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Abstract

Audible noise radiated by electrical machines is gaining more and more in importance in
the design process of electrical machines. Therefore, computation methods are necessary
which identify the problematic noise sources and facilitate a low noise design.

This work begins with the validation of an analytical approach to determine the noise
behaviour of induction machines. Analytical electromagnetic, structural, and acoustical
computations are performed. The obtained results are then compared with data from nu-
merical computations as well as vibration and noise measurements.

Investigations of the noise behaviour of induction machines demand the calculation
of the rotating stress waves and thus the determination of the magnetic field-harmonics.
Therefore, a method to compute the field-harmonics of a skewed induction machine using
a multi-slice model has been developed.

Following that, the surface vibrations of an induction machine due to stress waves acting
on the stator and rotor core are analysed. The focus lies on the investigation of the influence
of stress waves varying in axial direction and with higher spatial ordinal numbers on the
surface vibration of a squirrel cage induction machine.

At last, the rotating stress waves acting in the air gap of an induction machine at nominal
operating point and obtained by an electromagnetic finite element multi-slice simulation
are applied to a three-dimensional structural finite element model. A structural harmonic
simulation is then performed. With a three-dimensional boundary element model the sound
pressure on the surface of the machine is computed along withthe noise radiation in the
environment.



Zusammenfassung

Im Auslegungsprozess von elektrischen Maschinen spielt die Geräuschberechnung eine
immer wichtigere Rolle. Um die Lärmquellen zu identifizieren und entsprechende Modi-
fikationen vorzunehmen sind geeignete Berechnungsmethoden notwendig.

Diese Arbeit beginnt mit der Validierung eines analytischen Berechnungsverfahrens zur
Ermittlung des Geräuschverhaltens von Asynchronmaschinen. Dieses Verfahren umfasst
elektromagnetische, strukturmechanische und akustischeBerechnungen. Die ermittelten
Ergebnisse werden mit numerischen Lösungen und Messdaten von Schwingungs- und Ge-
räuschmessungen verglichen.

Die Untersuchungen des Geräuschverhaltens von elektrischen Maschinen erfordert die
Berechnung der Kräfte, insbesondere deren Harmonische, die aus den Oberwellen des
Luftspaltfeldes resultieren. Für geschrägte Maschinen wurde eine Methode entwickelt,
mit der die Oberfelder und deren Verteilung in axialer Richtung mit Hilfe eines Multi-
Slice Modells ermittelt werden können.

Im Anschluss daran wird der Einfluss unterschiedlicher Kraftwellen, die auf den Stator
oder Rotor einer Asynchronmaschine wirken, auf das Schwingungsverhalten untersucht.
Besonderes Augenmerk liegt dabei auf Kraftwellen mit hohenOrdnungszahlen bzw. mit
ungleichförmiger Verteilung in axialer Richtung.

Als letzer Punkt wurde die Schallabstrahlung einer Asynchronmaschine berechnet. Mit
Hilfe der Finite Elemente Methode wurden die elektromagnetischen Kräfte, die in einer
geschrägten Asynchronmaschine im Nennbetriebspunkt wirken, ermittelt und anschlie-
ßend die Vibrationen mit einem geeigneten Strukturmodell berechnet. Die Schwingungen
an der Oberfläche der Maschine dienen als Eingangsgröße für die Randelemente Methode
zur Berechnung des Schalldrucks an der Oberfläche der Maschine sowie der Schallaus-
breitung in die Umgebung.
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1 INTRODUCTION

1.1 Motivation

Electrical machines nowadays are an integral part in our modern and technophile soci-
ety in everyday life situations. The increase in electrification is not only eminent in the
personal household but also in industrial applications andthe trend seems to be a further
increase, not only because the efficiency and application possibilities rise due to techno-
logical enhancements e.g. in inverter feeding, but also because the urge to sustainable and
ecological-friendly policy grows. The automotive industry can be mentioned as a promi-
nent example, where electrical drives are gaining more and more interest and, after hybrid
applications, the trend to purely electric driven vehiclesis meanwhile conceivable.

Furthermore, the trend to higher electrification also implies an increased energy demand
to be satisfied. The increasing sensitivity towards sustainability and ecological friendly ap-
plications makes the way for alternative power plants, as for example wind power, resulting
in new application areas and beyond that new requirements and challenges.

As human beings play the key-role in the usage and operation of these technologies, their
increase also leads to an increased exposition to their emissions, at work and at home, thus
24 hours a day. One problematic emission of electrical machines is audible noise, which is
gaining more and more attention due to the rising sensitivity regarding the quality of life.

Besides physical effects on the human hearing, also psychological effects, like release
of stress hormones result in impairment of humans health. According to [4], noise "has
emerged as the leading environmental nuisance in Europe" and is "the third largest envi-
ronmental burden of disease". Therefore this issue is gaining more and more in importance
in human society. Depending on the possible effects, there exist different regulations es-
pecially for industrial applications [1], that have to be considered already in the design
process of electrical machines.

Although the human ear covers a frequency range of about 16Hzto 16000Hz, it reacts
most sensitively in a range of 1000 to 5000 Hz. Looking at the spectral content of the noise
of electrical machines, the most problematic noise peaks arise exactly in this frequency
interval. This means that special care has to be taken in the design process to keep their
noise levels low so that no harm of the human hearing can occur.

As the demands regarding efficiency and costs also rise, the noise estimation process
becomes more and more complex. More transferred power meanslarger forces acting
on the machine and thus higher emitted noise. The reduction of material not only saves
money, but as the construction changes, typically more problems with resonances occur,
especially for low weight designs. The arising forces must not interfere with these natural
frequencies as this leads to large noise peaks and, besides that, may even lead to damages
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2 1 Introduction

of the machine. The ever widening employment of inverter feeding of electrical machines
increases the number of occurring frequencies in a machine.The chance that one of these
matches a resonance obviously increases. If these frequencies are not constant but vary
according to operation conditions, which is the case in variable speed drives, the problem
becomes overpowering. So, due to the rising demands and complexity, noise computation
in electrical machines is a topic of high interest.
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1.2 Review of literature

The noise emission of electrical machines can be traced backto different sources. One of
the first detailed classifications is given in [29], a newer one in [90]. Besides mechanical
sources, as for example bearings, rotor unbalance or the brushing, aerodynamic sources are
listed there as well. The latter normally leads to broad bandnoise due to turbulence and
separation of the flow of the cooling air. If, however, there is an object near the impeller, a
pure tone, so-called siren noise, with a frequency proportional to its rotational speed, also
may occur, which typically results in enormous sound pressure levels. A more detailed
overview and computation methods for these sources can be found for example in [90],
[75], [34].

A third source, and the one on which the focus of this thesis lies, is the noise of elec-
tromagnetic origin, i.e. one due to the electromagnetic forces acting on the machine and
leading to vibrations. The electromagnetic forces can be split into forces due to magne-
tostrictive effect, Lorentz forces and electromagnetic force densities due to changes of the
permeability. The latter ones are the largest at the surfaceof the teeth where the material
changes from iron to air.

Early investigations presented in [38] and [8] have shown that magnetostrictive effects
and the Lorentz forces on the conductors can be neglected as sources. Recent works regard-
ing the magnetostrictive effect in the vibration analysis have been reported in [11]. Numer-
ical computation results with and without using a magneto-mechanical coupling for con-
sidering magnetostriction, have been carried out and the results are compared with mea-
surements of a mid-size synchronous generator and a small induction machine. This anal-
ysis shows that the influence of magnetostriction and the necessitiy of using a magneto-
mechanical coupling is given for large machines with a thin stator yoke only, in particular
the vibrations at lower frequencies increase in magnitude.Hence, the assumption of ne-
glecting magnetostrictive effects and Lorentz forces is valid.

Methods to determine the forces due to the change of permeability are presented in [41].
A comparison of four different computation techniques (equivalent current density, equiva-
lent magnetic charges, energy principle, Maxwell stress) to determine the electromagnetic
force densities by numerical methods is given in [55]. A morerecent investigation of the
computation of the electromagnetic force densities has been carried out in [37] compar-
ing the virtual work principle and the Maxwell stress tensor. The latter one is the most
common technique in the noise computation process, especially in analytical approaches,
whereas the first one is mainly applied in numerical techniques.

The computed forces can then be applied to a structural modelwhere, besides an ap-
propriate computation of the deformations and vibrations,especially the determination of
the natural resonances is of importance. The vibrations again cause fluctuations in the sur-
rounding air, which propagate with the sonic speed of air andthus result in audible noise.
Again, especially in electrical machines, the occurring frequencies are in a range where
the human ear is the most sensitive and this makes the noise investigation and elaboration
of appropriate computation methods an important topic.
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Summing up, the physical areas relevant for the generation of electromagnetically ex-
cited audible noise are electromagnetics, structural mechanics and acoustics, which have
to be appropriately coupled. The magneto-mechanical coupling can be reduced to apply-
ing the surface forces computed with the Maxwell stress tensor method on the stator (and
rotor) teeth. For the structural mechanics and acoustic field computation it is also suffi-
cient to neglect the interaction of the sound pressure with the structure. Compared to the
forces that act on the structure the occurring sound pressure has no influence on the forced
vibrations, especially for exterior radiation problems. Adetailed procedure for coupling
the different physics is also given in [81], [13].

The further review of the literature on the investigation ofthe noise computation of elec-
trical machines focuses on electromagnetic generated noise. The sequence is according to
the different physics: starting with the computation of theelectromagnetic fields, going on
to the estimation of the structural response and then the computation of the noise radiation.
Some comprehensive noise computation methods can be found in e.g. [42], [8], [65].

1.2.1 Electromagnetic field analysis in the noise computation process

This section covers a historical review regarding the electromagnetic field computation
methods in conjunction with the noise estimation process, starting from analytical to nu-
merical methods and further to state of the art methods combining the two.

One of the first discussions about the noise phenomena of induction machines is given
by Hildebrand [38]. Similar to [19], he explains that problematic noise phenomena - he
is dealing with induction machines - can be traced back to theair-gap field, i.e. higher
harmonics due to the not ideally sinusoidal flux density distribution in the air-gap. He is
one of the first to introduce the idea of decomposing the air-gap field into field components
with distinct frequencies and spatial ordinal numbers and hence computing distinct force
wave components acting on the stator as well as on the rotor teeth with the Maxwell stress
tensor method. The decomposition is carried out by assigning the field components (and
thus the force components) to their sources: magneto-motive force harmonics (stator, ro-
tor) and permeance harmonics (stator and rotor slots, saturation, eccentricity etc.). Similar
to [38] and [19], Morrill has also presented an approach based on the idea of decomposing
the magnetic flux density in the air-gap into its harmonics [51]. His motivation was to set
up the basis for fundamentals of a sound theory for noise computation in electrical ma-
chines. He started with a few assumptions, e.g. his approachdid not consider permeance
variations and their resulting harmonics, however the ideaof decomposing the field and
thus forces in wave components is the same and is one of the main advantages of ana-
lytical approaches in the noise computation process as it allows the assignment of critical
noise peaks to their sources.

Hildebrand and Morrill, have both listed the force waves with different frequencies and
spatial ordinal numbers related to the azimuthal directionand compared them to experi-
mental data. However, as the focus has lain on the determination of the frequencies and
spatial ordinal numbers, no determination of the magnetic field amplitudes has been men-
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tioned. Furthermore, no approach to account for the structural response has been set up ex-
plicitly. Morrill for example "leaves this to future generations". Hildebrand only discusses
the effects of the force waves on the structure and, contraryto [19] where the emitted noise
is traced back to unbalanced magnetic pull, a resultant force acting on the rotor and on
the stator, Hildebrand also speaks of a "polygonal distortion of the stator", as a source of
noise of induction machines. This means that a force distribution with a distinct "pole-pair
number" is resulting in relevant vibrations and leading to noise.

Some years later these ideas and approaches can also be foundin one of the first com-
prehensive analytical procedures to determine the noise behaviour of induction machines
presented in the work [42] by Jordan. In his methodology, he has defined categories,
similar to [38], of the most relevant field harmonics and has set up computation rules to
determine their amplitudes, spatial ordinal numbers, phases and frequencies. The appro-
priate force harmonics are then computed by using the Maxwell stress tensor method. His
concept, including the structural and acoustic computations which will be explained later,
allows the assignment of a distinct force component to the two magnetic field components
involved and thus to a particular part of the machine and to its physical provenance. Ap-
propriate measures, e.g. modifications of the structure to shift resonances or a different
slot combination to change the excitation frequencies, canhence be investigated already
in the design process. Further comprehensive analytical approaches are presented in [26]
or [8], publications contemporary to [42]. However, they differ in the assumptions for the
structural and acoustical computation as explained in the following sections. Regarding
the computation of the magnetic field based on Jordan, more sophisticated methodologies
are applied e.g. in [56]. A summary of the most important methodologies regarding the
harmonic theory of rotating fields is presented in [68]. Techniques for the computation of
different magnetic field components due to permeance variations like slotting, saturation,
eccentricity are included as well as for those due to magneto-motive force waves including
the consideration of the armature reaction.

Investigations regarding the force wave components resulting from magnetic fields com-
puted with more sophisticated analytical approaches considering saturation and armature
reaction, and a comparison with experimental vibration data, i.e. their spectral content, are
shown in [82]. These analyses have been carried out for a squirrel cage induction motor
and the measured vibration amplitudes are assigned in a verydetailed manner to the caus-
ing magnetic force components and above all to the measured resonances. The aim has
been to determine the role of the magnetic field harmonics on the forces and thus vibration.
By comparing the computed and measured voltages, an overestimation of the amplitudes
of the slot harmonics could be detected. The amplitudes of the computed saturation side-
band component, however, are smaller than the measured ones. If the machine is loaded,
the magneto-motive-force components in the rotor will increase similarly to the saturation
effects. This leads to larger forces at the slot harmonic frequencies and in the saturation
side-band. The measured vibrations have shown a 10 times larger amplitude of the slot
harmonics compared to no-load operation.

The consideration of force waves for the structural computation is mostly confined to



6 1 Introduction

those with lower spatial ordinal numbers and thus larger wave lengths, because those may
lead to critical bending deformations of the stator yoke, ashas also been stated in the
previously presented investigations [42], [82]. In [97], explicit investigations of force wave
components with different spatial ordinal numbers have been carried out. The focus lies
on the analysis of forces with higher spatial ordinal numbers in the azimuthal direction.
Applying such force waves on the teeth only, sub-harmonics occur, as there are no forces
acting in the slots. Depending on the spatial ordinal numberand the number of the teeth,
those sub-harmonics may have large amplitudes and low spatial ordinal numbers and these
can then again lead to large bending deformations of the stator yoke.

With the progress in numerical techniques, the finite element analysis has become a
common tool in the computational treatment of electromagnetic field problems [20]. The
main advantage of the finite element method is the possibility to set up more detailed mod-
els of electrical machines e.g. regarding the shape of the teeth. This, and the possibility to
consider effects like eddy currents in the rotor bars and saturation, enables a more detailed
evaluation of the magnetic field distribution in the machine. Furthermore, the results for
the higher harmonic field components, especially the amplitudes, can be determined more
accurately than by analytical methods.

Since the assignment of noise peaks to their sources is advantageous for noise computa-
tion and reduction purposes, similar approaches as with analytical methods have recently
been applied to numerical simulations. In [43], the magnetic field in the air gap is obtained
by a two-dimensional transient finite element simulation for the no-load operating point of
an induction machine. The electromagnetic stress acting onthe surface of the stator is then
computed using the Maxwell stress tensor. Thereupon, the obtained stress distribution is
decomposed into its harmonics and spatial ordinal numbers applying a two-dimensional
Fourier analysis: according to time and the azimuthal direction. This method then enables
the assignment of the force wave components to the arising noise peaks.

In [7], the numerically computed electromagnetic stress isalso decomposed into its
harmonics employing a two-dimensional Fourier decomposition and the force spectrum is
compared to measured results of vibrations and noise of a loaded synchronous generator
similar to [82]. The computed force wave components are thenassigned to the measured
vibration and noise peaks, however, without considering the structural response, i.e. the
natural resonances, which may have influence on some noise peaks.

A more sophisticated method to obtain the assignment not only to the force wave com-
ponents but also to the magnetic field components, as a resultof a numerical simulation,
is presented in [80]. By introducing a so-called space vector representation to describe
the magnetic field and force waves by rotating vectors and by applying a two-dimensional
Fourier transformation to the magnetic field, a descriptionof the force wave components
by a convolution pair of magnetic field space vectors is possible. Similar to [42], a cause
and effect relationship is obtained, with higher accuracy of the computed amplitudes.

The electromagnetic field computation carried out in [65], [66] involves machines with
skewing. This approach comprises a comprehensive noise computation approach. The
electromagnetic machine model has been set up in 2D and the results have then been
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applied to a three dimensional model to get the force distribution in the air-gap due to
skewing in axial direction, too, to impress the forces on a three-dimensional structural
finite element modelling.

However, such three-dimensional computations can be very time consuming, although
computational resources increase from year to year. One possibility involving less com-
putation time is to use a multi-slice model (see [24] and [57]) to determine the influence
of the skewing on the magnetic field distribution in axial direction. This means, 2D finite
element models each representing a slice of the machine at distinct axial positions are set
up. For each slice the rotor has to be positioned according tothe skewing angle and the
currents in the rotor bars are coupled via an electric circuit model. This method requires
less computational effort than three-dimensional simulations and provides a good means
to determine the axial variation of the magnetic flux due to the skewing, which is of impor-
tance as the forces then also vary in axial direction and affect the structural vibrations. End
effects and fluxes in axial direction cannot be taken into account with this model but these
are negligible for noise computation purposes. Investigations on end-winding leakage and
axial flux confirming this assumption are presented for example in [48].

The above numerical approaches belong to the state of the artcomputational techniques.
However, analytical methods still play an important role inthe noise computation process,
as fast computations are possible. Their disadvantage is that they are not capable of predict-
ing magnetic field amplitudes accurately. In [107], for example, the analytic determination
of the magnetic field distribution in a brushless permanent magnet synchronous machine
is improved by validating the results with numerical simulations. Moreover, in the design
process of electrical machines, parameter studies have to be carried out to get the optimal
construction. For this purpose, it is important that the problematic force components can
be assigned to their sources and this has to be achieved in a reasonable time. Therefore,
fast computational methods are required. In a recent work [46], the characterization and
reduction of noise due to pulse width modulation (PWM) supply is carried out by analyti-
cal means and the switching frequency has been set so that theaudible noise has decreased
by 5dB. Another recent example is shown in [14]. There, the influence of the saturation on
the magnetic noise is investigated by analytical means and by changing the number of rotor
slots, the audible noise is reduced up to 15dB. Summing up, both analytical and numerical
methods have their advantages in the noise computation process if applied properly, i.e.
combinations of the two can lead to a considerable increase in efficiency.

1.2.2 Structural investigations

The early noise analyses of [38] and [19] are confined to the computation of the force wave
components resulting from the magnetic fields. The design rules for slot configurations,
skewing, etc. that have been set up to avoid critical forces do not consider the structural
behaviour, i.e. the natural resonances of the stator, therefore these design rules are not
applicable to an arbitrary machine design.

The structural modelling is probably the most problematic issue in the noise computa-
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tion process. The complex assembly of an electrical machinewith the stator as the crucial
part directly exposed to the electromagnetic force requires enormous efforts in setting up
appropriate models to determine the vibrational behaviourthat leads to acoustic noise gen-
eration.

The following section lists the findings related to experimental investigations of the
structural behaviour of the machine as well as analytical and numerical approaches to
determine the structural responses.

As the stator is the part where the forces originating from the electromagnetic field act
on, its modelling has been an important issue from the beginning of the noise investiga-
tions.

One of the first analytical models set up for the computation of the deformation ampli-
tude on the back of the stator core stack has been set up by [42]. The stator has been con-
sidered as an infinitely long cylinder and the deformation inradial direction is determined
according to force wave amplitude, frequency and wave number in azimuthal direction.
The teeth of the stator are considered as additional mass distributed on the yoke. Such an
approach is also possible when considering the windings, which may have significant influ-
ence on the structural behaviour. However, besides the confinement to a two-dimensional
model, the housing and its coupling to the stator is not takeninto account, which is also
the case for a similar approach presented in [8].

Erdelyi criticizes the two-dimensional approaches and simplifications made by Jordan
[42] and Alger [8]. He claims that there is more than one natural frequency in each mode
of the stator core stack when mounted in the frame of the induction machine. Moreover,
he maintains that the influence of the housing cannot be neglected, as it is the major part
that radiates sound. In his work [26] he presents a comprehensive approach to determine
the noise of polyphase induction motors of medium size, where the stator is mounted via
ribs on the outer frame. He sets up an analytical model with the outer frame and the stator
considered as cylindrical shells and connected via the ribs. The results of this investigation
show that there exist four eigenfrequencies for each mode. The results proved to be good
compared with measurements, however the presented generalapproach needs to be applied
separately for different specific designs.

In [85], a frequency equation to determine not only the radial deformation but also
torsional and axial vibration has been derived for stators encased tightly in the housing.
In this computational approach, the displacements are assumed to be small and the stator
core stack is regarded as a homogeneous and isotropic body. The windings and teeth are
only considered as additional masses and their stiffening effect has been neglected. The
forces obtained from electromagnetic field computations are applied to the structure as
wave components with a distinct frequency, wave number and amplitude. The authors do
not confine their model to describe only the two-dimensionalvibration behaviour. Their
focus also lies on the computation of deformations in axial direction. They stress the fact
that, especially for long stators, the flexural bending cannot be neglected as, particularly for
skewed machines, the forces acting on the machine vary in axial direction and thus cause
axial bending of the stator. Several conclusions can be derived from their computational
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results: first of all, the deformations in the different directions are coupled. This means
that a radial force distribution does not necessarily lead to a purely radial deformation.
The second point is that there exist several eigenfrequencies for a distinct modal pattern.
These higher resonances may lie in the problematic frequency range - where the harmonics
of the forces occur - especially in larger machines. The investigations of the influence of
the frame have yielded that it affects the higher resonancesand, moreover, the flexural
vibrations.

In [84], the previously introduced approach is validated with experimental results. The
natural resonances are measured and compared with the computational results. The com-
puted and measured results for the eigenfrequencies of the different modes match very
well, however, considering the teeth and windings as additional masses is not sufficient.
Therefore, the approach has been supplemented by the use of Frohne’s factors [29] con-
sidering the teeth as cantilever beams and a much better match has been achieved. This
again implies that the teeth and windings influence the stiffness of the system.

As the determination of the eigenfrequencies of the stator is a crucial issue, detailed ex-
perimental investigations regarding the influence of teeth, winding, frame and lamination
on the eigenfrequencies as well as on the amplitudes of vibration have been carried out in
[35]. It is shown that the consideration of the windings as additional masses is not suffi-
cient. Their contribution to the stiffness of the stator is large especially for higher modes.
Teeth and winding combined act like an additional mass, whereas the frame and the lam-
ination have only slight influence on the resonance frequencies. Regarding the vibration
amplitudes, only the teeth lead to an increase. A decrease ofthe amplitudes is detected
when considering winding, lamination and frame. The influence of the material damping
has been investigated by analysing the steepness of the resonance peaks in the frequency
response spectrum. It is shown that only the lamination causes damping, which can be
very high especially for lower order modes.

Similar results have been delivered by [96]. Additionally,the influence of wedges, tem-
perature and clamping pressure has been analysed. The latter only leads to a slight increase
of the eigenfrequencies. The wedges, on the contrary, lead to a much more significant in-
crease especially for higher modes. An increase of the temperature softens the structure
and thus decreases the eigenfrequencies, which explains the different noise of "cold" and
"warm" machines. The numerical computations involve an appropriate definition of the
material parameters especially for the wedges and insulation of the windings. The results
match very well with measurements.

Due to the obvious influence of winding and teeth on the stiffness of the structure a
computational model of [85] incorporating the effect of teeth and windings has been in-
troduced in [88], by Verma and Girgis. This is an extension toinvestigations of the same
authors given in [36], [86] and [87], where the method is compared to solid thick models
(no lamination). The purpose was to validate the modified method on short [71] and long
stator models [106]. The examination of the influence of the length of the stator core stack
on the eigenfrequencies showed no effect on the purely radial extensional modes. For long
stators, variations of the radial vibrations in axial direction have been detected which con-
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tribute significantly to the vibration behaviour. The analysis of an impregnated stator has
shown an increase of the stiffness and a decrease of the damping of the winding. The reso-
nances in the measured frequency response occur much sharper than without impregnation
and the amplitudes are much larger. These effects have also been detected in more recent
investigations regarding the influence of windings, frame and impregnation in [72].

Regarding the damping behaviour, analyses have shown that the laminations and wind-
ings have an influence on the damping of the structural system. An investigation to deter-
mine the amount of damping occurring in the structural vibration has been carried out in
[83]. Distributed electro-magnetic forces are applied to the stator core with different dom-
inant spatial ordinal numbers. The determined damping ratios [69] lie between 1% and 5%
and are not proportional to the frequency, i.e. for different spatial ordinal numbers of the
force waves a different damping occurs. Furthermore, the investigations have shown that
all resonances are excited irrespectively of the force wavenumber. However, if the spatial
ordinal number of the force is the same as the mode number at the resonance frequency,
the vibrations are more critical.

The advantages and disadvantages of analytical methods compared to numerical tech-
niques are similar to those in the electromagnetic field computation. Analytical approaches
enable fast computations which are especially important inthe design process and for pa-
rameter studies. With the finite element method, the complexstructure of an electrical
machine can be modelled more appropriately as more parts (stator, rotor and housing) can
be considered. Their influence on the structural response can then be determined with nu-
merical simulations either in the time-domain or in the frequency domain. However, as
transients can be neglected and are seldom of interest for noise computation purposes, the
evaluation of the structural deformation is usually performed in the frequency domain and
the steady state solution is obtained. Transient solutionsof previous electromagnetic field
and force computations therefore also have to be transformed in the frequency domain.
The natural resonances and eigenvectors are usually computed via a modal analysis for
undamped structural systems. The visualized computed modes can give valuable informa-
tion about the structural response expected.

A modal approach has been used to investigate the influence ofwindings and impregna-
tion on the natural frequencies in [12] by applying the finiteelement method to different
stator core stack models of a synchronous machine. The numerical computation results
have shown that the influence of the impregnation on the eigenfrequency is enormous, i.e.
high stiffening effect has been shown. However these results have not been verified with
experimental investigations. A similar and more recent examination has been carried out
in [40] where the influence of the end-windings and the frame has also been investigated
in a finite element analysis. The results of the eigenfrequencies match the measured ones
very well.

In [66], examinations of the stator to housing couplings have been determined by com-
puting the structural response using numerical techniquesand analytical means based on
[42]. First of all, it is shown that the deformation amplitudes in radial direction of the 2D
analytical and 3D numerical simulations agree very well. Furthermore, the investigation
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of the coupling has shown that aliasing of the force waves occurs according to the number
of springs coupling the stator and the frame. Models with three and six springs and one
with a shrinked stator are compared; the model with six springs yields the best results.

An investigation that compared the three-dimensional finite element modelling to exper-
imental results has been carried out in [92]. This analysis delivers important conclusions
for further 3D vibration analyses using the finite element method, like considering the
windings and teeth as a uniformly distributed mass results in sufficient accuracy. Further-
more, it is shown that the influence of the end-shields and thesupport of the machine is not
negligible either, because new vibration modes occur. Actually, all parts of the machine
contribute to the vibrations and should be modelled. Regarding the lamination it is stated
that an orthotropic material model is absolutely necessary. The investigations have shown
that a Young’s modulus in axial direction should be set to 1%−2% of that in circumfer-
ential direction to obtain proper results for the vibration. This has also been shown in an
earlier investigation in [31].

In [31], laminated stacks have been investigated regardingtheir stiffness behaviour in
axial direction. It has been shown that the Young’s modulus and the shear moduli in this
direction decrease significantly depending on the clampingpressure. Furthermore, the
larger the clamping pressure, the lower is the damping.

Further examinations of the lamination have been carried out in [95] for different mod-
els with different number of laminates and different clamping pressures. The main result
of this work is that the magnitude of the frequency response functions is lower than for the
corresponding solid model. This is the case especially for modes with a characteristic in
axial direction. These results are especially relevant forthree-dimensional finite element
simulations, since considering the core stack as solid steel brings poor results. Further-
more, the analysis of the occurring mode shapes have shown that the pure radial modes
[94] are independent of the axial dimension, clamping pressure or number of laminates.
The damping has not been investigated in this work. However the results shown for the
frequency responses indicated the same behaviour as in the previous works.

The main challenge in the finite element simulations is therefore the adjustment of the
material properties, especially of the laminated core stacks. An efficient way to setting
these material properties is presented in [77]. There, experimental modal analyses have
been carried out on a stator core stack after each fabrication step. Additionally, a finite
element model has been set up and a corresponding homogenized equivalent material pa-
rameter set is determined by fitting the response of the simulation model to the measured
one. The adjustment works well, as test cases have shown, too. However, the drawback
of this approach is that the adjusted material parameter setis only valid for the particular
model.

The determination of the structural response is typically carried out in the frequency do-
main as mentioned previously. Due to the complex structuralmodelling, the computational
effort can be very demanding, requiring an enormous amount of memory and resulting in
long computation times. To reduce computation time and memory demand, model reduc-
tion techniques like for example a modal decomposition can be carried out [28],[9] on the
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one hand. Another possibility to decrease computational efforts is using the superposition
principle valid for linear systems like those in structuralvibration problems considered
here. The structural response is computed for the relevant force wave components only,
and the overall deformation can then be computed by scaling and superimposing these
results. This idea has been adopted e.g. in [17] and validated for an interior permanent
magnet synchronous machine. An extended investigation canbe found in [16] which fur-
thermore shows that azimuthal forces also cause a significant contribution to the vibra-
tions. A similar approach is presented in [63] where this idea is applied to a rapid sound
power calculation of electrical machines. However this examination focuses on squared
responses, as the sound power is proportional to the square of the sound pressure, and thus
has limited validity.

1.2.3 Acoustical investigations

The last step, after estimating the vibrations especially on the surface of the machine, is
to determine the radiated noise caused by these vibrations.With analytical means the
emitted sound pressure is computed by simplifying the structure to a substitute radiator.
In [42], the machine has been considered as a spherical radiator with the same radius as
the outer radius of the machine. The use of a more sophisticated cylindrical radiator has
been proposed in [8], as the shape of an electrical machine typically resembles a cylinder.
These approaches are still common in analytical computations, see e.g. [28], especially
since they allow the computation of the effect of each vibration mode separately.

Similarly to electromagnetics and structural mechanics, the finite element method is a
possible numerical means in acoustics, too [39]. However, an alternative and more com-
mon approach is the boundary element method [21], where onlythe surface and not the
whole surrounding air has to be discretised, which is advantageous especially for higher
frequencies, as the number of necessary elements for the finite element method increases
enormously. The previously computed vibrations, i.e. the normal component of the surface
velocity, is applied as boundary condition on the surface and, after solving the boundary
integral equations, the sound pressure can be evaluated at distinct field points. This method
is meanwhile commonly used in the noise computation processfor electrical machines, see
e.g. [65], [64], [78] or [30].

The experimental investigations comprise measurements ofthe sound pressure or the
sound power at distinct points surrounding the machine. Typically, the spectral content is
of importance for electrical machines. For different rotational speeds, the spectra have to
be evaluated separately. In [91] the acoustic behaviour of an induction machine (the struc-
tural investigation has been presented in [92]) supplied with different inverters is mea-
sured for different rotational speeds. The aerodynamic andmechanical noise have been
determined in a previous step to separate them from the totally emitted sound power and
thus estimate the amount of the electromagnetic noise. These examinations have shown
that the switching harmonics affect the noise spectrum verymuch, especially for lower
speeds, where the electromagnetic noise is dominating. Furthermore it is shown that spe-
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cific speeds excite structural resonances, which results inan increase of the total emitted
sound power. The influence of the load is larger at lower speeds. Corresponding nu-
merical examinations using the boundary element method arepresented in [93]. A com-
parison with the measured sound power levels yields discrepancies, which however are
accumulated errors of the electromagnetic and structural computations, due to neglecting
for example the axial variation of the forces or the modelling the rotor, which influence
especially the low frequency results.

A further very detailed experimental investigation is carried out in [89]. Besides vi-
bration measurements on the stator to identify the structural behaviour, the noise has been
measured at different positions around the investigated squirrel cage induction machine for
different loads. The increase of the load on the machine leads to an increase in vibrations,
however not in a linear way. The acoustic measurements have also shown an increase of
the noise level, but not equally for all frequencies. Furthermore, directivity measurements
in an anechoic room have been carried out to examine the direction of noise radiation. The
results have shown different characteristics at differentfrequencies showing the influence
of the structural behaviour determined by its eigenmodes onthe noise emission.

A very recent work [76] presents a more sophisticated methodto measure the emitted
noise. The recording of the sound pressure has been carried out with an acoustic camera.
This method enables the assignment of large sound pressure peaks to distinct locations and
parts of the machine. The designated part was a cooling duct having an eigenfrequency
at the excitation frequency. Combined with numerical structural computations this part
has been modified by shifting the resonance frequencies leading to a decrease of emitted
noise.

1.3 Contribution of this work

The computational techniques for determining the noise behaviour of electrical machines
comprise analytical and numerical methods. The need for fast computation approaches
accompanies the use of analytical means, e.g. in the design process. If a variation of
parameters has to be carried out for optimization purposes,analytical methods would be
appropriate tools, too. On the contrary, for investigations involving geometrical details or
non-homogeneous materials of electrical machines numerical approaches suit better. So
depending on the field of interest both techniques are still used in the noise computation
process.

Usually, for the use of analytical methods, simpler models are considered, as for exam-
ple the two-dimensional ring model for the vibration computation. The investigation of
the validity and the limitations of a comprehensive analytical approach is one topic in this
thesis. The analytical results are compared to data obtained by numerical computations as
well as by vibration and noise measurements. The results arediscussed in detail to outline
the restrictions. This analyses have been presented at [100] and published in [101].

One limitation is for example disregarding the axial variations of the forces in the air-
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gap. In the literature it is stated that "the vibro-acousticresponse of a structure very much
depends on the distribution of the excitation force" and "the electromagnetic force should
be modelled three-dimensionally". Hence a novel method, presented at [102] and pub-
lished in [105], that uses the results of a multi-slice simulation and then computes the
rotating force wave components with axial variation has been established.

Furthermore, a phenomenon regarding higher order force waves is discussed. The de-
composition of the air-gap field into its wave components andthe following force com-
putation using the Maxwell stress tensor method results in force wave components whose
higher ordinal numbers are neglected in the vibration computation. This is valid, as the
most critical bending occurs for small ordinal numbers. However, with appropriate slot-
ting configurations, force waves with high spatial ordinal numbers and large amplitudes
can occur. Moreover, these components only act on the teeth.Therefore the question
arises what happens to these force waves when applied to the teeth. The contribution of
these components to the vibration might be of interest. Thisphenomenon has been ex-
amined in the literature but has been disregarded in many publications until now. The
investigations are carried out by structural numerical simulations on a three-dimensional
model of an induction machine and have been presented at [103] and will be published in
[104].

The different forces acting on the structure lead to different vibrations of an electrical
machine. Therefore, the structural behaviour, i.e. the different vibrational behaviour of
stator and surface is analysed in a further step. The correlation of the structural vibrations
and the noise radiation is investigated. The focus thereby lies on the investigation of the
vibration modes that occur, especially those on the housing, and how they contribute to
the acoustic behaviour. In the scope of these analyses, which have been presented at [98]
and published in [99], experimental investigations of different stator core stacks have been
carried out with the aim of validating a homogenized orthotropic material model.

1.4 Outline of the work

In the first chapter the motivation for this work and a literature review of research related to
noise computation of electrical machines is presented along with the state of the art meth-
ods (computational and experimental) regarding electromagnetic, structural and acoustic
phenomena of electrical machines. Following that, the contributions of this work in the
field of noise computation especially for induction machines are presented.

The next chapter presents the theoretical background of electromagnetic field, struc-
tural vibration and acoustic computations along with the fundamental equations for each.
Chapter 3 then deals with the noise computation of electrical machines and presents a com-
prehensive analytic noise computation method. The focus lies on induction machines. The
method first of all comprises the computation of the magneticfield harmonics occurring
in the air gap. The causes for the different field harmonics and the resulting mechanical
stresses are discussed in detail. After that, the structural vibration computation is presented
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along with the determination of the noise radiation of an electrical machine assuming a
cylindrical shape.

In chapter 4 the numerical means used for each physical phenomenon that has to be dealt
with is presented. First of all, some principles of the finiteelement method are explained
shortly. Following that, the electromagnetic field computation in electrical machines using
the finite element method is presented. For structural vibration problems the finite element
method can be applied, too, which is shown in the next section. Finally, the boundary
element method is introduced for the computation of the noise radiation of vibrating struc-
tures.

Chapters 5 to 8 then deal with the topics presented in section1.3. In chapter 5, the vali-
dation of the noise computation approach presented in chapter 3 is carried out. The analytic
computation results are compared to numerical simulation results as well as experimental
ones.

In chapter 6, a newly developed method to determine the variation of the magnetic field
in the air gap using multi-slice models is presented. Computations have been performed
for models with four and five slices for the nominal operatingpoint of a squirrel cage
induction machine and the reconstruction method is appliedto both of them. In a last step,
simulation results of a multi-slice model are compared withthat of a three-dimensional
model for the short circuit operating point.

Chapter 7 deals with the investigation of the structural behaviour of an electrical machine
due to different stress wave components acting on it. Therefore, different stress wave
components are defined and then applied to a three-dimensional structural finite element
model. The outcome is discussed in detail.

The following chapter 8 presents a comprehensive vibrationand acoustic noise compu-
tation of an induction machine using the numerical means explained in chapter 4. Special
focus thereby lies on the investigation of the structural vibration behaviour and how it
affects the noise radiation.

At last, chapter 9 presents a summary of the obtained results. The outcome along with
the problems that have occurred are discussed and some aspects interesting for future work
then conclude this work.
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2.1 Noise generation in electrical machines
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Figure 2.1: Causes of noise radiated by electrical machines

As mentioned in the introduction, the noise generation of electrical machines can be
attributed to three main causes [29],[90],[75]. A schematic overview is depicted in Fig.
2.1. The aerodynamic causes comprise the pressure fluctuations due to the turbulences
of the fluid flow of the cooling media. These pressure fluctuations are typically emitted
directly as airborne noise (broadband noise). The mechanical causes include for example
the bearings, the rotor imbalance or the brushes. The latterone, contrary to the first two,
contributes directly to the noise generation. Owing to the low masses of bearings, they
hardly produce any vibrations.

The focus of this work lies on the third cause of noise generation, i.e. electromagnetic
phenomena. The electromagnetic fields especially in the airgap of electrical machines re-
sult in forces with a distinct spectral content causing structural vibrations. The magnitude
of the vibrations depends, on the one hand, on the amplitudesof the forces, as is obvious,
and on the other hand on the frequencies as they must not coincide with structural reso-
nances. The surface oscillations then cause pressure fluctuations and thus a further energy
conversion from vibrational to sound energy takes place. The spectral content of the emit-
ted noise contains, on the one hand, the broad band noise of aerodynamic origin, and on
the other hand noise peaks due to the electromagnetic forces. To account for humans’ non-
linear perception of noise, the noise spectrum has to be rated with appropriate weighting
curves.

In the following, the fundamentals to determine the governing quantities in each of the
three domains - electromagnetics, mechanics and acoustics- are presented. For the elec-
tromagnetic domain, first of all, the governing equations tocompute electromagnetic phe-
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nomena, i.e. Maxwell’s equations, are introduced. Maxwell’s equations then are adapted
for low frequency problems. Afterwards the determination of the forces that may arise
from magnetic fields is explained. The fundamentals of mechanical problems comprise,
first of all, the determination of the elastodynamic equations to compute the vibrations of
an elastic body. In a next step coupled vibrations are investigated. A special focus hereby
lies on the determination of the eigenvalues and eigenvectors and their contribution to the
structural behaviour. The derivation of the governing equations for the acoustics concludes
this chapter.

2.2 Electromagnetics

The phenomena of electromagnetic fields can be described with Maxwell’s equations ([70],
pp. 87-89). This is a set of equations that comprises Ampere’s law, Faraday’s law of
induction and Gauss’ laws given in the differential form as follows:

∇∇∇×H = J+
∂D
∂ t

, (2.1)

∇∇∇×E =−∂B
∂ t

, (2.2)

∇∇∇ ·B = 0, (2.3)

∇∇∇ ·D = ρ . (2.4)

In (2.1) Ampere’s law extended by Maxwell’s term∂D
∂ t for time dependent conditions is

given. A circulating magnetic field intensityH thereby results from a current densityJ and
the current density obtained as the time derivative of the displacementD. Equation (2.2)
denotes Faraday’s law meaning that the variation of a magnetic field B with time results in
a circulating electric fieldE.

Equations (2.3) and (2.4) denote Gauss’ laws for magnetic and electric fields. An electric
displacementD produced by electric charges (charge densityρ) diverges from positive
charges and converges to negative charges. The divergence of the magnetic flux densityB
at any point is zero. The total (net) magnetic flux through a closed surface is thereby zero.

The given relationships are of general validity and independent from any material prop-
erties. However, the vectors can be related among each otherdepending on the material
properties as follows:

D = εE, B = µH, J = γ (E+Ee) . (2.5)

The parametersε andµ are the electric permittivity and the magnetic permeability denot-
ing the material’s response to an electric and magnetic field, respectively. Usuallyε = εrε0

andµ = µr µ0 is introduced, whereε0 = 8.8543·10−12 F/m andµ0 = 4π ·10−7 H/m are
the permittivity and permeability in vacuum andεr andµr denote dimensionless constants
of different materials related to vacuum.γ is the conductivity of a material andEe denotes
an imposed electric field.
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2.2.1 Quasi-static fields

For applications like electrical machines, Maxwell’s equations can be simplified to the
quasi-static limit by neglecting the displacement currentdensity in (2.1), since

|J| ≫
∣∣∣∣
∂D
∂ t

∣∣∣∣ (2.6)

for the occurring frequencies, e.g. atf = 20 kHz

|J|
| j2π f D| ≈ 8 ·1012. (2.7)

Two sets of equations can now be defined, one for the non-conducting regionΩn and one
for the conducting regionΩc. In Ωc the current densityJ is unknown and an eddy current
field is present. Therefore, Faraday’s law has to be considered. InΩn a current densityJ0
is given1. The following set of differential equations then is obtained:

∇∇∇×H = J in Ωc (2.8)

∇∇∇×E =−∂B
∂ t

in Ωc (2.9)

∇∇∇×H = J0 in Ωn (2.10)

∇∇∇ ·B = 0 in Ωc,Ωn (2.11)

J = γE in Ωc (2.12)

The outer boundaries ofΩc andΩn shall be denoted byΓc andΓn and homogeneous
boundary conditions shall be assumed. IfΓc andΓn are symmetry planes or artificial far
boundaries we have the following boundary conditions:

H ×n = 0 or E×n = 0 onΓc (2.13)

H ×n = 0 or B ·n = 0 onΓn (2.14)

wheren is the outer normal unit vector. On the symmetry plane eitherthe tangential com-
ponents ofH or E is zero. On the far boundary of the non-conducting domainΩn either the
normal component ofB or the tangential component ofH is zero. On the interfaceΓnc of
the two regionsΩn andΩc H×n andB ·n are continuous. Applying these boundary condi-
tions to the quasi-static equation system (2.8) to (2.12) yields a unique solution. However,
analytical approaches only exist for simple geometries andproblem definitions. For more
complicated models numerical means are necessary to solve quasi-static problems, which
will be introduced in section 4.3.

1The skin effect problem is neglected here. The current is assumed to flow in coils with cross sections
smaller than the penetration depth.
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2.3 Electromagnetic forces

In the scope of this work the forcesF = qE on electrical chargesq provoked by an electric
field E shall be neglected. Only those forces due to a magnetic field shall be investigated.
The derivation shown here is based on the approach presentedin [18].

A magnetic flux densityB(r) and a magnetic field intensityH(r) shall be defined at
a positionr . Assuming linear magnetic material properties, the magnetic energy density
wm(r ,B(r)) is then defined as follows:

wm(r ,B(r)) =

B∫

0

H·dB =
1
2

H ·B. (2.15)

Introducing a uniform vector fieldv, the following identity can be obtained [18]:

∇∇∇ · (B(H ·v)−wmv)≡ v · (∇∇∇×H ×B+H∇∇∇ ·B−∇∇∇wm) . (2.16)

A domainΩ with its bounding surfaceΓ and the outward normaln shall now be defined.
Inserting∇∇∇×H = J and∇∇∇ ·B = 0 into (2.16), usingB(H ·v) = (B⊗H)v and droppingv
results in:

∫

Ω

∇∇∇ · (B⊗H −wmI)dΩ =

∫

Ω

(J×B−∇∇∇wm)dΩ = F, (2.17)

whereI is the unit tensor. The right-hand side is the total forceF acting on a volumeΩ and
it contains a volume force density with two terms. The first one stands for the Lorentz-
force, the force on a given current density in a magnetic field. The second term is the
force density due to the variation of the energy density. Thegradient is especially large on
the surface of highly permeable materials surrounded by air. This is the case in electrical
machines where the magnetic field passes the air gap from the stator to the rotor.

If the permeabiltiyµ depends on the strainε of the material, which is the definition for
magnetostriction according to [18], a further energy termΨ(ε,B) arises. This results in
a strongly coupled problem of the magnetic and elastic energy. However, for the scope
of this work the magnetostrictive effects can be neglected.As has also been shown in
[11] those forces do not contribute significantly to the vibration behaviour of electrical
machines except for machines with large stators and thin yokes.

The volume force density on the right hand side of (2.17) motivates the introduction of
a stress tensorT for the tensor on the left hand side. This is also referred to as the Maxwell
stress tensor. Using (2.15):

T = B⊗H − 1
2
(B ·H) I . (2.18)
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With Gauss’ law, the total forceF arising from a magnetic field and acting on a volume
can now be determined via the Maxwell tensorT:

F =

∫

Ω

∇∇∇ ·TdΩ =

∮

Γ

TndΓ. (2.19)

The expression of the Maxwell tensor in (2.18) can be writtenas:

T =




(BxHx− 1
2B ·H) BxHy BxHz

ByHx (ByHy− 1
2B ·H) ByHz

BzHx BzHy (BzHz− 1
2B ·H)

.


 (2.20)

Using the identity(B⊗H −wmI) · n = (n ·B)H −wmn, a surface force densityσσσm can
hence be defined as:

σσσm = Tn = (n ·B)H − 1
2
(B ·H)n. (2.21)

With this relationship, the force acting on an arbitrary surface element dΓ can therefore be
determined as dF = σσσmdΓ. As outlayed in [18], the Maxwell tensor is valid for problems
where no magnetostrictive effects are present. The location of the surfaceΓ is arbitrary and
can also cut through magnetized matter. Furthermore, non-linearB-H curves are allowed.
The application of the Maxwell stress tensor to electrical machines is presented in section
3.1.4.

2.4 Structural mechanics

2.4.1 Equation of elastodynamic equilibrium

The structural vibration investigation of a deformable body implies the set up of an ap-
propriate model based on the theory of elasticity and dynamical principles. Typically, the
body is assumed to be a continuum, i.e. a continuous entity with homogeneous material
properties. First the kinematics i.e. the displacements ofthe material points comprising the
body are investigated. Then the constitutive laws for linear elastic problems are introduced
and the equation of an elasto-dynamic body are set up. The following derivations can also
be found in [73], [67] and [59].

Kinematics of a continuum A point P of a deformable bodyB shall be defined in the
coordinate systemR with the basis(Re1,Re2,Re3) with the initial position vectorr at time
t = t0 and the actual position vectorR at timet, i.e. by a Lagrange representation ([67],
pp. 19). The displacement vectorsof the deformed volume element dΩ from t0 to t is then
defined as follows:

s(r , t) = R(r , t)− r . (2.22)
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The displacement vectors contains, on the one hand, the information about the change of
the position and orientation compared tot0, which describes the rigid body movementsR

of B and, on the other hand, the information about the change of its shape dΩ|t0 → dΩ|t ,
i.e. the deformationsD and, therefore,s= sD+sR.

Let (Be1,Be2,Be3) be defined as the basis of the deformed bodyB with coordinates
x = (x1,x2,x3) and(Re1,Re2,Re3) with coordinatesξξξ = (ξ1,ξ2,ξ3)) shall move with the
body (no rigid body movement terms for the displacement).

To determine the change of shape of the bodyB, the difference of the squares of the
infinitesimal arc elements dξξξ for the actual configuration and dx for the initial one is taken:

dS2 = dξξξ ·dξξξ , ds= dx ·dx, (2.23)

dS2−ds2

2
= dx ·G ·dx (2.24)

whereG denotes the Green-Lagrange strain tensor and is determinedin the following way:

Gi j =
1
2

(
∂ξi

∂x j
+

∂ξ j

∂xi
+

3

∑
m=1

∂ξm

∂xi

∂ξm

∂x j

)
i, j, . . .1,2,3. (2.25)

Linear elastic theory For most practical applications simplifications regardingthe struc-
tural behaviour, i.e. a linearisation of the previously presented kinematics, can be made.
Therefore, the partial derivatives in (2.25) are assumed tobe very small and the non-linear
terms ofG are neglected. The componentsεi j with i, j = 1,2,3 of the Green-Lagrange
strain tensor can now be obtained in the following way

εi j =
1
2

(
∂ξi

∂x j
+

∂ξ j

∂xi

)
, i, j = 1,2,3. (2.26)

Stress-strain relationship - Hooke’s law The stress and strain state in a deformable
body B is coupled via the material properties of the medium. Assuming a linear stress-
strain relationship according to Hooke’s law results in:

σi j = λ∇∇∇ ·ξξξδi j +2Gεi j i, j = 1,2,3 (2.27)

whereλ is Lamé’s first parameter andδi j denotes the Kronecker symbol. The material
constants definingλ are the Young’s modulusE and the Poisson ratioν, see (2.28). Those
constants also define the parameterG, also known as the shear modulus as it relates the
shear strains and stresses:

λ =
Eν

(1+ν)(1−2ν)
G=

E
2(1+ν)

(2.28)
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Equation of elastodynamic equilibrium The presented relationships for an elastic body
result in 15 unknowns and therefore 15 equations are to be setup in an elastodynamic prob-
lem. The strain tensor relates the displacements and the strains and results in six equations
and further six are obtained with Hooke’s Law relating the stresses and the strains. The
last three equations are obtained with the basic law of continuum mechanics.

Newton’s second law states that the change of the momentum with time equals the re-
sulting (net) force acting on the bodyB. The total accelerationa is determined with respect
to an inertial system as the second total time derivative of the displacement vectors:

a=
d2s
dt2

. (2.29)

With the local displacement vectorξξξ (for rigid body movementξξξ = [0,0,0]) a local accel-
erationaL can be defined as the second local time derivative ofξξξ :

aL =
∂ 2ξξξ
∂ t2 . (2.30)

Let us assume that no rigid body movement occurs and, becauseof the assumption of small
displacements, the inertia forces are determined by the local accelerationaL only. Consider
now an infinitesimal volume element with densityρ and a volume forcefB acting on it,
then, according to Cauchy’s law, the following equilibriumwith the inertia forceρaL and
the stressesσi j on the cut surfaces is obtained:

∇∇∇ ·σσσ + fB = ρ
∂ 2ξξξ
∂ t2 (2.31)

whereσσσ is a symmetrical second order tensor containing the stress componentsσi j . For

small values of∂ξi
∂xi

, ∂σii
∂xi

= ∂σii
∂ξi

holds ([59], pp. 175),([22], pp. 28). Therefore, using
Lagrange’s representation in the actual configuration is equivalent to using Euler’s repre-
sentation in the reference coordinate system ([67], pp. 79). Inserting (2.26) and (2.27) the
following relationship can be obtained:

G∆ξξξ +(λ +G)∇∇∇(∇∇∇ ·ξξξ )+ fB = ρaL =
∂ 2ξξξ
∂ t2 (2.32)

This is the general differential equation for elastic oscillatory motions. It is of second
order with respect to space and time with the displacement vector ξξξ as its argument. On
the left hand side two operators appear. This indicates that(2.32) comprises two wave
equations simultaneously. Introducing a scalar and vectorpotential for the divergence-free
and irrotational part ofξξξ (Helmholtz decomposition):

ξξξ =∇∇∇Φ+∇∇∇×ΨΨΨ (2.33)
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allows, for the homogeneous part (fB = 0), the formulation of two wave equations with
different wave numberskα andkβ

d2Φ
dt2

+kα
2∆Φ = 0, (2.34)

d2ΨΨΨ
dt2

+kβ
2∆ΨΨΨ = 0. (2.35)

The solution for the elastodynamic problem can thereby be split into a wave equation for
longitudinal waves (2.34) and one for transversal waves (2.35) ([22], pp.74-88), ([73],
pp.94-96).

2.4.2 n-degree of freedom mechanical system

Consider now a multi body system withn degrees of freedom. With the application of the
Euler-Lagrange equations ([45], pp. 60ff) one obtains the following general equation of
motion for a non-linear multi body system ([69], pp. 188ff):

M(q, t)q̈+k(q, q̇, t) = F(q, q̇, t). (2.36)

In this equationq is an n-dimensional vector of the generalized coordinates.M is the
symmetric[n× n] mass matrix of the system.k is the gyroscopic force vector of the
dimension[n×1] andF is the[n×1] vector of the generalized forces.

Performing a linearisation around a position of equilibrium qS(t) with q(t) = qS(t)+
q(t), the following equation of equilibrium is obtained:

M(t)q̈(t)+P(t)q̇(t)+Q(t)q(t)= F(t). (2.37)

The vectorq denotes the displacements around the position of equilibrium qS. The gy-
roscopic forcesk are now described by the sum of the product ofP(t) with the velocity
vectorq̇ and ofQ(t) with the displacement vectorq. P andQ are[n×n] matrices contain-
ing the information of the gyroscopic effects and the coupling of the bodies. If the matrices
are constant and gyroscopic effects are neglected then the following differential equation
of second order is obtained:

Mq̈+Dq̇+Kq = F(t). (2.38)

In this equationD denotes a symmetric[nxn] matrix called damping matrix andK is also
a symmetric[n×n] matrix and is referred to as stiffness matrix. The first term on the left
hand side determines the kinetic energy of the system and theone with the stiffness matrix
K the potential energy. The damping matrixD determines the dissipation occurring in the
mechanical system and thus leads to a non-conservative system.

The same equation of motion can be derived for an elastodynamic system in (2.32), if
for example the Ritz method is applied to it [33]. A special application of the Ritz method
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realized by the finite element method is presented in the chapter 4.4. The investigated body
is discretized with finite elements consisting of nodes thatcorrespond to mass points. The
connection of the nodes can be imagined as springs with stiffness according to the material
properties.

Solution in frequency domain For structural vibration problems, typically stationary
investigations are of interest, where the external forceF is a harmonic function with a
frequencyΩ and an amplitudêF. If the investigated problem is asymptotically stable ([69],
pp. 205), then the transient oscillations can be neglected,since the homogeneous solution
decays. Only the particular solution remains. Therefore, (2.38) can be transformed in the
frequency domain and the following equation is gained:

(−Ω2M + jΩD+K)q̂ = F̂. (2.39)

This leads to a steady-state problem where the displacementvectorq̂ is determined by

q̂ = (−Ω2M + jΩD+K)−1F̂ (2.40)

Modal transformation Regarding the undamped system only, a so-called modal trans-
formation of the mechanical system can be carried out for quadratic and symmetric system
matricesM andK [32],[33]. To this end, the homogeneous undamped part of equation
(2.38) is considered:

Mq̈+Kq = 0 (2.41)

and the eigenvaluesλi and the eigenvectorsr i are computed. The homogeneous solution
can now be obtained as a linear combination of the eigenvectors with the coefficientszi i =
1,2, ...,n:

q(t) =
n

∑
i=1

r izi(t). (2.42)

The eigenvectorsr i can be arranged in a matrixR, the so-called modal matrix. Further-
more a new displacement vectorz containing the modal coordinateszi can be set up and a
transformation of the modal coordinates to the original coordinates with the modal matrix
R can be carried out:

q(t) = Rz(t). (2.43)

Inserting this relationship into (2.40) with no damping (D = 0) and multiplying with the
transposed modal matrix from the left results in

q̂ = (−Ω2RTMR +RTKR)−1RT F̂ (2.44)
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or, with the following orthogonality properties

RTMR = I RTKR = diag(ω2
i ) (2.45)

one obtains
q̂ =

(
−Ω2I +diag(ω2

i )
)−1

RT F̂. (2.46)

It can be seen in (2.46) that the solution of the displacementvectorx is determined by
two terms. One is the product of the transposed modal matrix with the excitation force
vector. This results in a vector whose entriesi are zero if the force vector̂F is orthogonal
to the eigenvectorsr i . The second term is determined by the inverse of the difference of
the excitation frequencyΩ and the eigenfrequenciesωi . The entries therefore are large
for excitation frequencies near the eigenfrequencies.Theeigenvectors corresponding to
eigenvalues near the excitation frequencies therefore dominate the displacement vectorq̂.

For damped systems, a similar derivation is possible as longas the damping matrix is
constructed accordingly i.e. as a linear combination of themass and stiffness matrices.
Then, the eigenvectors stay the same and are orthogonalizedwith respect to the damping
matrix ([69], pp. 202-204).

2.5 Acoustics

Acoustic media are typically homogeneous, inviscid and irrotational fluids and shall be
defined in a domainΩ. The acoustic fluid with the densityρ shall move with a velocityv.
The law of continuity therefore is as follows ([73], pp. 83ff):

∂ρ
∂ t

+∇∇∇ ·ρv = 0. (2.47)

The pressurep is acting on the acoustic medium and, furthermore, for the sake of gener-
ality, an external volume force vectorf (external source) shall be given. The equation of
motion can now be obtained with Euler’s equation for non-viscous fluids:

ρ
dv
dt

+∇∇∇p= f. (2.48)

For the further derivations, the external sourcesf shall be omitted. For acoustical investi-
gations, only small vibrations in the air are typically of interest. So, the total derivativedv

dt

can be replaced by the partial derivative∂v
∂ t . Furthermore, a linearisation of the densityρ

and the pressurep around the nominal atmospheric valuesρ0 andp0 can be carried out:

ρ = ρ0+ρ , p= p0+ p. (2.49)

Neglecting higher order terms, this results in

∂ρ
∂ t

+ρ0∇∇∇ ·v = 0, (2.50)

ρ0
∂v
∂ t

+∇∇∇p= 0. (2.51)
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The relation of the pressurep and the densityρ can be expressed by the thermodynamic
laws for polytrope behaviour. However, typically adiabatic conditions are assumed for
acoustic investigations which results in a linear relationof the sound pressure and the
density:

∇∇∇p=

(
∂ p
∂ρ

)

0
∇∇∇ρ = c2∇∇∇ρ (2.52)

wherec=
√

κRT is the sound velocity in air.
Multiplying (2.51) with∇ from the left, differentiating (2.50) with respect to timet and

using (2.52) results in the wave equation for acoustic fluidsin the time domain:

∆p(r , t)− 1
c2

∂ 2p
∂ t2 (r , t) = 0 (2.53)

wherer denotes the position of a point inΩ. For stationary conditions, a Fourier transfor-
mation can be performed and the Helmholtz equation is obtained:

∆p̂(r)+k2p̂(r) = 0. (2.54)

wherek= ω
c is the wave number for the angular frequencyω. The solutions for the sound

pressurep and the sound particle velocityv are then determined with:

p(t) = Re(p̂ejωt), v(t) = Re(v̂ejωt). (2.55)

As the pressure is a scalar quantity, these wave equations determine longitudinal waves,
cf. (2.34). LetΓ be the surface enclosingΩ with the unit normal directionn. Normal
components are denoted by the subscriptn. The following Dirichlet boundary conditions
on Γd, Neumann boundary conditions onΓn and mixed boundary conditions onΓr can be
defined:

p̂(r) = p(r), r ∈ Γd (2.56)

v̂n(r) =
j

ρ0ω
∂ p̂(r)

∂n
= vn(r), r ∈ Γn (2.57)

p̂(r) = Z(r)v̂n(r) =
j

ρ0ω
Z(r)

∂ p̂(r)
∂n

, r ∈ Γr (2.58)

wherep(r) andvn(r) denote prescribed functions for the sound pressure and sound particle
velocity on the surface. The normal impedance boundary condition Z(r) relates the sound
pressure to the sound particle velocity on the surface. Thisis often used to account for e.g.
boundary layers of insulation materials. For exterior radiation problems and considering
wave propagation in free space a further boundary condition, the so-called Sommerfeld
boundary condition

lim
|r |→∞

|r |
(

∂ p(r)
∂ r

+ jkp(r)
)
= 0 (2.59)
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has to be satisfied atΓ∞. This means that no reflection of the waves occurs at infinity.Ap-
plying these boundary conditions, a solution of (2.54) can be determined either analytically
by separation of variables or numerically by using FEM or BEM, see section 4.5.
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In the following, the development of a comprehensive analytical method to determine the
noise behaviour of electrical machines is presented. It comprises the determination of the
air gap field and its harmonics. The derived force harmonics are then used as the boundary
condition for the structural model, i.e. an infinitely long cylinder. The obtained surface
oscillations subsequently serve as boundary conditions for the acoustic radiation model.
The derivations presented are based on [42] and [68]. A validation of this method will be
shown in chapter 5.

3.1 Air Gap Field

The electromagnetic causes of acoustic noise in electricalmachines are mainly determined
by the magnetic field in the air gap and its resulting forces onthe stator and rotor teeth.
The determination of the field is complicated as there are several factors, e.g. the configu-
ration of the windings, the shape of the air gap or the material properties, that influence its
behaviour [53].

For analytical investigations, several assumptions are made to get comprehensive for-
mulations for the field computation. First of all, the field isassumed to be homogeneous.
Furthermore, the magnetic field problem is reduced to a planar problem assuming an in-
finitely long machine. The magneto-motive forces in iron areneglected as its permeability
µFe is much larger than in air and thereforeµFe = ∞ is assumed. The integral form of
(2.10) then yields:

Vδ (ϕ, t) = Hr(ϕ, t)δ (ϕ, t) =
1
µ0

Br(ϕ, t)δ (ϕ, t) (3.1)

whereVδ is the magneto-motive force in the air gap,Hr is the radial component of the
magnetic field intensity,Br the radial component of the magnetic flux density,δ the radial
extent of the air gap,µ0 the permeability of air andϕ denotes the azimuthal coordinate in
the air gap.

Introducing an azimuthally distributed, axially directedsurface current densityααα = αez,
the following relation for the magneto-motive force can be obtained:

Vδ = R
∫

ϕ

α(ϕ, t)dϕ +c(t). (3.2)

whereR is the radius of the air gap. The constantc(t) has been discussed in [68] as
the contribution of the homopolar fluxes. However, these unipolar fluxes typically are

29
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negligibly small and therefore are omitted for the further investigations which yields:

Vδ (ϕ, t) = R
∫

ϕ

α(ϕ, t)dϕ (3.3)

Inserting this relation in (3.1), the magnetic flux densityB in the air gap can then be
determined as follows:

Br(ϕ, t) = Λ(ϕ, t)Vδ (ϕ, t) (3.4)

whereΛ is the permeance function. This approach assumes infinitelysmall slot openings.
The slotting effects are considered by a modified air gap function δ ′′. Both the magneto-
motive forceVδ and the permeanceΛ vary with the azimuthal coordinateϕ according to
the winding configuration and the slot configuration, respectively. The idea of analyti-
cal approaches [42], [68] is to represent the variation as a superposition of single wave
components determined by a two dimensional Fourier decomposition.

3.1.1 Permeance harmonics

The variation of the permeance can be determined by a constant term Λ0 and a periodic
termΛλ :

Λ(ϕ, t) =
µ0

δ (ϕ, t)
= Λ0+Λλ (ϕ, t). (3.5)

The periodic termΛλ (ϕ, t) shall now be determined as a superposition of wave compo-
nents with an amplitudêΛλ , a spatial ordinal numberλ , a rotational speedωλ and a phase
angleψλ . Furthermore the variations can be attributed to several phenomena: the varia-
tion of stator and rotor slotting (subscript SL), the permeance variation due to saturation
(subscript Sa) and the variation due to eccentricities (subscript E):

Λ(ϕ, t) = ΛλSL
+ΛλSa

+ΛλE
= Λ0+∑

λ
Λ̂λ cos(λϕ −2π fλ t +ψλ ). (3.6)

The variation of the permeance due to the stator and rotor slotting results in a superpo-
sition of permeance wave componentsΛλSL

ΛλSL
= ∑

λSL

Λ̂λSL
cos(λSLϕ −2π fλSL

t +ψλSL
), λSL = g1NS±g2NR, fλSL

= f (1−s)
g2NR

p
,

(3.7)

g1 = 0,±1,±2,±3, . . . g2 = 0,±1,±2,±3, . . .

with a spatial ordinal numberλSL, which is a linear combination of the number of stator
slots NS and rotor slotsNR. In the following the subscriptsS and R denote stator and
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rotor components, respectively. The coefficients are givenwith the countersg1 andg2.
For g2 = 0 only the stator slotting determines the permeance variations and the rotor is
considered as smooth. The opposite is the case forg1 = 0. Additionally, for the permeance
variations of the rotor slots the rotor rotation has to be considered by the angular frequency
fλSL

. The frequency is determined by the current feeding frequency f , the pole pair number
p of the electrical machine, the slips and the spatial ordinal number due to the rotor
slotting determined withg2NR. For the determination of the amplitudes, the permeance
wave componentsΛλSR are typically decomposed into components evoked by the stator
ΛλS and rotor slottingΛλR as well as the interacting componentsΛλSR [68], [53].

A further influence on the permeance is given by the saturation of the teeth. The largest
saturation occurs at positions where the fundamental magnetic field with a spatial ordinal
numberp has a positive or negative maximum. The permeance waveΛλSadue to saturation
is therefore given with the spatial ordinal numberλSa= 2p and the frequency offλSa

= 2 f :

ΛλSa(ϕ, t) = ∑
λSa

Λ̂λSa
cos(λSaϕ −2π fλSa

t +ψλSa
) λSa= g32p fλSa

= g32 f (3.8)

g3 =±1,±2,±3, . . .

Typically, the casesg3 > 1 can be neglected as their influence is only relevant for highly
saturated machines. An approach to determine the amplitudeΛ̂λSa

for g3 = 1 is proposed
in [68], [53].

The last contribution to the permeance variations arises from the eccentricity of the rotor.
The dislocation of the axis of the rotor compared to the stator can have several reasons, e.g.
manufacturing inaccuracies or deflection of the rotor. The dislocation leads to a decrease
of the air gap at a distinct circumferential position. The permeance wave component can
be derived as follows:

ΛλE = Λ0E +∑
λE

Λ̂λE
cos(λEϕ −2π fλE

t +ψλE
) λE =±1,±2,±3, . . . (3.9)

For a static eccentricityfλE
= 0 and for the dynamic eccentricityfλE

= f λE
p (1− s). The

amplitudes are functions of the deflection of the rotor axis from the stator axis [68], [53].

3.1.2 Magneto-motive force harmonics

Performing a two dimensional Fourier analysis, the currentdistribution of anm-corded
winding can be described as follows [68]:

α(ϕ, t) =−∑
ν

ξν α̂ν sin(νϕ −2π fνt −ψν) ν = p(1+2mg) (3.10)

g= 0,±1,±2,±3,±4, . . .

whereξν denotes the winding factor which accounts for the influencesof the winding
configuration and is determined as follows:

ξν = ξZν ξSν ξSkν (3.11)
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whereξZν denotes the factor for the winding distribution,ξSν the factor for the winding
pitch andξSkν the factor for the skewing. The winding factorξν is a function of the spatial
ordinal numberν. Inserting this relationship in (3.3) results in the following harmonic
superposition for the magneto motive force:

Vδ (ϕ, t) = ∑
ν

Rξν
α̂ν
ν

cos(νϕ −2π fνt −ψν) (3.12)

3.1.3 Air-gap flux density

Using a simplified but physically relevant machine model, the previously introduced rep-
resentation of the magneto motive force and permeance as a superposition of wave compo-
nents with distinct spatial ordinal numbers and angular frequencies now allows the deriva-
tion of the magnetic flux density as a superposition of field components with the spatial
ordinal numberk:

B(ϕ, t) = ∑
k

B̂kcos(kϕ −2π fkt −ψk). (3.13)

To maintain the physical allocation to the origin of the fieldcomponents, the decompo-
sition is performed, on the one hand, for discrete windings assuming constant permeance
Λ0, i.e. λ = 0, resulting in winding fieldsBwind:

Bwind(ϕ, t) = Λ0R∑
ν

ξν
α̂ν
ν

cos(νϕ −2π fν t−ψν) (3.14)

and, on the other hand, for permeance waves due to slotting, eccentricities and saturation,
resulting in parametric fieldsBparam:

Bparam(ϕ, t) = R∑
ν

∑
λ

Λ̂λ ξν
α̂ν
ν

cos(µϕ −2π fµt −ψµ), (3.15)

with

µ = ν ±λ , (3.16)

fµ = fν ± fλ , (3.17)

ψµ = ψν ±ψλ . (3.18)

as the resulting spatial ordinal numbers, angular frequencies and phase angles of the field
components for the permeance harmonics. By breaking the permeance harmonics further
down, an assignment to the stator, rotor and interacting slotting fields and moreover to the
saturation and eccentricity fields can be attained, see [68].

As, in general, magnetic fields are induced in both the statorand the rotor, the inter-
action of these fields has to be taken into consideration. Forfields with the same spatial
ordinal number and frequency typically a damped magnetic field results. In [68] the deter-
mination of complex damping factors using an equivalent circuit for higher harmonics is
presented. If the number of cords and poles of stator and rotor are different (e.g. squirrel
cage induction machine), then further magnetic field components arise.
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3.1.4 Determination of the electromagnetic stresses

To calculate the electromagnetic forces due to the magneticfield harmonics in the air gap
the Maxwell stress tensor of (2.20) is represented in cylindrical coordinates forµ = const
and the constitutive lawH = 1

µ B:

T =
1
µ




(B2
r − 1

2B2) BrBϕ BrBz

BϕBr (B2
ϕ − 1

2B2) BϕBz

BzBr BzBϕ (B2
z− 1

2B2)


 (3.19)

with r, ϕ andz denoting the radial, azimuthal and axial direction of the machine. The
surfaceΓ where the stress tensor is to be evaluated shall be defined as acoaxial cylindrical
surface in the air gap. The stresses shall be applied to the stator core. Thus, the normal
vectorn of the defined surface in cylinder coordinates isn = [−1 0 0].

With (2.21), the following stress vector is obtained forµ = µ0:

σσσm(r,ϕ,z, t) =− 1
2µ0




B2
r −B2

ϕ −B2
z

2BrBϕ
2BϕBz


 (3.20)

The radial component of the obtained stress vector is negative, i.e. it points from the stator
to the air gap. As the magnetic field has been determined assuming a planar problem, no
axial component of the stress occurs (sinceBz = 0). In [68], [34] it is pointed out that the
azimuthal component does not contribute to the noise behaviour of electrical machines.
Furthermore, the structural response due to azimuthal forces is mainly determined by the
vibration behaviour of the teeth of the machine which involves a very detailed structural
model. Since the used analytical model does not reflect this behaviour the azimuthal com-
ponent of the stress vector is neglected.

With Bϕ = µ0Hϕ ≪Br , the radial stress component is thus determined only by the radial
magnetic flux density. Inserting (3.13) then results in:

σr(ϕ, t) =−B2
r (ϕ, t)
2µ0

=−

[
∑
k

B̂rkcos(kϕ −ωkt −ψk)

]2

2µ0
(3.21)

The subscriptr for the radial magnetic field componentsB̂r shall be omitted from now
on. With appropriate operations, this equation can be reformulated to determine the radial
stress as a series of stress wave components. The relation for a radial stress wave compo-
nentσr(n,ϕ, t) in the air gap resulting from the two field componentsBi andB j with the
field amplitudesB̂ki, B̂k j, the spatial ordinal numberski , k j and the angular frequencies and
phase anglesωki, ωk j andψki, ψk j is obtained as:

σr(n,ϕ, t) =−B̂kiB̂k j

2µ0
cos(nϕ −2π fnt −ψn), (3.22)
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with

n= k j ±ki , (3.23)

fn = fk j ± fki , (3.24)

ψn = ψk j ±ψki (3.25)

wheren, fn andψn are the corresponding spatial ordinal number, the frequency and the
phase angle, respectively, see also [80],[49]. Two magnetic field wave componentsBi and
B j therefore result in six stress components: two stress components composed only ofBi

with n = 0 andn = 2ki for the spatial ordinal numbers andω = 0 andω = 2ωi for the
frequencies. Further two stress components composed only of B j with n= 0 andn= 2k j

for the spatial ordinal numbers andf = 0 and f = 2 f j for the frequencies. The last two
stress components are determined byBi andB j with the spatial ordinal numbersn= ki ±k j

and the frequenciesf = fi ± f j .
As it will be shown in the next section, mainly the stress waves with spatial ordinal

numbers up to 10 are relevant for the vibrations. Furthermore, the representation obtained
shows that each stress wave has a distinct frequency. If thiscoincides with a structural
resonance frequency, large vibration amplitudes will occur.

3.2 Structural Vibration Computation

The determined pressure waves revolving in the air gap with distinct frequencies, spatial
ordinal numbers and amplitudes serve as input for the structural vibration computation.

A model to determine the deformation of the stator has been established by Jordan (see
[42]). The stator has been considered as an infinitely long cylinder. To determine the radial
deformation amplitudeYr resulting from a stress waveσr(n,ϕ, t), the elastodynamic equa-
tions have been set up with Cauchy’s law (2.31) and assuming linear material properties
(2.27). To obtain a compact formulation, the influence of shear stresses on the deflec-
tion and the rotational inertia have been neglected. Furthermore, a linearization has been
applied to discard terms of higher order.

The method assumes stationary behaviour, therefore the evaluation can be carried out in
the frequency domain. Jordan’s formula to determine the structural deformation amplitude
Ŷr(n) in radial direction of ordern= 0 yields:

Ŷr(n= 0) =−RN
Eh

σ̂r(n= 0)
γ2−1

(3.26)

and forn≥ 2:

Ŷr(n) =−RN
Eh

n2− γ2
(

γ2−
(

fb(n)
f0

)2
)(

γ2−
(

fl (n)
f0

)2
) σ̂r(n). (3.27)
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This is a compact formulation depending on the characteristic excitation parameterŝσr ,
the inner stator radiusR, the radiusN of the elastic line, the bulk modulusE of the dy-
namo sheets, the yoke heighth and the material-dependent resonance frequenciesfl (n)
in azimuthal direction,fb(n) in radial direction,f0 for the pulsating eigenmode andγ for
the excitation frequency related tof0. The determination of the resonance frequencies in
azimuthal and radial direction can be derived from [42].

Therefore, for an excitation with an ordinal numbern, two singularities (resonances)
occur with the influence offb(n) being more important since this frequency value normally
lies in a more critical range for noise computations. The computed deformation amplitude
in (3.27) has the same spatial ordinal numbern as the stress component acting on the ring
and no other characteristics are excited due to the orthogonality of the excitation modes on
the eigenforms of the ring. This is not the case for a 3D statormodel as will be discussed
in chapter 5.

To achieve better results for the resonance frequencies, a more authentic consideration
of the material composition of the stator is necessary. Thismeans that the influence of the
windings, teeth and slot wedges has to be included more accurately. This can be achieved
by an approach proposed by Eickhoff (see [25]) expanding Jordan’s model by modified
eigenfrequencies.

To consider windings, teeth and slot wedges, a mean value forthe flexural stiffness(EI),
whereI is the 2nd moment of inertia, and for the extensional stiffness(EA), whereA is
the sectional surface of the stack, are introduced. In the following, the mean values are
denoted with the subscriptm. An adapted mean density(ρV)m, related to the mean radius
am corresponding to the radius of the elastic line of the ring model is determined, which
is, due to the modifications, now different from Jordan’s model.

With the modified material parameters, the eigenfrequencies are computed with the ad-
vanced circular ring model by Federhofer [27] forn= 0:

fb(n= 0) = 0, fl (n= 0) =
1

2π

√
(EA)m

a2
m(ρA)m

, (3.28)

and forn≥ 2:

fb(n) =
1

2π

√
κ(n)(EI)m

a4
m(ρA)m

, fl (n) = fl0
√

n2−1. (3.29)

The factorκ depends on the spatial ordinal numbern and can be derived from [27].

3.3 Acoustic Computation

The previous computations provide the deformation of the stator ring model. The linear
structural computation is performed in the frequency domain. Thus the velocity ˆv, the time
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derivative of the displacement with its components ˆvx in x-direction and ˆvy in y-direction,
can be obtained by a multiplication byjω in the frequency domain:

v̂ =

[
v̂x

v̂y

]
= jω

[
ûx

ûy

]
(3.30)

whereω is the angular frequency and ˆux andûy are the deformation amplitudes in thex-
andy-directions. For acoustic computations, the normal component of the velocity to the
radiating surface is needed, see section 2.5. In the presentinvestigation, we consider the
stator as the radiating surface. This seems not very practical due to the potentially large
influence of the housing. But for cylindrical-like machineswhere the stator is encased by
a cylindrical shell directly fixed to the stator and due to thefact that we are considering a
plane model, this approximation seems to be acceptable. Forthe ring structure, the normal
direction of the velocity is the radial direction. Hence follows

v̂(n,ω)n = v̂r = jωŶr(n) (3.31)

with Ŷr the deformation amplitude in the radial direction (see (3.27)), n as the surface
normal vector and ˆvr the velocity normal component in the radial direction.

The sound radiating from the surface is described by the two state variables sound pres-
surep̂ and the sound particle velocity ˆvr . The general form of the acoustic wave equation
has been derived in section 2.5.

For radiating cylinders, the sound pressure can be determined in cylindrical coordinates
[22], [34]. The determination of the sound pressure in the frequency domain is thus given
as:

p̂(n, r,ω) =− jρ0c

dH(2)
n (kr r0)

d(kr r0)

H(2)
n (kr r)v̂n(n,ω) (3.32)

whereH(2)
n is then-th order Hankel function of the second kind,kr is the acoustic wave

number in radial direction,r0 is the radius of the radiating surface andρ0 andc denote the
density and the sonic speed in air, respectively.

The relation between sound particle velocity ˆvr and sound pressure ˆp can also be ex-
pressed by a sound impedanceẐ:

Ẑ(n,ω) =
p̂(n,ω)

v̂r(n,ω)
(3.33)

i.e.

p̂(n,ω) = Ẑ(n,ω)v̂r(n,ω). (3.34)

The sound intensitŷI and thus the sound powerŜare

Î = p̂v̂∗r Ŝ=

∫

Γ

ÎdΓ (3.35)
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whereΓ denotes the surface area and∗ the complex conjugate.̂S is a complex value and,
similarly to electrical power, it consists of an active and areactive part. The reactive part
is dominant in the near-field and is decreasing fast with the distance from the surface. The
active part of the power is that emitted into the far-field andthus relevant for acoustical
computations. The radiation factor

σ =
Re(Ŝ)
ρ0cAṽ2 (3.36)

is a factor relating the active sound-power to the absolute value of the calculated sound-
power withṽ as the root mean square of ˆv.

The general radiation factor of an infinitely long cylinder can be calculated as

|σ̂(n,krr)|=





0 for k0 ≤ kz
2k2

0

πrk3
r

∣∣∣∣
dH

(2)
n (kr r)
d(kr r)

∣∣∣∣
for k0 > kz (3.37)

wherekz is the wavenumber in the axial direction. The acoustic wavenumberk0 is derived
from the two components in axial and radial direction, i.e.k2

0 = k2
r + k2

z. The radiation
gaugeLσ is determined by the relation

Lσ = 10log10(σ). (3.38)

The radiation factor (or gauge) is low until a characteristic frequency is reached, i.e. as
long as low sound radiation occurs. For higher frequencies,the structure is generally
fully radiating. The finite length of a cylinder leads to reflections on the boundaries and
furthermore to a shift of the critical frequencies to higherones of shorter cylinders can be
observed [34].





4 NUMERICAL METHODS

This chapter presents the numerical methods for the electromagnetic, structural mechanic
and acoustic simulations. First the finite element approachis briefly introduced followed
by the application to the electromagnetic field and structural vibration computation. At
last the boundary element method used for acoustic wave computations is presented along
with the fast multipole method.

4.1 Finite element method - Ritz-Galerkin method with special basis
functions

Electromagnetic field and structural problems which arise in engineering and physics are
typically described with appropriate differential equations and boundary conditions, which
lead to boundary value problems. The origin for the finite element method is not the
classical formulation, i.e. the differential equations, but the variational formulation, i.e. an
integral formulation, of such a problem [108].

A time independent partial differential equationD(u) = D1u− f = 0 with a differential
operatorD1 and a functionf in a domainΩ with the unknown solutionu shall be defined.
The integral or weak formulation can then be stated as

∫

Ω

v(D1u− f )dΩ = 0 (4.1)

wherev is an arbitrary scalar or vector function (test function) which satisfies the homoge-
neous boundary conditionsv= 0 on the boundaryΓ of the domainΩ. This is an alternate
formulation of the boundary value problem. For more complicated problems, finding an
exact solution (analytically) can be difficult or even impossible. With the weak formula-
tion it is possible to set up methods to obtain an approximatesolution instead. This leads
to the method of weighted residuals and, further, to Galerkin’s method, which are briefly
explained in the following.

To obtain an approximate solution of the weak formulation (4.1), the following ansatz
for the unknown solutionu shall be applied:

u≈ uh = uD+
n

∑
j

u j p j (4.2)

whereuh denotes the approximate solution,uD satisfies the inhomogeneous Dirichlet bound-
ary conditions. p j are n linearly independent functions that satisfy the homogeneous
Dirichlet boundary conditions, i.e.p j = 0 onΓ andu j are the (constant) coefficients ofp j .

39
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In a next step, the method of weighted residuals [108] is applied to the weak formulation.
Therefore, instead of the functionv, a finite set of weighting functionswi is introduced.
The number of weighting functions is equal the number of coefficientsu j . With (4.2) this
results in

∫

Ω

wi(D1uh− f )dΩ = 0 i = 1,2, . . .n. (4.3)

This is a set of algebraic equations from which the unknownsu j can be determined. The
term (D1uh− f ) denotes a residual and (4.3) is a weighted integral of this residual. This
weighted residual is forced to zero with all weighting functions. For this method, any
set of linearly independent weighting functions can be used. If wi = pi

1, i.e. the same
test functions are used for the weighting as for the approximation of u, this leads to the
Galerkin method:

∫

Ω

pi(D1uh− f )dΩ = 0,

n

∑
j

u j

∫

Ω

piD1p jdΩ =
∫

Ω

pi f dΩ−
∫

Ω

piD1uDdΩ j = 1,2, . . .n. (4.4)

The obtained set of equations is the following linear equation system in matrix notation
with the stiffness matrixD1h, the vectoru with the coefficientsui and the right hand side
vector (load vector)fh:

D1h u = fh (4.5)

For a differential equationD(u, u̇, ü) = D1u+D2u̇+D3ü− f = 0 with the time deriva-
tivesu̇= du

dt andü= d2u
dt2

, the following approximation functions

uh(r , t) = ud(r , t)+
n

∑
j

u j(t)p j(r), (4.6)

duh

dt
= u̇D +

n

∑
j

duj

dt
p j , (4.7)

d2uh

dt2
= üD +

n

∑
j

d2u j

dt2
p j (4.8)

wherer denotes the space coordinates and the coefficientsu j(t) are time functions, are
applied to its variational formulation. The following Galerkin equations are obtained:

∫

Ω

pi(D1uh+D2u̇h+D3üh− f )dΩ = 0 i = 1,2, . . .n,

1Actually it is the derivative of the approximation functionwith respect to the unknownswi =
∂uh
∂ui

= pi .
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n

∑
j

∫

Ω

piD1u j p jdΩ+

∫

Ω

piD2u̇ j p jdΩ+

∫

Ω

piD3ü j p jdΩ =

∫

Ω

pi f dΩ−
∫

Ω

piD1uDdΩ−
∫

Ω

piD2u̇DdΩ−
∫

Ω

piD3üDdΩ.

(4.9)

A system of second order ordinary differential equations isobtained of the form

D1hu+D2hu̇+D3hü = fh (4.10)

with the system matricesD1h, D2h andD3h and the right hand side vectorfh. For symmetric
differential operatorsD1, D2 andD3 the system matrices are symmetric as well.

4.2 Application of the finite element method

For the application of the finite element method, the test functionspi have to be defined in
a special way. To obtain an efficient algorithm, the following aspects should be considered.
The matricesDih and the load vectorfh should be easily computed and an increase of the
number of test functions should lead to a decrease of the discretization error||u−uh||. The
fundamental idea of the finite element method is to use finite functions, i.e. functions with
local supports, as the test functionspi .

A volume Ω is discretized with a distinct number of elements of e.g. tetrahedral or
hexahedral shape. Each corner of an element is represented by a node. In special cases,
nodes on the edges or in the inner domain of the element can be defined. Neighbouring
elements have to have a common node, a common edge or a common facets. For each node
a test functionpi =Ni is defined. The nodal shape functionsNi are chosen to be continuous
and piecewise polynomial and non zero only in some limited domain, the support. They
satisfy

Ni =

{
1 at node i,
0 at all other nodes.

(4.11)

When approximating vector functions, edge shape functionsNi satisfying

∫

edgej

Ni ·dr =
{

1 if i = j,
0 otherwise

(4.12)

are used.
A common approach for the discretization is the use of isoparametric finite elements

defined in a local coordinate system(ler ,l es,l et) with the coordinatesr, s, andt ranging
from−1 to 1. Furthermore, a global coordinate system(gex,gey,gez) is defined. The global
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positionsxi , yi andzi for each nodeni are then defined with the same shape functions as
those used for the approximation ofu:

x=
n

∑
i=1

Ni(r,s, t)xi y=
n

∑
i=1

Ni(r,s, t)yi z=
n

∑
i=1

Ni(r,s, t)zi (4.13)

This way, the boundaries of the geometry are described with the same order as the shape
functions. This reduces the discretization error when applying the finite element method
to curvilinear boundaries.

The choice of piecewise polynomial functions leads to sparse system matricesDI h.
Their entries and those of the load vectorfh can be computed element-wise after per-
forming a numerical integration - typically the Gauss quadrature [9] is used for this - for
each element. The approximation error foruh is typically reduced by a finer discretization
or the choice of higher order shape functions. However, the larger the number of elements
the higher the required memory amount and thus the computational demand.

4.3 Finite element method for electromagnetic fields

In the following, the application of the finite element method to electromagnetic phenom-
ena for low frequencies shall be presented [15]. Therefore,the magnetic vector potential
A and the (modified) electric scalar potentialv shall be introduced, which satisfy the fol-
lowing relations:

B =∇∇∇×A, E =−∂A
∂ t

−∇∇∇
∂v
∂ t

. (4.14)

Inserting these relationships into the equations (2.8) to (2.12) results in the following dif-
ferential equations:

∇∇∇× (
1
µ

∇∇∇×A) = J0 in Ωn, (4.15)

∇∇∇× 1
µ

∇∇∇×A +
∂
∂ t

σ (A +∇∇∇v) = 0 in Ωc, (4.16)

− ∂
∂ t

∇∇∇ ·σ (A +∇∇∇v) = 0 in Ωc (4.17)

with the following Dirichlet or Neumann boundary conditions onΩn andΩc:

A ×n = 0 or
1
µ

∇∇∇× (A ×n) = 0 on Γc andΓn, (4.18)

v= v0 = constant or n ·
(
−∂σA

∂ t
− ∂σ∇∇∇v

∂ t

)
= 0 onΓc. (4.19)
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On the interfaceΓnc of the conducting and non-conducting region the tangentialcompo-
nent ofH and the normal component ofB are continuous and therefore follows:

∇∇∇×Ac ·nc+∇∇∇×An ·nn = 0 andvc∇∇∇×Ac×nc+vn∇∇∇×An×nn = 0 (4.20)

For the definition of the quantities, refer to section 2.2. Two symmetric differential operator
matricesD1 andD2 including the Neumann boundary conditions can now be set up and
the boundary value problem can now be written as

D1

{
A
v

}
+D2

{
Ȧ
v̇

}
= b (4.21)

whereb is the corresponding right hand side vector. The approximation of the vector
potentialA shall now be carried out with the linearly independent edge basis functionsNi

and that of the scalar potentialv with the linearly independent nodal basis functionsNi :

A ≈ Ah = AD +
ne

∑
i=1

akNk, v≈ vh = vD +
nn

∑
i=1

vkNk (4.22)

which both satisfy the homogeneous Dirichlet boundary conditions. ne is the number of
unknown edge shape functionsNi andnn the number of unknown nodal shape functions
Ni. Setting up a variational formulation of (4.21) and inserting the approximations forA
andv, the Galerkin equations can be obtained and a linear ordinary differential equation
system can be set up as follows, cf. (4.9):

D1hx+D2h

dx
dt

= bh(t) (4.23)

with the coefficient matricesD1h and D2h and the load vectorbh. For a more detailed
derivation see appendix A.3 or refer to [15]. The vectorx shall be defined as a vector con-
taining the coefficientsak, k= 1, . . . ,ne andvk, k= 1, . . . ,nn, respectively. The coefficient
matrices typically are symmetric and sparse and appropriate direct and iterative solvers
exist to solve the equation system in (4.23). If the electromagnetic finite element problem
is excited by an external electric circuit, as is the case e.g. for multi-slice models [24],
then non-symmetric matrices arise. To account for the non-linear material behaviour, an
iteration process has to be carried out at each time step. A solution of (4.23) in the time
domain can be obtained for example with the backward Euler time discretization method.

The application of the finite element method to electrical machines is described in the
following chapters, where the simulation models are presented, too.

4.4 Finite element method in structural mechanics

For the structural finite element approach it is typical to apply the principle of virtual work
to Cauchy’s law (2.31). The principle of virtual work demands that for any infinitesimal
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variation of the displacement in harmony with the given constraints, the work of the im-
pressed forces is zero at the state of equilibrium. Multiplying (2.31) with the weighting
functionδu and integrating over the domainΩ yields [108]

∫

Ω

δs· (∇∇∇ ·σσσ + fB−ρa)dΩ = 0. (4.24)

Applying Green’s formulae
∫

Ω

∂u
∂xi

vdΩ =−
∫

Ω

∂v
∂xi

udΩ+

∫

Γ

uvdΓ (4.25)

to the first integral statement, an integration by parts of the first integral term can be carried
out. This results in

∫

V

δs· (∇∇∇ ·σσσ)dV =

−
∫

Ω

[
σxx

∂
∂x

(δs1)+σxy(
∂
∂y

(δs2)+
∂
∂x

(δs3))+ . . .

]
dΩ

+

∫

Γ

[δs1(σxxnx+σxyny+σxznz)+δs2(. . .)+δs3(. . .)]dΓ. (4.26)

Similarly to (2.26), a virtual strain tensorδεεε can now be introduced for the first term and
for the second one a surface force densityfS. For (4.24), the following equation is then
obtained:

∫

V

δs· fBdV +
∫

S

δs· fSdS

︸ ︷︷ ︸
δWext

−
∫

V

δεεε : σσσdV

︸ ︷︷ ︸
δWint

−
∫

V

δs·ρadV

︸ ︷︷ ︸
δWinertia

= 0 (4.27)

where the single terms of the virtual work can be combined to the work of the external
forcesδWext, the inner forcesδWint and the inertia forcesδWinertia. The tensorsσσσ andεεε
shall now be arranged as column vectorsσσσ andεεε (Voigt notation):

σσσ =
(

σxx σyy σzz σxy σyz σzx
)T

(4.28)

εεε =
(

εxx εyy εzz εxy εyz εzx
)T

=DDDs (4.29)

whereDDD denotes a differential operator matrix ands= [s1,s2,s3]
T the displacement vector

defined in a Cartesian coordinate system(ex,ey,ez). The tensor productσσσ εεε can now be
written as the scalar productσσσ ·εεε which results in:

∫

V

δs· fBdV +
∫

S

δs· fSdS−
∫

V

δεεε ·σσσdV −
∫

V

δs·ρadV = 0. (4.30)
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This variational formulation is precisely the weak form of the equilibrium equations.
Introducing the shape functionsNj for the node j of a structural finite element, the

displacement field can be approximated with the nodal displacementsui j for theith degree
of freedom at nodej, cf. (4.2):

si(x,y,z, t)≈ sih(x,y,z, t) = siD +
n

∑
j=1

Nj(x,y,z)ui j (t) i = 1,2,3. (4.31)

For simpler notation, a matrix of shape functions can be defined as follows, fornm nodes
at elementm with three degrees of freedom:

H(m) =




N1(x,y,z) 0 0 . . . Nnm(x,y,z) 0 0
0 N1(x,y,z) 0 . . . 0 Nnm(x,y,z) 0
0 0 N1(x,y,z) . . . 0 0 Nnm(x,y,z)




(4.32)

The displacement fieldu(m) and the strainsεεε(m) (assumingεεε(m)
D =0, i.e. no inhomogeneous

strains) in elementmcan then described with the matrix of the shape functions

sh(x,y,z)
(m) = s(x,y,z)(m)

D +H(x,y,z)(m)u(m), (4.33)

εεεh(x,y,z)
(m) =DDDH(x,y,z)(m)u(m) =BBB(x,y,z)(m)u(m). (4.34)

The stress-strain relationship according to Hook’s law is obtained with the elasticity matrix
C as follows:

σσσ = Cεεε, C =




1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2



. (4.35)

Inserting these relationships in the variational formulation of the elastodynamic equation
(4.27) results in

Mü+Ku = F. (4.36)

S For a detailed derivation of the system matrices see appendix A.4. The obtained mass
matrix M and stiffness matrixK are sparse and symmetric. Damping effects can be con-
sidered for example as Rayleigh damping [69], [33]. An investigation of a mechanical
system of this form has been presented in section 2.4. For most structural application, as
is the case in the investigation of noise behaviour of electrical machines, it is sufficient to
focus on the stationary behaviour of the system, cf. (2.40).Assuming linear material be-
haviour and small displacements, the solution for the nodaldisplacement vector can then
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be determined with appropriate iterative or direct solvers. With the determination of the
homogeneous solution with an appropriate eigensolver, theeigenmodes and eigenfrequen-
cies of the discretized body can be obtained. The application of the structural finite element
method to electrical machines will be discussed in detail inthe following chapters.

4.5 Boundary element method in acoustics

For problems involving unbounded domains, the boundary element method (BEM) is an
alternative simulation method. The problem is solved by first determining the boundary
variables on the boundary surfaceΓ of the domainΩ. In a next step, the field variables in
the domainΩ\Γ can be obtained by using the boundary surface results.

There exist two main types of formulations for the boundary integral equations, the di-
rect and the indirect method. The first one can be applied either to interior or exterior
problems. The domainΩ has to be a closed domain and relates the sound pressure in any
field point P ∈ Ω\Γ to the sound pressure and velocity on the surfaceΓ of the domain.
This method is applied using the collocation method and thustypically leads to fully pop-
ulated and non-symmetric matrices. In contrast to this, theindirect formulation, using the
Galerkin method, solves the interior and exterior problem simultaneously and does not re-
quire a closed surface. For this work, the focus lies on the use of the indirect method. For
more details about the direct method refer to [21].

For the indirect method, an arbitrary surfaceΓ shall be defined with the superscript+
defining quantities on the exterior of the surface and the superscript− on the interior. Two
potentials shall be introduced, the double layer potentialµ = p+− p−, which stands for
the jump of pressurep, and the single layer potentialσ = ∂ p+

∂n − ∂ p−

∂n which stands for the
jump of the normal derivative of the pressure. Using the Green’s functionG(r , r ′), which
satisfies the the inhomogeneous Helmholtz equation

∆G(r , r ′)+k2G(r , r ′) = δ (|r ′− r |), r , r ′ ∈ Ω. (4.37)

whereδ denotes the Dirac delta function, the sound pressurep(r) at any point inΩ\Γ can
be defined as follows:

p(r) =
∫

Γ

(
µ(r ′)

∂G(r , r ′)
∂n

−σ(r ′)G(r , r ′)
)

dΓ r ∈ Ω\Γ (4.38)

This formulation relates the sound pressure at an observation point r , that satisfies the
homogeneous Helmholtz equation (2.54), the boundary conditions (2.56)-(2.58) and the
Sommerfeld radiation condition (2.59), to the single and double layer potential at a source
point r ′ in Γ.

Now for the boundary element method, an approximation of theboundary surface and
the boundary variables, i.e. the single and double layer potential, with a set of nodal shape
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functionsNk is performed:

µ ≈ µh =
nn

∑
k=1

µkNk, σ ≈ σh =
nn

∑
k=1

σkNk. (4.39)

The set of shape functions is defined within small surfaces (elements) on the boundary. A
solution for the potentialsσh andµh can be obtained by a variational formulation of (4.38)
[21] and using the Galerkin method. A symmetric matrix equation can then be obtained
as:

[
A C
CT B

][
σσσ
µµµ

]
=

[
fff σ
fff µ

]
(4.40)

whereA, B andC denote the submatrices,σσσ andµµµ are the vectors with the nodal values
σi and µi . The right hand side is represented by the vectorsfσ and fµ . The boundary
conditions according to (2.56)-(2.57) are expressed as follows:

p+ = p− = p onΓd ⇒ µ = 0 (4.41)

∂ p+

∂n
=

∂ p−

∂n
=− jρ0ωvn on Γn ⇒ σ = 0 (4.42)

The double layer potential is therefore zero on the Dirichlet boundary and the single layer
potential on the Neumann boundary. The imposed pressure andvelocity distributions ap-
pear in the vectorsfσ andfµ . The mixed boundary condition (2.58) results in a mixed form
for the single and double layer potential and appears in the matricesC andB.

Summing up, the indirect boundary element method leads to fully populated, complex,
frequency dependent but symmetric system matrices. For larger problems this method is
therefore faster than the direct method which has unsymmetric matrices. If the excitation
frequency is equal to a resonance frequency of the inner domain Ω− then the exterior ra-
diation problem has no unique solution. Spurious modes occur for both the direct and
indirect boundary element method. Different approaches for both methods can be applied
to overcome this problem [23]. With the indirect method thisproblem of inner resonances
can be eliminated by applying an appropriate impedance boundary condition on the sur-
face. After determining the results on the boundary, the sound pressure on the field can be
determined at any point outside the surface.

As the system matrices are fully populated, the efficiency strongly decreases with the
size of the model. A recently evolving method to overcome this deficiency of the boundary
element method is the application of a fast multipole method(FMM), which can achieve
nearO(N) computational complexity, whereN is the number of equations. For this, the
obtained system matrix is decomposed into several levels ofsubmatrices (hierarchical clus-
tering). The created admissible blocks are then approximated with an appropriate method.
One efficient method is the adaptive block approximation which constructs a degenerated
approximation using nodal interpolation in points determined in an adaptive way while
realizing the algorithm [62]. For a detailed description ofthe FMM refer to [62].





5 LIMITATIONS OF THE ANALYTIC COMPUTATION
APPROACH

In the design process of electrical machines analytical computation methods play an im-
portant role since, once implemented, they allow fast computations with given machine
parameters and, moreover, the variation of input parameters to obtain for example an op-
timal geometry. However, as such methods are typically based on simplified machine
models, they may lack in accuracy.

The following section deals with the validation of the analytic computation results ob-
tained with the approach presented in chapter 3. The investigated machine types are
squirrel-cage and slip-ring induction machines. For each computation step, i.e. electro-
magnetic fields, structural vibration and noise computation, a comparison with numerical
simulations and/or measurement results is carried out. Theaim of this investigation is to
outlay and discuss the occurring deviations and to list the limitations of the analytic ap-
proach. Moreover, some identified effects with a possible influence on the noise behaviour
of electrical machines motivate the investigations carried out in the following sections.

This work has been presented at the XIX International Conference on Electrical Ma-
chines [100] and has been published in its full extent in [101].

5.1 Electromagnetic Field Computation

For noise computation purposes, the focus lies on the determination of the magnetic field
components leading to problematic forces, i.e. those with large amplitudes as well as fre-
quencies and spatial ordinal numbers which coincide with resonances. Note that each force
component is caused by two magnetic field components, and thecombination of these two
may also result in problematic frequencies or spatial ordinal numbers. As proposed in
[68],[29], only distinct sets of the winding and parametricfields, cf. (3.14) and (3.15),
need to be computed. The sets are defined according to the origin of the harmonic compo-
nents, i.e. winding, slotting, saturation and eccentricity. Furthermore, the sets are extended
by an allocation to the stator and rotor components, which, as defined in section 3.1, are
denoted with the subscriptsS and R. This allows the assignment of problematic noise
peaks to the causing magnetic field components. Eventually,this is the key advantage of
the analytic method enabling the machine design to be modified to handle the problematic
harmonics.

In the following, the sets of magnetic field components computed for this investigation
are presented. As the focus of this work lies on the noise behaviour of induction machines,
the following computations are confined to this machine typeonly. In particular, two
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types of induction machines have been investigated, namelysquirrel cage and the slip ring
induction machines. For other machine types refer to e.g [75].

Winding fields The winding field components are determined by the constant permeance
Λ0 and the harmonics of the current distributionαν , cf. (3.14). The assignment to the
stator and rotor winding distribution results in the field componentsBwindS andBwindR with
different spatial ordinal numbers and frequencies1:

BwindS,R(ϕ, t) =Λ0R∑
νS

ξνS

α̂νS

νS
cos(νSϕ −2π fνSt −ψνS)+

Λ0R∑
νR

ξνR

α̂νR

νR
cos(νRϕ −2π fνRt −ψνR).

(5.1)

• Stator winding fields:
The amplitudes of the stator winding fieldsBwindS are determined by the current dis-
tribution ανS on the stator. The spatial ordinal numbersνS for the stator winding
fields depend on the number of stator cords and pole pairs and are determined ac-
cording to (3.14). The frequency of the stator winding fieldsis the line frequency,
typically fνS = f1 = 50Hz.

• Rotor winding fields due to fundamental (stator) field:
The field in the air-gap leads to a current distributionανR on the rotor according to
the number of rotor cords and slots. For this evaluation, only the current induced
by the fundamental stator fieldBpS is considered as the largest current arises for it.
The following spatial ordinal numbers and frequencies ofBwindR for the squirrel cage
induction machine occur:

νR = p+gNR g= 0,±1,±2, . . . , (5.2)

fνR = f1

(
1+g

NR

p
(1−s)

)
(5.3)

and for the slip-ring induction machine:

νR = p(1+2mg) g= 0,±1,±2, . . . , (5.4)

fνR = f1(1+2mg(1−s)) . (5.5)

The field with g = 0 denotes the armature reaction on the fundamental field and
has to be considered for the resulting fundamental waveBp. In combination with
the fundamental field, rotor fields withg ≥ 1 result in forces with large amplitudes
and problematic frequencies. Fors= 0, i.e. the no load operating point, these field
components are zero.

1The components with the same spatial ordinal number and frequency result in a superposition of the
corresponding components to a resultant field wave (armature reaction).
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Parametric field components The parametric field components are determined by the
multiplication of the winding harmonics with the harmonicsof the permeance vairations,
see section 3.1.3. Permeance variations due to the slottingΛλSL

, saturationΛλSa
and ec-

centricityΛλE
, cf. (3.6), lead to magnetic field components categorized asfollows:

• Slotting fieldsΛλSL
:

The permeance variation due to the stator and rotor slottingis given in (3.7) and
the resulting magnetic field components are determined according to (3.15) with
the harmonics of the magneto-motive force wavesανS,R, again due to stator and
rotor currents. For this investigation only components with the fundamental current
distributionαp, i.e. ν = p, are considered. The magneto-motive force harmonics
of higher order are neglected as either the amplitudes are too small, or the resulting
field components contribute to force waves with very large frequencies only. The
slotting field components are obtained by splitting the permeance variations given in
(3.7) into stator, rotor and interacting components:

BSL= R
(ξpSα̂pS+ξpRα̂pR)

p

(

∑
µSLS

Λ̂SLScos(µSLSϕ −2π fµSLS
t −ψSLS)+

∑
µSLR

Λ̂SLR cos(µSLRϕ −2π fµSLR
t−ψSLR)+

∑
µSLSR

Λ̂SLSRcos(µSLSRϕ −2π fµSLSR
t−ψSLSR)

)
.

(5.6)

The spatial ordinal numberµSLS for the stator slotting fields are therefore determined
with µSLS = p+gSNS for gS= ±1,±2, . . . and the frequency is the same as for the
winding fields, i.e.fµSLS

= f1 = 50Hz. The amplitude of the resulting field for these
spatial ordinal numbers is determined by an addition of the corresponding winding
and slotting field components with the phases considered. The parametric fields
due to the rotor slotting arise with the spatial ordinal numbersµSLR = p+gRNR for

gR =±1,±2, . . . and the frequenciesfµSLS
= f1

(
1+gR

NR
p (1−s)

)
and also have to

be superimposed to the corresponding winding fieldsBwindR.

The permeance variation due to the interaction of the rotor and stator slotting in
combination with the fundamental current distributionαp leads to field components
with the following spatial ordinal numbersµSLSR and frequenciesfµSLSR

:

µSLSR= p+gSNS+gRNR gS,R =±1,±2, . . . , (5.7)

fµSLSR
= f1

(
1+gR

NR

p
(1−s)

)
. (5.8)

• Stator saturation fields:
Further parametric stator fields are caused by the permeancevariation due to satura-
tion, see section 3.1.1.
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The permeance variation withλSa in combination with the higher harmonics of the
current distribution, in particular the slot-harmonics with ν∗

S = 1+ gNS for g =
±1,±2, . . . , lead to magnetic field componentsBSaS with spatial ordinal numbers
µSaS = ν∗

S±λSa and a frequency offµSaS
= (1+2g3) f1:

BSaS(ϕ, t) = R∑
ν∗

S

∑
λSa

Λ̂λSa
ξν∗

S

α̂ν∗
S

ν∗
S

cos(µSaSϕ −ωµSaS
t −ψµSaS

) (5.9)

• Rotor fields due to fundamental saturation field:
The saturation fieldBSaS with µ = 3p (the fundamental saturation field) gives rise
to a current distributionανR in the rotor withνR = 3p that, in combination with the
permeance variation of the rotor slotting, causes field componentsBSaR with spatial

ordinal numbersµSaR = 3p+gNR and frequenciesfSaR = f1
(

3+gNr
p (1−s)

)
:

BSaR(ϕ, t) = R ∑
µSaR

Λ̂λSa
ξ3pR

α̂3pR

3p
cos(µSaRϕ −ωµSaR

t −ψµSaR
) (5.10)

• Rotor fields due to eccentricities:
The static and dynamic eccentricity of the rotor also cause apermeance variation as
explained in section 3.1.1. Again, only the fundamental current distributionαp in
combination with the permeance variations with a spatial ordinal numberλE = ±1
is considered, as those amplitudes are the largest. The arising field componentsBE

are determined as follows

BE = R
(ξpSα̂pS+ξpRα̂pR)

p ∑
µE

Λ̂λE
cos(µEϕ −ωµEt −ψµE) (5.11)

with the resulting spatial ordinal numbersµE and frequenciesfµE :

µE = p±1+gNR, (5.12)

fµE = 0 for static eccentricity, (5.13)

fµE = f1

(
1+g

NR

p
(1−s)

)
for dynamic eccentricity. (5.14)

The computation of the appropriate winding factorsξ ν and amplitudes for the current
distributionα̂ν and permeance wavesΛ̂λ is taken from [68], [54]. For skewed induction
machines a skewing factor has to be applied to account for thereduction of the induced
voltage in the rotor [68].
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5.1.1 Validation of the magnetic field results and the computed stress wave
components

The validation of the computed magnetic field components is carried out for a squirrel cage
induction machine with its rotor skewed one stator slot pitch. The machine parameters
are listed in Table A.1 in the appendix. In order to validate the analytical results for the
magnetic field components, a comparison with numerical simulation results is carried out.
An electromagnetic finite element simulation has been performed for a 2D multi-slice
model [24]-[74]. A nonlinear, transient simulation has been carried out for the nominal
operating point with a stator current of 150 A and a rotational speed of 2991 rpm for
the rotor. A detailed description of the finite element modelling and the evaluation of its
results in the air gap is presented in chapter 6. There, the variation of the flux in axial
direction due to the skewing is investigated. To be able to compare the numerical results
with the analytical ones, the magnetic field along the air gapon the stator side is taken and
its harmonics are computed with a two-dimensional Fourier transformation [58].

In Fig. 5.1, the amplitudes of the magnetic field components for 50Hz are depicted for
each spatial ordinal number for the numerical and the analytical computations. Especially
the fundamental field componentBp and the stator slot harmonics with the spatial ordinal
numbers ofν∗

S = p+g∗SNS are sticking out. In Fig. 5.2, the harmonics due to the rotor

Figure 5.1: Comparison of the numerical and analytical results for the magnetic field am-
plitudes for f = 50 Hz

slotting, with the spatial ordinal numbersµSLR = p(1+ gNR) and frequenciesfµSLR
, are

depicted.
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Figure 5.2: Comparison of the numerical and analytical results for the magnetic field am-
plitudes due to rotor slotting

The comparison of the frequencies and spatial ordinal numbers of the magnetic field
components of the numerical and the analytical solutions shows a very good agreement
especially for those due to the rotor slotting and the saturation. This is a very important
result, since the prediction of the excitation frequenciesof the forces is of great interest in
order to determine an adequate offset to structural resonance frequencies.

The comparison of the magnetic field components shows discrepancies of the ampli-
tudes and phases. The numerical solution for the first slot harmonics of the stator and
the rotor fields yields larger amplitudes than the analytical solution. For the stator field
the deviations are about 50%. However, the second slot harmonics for the stator fields
match quite well, although their contribution to large force amplitudes is low. For the rotor
slotting fields, the deviations increase with the spatial ordinal number and the frequency
respectively. The main cause for these differences is the more detailed model of the finite
element simulation where nonlinear and leakage effects areconsidered in a more accurate
way. The multiplication of the field components, necessary for the determination of the
stress wave components, therefore leads to even larger discrepancies which can also be
seen in Figs. 5.3 and 5.4.

The stress waves acting on the stator teeth in the air gap are computed according to
(3.22) with the previously obtained magnetic field components. In Figs. 5.3 and 5.4, the
stress amplitudes at a frequency of 1794.7 Hz and 1894.7 Hz resulting from the rotor slot
field harmonics are depicted with the corresponding mode numbers and are compared to



5.1 Electromagnetic Field Computation 55

the numerical solution. Obviously the most striking component is the stress wave resulting

Figure 5.3: Comparison of the numerical and analytical results for the stress amplitudes
for f = 1794.7 Hz

Figure 5.4: Comparison of the numerical and analytical results for the stress amplitudes
for f = 1894.7 Hz

from the fundamental fieldBp and the rotor slot harmonicsBν∗
R
. However, the correspond-

ing spatial ordinal number is very large and, as mentioned inchapter 3, only forces with
low spatial ordinal numbers are of interest, because those result in large bending deforma-
tions and thus problematic structural vibrations. The largest components with low spatial
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ordinal numbers arise from the combination of the stator slot harmonics and the rotor slot
harmonics. The comparison of the analytical with the numerical results shows large dis-
crepancies for these components. The large deviations can be lead traced to the deviations
of the field components which of course affect the amplitudesof the stress components as
mentioned before.

In summary, the comparison shows a very good agreement for the frequencies and spa-
tial ordinal numbers. The amplitudes of the field componentsyields adequate results, in
particular for the stator and rotor slotting fields. The discrepancies of the forces are the
largest for the lower spatial ordinal numbers. However, those are said to be the ones which
lead to the largest structural vibrations and thus contribute most to the noise behaviour [16].
An investigation regarding the components with higher spatial ordinal numbers, which can
have very large amplitudes, is presented in chapter 7. Another point shortly mentioned pre-
viously is the obvious change of the flux in axial direction due to the skewing. This also
leads to forces with an axial variation. An approach to determine this variation is pre-
sented in chapter 6. An investigation of the influence of axially varying force distribution
is shown in chapter 7.

5.2 Structural Vibration Computation

This section deals with the investigation of the analytically computed structural vibra-
tion results. Therefore, in a first step, a comparison with vibration amplitudes obtained
with a three-dimensional finite element model of a cylinder is carried out. Following that,
the influence of the modified eigenfrequencies on the structural response is analysed and
discussed. After that, a comparison with measurement results is carried out and the eigen-
frequencies and the computed structural responses are validated.

5.2.1 Comparison of the computation results

The computation of the structural response due to the electromagnetic force wave with an
amplitudeσr(n), a frequencyf (n) and a spatial ordinal numbern is performed with the
computation model presented in 3.2. In a first step, the influence of the teeth and windings
is not considered. Therefore, the frequency dependent deformation amplitude of the ring is
analysed with the eigenfrequenciesfb(n) and fl (n) determined according to Jordan [42].

To validate the analytical solution, a comparison with a numerical structural simulation
of a corresponding three dimensional cylinder model has been performed. The homoge-
neous cylinder is discretized with second order hexahedralelements and the mass matrix
M and the stiffness matrixK are computed. A surface force distributionfS= σ̂rej(nϕ−ωt)

with σ̂r = 1 N/m2 andn= 4 is applied to the structural finite element model, resulting in
a nodal force vectorF. The mechanical stress is impressed on the inner side of the ring
only and is uniformly distributed in axial direction. The solution for the nodal displace-
mentsu can then be obtained from (4.36) for the undamped mechanicalsystem. As only
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the stationary solution is of interest, a harmonic analysis, cf. (2.39), is performed for each
angular frequencyω = 2π f for f = 0 to 3000Hz:

(−ω2M +K)û = F̂, (5.15)

and the nodal displacementsû are obtained for the applied nodal force vectorF̂ in the
frequency domain. The normal (i.e. radial) component ˆvr of the surface velocitŷv is then
obtained for the numerical result as follows:

v̂r = v̂ ·n = jωû ·n. (5.16)

The result for the absolute value of the velocity amplitude on the surface of the cylinder is
depicted in Fig. 5.5 along with the computation results fromJordan’s model. It can be seen
that the curve is nearly the same up to the first occurring resonance. The corresponding
mode excited at this frequency has a spatial ordinal number of four in azimuthal direction.
For higher excitation frequencies it can be seen from the results of the three dimensional
model that further resonances occur. As presented in section 3.2, the radial deformation

l

Figure 5.5: Analytical and 3D numerical solution of the velocity amplitude against excita-
tion frequency

computed with the analytical model for the infinitely long cylinder also depends on the az-
imuthal material properties. Actually, the radial force component gives rise to a resonance
at fl (n), which corresponds to an azimuthal mode shape. This fact is often neglected as
the eigenfrequencyfl(n) is much larger thanfb(n) and mostly out of the considered fre-
quency range. For the three-dimensional simulation model,the material properties are
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coupled in the radial, azimuthal and axial directions. Thisleads to mode shapes with ax-
ial deformation characteristics with eigenfrequencies inthe frequency range of interest for
noise computations. This behaviour has also been confirmed by measurements, see section
5.2.2.

The deviation of the primal resonance is due to the simplifications conducted in the
derivation of the analytic formulation for the deformationamplitude. The larger the spatial
ordinal number, the larger are the discrepancies compared to a numerical simulation result.
Generally, the analytic model results in higher eigenfrequencies for eigenmodes of higher
order. For spatial ordinal numbersn= 6, the deviations are around 30Hz.

In a further investigation step, the influence of the modifiedeigenfrequencies in (3.28)
and (3.29) on the vibrational behaviour is analysed. This isdone by comparing the fre-
quency dependent deformation characteristics due to forcewaves with different spatial or-
dinal numbers. The modified computation of the structural deformation is performed with
the modified resonance frequencies (see (3.28) and (3.29) insection 3.2). The comparison
of the results is shown in Fig. 5.6. It can be seen that there isa good agreement for the

Figure 5.6: Comparison of the Jordan results and the adaptedmodel for the harmonic re-
sponses of the structural deformation

excitations with the spatial ordinal numbers two and three.The higher the resonance fre-
quencies of the excitation with distinct spatial ordinal number, the higher is the deviation
of the deformation amplitude. The resonance frequencies are shifted to lower frequencies
which is due, on the one hand, to the influence of the added masses, and, on the other hand,
to the different method of computing the eigenfrequencies (3.28) and (3.29).
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5.2.2 Comparison with measurements

A validation of the modified resonances (3.28) and (3.29) is carried out by a compari-
son with measurements on a laminated stator core stack. The eigenfrequencies for spatial
ordinal numbers up to 5 have been determined by measuring thefrequency response on
the surface of the stator core when exciting the structure punctually with an electromag-
netic shaker. Stacks with and without windings, slot wedgesand impregnation have been
investigated.

In Table 5.1 the measurement results for the eigenfrequencies of an impregnated stack
without winding (model 1, outer diameterDA= 0.4m) and for an impregnated stator core
with winding (model 2, outer diameterDA= 1m) are listed with the corresponding spatial
ordinal numbers and the computed results. For some spatial ordinal numbers several mea-
surements have been conducted and therefore the highest andthe lowest frequency values
are depicted only.

Table 5.1: Measured and computed eigenfrequencies of a laminated core

Model 1 (DA=0.4m) Model 2 (DA=1m)

n fmeasin Hz fcomp in Hz fmeasin Hz fcomp in Hz

2 661.3 663.2 142.2/143.7 138.7

3 1767.4 1791.0 382.3/386.0 386

4 3107.5 3237.8 699.5 725

5 - 4897.2 1038/1052.4 1138

As model 1 has no windings, the computation of the eigenfrequencies according to
(3.28) and (3.29) has been performed by adapting the mean density (ρV)m to take into
account the additional teeth mass. For model 2, the additional mass of the winding has
also been included in(ρV)m. Furthermore the flexural stiffness(EI)m has been adapted to
consider the influence of the slot wedges and the winding. Theresults for the resonance
frequencies are given in Table 5.1 and show a good agreement with the measurements of
these two different models.

The results above are related to spatial ordinal numbers forthe azimuthal direction and
a uniform characteristic in axial direction. However, for the three-dimensional model fur-
ther resonances occur, as the previously presented simulation results have also shown. To
analyse the vibration behaviour along the axial direction further measurements have been
conducted on model 2. In Fig. 5.7, the frequency response function of the measurement re-
sults is depicted. This result has been obtained by measuring the accelerations at 60 points
(12 azimuthal angles and 5 axial positions) on the surface ofthe laminated core. It can
be seen in Fig. 5.7 that there are more resonances occurring besides the purely azimuthal
modes. The corresponding eigenforms are characterized by additional axial characteristics
(besides azimuthal). This three-dimensional behaviour cannot be estimated with the pre-
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Figure 5.7: Measured frequency response on the surface of a stator core stack

sented computational method and the influences are therefore not considered in the whole
noise computation approach. Additionally the mounting of the stator in the housing and
the housing itself have an impact on the structural behaviour [72], and, depending on the
construction design and complexity, their influences cannot be neglected.

As a further step in the validation of the analytical approach, a comparison of Jordan’s
amplitude function (3.27) with the eigenfrequencies according to (3.29) and measurements
of the deformation of a stator core stack is presented. Thesemeasurements have been
carried out on a machine where problems have arisen with the structural moden = 5.
This mode is dominantly excited at approximately 640 Hz for astator frequency of 50 Hz.
The investigated machine is a squirrel cage induction machine with a nominal power of
0.9 MW, a stator frequency of 50 Hz, 72 stator teeth, 89 rotor teeth and a pole pair number
of 6. To get the characteristic behaviour of the excited mode, a variation of the stator
frequency from 30 Hz to 55 Hz has been performed. The acceleration sensors are placed on
the surface of the stator core stack as depicted in Fig. 5.8. First, steady-state measurements
have been carried out followed by a transient measurement. The result for the velocity
amplitude against the frequency is shown in Fig. 5.9 and compared with the simulation
result of the modified analytical model for the velocity amplitude of the relevant mode. It
can be seen that the measurement results yield very good agreement with the simulation
result. Due to machine load limitations, the frequency sweep could not be continued,
therefore the rise in the deformation amplitude could not beverified.

To sum up, the measurements have shown that the influence of the impregnated wind-
ings and the wedges leading to an increase in the stiffness ofthe laminated core, and of the
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Figure 5.8: Measurement assembly - placement of the acceleration sensors on the surface
of the investigated stator core stack

Steady-state measurement

Transient measurement

Simulation result

Figure 5.9: Comparison of the measured and analytically computed velocity amplitude
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mass of the windings resulting in a decrease of the eigenfrequencies cannot be neglected,
a fact also discussed in [83], [25]. Generally, the presented approach for the resonance fre-
quencies works very well. However, it should be noted that problems may occur for stator
sheets with a large tooth height compared to the yoke height.In this case the resonances
of the teeth may occur near eigenfrequencies of the ring and thus result in larger errors for
the computational results. Furthermore, the three-dimensional nature of the system leads
to further resonances which cannot be determined with the two-dimensional model. This
results in further uncertanties in the design of a low-noiseinduction machine. In addition,
the coupling of the stator core stack to the housing and the housing itself may influence the
structural vibration behaviour. An investigation regarding this topic is presented in chapter
8.

5.3 Acoustic Computation

The analytical approach takes an infinitely long cylinder todetermine the radiation gauge,
cf. section 3.3. With the determined velocity on the surfaceof the structure, the sound
pressure can be computed according to (3.32). In a first step,the influence of the modified
eigenfrequencies shall be investigated again, now for the emitted sound pressure. There-
fore, the sound pressure for the results in Fig. 5.6 is computed according to (3.32). The
resulting sound pressure level is depicted in Fig. 5.10. Theresults for the deviations are
quite analogous to the results shown in Fig. 5.6. For lower excitation modes the variance
is not larger than 4 dB. For excitations with higher mode numbers the deviation becomes
quite large - up to 10 dB - due to the shift of the eigenfrequencies. This shows that a wrong
determination of the eigenfrequencies can lead to large deviations regarding the computed
sound pressure.

5.3.1 Comparison with measurements

In this section a comparison of the analytically determinedsound pressure resulting from
the magnetic field harmonics in the air gap with measurementsis carried out. The analyt-
ical computation first yields the magnetic field component and, from these, the resulting
stresses on the stator core stack are determined for each excitation frequencyfi . For allk
stresses with different spatial ordinal numbersn at this excitation frequencyfi the sound
pressure components ˆpk(n, r,ωi) have to be computed. Finally, the resulting sound pres-
sure at fi can be determined by summing up all sound pressure components. Hence, a
noise spectrum is gained, which can be compared with measurements. These are taken
at a distance of one meter from the investigated machine according to [1] and [2] respec-
tively, see Fig. 5.11, and deliver the frequency spectrum ofthe A-weighted (see appendix
A.2 or [34]) sound pressure levels. However, for comparing the measurement results with
the computed ones, the A-weighting of the measurements has to be compensated. The
measurement data of about thirty different induction machines have been investigated and
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Figure 5.10: Comparison of the Jordan results and the adapted model for the sound pres-
sure level

Figure 5.11: Acoustic measurement assembly

compared to the analytical results. To show all comparisonswould be beyond the scope
of this work, thus the results of two different induction machine types, presented in Fig.
5.12 and Fig. 5.13 and representing the major effects and problems that occur, shall be
discussed in more detail.

In Fig. 5.12, the measurement results for the induction machine with squirrel cage rotor,
see appendix A.5, and the results of the analytical computation for the nominal operating
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point are shown. In Fig. 5.13, the comparison results of a double fed induction machine
are shown for the cascade operating-point. The parameters for this machine are given in
Table A.3. One striking difference between these machine types is the number of excitation
frequencies of the rotating force waves. The rotor field harmonics of the squirrel cage rotor
depend on the number of rotor slots whereas, for the double fed induction machine with
the slip ring rotor, the rotor field harmonics depend on the number of windings in the rotor.
Thus many more excitation frequencies exist for the latter machine type. This makes it
very difficult to set up a proper design because, with the enormous amount of excitation
frequencies, the probability to catch a structural resonance is very high.

Figure 5.12: Comparison of the measurement results with thecomputation results of a
squirrel cage induction machine

The measured sound pressure levels comprise the typical noise characteristics of elec-
tric machines. There exist striking peaks in the sound pressure levels. These can be clearly
attributed to the exciting forces resulting from the electromagnetic fields. The comparison
with the analytical results shows a good agreement of the computed excitation frequencies
and the frequencies of the measured noise peaks. The sound pressure level amplitudes
however do not agree at every peak, which is even more striking for the double fed induc-
tion machine.

The deviations can be explained by the differences of the magnetic field results as ex-
plained in section 5.1.1 leading to a different excitation of the structure. Furthermore,
the two-dimensional structural model fails to mimic the complex machine behaviour since
it lacks bearings, cooling devices etc. Especially the structural influence of the housing
can be grave. The plates encasing the electrical machines have a dense distribution of the
structural eigenfrequencies in the frequency range interesting for noise investigations [99],
due to the flexural behaviour of the plates. If one of those structural eigenforms is excited,
large deformation amplitudes due to the plate bending may occur and this will result in a
high sound radiation.
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Figure 5.13: Comparison of the measurement results with thecomputation results of a dou-
ble fed induction machine

Especially in Fig. 5.12, measured noise peaks can be seen that are not predicted by the
presented analytical approach. The finite element simulation of this machine, see section
6.4, has shown that there are higher harmonics occurring dueto saturation, in particular
for the machine of Fig. 5.12. If saturation is considered, then most of the unassigned
spectral lines of the noise peaks can be computed. A comprehensive approach where
the radiated noise is determined with numerical means is presented in chapter 8. These
frequencies are considered there and, again, the computed noise results are compared to
measurement results. Note that this grave influence of the saturation fields on the noise
spectrum is typically only present for two pole machines. A reliable analytical approach
for the determination of the amplitude of these magnetic field components and thus the
sound pressure values has not yet been found by the author. Other sources for the noise
peaks are not quite clear yet and have to be determined in further investigations.

Nevertheless, a good match can be seen for critical noise peaks, meaning that the re-
sults from the analytical computation are good means to pinpoint induction machines with
critical noise behaviour.
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For three dimensional structural analyses of induction machines the stresses acting on
the stator teeth in the air gap have to be determined. The skewing of the rotor bars, a
common method to reduce harmonics of the torque, has influence on the characteristics
of the magnetic field harmonics in the axial direction of the air gap and this also results
in a variation of the stresses in axial direction. To consider its influence properly, a three-
dimensional model of the electrical machine has to be set up [65]. However, extensive
efforts are required to set up an adequate three-dimensional finite element model. As
for noise investigations, the magnetic field and in particular its harmonics are of interest.
Therefore, a very fine mesh is needed in the air gap, which leads to models that require
a large amount of memory for the finite element simulation. The modelling of the air-
gap mesh is even more complicated if the machine is skewed, especially if a consistent
mesh is required in the simulation process. To compute the magnetic field for the nominal
operating point, the rotor rotation has to be considered in atransient simulation. First of all,
this requires an appropriate coupling of the rotating and non-rotating parts. Furthermore,
for acoustic simulations mostly the steady state result is of interest. This is reached not until
the transient effects have decayed. For this, and to obtain aproper frequency resolution of
the steady state magnetic field, a large number of time steps is needed. This results in high
computational costs and long simulation times.

An alternative method enabling faster simulations of skewed electrical machines, es-
pecially if considering rotor movement, is the multi-slicemethod. This method couples
several two-dimensional models (slices) via an electric circuit. Hence, no fields in axial
direction are computed and the end-region effects are not considered. However, for noise
investigations this method is an adequate means as the most significant magnetic field com-
ponents are those in radial and azimuthal direction. Hence,with this method the modelling
of the machine can be carried out more easily and, beyond this, the computational costs to
determine the magnetic field in the air gap are not as large as for three-dimensional mod-
els. After computing the magnetic field in the air gap, the stress acting on the stator teeth
can be determined. However, a solution exists only at distinct axial position, i.e. where the
slices are modelled. In this chapter, an investigation of the variation of the magnetic field
and thus the forces in axial direction is carried out. This isnecessary if the forces have to
be applied to a three-dimensional structural model. A wrongcharacteristic may lead to a
wrong result for the vibration.

In a first step, to get an idea of the variation of the flux in axial direction, the analytical
approach presented in chapter 3 is taken and modified to account for the skewing. It is
shown that spatial ordinal numbers in axial direction for each magnetic field component
can be computed which determine their characteristic in axial direction.

67
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In a next step the application of the multi-slice method to simulate skewed induction
machines and compute the rotating force waves necessary forfurther investigations on the
noise behaviour is presented. The results of multi-slice simulations with different numbers
of slices and the problems of the interpolation in axial direction, resulting in a wrong
estimation of the force distribution, will be discussed. Itis then shown that by taking
the analytically determined spatial ordinal numbers in axial direction this problem can be
overcome. To validate this approach a three-dimensional model has been set up which will
be shown in a last step. This novel approach has been presented at the 14th Biennial IEEE
Conference on Electromagnetic Field Computation (CEFC) [102] and has been published
in [105].

6.1 Analytic approach to determine the magnetic field distribution

The magnetic inductionB in the air gap for slotting and winding fields can be computed
as follows, see also chapter 3:

Br(ϕ, t) = Λ(ϕ, t)Vδ(ϕ, t). (6.1)

The magnetic field in the air gap shall be decomposed into its harmonics with a Fourier
decomposition which leads to the following relation:

B(t,ϕ) = ∑
ν

∑
λ

V̂δν cos(νϕ −2π fνt − γν)Λ̂λ cos(λϕ −2π fλ t − γλ ) (6.2)

whereV̂δν now denotes the amplitude of the magneto-motive force component. The sub-
script δ is omitted from now on. The affiliation of the amplitudes, angular frequencies
and phase angles to the corresponding spatial orders is denoted by their indexing with the
relevant spatial order numbersν or λ , cf. chapter 3.

A breakdown to winding fields (3.14) and parametric fields (3.15), which has been in-
troduced in 3.1.3, is not necessary for this investigation.This means that (6.2) denotes the
sum of (3.14) and (3.15).

The following derivation only considers the permeance variations due to the rotor and
stator slotting. For magnetic fields arising from nonlineareffects or eccentricities, appro-
priate formulations have to be derived.

The harmonicsVν andΛλ are now further split up according to their origin, either stator,
specified by the subscriptS, or rotor, stated by the subscriptR:

VS= ∑V̂νScos(νSϕS−2π fνSt − γνS), (6.3)

VR = ∑V̂νRcos(νRϕR−2π fνRt − γνR), (6.4)

ΛS= ∑ Λ̂λS
cos(λSϕS− γλS

), (6.5)

ΛR = ∑ Λ̂λR
cos(λRϕR−2π fλR

t − γλR
). (6.6)
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Since, due to the skewing, the azimuthal coordinateϕ is different for stator and rotor
permeance and magneto-motive force waves, appropriate coordinatesϕS andϕR are intro-
duced. The skewing is defined as the twisting of the stator or the rotor bars along the axial
direction, denoted with the coordinatez, at a distinct angle. Depending on whether the sta-
tor or the rotor bars are skewed, eitherϕS or ϕR is a function of the axial coordinate. The
machine that has been investigated here has a rotor that is skewed for one stator slot pitch.
The variation of the rotor angleϕR in z-direction can be stated by the following relation

ϕR = ϕS− γ ′z (6.7)

whereγ ′ stands for the slope, a function of the number of stator teethNS and the lengthlFe

of the iron core stack, and is computed by

γ ′ =
2π

NSlFe
(6.8)

for the investigated machine, as there the rotor is skewed for one stator slot pitch. This
relation indicates that the harmonics of the permeance and the magnetomotive force aris-
ing from the skewed rotor part are characterized by an additional spatial order in axial
direction.

The resulting harmonics of the magnetic flux density are now computed by the product
of the permeance waves with the magnetomotive force waves ofthe stator or of the rotor.
E.g. the product of the magnetomotive force waveVS and the permeance waveΛR results
in the magnetic induction for the stator-rotor fields with indexSR. Thus, after applying the
addition theorem, the following results are obtained:

stator-stator fieldsBSS

BSS= ∑
νS

∑
λS

V̂νSΛ̂λS

1
2
[cos((νS−λS)ϕS− (2π fνS−2π fλS

)t − (γνS− γλS
))

+cos((νS+λS)ϕS− (2π fνS+2π fλS
)t− (γνS+ γλS

))] (6.9)

stator-rotor fieldsBSR

BSR= ∑
νS

∑
λR

V̂νSΛ̂λR

1
2
[cos((νSϕS−λRϕR)− (2π fνS−2π fλR

)t − (γνS− γλR
))

+cos((νSϕS+λRϕR)− (2π fνS+2π fλR
)t− (γνS+ γλR

))] (6.10)

rotor-stator fieldsBRS

BRS= ∑
νR

∑
λS

V̂νRΛ̂λS

1
2
[cos((νRϕR−λSϕS)−2π fνRt − (γνR− γλS

))

+cos((νRϕR+λSϕS)−2π fνRt − (γνR+ γλS
))] (6.11)
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and rotor-rotor fieldsBRR

BRR= ∑
νR

∑
λR

V̂νRΛ̂λR

1
2
[cos((νR−λR)ϕR− (2π fνR−2π fλR

)t − (γνR− γλR
))

+cos((νR+λR)ϕR− (2π fνR+2π fλR
)t− (γνR+ γλR

))] (6.12)

The sum of these magnetic field harmonics yields the resulting magnetic induction in
the air gap:

B(t,ϕ,z) = BSS+BSR+BRS+BRR (6.13)

which now also describes its variation in axial direction.
The frequencies and spatial orders in azimuthal direction of the rotor and stator magneto-

motive forces and the corresponding slotting fields are obtained by known relations, which
can be taken from [68], [80] and have also been presented in chapter 3. With the relation
for the rotor angle specified in (6.7), the spatial ordinal number in axial direction can
now be computed for each harmonic. For example, for the stator-rotor fields, the term
(νSϕS±λRϕR) can be transformed as follows

(νSϕS±λRϕR) = (νS±λR)ϕS∓λRγ ′z. (6.14)

Thus the spatial ordinal numberk in azimuthal direction, with the indexSR for the
stator-rotor fields, yields

kSR= νS±λR (6.15)

and the spatial orderkz in axial direction is computed as

kzSR=∓λRγ ′ (6.16)

For the other fields, the transformation has to be applied accordingly which results in the
following spatial ordinal numbers in axial direction:

kzRS=∓νRγ ′, (6.17)

kzRR =−(νr ∓λR)γ ′. (6.18)

For the investigated machine, stator-stator fields do not have any dependencies in axial
direction.
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Rotor currents in slices coupled via electric circuit

Rotor rotation adjusted for each slice according to axial position

Figure 6.1: FEM multi-slice model of squirrel cage induction machine with five slices

6.2 Finite element simulation with the multi-slice method

The electromagnetic field computation to determine the magnetic flux densityB is carried
out with a finite element simulation using the multi-slice method [24], [57]. This method
is an established and improved technique for investigations of skewed electrical machines,
e.g. the estimation of the load-dependent mean torque. End effects and effects in axial
direction cannot be taken into account with this model but these are negligible for noise
computation purposes. Investigations on end-winding leakage and axial flux confirming
this assumption are presented for example in [48].

For multi slice simulations, the axial dimension is dividedinto several slices, each rep-
resented by a two-dimensional model with the correspondingrotor teeth position due to
the skewing. The currents in the rotor bars of each slice are coupled with an electric cir-
cuit. A schematic overview for a five slices multi-slice model is shown in Fig. 6.1. The
investigated induction machine is skewed for one stator slot pitch.

The electromagnetic simulation with the multi-slice method delivers the magnetic flux
density in the air gap of each slice, which is needed to compute the mechanical stress
acting on the stator core stack.

The skewing of the rotor leads to variations of the magnetic flux in axial direction.
For the fundamental wave, this is linear with the skewing. For higher harmonics of the
magnetic field, the variations can have a multiple periodicity of the skewing determined
with the spatial ordinal numbers derived in the previous section.

However, the multi-slice method only delivers the results for the magnetic field for a few
number of slices at distinct axial positions, which can be denoted as the sampling points
of the magnetic field characteristic in axial direction. Dueto the low number of these
sampling points, aliasing and leakage effects occur [58]. Therefore, common interpolation
techniques deliver wrong results for the force distribution. The problem can be avoided, if
the exact spatial ordinal numbers in axial direction are known.
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6.3 Reconstruction of the magnetic field distribution

With the introduced analytic determination of the spatial orders and frequencies of the
magnetic induction and the results of the multi-slice simulation, the distribution of the
magnetic field and thus the mechanical stress in the air gap can now be reconstructed.

The variation of the magnetic field in axial direction can be determined by a harmonic
superposition

B̂(k, fk,z) =
m

∑
i=1

C1i cos(kzi z)+C2i sin(kziz) (6.19)

with the known spatial orderskzi , the unknown amplitudesC1i andC2i , andmdenoting the
number of spatial orders occurring at a distinct harmonic. Regarding the higher harmonics
only the stator-rotor and rotor-rotor fields have the same frequencies. This is the case e.g.
for the rotor slot harmonics for which

fνS = fp = fνR. (6.20)

The resulting frequenciesfk of the magnetic fieldBk are then obtained as:

fk1 = fp+ fλR
or fk2 = fp− fλR

. (6.21)

For fk1, the following two spatial ordinal numbers arise:

kz1 =−λRγ ′ kz2 = (νR−λR)γ ′ (6.22)

and thus

B̂(k1, fk1,z) =C11cos(kz1z)+C21sin(kz1z)+C12cos(kz2z)+C22sin(kz2z) (6.23)

For the the multi-slice results, a two-dimensional Fouriertransformation has to be carried
out, the first according to time and the second according to the azimuthal coordinate. As a
result, the amplitudeŝBk j (k, fk) for specific frequenciesfk and spatial ordersk in azimuthal
direction are obtained for each slicej and thus in discrete points in axial direction. The
frequencies and spatial orders can now be related to the analytically determined frequen-
cies and spatial orders in azimuthal direction. This enables the correlation of the spatial
orders in axial direction to the computed amplitudes of the magnetic flux density of the
multi-slice solution.

With the computed amplitudes of the multi-slice simulation, the unkown coefficients
can be determined with a least square method [44]. To get a unique solution, a multi-slice
model of at least four slices is necessary. With this method the signal can be reconstructed
from non equidistant points, too. This can be important, because first of all it is not always
possible to model equidistant slices and, furthermore, it is beneficial to shift the slices at
distinct positions to avoid sampling at points where a zero-crossing of a magnetic field
harmonic can occur making the reconstruction problematic.
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To sum up, this approach enables the reconstruction of the magnetic field in the air gap
to obtain the variation in axial direction with the help of analytical solutions. For this
approach, the field components taking into account either stator or rotor slotting have been
considered. The interaction of the slotting permeance waves also leads to distinct magnetic
field components. However, their spatial ordinal numbers and frequencies are included
in those of the stator-rotor and rotor-stator components, respectively. The reconstruction
therefore also takes these components into account.

6.4 Numerical example

The electromagnetic simulation of an induction machine with 42 stator slots, 36 rotor
slots, a pole pair numberp = 1 and skewed for one stator slot pitch is carried out with
a 2D multi-slice model. A non-linear, transient simulationhas been carried out for the
nominal operating point with a stator current of 150 A (f1 = 50 Hz) and with a rated slip
s= 0.3% (rotor speed of 2991 rpm). This is the same machine introduced in section 5.1.
More detailed machine parameters are listed in appendix A.5.

The electromagnetic simulation has been carried out with two models, one with four
slices and one with five slices in order to compare the resultsand thus validate the intro-
duced analytic approach.

Slot wedges µSlW

Stator µ ( )Fe H

Rotor µ ( )Fe H

Shaft µ ( )FeShaft H

Stator windings J0

Rotor Bars -
Eddy current region

Sliding interface

On surface boundary: x =0A n

(a) FEM material parameter
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Figure 6.2: Material parameters for FEM multi-slice model

The model is discretized with quadrilateral and triangularelements of second order and
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theA,v−A formulation see section 4.3 is used to solve the nonlinear transient eddy cur-
rent problem for the nominal operating point. The applied materials and boundary con-
ditions are sketched in Fig. 6.2. For the stator and rotor thepermeabilityµFe is defined
as a function of the magnetic field intensityH. For the shaft, the nonlinear permeability
µFeSha f t(H) is used and the permeability of the slot wedges is set to a constantµSlW. At the
stator windings, the current densityJ0 is applied for a three phase system with two layers.
The rotor bars are defined as the eddy current region. On the boundary of the stator no flux
is entering the surface and thereforeA ×n = 0. To consider the rotor movement, a sliding
interface is applied in the air gap between the rotating and non-rotating parts. In every
time step, the geometry modification due to the rotation is considered by linear constraint
equations [47], [60].

For each time step, the stator currents are applied appropriately and the rotor movement
is considered by adjusting the rotor position according to the rotational velocity. Only
steady state results are relevant and in order to reduce the transient oscillation and thus
to reach the steady state with less computation efforts, an approximate frequency domain
technique [74] is used to estimate the initial conditions for the simulation.

The time step∆t and the number of time steps to be computed depend on the desired
frequency resolution and the corresponding periodT. A method to reduce the number of
time steps and therefore the computational costs has been introduced in [61]. The transient
simulation is truncated and leakage and aliasing effects are allowed. The correct spectrum
of the magnetic flux density is reconstructed by determiningthe spectral lines analytically
and computing the corresponding amplitude values. The simulation delivers the magnetic
flux density in the air gap of each slice. In Fig. 6.3, the interpolated and reconstructed vari-
ation of the magnetic induction in axial direction for the second slot harmonic with 3639.3
Hz and a spatial ordinal number ofp+gNR = 73 in azimuthal direction are depicted. The
direct interpolation has been performed with a cubic splinemethod. The analytic approach
delivers the spatial ordinal numberskzSR = −2π ·2.0555 1/m andkzRR = −2π ·2.084 1/m
in axial direction for the reconstruction algorithm. The maximal detectable spatial ordinal
numberkz4Sl for the model with four slices is, applying the Shannon theorem, 2π ·1.7986
1/m and for five slices 2π ·2.398 1/m. The aliasing effect that occurs for the four slices
multi-slice model can be seen for the interpolated solutionin Fig. 6.3. The variation yields
a completely different axial behaviour as compared to the directly interpolated solution for
five slices. The reconstructed results themselves, also depicted in Fig. 6.3, match very
well. The slight deviations that occur arise from the different accuracy of the multi-slice
models due to the different number of slices. The deviationscompared to the direct inter-
polated solution, however, are strong. It is interesting tonote that the direct interpolation
of the five slices results also delivers a wrong variation, although no aliasing occurs.

After determining the magnetic field harmonics, the surfaceforce distribution on the
stator side of the air gap is computed from (A.2) and (A.2) in appendix A.1 in the fre-
quency domain. Thus, the errors occurring with the direct interpolation method result in a
wrong estimation of the force distribution as can be seen in Fig. 6.4 showing the surface
force distribution for the second slot harmonic at 3589.3 Hzfor the interpolated multi-slice
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Figure 6.3: Characteristic of the magnetic flux density at a frequency of 3639.3 Hz and
with a spatial order in azimuthal direction of 73 for the interpolated and recon-
structed simulation results

results and for the reconstructed results of the four slice model.

6.5 Validation with 3D model

To validate the previously introduced method, a nonlinear,transient electromagnetic sim-
ulation of a three-dimensional model of the induction machine has been carried out, since
measurements of the flux density in the air gap are very complex. A sketch of the model
is depicted in Fig. 6.6.

The model has been set up with a consistent mesh with an element division of 12 in
axial direction. In the air gap, special elements connect the skewed rotor and the stator.
A hexahedral element has therefore been divided into a pyramid element with the nodes
(2,6,7,3,8) and tetrahedral elements with the nodes (1,4,5,2), (2,8,5,6) and (2,4,8,3) as
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Figure 6.4: Surface force distribution at the stator side ofthe air gap for a frequency of
3589.3 Hz a) direct interpolated solution for 4 slices b) direct interpolated so-
lution for 5 slices c) reconstructed solution for 4 slices

depicted in Fig. 6.5. In particular, only second order edge elements have been used, and
the simulation has been carried out applying theA,v−A formulation, see section 4.3.
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Figure 6.5: FEM multi-slice model of squir-
rel cage induction machine with
five slices

The same material properties as for the
multi-slice model are used. On the bound-
ary of the model againA × n = 0 as no
flux passes the surface. The rotor bars have
been modelled together with the end ring
to account for end region effects and both
are part of the eddy current domain. On
both ends of the machine, a layer of air en-
closes the machine model. The influence of
the shaft has been neglected for this inves-
tigation, since, at short circuit operation,
very low flux is going through it. Hence,
this part is omitted and the outer boundary
surface is comprised by the inner rotor sur-
face.

Since the consideration of the rotor rotation in 3D is problematic (mesh interface be-
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tween skewed rotor and stator), the simulation has been conducted for a short circuit op-
erating point, with fixed rotor. Thus the effects of the rotorcurrents and therefore of the
resulting fields are taken into account. To reduce the computation time, the method in [61]
has been applied.

Rotor bars skewed for one stator
slot pitch (eddy current region)

Slot wedges µSlW

Stator µ ( )Fe H

Rotor µ ( )Fe H

Stator windings J0

On surface boundary: x =0A n Air covering the end-region

Rotor bars plus end ring

Figure 6.6: FEM multi-slice model of squirrel cage induction machine with five slices

Besides the 3D simulation, a multi-slice simulation with 5 slices at short circuit opera-
tion has also been performed and the introduced reconstruction method has been applied,
thus enabling a comparison of the two results. In Fig. 6.7, the magnetic flux density of
the 3D solution along the axial direction for the spatial ordinal number of 73 in azimuthal
direction are depicted. For the reconstruction of the multi-slice results, the spatial orders
kzSR=±2π ·2.033 1/m andkzRR =±2π ·2.068 1/m have been computed with the analytic
approach. The result is also depicted in Fig. 6.7. It can be seen that the 3D results yield
the same variation. The slight deviation of the amplitude can be explained by the coarser
mesh, the consideration of the end rings and the occurrence of an axial flux component in
the 3D model.
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Figure 6.7: Reconstructed characteristic and results of 3Dsimulation of the magnetic flux
density in axial direction for a frequency of 50 Hz and a spatial order in az-
imuthal direction of 73



7 INFLUENCE OF DIFFERENT ROTATING STRESS WAVES ON
THE 3D VIBRATIONAL BEHAVIOUR

As presented in chapter 5, the analytical approach for noisecomputation is based on the
decomposition of the air gap field into its harmonics and the stress wave components can
then be determined with Maxwell’s stress tensor. The vibration and noise are then com-
puted with simple structural and acoustical models by the contributions of each stress
wave. With this decomposition, the assignment to the causes(slotting, saturation, etc.) of
problematic noise peaks can be retained. This idea of investigating the structural and then
acoustical response of distinct force wave components has also proved to be of value when
using numerical methods to compute three dimensional machine models [79], [17].

One weak point of the analytical structural models is that they typically do not com-
prise all structural details (stator, rotor, housing, etc.) and they are mainly derived for
two-dimensional considerations. It has been shown in chapter 5, that such models do not
account for all vibrations, since additional resonances and mode shapes occur for three-
dimensional structures.

In the following an investigation of the influence of distinct unit stress wave compo-
nents on the three-dimensional structural vibration behaviour of a squirrel cage induction
machine is investigated. The analysis shows how different stress wave components affect
the structural vibration behaviour. The machine is the sameas the one introduced for the
electromagnetic field simulation in chapter 6 and the results obtained from the electromag-
netic field simulation determine the frequencies and spatial ordinal numbers taken for this
investigation.

The chapter is arranged into two main parts. First, the stress wave components which are
of interest in the course of this analysis are defined. In a next step, the three-dimensional
structural model is presented and the computed structural responses to the different stress
wave components are compared and discussed.

This work has been presented at [103] and will be published in[104]. A special focus
lies on components with large spatial ordinal numbers whichmay have large amplitudes
as shown in section 5.1 and chapter 6. Following up on the findings of [97], it is shown in
this chapter that, for stresses with spatial ordinal numbers near the number of teeth, an un-
dersampling occurs and new components with lower spatial ordinal numbers arise. These
components contribute to the vibration and need to be considered in the noise computa-
tion of electrical machines. In a next step, the influence of the variation of the stresses in
axial direction is investigated. The obtained structural response is compared to that with
a uniform distribution in axial direction. Furthermore, stress waves with a spatial ordinal
number of one are investigated, as this may lead to significant vibrations, especially when
acting on the rotor side. For this, some considerations regarding the frequency of the forces
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acting on the rotating rotor have to be made.

7.1 Definition of stress wave components

The forces crucial for the noise computation of electrical machines are those acting on the
tooth tips of the stator or rotor teeth. These arise from the magnetic field in the air gap
and can be determined with the Maxwell stress tensor (2.21).Forces acting in the iron
(magnetostriction) or at the inner side of the teeth are neglected, because their influence is
considered to be small compared to the forces acting on the tooth tips, especially for small
machines [10].

For this investigation, the simulation results of the magnetic field in the air gap (along
the whole circumference) are taken from the numerical analysis presented in chapter 6.
The magnetic fields have been obtained by a transient finite element multi-slice simulation
of the squirrel cage induction machine for the nominal operation point. The skewing of
the machine and the rotor rotation have been considered by the application of a multi-slice
model.

As only the stationary problem is of interest for the structural analysis, a Fourier trans-
formation of the transient solution along the peripheral angle ϕ from the time domain to
the frequency domainB(t,ϕ)→ B̂(ω,ϕ) is performed. The mechanical stressesσ̂r(ω,ϕ)
and σ̂ϕ(ω,ϕ) can then be determined by a convolution in the frequency domain for the
radial and azimuthal direction, cf. (A.2) and (A.3).

A common approach is to further decompose the mechanical stress into stress wave
components

σ(n,ϕ, t,z) = σ̂(n)cos(nϕ −2π fnt−ψn(z)−ψn) (7.1)

by carrying out a second Fourier transformationσ̂(ω,ϕ) → σ̂(ω,n) [80] with respect to
the peripheral angleϕ. This way, a relation between the cause - the magnetic field com-
ponent - and the effect - the deformation of the structure - can be obtained [42], [79]. The
notation also considers the axial variation with the phase angleψn(z). As shown in chapter
6, for the force waves related to the slotting fields, the phase angleψn(z) is determined by
the spatial ordinal numberskz of the contributing magnetic field components.

As the second Fourier transformation is carried out along the whole azimuthal perime-
ter, stresses are computed at positions where actually no stresses can occur, i.e. at the
positions of the slots where no material (only air) is present. To evaluate the stress wave
component acting on the teeth only, a periodic rectangular signalw(ϕ,z) is defined with a
period determined by the number of slots, which is zero at theslot positions and one at the
teeth positions. The rectangular signal is then multipliedwith the stress wave component
σ(n,ϕ, t,z) leading to a new component̄σ(ω,ϕ, t,z)

σ̄(n,ϕ, t,z) = σ(n,ϕ, t,z)w(ϕ,z) (7.2)
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This operation sets the obtained stress values at the position of the slots to zero. These
may be nonzero because the field there is not exactly zero (leakage fields). In Fig. 7.1,
the stress valueŝσ(n), not considering the influence of the slots, and the stresses¯̂σ(n),
considering the slots, at a frequencyfn = 1894.6 Hz with the spatial ordinal numbersn,
that arise, are depicted. The results in Fig. 7.1 are obtained from the first slice. The spatial
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Figure 7.1: Spatial spectra of mechanical stresses at a frequency of 1894.6 Hz

ordinal numbers with or without slots considered are the same. It can be seen that the most
striking amplitudes arise for the spatial ordinal numbern= 38, n = −4 andn= 80. The
multiplication with the rectangular signalw(ϕ,z) now leads to a change of the amplitudes
of up to 20%. In particular, an increase of the amplitude for the spatial ordinal number of
4 and a decrease of the spatial ordinal number of 38 can be noted. This phenomenon is
discussed in more detail in the following section.

7.1.1 Higher order stress waves

In the following, the influence of the sampling of the teeth ondistinct stress wave com-
ponents is investigated. The computed spectrum depicted inFig. 7.1 for the first slot
harmonic atfn = 1894.6 Hz shows that the largest component has a spatial ordinal number
of n= 38. For the slot harmonic atfn = 1794.6 Hz this would ben= 36.

The mechanical stress waves according to (7.1) are now set upand impressed on the
structural finite element model. For the further investigations, only stress waves with am-
plitudes of one are considered. In order to impress this signal appropriately on the finite
element mesh, first of all the element division in azimuthal direction has to be set ap-
propriately. In Fig. 7.2 the stress wave with the spatial ordinal numbern = 38 applied
on a mesh with six times the number of stator teeth is depicted. The number of sample
points is sufficient to avoid aliasing effects, however performing a linear interpolation of
the resulting points of the stress signal, as is the case in FEM with linear shape functions,
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results in the modulated amplitude shown in Fig. 7.2. This effect is well known, however
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Figure 7.2: Stress wave with a spatial ordinal number n=38 ondiscretized surface with and
without slots

it should be mentioned here because it plays a role especially for higher ordinal numbers.
A compromise between computational effort and the occurring error has to be made.

The second and more interesting effect occurring is, as explained above, due to the slots,
where no forces are acting. In Fig. 7.2 the resulting stress wave impressed on the 42 stator
teeth is depicted. Interestingly, the resulting signal resembles a wave with a spatial ordinal
number ofn= 4. This can be explained by studying the spectra ofσ̄ , σ andw(ϕ).

In Fig. 7.3 the Fourier transform of the stress wave assumingno slots and the rectan-
gular signalw(ϕ) are shown along with the resulting stress wave acting on the teeth. The
multiplication of the two signals in the time domain, thus a convolution in the frequency
domain, means that the stress wave withn = 38 acting on the teeth now also contains
lower and higher ordinal numbers depending on the number of slots. In this special ex-
ample wheren = 38 and the number of stator teeth is 42, the effective stress wave has a
fundamental wave with the wave number 4 superimposed with higher harmonics. In gen-
eral, when stress waves with spatial ordinal numbersn= NS+n are applied on the stator
teeth, a subharmonic with a spatial ordinal number ofn arises. If that is low, i.e.n < 6
the contribution of this stress wave component can not be neglected. When impressing
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Figure 7.3: Fourier transform of periodic rectangular signal w(ϕ) , of the original stress
wave withn= 38 and of the stress wave effectively acting on teeth

Figure 7.4: Fourier transform of periodic rectangular signal w(ϕ) , of the original stress
wave withn= 38 and of the stress wave effectively acting on teeth

force waves on the stator core, the main deformation is due tothe bending of the yoke
and, as outlined in [42], lower ordinal numbers in azimuthaldirection thereby result in
larger deformation amplitudes than higher ordinal numbers. This means that, because of
the fundamental wave occurring, the higher spatial ordinalnumbers are of interest when
investigating the structural vibration behaviour.
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The amplitude of the subharmonic is influenced by the widthbT of the teeth. The
broader the teeth compared to the slot widthb, the more of the higher harmonics occur
and the less the amplitude and thus the influence of the fundamental wave is. This is
shown in Fig. 7.4 where the resulting stress harmonics forbT/b = 1/2 andbT/b = 5/6
are depicted. The amplitude is nearly halved for the broaderteeth.

7.1.2 Stress waves with axial variation

A further aspect that influences the force distribution along the teeth not only in azimuthal
but also in axial direction is the skewing of the rotor bars where the winding and the
permeance vary in axial direction according to the skewing angle. This influences the field
and therefore the stress distribution in axial direction. In chapter 6, an approach has been
presented to account for the axial variation of the field. There, spatial ordinal numbers
in axial direction are determined and a reconstruction method to obtain a valid axial field
distribution of the magnetic field is presented.

For the analysis presented here, the field components with anazimuthal spatial ordinal
number ofn= 37 andn=−41 are considered. Those lead to a stress component with an
azimuthal spatial ordinal number ofn = −4 (andn = 78, which is not of interest here).
The field component withn=−37 is a rotor slotting field that has spatial ordinal numbers
in axial direction ofkz1 =−2π1.021 1/m andkz2 =−2π1.05 1/m. In Fig. 7.5, the results
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Figure 7.5: Real part of the stress wave with spatial order offour and consideration of
skewing

for the mechanical stress wave is depicted. A striking variation in axial direction can be
detected. The application of this force distribution may result in a bending of the core
stack in axial direction or excite distinct eigenmodes and thus may influence the structural
behaviour in a critical way.
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7.1.3 Stress waves acting on rotor

For the noise computation of electrical machines, mainly the forces acting on the stator
teeth play an important role. However some force componentson the rotor core may
excite the structure to critical vibrations. This is the case, if resulting forces acting on the
bearings of the machine appear, which is the case for stress waves with a spatial ordinal
number of one.

Due to the even number of slots and the pole pair number of one,force waves with
a spatial ordinal number of one only will arise due to the eccentricities of the rotor, see
section 3.1.1, which however are unavoidable. Furthermore, slotting leads to subharmonics
with n= 1 for a stress wave with the spatial ordinal number ofn= 37 acting on 36 rotor
teeth.

Due to the rotational movement of the rotor, the frequenciesof the stress wave com-
ponents acting on the rotor have to be determined accordingly. The frequencyf R

l of a
mechanical stress wave acting on the rotor surface with a wave numbernl is given as
follows:

f R
l = f S

nl
−nl fm (7.3)

where the superscriptRdenotes the moving coordinate system on the rotor, the superscript
S the fixed coordinate system,fm is the mechanical speed in Hz andl indexes the spatial
ordinal number and the frequency in the moving coordinate system. The mechanical stress
wave acting on the rotor side, therefore, results in

σl = σ̂l cos(klϕR−2π( f S
i −nl fm)t −ψl ) = σ̂l cos(nlϕR− s̄l 2π f S

i t−ψl ) (7.4)

wheres̄l can be derived as

f R
l = f S

i
f S
i −nl fm

f S
i

= s̄l f S
i . (7.5)

With the finite element method, the equation of motion in the frequency domain for the
rotating part yields the following equation:

(−Ω2
RMR+KR)ûR = F̂R (7.6)

whereΩR= 2π f R
l is the excitation frequency. Inserting (7.5) in (7.6) then yields

(−Ω2
Ss̄l

2MR+KR)ûR = F̂R (7.7)

with ΩS= 2π f S
i . This means that the mass, i.e. the density, of the rotating structure has to

be modified if a rotating force is acting there.
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7.2 Structural simulation

As mentioned in the introduction, the resonances and the structural response have to be pre-
dicted by the structural simulation as accurately as possible to enable a low noise design.
In the following, the finite element method, see section 4.4,is used to analyse the struc-
tural response of the modelled induction machine. This method enables detailed vibration
investigations of complex structures. Although existing computational and memory re-
sources enable simulations of very large models, compromises have to be made between
the degree of accuracy of the model, e.g. the heterogeneous composition of the stator core
stack, and the computation time, depending on the focus of the simulation. The investi-
gated machine is the squirrel cage induction machine already presented in chapter 6. The
machine parameters are listed in appendix A.5.

A three-dimensional model of the squirrel cage induction machine with a cylindrical
cooling jacket has been set up. The effect of the water flowingin the cooling jacket is
neglected. The stator is mounted via a tight fit in the housingof the machine. Since this
work does not focus on rotor-dynamical problems, the modelling of the brush bearings
has been simplified and the rotor and housing are connected via a fixed support, i.e. the
rotor is supported in the end shields of the housing. The structure is meshed with 20-node
hexahedral elements for extensive volumes, and 2nd order solid-shell elements for thin
plates, respectively, i.e. the housing of the machine. In Fig. 7.6, a sectional drawing of
the discretized model is depicted. The main parts of the machine are of steel, and linear

Figure 7.6: Meshed structural model and meshed stator and rotor teeth

mechanical material properties are assumed, since the deformations are small. To consider
the influence of the lamination of the stator and rotor core stack, a homogenization with an
orthotropic material model has been applied according to [50]. The corresponding material
parameters are listed in Table A.4. The insulation of the windings is neglected and linear
copper material properties have been chosen.

The simulations are performed in the frequency domain, since only steady state results
are of interest. Stress distributions with different wave numbers are set up and the resulting
nodal forceŝF acting on the stator and rotor teeth are computed and appliedas boundary
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conditions for the finite element simulation (see section 4.4). The system equation

(−Ω2M +K)û = F̂ (7.8)

with the mass matrixM and the stiffness matrixK then has to be solved for an excitation
frequencyΩ to obtain the nodal displacementsû. The frequency range of interest is from
1000 Hz to 2200 Hz, because, as shown in section 5.3.1, this iswhere most problematic ex-
citation frequencies occur. The quasi-static simulationsare carried out every 30 Hz. Thus,
fourty computations are necessary to get the structural response resulting from one stress
wave component. The computational demands are, therefore,very high. Because of this,
the structural finite element model is meshed rather coarsely. A more detailed structural
modelling is presented in chapter 8 where the vibrations areanalysed more closely and
afterwards are applied as boundary conditions for an acoustic simulation.

7.2.1 Simulation results

The structural investigation focuses on the effect of the possible occurring excitations ex-
plained above. Therefore, distinct stress waves with amplitudes of one and with different
wave numbers are impressed on the stator and rotor teeth. In Fig. 7.7 and Fig. 7.8, the
results for the root mean square velocities on the surface ofthe investigated machine are
plotted against the excitation frequency.
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Figure 7.7: Simulation results for the mean square velocityon the surface of the machine
due to different stress waves acting on the stator
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Generally, it can be said that the higher the order of the force waves, the less is the
deformation, i.e. the velocity amplitude on the surface of the machine. The consideration
of skewing leads to an axial variation of the force distribution, which results in forced axial
bending modes of the stator. In Fig. 7.7 it can be seen that, especially at 1060 Hz and at
1840 Hz, the velocity peaks are larger than forn = 4 without skewing. Furthermore, it
is striking that the frequency responses of stress waves with n= 38 andn= 37 resemble
the responses forn = 4 andn = 5, respectively. This can be attributed to the fact that
the effective stress wave acting on the teeth consists of a fundamental wave and higher
harmonics as explained previously. Forn= 38 a fundamental wave number ofn= 4 arises
and forn= 37 a fundamental wave number ofn= 5.
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Figure 7.8: Simulation results for the root mean square velocity on the surface of the ma-
chine due to different force waves acting on the rotor

Very large velocity values arise from the excitation with a wave number of one, both
for excitations on the stator and on the rotor teeth. In Fig. 7.8, the root mean square
velocity on the surface for forces acting on the rotor side isdepicted. Considering the rotor
rotation with a rotor speed of 2991 min−1 for nominal operating point and taking (7.5) into
account results in ¯sl = 0.953 for an excitation frequency of 1060 Hz and ¯sl = 0.976 for
2060 Hz, respectively, for a spatial ordinal number of one. The eigenfrequencies of the
rotor are shifted by 49.85 Hz, which can be seen in Fig. 7.8 forexample at the excitation
frequencies between 1400 and 1500 or between 2000Hz and 2150Hz, where resonance
peaks can be detected.

Stress waves with spatial ordinal number larger than one on the rotor result in velocity
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amplitudes three orders of magnitude smaller than those acting on the stator teeth, which
can be seen in Fig. 7.8 for a spatial ordinal number ofn= 4 applied without considering
the rotor rotation. Thus, stress waves acting on the rotor may be neglected in the noise
computation process. However, forn = 37, without considering the rotor rotation, the
structural response is in the same order of magnitude as the results forn = 1. The same
effect occurs, as described above, forn= 38 andn= 37 impressed on the 42 stator teeth,
which results in force waves resemblingn= 4 andn= 5. The 36 rotor teeth result in an
effective stress wave with a fundamental wave withn= 1. Due to the skewing of the rotor
slots, the functionw(ϕ,z) now varies inz-direction, too and therefore so does the resulting
stress distribution. This will result in forced axial bending, similar as for the stress wave
n= 4 where skewing is considered.

In Fig. 7.8, the structural response for for tangential stress component withn = 4 is
depicted, too. As shown in [16], too, its contribution to thevibrations is one order of
magnitude lower than that of the radial component. The same velocity peaks occur for
them as for the radial component, except at 1220 Hz which is caused by the azimuthal
component only.

The velocity peaks arising at distinct frequencies lead to the conclusion that eigenfre-
quencies are excited at these positions. A modal analysis ofthe structural model, which
has been conducted separately, delivers the eigenfrequencies and eigenforms of the me-
chanical system, describing the structural behaviour at distinct frequencies. The modal
simulation delivers more than 300 eigenfrequencies from 1000 Hz to 2400 Hz, i.e., on
average, a resonance occurs every 5 Hz.

If the structure is split into three parts - namely stator part (stator core stack with wind-
ing), rotor part (rotor core stack and rotor shaft) and the housing part - the overall defor-
mation characteristic can be composed by the contributionsof the three parts. The high
modal density, for example, can be traced back to the plate bending modes of the housing
part. In Fig. 7.7, approximately 8 striking peaks can be identified. More detailed studies of
the modal simulation results supported the expectations that these peaks can be attributed
to a strong contribution of the stator part at these frequencies. In chapter 8, a more detailed
analysis of the modal results is presented.

Summing up, it has been shown that stress waves with higher ordinal numbers in az-
imuthal direction or with a varying distribution in axial direction can not necessarily be
neglected. For further investigations, the influence of therotor rotation should be consid-
ered for higher harmonics that may be problematic when acting on the rotor teeth.





8 INFLUENCE OF COMPLEX STRUCTURAL BEHAVIOUR ON
THE ACOUSTIC NOISE RADIATION

In the chapter 6, the electromagnetic field computation withthe multi-slice method has
been presented. An investigation of a skewed induction machine showed that the mag-
netic field in the air gap leads to stresses with an axial variation of the stresses acting on
the stator (and rotor teeth). The influence of such stress distributions as well as stress
distributions with larger spatial ordinal numbers has beenanalysed. In this chapter, the
computed stresses of chapter 6 are applied to the stator teeth and detailed structural and
acoustic investigations of the skewed induction machine are carried out. The computations
for three-dimensional models are carried out with both the finite element method and the
boundary element method.

In a first step, the modelling of the structural finite elementmesh is presented and the
used material parameters are discussed. In a next step, the structural vibration behaviour
is analysed with a modal analysis. It is shown that, due to theplate structure, a high modal
density occurs, in particular at the housing. It is then shown that, the eigenmodes near the
excitation frequency and especially those with the stator contributing to the deformation,
obviously influence the surface vibrations of the machine.

To determine the emitted sound pressure, a boundary elementmodel of the induction
machine has been set up. Special issues, in particular fictitious eigenfrequencies that may
arise are shortly discussed and a workaround is presented. For each excitation frequency,
the sound pressure on the surface of the machine and on field points surrounding the ma-
chine is computed. At last, the measured noise spectrum introduced in Fig. 5.12 in chapter
5 is compared with the computed numerical results.

This work has also been presented at [98] and has been published in [99]. The aim
has been to show the influence of the three-dimensional vibration of the housing on the
radiated noise. In the scope of this investigation, some problematic issues are discussed,
for example the modelling of the structure and the applied simplifications as well as the
used material properties.

8.1 Structural vibration computation

To determine the structural vibration results, an appropriate structural model of the investi-
gated induction machine has to be set up first of all. Similarly to the investigations carried
out in 7, all relevant structural components are included: the housing of the induction ma-
chine comprises the cylindrical cooling jacket of the machine with the water guide rails;
the front and back of the machine are encased by plates containing the bearings mounting
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the rotor shaft and lamination stack; the laminated stator core is embedded in the cylin-
drical housing; furthermore the feet of the machine and plates and ribs influencing the
stiffness and thus the structural behaviour are modelled. To model the end-windings, some
simplifications have been made. They are not modelled separately, but as a homogeneous
body connected to the stator core. Not all structural effects concerning the end-windings
are considered thereafter, but it is assumed that their influence on the whole machine model
can be neglected in the simulation of the noise radiation. Hence, the modelling efforts are
reduced enormously.

8.1.1 Finite Element Modelling

For the following structural computations a detailed structural model of the induction ma-
chine, comprising stator core stack with windings, rotor shaft and core stack with rotor
bars and end rings and the housing encasing the structure, isset up. The structural in-
vestigations are carried out with 3D finite element simulations. The different parts of the
induction machine are dicretized separately. For the finiteelement mesh of the geometry,
solid elements (hexaedra and tetraedra), are used for volumina, i.e. the stator and rotor
core stack and the rotor shaft, as well as solid-shell elements for plates. The end-windings,
again, are considered as homogeneous bodies. The resultingnon conforming meshes are
then connected via contact and target elements [6]. This approach enables a much easier
set up of the finite element model, because it is not necessaryto build consistent meshes
between the machine parts with different geometry sizes, which would result in high mod-
elling efforts and a large number of elements and thus computational costs. In Fig. 8.1, the

Figure 8.1: Meshed structural model and meshed stator with end windings

structural mesh is shown. It can be seen, that the discretization is much finer compared to
the model in chapter 7 (cf. Fig. 7.6), especially for the housing plates but also for the stator
core stack to catch all the bending modes. This is important especially for the housing, as
the vibration characteristic on the surface influences the emitted sound pressure. The struc-
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tural finite element model comprises 419,926 nodes and 155,376 elements, thereof 39,554
are contact elements. Only second order elements are used and the number of degrees of
freedom is 1,258,218.

Material Properties

After discretizing the geometry, proper material models for the different parts of the ma-
chine have to be defined. The main parts of the housing are common steel plates and ribs,
therefore, a linear, isotropic material model is sufficientfor the material assignment.

For the modelling of the laminated stacks some simplifications have to be made, as it
is not adequate to model each sheet and connect them via contact models. Recent in-
vestigations in [31] and [92] have shown that an orthotropicmaterial model, i.e. with a
decreased Young’s and shear modulus in axial direction are necessary. These assumptions
are supported by experimental investigations carried out in the course of this work [50].
For laminated stacks with and without teeth, structural experimental investigations have
been carried out and the eigenfrequencies and mode shapes, in particular in axial direc-
tion, have been identified. The resulting frequency response has been presented in Fig.
5.7. This investigation has shown that resonance peaks witheigenmodes that also show an
axial deformation characteristic, occur.

To account for this structural behaviour, an investigationof a structural finite element
stator model with homogeneous but anisotropic material properties has been carried out,
similarly to [77]. A variation of the material parameters, especially the Young’s modulus
and shear modulus in axial direction, has shown that, with a proper adjustment of these
parameters, the measured response could be reproduced withsufficient accuracy.

However, this adjustment has to be carried out for each laminated stack individually.
For the investigated squirrel cage induction machine in this work no such investigation
has been possible. Nevertheless, to consider the influence of the lower stiffness in axial
direction due to the lamination, the anisotropic material parameter set obtained from the
investigation in [50] is taken. In the radial and azimuthal directions, the material properties
of common steel are used. In axial direction, the Young’s modulus and the modulus for
shear in this direction have been set accordingly, see TableA.4. Furthermore, for the
laminated stacks, a constant damping is assumed. The corresponding damping coefficient
has been set to 1%. This is in acceptable agreement with the damping values obtained by
the measurements.

Although in [92] it is stated that modelling the windings, embedded in the stator core
stacks, as additional masses is sufficient, linear isotropic stiffness of copper has been de-
fined for them. The influence of the insulation and the resin has been not yet been inves-
tigated in detail. This is a task for future work on this topic. This is also the case for the
end-windings. For this investigation it is assumed that theend-windings mainly influence
the structure as additional mass. Their density has been setto 5810 kg/m3 for the modelled
volume (65% copper). The Young’s modulus of the end-windings is set to 1.1 ·1010 Pa.
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8.1.2 Investigation of the structural behaviour

After setting up the finite element model, the mass matrixM and the stiffness matrixK can
be computed, see also 4.4. A proper means to investigate the structural behaviour, and get
insight in the deformation behaviour of the structure at distinct frequencies, is to perform a
modal analysis. For this, the homogeneous solution of (2.38) has to be determined, which
leads to an eigenvalue problem for a slightly damped system.One method to determine
the appropriate eigenfrequencies is the so-calledQRDAMPmethod implemented inANSYS
[3], [6]. For this, in a first step, the eigenvaluesλi and eigenvectorsr i of the undamped
problem

(λiM +K) r i = 0. (8.1)

are computed with the Block-Lanczos method [9]. With the obtained results, a modal
transformation, see section 2.4.2 of the damped equation system can be carried out and the
following system equations are obtained:

(
0 I
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=
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0
0

)
. (8.2)

The eigenvalues and eigenvectors of this problem can then bedetermined with a general
eigenvalue solver ([9], pp. 887ff). With this approach, complex frequencies are obtained.
However, the eigenvectors are real since they are derived from (8.1).

A modal analysis computed with this method at a frequency range of 1880 Hz to 1975
Hz showed around thirty eigenvalues and eigenvectors. Thishigh modal density can be
attributed to the complex structural geometry model, but especially to the structural be-
haviour of the plates of the housing which form a wide range ofbending modes.

In Fig. 8.2, the modal solution for the structural model is depicted for the computed
eigenfrequency of 1588.1 Hz. For the stator, a moden = 4 in azimuthal direction can be
identified. This is in accordance with the analytical solution which yields 1592.7 Hz, see
appendix A.5. However, plate bending modes occur on the housing with amplitudes five
times larger than for the stator.

Figure 8.2: Eigenform of the structure at a frequency of 1588.5 Hz
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In Fig. 8.3, the deformation characteristic at 1894.6 Hz is depicted. It can be seen that,
at this eigenfrequency, the deformation is also dominated by plate bendings of the housing,
i.e. the cooling jacket and the plates connecting the feet ofthe induction machine. These
bendings are much more dominant than the deformation of the stator core stack. The

Figure 8.3: Eigenform of the structure at a frequency of 1894.6 Hz

deformation characteristic of the stator itself shows thatbending, with two maxima in
axial direction occurs. This behaviour can be attributed tothe material properties taken
for the stator core stack, i.e. the rather low elastic modulus in axial direction compared to
the radial and azimuthal directions. This eigenfrequency is particularly problematic, as it
coincides with an excitation frequency. The obtained structural response is analysed in the
following section.

Summing up, the results of the modal investigation show thatstrong bending of the
plates occurs near the excitation frequencies. For some of these eigenfrequencies, for
example at 1588.1 Hz, the stator is also contributing to the eigenform. This fact and its
consequence is discussed in the next section, where the structural response due to forces
on the stator is computed.

The eigenforms, especially the plate bending modes are influenced very much by the
set of chosen material properties. Small changes in the material parameters may lead to
different eigenmodes. For future works, further investigations on the material properties
and comparisons with measurements are necessary. In particular, these bending modes
occurring on the surface of the machine influence the noise radiation strongly, because
the surface oscillations result in pressure fluctuations inair and thus in sound. This is
discussed in the last section of this chapter.

8.1.3 Harmonic analysis at excitation frequencies

The modal analysis has shown that the structural behaviour is dominated by eigenfrequen-
cies with housing deformations as eigenforms. In the following, the structural response to
different excitations is computed with the structural finite element model. The deformation
characteristic is then analysed and compared to the modal solutions.

Again, only the stationary result is of interest. As the material properties for this struc-
tural model include damping, e.g. for the laminated stacks,the following equation for the
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quasi-static problem has to be solved with respect toû, see also section 2.4.2:

(−Ω2M + jΩD+K)û = F̂. (8.3)

As a boundary condition, zero displacement constraints areagain assigned to the feet of the
induction machine. As a second boundary condition, the electromagnetic stresses acting on
the stator teeth are applied with the corresponding frequencies. In Fig. 8.4, the spectrum
of the radial stresses in the frequency domain obtained withthe approach presented in
chapter 6 is shown. It can be seen that the largest stress amplitude arises at 1694.6 Hz,
1794.6 Hz and 1894.6 Hz. The fields contributing the most to this stress components are
the fundamental field together with the first slot harmonic field components. For them,
spatial ordinal numbers of 34, 36 and 38 arise, cf. appendix A.5. As shown in chapter 7,
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Figure 8.4: Absolute values of the stress amplitudes in radial direction acting on a tooth

the large spatial ordinal applied on the 42 stator teeth leads to sub-harmonics with spatial
ordinal numbers ofn = 8 6 and 4. Thus, at 1894.6 Hz, a larger deformation is expected,
since a stress wave component with a large amplitude and a lowspatial ordinal number
occurs which dominates the stress spectrum.

The structural analysis is carried out for the excitation frequenciesΩi =1594.6 Hz,
1694.6 Hz, 1794.6 Hz, 1894.6 Hz, 1994.6 Hz, 2094.6 Hz and 2194.6 Hz. Along with
the radial stress components, also the azimuthal ones are applied to the structural model.
In Fig. 8.5, the displacement results of the induction machine at 1794.6 Hz and 1894.6
Hz are now depicted, i.e. the real part of the sum of the displacement vectors. It can be
seen that the largest displacements occur at the outer cooling jacket and at the plates con-
necting the feet. As suspected, the deformation amplitude at 1894.6 Hz is larger than that
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for 1794.6 Hz. On the one hand, this can be attributed to the stress wave components with
lower spatial ordinal numbers (subharmonics). On the otherhand, the excitation frequency
of 1894.6 Hz coincides with a resonance at 1894.6 Hz.

(a) Deformation at 1794.6 Hz in m (b) Deformation at 1894.6 Hz in m

Figure 8.5: Real part displacement solution of the harmonicanalysis for the induction ma-
chine

(a) Deformation of stator at 2094.6 Hz in m (b) Deformation of housing at 2094.6 Hz in m

(c) Eigenmode at 2097.3 (d) Eigenmode at 2103.5 Hz

Figure 8.6: Real part displacement solution of the harmonicanalysis for the induction ma-
chine at 2094.6 Hz

In Fig. 8.6, the deformation of the stator and the housing at an excitation frequency
of 2094.6 Hz is displayed along with two modal solutions nearthe excitation frequency.
The stator amplitudes are small compared to the deformationof the housing, however it
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can be seen that there is a specific characteristic in the axial direction with two minima.
Comparing the deformation of the housing with the modal results in Fig. 8.6, it can be seen
that the plate bendings, especially those on the feet plates, resemble more the eigenmode
at 2103.5 Hz than that at 2097.3 Hz, although the latter one isnearer to the excitation
frequency.

Considering (2.46), two terms are identified that determinethe structural response. One
term is determined by the inverse of the difference of the excitation frequencyΩ and the
eigenfrequenciesωi . If the excitation frequency is near to or even coincides with the
eigenfrequency, as is the case at 1894.6 Hz, the deformationamplitude will be large. The
second term, and the one that may be the reason for the resultsin Fig. 8.6, is the product
of the force vector with the transposed modal matrix. The stress distribution at 2094.6
Hz seems to be orthogonal to the eigenvector at 2097.3 Hz and to resemble more the
eigenvector at 2103.5 Hz.

Summing up the deformation mainly depends on the eigenformsnear the excitation fre-
quency and thus these eigenvectors determine the deformation characteristic. The results
for the other excitations are depicted in appendix A.8.

8.2 Noise computation

In a last step of this analysis, the noise radiated by the machine vibrations, in particular
the surface oscillations, is computed. Due to the interaction of the solid with the fluid,
the surface vibrations excite the acoustic fluid, i.e. air, enclosing the machine. This leads
to pressure fluctuations in the form of acoustic waves, thus sound is radiated from the
machine.

The exterior radiation problem that has to be solved is an exterior Neumann problem.
The compatibility condition on the surface of the machine requires the velocity of the solid
and the fluid to be equal. The normal component of the given surface velocitieŝvn

v̂n = jΩû ·n. (8.4)

with the normal vectorn and the displacement valueû, leads to the Neumann boundary
condition (4.42) for this problem. To determine the sound pressure field in the exterior
domainΩ+ the indirect boundary element method is chosen, see section4.5.

A surface model has been set up and disctretized with 103554 triangular elements, see
Fig. 8.7. The average element size has been set to 0.01 m. This means, that for the
maximum frequency of 2194.6 Hz around 10 elements per wave lengthλ = c/ f exist.
Thus, the wave can be represented with sufficient accuracy.

As mentioned in section 4.5, the solution for the exterior radiation problem is pol-
luted by fictitious eigenfrequencies. This issue is of pure mathematical nature due to
the boundary element formulation. For the indirect BEM, oneapproach to overcome
this problem is to apply an impedance boundary condition over the inner side of the
cavity. As described in [23], prescribing a constant value of −413.3kg/m2/s (= −cρ
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at a temperature of 20◦C) as impedance on the internal surface allows to completely
damp the spurious frequencies polluting the solution over the whole frequency range.

Figure 8.7: Surface mesh for boundary element simu-
lation

The simulation has been carried
out with LMS Virtual.Lab Rev.11
[5], which also contains a fast
multipole BEM solver, see sec-
tion 4.5. This has been used to
increase the efficiency, in particu-
lar regarding the amount of mem-
ory. To consider the reflections of
the sound waves at the ground, a
half space solution is computed.
Therefore, a rigid plane is inserted
representing the floor on which
the machine is mounted.

In Fig. 8.8 and Fig. 8.9 the re-
sults for the sound pressure on the
machine’s surface are depicted. It
can be seen that the maxima of the
sound pressure, especially on the
cooling jacket, correlate to the de-
formation characteristics obtained
in section 8.1.3. The obvious influence of the structural deformation on the sound radiation
can thus clearly be seen. Also at the plates of the bottom of the machine a high sound

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure 8.8: Sound pressure distribution on the surface of the induction machine at 1794.6
Hz

pressure level can be detected. On the one hand, this can be traced back to the high struc-
tural deformation occurring at the vertical plate connecting the feet. On the other hand,
however, at the horizontal plate, reflections of the radiated sound pressure must occur,
which lead to a high sound pressure level there, although thestructural deformation is low
compared to the vertical plate, see also Fig. 8.5. The results for the other excitations are
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(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure 8.9: Sound pressure distribution on the surface of the induction machine at 1894.6
Hz

depicted in appendix A.9.
To investigate the radiation from the surface into air, an evaluation grid has been set up,

discretized with quadrilateral surface elements. The sound pressure is computed in these
points and the noise radiation can be investigated. The evaluation grid consists of three
planes each perpendicular to one of the coordinate axes.

In Fig. 8.11, the radiation characteristic of the noise spreading from the machine is
depicted. It can be seen how the maximum sound pressure occurring at the cylindrical
housing spreads out radially and decreases with the distance. Depending on the vibra-
tion, the maximal sound pressure occurs at different positions. The results for the other
excitations are depicted in appendix A.10.

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure 8.10: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 1794.6 Hz

8.2.1 Comparison with measurement

In section 5.3.1, acoustic measurements have been presented and compared with analytical
computation results. To compare the numerical results withthe measurements, a cuboid
field has been modelled that encloses the machine at a distance of 1 m. The A-weighted



8.2 Noise computation 101

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure 8.11: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 1894.6 Hz

root mean squares of the sound pressure level are compared tothe measurement results
in Table 8.1. The results show no clear tendency. The largestsound pressure level occurs

Table 8.1: Squirrel cage induction machine - Measured and Computed Sound pressure lev-
els (SPL)

Excitation Frequency Measured SPL Computed SPL
1594.6 Hz 52.5 dB(A) 50 dB(A)
1694.6 Hz 61 dB(A) 74 dB(A)
1794.6 Hz 68.3 dB(A) 72 dB(A)
1894.6 Hz 80.5 dB(A) 77 dB(A)
1994.6 Hz 64 dB(A) 61 dB(A)
2094.6 Hz 61.5 dB(A) 65 dB(A)
2194.6 Hz 50 dB(A) 62 dB(A)

at a frequency of 1894.6 Hz. However, compared to the measurements this is still an
underestimation as is also the case at 1594.6 Hz, though not as grave, and at 1994.6 Hz.
For other frequencies the computed sound pressure level exceeds the measured one, for
some cases enormously.

One point that explains the deviations is of course the simplified structural modelling,
in particular the laminated stack, the windings, the lack ofthe water in the cooling etc.
Further detailed experimental and computational investigations are necessary to obtain
proper approaches to consider the complex composition of electrical machines.
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The computation of audible noise of electrical machines hasbeen an issue for a long time.
However, in recent days, the increase of the applications for electrical machines and the
rising sensitivity towards noise leads to more severe regulations to decrease the exposure
of human beings to noise. This demands comprehensive computation methods to provide
low noise designs.

The review of literature in the first chapter has shown that there are several causes lead-
ing to audible noise of electrical machines, namely, aerodynamic, mechanical and elec-
tromagnetic causes. The latter ones are the most problematic ones, since they lead to a
noise spectrum with large noise peaks at distinct frequencies. The overview is structured
according to the computation chain, i.e. electromagnetics, structural mechanics and noise
radiation. Each topic comprises first of all the computationmethods, i.e. analytical and
numerical or, more recently, combinations of the two, and, secondly, experimental investi-
gations especially concerning the structural modelling.

The fundamentals and theoretical background along with analytical and numerical noise
computation methods are presented in the chapters 2 to 4. Chapter 3 deals explicitly with
the noise computation of induction machines and presents a comprehensive analytic noise
computation method. The main advantage of this approach is the possibility to retain the
relationship of the noise peaks to the causing electromagnetic fields. Failure to provide
this is a disadvantage of the numerical approaches, whose application to electromagnetics,
structural mechanics and acoustics is shown in chapter 4. Onthe one hand, those methods
enable a more detailed modelling and, thus, more reliable results may be obtained. On the
other hand, the more detailed the model, the larger are the computational efforts as well
as the computation times. This makes the analytical methodsstill an important tool in the
design process of electrical machines.

Therefore, an investigation concerning the reliability ofa comprehensive analytical ap-
proach has been carried out in chapter 5. For each computation step, the results have been
compared to numerical and/or experimental results. The comparisons have shown that the
analytical approach yields very good results for the frequencies of the magnetic fields and
thus the frequencies of the noise peaks. However, discrepancies may occur for the com-
puted amplitudes, in particular of the magnetic fields. These results are well known in the
literature, however, some effects occur that have not yet sufficiently been paid attention to.
First of all, the comparisons have shown that stress harmonics with large spatial ordinal
numbers may have large amplitudes, however, their influenceon the structural vibrations is
mostly neglected in the literature. This is because it is assumed that those stress wave com-
ponents do not contribute to the vibrational behaviour. A further point that is derived from
the comparisons is the variation of the magnetic field along the axial direction of the air
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gap for skewed machines. This results in a variation of the forces along the axial direction,
too. Along with the three-dimensional vibration behaviour, also presented in this chapter,
this may result in problematic vibrations. Thus, with the outcome of this validation several
objectives have been identified to which attention has been paid in the following chapters.

The axial variation of the magnetic field in the air gap has been investigated in detail in
chapter 6. For a squirrel cage induction machine, a finite element multi-slice simulation
has been carried out at the nominal operating point. The magnetic field components in
each slice have been analysed for a model with four and five slices. It has been shown
that a cubic spline interpolation in axial direction, whichis typically carried out to obtain
the field along the axial direction, leads to completely different distributions. A more
detailed analysis of the magnetic field components also considering the analytic approach
has shown that the variation in axial direction is proportional to the skewing angle. The
magnetic field components for the two multi-slice models have been reconstructed and
the comparisons have shown a clear agreement. A comparison with a three-dimensional
model supported the validity of this approach.

The influence of the axial variation of the obtained stresseson the structural vibration
behaviour has been analysed in the chapter 7. The focus has lain on the investigation of
stress waves with large spatial ordinal numbers. Therefore, a three-dimensional structural
finite element model has been set up and different stress waves applied to the stator and
rotor teeth. The results have shown that for stress waves with spatial ordinal numbers in
the magnitude of the number of teeth (either stator or rotor,depending on which of them
the stress acts) lead to sub harmonics of large amplitudes and low spatial ordinal numbers.
This again results in large deformation amplitudes on the stator and thus large vibrations
on the housing. Regarding the stresses varying in axial direction, it has been shown that
certain eigenmodes of the stator may be excited and thus resonances may occur. Besides
that also analyses for stress waves with a spatial ordinal number of one have been carried
out and have shown that those lead to the most critical vibrations, either if applied to the
stator teeth or to the rotor teeth.

The vibration structure, especially the housing, excites the surrounding air and leads to
pressure fluctuations and thus audible noise. The influence of the housing on the noise
radiation has been mentioned in the literature, however, only few works exist which ex-
plicitly deal with this phenomenon. This is the topic presented in chapter 8 of this work.
Therefore, a very detailed three-dimensional finite element model has been set up. The
main problem thereby is the setting of the material parameters especially for the laminated
stacks and their insulated windings. To obtain an efficient model, some assumptions have
been made and a homogeneous body assumed. A modal analysis ofthe structure has shown
a high modal density, mainly due to the plates of the housing.In a next step the structural
responses due to the stress harmonics acting on the stator teeth at nominal operating point
are computed. In addition to the structural model, a boundary element model has been set
up to determine the noise radiation. The results show that the noise radiation clearly corre-
sponds to the plate bending of the housing. A comparison of the stress spectrum, obtained
after the electromagnetic field computation, and the computed noise spectrum also shows
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different characteristics. One obvious reason for this arethe structural eigenfrequencies
that may lead to large vibration amplitudes even for forces with small amplitudes. A fur-
ther reason may be the cancellation of acoustic waves. This can be seen for some field
results, however, their effect on the noise reduction can not be easily be determined. The
main problem that has arisen in this work is the determination of the material parameters
of the laminated stator core. More detailed investigationson the vibrational behaviour of
such stacks with the aim of obtaining a proper parameter set for the vibration computation
is a task for future work.





A APPENDIX 1

A.1 Supplements to the Maxwell stress tensor

In cylinder coordinates the following time dependent stress vector is obtained in air with
µ = µ0 and forBz= 0:

σσσm(r,ϕ,z, t) =− 1
2µ0

(
B2

r −B2
ϕ

2BrBϕ

)
(A.1)

In the frequency domain the relation for the surface force density is computed by a con-
volution of the frequency spectra of the corresponding components of the magnetic flux
densityB̂( jω) as

σ̂r( jω) =− 1
2µ0

(
B̂r( jω)∗ B̂r( jω)− B̂ϕ( jω)∗ B̂ϕ( jω)

)
(A.2)

σϕ( jω) =− 1
µ0

(
B̂r( jω)∗ B̂ϕ( jω)

)
(A.3)

whereω is the angular frequency.

A.2 Physiological acoustics

A healthy human ear typically covers a frequency range from 16Hz to 16KHz. However,
humans’ physiological sensation of loudness is varying with the frequency [52]. Statistical
investigations have been carried out according to DIN 45633and DIN EN 60651, respec-
tively, to determine the sensation of loudness in relation to frequency and sound level. In
Fig. A.1a the equal-loudness contour is depicted. With thisdiagram it is possible to de-
termine the loudness for a corresponding sound level and frequency. The loudness level is
measured in phon and equals the sound level in dB for a frequency of 1000Hz. For tech-
nical applications, the non-linear physiological sensation is typically accounted for with
valuation curves. According to DIN 45 634, four weighting functions/curves denoted with
A, B, C and D are determined, which are depicted in Fig. A.1b. The most important for
industrial applications is the A-weighting function, which corresponds to the inverse of
the loudness curve for 30Hz. The A-weighted sound pressure level is then denoted with
dB(A).
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(b) A-,B-,C- and D-Weighting curves

Figure A.1: Noise level and weighting curves [52]

A.3 Galerkin equations for quasi static fields

In the non-conducting domainΩn the following Galerkin equations arise:
∫

Ωn

∇∇∇×Ni ν∇∇∇×AhdΩ =
∫

Ωn

Ni J0dΩ i = 1,2. . . ,ne in Ωn (A.4)

In the conducting domainΩc the Galerkin equations are as follows:
∫

Ωc

∇∇∇×Ni ν∇∇∇×AhdΩ+
∫

Ωc

∂
∂ t

Ni σAhdΩ+
∫

Ωc

∂
∂ t

Ni σ∇∇∇vhdΩ = 0 in Ωc (A.5)

∫

Ωc

∂
∂ t

∇∇∇Nj σAhdΩ+

∫

Ωc

∂
∂ t

∇∇∇Nj σ∇∇∇vhdΩ = 0 (A.6)

i = 1,2. . . ,ne j = 1,2. . . ,nn (A.7)

ne is the number of unknown edge based shape functionsNi andnn the number of unknown
nodal based shape functionsNi . Both, the shape functionsNi for the vector potentialA and
Ni for the scalar potentialv are linearly independent. However, there are linear interdepen-
dences between the edge based shape functions and the nodal based shape functions as the
gradient of the nodal based functions are in the function space of the edge based shape
functions [15]:

∇∇∇Ni =
ne

∑
i=1

cikNk, i = 1,2, . . . ,nn−1 (A.8)

(A.9)
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By taking the curl of (A.8), the linear combinations of the equations in (A.5) result in the
same equations as in (A.6). Thus, the obtained system matrixis singular.

A.4 Derivation of system matrices of mechanical finite element system

Inserting the approximation functions (4.33) and (4.34) and the constitutive law (4.35) in
the formulation for the virtual work (4.30) the Galerkin equations are obtained as follows:

∑

m

∫

V(m)

H(m)T ρH(m)dV(m)


 ü+


∑

m

∫

V(m)

B(m)T C(m)B(m)dV(m)


u =

∑
m



∫

V(m)

H(m)T f(m)
B dV(m)+

∫

A(m)

H(m)T f(m)
S dA(m)


 (A.10)

for

δs(x,y,z)(m) = H(x,y,z)(m), δεεε(x,y,z)(m) =BBB(x,y,z)(m). (A.11)

The obtained terms can now be gathered in a mass matrixM

M = ∑
m

∫

V(m)

H(m)T ρH(m)dV(m), (A.12)

a stiffness matrixK

K = ∑
m

∫

V(m)

B(m)T C(m)B(m)dV(m) (A.13)

and a nodal force vectorF

F = ∑
m



∫

V(m)

H(m)T f(m)
B dV(m)+

∫

A(m)

H(m)T f(m)
S dA(m)


 . (A.14)
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A.5 Machine parameters

Table A.1: Squirrel cage induction machine - Machine Parameters

Nominal Power P 1.25 MW
Feeding voltage f 5.5 kV
Stator current for nominal operating pointI1 150.5 A
Slip at nominal operating point s 0.3%
Rotor speed at nominal operating point n 2991.1 rpm
Line frequency f1 50 Hz
Number of stator slots NS 42
Number of rotor slots NR 36
Number of pole pairs p 1
Number of cords m 3

Table A.2: Squirrel cage induction machine - Eigenfrequencies

Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
1744.9 Hz 2461.9 Hz 335.5 Hz 894.2 Hz 1592.7 Hz 2374.5 Hz 3201.6 Hz

Table A.3: Slip-ring induction machine - Machine Parameters

Nominal Power P 2.2 MW
Stator current for nominal operating pointI1 2222.3 A
Slip at nominal operating point s −0.9683%
Rotor speed at nominal operating point n 1009.7 rpm
Line frequency f1 50 Hz
Number of stator slots NS 72
Number of rotor slots NR 54
Number of pole pairs p 2
Number of cords m 3
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A.6 Frequencies and spatial ordinal numbers of magnetic field
components for squirrel cage induction machine

A.6.1 Rotor slot harmonics

k= p±NR k1 = 37 k2 =−35

fk = f1(1± (1−s)
NR

p
) fk1 = 1844,6 Hz fk2 =−1744.6 Hz

A.6.2 Stress components due to fundamental field

n= p±k n11= p+k1 = 38 n12= p+k2 =−34

n21= p−k1 =−36 n22= p−k2 = 36

fn = f1± fk f 11= f1+ fk1 = 1894.6 Hz f 12= f1+ fk2 =−1694.6 Hz

f 21= f1− fk1 =−1794.6 Hz f 22= f1− fk2 = 1794.6 Hz

A.7 Material parameters for the structural simulation of th e squirrel
cage induction machine

Table A.4: Material parameters for the laminated stacks

Density ρ 7525.7 kg/m3

Young’s modulus inx-direction Ex 2 ·1011 Pa
Young’s modulus iny-direction Ey 2 ·1011 Pa
Young’s modulus inz-direction Ez 2.5 ·1010 Pa
Shear modulus inxy-direction Gxy 7.7 ·1010 Pa
Shear modulus inyz-direction Gyz 1.1 ·1010 Pa
Shear modulus inxz-direction Gxz 1.1 ·1010 Pa
Poisson ratio ν 0.31
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A.8 Deformations due to electromagnetic force excitation -Finite
element simulation results

(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.2: Real part displacement solution of the harmonicanalysis for the induction
machine at 1594.6 Hz

(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.3: Real part displacement solution of the harmonicanalysis for the induction
machine at 1694.6 Hz
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(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.4: Real part displacement solution of the harmonicanalysis for the induction
machine at 1794.6 Hz

(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.5: Real part displacement solution of the harmonicanalysis for the induction
machine at 1894.6 Hz

(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.6: Real part displacement solution of the harmonicanalysis for the induction
machine at 1994.6 Hz
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(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.7: Real part displacement solution of the harmonicanalysis for the induction
machine at 2094.6 Hz

(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.8: Real part displacement solution of the harmonicanalysis for the induction
machine at 2194.6 Hz
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A.9 Noise result on machine surface

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.9: Sound pressure distribution on the surface of the induction machine at 1594.6
Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.10: Sound pressure distribution on the surface of the induction machine at 1694.6
Hz
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(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.11: Sound pressure distribution on the surface of the induction machine at 1794.6
Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.12: Sound pressure distribution on the surface of the induction machine at 1894.6
Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.13: Sound pressure distribution on the surface of the induction machine at 1994.6
Hz
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(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.14: Sound pressure distribution on the surface of the induction machine at 2094.6
Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.15: Sound pressure distribution on the surface of the induction machine at 2194.6
Hz
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A.10 Noise result on field points

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.16: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 1594.6 Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.17: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 1694.6 Hz
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(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.18: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 1794.6 Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.19: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 1894.6 Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.20: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 1994.6 Hz
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(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.21: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 2094.6 Hz

(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.22: Sound pressure distribution at the field pointssurrounding the induction ma-
chine at 2194.6 Hz
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