, RANSAC acts as a hypothesize-and-verify

approach. From a minimal set of samples several hypotheses are generated and the con-

sensus of the model is evaluated on the full set of observations. The RANSAC termination

confidence,

p = 1− exp(N log(1− (1− ǫ)s)) (3.1)

is used to decide whether two images satisfy the epipolar geometry. Here, N is the total

number of evaluated models, w = 1− ǫ the probability that any selected data point is an

inlier, and s = 5 is the cardinality of the sample point set used to compute a minimal

model for the Five-Point algorithm. We require p > 0.999 in order to accept an epipolar

geometric relation. In our experiments, we use up to N = 2000 models which corresponds

to a maximal outlier fraction of ǫ = 0.67.

The matching output is a graph structure denoted as epipolar graph, that consists

of the set of vertices V = {I1 . . . IN} corresponding to the images and a set of edges

E = {eij |i, j ∈ V}. The edges are pairwise reconstructions, i.e. relative orientations

between view i and j, eij =< Pi, Pj >, and a set of triangulated points with respective

image measurements. Since the cameras are calibrated, a linear triangulation method [79]

is sufficient to accurately estimate the 3D point location. This procedure is followed by

a pruning step that discards ill-conditioned 3D points (points that do not satisfy the

cheirality criterion [80]) and points that have a high depth uncertainty (points where the

roundness of the confidence ellipsoid [13] is larger than a given threshold).

3.1.3 Structure Initialization

Our SfM method follows an incremental approach [186] based on the epipolar graph. In

order to reconstruct a consistent 3D model, a robust and reliable start configuration is

required. When the initial structure is prone to errors, a subsequent iterative optimization

procedure will eventually end up in a wrong local minimum, hence good initialization is

critical. As proposed in [116] we initialize the geometry in the most connected parts of

the graph, therefore the vertex I∗ with highest degree, i.e. the node having the largest

number of edges, is determined. We start from the vertex I∗ and determine all connected
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neighbors. Next, all pair-wise measurements are linked into point tracks and the global

scale factor of the initial structure is estimated. Then, bundle adjustment [203] is used to

optimize camera orientations Pi and 3D points Xj by minimizing the reprojection error,

C(P,X) =
∑

i

∑

j

vijd(PiXj ,xij)
2 (3.2)

where xij are 2D point measurements of observed 3D points and vij is an indicator variable

that is 1 if the point Xj is visible in camera Pi and 0 otherwise. To limit the impact of

outliers, we use a robust Huber M-Estimator [95] to compute the costs d.

Given the initial optimized structure, each 3D point is back-projected and searched for

in every image. We utilize a 2D kd-tree for efficient search and restrict the search radius

to a constant factor rt. Again, given the new measurements, bundle adjustment is used

to optimize 3D points and camera parameters. This method ensures strong connections

within the current reconstruction.

3.1.4 Incremental Reconstruction

Next, for every image I that is not reconstructed and has a potential overlap to the

current 3D scene (estimated from the epipolar graph), 2D–to–3D correspondences are

established. A three-point pose estimation algorithm [76, 118] inside a RANSAC loop

is used to insert the position of a new image. When a pose can be determined (i.e., a

sufficient inlier confidence is achieved), the structure is updated with the new camera

and all measurements visible therein. A subsequent procedure expands the current 3D

structure by triangulation of new correspondences. We follow the approach of Snavely et

al. [186] and use a priority queue to guide the insertion order. Our insertion order is based

on a saliency measure that favors early insertion of images that have a strong overlap with

the given 3D structure. Rather than using the raw number of potential 2D–to–3D matches,

we compute an effective matching score that further takes the spatial match distribution

into account. This idea of Irschara et al. [101] is depicted in Figure 3.2. While the number

of features is equal in 3.2(a) and 3.2(b), the uniform spatial distribution of point features

in 3.2(a) can be regarded as more reliable than the one shown in 3.2(b). Hence, we weight

the raw number of features by an estimate for the covered image fraction yielding the

effective inlier count.

Whenever a number of N images is added (we use N = 10), bundle adjustment is used

to simultaneously optimize the structure and all camera poses. The iterative view insertion

procedure is repeated until the priority queue is empty. The sparse reconstruction result

can be seen in Figure 3.3(b).
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(a) Many effective inliers (b) Little effective inliers

Figure 3.2: Effective inlier measure. (a) A uniform spatial distribution of image measure-
ments is regarded as more reliable than (b) a non-uniform distribution.

3.1.5 Online Structure-from-Motion

Classically, batch-based SfM approaches assume spatially unordered images as input and

therefore require several minutes or hours to determine the spatial ordering by constructing

the epipolar graph [187]. While the resulting reconstruction is optimized, some applica-

tions require to report the current reconstruction quality to a user, so the SfM problem

has to be solved in an online fashion. Visual SLAM systems like PTAM [113] are able

to recover camera positions and 3D structure in real-time, but they rely on high framer-

ates and strong motion assumptions and are therefore not suitable for generic modeling

of prior knowledge. Additional to our offline pipeline, we have thus proposed an online

Structure-from-Motion method [87].

The construction of the epipolar graph requires to estimate the relative orientations

between all image pairs, which is the most time-consuming task in batch SfM pipelines.

In practice, we can assume that a user does not acquire images in a totally random order.

If we assume that a new input image I has an overlap to an already reconstructed scene

part, we can skip the epipolar graph construction and the SfM problem can be split into

two tasks that are easier to solve: A localization and a structure expansion part. More

formally, given a freshly acquired input image I and a reconstructed scene M , we find the

position of I withinM using robust three-point pose estimation [76, 118], and subsequently

expand the map M by triangulation.

For bootstrapping the scene M , we rely on the same initialization schemes that are

also used in batch-based SfM methods but only use the first two suitable images. To

prevent the triangulation of degenerated 3D points lying at infinity, we require that the

triangulation angle exceeds a minimum threshold of δmin = 2◦. To prevent scene drift

caused by incremental map building, we use a global optimization scheme to obtain a

consistent map. Hence, we perform iterative bundle adjustment [203] in a parallel thread.



28 Chapter 3. Modeling Geometric Prior Knowledge

(a)

(b)

Figure 3.3: Atrium scene reconstruction from 157 views. (a) Original view of the scene.
(b) Sparse model and source cameras obtained by Structure from Motion reconstruction.

The presented method is similar to visual SLAM, but it matches wide-baseline features

instead of tracking interest points. It is designed to process high-quality images in a user-

acceptable time, but does not impose real-time constraints. An important advantage over

offline SfM pipelines is the ability to provide feedback to the user: If the system cannot

localize I within M , this is reported to the user instantly and he is asked to take a new

picture. The drawback however is that not the entire imagery is available in the beginning,

thus the reconstruction might not be optimal.
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3.1.6 Summary

We have presented methods for offline and online Structure-from-Motion reconstruction of

sparse point clouds [87, 98, 221]. Our generic reconstruction pipeline is widely applicable

since no prior knowledge about the scene is necessary. It can therefore be used to create 3D

models from terrestrial as well as aerial imagery. Moreover, when operating in an online

manner it is possible to obtain a low-resolution reconstruction preview while still acquiring

images. This is especially helpful when using micro aerial vehicles for photogrammetry

or when recording at distant locations, because the costs for acquiring additional imagery

to complete the reconstruction is considerably high. The accuracy and usability of our

pipeline is demonstrated in Section 6.1.1.

3.2 Line-based Scene Reconstruction

Line-based scene reconstruction approaches have been developed to overcome situations

where point-based modeling has problems, namely in man-made environments with a low

amount of distinctive interest points. Most of the previous approaches rely on an accurate

line matching process between the various views using appearance-based similarity mea-

sures [10, 11, 97, 182]. This usually works fine if the lines are located on a planar surface

with constant background, for instance when matching window frames. However, when

dealing with wiry structures such as power pylons, bridges or scaffolds, appearance-based

matching is hardly possible due to a visually different background of the line segments in

different views. Figure 3.4 visualizes this problem. We present a hypothesize-and-verify

approach which is especially designed to handle such cases but also performs well on solid

objects [86].

3.2.1 Related Work

Similar to traditional SfM it is necessary to match 2D line segments from various views

to triangulate a 3D line segment. This can be done using appearance-based similarity

measures, for instance normalized cross-correlation (NCC) [10] or line descriptors [110,

241], possibly combined with additional geometric constraints [19]. Motivated by the

application of autonomous power pylon inspection using MAVs, we aim for reconstructing

wiry objects as well. Unfortunately, appearance-based approaches do not perform well in

these cases, thus we need to rely on geometric constraints only.

In order to create 3D models without the need for explicit line matching, Jain et

al. [102] developed a sweeping based approach which defines the unknown 3D locations of

the endpoints of 2D line segments as random variables. They estimate 3D line hypotheses

by generating all possible endpoint locations in a certain depth interval (assuming known

camera intrinsics and extrinsics) and keep the one with the highest score based on the

gradient images of many neighboring views. Hence, they create a 3D line for every 2D line

in every view. In order to delete outliers and cluster corresponding line segments together,
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(a) (b)

Figure 3.4: Examples for wiry structures. (a) Objects such as a power pylon or a scaffold
are hard to model using point features. (b) Appearance-based line matching is not possible
either because corresponding line segments have a visually different background in the two
views (yellow lines).

they group 3D line segments which lie close in space and discard all segments which do

not have at least one such neighbor. They also perform an optimization based on 2D line

connections using loopy belief propagation to enforce connected 3D lines. Even though

their approach delivers accurate results and is robust against noise and partial occlusions,

it is very slow compared to appearance-based approaches.

In our approach as presented in [86] we build upon these principles but employ a

different matching strategy. Instead of using a time consuming sweeping approach we

generate hypothetical 3D line segments using epipolar constraints, which drastically limits

the number of possible 3D locations for each 2D line segment. Our algorithm consists of

a hypotheses creation and a verification step, which are summarized in the following.

3.2.2 Creation of Line Segment Hypotheses

Given an unordered set I = {I1, ..., In} of n images and the corresponding cameras C =

{C1, ..., Cn} we want to generate a set of 3D line segments S = {S1, ..., Sk}. Since we do

not perform explicit line matching and line-based relative pose estimation, the cameras

have to be known beforehand. For this purpose we use a point-based SfM pipeline as

introduced in the previous section, which results in relative poses of all cameras C in a

common coordinate frame. This limits the application to scenes where interest points can
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be found, but we have seen that we can usually find enough correct correspondences for

an accurate relative pose estimation directly on solid objects, but also in the background

of wiry structures.

In order to generate triangulated 3D line segments from a set of images, we first apply

the Line Segment Detector (LSD) [214] algorithm to extract all relevant line segments

with as few incorrect detections as possible. Assuming no false detections, every 2D line

segment from image Ii corresponds to a 3D line segment in world space. As we know the

projection matrix P i of the camera, we are able to compute the epipolar geometry [80]

between Ii and some other view Ij . Using the epipolar lines ep and eq defined by the two

endpoints p and q of a certain line segment l in view i, we can limit the possible matches

for l to those line segments whose endpoints lie on ep and eq respectively. This is visualized

in Figure 3.5. For every hypothesis we create a 3D line segment L by triangulating the

two corresponding endpoint pairs from the two views Ii and Ij .

Figure 3.5: Epipolar geometry-guided line matching. We match the line segment l in view
Ii with line segments from view Ij using its epipolar lines ep and eq. The blue line segments
are possible candidate matches because of their overlap with the region between the two
epipolar lines. The endpoints of the hypothetical line segments used for triangulation are
shown as blue dots. The orange line segment does not overlap with the epipolar lines and
is therefore not considered as a possible match.

3.2.3 Verification and Clustering of Line Segments

Epipolar lines do not provide enough information to perform exact matching, so we usually

have more than one hypothesis for each 2D line segment and have to determine which one

is correct. Therefore we adopt a scoring approach similar to [102, 109] which weights

backprojected lines according to the perpendicular distance to the closest image gradient.

Assuming that line segments correspond to high gradient areas in images, this method

ensures that we choose the hypothesis which fits best to the image data. The 3D line

segment with maximum score is thus added to the hypotheses set H. Since we generate

3D line segments for all views individually, we end up with a quite large set of 3D lines

which has to be pruned. Figure 3.6(b) shows an example for a 3D line model before

grouping and outlier removal.
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(a) (b) (c)

Figure 3.6: Line-based reconstruction results. (a) Original view of the scene. (b) Before
grouping and outlier removal, 71538 segments from 106 views are generated. Note that
there is a large number of outliers due to incorrect matches, but the power pylon which
appears in the imagery is clearly recognizable. (c) After the grouping procedure most of
the outliers have been successfully removed, resulting in an accurate 3D model with 1381
line segments.

Since we match and triangulate the 2D line segments individually for every view,

the same 3D line might be generated in multiple views. Assuming a correct matching

procedure, all hypotheses in H which correspond to the same 3D line should be located

close to each other in space. Hence, we greedily group lines based on their spatial proximity

in 3D space [102]. For each line Lm ∈ H we define a cylinder of a fixed radius r around

the line and then search for all line segments Ln, n 6= m where both endpoints are located

within the cylinder. If the final line group has at least hmin members we consider it to be

valid and exclude all line segments in the group from further grouping, otherwise Lm is

removed from H and we continue with the next best hypothesis. After the clustering step,

each group is replaced with one single 3D line segment for our final set S. Figure 3.6(c)

illustrates the result of the grouping procedure. Note that compared to Figure 3.6(b) most

of the outliers have been successfully removed.

Even for solid objects, it is often the case that the point cloud obtained using traditional

SfM techniques is sparsely distributed due to the lack of distinctive features in man-made

environments. Many of the keypoints may be rather located on the background instead of

the object. Nevertheless, background features can be used for relative pose estimation and

therefore our line matching algorithm can be applied in order to densify the 3D model.

Figure 3.7 shows an example 3D point cloud of a house surrounded by a scaffold, and

Figure 3.8 shows a model of a staircase. As we can see, the point clouds are rather sparsely
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occupied and the visible objects are difficult to determine for the viewer. Adding 3D line

segments clearly improves the result and allows the viewer to identify the underlying

structure.

(a) (b) (c)

Figure 3.7: Line-based reconstruction of the House sequence (93 images). (a) Example
view, (b) SfM point cloud, (c) 3D model with the reconstructed line segments.

(a) (b) (c)

Figure 3.8: Line-based reconstruction of the Stairs sequence (14 images). (a) Example
view, (b) SfM point cloud, (c) 3D model with the reconstructed line segments.

In case of wiry objects a specific volume (e.g. the cylinder used for grouping) can be

assigned to the object rather than representing it as a pure line model. As visualized in

Figure 3.9, the appearance then varies depending on the viewing distance from the object,

which is a more natural representation of real-world geometry. Such a model is perfectly

suitable for model-based localization as presented in Section 4.4.
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Figure 3.9: Cylinder approximation for line models. For model-based tracking, realistic
rendering of the object is crucial. Thus, cylinders are used to approximate the volume of
individual line segments. A change of the viewing distance thus effects the object size as
in a real-world setting.

3.2.4 Summary

In summary, our approach for 3D line-based scene reconstruction [86] without explicit

appearance-based matching works for wiry structures as well as solid objects. In contrast

to a previous approach by Jain et al. [102] we exploit epipolar constraints to speed-up

the computation while still creating accurate results. An evaluation can be found in

Section 6.1.2. We have shown that 3D line segments can be used to densify the result in

scenes with few distinctive feature points. This is of particular importance for localization

in urban scenes with man-made or wiry structures.

3.3 Dense Multi-View Scene Reconstruction

Dense models contain a lot more information than sparse models, but it is also much

harder and computationally more expensive to obtain accurate dense models. Pixel-wise

depth estimation is often not possible due to untextured regions or occlusions, so depth

map smoothing, interpolation, and meshing algorithms need to be applied. Additionally,

modification and optimization of dense point clouds is not straight-forward, for instance

when loop closing is necessary. We thus rely on sparse point clouds as basic representation

of the environment and refer to densification and surface reconstruction as refinement

steps for certain applications. In the following, we first introduce representations of dense

geometry, then review two methods to densify point clouds, namely patch-based multi-

view stereo [65] and planesweep stereo [28], and finally demonstrate two methods which

we use to extract 3D surfaces.
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3.3.1 Related Work

Dense geometry can be defined in multiple ways. We distinguish between densified or semi-

dense point clouds, and watertight surfaces. Even for very dense point clouds it is not

entirely clear which points belong together and thus form a common surface. In contrast,

our understanding of dense geometry incorporates a neighborhood for every point, thus

spanning surfaces between individual points. Several different representations for such

kinds of geometry exist.

Volumetric representations are the 3D equivalent of occupancy grids [147], as every

voxel is assigned to be filled (i.e. part of an object) or empty. Often, a probability is

assigned instead of a binary value. Such representations are especially popular in robotics

as classical algorithms like histogram filters [25] can be directly extended to 3D. While

these representations can handle arbitrary topology, the biggest drawback is the large

memory consumption which scales cubically. Hornung et al. [90] overcome this issue in

their Octomap framework, which uses a hierarchical data structure based on octrees [141,

230] for 3D space subdivision. Octomap allows fast multi-resolution queries and insertions,

and it scales very well to outdoor environments. However, a major drawback is the lack

of a fixed size neighborhood for each cell, which is necessary for efficient filtering and is

usually a core advantage of volumetric representations.

Several methods use volumetric representations to extract a surface by computing a

signed distance field separately on all voxels induced by the range images [34, 83, 229]. Sur-

face regularization can be integrated to allow for spatial coherence and smoothness within

a global energy minimization framework, which can then be optimized using variational

techniques [70, 223, 235] or graph cuts [213]. The latter method tries to reconstruct objects

from the captured input images directly by incorporating a photo-consistency measure.

Another very popular and flexible representation of dense 3D geometry are meshes.

The Poisson surface reconstruction method [107] tries to fit a surface based on the gradient

field imposed by samples and their normals. In contrast to other approaches, new vertices

are created in the process of meshing and surfaces need to be of closed form. Thus, often

undesirable bubbles are created and extensive postprocessing is necessary. In contrast,

Delaunay triangulation [22] creates meshes which consist only of the initial sample points

and intersection-free triangles in between. It can be shown that the memory usage for such

a representation is linear to the number of points [7], and that the Delaunay triangulation

contains a good approximation of the true surface if enough samples are provided [4].

However, a large number of inner triangles need to be removed if only the surface should

be extracted.

In the following we will thus discuss state-of-the-art methods to densify sparse,

keypoint-based geometry. While the Delaunay triangulation can even extract a surface

from such a sparse point cloud, a densified set of points is clearly beneficial.
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3.3.2 Densification using Patch-based Multi-View Stereo

The publicly available patch–based multiview stereo (PMVS) software of Furukawa and

Ponce [65] is one of the most popular approaches to automatically reconstruct a scene

when the camera positions are known. One of the main properties is that this approach

densifies a point cloud directly in 3D space rather than estimating the depth of every pixel.

PMVS initially estimates the position and orientation of small rectangular patches on the

surface of the object based on sparse feature matching. Then, an expansion procedure

iteratively adds patches in the neighborhood of already known regions. The approach

successfully copes with outliers and thus is very robust, but the computational effort is

also considerable. Since our structure from motion pipeline delivers sub-pixel accurate 3D

camera orientations, PMVS can be run at full image resolution. However, even PMVS

requires at least weakly textured surfaces for densification, thus a constant ground sam-

pling distance cannot be guaranteed. The PMVS dense reconstruction result of an atrium

scene is depicted in Figure 3.10(b).

(a) (b)

Figure 3.10: Densified atrium scene reconstruction. (a) Original view of the scene.
(b) Semi-dense point model obtained by refining the sparse atrium model with PMVS [65].

3.3.3 Densification using Planesweep Stereo

In contrast to PMVS, multi-view planesweep stereo [28] densifies a point cloud in im-

age space. While this might introduce noise in untextured regions, it is easier to apply

smoothing and interpolation algorithms to a 2.5D representation than to a full 3D repre-

sentation. The planesweep approach enables an elegant way for image based multi-view

reconstruction since image rectification is not required. The method allows the recon-

struction of depth maps from arbitrary collections of images and implicit aggregation of

multiple view’s matching costs. Furthermore, the method is well suited to run on current

graphics processing units (GPUs) which makes processing of large datasets consisting of

many high resolution images feasible [99].
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Figure 3.11: Principle of planesweep stereo. Given the camera orientations as a result of
the SfM reconstruction, the multi-view planesweep approach [28] is used to generate dense
3D reconstructions.

In more detail, the scene is iteratively traversed by parallel planes aligned with a

reference view and positioned at an arbitrary number of discrete depths, as shown in Fig-

ure 3.11. Each sensor view i is then projected onto the current 3D key plane Πd = (n⊤, d)

at depth d according to the epipolar geometry. The mapping is given by a homography

H(d) which can be computed directly from the camera matrices K and K ′, the relative

rotation R and translation t between key and sensor camera, the normal vector n⊤ of the

plane and the current depth d as

Hi(d) = K ′
i

(

Ri −
tin

⊤

d

)

K. (3.3)

The plane sweep technique is based on the idea that if the plane at a certain depth passes

exactly through the object’s surface we want to reconstruct, then the appearance of the

image points in the key view should match those of the projected sensor image under

constant brightness conditions. For each discrete depth d, the sensor images are projected

onto the plane and the similarity Ci(x, y, d) between pixels of the key view and the sensor

view i are calculated as the zero-mean normalized cross correlation (ZNCC). Once the cost

volume Ctotal is filled with the accumulated matching scores, we extract final depth values

from the volume by a simple winner-takes-all (WTA) [179] strategy in order to achieve high

performance and low memory requirements. We select the depth where the accumulated

cost has its minimum along the line of sight through the volume. Additionally, we discard

depth values with a correlation value below a threshold Cmin in order to get the most

reliable depth hypotheses only. The raw depth map can be seen in Figure 3.12(a).

The output of the planesweep algorithm is typically noisy and contains outliers as well
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as areas with missing data. To improve the result, raw depth-maps are smoothed using a

total variation (TV-L1) based image denoising model denoted by

min
ud

{∫

Ωd

|∇ud|dx+

∫

Ωd

λd|ud − fd|dx
}

. (3.4)

Here, ud is the unknown denoised image, fd is the input and Ωd ⊆ R
2 is the image

domain. Using total variation as regularizer has the desired property of preserving edges

while smoothing the flat regions. The parameter λd controls the amount of smoothing.

The resulting depth map can be seen in Figure 3.12(b).

(a) (b)

Figure 3.12: Densification using Planesweep Stereo. (a) Raw depth–map before denoising.
(b) Depth–map after TV-L1 denoising (λd = 0.5). Flat depth regions are smoothed,
discontinuities are preserved.

3.3.4 Mesh-based Surface Extraction

As discussed before, watertight 3D models can be obtained by performing a 3D Delaunay

triangulation [22] followed by probabilistic space carving based on visibility information as

initially proposed by Pan et al. [158]. Specifically, we employ the approach of Labatut et

al. [124] who minimize an energy consisting of two terms to model the surface of objects:

First, the visibility-based energy term votes for tetrahedra as being part of the object or

part of free space, and it penalizes the number of conflicts of the line of sight with triangles

crossing the surface. The second term takes care of the smoothness of the surface. It

geometrically constrains the shape of a tetrahedra by penalizing the surface area, and

by constraining the size of the circumsphere of the two adjacent tetrahedra of a triangle.

This removes for example tiny elongated facets which are not desired in the resulting mesh.

Finally, this energy functional is optimized via graph cuts [23].

The approach is very robust against outliers, and it preserves edges and fine structures
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(a)

(b)

Figure 3.13: Mesh-based surface extraction based on the approach of [124]. From left
to right, the point cloud, the surface mesh, and a colored mesh are visualized, based on
(a) the SfM point cloud (36.948 points), and (b) the densified point cloud (318.540 points).
The densification procedure clearly supports the extraction of the true surface and leads
to visually appealing results.

while the result is at the same time free of self-intersections. An advantage over volumetric

methods is that the level-of-detail problem is solved inherently. Parts of the surface that are

sampled more densely by 3D points are represented with a higher resolution than weakly

sampled parts, whereas the voxel representation has a uniform resolution. However, the

accuracy of the surface estimation depends on the number of 3D points in the mesh,

as triangles between points can only linearly interpolate the surface. Therefore, prior

densification using PMVS or planesweep stereo as mentioned above is still very beneficial

to increase the level of detail in the model. The meshing results given a sparse point cloud

versus a densified point cloud are compared in Figure 3.13.

3.3.5 Volumetric Surface Extraction

While mesh-based representations can handle individual noisy measurements in an of-

fline reconstruction very well, they are currently not suitable to accumulate knowledge

regarding a certain space over time in an online fashion. We thus employ a volumetric
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representation of geometry using a truncated signed distance function (TSDF) in such

cases. Volumetric approaches allow solving for arbitrary 3D geometry, i.e. there is no

constraint concerning the genus of the surface topology.

Our reconstruction algorithm is based on the method of [234, 235]. Using the signed

distance formulation, the 3D surface is represented implicitly as the zero level-set of a

function u : Ω → [−1, 1], where Ω is a subset of R
3. However, instead of storing the

volumetric representation of f directly, the truncated signed distance function [−1, 1] is

sampled at evenly spaced discrete positions di, i = 1 . . . N and the exact value of every

voxel of f is replaced by the nearest di. Thus, we can store an arbitrary number of

distance fields f with constant memory footprint using a volume histogram consisting of N

bins. Every voxel x has an associated histogram h(x) which approximates the probability

density function of the truncated signed distance function, as depicted in Figure 3.14.

h(x, i) denotes the histogram count of bin i, thus listing how often the value di occurred

in the distance fields f at voxel x.

Figure 3.14: Quantized Truncated Signed Distance Function. Instead of storing the prob-
ability of being part of an object, every voxel x stores the signed distance to the surface.
Positive values indicate free space, negative values occupied space. The distance is trun-
cated and then quantized in a histogram, which allows accumulation of several depth
estimates. After smoothing in 3D, the surface can be extracted as the zero level-set.

Individual depth maps are fused together by minimizing the convex energy functional

min
u

{

∫

Ω
|∇u|dx+ λ

N
∑

i=1

∫

Ω
h(x, i)|u(x)− di|dx

}

. (3.5)

The regularization term
∫

Ω |∇u|dx measures the total variation of the function u. It

minimizes the surface area of the level sets and hence effectively removes noise caused

by the outliers of the depth maps while simultaneously computing a minimal surface

approximation in areas with missing depth data (see Figure 3.15). Note that the total

variation independently minimizes the surface area of each level set of the function u,

that is, the surface of the final 3D model. The data term measures the ℓ1 distance of the
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(a) λ = 0.5 (b) λ = 0.3

(c) λ = 0.1 (d) λ = 0.01

Figure 3.15: Variational noise removal on the dense, watertight surface helps to cope
with inaccurate or incomplete depth-maps. From (a) to (d), smoothing is increased. The
images show a scene where considerable amounts of data are missing; however, the fusion
algorithm can successfully gap the holes in the reconstruction.

solution to the individual distance fields. Using the ℓ1 norm is more robust than a squared

ℓ2 norm, but on the other hand it is more difficult to minimize. For optimization, we thus

employ a globally optimal primal–dual approach as proposed by Graber et al. [70].

3.3.6 Summary

We have reviewed methods for the densification of sparse point clouds and for watertight

surface extraction. On the one hand, we employ a state-of-the-art patch-based multi-view

stereo method and a space carving-based meshing approach for offline operation. On

the other hand, we propose to fuse depthmaps obtained with planesweep stereo using a

volumetric representation and a variational optimization framework when updating dense

surfaces in an online manner.

Dense models contain a lot more information than sparse models, but it is also much

harder and computationally more expensive to obtain accurate dense models. We thus rely

on sparse point clouds as basic representation of the environment and use dense geometry

only for certain applications, including alignment, occlusion handling, collision avoidance

for path planning, and visualization. Additionally, dense matching techniques are required

to build large-scale digital surface models as presented in the next section.
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3.4 Digital Surface Model Reconstruction

A digital surface model (DSM) is a 2.5D height representation of the Earth’s surface and

all objects on it as seen from an orthogonal aerial viewpoint. In contrast to a full 3D

model, just the maximum height over ground is considered, rather than looking at all

structures that might be below. The creation of a DSM typically requires a set of aerial

images acquired by a plane or a micro aerial vehicle. After recovering the sparse geometry

and camera orientations using Structure from Motion techniques, dense 3D reconstructions

are generated and fused into a large-scale DSM. In this work, digital surface models are

used for the global localization of point clouds and for high-level path planning, thus our

approach for reconstructing detailed and accurate DSMs [175] is described in the following.

3.4.1 Related Work

Aerial images produced by modern large format camera systems comprise up to 250Mpx

at high radiometric resolution of more than 12 bits per pixel. Typical airborne photogram-

metric surveys are flown with at least 80% forward overlap and 60% side-lap. Flying at

an altitude of 1000m, a ground sampling distance (GSD) of 8-10 cm/pixel is obtained.

While DSMs can also be obtained using modern tools such as fixed-wing Micro Aerial Ve-

hicles as shown below, classical aerial images provide the advantage that they cover a very

large area on the ground and thus the resulting reconstructions are inherently geometri-

cally consistent. Further, the large distance between camera and objects allows certain

assumptions such as piecewise planarity.

Many large-scale 3D reconstruction techniques compute a digital surface model by

merging depth hypotheses from multiple, pairwise estimated range images a posteriori,

meaning that one depth map is estimated from all possible stereo pairs [85, 207]. The

fusion step is important to create a reliable fused 3D point cloud and a dense, watertight

surface mesh, but it is influenced by accumulated registration errors of the cameras and

noise from false depth estimates. These erroneous depth estimates and outliers usually

lead to a poor integration and consequently, need to be handled robustly.

Methods for range image integration in related work operate on different representa-

tions. They can be roughly categorized into mesh-based [205], volumetric [34, 83, 229]

and point-based methods [66, 207]. We have presented a variety of such generic methods

for surface extraction in the previous section. While these methods are suitable as well,

the constraint of a common ground plane and a 2.5D representation allows to decrease

memory consumption and increase runtime performance for large scenes.

3.4.2 Probabilistic Range Image Fusion

For range image estimation, we first employ the plane sweep approach [28] as presented in

the previous section. While this methods exploits the approximately ortho-parallel nature

of aerial images, the quality of the individual range images still depends heavily on the
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input data. Hence, the resulting depth maps may contain noise and gross outliers due

to erroneous depth values. These outliers can originate from image noise, illumination

changes and shadows, as well as from occlusions, repetitive structures or uniform image

regions with insufficient texture, which usually lead to a poor integration and consequently,

need to be handled robustly.

Often, the majority of outliers can be removed by considering neighborhood infor-

mation during depth extraction. For this purpose, state-of-the-art global optimization

methods such as the variational optimization problem in 3D voxel space as proposed by

Irschara et al. [99] can be applied. The individual range images created by such methods

are in general smooth and visually pleasing. However, there is a trade-off between putting

large effort in generating clean, outlier-free range maps using global optimization methods,

and fast depth estimation using local methods which permit a certain amount of outliers

in the data but preserve detail. Once the input data is smoothed it may be fused using

a simple method like median fusion, but with the drawback of not being able to recover

fine detail.

DSMs are meant to serve as the global layer of our pipeline, thus we focus on large-scale

processing of range images and use a much faster local cost volume filtering approach [169].

Concerning runtime, this approach for depth extraction is 25 times faster than the global

method. Although the depth maps from local cost volume filtering contain outliers, more

details are preserved in the final DSMs, which is important for our purpose of MAV

collision avoidance.

Outliers can finally be removed by exploiting the redundancy in aerial imagery. For

fusing individual depth maps, we use our probabilistically motivated 3D filtering scheme

for range image integration as proposed in [175]. The approach works in object-space,

thus we do not need to select a reference view and the fusion scales very well to large sets

of images. Furthermore, the method has the advantage that it avoids a volumetric voxel

representation and is able to select a final depth from continuous values in object-space

instead of a discrete voxel sampling (Figure 3.16). The method is memory efficient and can

easily be parallelized for each individual DSM grid cell. Moreover, it is able to integrate

point clouds from arbitrary sources into one consistent DSM; this allows to exploit existing

airborne LiDAR data which has traditionally been used for surface modeling [127].

An example for a resulting high-quality DSM is visualized in Figure 3.17, and quanti-

tative and qualitative comparisons to other methods can be found in Section 6.1.4.

3.4.3 Exploiting Publicly Available Geographic Data Sources

Neither high-quality aerial images nor the final digital surface models may not be accessible

for everyone, and they may not be available for some locations on Earth. However, web–

based map providers and community projects [68, 206] provide fairly accurate information

not only regarding roads and directions, but also concerning buildings and vegetation.

This kind of publicly available GIS data can be used to estimate a digital surface model
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Figure 3.16: Probabilistic range image fusion. Depth hypotheses are considered as sam-
ples from an underlying probability density function, where local maxima of the density
function correspond to dense regions in feature space [175]. The local maxima correspond
to point clusters with higher density. Median fusion of all depth hypotheses would lead
to a wrong height value whereas the probabilistic approach is able to select a height value
correctly.

which is of low-quality, but still provides important prior information about the world.

The process and a typical result are depicted in Figure 3.18.

First, we use terrain elevation data of the NASA Shuttle Radar Topography Mission

(SRTM) [55] to generate a digital terrain model (DTM). SRTM obtained elevation data

of the Earth at near-global scale, covering about 80% of the Earth’s total landmass,

and producing the most complete and high-resolution digital topographic database of the

Earth. The dataset is available at 1 arc-second resolution (SRTM-1, approximately 30

meters) over the United States and its territories and at 3 arc-second resolution (SRTM-3,

approximately 90 meters) for the rest of the world. To construct a triangle mesh from

the unconnected sample points, we perform a 2D Delaunay triangulation and afterwards

assign the corresponding height to each inserted vertex. Data voids present in the raw

SRTM data due to shadowing, topographic variations or other radar-specific causes need

no further processing, as the missing areas are implicitly interpolated through the mesh

triangles of adjacent valid data points.

Then, we employ map data obtained from OpenStreetMaps1 for extruding buildings.

Semantical meanings in the map are connected to certain tags in the data vectors, so

1http://www.openstreetmap.org

http://www.openstreetmap.org
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(a) (b)

Figure 3.17: DSM reconstruction results. (a) The planesweep method combined with a
winner-takes-all depth estimation strategy produces detailed but noisy results. (b) Com-
bined with our probabilistic fusion approach [175] clean and accurate digital surface models
are created.

Figure 3.18: DSM estimation from publicly available geographic data. Terrain elevations
and buildings extracted from map data are used to approximate a geo–referenced digital
surface model.
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it is straightforward to approximate a rough DSM by extracting the building polygon,

projecting it onto the terrain model, and assigning a single, fixed height over ground to all

buildings. While the resulting building heights are obviously not correct, they are good

enough for several applications including occlusion handling during localization, large-scale

rough path planning, or giving context to certain models for visualization.

3.4.4 Summary

We have shown a process to create digital surface models based on plane sweep stereo [28],

cost volume filtering [169], and a probabilistic method for range image integration [175]. In

contrast to existing methods, our approach scales very well because it avoids a volumetric

voxel representation for fusion, and it is able to select a final depth from continuous values

instead of the discrete voxel values delivered by the input range images. Additionally, we

demonstrated how a rough DSM can be estimated from publicly available data [139, 174].

In Section 4.1 we will show how DSMs can be used to geo-reference and fuse SfM point

clouds, which is the first step of our localization pipeline.

3.5 Optimized Acquisition Strategies for Prior Modeling

Geometric prior knowledge sometimes needs to be acquired under certain illumination

conditions, in remote locations, or from aerial viewpoints. Especially in these situations it

would be cumbersome if reconstruction fails, hence it is important to guarantee that the

images taken on site are sufficient for the application of Structure from Motion and the

respective densification steps. As the quality and completeness of a reconstructed model

largely depends on the image quality and on the chosen acquisition strategy, we further

investigate this topic.

To recover a detailed and complete 3D model, the SfM process has several requirements

on the input images: The viewing angle between two images may not be too large to allow

feature matching, the view cones must overlap, the images have to be textured but the

texture should not be repetitive, and lighting should not change too much between images.

For a typical user it is impossible to estimate if the acquired images fulfill all demands.

Another difficult question is scene completeness, i.e. the coverage of the scene. Parts of

the scene that are not captured with sufficient image overlap cannot be reconstructed.

Since completeness depends on the required reconstruction resolution and on the surface

itself, it is not possible to quantify the degree of completeness without prior information.

In contrast, for a human it is relatively easy to answer this question by comparing a 3D

model to the real world. In this section, we thus describe quality measures for planning

suitable views automatically [88], as well as quality measures designed for guiding users

during the image acquisition process [87].
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3.5.1 Related Work

The problem of determining good imaging positions is known in different areas of computer

vision [64, 188], photogrammetry [26, 60, 157], and computer graphics [212]. In robotics,

the sensor placement problem is known as Next-Best View (NBV) problem [204]. Current

methods aim to perform scene reconstruction and sensor placement simultaneously, hence

they do not need prior knowledge about the scene. However, these algorithms are iterative

and rely on high-framerate input so they require powerful processing units for real-time

processing.

Only few methods exploit NBV strategies and prior knowledge to calculate a path of-

fline. Dunn et al. [48] propose an algorithm that combines accuracy-driven NBV and path

planning methods on given textured 3D models. Their objective function takes texture

properties, uncertainty minimization, and the number of triangles visible from a certain

viewpoint into account. As the texture is often not available when planning, the work of

Wenhardt et al. [226] proposes a purely accuracy-driven NBV planning. In their work,

the uncertainty of 3D points is evaluated based on the point covariance matrix [13]. We

use their uncertainty measure, but in our approach we do not need to perform exhaustive

search over all sampled camera positions.

3.5.2 Quality Measures for Planning Suitable Views

Automatic planning of “ideal” viewpoints for 3D reconstruction can be seen as a chicken-

and-egg problem. To find good viewpoints, the 3D geometry has to be known in advance.

On the other hand, a reconstruction is necessary to estimate the underlying 3D geometry.

To circumvent this problem, our goal is to find a small set of cameras that covers the

whole object and allows an accurate 3D reconstruction. In practice, however, it is more

important to guarantee a sufficient reconstruction of the scene after a single flight session

than to reach the smallest possible number of images.

Our approach requires a rough surface description of the desired object given as a

triangular mesh, which allows us to perform visibility tests and to find self-occlusions. For

example, this mesh can be obtained from a DSM or from previous reconstructions of the

object. If both are not available, a few images from a nadir view acquired by an MAV

can be used to construct a rough model of the object. Based on this prior knowledge,

our algorithm computes viewpoints while taking three constraints into account. First, we

define an upper bound of a reconstructed point’s uncertainty. Given a large number of

cameras, we want to find a subset that triangulates a 3D point with a given accuracy.

Second, we want to exceed a minimum overlap percentage between image pairs. Third,

all parts of the surface have to be covered by the acquired images. Our solution consists

of three main steps, which are described in detail in [88] and summarized below.

First, during camera placement, we initialize our search space with a discretized surface

given as a triangular mesh and create a very large number of candidate cameras observing

the mesh from a fronto-parallel viewpoint. The distance to the mesh depends on the desired
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ground sampling distance s and the camera’s focal length f . Then, camera clustering

reduces this search space by grouping candidate cameras based on their viewing angle

on certain surface triangles. As shown by Beder et al. [13], the depth uncertainty of a

reconstructed point depends mainly on the triangulation angle between the intersecting

rays, thus cameras with similar viewing angles can be removed. This constraint reduces

the search space drastically, while it still guarantees a certain triangulation angle which

can be seen as the lower bound of the reconstruction accuracy. Clustering also allows us to

define the importance of a camera for the reconstruction process, as cameras which cover

many scene points are usually more important for the overall reconstruction. Finally,

during view selection we incrementally select camera positions according to our quality

criterion [88, 226] while maintaining side constraints like image overlap and maximum

angle between view points. Due to the low computational complexity, our approach is

able to handle large, complex models that require several hundred camera positions to be

reconstructed accurately.

The output of our photogrammetric network design algorithm is a small set of views

which satisfies the quality measures for reconstruction uncertainty, overlap, and coverage

of the scene. When all of these constraints are fulfilled, a successful 3D reconstruction can

be expected. In Section 5.1 we will further tackle this topic by adding a path planner to

the approach, making it suitable for autonomous image acquisition.

3.5.3 Quality Measures for Guiding Users during Acquisition

When prior knowledge is not available or when automated methods cannot be applied,

the user has to manually acquire the images. Without feedback it is even for a very

experienced user difficult to determine if a large-scale scene is sampled sufficiently, i.e. if

all relevant parts have been captured. Although the SfM point cloud already indicates

the scene completeness, it is difficult for a user to derive this information from the point

cloud. Therefore, we employ the approach of Labatut et al. [124], as presented previously,

to extract a surface mesh given the sparse SfM point cloud. Based on the extracted surface

model, we derive two measures to support the user during the acquisition process: The

ground sampling distance (GSD) and the degree of redundancy.

The ground sampling distance measures the resolution of the mapping between the

3D physical surface to 2D image space. Therefore, the GSD determines the (theoretical)

maximum resolution of a dense 3D model. To compute the quality measure, we record

the maximum resolution a mesh triangle is mapped to in image space. We reproject each

triangle Ti of the mesh S to each aligned camera Ct. We then calculate the maximum

resolution

R(Ti) = min
Ct

√

A(Ti)

P (Ti, Ct)
(3.6)

which corresponds to the minimum value of the GSD, where P (·, ·) is the number of pixels

that triangle Ti covers in camera Ct and A(·) is the area of the triangle in 3D space.
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Our second measure, the degree of redundancy, describes how often a physical surface

area is captured by images. Redundancy is required to achieve accurate results but it also

increases the computational costs and lengthens the acquisition. Especially in large-scale

and geometrically complex scenes, the visualization of the redundancy supports the user

to obtain complete scene sampling. The degree of redundancy can be computed at the

same time as the GSD by counting the number of cameras Ti is visible in. We define that

Ti is visible in Ct if less than 50% of Ti’s area is occluded. This prevents largely occluded

triangles from being counted as visible.

(a) (b) (c)

Figure 3.19: Quality measures for guiding users during acquisition. (a) Sample image from
the scene acquired by an MAV. (b) Mesh surface based on the online SfM reconstruction,
overlaid by redundancy information. (c) The visualization of the GSD supports the user
to recognize which parts of the scene have been sampled at which resolution.

To visualize both measures, we overlay the mesh by a color map according to the

measure’s value. The user interactively selects which information he requires for the

decision in the next step. Since the scale of the SfM result is arbitrary, A(·) is typically

not in metric scale and we determine the range of the color map by α-trimming all values of

R(Ti), where α = 10%. If the scale of the reconstruction can be determined, for example

by roughly aligning the reconstruction using GPS data, we can choose the color map

according to predefined resolutions. Figure 3.19 visualizes the two quality measures for

the atrium scene.

3.5.4 Summary

We have presented quality measures which support users during the difficult task of proper

image acquisition for Structure fromMotion reconstruction. We discussed the visualization

of the expected redundancy and resolution of a reconstruction [87], and we have shown how

to select suitable views automatically based on prior knowledge about the geometry [88].

Especially when taking pictures in remote locations, under certain illumination conditions,

or from aerial viewpoints, it is cumbersome to repeat image acquisition once the model
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has been reconstructed, thus optimized acquisition strategies are crucial for successful 3D

reconstruction.

In the next chapter, we will demonstrate how the reconstructed priors can be aligned

in a global coordinate system based on geometry only, thus tolerating different ground

sampling distances and different appearance. The priors can then be used for robust

localization under various environment conditions, even if the individual models cannot

be directly fused by Structure from Motion techniques.
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A large number of interesting applications for micro aerial vehicles such as surveillance,

agriculture, inspection, or simply 3D reconstruction for visualization share one common

feature: The need for highly accurate localization of the vehicle with respect to the scene.

According to the work of Konolige and Bowman [120] on lifelong maps, long–term visual

localization requires an accurate map with good features, but should also allow incre-

mental mapping and recovery from localization failures. An additional requirement for

MAVs is the possibility to switch between GPS and visual localization, as visual maps are

unnecessary when flying high above buildings or in wide open spaces.

In the previous chapter we have shown how to model geometric prior knowledge by

taking pictures with a consumer camera from eye–level above ground, by using micro aerial

vehicles as acquisition tools in low altitudes, or by using large-format digital cameras

in higher altitudes. In this chapter, we present a multi-scale approach for monocular

localization with an accuracy comparable to differential GPS in a global coordinate system

(Figure 4.1). Further, we introduce an incremental feature update step which allows to

fuse in–flight information back into the original scene model, and we show how the complex

computations can be executed in real-time by distributing the load between a mobile robot

and a computationally more capable server. We conclude with a model-based tracking

method which builds on visual SLAM but incorporates line-based priors; an approach

that is especially useful when localizing relative to known objects.
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Figure 4.1: Localization in a geo–referenced, metric visual landmark allows to convert
the resulting local ECEF coordinates back to a GPS position. It is therefore possible to
seamlessly switch between GPS and visual navigation, as well as to exploit onboard GPS
and IMU data in the localization process.

4.1 Global Alignment of Geometric Priors

Alignment of visual maps in a global coordinate system is important for several reasons:

First, it facilitates the incorporation of additional sensors at flight time and for evaluation,

as coordinates obtained by visual localization are directly comparable to IMU and GPS

readings. This also allows an MAV to switch seamlessly between GPS waypoint mode

and visual localization, which is very important when connecting different visual maps,

and it allows to represent point clouds with metric scaling. Second, proper alignment

is beneficial to applications where the model should be set into context, for instance in

industrial applications such as construction site monitoring [117], or whenever further

algorithmic steps depend on it as in automatic view planning [88, 183].

However, two major challenges have to be tackled. On the one hand, geo-referencing

of 3D reconstructions is often difficult because of shadowed GPS signals in urban areas, so

accurate alignment purely based on GPS information is not possible. On the other hand,

flight space might be restricted in urban areas, which leads to missing views for accurate

3D reconstruction and causes fracturing of large models. This could also happen due to

vegetation or simply a change of illumination during image acquisition. For the resulting

fractured models, not enough visual feature correspondences for fusing the models can be

established.

In this section, we therefore address the automatic alignment of such partial Structure

from Motion (SfM) reconstructions to an overhead digital surface model (DSM) [219, 220]

as depicted in Figure 4.2. Our approach is to get an initial rough estimate of the model’s

pose using noisy GPS locations, and subsequently refine the pose based on a 2D correlation

of the DSM height map with a projected model height map.
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Figure 4.2: Automatic alignment of two semi-dense 3D point clouds to an overhead,
textured Digital Surface Model (DSM). The atrium model (red) has been reconstructed
from ground-level, whereas the images for the campus model (blue) originate from a micro
aerial vehicle.

4.1.1 Related Work

The problem of aligning 2D images or 3D models to a 3D structure is well studied, es-

pecially in the context of large-scale city modeling. Früh and Zakhor [62] present an

algorithm to fuse close–range facade models acquired at ground level with a far–range

DSM recorded by a plane. The models are created using both ground-based and airborne

laser scanners, as well as digital cameras for texturing. Their approach is based on reg-

istering the edges of the DSM image to the horizontal scans of a ground model using

Monte-Carlo-Localization. Similarly, Strecha et al. [195] register facades segmented from

a 3D point cloud to building footprints. Their approach combines various visual and geo-

graphical cues in a generative model, which allows robust treatment of outliers. However,

both approaches are focused on large-scale city models with flat facades to both sides,

resulting in fairly clean edges. In contrast, our approach takes the height over ground into

account and therefore even benefits from complex structures.

A popular approach to aligning and fusing SfM point clouds is to use random sample

consensus (RANSAC)-based geometric verification [58]. A typical issue is the estimation

of a reasonable inlier threshold, however this has been resolved in recent work [164]. Still,

such an approach is not feasible for our purpose as on the one hand feature correspondences

cannot be established and the algorithm would have to solve a huge combinatoric problem.

On the other hand, we want to align data with significant variations of the ground sampling

distance which would not be possible either.

Another well known method of aligning two point clouds is the Iterative Closest Points

(ICP) algorithm [238]. ICP estimates a transformation to minimize the overall distance

between points by iteratively assigning closest points as correspondences and solving for

the best rigid transform. While ICP is mainly used for registering 3D laser scans, Zhao et
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al. [240] use it to align dense motion stereo from videos to laser scan data. However, 3D

ICP can take very long and suffers from getting stuck in local minima due to its typically

small convergence radius. In other words, a very good initialization is necessary for ICP

to converge. However, using a point-to-plane variant [134] the ICP method can still be

exploited on top of our method to improve the results.

Kaminsky et al. [103] use 2D ICP to compute the optimal alignment of a sparse SfM

point cloud to an overhead image using an objective function that matches 3D points to

image edges. Additionally, the objective function contains free space constraints which

avoid an alignment to extraneous edges in the overhead image. While their approach

is suitable to align many 3D models obtained from ground level, it has problems with

points on the ground and would therefore fail to align the models acquired using our

micro aerial vehicle. Typical models presented in their paper show vertical walls which

can be easily projected to the ground and fitted to respective edges. However, when many

extraneous edges are visible in the overhead image their method fails. In contrast, given a

sufficient point density in the reconstruction, our approach is less prone to errors caused

by objects on the ground, it implicitly follows a free-space constraint and it works with

models covering a small area.

4.1.2 Automatic Alignment Pipeline

Our alignment pipeline is based on the registration of 2D depth maps showing the scene in

a nadir view, rather than 3D point clouds. We can thus handle geometric configurations

where ICP fails due to unknown correspondences or local minima, as well as significant

differences in appearance because there is no need to establish sparse feature correspon-

dences. We follow a three step approach: First, we convert all GPS and pixel coordinates

into a local, metric coordinate system. Second, we roughly align the acquired 3D point

cloud to the DSM by exploiting the available GPS information. Finally, we search for the

best height map alignment between the DSM and the semi-dense model point cloud using

normalized cross-correlation.

Conversion to Local ECEF Coordinates. Geo-referenced model coordinates are

represented in a local Earth-centered, Earth-fixed (local ECEF) coordinate system. While

the global ECEF coordinate system has its origin at the center of the Earth, with the x

axis passing through the equator at the prime meridian and the z axis passing through the

north pole, local ECEF employs a tangent plane to the Earth’s surface at a reference point

(Figure 4.3). By definition, the x axis heads East, the y axis North, and the z axis up

into the sky, thus it is also called ENU coordinate system. While the individual reference

point needs to be known using this representation, the benefits include a more intuitive

Cartesian system which allows to obtain metric measurements in the transformed point

cloud, and a better numerical stability of the transformations. We choose the reference

point to be the arithmetic center of the DSM’s known corner points.
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Figure 4.3: Relationship between GPS coordinates (λ, ϕ) and the Cartesian local ECEF
coordinate system (east, north, up). A tangent plane to the Earth’s surface at a reference
point is established for a more intuitive and numerically stable representation.

Rough Alignment using GPS Information. We exploit the GPS information avail-

able for every camera in our 3D models for rough alignment to the DSM. If the coordinates

measured by the GPS system were correct, it would be straightforward to estimate a 3D

similarity transform. However, longitude and latitude are noisy, and especially the altitude

estimate can be very inaccurate.

Therefore, our approach is to solve for a 2D similarity transform between the camera

positions (xsfm,i, ysfm,i) in the SfM model and the GPS coordinates (xgps,i, ygps,i), both in

local ECEF coordinates. Neglecting the altitude is just possible when the ground planes

are aligned. However, SfM pipelines typically store resulting models in the coordinate

system of the first camera. As a result, the axes of partial reconstructions do not align

and have to be rotated to a common ground plane. We employ a reasonable assumption to

approximate this plane, namely that the horizontal axis in every image coordinate system

is approximately parallel to the ground plane, which is the case when taking upright

photographs from the ground but also when taking nadir and oblique pictures on a micro

aerial vehicle. The approach of Szeliski [198] can then be used to compute the ground

plane normal and the corresponding rotation, as visualized in Figure 4.4. Finally, a robust

2D similarity transformation can be found using RANSAC [58].

Precise Alignment using Correlation. Given the rough alignment, we use correlation

for precise alignment. We project the semi-dense 3D point cloud into the pixel grid of the

DSM image, storing only the maximum height value per pixel. Pixel clusters with a radius

r ≤ 2px are removed using morphological operations to get rid of reconstruction outliers.

The model template M0 is finally created by cropping an axis-aligned box containing the

defined values. The template is visualized in Figure 4.5(b), with undefined values in black

color.
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(a) (b)

Figure 4.4: Rotation for ground plane alignment based on the method of Szeliski [198].
(a) SfM model in the coordinate system of the first model camera. (b) SfM model after
performing the estimated rotation.

(a) Ground Height (b) Model Height (c) Difference

Figure 4.5: Precise Alignment using Correlation. The normalized height values G of the
ground (a) are compared to those of the projected SfM model Mt (b), with undefined
points marked in black. (c) Differences occur not only when a building height does not
fit, but also when the ground height does not fit.

As the uncertainty of the rough alignment can introduce rotation and scale errors next

to the translational uncertainty ∆T , we rotate the model by the angles ∆φ, ∆θ, and ∆ψ

(roll, pitch, yaw) and scale it with a factor s = 1.0±∆s to generate the model templates

Mt. We cover the search space using the coarse–to–fine approach by [103] to speed up

computation, and crop the ground template Ggsd from the DSM image according to the

pyramid level gsd (Figure 4.5(a)).

The score of template t is finally computed by normalized cross-correlation of ground
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and model templates,

d(t) =
1

nt − 1

∑

x,y

(Ggsd(x, y)−Ggsd)(Mt(x, y)−Mt)

σGgsd
σMt

, (4.1)

where nt is the number of defined pixels for every template t, and Ggsd, σGgsd
, Mt as

well as σMt are computed only for defined pixels. Additionally, we introduce a term for

penalizing alignments which contain a large amount of undefined pixels,

r(t) =
nt

Nt
, (4.2)

where Nt is the number of all pixels in template t. The best height map alignment is then

associated with the best model template

tbest = argmaxt d(t) + λr(t). (4.3)

The mode of the difference between the ground template and the best model template,

and the ratio of the respective variances, can finally be used to estimate the translation

and scaling on the vertical axis.

Using height maps for alignment can be seen as an implicit free space constraint, if

compared to the work of Kaminsky et al. [103]. Differences between ground and model

templates as in Figure 4.5(c) occur not only when a building height does not fit, but also

when the ground height does not fit.

4.1.3 Benefits of Global Alignment

The alignment of 3D point clouds acquired at ground level or using airborne sensors such

as a micro aerial vehicle has several benefits other than automatic georeferencing. In the

following paragraphs we give an overview of how the gained information can be used for

DSM refinement, for season-invariant matching, and for providing context in visualization.

DSM Refinement. One of the major benefits of alignment is the refinement of existing

high-quality DSMs. In contrast to the original DSM in Figure 4.6(a), the refined DSM

in Figure 4.6(b) shows details such as several antennas (left), small trees (middle), or

steel wires (right). While these structures might not be important for building models,

they are very important and dangerous for autonomous MAV flights. In Section 5.1.2 we

demonstrate how to use the refined DSM for path planning and collision avoidance on our

MAV.

Fusing Reconstructions from Different Viewpoints. Our method also bridges the

gap between reconstructions computed from airborne and ground-level imagery. Figure 4.7

shows the partial reconstruction of a building that is obtained from nadir images taken by
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(a) Original DSM (b) Refined DSM

Figure 4.6: DSM refinement based on alignment. In contrast to the original DSM (a),
the refined DSM (b) shows details such as several antennas (left), small trees (middle), or
steel wires (right).

Figure 4.7: Fusing aerial and terrestrial reconstructions based on geometry only. The
resulting model demonstrates that our method can merge reconstructions obtained from
very different viewpoints and with highly varying GSD to an accurate 3D model.

our MAV at a height of 60m, and thus does not show facade details. The reconstruction

of the same building from ground-level images is shown next to it. Due to the weakly

textured surfaces, the utilized densification algorithm does not perform very well and the

GSD of the model varies. Even using such challenging data, our algorithm fuses both

parts to a comprehensive model.

Season-Invariant Matching. Seasonal changes are a challenge for every appearance-

based outdoor localization algorithm. Recent work of Valgren and Lilienthal [209] in-

vestigates the performance of local features such as SIFT [135] and SURF [12] in scenes

which undergo such changes. In contrast, we propose to accurately align several models of
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(a) (b)

Figure 4.8: Season-invariant matching. (a) Accurate alignment allows to collect local
features in different seasons (blue, red) and fuse the overlapping point clouds. (b) The
aligned models have been acquired in different seasons (summer and winter), as can be
seen when looking at the vegetation. While the appearance differs, the alignment in a
global coordinate system is successful.

the same locations, acquired at different days or in different seasons. The geo-registered

feature clouds can then be used to perform accurate, season-invariant matching. The con-

cept of virtual cameras, as presented in the next section, fully integrates this increased

amount of descriptors during a localization task. A visualization of two overlapping and

two adjacent models, taken in different seasons, can be found in Figure 4.8.

Providing Context in Visualization. Fitting the model into an environment can

also be important for visualization. Figure 4.9(a) shows a construction site, aligned to a

construction plan. The model has been aligned to the existing building next to it, using the

proposed algorithm, and based on a DSM generated automatically from OpenStreetMap.

However, it was necessary to manually align the construction plan to the DSM and to

manually shift the model along the vertical axis due to the missing accurate building

heights in the DSM. Figure 4.9(b) shows the alignment result with the estimated DSM.

While the result looks good, more stable alignment in the environment of construction sites

could be achieved by using multiple evolving models with less changes, or by including a

significant part of the surrounding buildings into the reconstruction.

4.1.4 Summary

In this section, we have presented an algorithm for the automatic alignment of partial 3D

reconstructions. Given an overhead Digital Surface Model (DSM) and approximate GPS

tags for the individual camera positions, we refine the alignment based on the correlation

of orthographic depth maps. We can handle complex cases where previous methods had
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(a) (b)

Figure 4.9: Providing context in visualization. (a) A construction site aligned to a con-
struction plan using an estimated DSM. (b) The estimated DSM can be enhanced by
fusing the aligned model into it.

problems, including models which do not share any appearance features and models with

considerably different ground sampling distances. This allows not only to fuse data ac-

quired by an MAV, but also combining aerial and terrestrial data sources. The accuracy

of our approach mainly depends on the ground sampling distance of the overhead digital

surface model, which is in the range of 5-30 cm per pixel for modern cameras.

4.2 Point-based Localization using Geometric Priors

In the previous sections we have shown how to create geometric prior knowledge in form of

3D reconstructions, and how localization of such models on a global level can be achieved.

In this section we introduce the concept of virtual views and demonstrate how it can be

used to localize within metric, geo–referenced 3D priors. We present a method for monoc-

ular localization with an accuracy comparable to differential GPS in a global coordinate

system. Further, we introduce an incremental feature update step which allows to fuse

in–flight information back into the original scene model, and we exploit additional sensor

information to ensure localization robustness.

4.2.1 Related Work

Model–based localization approaches have been extensively investigated over the past

decade [133, 181, 237, 242]. Most closely related to our approach is the urban local-

ization approach of Irschara et al. [101] which uses image retrieval-based methods for

location recognition. Compared to this class of methods, considerable improvements have
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recently been achieved [132, 176] using prioritized, direct matching of 3D points to 2D

features. However, Sattler et al. [177] have investigated the performance gap between im-

age retrieval-based methods and direct matching. It turns out that it is caused by a large

number of incorrect votes cast by standard re-ranking schemes, and can be fixed using

their proposed method. Instead, we employ a motion prior to select a small, feasible set

of virtual views which is then ranked. The search space is thus much smaller and we are

hardly affected by ranking issues. Apart from that, our approach using virtual views has

many benefits over direct matching as described in the next section.

4.2.2 Scalable Localization using Virtual Cameras

Our framework provides a visual landmark in terms of a large geo–registered 3D point

cloud with associated visual features. However, the information in the landmark is based

on a a low number of fixed viewpoints and thus does not provide views which are suf-

ficiently close to the images taken by an MAV. Additionally, matching descriptors of a

query image against thousands of descriptors in the model is infeasible as it would result

in a high number of non–unique matches, and would not scale in terms of computational

effort. In contrast, the partitioning of the search space using virtual cameras [101, 221]

enables efficient visual localization in outdoor environments. Combined with an incremen-

tal feature update step [222] to cope with missing viewing angles in the original model, a

robust and scalable localization system is proposed.

Placement of Virtual Cameras. Virtual cameras hold the correspondences of only

those 3D points and features which are visible given the respective camera center, camera

orientation, and occlusion surfaces. Motivated by [101], who use synthetic views for fast

location recognition in a flat environment, we have extended the concept to 3D space

in [221]. We sample camera centers on a regular grid G, and camera vectors in uniform

angular steps of γ on a unit sphere. Additionally, we use the intrinsics of the camera

mounted on the MAV to retrieve the correct scale of the features.

After setting up the necessary views, we project all 3D points into the respective

cameras. A projected feature has to be in front of the camera and within the extent of the

image, and it needs to have a scale larger than one pixel after projection. Additionally,

we use the aligned digital surface model for view culling (Figure 4.10). We restrict the

maximum distance of projected points to the distance of the closest surface in viewing

direction; this approach avoids adding occluded features. For every 3D point X, we use

the SIFT descriptor [135] with the smallest extraction angle

δmin(X, i) = min
j

arccos (
XVi

‖XVi‖
· XEj

‖XEj‖
) (4.4)

between the virtual camera Vi and the model camera Ej . Consequently, δmin(X, i) in-

creases with any deviation from the camera positions used for acquisition, but especially
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Figure 4.10: DSM view culling. When projecting 3D points into the respective virtual
camera representations (gray view frustums), the aligned digital surface model is used to
remove features which are likely to be occluded.

in higher altitudes when using images taken at ground level to create the model. This

increase in extraction angle is visualized in Figure 4.13(a). However, according to Miko-

lajczyk et al. [145] SIFT is only robust to off–image–plane rotations up to δmin < 30◦.

Given for instance a distance between camera and point of 10m, this would mean that

the localization only works up to a height of 5m above the acquisition height, because for

higher altitudes matching fails and the pose cannot be estimated robustly. This problem

can be circumvented by adding in–flight information to the model; our approach called

incremental feature updates is described in detail in Section 4.2.3.

We determine the number of necessary virtual cameras based upon the 3D reconstruc-

tion of the scene. The extent and the alignment of the grid G are defined by the 3D point

cloud. To ensure overlapping coverage of the entire model, we increase the number of grid

points along each axis until the number of feature points which are visible in less than

Ncoverage cameras converges. During this process all views with less than |F |min features

are removed. The placement of virtual cameras is visualized in Figure 4.11.

Localization using Virtual Cameras. The resulting virtual cameras V provide a

highly redundant representation of the scene. At first sight, the usage of synthetic views

seems to cause an enormous need for feature matching. However, the approach scales

very well for image sequences, as MAVs do not exceed a predetermined translational

and rotational speed in normal operation. The feasible set of virtual cameras Vt at a

certain time t is defined by the spatial distance to the previously estimated position and

orientation of the camera. We define the translational and rotational search radii tmax

and Rmax around that position, which are enlarged in case the MAV cannot localize its

position for a number of frames, for instance due to close–up views of an obstacle or

unusual movements.

Virtual cameras within that search area are ranked based on appearance using a vocab-

ulary tree [156] and corresponding inverted files. Restricting the search space by cascading

prior knowledge and appearance features to the feasible set Vt allows our approach to han-
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(a) (b)

Figure 4.11: Placement of virtual cameras. (a) A placement with G = {1, 1, 1} and γ = 30◦

does not satisfy the required coverage of Ncoverage = 3. Uncovered points are marked in
red, virtual cameras in blue. (b) The coverage converges for G = {7, 4, 4} and γ = 30◦.

dle scenes with unlimited size, and successfully copes with repetitive structures. We sort

Vt according to the scores obtained by the vocabulary tree query, and subsequently use

the top–scoring k views V 1:k
t to geometrically verify the pose of the MAV.

For geometric verification, SIFT features extracted in the query view are matched to

those in the virtual view using the GPU and the distance ratio test (see Section 3.1). We

then exploit the knowledge about the 2D to 3D correspondences of points in the virtual

view, and estimate a robust absolute pose from three point correspondences (P3P) [118]

using fast RANSAC methods [58]. Finally, only poses with a minimal number of effective

inliers, Ieff ≥ theff , are accepted. The measure of effective inliers [101] reports the spatial

distribution of inliers within the image (Figure 3.2); a high value indicates that the inliers

are well distributed and therefore more reliable. Figure 4.12 visualizes the top three virtual

cameras V 1:3
t and the corresponding estimated absolute poses Pt for selected query images.

In summary, the main idea is to fill a scene with a large number of virtual cameras

which each hold NVi
correspondences between visible 3D points and features, given the

respective camera center and orientation. This overcomes the problem of matching all

Nquery features from a query image to all features in the model. Instead, we match only

Nquery ×NVi
× k features for a small, feasible subset of k virtual cameras. As a result, the

approach scales very well and it can cope with ambiguous environments.

Due to the previously discussed process of creating and aligning visual maps, the

result of the localization process is a metrically correct position which can be converted

back to GPS coordinates. The concept of virtual cameras supports the storage of feature

descriptors from different acquisition days, thus it is possible to localize the camera in

different seasons if the necessary data is available. It is also possible to update virtual

cameras, as discussed in the next section.
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(a) (b)

Figure 4.12: Localization initiated by virtual cameras. (a) In most cases, pose estimation
based on the virtual cameras V 1:3

t (visualized without texture) results in the same final
absolute pose Pt (textured with the query image). (b) If the results do not coincide, the
pose Pt with most effective inliers Ieff (red matches) is preferred to other poses (blue
matches).

4.2.3 Updating Geometric Priors with In-flight Information

The previously presented approach has a major drawback, which is the lack of good

features whenever the angle to the closest view used for modeling the scene is large. As

images are typically taken at ground level, this especially applies when the MAV flies in

altitudes higher than 5m, but may also occur in many other scenarios.

Incremental Feature Update. In [222] we have proposed to tackle this issue by adding

in–flight information to the model, which we call incremental feature update. The visual

localization of every single frame results in a set of inlier features which each correspond

to a 3D point X. We evaluate the new extraction angle

δupdate(X, i) = δmin(X, i)− arccos (
XL

‖XL‖ · XVi

‖XVi‖
) (4.5)

between the localized camera L and the virtual camera Vi. Respective inlier features in

virtual camera i are updated, if δupdate(X, i) > thupdate, i.e., if the new extraction angle

is at least thupdate smaller than the previous one. Note that just the descriptor has to be

exchanged; 3D points and 2D feature positions in the virtual camera remain constant. This

update step is very fast and does not reduce the localization rate of 4 fps, as we exploit

a precomputed list of relevant virtual cameras for every 3D point. By computing the

extraction angle for every virtual view individually, we ensure that the average extraction

angle is optimized. Figure 4.13(b) visualizes the update of cameras which initially had a

high extraction angle δmin(X, i). Virtual cameras in high altitudes are updated, while the

features for lower altitudes remain the same.
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(a) (b)

Figure 4.13: The concept of incremental feature updates. (a) Depending on the acquisition
strategy, some virtual views (red cameras) might have an extraction angle larger than 30◦

compared to the model view (blue camera) which contains the real visual information.
(b) The problem can be circumvented by incrementally updating virtual cameras with
in–flight information (blue camera). The extraction angle for green cameras is reduced
and features are updated; the extraction angle for yellow cameras would be increased so
the features stay the same.

Incremental feature updates are generally applied in an online fashion during the flight

of the MAV. This allows a large boost in performance, but early frames do not profit from

new information in later stages of the flight. Therefore, we run an additional batch update

with several iterations (until convergence) after the flight. Even a single additionally

registered camera can provide the necessary descriptors for later iterations. During the

batch update process we also update the inverted file tables which are used in vocabulary

tree ranking.

Validation using Additional Sensors. A well-known problem in online learning and

tracking is drift due to wrong feature updates, called the template update problem [138].

If wrong localizations are taken to be correct, the model is disturbed and the localization

drifts towards the erroneous features. Incremental feature updates as presented in the

previous section can also be affected by these issues, even though robust methods are

applied already. To overcome this limitation, we propose to validate visual localization by

using the additional global sensors available to an MAV.

We employ the magnetic field sensors and compass of the IMU to validate the estimated

attitude, and the GPS readings and pressure sensor to evaluate the estimated position.

Thanks to the alignment of our visual landmark introduced in Section 4.1, the comparison

in a global coordinate system is straight–forward.
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For representing the attitudinal error, we choose a measure based on a quaternion

representation. A quaternion is defined as Q =
[

ρT qw

]T

, with ρ = a sin
(

θ
2

)

and

qw = cos
(

θ
2

)

, where a corresponds to the axis and θ to the angle of rotation. Thus,

the attitude error between the camera attitude quaternion Qcam and the IMU attitude

quaternion Qmagnetic is calculated as

eattitude = 2arccos
(

||Q−1
camQmagnetic||w

)

, (4.6)

where || · ||w is an operation that first normalizes the quaternion resulting from the

quaternion multiplication and then extracts qw. The position error is given as

eposition = ‖
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ycam

zcam






−







xlatitude

ylongitude

zpressure






‖, (4.7)

with xlatitude and ylongitude as GPS position converted to a local ECEF coordinate system,

and zpressure as pressure height over ground. These error measures are required to be

smaller than a threshold thattitude and thposition, respectively. Shadowing effects, weather

changes, and magnetic fields may disturb these sensors as well, so the validation should

serve as a sanity check rather than a narrow rejection criterion.

The combination of information about the rough orientation and position of the MAV

in a world coordinate system also allows us to switch seamlessly between GPS and visual

localization, for instance when navigating between several visual landmarks. Moreover, it

enhances scalability to a world environment as the feasible set of virtual cameras discussed

before is further restricted.

4.2.4 Summary

We have presented an algorithm for monocular visual localization of MAVs using prior

knowledge about the scene. Our work is based on the concept of virtual views in 3D

space, which allows to partition the search space for speeding up localization in large

environments, but also supports the integration of in–flight information to improve the

initial scene representation. Localization results generated by our algorithm are in a world

coordinate system, which allows the MAV to switch seamlessly between GPS and visual

localization.

4.3 Distributed Online Localization and Mapping

We have presented a novel approach for localization in known, point-based models, which

is neither prone to drift nor bias as it is not based on feature tracking but matches directly

against the 3D point cloud. While our scalable and flexible representation with virtual

views allows a localization speed of up to 4 fps, this is not enough for visual navigation
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of micro aerial vehicles. Moreover, the required hardware components to reach such a

framerate, including a GPU, are typically not available on mobile devices.

In this section we show that we can apply visual localization and mapping even on de-

vices with very low computational capabilities by distributing the computational load be-

tween the mobile device and a server. Image acquisition and tracking is performed directly

on a mobile device with restricted computational abilities, and only selected keyframes are

sent to a powerful server for sparse and dense mapping. Keyframes can be directly local-

ized using prior reconstructions if available, thus geo-referencing them on-the-fly, or can

be mapped as in standard visual SLAM approaches if no prior is available for a certain

location. The resulting triangulated feature points are returned to the mobile device and

can be directly used for tracking again.

In addition, we present the first system that is capable of generating live dense vol-

umetric reconstructions based on monocular input provided by a remote platform. The

user can additionally monitor the tracking quality using a live preview on a tablet com-

puter and interact with the system on a touch–screen (see Figure 4.14). These dense maps

could be used for various applications such as collision avoidance or reconstruction quality

visualization.

(a) (b)

Figure 4.14: Our system is able to reconstruct a scene on-the-fly using a micro aerial
vehicle. (a) Our distributed localization and mapping system allows to track the position
of the MAV at full framerate while it is airborne, in completely unknown environments,
or by exploiting geometric priors based on our virtual view localization framework. (b) A
preview of the distributed SLAM tracking performance (left) and a dense reconstruction
(right) are streamed to a tablet for visualization.
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4.3.1 Related Work

A system capable of live, dense reconstruction of an environment, running on a remote

mobile platform, requires three major components: Online localization and mapping for

tracking the pose of the camera, a dense reconstruction approach to estimate the geometry

of the scene, and a communication framework for distributing the workload to the most

suitable entities in the system. The following paragraphs give an overview of selected work

from these very active research areas.

Mobile visual localization and mapping is mainly used in augmented reality and

robotics, where the computational resources are often much lower than in a desktop

setting. We have already presented related work in augmented reality [115] and

robotics [2, 21, 218], but all of these SLAM approaches are prone to drift and bias.

Furthermore, these approaches do not allow to send high–quality imagery to the ground

for real-time visualization or dense reconstruction because this would require more

than the remaining processing power. In contrast, Reitinger et al. [167] presented

an interactive 3D reconstruction system which uses a server–based reconstruction

pipeline for urban modeling. A human scout selects suitable views and transmits the

image and GPS positioning data to the server, which returns a dense point cloud after

some seconds. Lee et al. [130] showed a similar concept on a mobile phone, featuring

server–based pose estimation and Shape–from–Silhouette reconstruction. In comparison,

our system performs pose estimation directly on the device but outsources sparse and

dense reconstruction to the server. This allows on the one hand to process considerably

more input images and to continuously obtain pose estimates, on the other hand the

data transfer is restricted to high–quality keyframes.

Typical SLAM approaches are often not suitable for providing input to dense recon-

struction, as they maintain a map of sparse feature points and do not store full frame

information. Newcombe and Davison [151] presented a method which is able to generate

a rough mesh based on sparse visual SLAM features. The mesh is then successively re-

fined by depth information obtained using variational optical flow [228] between tracked

frames, which leads to physically meaningful dense reconstructions. However, the topol-

ogy of possible reconstructions is limited by the initial mesh and does not allow modeling

of concave scenes containing holes or extrusions. Stühmer et al. [197] presented a similar

real-time system which robustly generates accurate depthmaps based on variational opti-

cal flow, but their work lacks depthmap fusion and is thus restricted to 2.5D geometries.

More recently, Graber et al. [70] presented a system based on variational depthmap fu-

sion [234, 235] which is able to overcome the aforementioned limitations and works with

a set of keyframes instead of all tracked frames. They propagate visibility information

in a volumetric representation and extract the surface as zero level-set of a global con-

vex energy, which leads to smooth reconstructions with arbitrary topology. All currently

available live dense reconstruction systems based on passive visual sensors exploit general-

purpose graphics processing units (GPGPUs) to achieve real-time performance and are
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therefore not directly applicable in a mobile system.

A computationally viable alternative for real-time dense 3D reconstruction is the

KinectFusion approach [152]. Unluckily, the structured light pattern projected by Kinect

is only suitable for indoor usage. In general, all currently available RGB-D sensors suffer

from very limited range in outdoor environments.

4.3.2 Overview of the Distributed SLAM System

We present a distributed system that is capable of real-time localization and mapping

based on monocular input from a mobile platform. Matching our goal of visual navigation

we choose a micro aerial vehicle with an on–board computer for image acquisition; however,

our approach is as well perfectly suited for current tablet computers. The mobile device

is used to capture live video and to track the pose of the camera in the environment.

Having both capturing and tracking in one place allows to make use of the full frame rate

delivered by the camera, and provides localization without delay and the need for persistent

connectivity. This is for instance important when using a visual servoing approach in

robotics [2, 224] (Section 5.2).

Figure 4.15: Overview of the distributed SLAM system. The tracker runs on the mobile
device and computes a pose for every single frame. Keyframes are selected heuristically
based on position and attitude changes, and only a sparse set of frames is thus transmitted
to the server. After sparse mapping, the server only needs to send the 3D map information
to the tracker; the extracted visual features are already there. This allows fast and efficient
map updates despite the distributed operation.

We further employ a server equipped with high–performance hardware, including a

state–of–the–art graphics processing unit (GPU), for sparse and dense mapping. The

work of Klein and Murray [113] has shown that mapping can be done using keyframes

only, which is the principle we rely on in this work. Keyframes are selected by the mobile

device based on the coverage of the current map and transmitted in full quality to the

server. Given the additional pose estimate by the tracker, they are directly integrated into

the map and bundle adjustment is performed. Within seconds, the updated map is sent

back to the mobile device and tracking continues on the updated map.

We want to stress that our system as described above and depicted in Figure 4.15

is very flexible in terms of hardware and algorithms. The coupling between individual



70 Chapter 4. Multi-Scale Distributed Visual Localization and Mapping

parts is very loose and based on the robotic operating system (ROS)1 and a wireless

link. Our work as described in the following paragraphs is based on the work of Klein

and Murray [113, 114] with some major changes relating to the distributed operation.

However, all parts can easily be adjusted to reflect the application at hand or the future

developments in tracking and mapping.

4.3.3 Tracking on the Micro Aerial Vehicle

The tracking part of our system runs on the mobile device and has two important tasks:

It has to deliver pose estimates for every input frame and it has to select keyframes based

on the the scene coverage of the map. Processing the data directly avoids tracking on the

ground, thus pose updates are not delayed and the low transmission bandwidth required

enables operation over Wifi and 3G.

For every acquired frame, our tracking system extracts FAST-10 [173] features on a

four-level image pyramid. We follow a two–stage tracking procedure which first searches

for the 50 largest features on coarse levels of the image pyramid based on the prior pose

estimate, updates the pose accordingly, and then performs accurate tracking by searching

for 1000 features in finer levels. Due to computational constraints, we use very simple 8×8-

pixel patch descriptors and match them to mapped descriptors at FAST corner location

within a circular search region. This is especially useful when updating the map, because

features do not need to be stored separately but can be indexed directly by the triplet

(id, s,x2d), where id denotes the unique keyframe index, s denotes the pyramid scale, and

x2d the patch position in the image. Undistortion is only applied on a per–feature basis

to reduce computational effort. A detailed description of the tracking and pose estimation

process can be found in the original PTAM work [113].

Keyframe selection on the mobile device is important to avoid streaming too much data

to the ground. To start the tracking process, an initial map consisting of two keyframes

is necessary. PTAM requires the operator to select these two frames manually, which has

several issues: It requires streaming the data to the ground, it requires some experience

in moving the camera, and it results in maps with arbitrary scale and origin. In contrast,

we employ a single artificial marker with known dimensions to initialize the map directly

on the mobile device. We use ARToolkitPlus [215] to obtain an accurate, metrical local-

ization relative to the marker. Once the marker is visible in the image, candidates for the

first keyframe are stored and SURF features [12] are extracted. Candidates for the second

keyframe are stored when a baseline of more than binit has been robustly measured (i.e.

over 10 frames). Once more than finit SURF features can be successfully matched between

any pair of candidates fulfilling the required baseline, the two keyframes are transmitted

to the server-based mapper. Given the two poses obtained by ARToolkitPlus, the essential

matrix is estimated. The initial map is triangulated and refined through bundle adjust-

ment. The resulting map with metrical scaling and a defined origin in the center of the

1http://www.ros.org

http://www.ros.org
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marker is finally returned to the tracker. While marker-less initialization works as well,

the proposed process is more comfortable and typically takes less than 5 seconds.

A proper initialization to metrical scale also aids further keyframe selection for ex-

panding the map. We transmit a keyframe to the server if the distance d to the nearest

keyframe in the map exceeds a minimum baseline bmap, or if d > 0.25bmap and the rotation

angle α relative to the nearest keyframe exceeds a minimum angle αmap. Additionally,

keyframes are only sent if the tracking quality is good and if a certain time tmap has

passed since the last keyframe has been added. In comparison to PTAM, αmap ensures

that keyframes are also added when the mobile device rotates, and tmap compensates for

the latency between requesting a map update and actually receiving it, while at the same

time ensuring that the tracker does not freeze while waiting for a map update.

Every time the tracker is lost or the received map contains considerable changes, re-

localization is necessary. We employ a fuzzy image re-localization approach [114] sup-

ported by GPS and compass data (if available) for outdoor usage. We store the initial

GPS/compass pose of the mobile device and insert all further keyframes relative to that.

The set of blurry, scale-reduced keyframes is ranked based on the distance to the cur-

rent GPS/compass pose and then matched as in the original approach. As a result, our

approach can re-localize in difficult outdoor scenes with repetitive features.

4.3.4 Sparse Mapping on the Server

The mapping part of our system runs on the server and is responsible for providing a

sparse three-dimensional structure which can be used for pose estimation by the tracker.

The mapper gets keyframes with an estimated pose and a unique identifier id in irregular

intervals from the remote tracker. These images are transmitted uncompressed and in

full–resolution; an important detail that allows the mapper to detect the same features

as the tracker. New map points are added by triangulation with neighboring views and

refined by local bundle adjustment as described in [113]. Global bundle adjustment is

applied whenever the mapper is idle, but interrupted if a new keyframe should be added.

Once local bundle adjustment has converged, the refined map is ready to be sent back

to the tracker. All keyframes available to the mapper are already stored on the tracker,

so it is sufficient to transmit the vector (id, s,x2d,x3d) for every new point, and for every

point that was moved by bundle adjustment by

‖x2d − x2d,old‖2 > ǫ2d or ‖x3d − x3d,old‖2 > ǫ3d. (4.8)

A typical map update can therefore be performed very quickly and does not require high

bandwidth. If large maps need to be refined by bundle adjustment, we propose to it-

eratively update the map starting with points in the vicinity of the current pose and

proceeding with points further away. When the map update is successful, the tracker

automatically resets and continues to track using the new map.
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4.3.5 Extension to Dense Mapping

Next to fast sparse mapping which is crucial for visual navigation, we run a second thread

on the server for dense reconstruction. This extends our framework as depicted in Fig-

ure 4.16. Starting at the minimum of three keyframes, we estimate a depth map for every

new keyframe and its set of neighboring views using multi–view plane sweep [28]. The

depth maps are then refined with variational denoising and integrated into a volumetric

representation using variational depth map fusion [234, 235]. This has already been de-

scribed in Section 3.3. The resulting smooth three-dimensional surface is rendered on the

GPU and transmitted to the user if new data is added to the volume or if the user triggers

viewpoint changes.

Figure 4.16: Overview of the distributed live dense reconstruction system, which exploits
the individual capabilities and requirements of the system entities. The tracker is again
run on the quad–rotor, sparse and dense mapping on the server, and visualization on the
tablet.

Finally, the live tracking preview and the dense reconstruction are visualized on the

mobile device; for aerial acquisition, this is a tablet computer on the ground. The user

can on the one hand control image acquisition and on the other hand rotate and zoom the

live dense reconstruction.

Dense maps created in real-time could be used for various applications. Our local-

ization and mapping framework based on virtual views as shown in previous sections is

perfectly suitable for integrating the additional data as prior knowledge for future flights.

Also, dense data is important for collision avoidance, which will be discussed in the next

chapter. Finally, our system is perfectly suited for monitoring the reconstruction quality

during acquisition; the lack of such a technique has so far prohibited a wide-spread use of

3D reconstruction on mobile devices.

4.3.6 Summary

We have shown how existing state-of-the-art approaches to online localization and mapping

can be adapted to work in a distributed environment with modern technologies such as

micro aerial vehicles for image acquisition and tablet computers for visualization. Our

work focuses on exploiting the individual capabilities of the devices, which leads to an

interactive system that is able to tolerate mistakes of the individual parts. Apart from
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providing a low-level layer for our localization pipeline, we are also able to generate dense

volumetric reconstructions in real-time and thus extend our maps of the environment [223].

4.4 Online Localization using Line-based Models

Localization in 3D point clouds is an important cue for visual navigation, but sometimes

it is necessary to localize relative to a single, given object. While many objects could

be simply represented as 3D point cloud as well, objects with little texture or even wiry

geometry such as power pylons need special treatment.

As discussed in Section 2.2 three different groups of algorithms can be distinguished by

means of their approach to determine the pose relative to a known object. Nevertheless,

only correspondence-based approaches are suitable for objects without associated texture.

Initial experiments have shown that it is difficult to estimate a pose relative to complex

structures from single images. Given a sequence of images, the application of a visual

SLAM method such as Parallel Tracking and Mapping (PTAM) [113] again seems to be

most reasonable. To cope with the drawbacks of visual SLAM, we extend this keypoint-

based approach to the use of model-based information for tracking, and additionally for

refining the mapping process.

4.4.1 Related Work

Bleser et al. [20] proposed a robust real-time camera pose estimation approach for partially

known scenes. The connection between the real and the virtual world is made by one known

object, given as a CAD-model. However, the model is only used during initialization

which is semi-automatic: The model is projected to the image using a predefined pose,

which the user then has to register manually to the image by moving the camera. When

the projected model is close enough to register the model lines to the image gradient,

initialization completes automatically. After initialization, point-based tracking is applied

to estimate the pose using warped patches around extracted feature locations.

Others use model-based pose estimation [112, 168] together with gyroscopic measure-

ments to be able to cope with fast motions and the resulting motion blur. While [112] is

used in augmented reality (AR) for head-mounted displays, [168] is used for outdoor AR

and extends the former work of Klein by the usage of a texture-based model and online

edge extraction. Both approaches use the edge-based tracking algorithm by Drummond

and Cipolla [46] to improve over purely point-based tracking.

The work of Kyrki et al. [123] is most closely related to our work, as they investigated

the tracking of rigid objects using the integration of model-based and model-free cues

in an iterated Extended Kalman Filter (EKF). The model-based cue uses a wireframe-

edge model of the object, whereas the model-free cue uses automatically generated surface

texture features. Thus, the approach relies on both edge and texture information. The

model-based tracking is similar to [46, 47], who estimate the normal flow for points along
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edges. The normal flow is then projected in the direction of the contour normal so that

the error can be minimized using robust M-Estimators [94]. For the model-free cue, Harris

corners are extracted and tracked for visible parts of the object by minimizing the Sum

of Squared Differences (SSD) in RGB values. The algorithm is able to deal not only with

polyhedral objects, but also with spherical, cylindrical and conical objects. However, in

contrast to our work this approach only makes use of texture information available on the

object, and hence is not capable of dealing with non-solid, wiry objects.

We therefore focus on a tracking approach which exploits discriminative features in

the background of the object. Thus we can track complex structures and determine a

pose when parts or even the entire object is occluded. Additionally, a line-based model

of the object is used for metrical initialization as well as in a refinement step, where the

pose estimate delivered by keypoint-based tracking is enhanced. This helps to improve

accuracy especially when being close to the object. Furthermore, when keypoint-based

tracking fails due to a lack of distinctive features, purely model-based tracking takes over.

This allows to avoid tracking failures until revisiting explored areas, where we seamlessly

switch back to keypoint-based tracking. The previously presented virtual view localization

can additionally be used to retrieve global keyframe poses in a geo-registered point cloud.

4.4.2 Line-based Tracking Algorithm

We extend the visual SLAM framework of Klein et al. [113] by several model-based com-

ponents: First, we use a line-based model of the object to generate a metrically correct

map during initialization. Hence, a metrically correct pose is determined in every frame

and can be fused with other systems such as the GPS. During initialization some user

interaction is required, however, we thus avoid object-dependent pose ambiguities, i.e.

multiple poses for which the object appears the same, right from the beginning.

After having initialized the keypoint-based tracking, the object is in fact only tracked

by its surroundings. This has on the one hand the advantage that the pose can be estimated

over multiple scales, and that the pose estimation is robust to partial occlusions of the

object. Additionally, pose estimation is even possible when the object completely vanishes,

which is not possible using pose estimation approaches based solely on the object. On the

other hand, given a good prior pose estimate from keypoint-based tracking, we can use the

knowledge about the object’s geometry to refine the pose, which is our second extension.

Keypoint-based pose estimation works well when enough discriminative world information

is detected in the current image.

Finally, when thinking for instance of inspection tasks, closeup views of the object

are sometimes necessary. When being very close to an object, keypoint-based tracking

often fails; however, the model is very prominent in such cases. As a third extension, we

therefore impose a purely model-based tracking component. Model-based tracking tries

to close the gap until revisiting already explored areas, where we can seamlessly switch

back to keypoint-based tracking. An overview of the entire system is given in Figure 4.17.
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Figure 4.17: Model-based tracking system overview. After metric initialization using the
model the object is tracked by its surroundings and refined using model edges. When
this approach fails, a model-based tracking takes over. It seamlessly switches back to
background-based tracking when visiting already explored areas. The gray blocks depict
the extensions compared to PTAM [113].

Metric Initialization. Detailed information about a single object in the scene is given

in form of a wireframe model or line-based reconstruction. This information is used to

initialize the visual SLAM algorithm metrically. To determine the first camera pose C1,

the user has to choose n correspondences between 3D-model points and 2D-image points.

Then, a Perspective n Point problem (PnP) is solved using Zhang’s method [239]. While

the user translates the camera sideways, salient image points are tracked. From these cor-

respondences we estimate a homography between C1 and C2 which is further decomposed

into a rotation R and a relative translation vector t̂ using [56]. Finally, the user has to

choose another previously selected model point. Now that two image locations of one and

the same point, namely xC1
and xC2

, and the relative camera translation t̂ and rotation R

between the two views C1 and Ĉ2 are known, the corresponding 3D-model point X̂C1
can

be triangulated in the camera coordinate frame of camera C1. After the 3D-model point

X has been transformed to the same coordinate frame, the disparity in length between the

true XC1
and the reconstructed 3D-model point X̂C1

can be calculated. The scale factor

s =
||XC1

||
||X̂C1

||
(4.9)

can be derived using similar triangles, where || · || depicts the length of the vector. The

factor is then used to scale the baseline to its correct metric length, yielding the true

metric translation vector t = st̂. This procedure is depicted in Figure 4.18.

As the true baseline is finally available, a metrically correct map is generated using

triangulation of pairwise corresponding image features.

Model-Based Refinement and Tracking. We distinguish between model-based re-

finement which is applied when keypoint-based tracking is good, and purely model-based
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Figure 4.18: Initialization of model-based tracking. C1 is determined by solving a PnP-
problem. R and the relative translation t̂ are extracted from an estimated homography,
while the correct location of C2 is determined by rescaling the baseline. The scaling
factor is determined from the disparity in length between a reconstructed X̂ and the true
model-point X.

tracking in all other cases. Both methods work the same, but during model-based tracking

the prior pose estimate is not delivered by keypoint-based tracking but results from the

refined pose of the last frame. However, in both cases the same steps are necessary.

First, all model points are projected to the image and a bounding box is calculated.

A refinement is only triggered if the ratio of the areas

A bounding box

A image
> t (4.10)

exceeds a certain threshold t. Otherwise, the object is either not present in the image

anyways, or so small that calculating a refinement based on the object’s model would not

improve the camera’s pose notably. As the refinement is based on gradient information,

the current image is convolved with the derivative of a Gaussian kernel Gx(x, y, σc) in

x-direction and Gy(x, y, σc) in y-direction, giving the image derivatives Ix and Iy, respec-

tively. The previously calculated bounding box is increased by a certain percentage, and

the gradient magnitude |∇I(x, y)| as well as the gradient direction ψ(x, y) are extracted

for this region of interest only.

Then, additional model points need to be interpolated on the edges connecting a pair

of model points and their visibility is determined by the use of a rendering component.

Therefore, the CAD-model is rendered under its currently estimated pose E∗
CW and the

z-buffer is retrieved. Then the 3D-world points XW are transformed to the camera coor-
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dinate frame via

XC = E∗
CWXW . (4.11)

Then, the 3D-point XC is projected from the camera coordinate frame to normalized

clipping coordinates (xncc, yncc, zncc)
T using the OpenGL camera projection matrix which

has been applied during rendering, and further linearly transformed to image coordi-

nates (uncc, vncc)
T . The z-buffer is finally evaluated at these coordinates to retrieve the

correct depth value for the 3D-point. If the difference

|zncc − zbuffer (uncc, vncc) | < τ, (4.12)

where zbuffer (uncc, vncc) is the corresponding z-buffer value and τ a scalar threshold, the

3D-point XW is considered visible, otherwise invisible.

The technique we use to refine our pose is based on an edge-based tracking algorithm

proposed by Drummond and Cipolla [46], which has already been successfully applied

to several augmented reality applications [112, 168]. For all model points including the

interpolated ones, a linear search for the strongest gradient magnitude is performed as

depicted in Figure 4.19. The search line η is arranged perpendicular to the model’s edge.

The projected model point is now shifted along the perpendicular search line to the image

point (x, y) which maximizes

max
(x,y)

(

|∇I(x, y)|e−
v2−µ2

2σ2 − λ ∢ (ψ(x, y),η)

)

, (4.13)

where the image gradient magnitude |∇I(x, y)| is weighted with a Gaussian windowing

function centered at the projected model point’s position µ, the scalar v denotes the dis-

tance along the search line, and λ ∢(n1,n2) is a term that penalizes orientation deviations

between the perpendicular search direction η and the image gradient direction ψ(x, y). In

short, what we are looking for is the nearest image location of the projected model point

with the strongest gradient response and approximately the same direction.

The image distances between old and new positions are assigned to an error vector e.

We then calculate a motion vector µ which minimizes these image errors by solving the

equation system

Jµ = e , (4.14)

where J is a Jacobian matrix describing the effect of each element of µ onto each element

of e in direction perpendicular to the edge. The elements of J are therefore calculated by

taking the partial derivatives at the current pose along the edge normal as

Jij =
∂ei

∂µj
= 〈n̂i ,

(

∂u
∂µj

∂v
∂µj

)

〉 , (4.15)

where (u, v)T are the image coordinates of the ith projected model point, n̂i is the cor-
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projected model points

perpendicular

search line

object in

the image

image gradient

gradient direction

Figure 4.19: Perpendicular search strategy. For each projected model point, a linear
search perpendicular to the model’s edge is performed. The image point is thereby shifted
along the search line η, while looking for a strong image gradient with approximately the
same direction. The gradient magnitude is weighted with a Gaussian windowing function
centered at µ, where σ2 controls the expansion of the search region.

responding unit length edge normal, and 〈x, y〉 denotes the tensor dot product. A world

point piW is projected to the image coordinates (u, v)T by first transforming it to the

camera coordinate frame using the actual pose estimate E∗
CW and then performing the

camera projection as

(

ui

vi

)

= CamProj (E∗
CWpiW)

=

[

fx 0 px

0 fy py

]







XiC

ZiC
YiC

ZiC

1






.

The radial lens distortion can be ignored here, as the images are undistorted prior to

applying our algorithm. Thus, Equation 4.16 has to be differentiated with respect to

the motion parameter vector µ by applying the chain rule. The camera’s pose E∗
CW is

represented by a 4× 4 matrix of the Special Euclidean Lie Group SE(3) [211] which may

be parameterized by a six-dimensional motion vector µ via the exponential map, where

µ1, µ2 and µ3 represent translation along x, y and z axes, and µ4, µ5 and µ6 describe

the rotation around these axes, respectively. An SE(3) matrix E is calculated from a

six-dimensional motion vector µ as

E = exp

(

6
∑

i=1

µiGi

)

, (4.16)

where Gi are called generator matrices. All operations on the SE(3) group are continuous

and smooth, and hence differentiable in closed form. Differentiating a motion matrix E
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at the origin µ = 0, the partial derivatives

∂E

∂µi

= Gi (4.17)

are simply the generator matrices. Given all necessary mathematical expressions, Equa-

tion 4.14 may be solved for the motion-update vector µ using a simple least-squares

solution

µ = J†e , (4.18)

with J† =
[

JTJ
]−1

JT being the pseudo-inverse. However, as commonly known, least-

squares solutions are not robust to outliers. As in this case gross outliers are very likely to

occur due to noise, occlusions or falsely matched points during the perpendicular search,

solving the above equation system in a least-squares manner is not appropriate. Therefore,

a robust estimation for µ is performed using Iteratively Reweighted Least-Squares (IRLS)

by estimating

µ′ = argmin
µ

∑

i

wTUK (||ei||) ||ei||2 (4.19)

in each iteration. The weights w are obtained using a Tukey M-Estimator [95]. Thus, the

prior pose E∗
CW is updated as

ECW = exp
(

µ′
)

E∗
CW . (4.20)

An example for a refinement using ten iterations is given in Figure 4.20.

Figure 4.20: Iterative pose refinement result. The left image shows the result of the first
iteration, while the right one depicts the last iteration and thus the final result. The pose
of the prior iteration is shown in yellow, the refined pose in green, and the error vectors
are depicted by white lines.
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4.4.3 Summary

We have presented an online line-based pose estimation approach which builds upon a

state-of-the-art visual SLAM implementation and integrates prior knowledge of the object

of interest during the entire tracking procedure [109]. By exploiting discriminative features

in the background we are able to estimate the pose of the camera relative to complex

structures such as power pylons, and we are even able to determine a pose when the

entire object is occluded. Beyond using the model for metric initialization we employ a

refinement step which improves the accuracy of the pose estimate delivered by the SLAM

system. Furthermore, when keypoint-based tracking fails as for closeup inspection, purely

model-based tracking takes over and successfully reduces tracking failures.
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Path planning and control are important components of robot navigation. We have

already presented common path planning methods and control strategies in Chapter 2,

and it is evident that a variety of sensing and localization techniques could be employed

as input providers. Path planning and control approaches typically require a dense map

representing occupied and free space, high-framerate position or pose measurements, and

a target position defined in a common coordinate system. For visual input, we have shown

how to fulfill these requirements in the previous chapter. In this chapter, we focus on the

incorporation of geometric priors and properties of visual input for path planning and

control in three different layers.

Global Layer. When planning paths for aerial vehicles on a global scope, most ap-

proaches employ the global positioning system (GPS) for localization and assume an

obstacle-free airspace, use radar technology [16], or rely on sense-and-avoid strategies [41].

However, when flying at lower altitudes in urban environments, many obstacles occur.

Luckily, most can already be roughly inferred from geometric prior knowledge in form of

digital surface models, as we will show in the next section.

Local Trajectory Layer. More locally, it is necessary to follow trajectories which are

defined relative to a geo-referenced point cloud. Visual localization delivers very accurate

pose estimates within a range of ±10 cm. However, these estimates might be affected
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by non-Gaussian noise which poses a problem to many controllers. We present a visual

servoing system for MAVs based on a fuzzy logic controller to overcome this issue.

Reactive Layer. Finally, not all environments are suitable for accurate 3D modeling.

A reactive controller can overcome situations where an accurate pose estimate is not

available, and it can handle visually difficult scenes such as forest environments. We

demonstrate how a reactive control strategy can be learned purely based on visual input

by imitating human experts.

5.1 Vision for High-Level Path Planning and Control

Large-scale, open-airspace path planning and control is traditionally based on the global

positioning system (GPS) as primary navigation sensor. We investigate how prior knowl-

edge in form of digital surface models can be used to for high-level path planning, as well

as view planning for optimized image acquisition. Such an approach can for instance be

applied to construction site monitoring, where temporally repeated flights in urban envi-

ronments need to be performed. Large safety margins need to be incorporated to cope

with the uncertainty of GPS-based control.

5.1.1 Related Work

Conway [30] presented one of the first examples for GPS-based autonomous flight. The

system was able to deliver pose updates at 10Hz, resulting in a position accuracy of a few

meters. However, GPS-based systems tend to drift over time and the accuracy depends

strongly on the number of available satellites. Current techniques fuse data from an IMU

and GPS, called inertial/GPS approach, to fully stabilize and control MAVs [1, 233]. GPS

can be replaced by much more accurate differential GPS (DGPS) receivers if high costs

are acceptable, but this still does not circumvent shadowing effects caused by neighboring

buildings in urban environments, and the general blindness of GPS regarding obstacles.

While GPS is still the most widely used sensor for outdoor localization, the trend

goes towards visual collision avoidance. Zufferey et al. [243] combined GPS–based path

following with vision–based collision avoidance. Their bio–inspired approach allowed them

to fly close to the ground, approx. 9m above the terrain, while effectively detecting and

avoiding single trees during flight. Hrabar et al. [91, 92] used a similar approach based on

optical flow and differential GPS to navigate an autonomous helicopter safely through a

simulated urban canyon. We employ similar techniques but adapt the algorithms to plan

on geometric prior knowledge.

5.1.2 Path Planning based on Digital Surface Models

Our approach to path planning in digital surface models consist of a combination of prob-

abilistic and heuristic path planning methods. We first create a Probabilistic Roadmap
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(PRM) [106] by sampling and connecting suitable states, then plan a path with D*

Lite [119]. As the configuration space is sparsely sampled, the resulting path needs to

be smoothed in the end. These steps are described in the following paragraphs.

Constructing a Probabilistic Roadmap. A probabilistic roadmap is a graph with

randomly sampled but collision-free nodes and collision-free edges. Before sampling we

add a safety margin of dmargin meters to the height values of the digital surface model,

and we apply a maximum filter with a spatial extent of

σmargin =
dmargin

GSDDSM
pixels (5.1)

to the digital surface model, where GSDDSM is the ground sampling distance of the

DSM. We do not model the yaw angle as part of the configuration space and thus sample

uniformly from a three-dimensional xyz-waypoint space. While the limits in x and y are

given by the DSM, valid altitudes z are limited between the DSM height value zDSM (x, y)

and a maximum flight altitude zmax. New nodes are sampled until a maximum of NPRM

is reached.

Next, the nodes of the graph need to be connected to form the roadmap. While

typically a k-nearest neighbors graph is used, we found that this connection strategy often

leads to tightly connected clusters of points without a connection to neighboring clusters.

We thus employ a 3D Delaunay triangulation [22] for connecting the nodes, which is not

only computationally efficient but has proven to work well for PRMs [93]. Finally, all

edges are assigned Euclidean distance costs. Edges causing collisions receive infinite costs

and are thus virtually removed. This allows to update possible paths later when in-flight

data is available. Note that there is no need to check for collisions surrounding the direct

path as the DSM geometry has been dilated before.

A visualization of two probabilistic roadmaps based on DSM geometry is given in

Figure 5.1. The graphs differ considerably when changing the maximum flight altitude

from zmax = 10m to 30m; instead of planning only in between buildings, there are

suddenly paths to fly over buildings available as well.

Planning with D* Lite. At query time, individual start and target nodes are added to

the graph. We greedily check the nearest neighbor nodes using a kd-tree until a collision-

free connection for both start and target node is found. This completes the roadmap map,

and we employ the D* Lite algorithm to find the best path through the graph. Note that in

the query phase no distinction between a 2D, 3D, or any other kind of world configuration

is made; only the costs in the graph matter.

The resulting path consists of waypoints in a geo-referenced DSM, which can be easily

converted back to GPS coordinates. A PID controller can then be used to follow these

waypoints; most commercially available MAVs already include this feature. To prevent

situations where the MAV is flying in a different direction than the one it is heading for,
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(a) (b)

Figure 5.1: Probabilistic Roadmap based on DSM geometry. In (a), the maximum flight
altitude is limited to zmax = 10m above ground, whereas in (b) zmax = 30m above ground.
The difference in terms of available direct connections is clearly visible. For visualization
of (b), only 10% of all nodes are depicted. NPRM = 2000 in both cases.

(a) (b)

Figure 5.2: Planning results using the D* Lite algorithm. (a) Given a maximum flight
altitude of zmax = 10m above ground, the path has to be planned around and between
buildings. (b) Switching to zmax = 30m results in a flight plan on top of the buildings.

we adjust the yaw at every waypoint to look towards the next waypoint. As a result, we

would like to minimize the number of waypoints in the path.

Path Smoothing. As the configuration space is sparsely sampled and thus does not

necessarily prefer direct connections, the resulting path can be smoothed in most cases.

We use the Douglas-Peucker algorithm [165] which iteratively reduces the number of nodes

within a path using a split-and-merge strategy. Starting with a straight connection of start

and target node, the path is iteratively split at the node with largest normal distance to

the line in case of a collision, or kept if no collision occurs.

Figure 5.2 confirms what the construction of the PRM indicated; for a maximum flight

altitude of zmax = 10m the final path has to be planned around and in between buildings.

In turn, this means that some points in the DSM cannot be reached because they are

isolated from the graph. Figure 5.3 shows two examples where this is the case. Note that
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planning on 2.5D DSM representations also has limits; the atrium in Figure 5.3(c) cannot

be accessed although in reality there is just a bridge on top of the building separating

it from the graph. Such scenarios motivate the need more detailed models with close-up

views, which can be achieved by integrating terrestrial or oblique aerial views in the prior

geometry.

(a) (b) (c)

Figure 5.3: Planning results for narrow spaces. Our approach also works for accessing very
narrow spaces such as the courtyard in (a) or the atrium in (b). In (c), a close-up view
shows that the atrium is separated by a thin ”wall” from the rest of the scene, which is
actually a bridge on top of the building. This setting shows an inherent limitation of using
2.5D DSM representations for planning, as the atrium cannot be accessed when setting
the flight altitude limit too low.

5.1.3 View Planning based on Geometric Priors

We have seen that geometric priors can be used to plan rough, suitable paths through

urban environments. For enhancing large-scale geometric priors with more detailed close-

up imagery, or when capturing scenarios where the environment changes considerably over

time such as at construction sites, not only path planning but view planning is desired.

The goal of path planning as defined before is to get from a start to a target position

with as little costs as possible. In comparison, during view planning we do not sample

random nodes in configuration space but maximize the coverage and the reconstruction

quality measures. When selecting views according to our algorithm as defined in Sec-

tion 3.5.2, we first initialize our search space with a geo-referenced target surface given

as a triangular mesh and create cameras that observe the mesh. All views that are not

feasible to approach with the MAV are removed. Then, we cluster the created cameras to

reduce the search space and incrementally select camera positions according to our quality

measures until the desired reconstruction accuracy is reached. As a result we obtain a set

of camera poses which forms the nodes of our view planning graph.

We use a greedy path optimization approach to obtain a view sequence with short

paths in between. We start with the fully connected graph and remove all edges that
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(a) (b)

Figure 5.4: View planning results. (a) Base mesh and computed camera network (blue)
with optimal flight path for an MAV (red). (b) Sparse reconstruction result of a single
family house after acquiring images using an autonomously flying MAV.

intersect with the prior geometry. Every remaining edge is given a weight corresponding

to the Euclidean distance of the nodes. Changes in altitude are penalized by a factor of ten

for two reasons: On the one hand changes in altitude consume more power, on the other

hand these maneuvers are harder to monitor by the safety pilot. For the same reasons we

add a penalty cost to direction changes of the MAV, which is based on the yaw angle.

Finally, given the weighted graph we start at the node with the lowest height over

ground and greedily plan paths to all unvisited nodes using D* and choose the path with

least costs. Figure 5.4 shows the resulting flight path for 133 views, and a reconstruction

after autonomous flight according to our flight plan. This real-world outdoor example

illustrates that the computed camera positions can be approached safely in autonomous

flight mode by the MAV and all visible parts of the scene can be reconstructed.

5.1.4 Summary

We have shown that digital surface model can be used as prior knowledge for high-level

path planning. Furthermore, we discussed the applicability of our view planning algorithm

and showed that autonomous image acquisition with an MAV is indeed feasible. An

evaluation of the reconstruction quality and densified results can be found in Section 6.3.1.

5.2 Trajectory Control based on Visual Localization

Off-the-shelf MAVs such as the Ascending Technologies Pelican, Falcon, and Parrot

AR.Drone quad-rotors used in our work already feature an attitude controller based on

IMU and accelerometer readings. Although these controllers make it possible to keep the
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MAVs in a hovering state, any drift caused by accumulated error can only be detected

based on exteroceptive sensors.

Visual pose estimation overcomes this issue. We use a single monocular camera and

our set of localization approaches presented in Chapter 4 to estimate the pose of the

MAV. Visual navigation of an MAV requires the correct scale of the prior models to be

known, which is typically the case when we employ metric, aligned visual landmarks.

When starting in an unknown environment or during our indoor experiments, we have

solved this issue by placing a known ARToolKitPlus marker [215] into the scene during

initialization. We thus recover a metrical baseline, which leads to correct metrical scaling

of the entire map.

Visual localization typically delivers good pose estimates within a range of a few cen-

timeters, depending on the distance to the scene. However, the position estimate can

considerably jump within that range because of the error propagation of quantized feature

measurements. This has a major effect on control: The derivative of the position, i.e. the

estimated velocity, suffers from heavy salt-and-paper noise as depicted in Figure 5.5.

(a) (b)

Figure 5.5: Characteristics of visual pose noise. (a) The position of interest points is
subject to noise which nonlinearly affects the pose estimate. (b) Visual poses are thus
subject to noise that resembles salt-and-pepper noise more than Gaussian noise.

The following sections give an overview of our fuzzy control approach to this problem

and discuss the advantages with respect to related work. Our system design incorporates

several properties of the flight hardware, the visual perception methodology, and the

application of airborne sensing.

5.2.1 Related Work

Different approaches have been presented to resolve this issue with visual pose input.

Kemp [108] maintains a set of multiple smooth position and velocity estimates, where the

best is selected based on likelihood and processed using simple PID control. This is similar

to particle filtering and thus requires a lot of additional processing power. Blösch et al. [21]
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and Achtelik et al. [2] try to accurately model the system in a Linear Quadratic Gaussian

control design with Loop Transfer Recovery (LQG/LTR). They incorporate additional

sensor information from IMU, accelerometers, and an air pressure sensor to cope with

pose estimation uncertainties. While this fusion is beneficial, it requires considerable

system knowledge about the aerial vehicle and restricts the flexibility. In contrast, our

fuzzy control approach allows to interactively change payloads based on the application,

but also to change the set of rules based on the current scene and the corresponding visual

pose estimation quality.

Many airborne sensing and inspection applications require a camera which looks at the

scene rather than on the ground. We have recently shown that this can be achieved with a

single camera by interleaving detailed and overview images in a stream [140]. In contrast

to most existing approaches [2, 21], we do not require a nadir camera view; we do not

even require a rigid transformation between the camera and the MAV due to the cascaded

controller. Our system only employs the 3D position and the yaw with respect to the

scene for control, so mechanical stabilization of the camera is possible and the camera’s

pitch angle can be arbitrarily defined.

5.2.2 Position-based Visual Servoing with a Fuzzy Controller

Our position controller is built on top of a high-speed attitude controller [73] which is

inherent to the MAV. Our controller consists of three identical PID fuzzy logic controllers

for the individual axes and a proportional controller to maintain the orientation of the

MAV. An overview can be found in Figure 5.6. In the following, the controller for the x

axis is described.
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Figure 5.6: Fuzzy visual servoing. Our system consists of a cascaded control loop with
an attitude controller and a position controller. Feedback is received using a camera
mounted on the MAV and subsequent processing by our variant of PTAM [113, 223]. The
position controller consists of three independent PID fuzzy logic controllers and a simple
proportional controller to maintain the orientation of the MAV.
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Figure 5.7: Fuzzification of (a) the position error ex and (b) the error change ∆ex. The
linguistic variables BIG NEG, NEG, CENTER, POS, and BIG POS are the membership
functions to estimate the truth value of the fuzzy set. Note the dead zone ±ǫ which is
specifically added to avoid problems with visual pose estimation.

Based on the desired position x∗ and the current position x, the error ex and the error

change ∆ex can be calculated. Thus, two variables serve as controller input, whereas the

output is the desired pitch angle Θ∗. The error change

∆ex[n] = ex[n]− ex[n− 1], (5.2)

where n is the current time, gives a rough estimate for the velocity error. The desired

pitch angle Θ∗ is obtained by integrating the relative change of the pitch angle over time,

i.e.

Θ[n]∗ = Θ[n− 1]∗ +∆Θ[n]. (5.3)

The integration part is necessary to compensate MAV drifts along the roll angle. Moreover,

the temporal integration of the fuzzy logic output enables to cope with external influences

such as wind, battery drain or turbulences.

A typical fuzzy logic controller consists of three blocks, namely fuzzification, inference

and defuzzification. First, the two inputs and the output have to be fuzzificated, meaning

that the measured values are mapped to the truth values µ(ex) and µ(∆ex) of the fuzzy

set (Figure 5.7). The width of the linguistic variables depends on the parameters emax

and ∆emax which are tuned during test flights. The major advantage of fuzzy logic is

that the design of the membership functions can be chosen intuitively. We therefore add

a dead zone ǫ around the hovering position (Figure 5.7(a)) which reflects the estimated

noise level of visual pose estimation based on the distance to the scene.

Next, the rule-set of the inference block as shown in Table 5.1 is applied; it is defined

in a way a human expert would control the pitch Θ when manually flying the MAV. It

can be read in a linguistic way as

IF ex is BIG NEG AND ∆ex is NEG THEN ∆Θ is BIG POS,
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Table 5.1: Fuzzy logic rules for determining the output based on the current position error
ex and velocity error ∆ex.

∆ex\ex BIG NEG NEG CENTER POS BIG POS

NEG BIG POS POS POS CENTER CENTER

CENTER POS POS CENTER NEG NEG

POS CENTER CENTER NEG NEG BIG NEG

in other words if the position error is large and negative, and the velocity error is also

negative then the desired output is large and positive. Based on the five membership

functions of the first input ex and three of the second input ∆ex, fifteen rules exist to

control the x-position of the MAV.

Finally, the last block of the fuzzy logic control is the defuzzification. The truth values

of the output membership functions are mapped to a real value for the system input. In

case of the x-position controller the change of the pitch angle is computed. We use the

Center-of-Area method for defuzzification, where the center-of-gravity of the area of the

composited output function is mapped to the x-axis.

5.2.3 Autonomous Take-off, Hovering, and Landing

Visual servoing is especially beneficial when high positioning accuracy is necessary, namely

during take-off, landing, and when hovering close to objects. A state machine demonstrat-

ing the individual steps and a resulting trajectory is shown in Figure 5.8.

For autonomous take-off, we first acquire a sparse map of the area around the starting

point by manually translating the vehicle while looking towards the marker. As the marker

can be tilted, the reference coordinate system for navigation is set with an xy-plane parallel

to the ground, based on the IMU readings of the MAV. Finally, the first waypoint is set

just above the starting point, and the MAV increases the thrust until it starts climbing and

receives the first valid pose estimate. Typically, the missing accurate system model leads

to a drift compensation phase where the correct parameters are automatically estimated.

Afterwards, the MAV automatically hovers at the commanded waypoint until it receives

a new desired position. For landing, we decrease the thrust of the MAV so that a visually

supervised decline is initiated. Once the map is lost close to the ground, the MAV continues

to decline with the same thrust until it touches the ground.

Failure Handling. While our visual pose estimation algorithms are implemented in a

robust way, sudden illumination changes as well as too homogeneous regions resulting

in too few features cause problems. Our localization framework automatically detects

those cases based on the effective inlier measure (Section 4.2.2). Invalid pose estimates

due to repetitive structures are harder to detect with vision alone. We compute a speed
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(a) (b)

Figure 5.8: Autonomous take-off, hovering, and landing. (a) State machine for au-
tonomous flight. (b) MAV trajectory during take-off (green), drift compensation (ma-
genta), hovering (blue) and landing (red).

estimate for the change between two poses and reject all measurements which exceed the

maximal known speed of the vehicle. Further, we employ the verification step discussed

in Section 4.2.3 which is based on a comparison to IMU and GPS measurements.

System failures are reported to the operator using audio-visual signals. Depending on

the estimated GPS quality and altitude the vehicle either switches to the GPS position

hold mode, or it lands autonomously using the technique described above. At any time,

the operator can take over using the remote control.

5.2.4 Summary

We have presented a robust visual servoing system for MAVs based on monocular camera

input and a fuzzy logic controller [224]. The system is well suited for aerial sensing tasks

because the camera’s pitch angle can be arbitrarily defined and is not restricted to nadir

views. The incorporation of a fuzzy controller allows to quickly change payloads as no

model knowledge about the MAV is required, and it tolerates quickly changing velocity

measurements which are commonly observed in visual pose estimation. Thanks to our

distributed localization and mapping architecture presented in Section 4.3, the controller

can incorporate full-framerate pose updates and can run on–board.
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5.3 Imitation Learning for Reactive Visual Control

Visual input is primarily beneficial when navigating MAVs that have very low payload

capabilities, and operate close to the ground where they cannot avoid dense obstacle

fields. In such a setting, situations or environments might be encountered where 3D

mapping combined with high-level trajectory planning [14] fails. Reactive control tackles

this issue by working on minimally preprocessed visual input (i.e. no keypoints, matching,

or triangulation) and thus provides the lowest-level layer for autonomous control.

(a) (b)

Figure 5.9: Reactive control overview. We present a novel method for high-speed, au-
tonomous MAV flight through dense forest areas. The system is based on purely visual
input and imitates human reactive control.

Reactive behavior needs to be customized to fit a certain task or environment. In this

section we present a generic approach to learn a reactive control policy through imitation

of a human pilot, but apply our technique to high-speed flight through a cluttered forest

environment (Figure 5.9). As in the rest of this thesis we rely on passive monocular

vision as the only exteroceptive sensor, and we exploit prior knowledge in form of control

commands given by a human pilot as a reaction to certain visual stimulus.

5.3.1 Related Work

Relatively simple yet efficient algorithms for reactive navigation can be derived when

imitating animals and insects, who use optical flow for navigation [190]. Beyeler et al.[17]

as well as Conroy et al. [29] implemented systems which exploit this fact and lead to

good obstacle avoidance results. Later, Lee et al. [129] proposed to use a probabilistic

method of computing optical flow for more robust distance calculation to obstacles for

MAV navigation. Optical flow based controllers navigate by balancing flow on either side.

However flow captures richer scene information than these controllers are able to use. We

embed flow in a data-driven framework to automatically derive a controller which exploits

this information.
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Most closely related to our method are approaches which learn motion policies and

depth from input data. Michels et al. [144] demonstrated driving a remote-controlled

toy car outdoors using monocular vision and reinforcement learning. Hadsell et al. [75]

showed in the LAGR project how to recognize and avoid obstacles within complex outdoor

environments using vision and deep hierarchical networks. Bill et al. [18] used the often

orthogonal structure of indoor scenes to estimate vanishing points and navigate an MAV

in corridors by going towards the dominant vanishing point. We extend those approaches

and employ a novel imitation learning technique that allows us to find a collision-free path

through a forest despite the diverse appearance of visual input.

5.3.2 Learning to Imitate Reactive Human Control

Visual features extracted from camera input provide a rich set of information that we

can use to control the MAV and avoid obstacles. However, programming a controller

by hand using all this information would be a very time consuming and daunting task.

Therefore, we leverage state-of-the-art imitation learning techniques [6, 162, 166, 171, 178]

to learn such a controller. These data-driven approaches allow us to directly learn a control

strategy that mimics an expert pilot’s choice of actions based on demonstrations of the

desired behavior, i.e., sample flight trajectories through cluttered environments.

The traditional imitation learning approach is formulated as a standard supervised

learning problem similar to for instance spam filtering, in which a corpus of training

examples is provided. Each example consists of an environment (an image acquired by the

MAV) and the action taken by an expert in that same environment. The learning algorithm

returns the policy that best mimics the expert’s actions on these examples. The classic

successful demonstration of this approach in robotics is that of ALVINN (Autonomous

Land Vehicle in a Neural Network) [162] which demonstrated the ability to learn highway

driving strategies by mapping camera images to steering angles.

While various learning techniques have been applied to imitation learning [6, 166, 178],

these applications all violate the main assumption made by statistical learning approaches

that the learner’s predictions (actions) do not affect the distribution of inputs. As shown

in previous work [170] and confirmed in the MAV setting here, ignoring the effects of

the learner on the underlying state distribution leads to serious practical difficulties and

poor performance. For example, during typical pilot demonstrations of the task, trees are

avoided fairly early and most training examples consist of straight trajectories with trees

on the side. However, since the learned controller does not behave perfectly, the MAV

encounters situations where it is directly heading for a tree and is closer than the human

ever was. As the hard turns it needs to perform in these cases are nonexistent in the

training data, it simply cannot learn the proper recovery behavior.

Theoretically, [170] showed that even if a good policy that mimics the expert’s actions

well on the training examples is learned, when controlling the MAV, its divergence from

the correct controls could be much larger (by as much as a factor T , when executing for
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T timesteps) due to the change in environments encountered under its own controls.

Fortunately, Ross et al. [171] proposed a simple iterative training procedure called

DAgger, for Dataset Aggregation, that addresses this issue and provides improved perfor-

mance guarantees. Due to its simplicity and practicality, we use this approach to learn

the controller for our aerial vehicle. While [171] demonstrated successful application of

this technique in simulated environments in video games, our experiments show that this

technique can also be successfully applied on real robotic platforms. We briefly review the

DAgger algorithm below.

The DAgger Algorithm. DAgger trains a policy that mimics the expert’s behavior

through multiple iterations of training. Initially, the expert demonstrates the task and

a first policy π1 is learned on this data by solving a classification or regression problem.

Then, at iteration n, the learner’s current policy πn−1 is executed to collect more data

about the expert’s behavior. That is, in our particular scenario, the MAV executes its own

controls based on πn−1, and as it is flying, the pilot provides the correct actions to perform

in the environments the MAV visits, via a joystick. This allows the learner to collect data

in new situations which the current policy might visit, but which were not previously

observed under the expert demonstrations, and learn the proper recovery behavior when

these are encountered. The next policy πn is obtained by training a policy on all the

training data collected over all iterations (from iteration 1 to n). This is iterated for a

small number of iterations N and the best policy found at mimicking the expert under its

induced distribution of environments is returned.

The intuition is that, over the iterations, we collect a set of inputs the learner is likely to

observe during its execution based on previous experience (training iterations), and obtain

the proper behavior from the pilot in these situations. [171] showed theoretically that after

a sufficient number of iterations, DAgger is guaranteed to find a policy that when executed

at test time, mimics the expert at least as well as how it could do on the aggregate dataset

of all training examples. Hence the divergence in controls is not increased by a factor T

as in the traditional supervised learning approach when the learned policy controls the

MAV.

For our application, we aim to learn a linear controller of the vehicle’s left-right velocity

that mimics the pilot’s behavior to avoid trees as the MAV moves forward at fixed velocity

and altitude. That is, given a vector of visual features x from the current image, we

compute a left-right velocity ŷ = w⊤x that is sent to the MAV, where w are the parameters

of the linear controller that we learn from the training examples. To optimize w, we solve

a ridge regression problem at each iteration of DAgger. Given the matrix of observed

visual features X (each row is an observed feature vector), and the vector y of associated

left-right velocity commands by the pilot, over all iterations of training, we solve w =

(X⊤X + R)−1X⊤y, where R is a diagonal matrix of per-feature regularization terms.

We choose to have individual regularization for different types of features, which might

represent different fractions of the feature vector X, so that every type contributes equally
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to the controls. In other words, we regularize each feature of a certain type proportionally

to the number of features of that type. Features are also normalized to have zero mean

and unit variance, based on all the observed data, before computing w. When controlling

the vehicle, w is applied to normalized features again.

5.3.3 Reactive Control based on Monocular Visual Input

Our approach learns a controller that maps RGB images from the on-board camera to

control commands. This requires mapping camera images to a set of features which can

be used by DAgger. These visual features need to provide indirect information about

the three-dimensional structure of the environment. Accordingly, we focused on features

which have been shown to correlate well with depth cues such as those in [144], specifically

Radon transform statistics, structure tensor statistics, Laws’ masks and optical flow.

We compute features over square windows in the image, with a 50% overlap between

neighboring windows. The feature vectors of all windows are then concatenated into

a single feature vector. The choice of the number of windows is driven primarily by

computational constraints. Using a 15×7 discretization (in x and y respectively) performs

well and can be computed in real-time.

Radon Features (30 dim.) The Radon transform [82] of an image is computed by

summing up the pixel values along a discretized set of lines in the image, resulting in a

2D matrix where the axes are the two parameters of a line in 2D, θ and s. We discretize

this matrix in 15× 15 bins, and for each angle θ the two highest values are recorded. This

encodes the orientations of strong edges in the image.

Structure Tensor Statistics (15 dim.) At every point in a window the structure

tensor [77] is computed and the angle between the two eigenvectors is used to index a

15-bin histogram for the entire window. The corresponding eigenvalues are accumulated

in the bins. In contrast to the Radon transform, the structure tensor is a more local

descriptor of texture. Together with Radon features the texture gradients are captured,

which are strong monocular depth cues [231].

Laws’ Masks (8 dim.) Laws’ masks [36] encode texture intensities. We use six masks

obtained by pairwise combinations of one-dimensional masks: (L)evel, (E)dge and (S)pot.

The image is converted to the YCrCb colorspace and the LL mask is applied to all three

channels. The remaining five masks are applied to the Y channel only. The results are

computed for each window and the mean absolute value of each mask response is recorded.

Optical Flow (5 dim.) Finally, we compute dense optical flow [227] and extract the

minimum and maximum of the flow magnitude, mean flow and standard deviation in x

and y. Since optical flow computations can be erroneous, we record the entropy of the
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flow as a quality measure. Optical flow is also an important cue for depth estimation as

closer objects result in higher flow magnitude.

Useful features must have two key properties. First, they need to be computed fast

enough. Our set of features can be computed at 15 Hz using the graphics processing unit

(GPU) for dense optical flow computation. Although optical flow is helpful, we show in our

experiments that removing this feature on platforms without a GPU does not harm the

approach significantly. Secondly, the features need to be sufficiently invariant to changes

between training and testing conditions so that the system does not overfit to training

conditions. We therefore refrained from adding color features, as considerable variations

under different illumination conditions and confusions between trees and ground, as well

as between leaves and grass, might occur. An experimental evaluation of the importance

of every feature is given in Section 6.3.3, along with a detailed evaluation.

In addition to visual features, we append 9 additional features: The low-pass filtered

history of previous commands at 7 different exponentially decaying time steps, the sideways

drift measured by the on-board IMU, and the deviation in yaw from the initial direction.

Previous commands encode past motion which helps to smooth the control output. The

drift feature provides context to the pilot’s commands and accounts for motion caused by

inertia. The difference in yaw is meant to reduce drift from the initial orientation.

5.3.4 Usability Challenges when Learning Control Commands

When iteratively learning control commands, one faces several human-computer-

interaction challenges in practice. Figure 5.10 shows the DAgger control interface used

to provide correct actions to the MAV. Note that, at iteration n, the learner’s current

policy πn−1 is in control of the MAV and the expert just provides the correct controls for

the scenes that the MAV visits. The expert controls are recorded but not executed on

the MAV. The three major usability challenges and our solutions are discussed in the

following.

After the first iteration, the pilot must be able to provide the correct actions without

feedback of how the MAV would react to the current command. While deciding whether

the vehicle should go left or right is easy, it can be hard to input the correct magnitude of

the turn the MAV should perform without feedback. In particular, we observed that this

often makes the pilot turn excessively when providing the training examples after the first

iteration. Performance can degrade quickly if the learner starts to mimic these imperfect

actions. To address this issue, we provided partial feedback to the pilot by showing a

vertical line in the camera image seen by the pilot that would slide left or right based

on the current joystick command performed (Figure 5.10). As this line indicated roughly

where the MAV would move under the current command, this led to improved actions

provided by the pilot.

In addition to the lack of feedback, providing the correct actions in real-time after
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Figure 5.10: Usability challenges. In this exemplary frame from the MAV camera stream,
the white line indicates the yaw commanded by the current DAgger policy πn−1 while the
red line indicates the yaw commanded by the expert. In this frame DAgger is wrongly
heading for the tree in the middle while the expert is providing the correct yaw command
to go to the right instead. These expert controls are recorded for training later iterations
but not executed in the current run.

the first iteration when the MAV is in control can be hard for the pilot as he must react

to what the vehicle is doing and not what he expects to happen. For instance, if the

MAV suddenly starts turning towards a tree nearby, the pilot must quickly start turning

the other way to indicate the proper behavior. The pilot’s reaction time to the vehicle’s

behavior can lead to extra delay in the correct actions specified by the pilot. By trying

to react quickly, he may provide imperfect actions as well. This becomes more and more

of an issue the faster the MAV is flying. To address this issue, we allowed the pilot to

indicate the correct actions offline while the camera stream from the MAV is replayed at a

speed 3 times slower than real-time, using the interface seen in Figure 5.10. By replaying

the stream slower, the pilot can provide more accurate commands and react more quickly

to the robot’s behavior. The faster the MAV is flying, the slower the trajectory should be

replayed to provide good commands in time.

The third challenge is that DAgger requires to collect data for all situations encountered

by the current policy in later iterations. This would include situations where the MAV

crashes into obstacles if the current policy is not good enough. For safety reasons, we allow

the pilot to take over or force an emergency landing to avoid crashes as much as possible.

This implies that the training data used is not exactly what DAgger would require, but

instead a subset of training examples encountered by the current policy when it is within

a “safe” region. Despite this modification, the guarantees of DAgger still hold as long as

a policy that can stay within this “safe” region can be learned.

5.3.5 Summary

We have presented a novel approach for high-speed, autonomous MAV flight through

cluttered environments [172]. Our system learns to predict how a human expert would

control the aircraft in a similar situation, and thus successfully avoids collisions using
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passive, low-cost and low-weight visual sensors only. We have applied a novel imitation

learning strategy which takes into account that the MAV is likely to end up in situations

where the human pilot does not, and thus needs to learn how to react in such cases.

To evaluate our approach, we have performed extensive outdoor experiments which are

presented in the next chapter.
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We have presented a set of techniques for reconstructing geometric prior knowledge,

for scalable visual localization within such geometric priors, and for computer vision tech-

niques related to path planning and control of micro aerial vehicles. In this chapter, we

provide quantitative and qualitative experiments and results for all parts of our work.

Experimental Platforms. In the course of this thesis, three types of micro aerial

vehicles with individual properties and payloads have been used. An overview is given in

Figure 6.1.

First, the Ascending Technologies Falcon octo-rotor MAV is mainly used for obtaining

high-resolution, low-framerate aerial imagery. Equipped with a mechanically stabilized

10Mpixels Panasonic Lumix DMC-LX3 consumer camera and a 24mm lens, this MAV is

designed for single image acquisition and offline processing. However, we have added an

SD storage card featuring ad-hoc WiFi connections and a WiFi repeater to enhance the

connection range. This setup enables us to send the obtained imagery to a notebook on

the ground, which allows us to process the imagery in an online fashion at about 0.2 fps.

Second, the Ascending Technologies Pelican quad–rotor MAV is equipped with a single

IDS UI-1240SE industrial camera with a resolution of 1280×1024 pixels, global shutter, and

a 12mm lens. Thanks to the 1.6GHz Intel Atom on–board computer running the Robot

Operating System (ROS) and a wireless 802.11n link, we are able to process imagery

on-board and just transmit the results (e.g. the visual pose information and selected

keyframes), or to stream full-resolution images to the ground at 4 fps.
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(a) (b) (c)

Figure 6.1: Aerial platforms for experiments. We use three different types of micro aerial
vehicles during our experiments, namely (a) an Ascending Technologies Falcon octo-rotor
with a consumer camera, (b) an Ascending Technologies Pelican quad-rotor with on-
board processing capabilities, and (c) a low-cost Parrot ARDrone quad-rotor with video
streaming capabilities.

Finally, the Parrot ARDrone MAV is distributed as a toy and costs 20 times less than

the other two MAVs. It weights only 420g and has a size of 0.3×0.3m. The system features

a front-facing camera with 320×240 pixels and a 93 deg field of view (FOV), an ultrasound

altimeter, a low resolution down-facing camera and an IMU. The MAV’s built-in on-board

position controller allows control through high-level desired velocity commands (forward-

backward, left-right and up-down velocities, as well as yaw rotation). The ARDrone can

reach a maximum velocity of about 5m/s. Communication is based on WiFi, with camera

images streamed at about 10-15Hz. This allows us to control the MAV on a separate

computer that receives and processes the images and then sends corresponding commands

at around 10Hz.

6.1 Modeling Geometric Prior Knowledge

In the following, we evaluate the accuracy of our 3D reconstruction pipeline and demon-

strate its applicability to real-world problems. The methodology presented in Chapter 3

is shown to deliver state-of-the-art results.

6.1.1 Point-based Scene Reconstruction

We evaluate our 3D multi-view reconstruction methods based on a dataset recorded in a

stone quarry. The recorded quarry wall with a height of about 24m and a length of about

100m contains a set of markers which have been accurately localized using a total station,

and thus provides a reliable ground truth for evaluation.

Surveying Flight. The data used for this experiment has been recorded while flying

the Falcon MAV equipped with a consumer camera (Figure 6.2(a)). Within two flights of
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about 30min total duration, we recorded 294 images with a resolution of 10Mpx each. We

aimed for a ground sampling distance of about 1 cm per pixel and chose our acquisition

strategy accordingly. Given a focal length of 24mm we took pictures from a distance

of about 25m between camera and surface, maintaining a vertical overlap of 80% and a

horizontal overlap of 30%. To reduce the error propagation between neighboring views, we

additionally acquired several overview images from a larger distance to the quarry wall.

(a) (b)

Figure 6.2: Surveying flight at Erzberg, Austria. (a) Acquisition of 294 images of a quarry
wall. (b) Online Structure-from-Motion for visualizing the reconstruction result and some
quality measures in real-time. The pilot receives information whether the images were
integrated in the reconstruction (green border) or not (red border). Apart from the point
cloud, a rough surface model is created and textured with the redundancy measure. Red
color indicates that the area has been seen several times, while areas depicted in blue still
lack some measurements.

Reconstruction Result. Given the stream of images taken approximately every 5 sec-

onds and a known camera calibration, we applied our online Structure-from-Motion ap-

proach as presented in Section 3.1.5 to lower resolution images. The results are on the

one hand the extrinsic parameters of the cameras, on the other hand a sparse point cloud

showing triangulated interest points. The user interface as shown in Figure 6.2(b) allows

to get an impression of the completeness of the reconstruction while the MAV is airborne,

which is a huge benefit compared to offline methods. For increased quality, the imagery

is again processed in full resolution later on. As can be seen in Figure 6.3, the resulting

sparse model already contains a large number of points due to the well-textured scene.

After densification using PMVS [65] the model contains even more geometric details and

more than 10 million 3D points. In contrast to terrestrial image acquisition the MAV can

take pictures of the upper regions of the quarry wall as well, so the entire profile can be

reconstructed. Being able to extract such additional information is especially important

for mining applications, for instance the planning of rock blasting operations.
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(a) (b)

Figure 6.3: Reconstruction of a quarry wall (a) Extrinsic camera orientations and trian-
gulated 3D points. The sparse point cloud consists of about 130.000 points. (b) After
densification using PMVS [65], the point cloud consists of about 10 million points.

Accuracy Evaluation. In computer vision, the reprojection error of triangulated in-

terest points is commonly used as a measure for the accuracy of a reconstruction. Our

reconstruction pipeline optimizes for the reprojection error during bundle adjustment, thus

we obtain at least a local optimum. However, in a setting where the reconstruction quality

influences the localization quality later on, the photogrammetric approach of computing

the geometric error to ground control points (GCPs) is more suitable. A set of 77 prism

targets has been attached to the rock, and the position of every target has been measured

with a total station. Figure 6.4 depicts the distribution of the GCPs. The targets are

numbered and can be clearly distinguished from the rock by color. We were thus able

to recognize and manually label 74 out of 77 markers in the densified point cloud. As

a result, we retrieve the respective 3D coordinates for the markers in a local coordinate

system.

Structure-from-Motion reconstructions are always up to scale, meaning that an un-

known scale factor has to be estimated for comparing the reconstruction with ground

truth data. The scale factor can be computed given the metric distance between two cam-

eras, or as in our case the distance between two points in the scene. For our evaluation, we

are interested in the relative and absolute accuracies of the reconstructed ground control

points given two different lengths for scaling, as depicted in Figure 6.4. First, we select

two points which are rather close to each other (d1 = 6.92m), then we select two GCPs

with a large distance (d2 = 52.38m). While the second case seems more reasonable for

accurate scaling, the first case is more user-friendly.

For both cases we evaluate the relative distances between all pairs of points, and depict

the error between ground truth and reconstruction over the relative distance in ground

truth. Given an inconsistent reconstruction, the errors at a large distance would increase

compared to small distances. Further, we evaluate the influence of camera calibration on
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Figure 6.4: Layout of the ground control points on the quarry wall. The position of every
prism target has been measured using a total station, and the targets have been numbered.
The known metric distances of GCP 14-15 (small distance, yellow) and of GCP 14-61 (long
distance, blue) are used for scaling the resulting reconstruction.

the reconstruction accuracy by comparing the reconstruction obtained with pre-calibrated

parameters with a reconstruction where the intrinsic parameters were optimized during

bundle adjustment. The results can be seen in Figure 6.5.

When scaling with a short known distance d1 and precomputed intrinsics, the relative

error increases considerably with the distance between the two points (Figure 6.5(a)). If

the intrinsic parameters are optimized during reconstruction, the error remains approxi-

mately constant over the distance (Figure 6.5(b)). We derive that a high-quality camera

calibration is important to avoid error propagation. When scaling with a longer known

distance d2 the effect of camera calibration is less significant (Figure 6.5(c) and 6.5(d)).

The standard deviation of the relative errors is 3.8 cm, which means that 99.7% of all

measurements are within an error margin of ±11.4 cm.

To recover the absolute reconstruction accuracy for the GCPs in scene coordinates, the

3D point cloud needs to be transformed in the reference coordinate system using a least-

squares similarity transform. Figure 6.6 shows the resulting absolute errors between GCPs

and reconstructed positions in the model. The visualization shows that the error in the

central part of the quarry wall is in the order of 5 cm on average, while the error increases

towards the borders of the model. The reason for this behavior is the lack of imagery along

the border, which causes less overlap and thus less measurements and pairwise constraints

per point. As a result, the optimization routine in bundle adjustment is able to distort

these points when optimizing the reprojection error. The issue can be circumvented by

selecting a region for image acquisition which is larger than required, and cropping the

borders of the model in the end. Even without this procedure the mean absolute error is

6.87 cm, which is comparable to the prism target positioning accuracy.
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(a) Short known distance without intrinsic optimization

(b) Short known distance with intrinsic optimization

(c) Long known distance without intrinsic optimization

(d) Long known distance with intrinsic optimization

Figure 6.5: Evaluation of the relative reconstruction errors. Accurate intrinsics are espe-
cially beneficial when scaling with a short known distance, as the relative error over the
entire model is significantly reduced. When optimizing the intrinsic camera parameters
during bundle adjustment, the standard deviation of the relative errors is 3.8 cm.
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Figure 6.6: Evaluation of the absolute reconstruction errors. The error is measured be-
tween corresponding points after transforming the point cloud with a least-squares simi-
larity transform. The intrinsic camera parameters are optimized for all images.

Given a proper acquisition strategy, our point-based reconstruction approach delivers

not only visually pleasing but also very accurate results. The point clouds can be used for

further densification steps or for line-model extraction, but also directly for localization

within point-based geometric prior knowledge.

6.1.2 Line-based Scene Reconstruction

Line-based scene reconstruction has been shown to help in man-made environments with

a low amount of distinctive interest points or when dealing with wiry structures. While

qualitative examples for modeling a power pylon and solid objects have been shown in

Section 3.2 already, we compare the algorithm to a benchmark dataset here.

Ground-truth Evaluation. In order to compare our approach to Jain et al. [102]

we reconstruct their Timberframe house sequence1 consisting of 240 synthetic images

using our algorithm. Figure 6.7 shows exemplar views from the sequence along with our

3D reconstruction and the result of Jain et al., colored using the Hausdorff distance as

similarity measure (for densely sampled points along the lines) to the ground truth model.

We achieve a root mean square (RMS) error of 0.0013 units while their approach has an

error of 0.0036 units compared to the CAD model.

It can be seen that both algorithms manage to reconstruct the building in a quali-

tatively accurate way. Our approach performs better in terms of the RMS error, while

Jain et al. are able to reconstruct a few more lines, especially on the roof. Even though

the resulting models are similar, the computation time differs considerably. The authors

report that their algorithm needs several hours to deliver the result for a subset of 72

images, while our method reconstructs this sequence in 7.5min using all 240 images.

Performance Evaluation. Since we have to evaluate many possible matches for each

2D line segment to avoid appearance-based matching our algorithm is more time con-

1http://www.mpi-inf.mpg.de/resources/LineReconstruction/
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(a) (b) (c)

Figure 6.7: Qualitative evaluation of line-based reconstruction using the synthetic Tim-
berframe house sequence (240 images). (a) Example view of the ground truth model.
(b) Reconstruction by [102], and (c) our reconstruction. The color reveals the errors
compared to ground truth (from 0.01 to 1.00).

Sequence #img resolution #raw #final tLSD tmatch tgroup ttotal

Pylon 106 5616× 3744 71538 1381 17.2 15.5 34.1 66.8
House 93 3048× 2736 30967 1262 13.8 3.2 6.7 23.7
Stairs 14 3072× 2304 16517 265 2.7 0.8 1.1 4.6
Timberf. House 240 1280× 960 29927 2113 4.2 2.5 0.8 7.5

Table 6.1: Performance evaluation of line-based scene reconstruction. All times are given
in minutes.

suming than traditional appearance-based line-matching approaches. Nevertheless, we

manage to generate accurate results for the general case in reasonable time. Table 6.1

shows a performance evaluation for the four test sequences presented in this thesis. All

experiments were performed on a desktop PC equipped with an Intel Core2 4× 2.66GHz

processor. Note that for our own sequences (Pylon, House, and Stairs) the image resolu-

tion was significantly larger than for the Timber-frame house, which explains the difference

in speed.

6.1.3 Dense Multi-View Scene Reconstruction

In the following, we evaluate our combination of PMVS [65] point cloud densification and

meshing based on the method of Labatut et al. [124]. Densification using planesweep

stereo is evaluated in the next section for digital surface models, and surface extraction

based on volumetric variational methods is shown for dense reconstruction on-the-fly in

Section 6.2.3.
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Evaluation Strategy. We evaluate the resulting dense geometry using the benchmark

dataset fountain-P11 of Strecha et al. [196]. Following the standard evaluation strategy,

we first create depth maps from our result at the groundtruth camera positions, and then

compare them to the depth maps that were generated from the ground truth mesh. We

further analyze the spectrum of the error in 10 logarithmic bins, starting at deviations

smaller than 5mm up to 2.56m. Additionally, a bin for infinite errors (INF) resulting

from missing depth values is added.

Quantitative Results. Figure 6.8 shows the quantitative comparison of different mesh-

ing approaches. It can be seen that densification is clearly beneficial, as meshing on the

sparse point cloud requires considerable interpolation to take place. Additionally, it can be

seen that our meshing approach performs much better than Poisson reconstruction [107].

This is due to the fact that visibility information is incorporated. Our results are very

accurate, with more than 50% of the mesh within 1 cm of the groundtruth. Note that due

to the sparsity of the raw SfM result, our space carving-based approach results in more

undefined values (INF) than Poisson meshing which might create triangles without any

evidence. However, the higher accuracy comes at a price: On a standard desktop PC,

space carving-based meshing takes about 10 minutes, which is about 30 times more than

Poisson surface extraction.

Figure 6.8: Quantitative results of the meshing approach on the fountain-P11 scene (11
images) of Strecha et al. [196]. We compare the raw and densified pointclouds with Poisson
meshing [107], as well as the same pointclouds with our meshing based on Labatut et
al. [124] to groundtruth. In general, our results are much closer to groundtruth, with
more than 50% of the mesh within 1 cm for the densified and meshed 3D reconstruction.
Note that due to the sparsity of the raw SfM result, our space carving-based approach
results in more undefined values (INF) than Poisson meshing.
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Qualitative Results. While the Delaunay triangulation can even extract a surface

from such a sparse point cloud, a densified set of points is clearly beneficial. Figure 6.9

compares the meshed and colored fountain-P11 scene for sparse SfM and densified PMVS

input. Our dense multi-view scene reconstruction pipeline can be applied to various indoor

and outdoor scenes, and it delivers state-of-the-art results for many applications.

(a)

(b)

Figure 6.9: Qualitative results of the meshing approach on the fountain-P11 scene (11
images) [196]. Meshing based on (a) the SfM output (7123 points) and (b) the PMVS [65]
output (375 409 points). From left to right: Point cloud, uncolored mesh, colored mesh.
Only vertex colors are applied, no texturing is performed.

6.1.4 Digital Surface Model Reconstruction

We compare our 2.5D range image fusion approach qualitatively on a large-scale aerial

dataset captured with a Microsoft UltraCamX with a resolution of 14.430 × 9.420 pixels

(GSD 8 cm per pixel). We also perform a quantitative evaluation on the ISPRS Vaihingen

test dataset [31] with 20 infrared-red-green (IR-R-G) images comprising a resolution of

7.680×13.824 pixels (GSD 8 cm per pixel). For this dataset, a ground-truth DSM acquired

by airborne laser scanning with 25 cm resolution has been provided.

Comparison to Global Fusion Approaches. The results for the aerial UltraCamX

dataset in form of a textured DSM and a typical height map representation are shown in
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Figure 6.10. Note that the DSM shows sharp edges and no visible outliers. In Figure 6.11

we visualize the trade-off between putting large effort in generating clean, outlier-free

range maps using global optimization methods [99], and fast depth estimation using local

methods. Once the input data is smoothed it may be fused using a simple method like

median fusion, but with the drawback of not being able to recover fine detail. In contrast,

our method can deal with a substantial amount of outliers in the range data as long as

one distinct dense point cluster can be estimated, and it preserves details. Moreover, it is

scalable and much faster: The final DSM generated from the UltraCamX dataset shows

an area of approximately 3.46 km2 and has a resolution of 20.699×26.096 pixels with 8 cm

GSD. The GPU-based calculation of all 21 depth maps with our local method required 9

hours, the fusion took 15 hours using four CPU cores. In comparison, the global fusion

method requires more than 12 days.

(a) (b)

Figure 6.10: DSM fusion result for a large-format aerial imagery dataset. (a) 3D visual-
ization of the resulting DSM as a textured triangular mesh. (b) Sample part of the DSM
represented as a height map.

Comparison to Groundtruth. Finally, for a quantitative evaluation we compared the

results of our probability-based clustering fusion approach to a median fusion of the range

image depth hypotheses. The range images were computed using cost volume filtering [169]

before performing winner-takes-all. The chosen evaluation strategy is similar to [196].

Although, we achieve only 5% better results than median fusion, a direct visual comparison

between median fusion and our proposed method clearly shows a significant qualitative

difference. A small fraction of outliers which do not have a big impact in the quantitative

analysis can have a drastic impact on the qualitative appearance, as is shown in Figure 6.12.

For automatic alignment of 3D reconstructions in a global coordinate system, as well as

high-level path planning and view planning, a scalable method which creates outlier-free

DSMs is most important, thus our approach is perfectly suitable.
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(a) (b)

(c) (d)

Figure 6.11: Comparison between different methods for depth estimation and fusion on
the MAV datasets of [159]. (a) Depth map calculated using the method of [99] with
global optimization, which produces nearly outlier free but over-smoothed depth maps.
(b) Details like the trees and street lights are lost in the fused DSM using simple and
fast median fusion. (c) Depth map estimated using our approach with fast cost volume
filtering [169], which contains a few outliers but preserves details. (d) Our probabilistic
range image fusion method [175] is able to handle large amounts of outliers and still
produces visually competitive DSM quality.

(a) (b)

Figure 6.12: Range image integration results on the ISPRS Vaihingen test dataset [31].
(a) Fused DSM computed by median fusion, which shows considerably non-robust re-
sults. Single isolated outliers are still present in the results. (b) Our probabilistic fusion
approach [175] effectively discards outliers and produces visually clean results.
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6.2 Visual Localization and Mapping

Building upon the different forms of geometric prior knowledge, we evaluate our multi-scale

visual localization and mapping framework as presented in Chapter 4. We demonstrate the

effectiveness of alignment in a global coordinate system and the suitability of our approach

for long-term localization. Furthermore, we evaluate the accuracy of visual localization

compared to differential GPS, and we present results for dense reconstruction in real-time

on an MAV.

6.2.1 Global Alignment of Geometric Priors

In order to demonstrate the accuracy of our alignment and fusion approach, we perform

experiments on two different scenarios, namely the alignment to an overhead DSM and an

iterative alignment to a single model.

We reduce the search space for precise alignment according to the expected uncertainty

of the rough GPS alignment, with a translational uncertainty ∆T = ±5m, roll ∆φ = ±10◦,

pitch ∆θ = ±10◦, yaw ∆ψ = ±20◦, and scale s = 1.0 ± 0.2. A brute force approach for

checking all combinations is not feasible due to the huge amount of required templates.

Therefore, we exploit a coarse–to–fine scheme that iteratively increases the GSD of the

DSM for every pyramid level Ggsd. We weight the penalizing term with λ = 0.1.

DSM Alignment Results. First, we apply our alignment pipeline to a geo-referenced

digital surface model with a resolution of 4096×4096 pixels. We demonstrate the alignment

of two point clouds acquired in winter using our Falcon MAV and in summer from the

ground, respectively. We additionally employed a consumer–grade GPS which allows rough

geo–referencing of the reconstructions. The distance between the object and the camera

position varies between 20m and 60m which results in a ground sampling distance (GSD)

of 8mm to 24mm per pixel; however, as our reconstructions are only semi-dense the

resulting point clouds are often sparser if texture is missing.

An evaluation by visual inspection shows very good results: For instance, the steel

wires in Figure 6.13(a) are well aligned to the steel wires visible in the orthophoto. All

vertical walls fit exactly to the gradients defined in the DSM. Figure 6.13(b) shows an

oblique view from the top of the first model to the second model.

A simple, small SfM model can be seen in Figure 6.14(a). Figure 6.14(b) shows the

rough GPS alignment, whereas Figure 6.14(c) depicts the refined alignment. The model

is well aligned even though just one corner of a building has been reconstructed.

Iterative Alignment Results. The second dataset shows a large office building which

is reconstructed from 400 images taken by the consumer camera on our Falcon MAV. Due

to limited power supply, images were acquired in two different flights resulting in two

partial reconstructions with 2 million and 1.3 million 3D points, respectively.
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(a) (b)

Figure 6.13: Qualitative evaluation of the DSM alignment. (a) Visual inspection shows
that the steel wires of the SfM model are perfectly aligned to those visible in the texture.
(b) An oblique view from the top of the first model (atrium) to the second model (opposite
buildings). The resolution of the aligned models is considerably better than the resolution
of the orthophoto.

(a) 3D Model (b) GPS Alignment (c) Correlation Alignment

Figure 6.14: Evaluation of the DSM alignment with correlation. (a) A partial, densified
SfM model (just one corner). (b) Rough alignment using GPS; note the shift and rotation.
The model has been manually shifted on the vertical axis for visualization. (c) Alignment
with correlation is able to get rid of the remaining error. The shift on the vertical axis
has been automatically corrected here.

In this experiment we demonstrate that our approach is also suitable if one of the

two models is considered as a small-scale digital surface model by projecting it to the

ground. We compare the accuracy of our alignment algorithm to a standard 3D ICP [238]

registration method and demonstrate that our approach is able to successfully fuse such

reconstructions while ICP is not. The discrete correlation approach successfully avoids

getting stuck in local minima, but continuous optimization can nearly always improve

the final result. We thus further improve the accuracy by applying 3D ICP on top of
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(a) GPS only (b) Ggsd=1.0m (c) Ggsd=0.5m (d) Ggsd=0.2m

(e) GPS& ICP (f) Ggsd=1.0m &ICP (g) Ggsd=0.5m &ICP (h)Ggsd=0.2m &ICP

Figure 6.15: Evaluation of the iterative alignment accuracy. Red points have a Hausdorff
distance larger than 10 cm. Blue points are closer than 1 cm to the second model. (a)-(d)
Accuracy after alignment using different ground sampling distances for Ggsd without ICP.
(e)-(h) Remaining error after solving Equation 4.3 with subsequent ICP. Note that points
present in only one part of the reconstruction by definition have a Hausdorff distance of
more than 10 cm and are thus colored in red.

our result. Given the already very good alignment, a sparse set of Nicp = 1000 points is

selected and ICP typically converges within seconds.

First, we evaluate pure GPS-based transformation in a common coordinate system.

The two parts of the model form some kind of groundtruth, so we can measure the align-

ment error by evaluating the Hausdorff distance from the smaller to the larger part [96].

Figure 6.15(a) shows the resulting pseudo color visualization, where red points have an

error larger than 10 cm and blue ones have an error smaller than 1 cm. After the previous

rough alignment, we perform 3D ICP to reduce the error. However, ICP gets stuck in a

local minimum and therefore the alignment is far away from the desired registration (Fig-

ure 6.15(e)). This experiment demonstrates that, due to the small convergence radius of

ICP, a consumer–grade GPS alignment is not sufficient to obtain an accurate fusion using

a standard 3D ICP algorithm. On a closer look, we also observe that the scale estimated

by the rough GPS alignment differs considerably between the two parts. Therefore, a

proper fusion method has to estimate the scaling between the parts.

In the second experiment, we apply our proposed algorithm to the transformed second

part. As shown in Figure 6.15(b)-6.15(d), the alignment error reduces with increasing
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resolution of the ground template Ggsd. On a scale level of Ggsd=0.5m, the fusion method

already allows the subsequent ICP to converge to the global optimum. For most points, the

remaining alignment error is smaller than 1 cm. Points that are present in only one part of

the reconstruction have a Hausdorff distance of more than 10 cm which is obvious since they

do not have a corresponding counterpart. Since we correctly estimate the scale difference

of ∆s = 0.04, the result does not show errors in scaling. This observation is confirmed

by Figure 6.15(h) which shows a constant error over the entire surface. Subsequently

applying ICP has shown to converge within seconds and mainly corrects for rotational

errors introduced by the discrete search space of our approach. The entire fusion process

requires less than 5 minutes on any of our evaluation datasets for finding the correct

transformation with an accuracy in the range of ±1 cm. This corresponds to the point

density of the model.

In summary, our approach allows to align several Structure-from-Motion point clouds

in a common, global coordinate system despite considerably different viewing angles and

ground sampling distances. Accurate alignment is an important part of our localization

framework.

6.2.2 Point-based Localization using Geometric Priors

In the following paragraphs we evaluate our localization approach, and accordingly the

visual landmark creation and alignment compared to visual and GPS-based groundtruth.

The evaluation site, the atrium of a modern building, has already been used to visualize

the individual steps of our approach. This environment is very challenging, as there is

little texture on the facades and repetitive structures such as windows and vegetation

prevail.

Evaluation Dataset and Hardware. For the creation of the initial visual landmark

we captured 157 images from eye-level above ground using a Canon EOS 5D. This SLR

camera has a resolution of 5616× 3744 pixels with a fixed 20mm lens.

Aerial imagery is obtained using the Pelican MAV, and the images are streamed to the

ground at 4 fps. Our ground station is equipped with a powerful graphics card running

NVIDIA CUDA, which allows highly parallel data processing for feature extraction and

matching. Additional sensor data from the inertial measurement unit (IMU), compass,

and global positioning system (GPS) are automatically preprocessed and fused by the

MAV. While hardware synchronization with the camera trigger would be desirable, we

currently exploit the high update rates of the sensors and collect IMU and GPS messages

between triggering and receiving an image. Attitude and position are then estimated using

robust statistics.

For the iterative update of the model we acquired two image sequences (1280 × 1024

pixels at 4 fps) of 260 images (flight1) and 230 images (flight2) by exploring the atrium

in manual flight mode. Each flight started at the ground and covered a volume of about
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10×10×15m3. Additionally, we have acquired a video stream showing the flight from an

observer’s point of view. This stream has been recorded with a resolution of 1920× 1028

pixels at 25 fps, and is used as groundtruth for evaluating our localization performance

qualitatively. Finally, for a quantitative validation of the position accuracy we captured

images at fixed points which were globally localized using differential GPS (D-GPS).

The localization process including the online update runs at 4 fps. The runtime of

a batch update depends on the length of the flight and the number of modified virtual

cameras, and results to approx. 5 min per iteration on our datasets. For the following

experiments, a minimal virtual camera coverage Ncoverage = 3 is achieved by setting the

grid to G = {7, 4, 4} and the angular step to γ = 30◦. This results in 112 × 62 = 6944

virtual cameras, which are reduced to a set of of 1903 virtual views by thresholding the

minimal number of features to |F |min = 200. For localization, we estimate the pose of

at most k = 3 top–scoring views in a neighborhood of tmax = 1.0m and Rmax = 45◦

with respect to the previously established pose, and accept the pose if it contains at

least theff = 3 effective inliers. Incremental updates are evaluated with thattitude = 10◦,

thposition = 20m, and thupdate = 1◦.

Comparison of Adaptive and Non-Adaptive Localization. Our first experiment

evaluates the localization performance as the ratio of correctly localized frames based on

additional sensor data, as previously described in Section 4.2.3. The ratio of frames which

are localized correctly is named Rvalid. Rinvalid describes the ratio of frames which exceed

thattitude or thposition and therefore fail validation.

We achieve a baseline of 63% for flight1 and 75% for flight2 using the non-adaptive

approach [221]. Our evaluation shows that issues with high–altitude views occur starting

at a height of about 6m, which corresponds to the theoretical result. In contrast, Fig-

ure 6.16(a) shows that adaptive localization can considerably improve these results. After

applying 25 incremental updates, meaning that the inliers of all frames were taken into

account at every iteration except for the first, we achieve a localization rate of 83% for

both flight1 and flight2. This corresponds to an improvement of up to 30% in comparison

to non-adaptive localization. Even using just the online update during the flight, and

neglecting the batch updates afterwards, localization rates of 71% and 80% are reached.

The online update heavily depends on the flight trajectory, as early frames do not benefit

from later frames and thus many camera poses might be initially unknown.

Not only the localization rate but also the localization quality in terms of matches

and pose estimation inliers is improved by using the adaptive localization. Figure 6.16(b)

thus compares the mean values of unique matches (Munique), inliers (Ip3p) and effective

inliers (Ieff ). These values considerably increase during the first update and then converge

to a maximum, for both test datasets. Especially Ieff is important to reliably estimate

the MAVs pose, as it additionally incorporates the distribution of RANSAC inliers in an

image. µ(Ieff ) increases from 9 to 12 points for flight1, and from 15 to 21 points for

flight2.



116 Chapter 6. Experiments and Results

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

L
oc

al
iz

at
io

n
R

at
e

0 5 10 15 20 25

Batch Iteration

flight1 with incremental updates
flight1 baseline
flight2 with incremental updates
flight2 baseline

(a)

0

20

40

60

80

100

120

140

N
um

be
r

of
M

at
ch

es
/I

nl
ie

rs

0 1 2 3 4 5 6 7 8 9 10

Batch Iteration

flight1 (Munique)
flight1 (Ip3p)
flight1 (Ieff)

flight2 (Munique)
flight2 (Ip3p)
flight2 (Ieff)

(b)

Figure 6.16: Localization performance for non-adaptive and adaptive methods. (a) Dashed
lines show the baseline using the non-adaptive algorithm [221] whereas solid lines depict
correctly localized frames (Rvalid) based on IMU validation. Our adaptive method im-
proves the localization performance Rvalid from 62.8% to 83.1% for flight1, and 74.5%
to 83.5% for flight2. (b) For both testsets, all quality measures improve as well when
applying incremental feature updates.

The update of the model is a critical point because miss-aligned frames degrade the

model quality. We expect that all localizations passing the additional validation step are

correct. However, this heavily depends on the parameters thattitude and thposition, so the

residual errors have to be checked. The selection of the attitude threshold thattitude was

done by evaluating the valid localizations, the according drop rates by validation, and the

resulting mean attitude errors µ(eattitude). Tab. 6.2 shows that for increasing thattitude
the ratio Rvalid and µ(eattitude) increase, whereas Rinvalid decreases. The selection of

the threshold, in our case thattitude = 10◦, is a trade-off between detection rates, outlier

removal, and expected IMU accuracy, and it corresponds to earlier work on comparing

visual and inertial data [125]. In contrast, GPS is in our experience very noisy. We use

the real-time accuracy delivered by the GPS receiver, which results in an average position

threshold of µ(thposition) = 16.2m. It thus only acts as a sanity check for localization in

models with repetitive structures.

Figure 6.17 shows the resulting camera positions after applying our approach. Initially

localized cameras are depicted in gray, positions found after several batch updates are

marked in red. A common source of error are frames distorted by motion blur, because

only little features can be detected. Nevertheless, our proposed approach is able to handle

such local failures since it automatically recovers with the next successful pose estimate.
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Table 6.2: Localization Results for Different Attitude Errors after 25 Incremental Update
Iterations.

Flight thattitude Rvalid Rinvalid µ(eattitude)

1 5◦ 43.7% 41.4% 3.61◦ ± 1.03◦

1 10◦ 82.8% 2.3% 5.04◦ ± 1.85◦

1 15◦ 84.3% 0.8% 5.05◦ ± 1.90◦

2 5◦ 53.2% 42.0% 3.52◦ ± 0.96◦

2 10◦ 83.1% 12.1% 4.77◦ ± 2.00◦

2 15◦ 86.5% 8.7% 5.12◦ ± 2.55◦

Figure 6.17: Visual localization result for an entire MAV flight. In a non-adaptive setting,
we can localize 62.8% of all frames of this dataset (gray camera positions). By using our
technique of incremental feature updates, we are able to boost the localization performance
to 83.1%, especially for high–altitude views (red camera positions).

Comparison to Visual SLAM. We compare our approach to localization using

PTAM [113], which has recently been proposed for MAV navigation [2, 21, 218, 224].

While this is an unfair comparison as PTAM has to create the map on–the–fly while

we use prior knowledge, our intention is to demonstrate the significance of using prior

information. Our experiments showed that the camera positions obtained by running the

original PTAM code vary considerably according to the stereo initialization. Therefore,

we used the recorded stream of images (with radial distortion corrected) and selected the

initialization which showed best results for comparison. As the global coordinate system

and the scale are not defined and differ in every execution, we aligned the camera centers

of PTAM to those retrieved by our proposed algorithm in a least–squares sense.

Figure 6.18 depicts the reconstructed flight path from take–off to landing. While

PTAM can compete with our approach locally, i.e. in the environment it was initialized,
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it only returns a valid pose for 36% of all frames. In a direct comparison to our approach

it is clearly visible that PTAM misses large parts of the flight. As soon as the track is

lost, the relative pose cannot be established anymore and the localization fails. Another

problem is the repetitiveness of the scene, which causes misleading model updates and

inhibits successful re-localization within a larger space.

(a) (b)

Figure 6.18: Comparison of our approach to visual localization using SLAM. (a) Top:
Flight path of our visual landmark–based approach with 83% of all frames correctly local-
ized. Bottom: In comparison, a state–of–the–art visual SLAM approach (PTAM [113]) is
not suitable for such a large–scale outdoor environment, and achieves a localization rate
of only 36%. (b) The overlay of both paths shows that PTAM has lost track of its initial
map at some point during the flight and is not able to recover.

Comparison to Visual Groundtruth. We use the video stream showing the quad–

rotor’s flight from a ground observer’s viewpoint as a visual groundtruth. It shares the set

of virtual cameras, so we can localize the video within our scene using the same localization

method as above. Under the premise of synchronized video streams and a correct current

pose estimate from the quad–rotor’s flight and ground observing video, the backprojection

of the MAV camera center must coincide with the quad–rotor position in the observer’s

view.

Figure 6.19(a) shows the 3D box of the tracked quad–rotor and the respective ground

video frame. We use the widespread PASCAL criterion [53] and consider the backprojected
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quad–rotor bounding box BQ as successfully registered if the criterion,

BQ

⋂

BG

BQ

⋃

BG
> 0.5 (6.1)

is satisfied. BG denotes the bounding box of the quad–rotor in the groundtruth view. By

visual inspection, we conclude that the localization approach as presented in this paper

satisfies the overlap criterion in all frames. This is not very surprising, as the automatic

validation process using the IMU removes erroneous localizations. In contrast, visual

SLAM without validation (PTAM) is only correct in 22% of all frames. Figure 6.19(b)

gives an example of the typical offset.

Comparison to Differential GPS. For the evaluation in a global coordinate system

we acquired images as well as GPS and IMU data at a fixed reference point. Further, at

the same point we recorded ground–truth position data using a Novatel OEMV-2 L1/L2

Real-Time Kinematic (RTK) receiver with an estimated precision of 0.02m at the time

of image acquisition. Figure 6.20 depicts the results in a nadir and oblique view. The

reference point has been chosen on the bridge of the atrium scene because even D–GPS

was not able to measure accurate positions on the ground. The mean offset in the xy–

plane for 10 measured GPS points is 9.76 ± 1.31m, whereas the mean offset of the 10

localized cameras is 0.31 ± 0.04m. In comparison to our previous work [222] we were

able to further reduce the constant offset from 0.52m to 0.31m by refining the calibration

of the camera. The residual error depends on accurate alignment in a global coordinate

system, which in turn depends on the ground sampling distance of the given digital surface

model. However, we want to highlight the very good standard deviation of 4 cm in a global

coordinate system given the distance to the scene of approx. 20m; this clearly shows that

visual localization is capable of outperforming GPS in urban environments.

We made another interesting observation in the course of producing these ground–

truth results: Visual localization did not work for any acquired image on the atrium’s

bridge in a height of approx. 13m over ground when using the initial visual landmark.

Only after updating the landmark using our adaptive localization algorithm were we able

to localize the MAV, which again shows that our proposed incremental update approach

is beneficial.

Long-Term Localization. Long-term localization represents the localization of a flight

using a model that has been updated by previous flights. In this experiment we evaluate the

improvements in localization rate and quality from the initial model to an automatically

adapted model. Tab. 6.3 shows that using a model updated by previous flights improves the

detection rate by up to 17%, and the measurements for the localization quality µ(Munique),

µ(Ip3p), and µ(Ieff ) are also improved.

In other words, flying several times in the same area and using the updated model
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(a) (b)

Figure 6.19: Visual comparison of the localization results based on a registered
groundtruth video. (a) Oblique view of registered groundtruth showing the current camera
frame and MAV positions (path and bounding box) estimated by our localization approach
(red) and the aligned PTAM result (blue). (b) Back–projected bounding box from the
observer’s point of view.

(a) (b)

Figure 6.20: Comparison of visual and GPS localization accuracies. Camera poses based
on GPS, vision, and differential GPS as reference point are visualized in (a) a nadir view
and (b) an oblique view. Visual localization has been performed on a visual landmark
trained by flight2 to overcome the height limitation, and performs considerably better
than GPS.
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Table 6.3: Long-Term localization results. Localization based on the initial visual land-
mark (flight 1@0, flight 2@0) is compared to localization based on adapted visual land-
marks. No further incremental updates were performed on the result.

Flight Rvalid Rinvalid µ(Mu) µ(Ip3p) µ(Ieff )

1@0 62.8% 3.1% 56.6 21.4 9.1
1@2 73.6% 2.7% 60.4 23.7 10.2

2@0 74.5% 11.3% 73.5 34.1 15.2
2@1 79.7% 11.3% 80.4 38.9 17.4

of previous flights improves the localizations of the current flight and allows incremental

improvement of the visual landmark. In contrast to visual SLAM, where the environment

is expected to be unknown and the map is re-created for every flight, our approach is able

to incorporate and propagate prior knowledge in a certain area to improve localization

results. Moreover, we can even integrate the maps created by keyframe-based visual

SLAM as discussed in the following.

6.2.3 Distributed Online Localization and Mapping

The lowest level of our localization and mapping framework is again a SLAM component.

However, a deliberate implementation as a distributed system allows to run both local-

ization and mapping without algorithmic simplifications. On the contrary, our system

exploits several state-of-the-art algorithms for tracking, mapping, and dense reconstruc-

tion [113, 114, 234, 235] despite the low computational resources on the MAV.

Experimental Setup. In all of our experiments, we run the tracking thread onboard

our Pelican MAV. Our mapping component runs on a powerful server with a 2.54GHz

Quad-Core CPU and an NVIDIA GTX480 GPU which is used for highly parallelized dense

reconstruction. The user interface is implemented on an Android-based NVIDIA Tegra3

tablet, and all three parts are connected by ROS via standard WiFi.

A typical live reconstruction process starts with the creation of an initial map, which

happens automatically if the user has placed an artificial ARToolkitPlus marker [215]

into the scene, or if the system is connected to our virtual view-based global localization.

Then, the desired volume of interest for dense reconstruction, relative to the center and

orientation of the marker, has to be defined by the user. For outdoor experiments, this

process can be done on the ground or while the aerial vehicle is airborne. Once the system

is initialized, reconstruction is fully automated and starts as soon as a minimum of three

keyframes is available.

In the following paragraphs we experimentally evaluate the effect of different keyframe

resolutions on the reconstruction. All other parameters can be interactively tuned to
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obtain good reconstructions in different environments. However, for the evaluation we

used the following fixed set of parameters: For initialization binit = 0.3m and finit = 20,

for keyframe selection bmap = 0.1m (indoors) and bmap = 0.4m (outdoors), αmap = 20◦,

and tmap = 3s, for map updates ǫ2d =
√
2px, ǫ3d = 0.001m (indoors), and ǫ3d = 0.01m

(outdoors), for dense mapping N = 4, λ = 0.4, λd = 0.5, and cmin = 0.65.

Ground-truth Evaluation. Typical evaluation datasets providing dense ground–truth

are not designed for SLAM, and thus tracking typically fails. We recorded our own eval-

uation data based on standardized geometry and texture using the City of Sights paper

model [71], which allows us to demonstrate the quality of our reconstructions by comparing

to ground–truth. Digital blueprints and a virtual model of the scene are provided online2.

As proposed in the original paper, we use the Iterative Closest Points method [238] to

align the reconstructed volume to the ground–truth mesh. We finally measure the Haus-

dorff distance from reconstructed to ground–truth points and visualize the residual in

pseudo colors. Gruber et al. [71] state that typical paper models have a mean deviation of

3mm compared to ground–truth, thus we denote our reconstruction as correct within this

limit. Errors of more than 10mm occur only in regions which are either seen by a small

number of views or which are hard to triangulate due to missing texture. In the City of

Sights model, this applies to the top of the Irish Round Tower and the inner part of the

Arc de Triomphe. A standard result for an input resolution of 640 × 512px, as well as a

pseudo–colored distance image are shown in Figure 6.21.

(a) Textured reconstruction (b) Difference to groundtruth (c) Maximum error

Figure 6.21: Dense reconstruction of the City of Sights model using an input resolution of
640× 512px. The mean Hausdorff distance to ground–truth is 2.4mm, the RMS distance
is 3.9mm, and the maximum distance underneath the side gates of the Arc de Triomphe
is 42.8mm.

Resolution and Bandwidth Considerations. Our system can capture and process

the full image resolution of 1280×1024px with a frame rate of 5fps on–board the quadrotor

2http://cityofsights.icg.tugraz.at

http://cityofsights.icg.tugraz.at
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(a) 1280 × 1024px (b) 640 × 512px

(c) 320 × 256px
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(d) Overview

Figure 6.22: Qualitative and quantitative evaluation of the input resolution. (a) to (c)
show the reconstructed geometry for different input resolutions with erroneous regions
marked in red. The diagram (d) shows mean, RMS, and maximum Hausdorff distance
compared to ground–truth. The best result is obtained using an uncompressed keyframe
resolution of 640 × 512px.

helicopter. Frame rates increase to 10fps when lowering the image resolution to 640 ×
512px, and 20fps for 320×256px. We compare the different resolutions and frame rates by

recording uncompressed video with full resolution and 20fps on a desktop computer. The

data is then ported to a laptop, resampled to the correct resolution and frame rate, and

used as input to the tracker which sends keyframes over WiFi to the server. The rather

complicated setup perfectly simulates our system; however, repeated reconstructions might

still differ due to network and CPU workloads. Figure 6.22 shows a qualitative and

quantitative comparison of reconstructions with different keyframe resolutions based on

the Hausdorff distance. While the full resolution provides the smoothest result as expected,

tracking often fails due to the low frame rate and some holes remain. Medium resolution

performs best, whereas the low resolution of 320× 256px cannot connect all extrusions in

the model.
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Directly streaming the imagery to the server has also been evaluated, and is possible

with the same frame rate for compressed medium resolution (80% JPG) and uncompressed

low resolution images. While low image resolution has already been shown to be undesir-

able, compression also affects the reconstruction quality (see Figure 6.22(d)). Additionally,

the benefit of having latency-free pose updates on the MAV is omitted.

Finally, when comparing to the non–distributed system we did not see significant

deviations in reconstruction quality. A difference is only apparent if the tracker has to

quickly update the map several times in a row, which results in a short-term loss of the map

because of the network latency. However, this is in general not an issue when operating

outdoors because the distance to the scene is larger and less frequent map updates are

required.

(a) Scene photo (b) Textured reconstruction

Figure 6.23: Office scene (indoor) with a reconstruction rotated to an overhead view. Note
that even weakly textured regions are reconstructed. Volume size 320× 320× 320 voxels.

Real–World Evaluation. Our system has also proven to deliver very good results in

real–world scenes. We have successfully reconstructed indoor office scenes by moving the

micro aerial vehicle (Figure 6.23) and outdoor scenes by flying it (Figure 6.25). The typical

acquisition time is below 10 minutes for all the scenes shown, and dense reconstruction is

computed in real-time, with visualization on the tablet. Our reconstruction approach is not

tied to a specific topology but can visualize very complex scenes as shown in Figure 6.24.

We can also handle different input such as thermal imaging data, where colored texture is

ultimately required, and reconstruct the dense 3D scene on–the–fly.

6.2.4 Online Localization using Line-based Models

3D point clouds are an important cue for visual navigation, but sometimes it is necessary to

localize relative to geometry given as wireframe model instead of exploiting the appearance.

In this section we evaluate our model-based multi-scale pose estimation approach which
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(a) Untextured reconstruction (b) Textured reconstruction

Figure 6.24: Dense reconstruction of complex geometry. Thanks to our volumetric re-
construction approach, we obtain smooth surfaces and do not depend on topological con-
straints.

(a) (b) (c) (d)

Figure 6.25: Airborne outdoor results. In (a) to (c), various outdoor scenes are depicted
where the top row shows an image of the scene and the bottom row depicts the recon-
struction using a volume of 320× 320× 320 voxels. (d) shows the reconstruction of a car
park using thermal images as input.
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builds on PTAM and integrates prior knowledge of the object of interest during the entire

tracking procedure. Several experiments with solid as well as wiry objects have been

performed. Our implementation runs in real-time with 15-20 fps, while exploiting the

computational resources of multicore processors.

Evaluation using Outside-in Tracking. We have evaluated our adaptations in terms

of tracking accuracy by comparison to groundtruth, acquired by an outside-in tracking

system. All evaluation tasks are performed using an Intel Core i5 2,66GHz processor.

While for the translational error the Euclidean distance

terr = ||t− ttrue|| (6.2)

between the two camera centers is used, an attitudinal error measure based on a quaternion

representation has been chosen. A quaternion is defined as

q =
[

ρT qw

]T

with ρ =
[

qx qy qz

]T

= ê sin

(

θ

2

)

and qw = cos

(

θ

2

)

, (6.3)

where ê is the axis of rotation and θ is the angle of rotation [184]. Thus, the angular

difference between two quaternions qtrue and q can be calculated from qw as

θerr = 2arccos
(

||q−1
trueq||w

)

, (6.4)

where || · ||w is an operation that first normalizes the quaternion resulting from the

quaternion multiplication, and then extracts qw. The parameters have been fixed to t =

0.2, σc = 0.7, λ = 0.8, τ = 0.025, and an enlargement of the object bounding box by 30%

for all experiments is chosen.

Comparison to Standard PTAM. Evaluation results for a solid object are presented

in Table 6.4, those regarding a wiry object are listed in Table 6.5 and depicted in Fig-

ure 6.26. The results show that our algorithm clearly outperforms standard PTAM. While

this is also due to model-based refinement during tracking, the major improvement is

caused by refinement during initialization. In standard PTAM, relative motion estimation

between the first and second keyframe estimated from the piecewise planar environment

using [56] is not robust. However, when the model information is incorporated into the

initialization process to refine the camera poses for the first and the second keyframe,

respectively, then standard PTAM is almost as accurate as our implementation. The

accuracy gained when constantly refining the pose during tracking using the model is

quantitatively significant, but is only essential when being very close to the object in our

indoor experiments. However, outdoors the pose estimate provided by PTAM is noisier

and therefore model-based refinement is beneficial. Qualitative results of our implemen-

tation for different wiry objects are shown in Figure 6.27 and 6.28.
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(a) (b)

Figure 6.26: Model-based tracking trajectories. Comparison of the tracked trajectories
(blue) to ground-truth (green) for the wiry object. (a) PTAM has a considerable offset,
whereas our implementation (b) aligns well.

Figure 6.27: Qualitative results of our implementation for the wiry object used during
evaluation. The pose is estimated from keypoint-based tracking and then refined using
the available information about the object’s geometry.

Figure 6.28: Qualitative results of our implementation for an outdoor scene with a wooden
model of a power pylon.
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Table 6.4: Model-based tracking accuracy for a solid object. The accuracy of the stan-
dard PTAM implementation is compared against our implementation with model-based
refinement.

transl. error [cm] rot. error [deg]
µ ±σ max µ ±σ max

PTAM 6.1 3.4 17.7 1.2 0.4 3.7
Ours 1.7 0.8 6.4 1.0 0.4 3.2

Table 6.5: Model-based tracking accuracy for a wiry object. The accuracy of the stan-
dard PTAM implementation is compared against our implementation with model-based
refinement.

transl. error [cm] rot. error [deg]
µ ±σ max µ ±σ max

PTAM 6.9 2.9 32.0 1.4 1.3 11.3
Ours 2.6 3.1 31.3 1.6 1.3 11.7

Overcoming Keypoint-based Tracking Failures. The main benefit of our imple-

mentation is that the combination of the keypoint-based tracking procedure with model-

based tracking keeps working in cases where standard PTAM would lose track. This is

especially important when capturing close-up views of parts of the object as it is often

necessary during aerial inspection tasks. We have simulated such close-up views using

the wiry wooden box, and compared the standard PTAM implementation against our

implementation. Loss of tracking could always be prevented for the 2:20min evaluation

sequence (4110 frames) when using model-based tracking for failure recovery. This was

not possible using the standard PTAM implementation where tracking is completely lost

in 20.9%. Moreover, we could not only keep up tracking during longer periods of time, but

even avoid further loss of frames by the use of model-based tracking. The frames where

recovery was necessary reduced from 20.9% to 6.6%. Qualitative tracking results can be

seen in Figure 6.29.

6.3 Path Planning and Control

Prior knowledge about geometrical structures also aids path planning and control, as

we have shown in Chapter 5. The following sections show ground-truth evaluations and

qualitative results for view planning, visual servoing, and reactive control strategies.

6.3.1 Vision for High-Level Path Planning and Control

For large-scale view planning, we show that we are able to determine a set of camera

positions that guarantees that our SfM algorithm can compute an overall connected re-

construction with accurate scene estimation. Therefore, we test the performance of our
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Figure 6.29: Purely model-based tracking for failure avoidance. When not enough features
for tracking are available, we automatically switch to a model-based tracking stage in order
to avoid tracking failure. Qualitative results are shown here for ten continuous frames.

view planning algorithm described in Section 3.5.2 in simulation and during a real-world

outdoor experiment.

In both experiments, we ensure a minimum object–to–camera distance of 5m. Since

the position of the MAV is controlled by a GPS receiver, the horizontal accuracy ranges

from 1m to 5m and decreases if the receiver is located close to walls. Furthermore, the

height of the MAV is controlled by a barometric height sensor and therefore is prone to

air pressure changes, which may lead to wrong height estimates.

Simulation Results. Our experiment is based on the House sequence that has been

presented previously. The images have been acquired during manual flight with the Falcon

MAV, meshed using our approach presented in Section 3.3.4, and geo-registered. Since

the mesh contains more than 200.000 faces, we simplify the model to 7489 faces using a

quadric edge collapsing algorithm [67]. This preserves the main structure of the building,

but removes fine details.

We claim a GSD of s = 8mm and a focal length f = 24mm resulting in a distance

parameter d = 20m. Given the prior House geometry, our algorithm selects 4643 camera

positions that are reachable by the MAV out of 7446 proposals. The remaining camera

positions are removed because they are too close to the building or to the ground. From

this set, the algorithm selects 106 poses which are necessary to achieve the desired GSD.

Since the mesh is untextured, we project a random texture generated from patches

of written text onto each triangle. We then render the mesh for the determined camera

position using OpenGL. The intrinsic parameters of the OpenGL camera are set to match

those of the MAV camera. The rendered images serve as input for our SfM algorithm.

When running our 3D reconstruction algorithm, we are able to establish 106 (all) local-

ized camera poses and 23.645 feature points. To measure the accuracy of the reconstructed

sparse points we compute their normal distance to the closest triangle. Only 597 (2.5%)

points have a distance larger than 0.5m and can be classified as outliers. 1235 (5.2%)

points range between 0.05m and 0.5m and the remaining 92.3% are closer than 0.05m to
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the mesh. Figure 6.30(a) shows the histogram of the point-to-mesh distances.

The camera pose error cpr = ‖Csfm−Crendered‖2 measures the difference between the

pose estimated by the SfM approach Csfm and the rendering viewpoint Crendered. The

average camera pose error for all cameras on the single family house scene is 0.022m and

the maximum error is 0.033m. Figure 6.30(b) shows the estimated camera poses and the

triangulated feature points.
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Figure 6.30: View planning results for the simulated House scene. (a) The histogram of
distances between reconstructed SfM points and the groundtruth surface shows that 92%
of the reconstructed points have a maximum distance of 0.05m to the surface. (b) Selected
views and SfM result of the House scene. Our approach selects 106 camera positions (gray)
out of 4643 possible positions. Groundtruth camera positions are shown in red. The color
coding of the reconstructed feature points represents the distance t to the mesh (red:
t > 0.5m, magenta: 0.5m > t > 0.05m, green: t < 0.05m).

Real-World Results. In contrast to the simulated experiment where images are ren-

dered from noise-free camera positions, we investigate the performance of our algorithm

when taking images acquired by an autonomously flying Falcon MAV.

For the real-world experiment we use the same prior geometry model as before, but

also take neighboring buildings and trees into account and therefore set d = 15m. After

running our view–planning algorithm we obtain 133 desired camera poses and a respective

flight plan according to our algorithm in Section 5.1.3.

Our SfM algorithm reconstructs 20.762 feature points based on 81 images. The dis-

crepancy between the number of acquired images and the images which are successfully

aligned by SfM can be explained by the lack of positioning accuracy using GPS. The MAV

is equipped with a standard GPS receiver whose accuracy ranges between 1m and about

5m, and it can approach a GPS waypoint with a precision of about 2m. In the worst case
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both errors sum up and lead to a positioning error of 7m. As a result, some views do not

observe the expected parts of the object. Figure 6.31 shows the difference between the

expected view and the image acquired by the MAV. Furthermore, we assume a discrimi-

native texture, which cannot be guaranteed in the real-world example. Another challenge

are too large geometric changes over time that are not reflected in the input mesh.

(a) (b)

Figure 6.31: Comparison of planned view and approached position. View (a) is rendered
from the desired viewpoint, but the image taken by the MAV in (b) shows a slightly
different part of the scene. The two poses mainly differ by a translation along the building
caused by noisy GPS positions.

To analyze if all parts of the building are observed by the 81 aligned images, we run

a semi-dense PMVS [65] reconstruction. The result shown in Figure 6.32 indicates that

most parts of the surface have been captured by the MAV. The holes in the facade are due

to missing texture that prevents accurate patch-matching. This result illustrates that even

a subset of the selected cameras is sufficient to capture most parts of the object. However,

for guaranteeing a certain accuracy of the reconstructed points, the entire planned set of

cameras is required.

6.3.2 Trajectory Control based on Visual Localization

In a more local environment, our visual localization methods can be used for vision-based

trajectory following. We performed several experiments to evaluate the accuracy of our

fuzzy controller for position-based visual servoing. To obtain these results, we used the

Pelican MAV and streamed images with a resolution of 320×240 px at 30Hz via a wireless

802.11n link to the ground station. To ensure a reliable connection for control commands,

we send control commands over a separate X-Bee wireless data link directly to the MAV’s

autopilot.

Note that a fair comparison of our visual servoing approach to other work would only

be possible in a simulated environment. All results depend on the scene, the distance to

the scene and for outdoor experiments on the wind conditions.
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Figure 6.32: Densified reconstruction after executing an autonomous flight plan. This is
result is achieved by using patch-based densification [65]. The missing parts of the facade
are caused by weak texturing.

Hovering Results. For measuring the hovering accuracy in an outdoor setting we hov-

ered directly above the take-off position at an altitude of 1.5m and a horizontal mean

distance to the feature points in the map of about 10m. As error measurement we use

the Root Mean Square error (RMS) in individual directions, and we compare our results

to the work of Achtelik et al. [2] in Table 6.6. It can be seen that we are outperforming

their approach, although we do not yet incorporate IMU measurements and employ a

non-nadir view with larger distance to the scene. An example for the hovering trajectory

is visualized in Figure 5.8.

Table 6.6: Performance for outdoor hovering. The RMS and maximum error for the z and
xy-plane and in 3D space (xyz) are compared to [2].

Approach Distance [m]
RMS error [m] Max error [m]

z xy xyz z xy xyz

Ours, 320× 256 px 10.0 0.0643 0.1495 0.1627 0.2189 0.2716 0.3471
Achtelik et al.[2] 3.3 0.11 0.44 − − − −

Trajectory Flight Results. Not only the accuracy at a fixed position is important,

but also the trajectory between defined waypoints is of interest. Therefore, we evaluated

the accuracy of flight trajectories during an indoor experiment. We defined a 2 × 2m

square trajectory sampled in path lengths of 1.0m at an altitude of 1.5m as depicted

in Figure 6.33 and measured the RMS error in individual directions. The results are
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compared to those of Blösch et al. [21] in Table 6.7. Our results can compete, and we are

not dependent on a wired connection between MAV and ground station. Furthermore, we

do not rely on a textured ground plane which is often not available when flying above a

road or grass, and our approach does not require an accurate system model of the MAV.

Table 6.7: Performance for the trajectory flight. The RMS and maximum error for xyz
are evaluated by sampling along the trajectory in 0.5 mm steps.

Approach
RMS error [m]

x y z xyz

Ours, 320× 256 px 0.0704 0.1109 0.0663 0.1471
Blösch et al. [21] 0.0995 0.0748 0.0423 −
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Figure 6.33: Visual servoing trajectory along a predefined 2.0 × 2.0m square path. The
first two figures show the temporal change of the x and y coordinates and the third the
spatial representation of the trajectory in 3D space. Waypoints are defined in steps of
1.0m, thus the vehicle briefly hovers at these spots.

6.3.3 Imitation Learning for Reactive Visual Control

For our experiments on reactive visual control, the ARDrone MAV is employed. When

experimenting with learned control strategies, crashed are unavoidable. Moreover, high-

speed flight in a forest is an extremely challenging tasks where a confidence of 100% during

collision avoidance cannot be achieved yet. Due to its robust structure and cheap spare

parts, the ARDrone is perfectly suited for this task.

Indoor Experiments. We first tested our approach indoors in a motion capture arena.

We use fake indoor trees as obstacles and camouflage to hide background clutter (Fig-

ure 6.34(a)). While this is a very controlled environment that lacks many of the complex-

ities of real outdoor scenes, it allows us to obtain better quantitative results to determine
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the effectiveness of our approach. The motion capture system is only used to track the

ARDrone and adjust its heading so that it is always heading straight towards a given goal

location. The MAV moves at a fixed altitude and forward velocity of 0.35m/s. We learned

a controller that controls the left-right velocity using DAgger over 3 training iterations.

At each iteration, we used 11 fixed scenarios to collect training data, including 1 scenario

without obstacles, 3 with one obstacle, and 7 with two obstacles (Figure 6.34(b)).

(a) (b)

Figure 6.34: Indoor setup for reactive control experiments. (a) Motion capture arena with
fake plastic trees and camouflage in background. (b) 11 obstacle arrangements used to
train DAgger for every iteration in the motion capture arena. The star indicates the goal
location.

Figure 6.35(a) qualitatively compares the trajectories taken by the MAV in the motion

capture arena after each iteration of training on one of the particular scenario. In the first

iteration, the green trajectory to the farthest right is the demonstrated trajectory by the

human expert pilot. The short red and orange trajectories are the trajectories taken by

the MAV after the first and second iterations were completed. Note that both fail to avoid

the obstacle. After the third iteration, however, the controller learned a trajectory which

avoids both obstacles. The percentage of scenarios where the pilot had to intervene for

the learned controller after each iteration can be found in Figure 6.35(b). The number

of required interventions decreases between iterations, and after 3 iterations there was no

need to intervene as the MAV successfully avoided all obstacles in all scenarios.

Feature Evaluation. After verifying the general functionality of our approach, we eval-

uate the benefit of all four feature types. An ablative analysis on the data shows that the

structure tensor features are most important, followed by Laws features. Figure 6.36 shows

how the contribution of different features varies for different control signal strengths. Op-

tical flow, for example, carries little information in scenes where small commands are

predicted. This is intuitive since in these cases there are typically no close obstacles and
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(a) (b)

Figure 6.35: Indoor results for training DAgger. (a) Improvement of trajectory by DAgger
over the iterations. The rightmost green trajectory is the pilot demonstration. The short
trajectories in red & orange show the controller learned in the first and second iterations
which fail. In the third iteration the controller successfully avoids both obstacles and
is similar to the demonstrated trajectory. (b) Percentage of scenarios the pilot had to
intervene and the imitation loss (average squared error in controls of controller to human
expert on hold-out data) after each iteration of DAgger. After 3 iterations, there was no
need for the pilot to intervene and the MAV could successfully avoid all obstacles.

Figure 6.36: Breakdown of the contribution of the different features for different control
prediction strengths, averaged over 9389 datapoints. Laws and Radon are more significant
in cases when small controls are performed (e.g. empty scenes), whereas the structure
tensor and optical flow are responsible for strong controls (i.e. in cases where the scene
contains an imminent obstacle). A slight bias to the left can be seen, which is consistent
to observations in the field.
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(a) Radon (b) Structure Tensor (c) Laws

(d) Flow (e) Combined Features

Figure 6.37: Visualization of the contribution of the different features to the predicted
control. The overall control was a hard left command. The arrows show the contribution
of a given feature at every window. Structure tensor features have the largest contribution
in this example, while Radon has the least.

subsequently no significant variation in optical flow. In fact, removing the optical flow

feature on platforms without sufficient computational capabilities only results in a 6.5%

increase in imitation loss.

Figure 6.37 shows the contribution of each of the features at different window centers

in the image. While structure tensor features mainly fire due to texture in the background

and thus indicate free space, strong optical flow vectors correspond to very close objects.

In this example the predictor commands a hard left turn (numerical value: 0.47L on a scale

of [0,1]), and all visual features contribute to this. Consistent with the above analysis,

the contribution of the structure tensor was greatest (0.38L), Laws masks and optical flow

contribute the same (0.05L) while Radon features provide the least contribution (0.01L).

In this particular example, the non-visual features actually predict a small right command

(0.02R).

Outdoor Experiments. After validating our approach indoors in the motion capture

arena, we conducted experiments outdoors to test in real-world scenarios. As we could

not use the motion capture system outdoors to make the MAV head towards a specific

goal location, we made the vehicle move forward at a fixed speed and aimed for learning a

controller that would swerve left or right to avoid any trees on the way, while maintaining
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(a) (b) (c)

Figure 6.38: Typical failures during training iterations. While the controller has problems
with tree trunks during the first iteration (a), this improves considerably towards the third
iteration, where mainly foliage causes problems (b). Over all iterations, the most common
failures are due to the narrow FOV of the camera where some trees barely appear to one
side of the camera or are just hidden outside the view (c). When the UAV turns to avoid
a visible tree a bit farther away it collides with the tree to the side.

the initial heading. Training and testing were conducted in forest areas while restraining

the aircraft using a light-weight tether. We performed two experiments with DAgger to

evaluate its performance in different regions, one in a park with relatively low tree density,

and another in a dense forest.

The first area is a park area with a low tree density of approximately one tree per

12× 12m, consisting mostly of large trees and a few thinner trees. In this area we flew at

a fixed velocity of around 1m/s, and learned a heading (left-right) controller for avoiding

trees using DAgger over 3 training iterations. This represented a total of 1 km of flight

training data. Then, we exhaustively tested the final controller over an additional 800m

of flight in the training area and a separate test area.

Qualitatively, we observed that the behavior of the reactive controller improved over

iterations. After the first iteration of training, the MAV sometimes failed to avoid large

trees even when they were in the middle of the image in plain view (Figure 6.38(a)).

At later iterations however, this rarely occurred. On the other hand, we observed that

the MAV had more difficulty detecting branches or bushes. The fact that fewer of such

obstacles were seen in the training data, coupled with the inability of the human pilot to

distinguish them from the background, contributed to the difficulty of dealing with these

obstacles. We expect that better visual features or improved camera resolution might

help, as small branches often cannot be seen in 320× 240 pixel images.

As expected, we found that the narrow field-of-view was the largest contributor to

failures of the reactive approach (Figure 6.38(c)). The typical issue occurs when the

learned controller avoids a tree, and as it turns a new tree comes into view. This may

cause the controller to turn in a way such that it collides sideways into the tree it just

avoided. This problem inevitably afflicts purely reactive controllers and could be solved
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Figure 6.39: Average distance flown autonomously by the MAV before a failure. (a) Low-
density region, (b) high-density region.

by adding a higher level of reasoning [14], or memory of recent visual features.

The type of failures are broken down by the type of obstacle the vehicle failed to avoid,

or whether the obstacle was not in the FOV. Overall, 29.3% of the failures were due to a

too narrow FOV and 31.7% on hard to perceive obstacles like branches and leaves.

Quantitatively, we compare the evolution of the average distance flown autonomously

by the MAV before a failure occurred over the iterations of training. We compare these

results when accounting for different types of failures in Figure 6.39(a). When accounting

for all failure types, the average distance flown per failure after all iterations of training

was around 50m. On the other hand, when only accounting for failures that are not due to

the narrow FOV, or branches/leaves, the average distance flown increases to around 120m.

For comparison, the pilot successfully flown over 220m during the initial demonstrations,

avoiding all trees in this sparse area.

To achieve these results the ARDrone has to avoid a significant number of trees. A

tree is avoided when the MAV can see the tree pass from within its FOV to the edge of

the image. Over all the data, we counted the number of times the MAV avoided a tree,

and observed that it passed 1 tree every 7.5m on average. We also checked whether the

vehicle was actively avoiding trees by performing significant commands. A tree is actively

avoided when the controller issues a command larger than 25% of the full range, passively

in all other cases. 41% of the trees were passed actively by our MAV, compared to 54%

for the human pilot.

We further tested whether the learned controller generalizes to new regions by testing

it in a separate test area. The test area was slightly denser, around 1 tree per 10× 10m.

The controller performed very well and was successfully able to avoid trees and perform

at a similar level than in the training area. In particular, the MAV was able to fly
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Figure 6.40: Percentage of failures of each type for DAgger over the iterations of training in
the high-density region. Blue: large trees, orange: thin trees, yellow: leaves and branches,
green: other obstacles (poles, signs, etc.), brown: too narrow FOV. Clearly, a majority of
the crashes happen due to a too narrow FOV and obstacles which are hard to perceive,
such as branches and leaves.

autonomously without crashing in any trees over a 100m distance, reaching the limit of

our communication range for the tests.

The second set of experiments was conducted in a thickly wooded region. The tree

density was significantly higher, around 1 tree per 3× 3m, and the area included a much

more diverse range of trees, ranging from very small and thin to full-grown trees. In this

area we flew at a faster fixed velocity of around 1.5m/s, and again learned the heading (left-

right) controller to avoid trees using DAgger over 3 iterations of training. This represented

a total of 1.2 km of flight training data. The final controller was also tested over additional

400m of flight in this area. For this experiment however, we used the new ARDrone 2.0

quad-rotor helicopter, which has an improved camera that can stream 640 × 360 pixel

images at 30Hz. The increased resolution likely helped to detect the thinner trees.

Qualitatively, in this experiment we observed that the performance of the learned

behavior slightly decreased in the second iteration, but then improved significantly after

the third iteration. For example, we observed more failures to avoid both thin and large

trees in the second iteration compared to the other iterations. This is shown in Figure 6.40,

which compares the percentage of the different failures for the human pilot and after each

iteration of DAgger in this area. We can also observe that the percentage of failures

attributed to large or thin trees is smallest after the third iteration, and that again a

large fraction of the failures occur when obstacles are not visible in the FOV of the MAV.

Additionally, we can observe that the percentage of failures due to branches or leaves

diminishes slightly over the iterations, which could be attributed to the better camera

that can better perceive these obstacles. A visualization of a typical sequence is given in

Figure 6.41 and 6.42.

Quantitatively, we compare the evolution of the average distance flown autonomously

by the MAV before a failure occurred over the iterations of training. Again, we compare

these results when accounting for different types of failures in Figure 6.39(b). When
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MAV’s on-board view Observer’s view

Figure 6.41: Example flight in a dense forest area. The image sequence is chronologically
ordered from top (t = 0s) to bottom (t = 2.9s) and split into the MAV’s on-board view
on the left and an observer’s view to the right. Note the direction label of the MAV in
the first frame, and the color-coded commands issued by DAgger. It can be observed that
after avoiding tree A in frame 3 the vehicle still rolls strongly to the left in frame 4. This
is due to the small but ubiquitous latency and should be addressed in future work to fly
the MAV in even denser areas.
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MAV’s on-board view Observer’s view

Figure 6.42: Example flight in a dense forest area, continued. The image sequence is
chronologically ordered from top (t = 3.8s) to bottom (t = 6.6s) and split into the MAV’s
on-board view on the left and an observer’s view to the right. In frames 1-3, tree B is
avoided on the left, rather than on the more intuitive right. DAgger prefers this decision
based on the drift feature, which indicates that the vehicle still moves left and thus a
swerve to the right would be more difficult.



142 Chapter 6. Experiments and Results

accounting for all failure types, the average distance flown per failure after all iterations of

training was around 40m. Surprisingly, despite the large increase in tree density and faster

forward velocity, this is only slightly worse than our previous results in the sparse region.

Furthermore, when only accounting for failures that are not due to the narrow FOV or

branches and leaves, the average distance flown increases to 120m per failure, which is on

par with our results in the sparser area. For comparison, when only accounting for failures

due to tree trunks, the pilot flew around 500m during the initial demonstrations and only

failed to avoid one thin tree. However, the pilot also failed to avoid thin branches and

foliage more often (Figure 6.40). When accounting for all types of obstacles, the pilot’s

average distance until failure in this high-density forest was around 80m.

The increase in tree density required our MAV to avoid a significantly larger number

of trees to achieve these results. Over all the data, we observed that it was avoiding on

average of 1 tree every 5m. In this dense region, both the human pilot and the reactive

controller had to use larger commands to avoid all the trees, leading to an increase in the

proportions of trees that were passed actively. 62% of the trees we passed actively by the

MAV, compared to a similar ratio of 66% for the pilot.

The major issue of the too narrow FOV presented in this section may be addressed

by two approaches in the future. First, imitation learning methods that integrate a small

amount of memory may allow to overcome the simplest failure cases without resorting to

a complete and expensive mapping of the environment. Second, the biologically-inspired

solution is to simply ensure a wider FOV for the camera system. For example, pigeons

rely mostly on monocular vision and have a FOV more than 3 times larger, while owls

have binocular vision with around 1.5 times the FOV of the ARDrone.

6.4 Summary

In this chapter, we have evaluated the core components of this thesis. We were able to

show that we can accurately reconstruct geometric outdoor structures to represent prior

knowledge and that we can quickly localize an MAV in a global coordinate system using

monocular vision only. We have presented an experimental evaluation of our live dense

reconstruction system with distributed SLAM, and we have shown our visual navigation

capabilities by adding a path planning and control component. Further illustrative results

in form of videos can be found online3.

3http://aerial.icg.tugraz.at

http://aerial.icg.tugraz.at
http://aerial.icg.tugraz.at
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In this thesis, we have presented a scalable framework for visual navigation of mi-

cro aerial vehicles which incorporates the rich set of already available knowledge about

geometric structures in the world to enhance localization quality and robustness. The pre-

sented algorithms facilitate autonomous flight in cluttered urban outdoor environments

based on a monocular camera as the main exteroceptive sensor of the MAV. To conclude,

we summarize our main contributions and give directions for future research.

7.1 Summary

Our first contribution is a toolbox of approaches for modeling geometric prior knowledge.

We have presented methods for offline and online Structure-from-Motion reconstruction

which result in sparse point clouds. Our generic reconstruction pipeline is widely applicable

since no prior knowledge about the scene is necessary. For scenes with few keypoints, 3D

line segments can be used to densify the resulting model. We have presented an approach

for 3D line-based scene reconstruction without explicit appearance-based matching, which

is suitable for solid but also for wiry objects. We have further discussed multi-view stereo

techniques for the densification of point clouds and for dense surface extraction, including

space carving-based meshing and a variational optimization framework for volumetric rep-

resentations. While sparse, feature-based point clouds are used for localization, we rely on

dense geometry for alignment, occlusion handling, collision avoidance for path planning,

and visualization. Dense matching techniques are also required to build large-scale digital

surface models. We have presented a probabilistic method for range image integration

that considers depth hypotheses as samples from an underlying probability density func-

tion. Our approach scales very well because it avoids a volumetric voxel representation
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for fusion. Finally, we have proposed quality measures which support users during the

difficult task of acquiring all necessary images for Structure from Motion reconstruction

of a scene. We have discussed the visualization of the expected redundancy and resolution

of a reconstruction, and we have shown how to select suitable views automatically based

on prior knowledge about the geometry.

Our second contribution concerns the perception part of the navigation problem. A

large amount of related work relies on Simultaneous Localization and Mapping techniques,

but especially monocular visual SLAM requires considerable amounts of computational

power to operate in real-time. The few available methods suffer from error accumulation

during tracking and from missing robustness to cope with large-scale outdoor environ-

ments. In contrast, we have presented a multi-scale framework for visual localization and

mapping which exploits the previously modeled geometric priors and thus is not affected

by these issues. On the top level we have introduced an algorithm for the automatic align-

ment of 3D reconstructions in a world coordinate system. Given a georeferenced digital

surface model and approximate GPS tags for the individual camera positions, we refine

the alignment based on the correlation of orthographic depth maps. The localization ac-

curacy mainly depends on the ground sampling distance of the DSM, which is in the range

of 5-30 cm per pixel for modern cameras. For global localization within these geometric

priors, we have further proposed the concept of virtual views in 3D space which allows to

partition the search space and thus is completely scalable. Our approach also supports

the integration of in-flight information to improve the initial scene representation. Pose

estimates can be delivered at 4 fps with an accuracy comparable to differential GPS, which

allows to switch seamlessly between GPS and visual localization. However, global localiza-

tion is still too computationally heavy to run onboard micro aerial vehicles, and changes in

geometry as well as unknown areas have not yet been covered. Thus, on the lowest layer

of our framework we have shown how state-of-the-art approaches to online localization

and mapping can be adapted to a distributed environment. We run a full-framerate pose

tracker on the mobile robot, but only transmit selected keyframes to the server for global

localization and reconstruction. A deliberate implementation then allows to update the lo-

cal map of the tracker, while at the same time providing dense volumetric reconstructions

to a possible user or to a collision avoidance system. Finally, we have presented an online

localization method which extends visual SLAM by incorporating line-based priors. This

allows to estimate the pose of the camera relative to complex and possibly wiry structures.

Such a tracking component is crucial when discriminative keypoints are missing, which is

the case in many man-made environments, or for applications like power pylon inspection.

Our third contribution is the application of computer vision methods to path planning

and control. We have shown that digital surface models can be used as prior knowledge for

high-level path and view planning, and we have combined our distributed visual localiza-

tion methods with fuzzy control techniques to build a visual navigation system. Finally,

we have demonstrated a novel approach for high-speed, autonomous MAV flight through

a dense forest environment. Our system learns to predict how a human expert would con-
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trol the vehicle in a similar situation, and thus successfully avoids collisions using passive,

low-cost and low-weight visual sensors only.

After having quantitatively and qualitatively evaluated all parts of this thesis, we

conclude that highly accurate geometric prior knowledge indeed helps to build a scalable,

accurate, and computationally feasible visual navigation system for micro aerial vehicles.

7.2 Directions for Future Research

In this thesis, we have presented a variety of approaches to overcome problems of the

current state-of-the-art in visual navigation, localization, and mapping. However, the

challenging task of visual navigation is by far not solved yet. In the following paragraphs,

we thus conclude our work with suggestions for future research directions.

Appearance Variations. Outdoor environments are subject to severe changes in illu-

mination and appearance, spanning from the regular variation in solar illumination during

a day to weather-dependent changes, and further to seasonal variations. While navigation

approaches should ideally be invariant to those changes in appearance, the underlying

algorithms are only to a certain degree. The major problem is the correspondence com-

putation between images, which is already a challenge when images of the exactly same

scene are taken at a sunny day and at a cloudy day. Even visual SLAM approaches have

problems in such situations, although the change is much more gradual due to the high

framerate. In Section 4.1.3 we have proposed to geometrically align several models of the

same location, acquired at different days and in different seasons. The geo-registered fea-

ture clouds can then be used to perform season-invariant matching. While this approach

is of course feasible, a lot of imagery has to be acquired at the right time to success-

fully model the appearance changes. Thus, a trade-off between feature invariance, feature

mismatches due to invariance, and modeling effort needs to be researched. Again, prior

knowledge on expected weather changes could be used to predict the possible appearance

of features in real-time.

Weakly Textured Scenes. Another challenge for keypoint-based reconstruction and

localization are weakly textured scenes. We have tackled this issue by introducing line-

based methods in Section 3.2 and 4.4, and we have emphasized the benefits of such ap-

proaches. Another concept is to exploit the full, dense image data rather than extracting

a sparse representation. If the prior geometry is modeled accurately enough, dense image

data can be compared and aligned to projected dense model data. This works not only for

appearance information, but also for 2.5D depths [152, 153]. The only drawback of these

methods is their considerable need for computational power. However, both line-based

and dense geometry concepts should be further investigated.
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Explorative Navigation based on the Perception Quality. For successful localiza-

tion in dynamic, real-world outdoor environments, at least the two issues discussed before

have to be overcome. However, navigation also involves a control component, and thus it

is possible to define where a robot should ideally go to optimize its perception quality. We

propose to research a multi-objective optimization problem which incorporates four com-

ponents: The predicted localization quality in terms of pose uncertainty, the likelihood for

successful map expansions, the safety of commanded MAV poses based on a probabilistic

occupancy grid of the local neighborhood, and finally, the decrease in distance to the tar-

get location. Such an explorative approach is in our opinion the fastest way towards fully

autonomous visual navigation.

Large-Scale System Design. Another important aspect of future research should be

thorough and extensive experimental evaluation on a systems level. While we have pre-

sented a series of experiments which have been designed to test the individual components,

effective visual navigation can only be tested on a much larger scale. Such experiments

require considerable implementation efforts as distributed systems with server-based data

management and intelligent, probabilistic integration of new scene knowledge have to be

created. Luckily, initiatives such as RoboEarth [216] have recently presented first steps to-

wards this more general goal of sharing knowledge between robots, which has been coined

Cloud Robotics [72]. We expect that it will be possible to distribute localization and

mapping services in a web for robots in the near future.

Applications. Finally, we propose to further investigate the applications for visual nav-

igation that we have presented in this thesis. Our work establishes a basis for automated

power pylon inspection, construction site monitoring with automatic view planning, and

large-scale but cost efficient city modeling. In all of these tasks, imagery delivered and

processed by a micro aerial vehicle is highly beneficial. Furthermore, most of our algo-

rithms can also be applied to other emerging applications of visual localization, mapping,

and navigation, such as augmented reality and self-driving cars.
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Workshop (ARW), 2012.
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