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Abstract

Audible noise radiated by electrical machines is gainingevand more in importance in
the design process of electrical machines. Therefore, atatipn methods are necessary
which identify the problematic noise sources and fac#itatow noise design.

This work begins with the validation of an analytical appriodo determine the noise
behaviour of induction machines. Analytical electromdgnestructural, and acoustical
computations are performed. The obtained results are t@pared with data from nu-
merical computations as well as vibration and noise measemts.

Investigations of the noise behaviour of induction mackidemand the calculation
of the rotating stress waves and thus the determinationeofrtagnetic field-harmonics.
Therefore, a method to compute the field-harmonics of a skémgriction machine using
a multi-slice model has been developed.

Following that, the surface vibrations of an induction nmaeldue to stress waves acting
on the stator and rotor core are analysed. The focus liessanulstigation of the influence
of stress waves varying in axial direction and with higheatsd ordinal numbers on the
surface vibration of a squirrel cage induction machine.

At last, the rotating stress waves acting in the air gap ohdaogtion machine at nominal
operating point and obtained by an electromagnetic fingeneht multi-slice simulation
are applied to a three-dimensional structural finite eldmerdel. A structural harmonic
simulation is then performed. With a three-dimensionalstaury element model the sound
pressure on the surface of the machine is computed alongthéthoise radiation in the
environment.



Zusammenfassung

Im Auslegungsprozess von elektrischen Maschinen spielG#irduschberechnung eine
immer wichtigere Rolle. Um die Larmquellen zu identifizienend entsprechende Modi-
fikationen vorzunehmen sind geeignete Berechnungsmethute/endig.

Diese Arbeit beginnt mit der Validierung eines analytistBerechnungsverfahrens zur
Ermittlung des Gerduschverhaltens von Asynchronmaschibeeses Verfahren umfasst
elektromagnetische, strukturmechanische und akustBehechnungen. Die ermittelten
Ergebnisse werden mit numerischen Losungen und Messdatebohwingungs- und Ge-
rAuschmessungen verglichen.

Die Untersuchungen des Gerduschverhaltens von elelenddaschinen erfordert die
Berechnung der Krafte, insbesondere deren Harmoniscbeaudi den Oberwellen des
Luftspaltfeldes resultieren. Fir geschragte Maschinerdeveine Methode entwickelt,
mit der die Oberfelder und deren Verteilung in axialer Rictg mit Hilfe eines Multi-
Slice Modells ermittelt werden kdnnen.

Im Anschluss daran wird der Einfluss unterschiedlicher rafien, die auf den Stator
oder Rotor einer Asynchronmaschine wirken, auf das Schwiggverhalten untersucht.
Besonderes Augenmerk liegt dabei auf Kraftwellen mit hoBednungszahlen bzw. mit
ungleichférmiger Verteilung in axialer Richtung.

Als letzer Punkt wurde die Schallabstrahlung einer Asyashraschine berechnet. Mit
Hilfe der Finite Elemente Methode wurden die elektromaigeben Krafte, die in einer
geschragten Asynchronmaschine im Nennbetriebspunkewjrikermittelt und anschlie-
Rend die Vibrationen mit einem geeigneten Strukturmodskthnet. Die Schwingungen
an der Oberflache der Maschine dienen als Eingangsgro3efRatdelemente Methode
zur Berechnung des Schalldrucks an der Oberflache der Messbivie der Schallaus-
breitung in die Umgebung.
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1 INTRODUCTION

1.1 Motivation

Electrical machines nowadays are an integral part in ouremodnd technophile soci-
ety in everyday life situations. The increase in electrif@ais not only eminent in the
personal household but also in industrial applicationsthedrend seems to be a further
increase, not only because the efficiency and applicatiesipitities rise due to techno-
logical enhancements e.g. in inverter feeding, but alsalse the urge to sustainable and
ecological-friendly policy grows. The automotive indystian be mentioned as a promi-
nent example, where electrical drives are gaining more am@ interest and, after hybrid
applications, the trend to purely electric driven vehigteseanwhile conceivable.

Furthermore, the trend to higher electrification also iephn increased energy demand
to be satisfied. The increasing sensitivity towards sualality and ecological friendly ap-
plications makes the way for alternative power plants, aexample wind power, resulting
in new application areas and beyond that new requiremedtsfzadlenges.

As human beings play the key-role in the usage and operdtibese technologies, their
increase also leads to an increased exposition to theisemgs at work and at home, thus
24 hours a day. One problematic emission of electrical nmeshis audible noise, which is
gaining more and more attention due to the rising sensitreijarding the quality of life.

Besides physical effects on the human hearing, also psygiwall effects, like release
of stress hormones result in impairment of humans healtlto/ting to Dl], noise "has
emerged as the leading environmental nuisance in Europklsdithe third largest envi-
ronmental burden of disease". Therefore this issue isiggumiore and more in importance
in human society. Depending on the possible effects, thast different regulations es-
pecially for industrial applicationﬂ[l], that have to benswlered already in the design
process of electrical machines.

Although the human ear covers a frequency range of about 16H@000Hz, it reacts
most sensitively in a range of 1000 to 5000 Hz. Looking at gex#ral content of the noise
of electrical machines, the most problematic noise peaks &xactly in this frequency
interval. This means that special care has to be taken indbigil process to keep their
noise levels low so that no harm of the human hearing can occur

As the demands regarding efficiency and costs also rise,dise estimation process
becomes more and more complex. More transferred power maegges forces acting
on the machine and thus higher emitted noise. The reducfiomaterial not only saves
money, but as the construction changes, typically morelenad with resonances occur,
especially for low weight designs. The arising forces mastinterfere with these natural
frequencies as this leads to large noise peaks and, bekatesiay even lead to damages
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of the machine. The ever widening employment of invertediieg of electrical machines
increases the number of occurring frequencies in a machime chance that one of these
matches a resonance obviously increases. If these freigsesu® not constant but vary
according to operation conditions, which is the case inalde speed drives, the problem
becomes overpowering. So, due to the rising demands andlexitgpnoise computation
in electrical machines is a topic of high interest.
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1.2 Review of literature

The noise emission of electrical machines can be tracedtoatikerent sources. One of
the first detailed classifications is given M[29], a newee im@]. Besides mechanical
sources, as for example bearings, rotor unbalance or tis@ibg) aerodynamic sources are
listed there as well. The latter normally leads to broad bamide due to turbulence and
separation of the flow of the cooling air. If, however, theram object near the impeller, a
pure tone, so-called siren noise, with a frequency propoalito its rotational speed, also
may occur, which typically results in enormous sound pressevels. A more detailed
overview and computation methods for these sources canumel flor example in@O],
(751, [34].

A third source, and the one on which the focus of this thesss lis the noise of elec-
tromagnetic origin, i.e. one due to the electromagneticdsracting on the machine and
leading to vibrations. The electromagnetic forces can lieisfo forces due to magne-
tostrictive effect, Lorentz forces and electromagneticéadensities due to changes of the
permeability. The latter ones are the largest at the sudatee teeth where the material
changes from iron to air.

Early investigations presented 38] and [8] have shovat thagnetostrictive effects
and the Lorentz forces on the conductors can be neglectediaes. Recent works regard-
ing the magnetostrictive effect in the vibration analysisénbeen reported iﬂlll]. Numer-
ical computation results with and without using a magnegzianical coupling for con-
sidering magnetostriction, have been carried out and thdtseare compared with mea-
surements of a mid-size synchronous generator and a srdadition machine. This anal-
ysis shows that the influence of magnetostriction and thessgity of using a magneto-
mechanical coupling is given for large machines with a ttéta yoke only, in particular
the vibrations at lower frequencies increase in magnitudence, the assumption of ne-
glecting magnetostrictive effects and Lorentz forces lglva

Methods to determine the forces due to the change of periitgaie presented iml].
A comparison of four different computation techniques {eglent current density, equiva-
lent magnetic charges, energy principle, Maxwell stressletermine the electromagnetic
force densities by numerical methods is giver@ [55]. A maeent investigation of the
computation of the electromagnetic force densities has lbaeried out inl[37] compar-
ing the virtual work principle and the Maxwell stress tensthe latter one is the most
common technigue in the noise computation process, edlyaoianalytical approaches,
whereas the first one is mainly applied in numerical techesqu

The computed forces can then be applied to a structural nvaldede, besides an ap-
propriate computation of the deformations and vibrati@specially the determination of
the natural resonances is of importance. The vibrations agase fluctuations in the sur-
rounding air, which propagate with the sonic speed of airtand result in audible noise.
Again, especially in electrical machines, the occurrirggirencies are in a range where
the human ear is the most sensitive and this makes the nesgigation and elaboration
of appropriate computation methods an important topic.
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Summing up, the physical areas relevant for the generafi@eotromagnetically ex-
cited audible noise are electromagnetics, structural ar@ch and acoustics, which have
to be appropriately coupled. The magneto-mechanical cayphn be reduced to apply-
ing the surface forces computed with the Maxwell stressatlemgethod on the stator (and
rotor) teeth. For the structural mechanics and acoustid iemputation it is also suffi-
cient to neglect the interaction of the sound pressure wghstructure. Compared to the
forces that act on the structure the occurring sound presgs no influence on the forced
vibrations, especially for exterior radiation problems.détailed procedure for coupling
the different physics is also given ESlll_,_tl?,].

The further review of the literature on the investigatioha noise computation of elec-
trical machines focuses on electromagnetic generateé.ndige sequence is according to
the different physics: starting with the computation of ¢hectromagnetic fields, going on
to the estimation of the structural response and then th@utation of the noise radiation.
Some comprehensive noise computation methods can be foumg.i@Z], @], EE].

1.2.1 Electromagnetic field analysis in the noise computath process

This section covers a historical review regarding the ed@cagnetic field computation
methods in conjunction with the noise estimation processtisg from analytical to nu-
merical methods and further to state of the art methods auindpthe two.

One of the first discussions about the noise phenomena oftiotdumachines is given
by Hildebrand EB]. Similar tom]9], he explains that pratlatic noise phenomena - he
is dealing with induction machines - can be traced back tcathgap field, i.e. higher
harmonics due to the not ideally sinusoidal flux densityridigtion in the air-gap. He is
one of the first to introduce the idea of decomposing the airfegld into field components
with distinct frequencies and spatial ordinal numbers agnlck computing distinct force
wave components acting on the stator as well as on the rathr vath the Maxwell stress
tensor method. The decomposition is carried out by asgjgihie field components (and
thus the force components) to their sources: magneto-mfiince harmonics (stator, ro-
tor) and permeance harmonics (stator and rotor slots,againr eccentricity etc.). Similar
to E] and ], Morrill has also presented an approachdbasethe idea of decomposing
the magnetic flux density in the air-gap into its harmor@.['ﬁis motivation was to set
up the basis for fundamentals of a sound theory for noise atatipn in electrical ma-
chines. He started with a few assumptions, e.g. his appridahnot consider permeance
variations and their resulting harmonics, however the ofedecomposing the field and
thus forces in wave components is the same and is one of the adaantages of ana-
lytical approaches in the noise computation process abwslthe assignment of critical
noise peaks to their sources.

Hildebrand and Morrill, have both listed the force waveshwdifferent frequencies and
spatial ordinal numbers related to the azimuthal directind compared them to experi-
mental data. However, as the focus has lain on the detenmmat the frequencies and
spatial ordinal numbers, no determination of the magnetid Amplitudes has been men-
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tioned. Furthermore, no approach to account for the stralatesponse has been set up ex-
plicitly. Morrill for example "leaves this to future genéi@ns”. Hildebrand only discusses
the effects of the force waves on the structure and, con‘[tndj@] where the emitted noise
is traced back to unbalanced magnetic pull, a resultanefanting on the rotor and on
the stator, Hildebrand also speaks of a "polygonal distortif the stator”, as a source of
noise of induction machines. This means that a force digiah with a distinct "pole-pair
number" is resulting in relevant vibrations and leadingaddsa.

Some years later these ideas and approaches can also berfamelof the first com-
prehensive analytical procedures to determine the noisaviomur of induction machines
presented in the work [42] by Jordan. In his methodology, &g tefined categories,
similar to @], of the most relevant field harmonics and hetsup computation rules to
determine their amplitudes, spatial ordinal numbers, ghasid frequencies. The appro-
priate force harmonics are then computed by using the Masireks tensor method. His
concept, including the structural and acoustic computatwhich will be explained later,
allows the assignment of a distinct force component to tleerhagnetic field components
involved and thus to a particular part of the machine andstplitysical provenance. Ap-
propriate measures, e.g. modifications of the structurdifo resonances or a different
slot combination to change the excitation frequencies,h@ace be investigated already
in the design process. Further comprehensive analytigabaphes are presented [26]
or E], publications contemporary to [42]. However, theffatiin the assumptions for the
structural and acoustical computation as explained in @Hewing sections. Regarding
the computation of the magnetic field based on Jordan, mai@stecated methodologies
are applied e.g. irﬁ$6]. A summary of the most important radthogies regarding the
harmonic theory of rotating fields is presentedﬂ [68]. Teghbes for the computation of
different magnetic field components due to permeance vammtike slotting, saturation,
eccentricity are included as well as for those due to magmettive force waves including
the consideration of the armature reaction.

Investigations regarding the force wave components lieguliom magnetic fields com-
puted with more sophisticated analytical approaches densig saturation and armature
reaction, and a comparison with experimental vibratiomdat. their spectral content, are
shown in |[EZ]. These analyses have been carried out for arefjoage induction motor
and the measured vibration amplitudes are assigned in ade¢ajed manner to the caus-
ing magnetic force components and above all to the measessthances. The aim has
been to determine the role of the magnetic field harmonickeforces and thus vibration.
By comparing the computed and measured voltages, an owveagisin of the amplitudes
of the slot harmonics could be detected. The amplitudeseo€timputed saturation side-
band component, however, are smaller than the measured lbtles machine is loaded,
the magneto-motive-force components in the rotor will@ase similarly to the saturation
effects. This leads to larger forces at the slot harmonigueacies and in the saturation
side-band. The measured vibrations have shown a 10 tinger lamplitude of the slot
harmonics compared to no-load operation.

The consideration of force waves for the structural comjparias mostly confined to
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those with lower spatial ordinal numbers and thus largerenerigths, because those may
lead to critical bending deformations of the stator yokehas also been stated in the
previously presented investigatio@[4@[82]. [9Kpkcit investigations of force wave
components with different spatial ordinal numbers havenli=eried out. The focus lies
on the analysis of forces with higher spatial ordinal nursberthe azimuthal direction.
Applying such force waves on the teeth only, sub-harmonicsig as there are no forces
acting in the slots. Depending on the spatial ordinal nunalperthe number of the teeth,
those sub-harmonics may have large amplitudes and lowaspatiinal numbers and these
can then again lead to large bending deformations of therstake.

With the progress in numerical techniques, the finite eldra@alysis has become a
common tool in the computational treatment of electromégtield problems@O]. The
main advantage of the finite element method is the posgikdliset up more detailed mod-
els of electrical machines e.g. regarding the shape of #ib.t&his, and the possibility to
consider effects like eddy currents in the rotor bars angraibn, enables a more detailed
evaluation of the magnetic field distribution in the machif@rthermore, the results for
the higher harmonic field components, especially the aog®g, can be determined more
accurately than by analytical methods.

Since the assignment of noise peaks to their sources is &deous for noise computa-
tion and reduction purposes, similar approaches as witlytzca methods have recently
been applied to numerical simulations. [In/[43], the magri&tid in the air gap is obtained
by a two-dimensional transient finite element simulatiartfi@ no-load operating point of
an induction machine. The electromagnetic stress actingesurface of the stator is then
computed using the Maxwell stress tensor. Thereupon, thenaa stress distribution is
decomposed into its harmonics and spatial ordinal numhElyiag a two-dimensional
Fourier analysis: according to time and the azimuthal timac This method then enables
the assignment of the force wave components to the arisiisg peaks.

In [|f|], the numerically computed electromagnetic stresal$® decomposed into its
harmonics employing a two-dimensional Fourier decompmsand the force spectrum is
compared to measured results of vibrations and noise ofdetbaynchronous generator
similar to @]. The computed force wave components are #ssigned to the measured
vibration and noise peaks, however, without considerimgstinuctural response, i.e. the
natural resonances, which may have influence on some nags.pe

A more sophisticated method to obtain the assignment ngttorthe force wave com-
ponents but also to the magnetic field components, as a @sallhumerical simulation,
is presented ir@O]. By introducing a so-called space vewpresentation to describe
the magnetic field and force waves by rotating vectors ancpplyang a two-dimensional
Fourier transformation to the magnetic field, a descriptbthe force wave components
by a convolution pair of magnetic field space vectors is gdssiSimilar to [@2], a cause
and effect relationship is obtained, with higher accuraidyie computed amplitudes.

The electromagnetic field computation carried outin [d@] [involves machines with
skewing. This approach comprises a comprehensive noispuwtation approach. The
electromagnetic machine model has been set up in 2D and shéisdave then been
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applied to a three dimensional model to get the force digion in the air-gap due to
skewing in axial direction, too, to impress the forces on r@¢ldimensional structural
finite element modelling.

However, such three-dimensional computations can be e ¢consuming, although
computational resources increase from year to year. Orglplity involving less com-
putation time is to use a multi-slice model (s@ [24] ﬁi){iﬁ]determine the influence
of the skewing on the magnetic field distribution in axiakdition. This means, 2D finite
element models each representing a slice of the machinstataliaxial positions are set
up. For each slice the rotor has to be positioned accordinigetgkewing angle and the
currents in the rotor bars are coupled via an electric dintwdel. This method requires
less computational effort than three-dimensional sinnatand provides a good means
to determine the axial variation of the magnetic flux due togkewing, which is of impor-
tance as the forces then also vary in axial direction and e structural vibrations. End
effects and fluxes in axial direction cannot be taken intmantwith this model but these
are negligible for noise computation purposes. Invesbgaton end-winding leakage and
axial flux confirming this assumption are presented for eXaﬁwpﬂE].

The above numerical approaches belong to the state of theragutational techniques.
However, analytical methods still play an important roléhia noise computation process,
as fast computations are possible. Their disadvantagatigiy are not capable of predict-
ing magnetic field amplitudes accurately. Ellw], for exdanthe analytic determination
of the magnetic field distribution in a brushless permaneagmet synchronous machine
is improved by validating the results with numerical sintidas. Moreover, in the design
process of electrical machines, parameter studies hawe ¢arbied out to get the optimal
construction. For this purpose, it is important that thebpgmatic force components can
be assigned to their sources and this has to be achieved asanable time. Therefore,
fast computational methods are required. In a recent v@]g [he characterization and
reduction of noise due to pulse width modulation (PWM) sypplcarried out by analyti-
cal means and the switching frequency has been set so traiditde noise has decreased
by 5dB. Another recent example is shownlin [14]. There, tfle@mce of the saturation on
the magnetic noise is investigated by analytical means wwetidnging the number of rotor
slots, the audible noise is reduced up to 15dB. Summing up,d@lytical and numerical
methods have their advantages in the noise computatiorgsatapplied properly, i.e.
combinations of the two can lead to a considerable increas#iciency.

1.2.2 Structural investigations

The early noise analyses E[SS] a@[lg] are confined to thepeation of the force wave
components resulting from the magnetic fields. The desifgs rior slot configurations,
skewing, etc. that have been set up to avoid critical foraeaat consider the structural
behaviour, i.e. the natural resonances of the stator, firer¢hese design rules are not
applicable to an arbitrary machine design.

The structural modelling is probably the most problematsuie in the noise computa-



8 1 Introduction

tion process. The complex assembly of an electrical machitiethe stator as the crucial

part directly exposed to the electromagnetic force reguereormous efforts in setting up
appropriate models to determine the vibrational behawiwatrleads to acoustic noise gen-
eration.

The following section lists the findings related to expenmad investigations of the
structural behaviour of the machine as well as analytical mmmerical approaches to
determine the structural responses.

As the stator is the part where the forces originating fromalectromagnetic field act
on, its modelling has been an important issue from the bagjnof the noise investiga-
tions.

One of the first analytical models set up for the computatioihe® deformation ampli-
tude on the back of the stator core stack has been set @by‘l{ﬁé]stator has been con-
sidered as an infinitely long cylinder and the deformatioreitial direction is determined
according to force wave amplitude, frequency and wave nunmbazimuthal direction.
The teeth of the stator are considered as additional mats#dted on the yoke. Such an
approach is also possible when considering the windingghwvhay have significant influ-
ence on the structural behaviour. However, besides thensanént to a two-dimensional
model, the housing and its coupling to the stator is not takenaccount, which is also
the case for a similar approach presente@in [8].

Erdelyi criticizes the two-dimensional approaches ando$ifroations made by Jordan
[@] and Alger @]. He claims that there is more than one ratirequency in each mode
of the stator core stack when mounted in the frame of the imdluenachine. Moreover,
he maintains that the influence of the housing cannot be ciegleas it is the major part
that radiates sound. In his w026] he presents a compsi&feeapproach to determine
the noise of polyphase induction motors of medium size, wliee stator is mounted via
ribs on the outer frame. He sets up an analytical model wilotiter frame and the stator
considered as cylindrical shells and connected via the Tibs results of this investigation
show that there exist four eigenfrequencies for each mobe.rd@sults proved to be good
compared with measurements, however the presented gapprabch needs to be applied
separately for different specific designs.

In [@], a frequency equation to determine not only the rade&formation but also
torsional and axial vibration has been derived for statosased tightly in the housing.
In this computational approach, the displacements arevassto be small and the stator
core stack is regarded as a homogeneous and isotropic bbodywihdings and teeth are
only considered as additional masses and their stifferfiegtehas been neglected. The
forces obtained from electromagnetic field computatiomsapplied to the structure as
wave components with a distinct frequency, wave number amlitude. The authors do
not confine their model to describe only the two-dimensiailadation behaviour. Their
focus also lies on the computation of deformations in axii@adion. They stress the fact
that, especially for long stators, the flexural bending cabe neglected as, particularly for
skewed machines, the forces acting on the machine vary &b dixection and thus cause
axial bending of the stator. Several conclusions can bee®ifrom their computational
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results: first of all, the deformations in the different ditens are coupled. This means
that a radial force distribution does not necessarily lemad purely radial deformation.

The second point is that there exist several eigenfreqasrior a distinct modal pattern.
These higher resonances may lie in the problematic frequamnge - where the harmonics
of the forces occur - especially in larger machines. Thestgations of the influence of

the frame have yielded that it affects the higher resonaanéds moreover, the flexural

vibrations.

In [@], the previously introduced approach is validatethveixperimental results. The
natural resonances are measured and compared with the tdiopal results. The com-
puted and measured results for the eigenfrequencies ofiffieeedt modes match very
well, however, considering the teeth and windings as amtthli masses is not sufficient.
Therefore, the approach has been supplemented by the usehwies factors@Q] con-
sidering the teeth as cantilever beams and a much bettehrhatcbeen achieved. This
again implies that the teeth and windings influence thengts$ of the system.

As the determination of the eigenfrequencies of the statararucial issue, detailed ex-
perimental investigations regarding the influence of teethding, frame and lamination
on the eigenfrequencies as well as on the amplitudes oftiobraave been carried out in
[@]. It is shown that the consideration of the windings aditihal masses is not suffi-
cient. Their contribution to the stiffness of the statoragye especially for higher modes.
Teeth and winding combined act like an additional mass, edsethe frame and the lam-
ination have only slight influence on the resonance fregeendregarding the vibration
amplitudes, only the teeth lead to an increase. A decreaseeamplitudes is detected
when considering winding, lamination and frame. The infeeeaf the material damping
has been investigated by analysing the steepness of thearesopeaks in the frequency
response spectrum. It is shown that only the laminationesdamping, which can be
very high especially for lower order modes.

Similar results have been delivered @[96]. Additionathg influence of wedges, tem-
perature and clamping pressure has been analysed. Thelditéeads to a slight increase
of the eigenfrequencies. The wedges, on the contrary, teadriuch more significant in-
crease especially for higher modes. An increase of the teahpe softens the structure
and thus decreases the eigenfrequencies, which explamsfterent noise of "cold" and
"warm" machines. The numerical computations involve arr@ppate definition of the
material parameters especially for the wedges and insulafithe windings. The results
match very well with measurements.

Due to the obvious influence of winding and teeth on the @ifffnof the structure a
computational model 0@5] incorporating the effect oftteand windings has been in-
troduced in @B], by Verma and Girgis. This is an extensiomt@stigations of the same
authors given in@é],@ﬂ anﬂé?], where the method is caneg to solid thick models
(no lamination). The purpose was to validate the modifiechioebn short@l] and long
stator model 6]. The examination of the influence of émgth of the stator core stack
on the eigenfrequencies showed no effect on the purelylradiansional modes. For long
stators, variations of the radial vibrations in axial dtrec have been detected which con-
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tribute significantly to the vibration behaviour. The arsdyof an impregnated stator has
shown an increase of the stiffness and a decrease of the Wiguofidhe winding. The reso-
nances in the measured frequency response occur much stiepavithout impregnation
and the amplitudes are much larger. These effects have edsodetected in more recent
investigations regarding the influence of windings, frame @npregnation iriﬂZ].

Regarding the damping behaviour, analyses have showrh&rminations and wind-
ings have an influence on the damping of the structural syséeninvestigation to deter-
mine the amount of damping occurring in the structural vibrahas been carried out in
[@]. Distributed electro-magnetic forces are appliechigtator core with different dom-
inant spatial ordinal numbers. The determined dampings@] lie between 1% and 5%
and are not proportional to the frequency, i.e. for différgpatial ordinal numbers of the
force waves a different damping occurs. Furthermore, thesingations have shown that
all resonances are excited irrespectively of the force waneber. However, if the spatial
ordinal number of the force is the same as the mode numbee aetfionance frequency,
the vibrations are more critical.

The advantages and disadvantages of analytical methodsacechto numerical tech-
niques are similar to those in the electromagnetic field agatpn. Analytical approaches
enable fast computations which are especially importatiterdesign process and for pa-
rameter studies. With the finite element method, the comgirmicture of an electrical
machine can be modelled more appropriately as more paatsistotor and housing) can
be considered. Their influence on the structural responséem be determined with nu-
merical simulations either in the time-domain or in the treqcy domain. However, as
transients can be neglected and are seldom of interest i@ nomputation purposes, the
evaluation of the structural deformation is usually perfed in the frequency domain and
the steady state solution is obtained. Transient solutépsevious electromagnetic field
and force computations therefore also have to be transtbimée frequency domain.
The natural resonances and eigenvectors are usually cethpist a modal analysis for
undamped structural systems. The visualized computed srzadegive valuable informa-
tion about the structural response expected.

A modal approach has been used to investigate the influenemdings and impregna-
tion on the natural frequencies E[lZ] by applying the fildtement method to different
stator core stack models of a synchronous machine. The maheomputation results
have shown that the influence of the impregnation on the &ggmency is enormous, i.e.
high stiffening effect has been shown. However these rebalte not been verified with
experimental investigations. A similar and more recent@ration has been carried out
in [@] where the influence of the end-windings and the frame ddso been investigated
in a finite element analysis. The results of the eigenfreg@smmatch the measured ones
very well.

In [@], examinations of the stator to housing couplingsenbgen determined by com-
puting the structural response using numerical technigndsanalytical means based on
[@]. First of all, it is shown that the deformation ampliagdin radial direction of the 2D
analytical and 3D numerical simulations agree very wellrtliermore, the investigation
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of the coupling has shown that aliasing of the force wavesiigcaccording to the number
of springs coupling the stator and the frame. Models witle¢hand six springs and one
with a shrinked stator are compared; the model with six ggrinields the best results.

An investigation that compared the three-dimensionakieiement modelling to exper-
imental results has been carried outlin [92]. This analyslwers important conclusions
for further 3D vibration analyses using the finite elementhud, like considering the
windings and teeth as a uniformly distributed mass resnltifficient accuracy. Further-
more, it is shown that the influence of the end-shields andupeort of the machine is not
negligible either, because new vibration modes occur. @tuall parts of the machine
contribute to the vibrations and should be modelled. Reggrthe lamination it is stated
that an orthotropic material model is absolutely necessérg investigations have shown
that a Young’s modulus in axial direction should be set to-1286 of that in circumfer-
ential direction to obtain proper results for the vibratidrhis has also been shown in an
earlier investigation iHEl].

In [@], laminated stacks have been investigated regariien stiffness behaviour in
axial direction. It has been shown that the Young's moduhdgthe shear moduli in this
direction decrease significantly depending on the clampimggsure. Furthermore, the
larger the clamping pressure, the lower is the damping.

Further examinations of the lamination have been carriedi‘d@] for different mod-
els with different number of laminates and different clangppressures. The main result
of this work is that the magnitude of the frequency respongetfons is lower than for the
corresponding solid model. This is the case especially fodes with a characteristic in
axial direction. These results are especially relevantifoge-dimensional finite element
simulations, since considering the core stack as solid bte®ys poor results. Further-
more, the analysis of the occurring mode shapes have shatihi pure radial modes
[@] are independent of the axial dimension, clamping pressr number of laminates.
The damping has not been investigated in this work. Howewerrésults shown for the
frequency responses indicated the same behaviour as inghiegs works.

The main challenge in the finite element simulations is tioeesthe adjustment of the
material properties, especially of the laminated coreksta@\n efficient way to setting
these material properties is presentedﬂ [77]. There,rexpatal modal analyses have
been carried out on a stator core stack after each fabnicatep. Additionally, a finite
element model has been set up and a corresponding homogegualent material pa-
rameter set is determined by fitting the response of the sitionl model to the measured
one. The adjustment works well, as test cases have shownHimeever, the drawback
of this approach is that the adjusted material parametas setly valid for the particular
model.

The determination of the structural response is typicallyied out in the frequency do-
main as mentioned previously. Due to the complex structaaalelling, the computational
effort can be very demanding, requiring an enormous amdumemory and resulting in
long computation times. To reduce computation time and mgm@mand, model reduc-
tion techniques like for example a modal decomposition Gaoasried out]EBﬂ9] on the
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one hand. Another possibility to decrease computatioaitsfis using the superposition
principle valid for linear systems like those in structuvdration problems considered
here. The structural response is computed for the relewaog ivave components only,
and the overall deformation can then be computed by scaligsaperimposing these
results. This idea has been adopted e.gEh [17] and vatidatean interior permanent
magnet synchronous machine. An extended investigatiobedound in [[Ib] which fur-
thermore shows that azimuthal forces also cause a sigrifoartribution to the vibra-
tions. A similar approach is presented [63] where thisideapplied to a rapid sound
power calculation of electrical machines. However thisneixetion focuses on squared
responses, as the sound power is proportional to the sgtidre ound pressure, and thus
has limited validity.

1.2.3 Acoustical investigations

The last step, after estimating the vibrations especiallyhe surface of the machine, is
to determine the radiated noise caused by these vibrati@vith analytical means the

emitted sound pressure is computed by simplifying the &ireco a substitute radiator.
In [@], the machine has been considered as a sphericatoadidh the same radius as
the outer radius of the machine. The use of a more sophisticatindrical radiator has

been proposed ir|ﬂ[8], as the shape of an electrical machjmestyy resembles a cylinder.
These approaches are still common in analytical compuisitisee e.g.|__[i8], especially
since they allow the computation of the effect of each vibraiode separately.

Similarly to electromagnetics and structural mechanios,finite element method is a
possible numerical means in acoustics, too [39]. Howevesgleernative and more com-
mon approach is the boundary element met [21], wheretbelgurface and not the
whole surrounding air has to be discretised, which is adgedus especially for higher
frequencies, as the number of necessary elements for thedilement method increases
enormously. The previously computed vibrations, i.e. themral component of the surface
velocity, is applied as boundary condition on the surfaa® after solving the boundary
integral equations, the sound pressure can be evaluatediattifield points. This method
is meanwhile commonly used in the noise computation prdoessectrical machines, see
e.g. [65], [64], [78] or|[30].

The experimental investigations comprise measuremerniiseofound pressure or the
sound power at distinct points surrounding the machineicC®iy, the spectral content is
of importance for electrical machines. For different rataél speeds, the spectra have to
be evaluated separately. mgl] the acoustic behavioun @fiduction machine (the struc-
tural investigation has been presentedm [92]) supplietth different inverters is mea-
sured for different rotational speeds. The aerodynamicraedhanical noise have been
determined in a previous step to separate them from thdytatalitted sound power and
thus estimate the amount of the electromagnetic noise. eTé&esminations have shown
that the switching harmonics affect the noise spectrum wangh, especially for lower
speeds, where the electromagnetic noise is dominatinghétanore it is shown that spe-
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cific speeds excite structural resonances, which resulis increase of the total emitted
sound power. The influence of the load is larger at lower spedcbrresponding nu-

merical examinations using the boundary element methograsented in [93]. A com-

parison with the measured sound power levels yields diso@ps, which however are
accumulated errors of the electromagnetic and structorapaitations, due to neglecting
for example the axial variation of the forces or the modgllihe rotor, which influence

especially the low frequency results.

A further very detailed experimental investigation is @adrout in @]. Besides vi-
bration measurements on the stator to identify the strath&haviour, the noise has been
measured at different positions around the investigateniredcage induction machine for
different loads. The increase of the load on the machinesl&adn increase in vibrations,
however not in a linear way. The acoustic measurements Hsoeslaown an increase of
the noise level, but not equally for all frequencies. Funtihare, directivity measurements
in an anechoic room have been carried out to examine thetidineaf noise radiation. The
results have shown different characteristics at diffeferjuencies showing the influence
of the structural behaviour determined by its eigenmodefemoise emission.

A very recent workﬁG] presents a more sophisticated metbhadeasure the emitted
noise. The recording of the sound pressure has been cauiedth an acoustic camera.
This method enables the assignment of large sound pressake fo distinct locations and
parts of the machine. The designated part was a cooling Gwindy an eigenfrequency
at the excitation frequency. Combined with numerical strtad computations this part
has been modified by shifting the resonance frequenciesg#éal a decrease of emitted
noise.

1.3 Contribution of this work

The computational techniques for determining the noiseWelr of electrical machines
comprise analytical and numerical methods. The need forctamputation approaches
accompanies the use of analytical means, e.g. in the desugpegs. If a variation of
parameters has to be carried out for optimization purpasedytical methods would be
appropriate tools, too. On the contrary, for investigagiowolving geometrical details or
non-homogeneous materials of electrical machines nualeapproaches suit better. So
depending on the field of interest both techniques are s@tun the noise computation
process.

Usually, for the use of analytical methods, simpler modedscansidered, as for exam-
ple the two-dimensional ring model for the vibration congiign. The investigation of
the validity and the limitations of a comprehensive anabjtapproach is one topic in this
thesis. The analytical results are compared to data oltdyp@umerical computations as
well as by vibration and noise measurements. The resuldiscassed in detail to outline
the restrictions. This analyses have been presentmtaiﬂ]dmublished ir@l].

One limitation is for example disregarding the axial vaaas of the forces in the air-
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gap. In the literature it is stated that "the vibro-acousggponse of a structure very much
depends on the distribution of the excitation force" ane '#kectromagnetic force should
be modelled three-dimensionally”. Hence a novel methodsemted a@Z] and pub-
lished in @], that uses the results of a multi-slice simtioh and then computes the
rotating force wave components with axial variation hasestablished.

Furthermore, a phenomenon regarding higher order forcesvavdiscussed. The de-
composition of the air-gap field into its wave components #oedfollowing force com-
putation using the Maxwell stress tensor method resultsricefwave components whose
higher ordinal numbers are neglected in the vibration cdatmn. This is valid, as the
most critical bending occurs for small ordinal numbers. ldeer, with appropriate slot-
ting configurations, force waves with high spatial ordinatnbers and large amplitudes
can occur. Moreover, these components only act on the teBtlerefore the question
arises what happens to these force waves when applied tedtte tThe contribution of
these components to the vibration might be of interest. phenomenon has been ex-
amined in the literature but has been disregarded in maniicatibns until now. The
investigations are carried out by structural numericaludations on a three-dimensional
ni[m??el of an induction machine and have been present@it@]hdamll be published in

].

The different forces acting on the structure lead to diffiengbrations of an electrical
machine. Therefore, the structural behaviour, i.e. thieht vibrational behaviour of
stator and surface is analysed in a further step. The ctioelaf the structural vibrations
and the noise radiation is investigated. The focus therigsydn the investigation of the
vibration modes that occur, especially those on the housing how they contribute to
the acoustic behaviour. In the scope of these analyseshwaane been presented H[%]
and published ir@9], experimental investigations ofetéint stator core stacks have been
carried out with the aim of validating a homogenized ortbpic material model.

1.4 Outline of the work

In the first chapter the motivation for this work and a literatreview of research related to
noise computation of electrical machines is presentecgalath the state of the art meth-
ods (computational and experimental) regarding electgmatc, structural and acoustic
phenomena of electrical machines. Following that, thergmutions of this work in the
field of noise computation especially for induction mackiaee presented.

The next chapter presents the theoretical background ofrefeagnetic field, struc-
tural vibration and acoustic computations along with thedfamental equations for each.
ChaptefB then deals with the noise computation of ele¢me&hines and presents a com-
prehensive analytic noise computation method. The foegsn induction machines. The
method first of all comprises the computation of the magrietgld harmonics occurring
in the air gap. The causes for the different field harmoniastae resulting mechanical
stresses are discussed in detail. After that, the strdcilration computation is presented
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along with the determination of the noise radiation of arcteleal machine assuming a
cylindrical shape.

In chaptef ¥ the numerical means used for each physical pieman that has to be dealt
with is presented. First of all, some principles of the fitement method are explained
shortly. Following that, the electromagnetic field compiotain electrical machines using
the finite element method is presented. For structural tidovgroblems the finite element
method can be applied, too, which is shown in the next sectkinally, the boundary
element method is introduced for the computation of thee@sdiation of vibrating struc-
tures.

Chapter§b tbl8 then deal with the topics presented in sd€Efhrin chaptel]5, the vali-
dation of the noise computation approach presented in eh@j carried out. The analytic
computation results are compared to numerical simulagsalts as well as experimental
ones.

In chaptet 6, a newly developed method to determine theti@miaf the magnetic field
in the air gap using multi-slice models is presented. Comipuis have been performed
for models with four and five slices for the nominal operatpwnt of a squirrel cage
induction machine and the reconstruction method is appdidebth of them. In a last step,
simulation results of a multi-slice model are compared Wit of a three-dimensional
model for the short circuit operating point.

Chaptel¥ deals with the investigation of the structurablvésur of an electrical machine
due to different stress wave components acting on it. Thesefdifferent stress wave
components are defined and then applied to a three-dimestvactural finite element
model. The outcome is discussed in detail.

The following chaptell8 presents a comprehensive vibratimhacoustic noise compu-
tation of an induction machine using the numerical meantaéxgd in chapter]4. Special
focus thereby lies on the investigation of the structurékation behaviour and how it
affects the noise radiation.

At last, chaptel19 presents a summary of the obtained redithes outcome along with
the problems that have occurred are discussed and someésaspe@sting for future work
then conclude this work.






2 FUNDAMENTALS

2.1 Noise generation in electrical machines
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Figure 2.1: Causes of noise radiated by electrical machines

As mentioned in the introduction, the noise generation etteical machines can be
attributed to three main caus@[@[dﬁl[%]. A schematierview is depicted in Fig.
2. The aerodynamic causes comprise the pressure flartsatiie to the turbulences
of the fluid flow of the cooling media. These pressure flucaratiare typically emitted
directly as airborne noise (broadband noise). The mecabcézises include for example
the bearings, the rotor imbalance or the brushes. The latircontrary to the first two,
contributes directly to the noise generation. Owing to the imasses of bearings, they
hardly produce any vibrations.

The focus of this work lies on the third cause of noise ger@rat.e. electromagnetic
phenomena. The electromagnetic fields especially in thgegirof electrical machines re-
sult in forces with a distinct spectral content causingdtral vibrations. The magnitude
of the vibrations depends, on the one hand, on the amplititae forces, as is obvious,
and on the other hand on the frequencies as they must noti@eiwith structural reso-
nances. The surface oscillations then cause pressurediigets and thus a further energy
conversion from vibrational to sound energy takes place Sgectral content of the emit-
ted noise contains, on the one hand, the broad band noiseanfyaamic origin, and on
the other hand noise peaks due to the electromagnetic fofeescount for humans’ non-
linear perception of noise, the noise spectrum has to bd veite appropriate weighting
curves.

In the following, the fundamentals to determine the govegrguantities in each of the
three domains - electromagnetics, mechanics and acoustiespresented. For the elec-
tromagnetic domain, first of all, the governing equationsdmpute electromagnetic phe-
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nomena, i.e. Maxwell’'s equations, are introduced. Maxweljuations then are adapted
for low frequency problems. Afterwards the determinatidrihe forces that may arise
from magnetic fields is explained. The fundamentals of meidlah problems comprise,
first of all, the determination of the elastodynamic equaito compute the vibrations of
an elastic body. In a next step coupled vibrations are iny&t&d. A special focus hereby
lies on the determination of the eigenvalues and eigenkeatad their contribution to the
structural behaviour. The derivation of the governing ¢igua for the acoustics concludes
this chapter.

2.2 Electromagnetics

The phenomena of electromagnetic fields can be describbdaixwell’s equations m0],
pp. 87-89). This is a set of equations that comprises Ampdas¥, Faraday’s law of
induction and Gauss’ laws given in the differential form akoiws:

oD

OxH=J+5" (2.1)
oB

OxE=-", (2.2)

0.B=0, (2.3)

0.D=p. (2.4)

In 2.1) Ampere’s law extended by Maxwell’'s ter%? for time dependent conditions is
given. A circulating magnetic field intensity thereby results from a current densitgnd
the current density obtained as the time derivative of tkpldcemenD. Equation [Z.R)
denotes Faraday’s law meaning that the variation of a maginelt! B with time results in
a circulating electric fieldE.

Equations[(2.13) an(2.4) denote Gauss’ laws for magnetiebattric fields. An electric
displacemenD produced by electric charges (charge denpitydiverges from positive
charges and converges to negative charges. The divergetimernagnetic flux densit
at any point is zero. The total (net) magnetic flux throughosetl surface is thereby zero.

The given relationships are of general validity and indejgeh from any material prop-
erties. However, the vectors can be related among each a@¢pending on the material
properties as follows:

D = ¢E, B=uH, J=y(E+Ee). (2.5)

The parameters andu are the electric permittivity and the magnetic permeabdgnot-
ing the material’'s response to an electric and magnetic fiefpectively. Usuallg = & &
andu = i L is introduced, wherey = 8.8543- 1012 F/m andyg = 47- 10" H/m are
the permittivity and permeability in vacuum agdand i, denote dimensionless constants
of different materials related to vacuumis the conductivity of a material arték denotes
an imposed electric field.
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2.2.1 Quasi-static fields
For applications like electrical machines, Maxwell’s etjas can be simplified to the
guasi-static limit by neglecting the displacement curdaisity in [Z.11), since
oD
J — 2.6
1> |5 26

for the occurring frequencies, e.g. fat 20 kHz

g 2
[72mfD] ~8-10%. (2.7)

Two sets of equations can now be defined, one for the non-ctinduegionQ, and one
for the conducting regiof.. In Q. the current density is unknown and an eddy current
field is present. Therefore, Faraday’s law has to be cormidénQ, a current densityg

is giveml. The following set of differential equations then is obtadn

OxH=J in Qc (2.8)
JoB .

OxE=—> in Q¢ (2.9)

OxH=1Jg in Qn (2.10)

I:I'BZO |n Qc,Qn (211)

J=VE in Q¢ (2.12)

The outer boundaries @, and Q, shall be denoted bi/. andl", and homogeneous
boundary conditions shall be assumedr {fandl", are symmetry planes or artificial far
boundaries we have the following boundary conditions:

Hxn=0 or Exn=0 onl¢ (2.13)
Hxn=0 or B-n=0 only (2.14)

wheren is the outer normal unit vector. On the symmetry plane eithetangential com-
ponents oH or E is zero. On the far boundary of the non-conducting dorngjeither the
normal component dB or the tangential component bf is zero. On the interfaceyc of
the two region$),, andQ. H x n andB - n are continuous. Applying these boundary condi-
tions to the quasi-static equation systéml(2.8) fo {2.1&lpgia unique solution. However,
analytical approaches only exist for simple geometriespaotllem definitions. For more
complicated models numerical means are necessary to sohge-sgtatic problems, which
will be introduced in section 4.3.

1The skin effect problem is neglected here. The current igrasd to flow in coils with cross sections
smaller than the penetration depth.
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2.3 Electromagnetic forces

In the scope of this work the forcés= gE on electrical chargegprovoked by an electric
field E shall be neglected. Only those forces due to a magnetic il lse investigated.
The derivation shown here is based on the approach presier{@].

A magnetic flux densityB(r) and a magnetic field intensityl(r) shall be defined at
a positionr. Assuming linear magnetic material properties, the magmetergy density
Wn(r,B(r)) is then defined as follows:

B
Win(r, B(r)) :/H~dB: H.B. (2.15)
0

NI =

Introducing a uniform vector field, the following identity can be obtainelﬂ18]:
O-(B(H-v)—wqv) =v-(OxHxB+HO-B—0Owpy). (2.16)

A domainQ with its bounding surfac€ and the outward normal shall now be defined.
Insertingd x H =J andO- B = 0 into (2.16), usind3(H -v) = (B®H)v and dropping/
results in:

/D-(B@H—Wml)dQ:/(JxB—IZIWm)dQ:F, (2.17)
Q Q

wherel is the unit tensor. The right-hand side is the total fdf@eting on a volum& and

it contains a volume force density with two terms. The firsé @tands for the Lorentz-
force, the force on a given current density in a magnetic .fiflle second term is the
force density due to the variation of the energy density. Jitaglient is especially large on
the surface of highly permeable materials surrounded byraiss is the case in electrical
machines where the magnetic field passes the air gap frontettoe 8 the rotor.

If the permeabiltiyu depends on the stramof the material, which is the definition for
magnetostriction according tﬂlS], a further energy téb(e,B) arises. This results in
a strongly coupled problem of the magnetic and elastic gndrpwever, for the scope
of this work the magnetostrictive effects can be neglectdd.has also been shown in
] those forces do not contribute significantly to the aiwn behaviour of electrical
machines except for machines with large stators and thies.ok

The volume force density on the right hand sidelof (P.17) wadéis the introduction of
a stress tensdr for the tensor on the left hand side. This is also referred tiva Maxwell
stress tensor. Using (ZJ15):

T:B@H—%(B-H)I. (2.18)
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With Gauss’ law, the total forcgé arising from a magnetic field and acting on a volume
can now be determined via the Maxwell ten3or

F:/D-TdQ:andr. (2.19)
Q r
The expression of the Maxwell tensor [n_(2.18) can be wrigden
[ (BxHx—3B-H) BxHy BxH;
T = ByHx (ByHy— 3B-H) ByH, : (2.20)
B,Hx BHy (BH,—3B-H)

Using the identityB@H —wml ) -n = (n-B)H —wmyn, a surface force densityy, can
hence be defined as:

am:Tn:(nB)H—%(BH)n. (2.21)

With this relationship, the force acting on an arbitraryface element@d can therefore be
determined askl= odl". As outlayed inﬁlS], the Maxwell tensor is valid for problem
where no magnetostrictive effects are present. The latafithe surfacé€ is arbitrary and
can also cut through magnetized matter. Furthermore, inea+iB-H curves are allowed.
The application of the Maxwell stress tensor to electricathines is presented in section

B.1.4.

2.4 Structural mechanics

2.4.1 Equation of elastodynamic equilibrium

The structural vibration investigation of a deformable Y aaiplies the set up of an ap-
propriate model based on the theory of elasticity and dyoahprrinciples. Typically, the

body is assumed to be a continuum, i.e. a continuous entity l@dmogeneous material
properties. First the kinematics i.e. the displacementiseoimaterial points comprising the
body are investigated. Then the constitutive laws for liredastic problems are introduced
and the equation of an elasto-dynamic body are set up. Tloevioly derivations can also

be found in ],@7] andEQ].

Kinematics of a continuum A point P of a deformable bod¥ shall be defined in the
coordinate systerR with the basigre;,re2,r€3) With the initial position vector at time

t = tp and the actual position vect®& at timet, i.e. by a Lagrange representati[67],
pp. 19). The displacement vecwof the deformed volume elemen®dromtg tot is then
defined as follows:

s(r,t) =R(r,t)—r. (2.22)
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The displacement vectarcontains, on the one hand, the information about the chahge o
the position and orientation comparedigowhich describes the rigid body movemenat
of B and, on the other hand, the information about the change shipe Q| — dQ;,
i.e. the deformatiosp and, therefores = sp + Sk.

Let (ge1,5e2,8€3) be defined as the basis of the deformed b&dwith coordinates
X = (X1,X2,X3) and (re1,r€2,r€3) With coordinate = (&1, &2, &3)) shall move with the
body (no rigid body movement terms for the displacement).

To determine the change of shape of the b&lyhe difference of the squares of the
infinitesimal arc elementsédfor the actual configuration anddor the initial one is taken:

dS? = d€ - d€, ds = dx - dx, (2.23)

2— I
dS"—ds” 5 ds’ =dx-G-dx (2.24)

whereG denotes the Green-Lagrange strain tensor and is determitiggifollowing way:

_ 1(0& 0§ 2 0&mdénm .
GIJ_§<0—Xj+0—Xi+mzlﬁ—Xi0—Xj I],...1,2,3. (2.25)

Linear elastic theory For most practical applications simplifications regardimgstruc-
tural behaviour, i.e. a linearisation of the previouslysamted kinematics, can be made.
Therefore, the partial derivatives in (2125) are assuméxteery small and the non-linear
terms ofG are neglected. The componestswith i, ] = 1,2,3 of the Green-Lagrange
strain tensor can now be obtained in the following way

1708 0&j _—
&j = é <0—XJ+E) ) I, ] = 17273' (226)

Stress-strain relationship - Hooke’s law The stress and strain state in a deformable
body B is coupled via the material properties of the medium. Assignai linear stress-
strain relationship according to Hooke’s law results in:

oij =A0-&5j + 2Gs; ,j=123 (2.27)

whereA is Lamé’s first parameter andj; denotes the Kronecker symbol. The material
constants defining are the Young’s modulus and the Poisson ratio, see[(2.28). Those
constants also define the parameé®eralso known as the shear modulus as it relates the
shear strains and stresses:

Ev E

A= (1+v)(1—2v) C= 5T+

(2.28)
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Equation of elastodynamic equilibrium The presented relationships for an elastic body
resultin 15 unknowns and therefore 15 equations are to hgseian elastodynamic prob-
lem. The strain tensor relates the displacements and @iasand results in six equations
and further six are obtained with Hooke’s Law relating thestes and the strains. The
last three equations are obtained with the basic law of maath mechanics.

Newton’s second law states that the change of the momenttimtivie equals the re-
sulting (net) force acting on the bo@y The total acceleratioais determined with respect
to an inertial system as the second total time derivative@tisplacement vectasr

o (2.29)

With the local displacement vectér(for rigid body movemené = [0, 0,0]) a local accel-
erationa,_ can be defined as the second local time derivativg of

_ 0%

aL= 5 (2.30)

Let us assume that no rigid body movement occurs and, beoatiseassumption of small
displacements, the inertia forces are determined by tlad émceleratiom only. Consider
now an infinitesimal volume element with denspgyand a volume forcég acting on it,
then, according to Cauchy’s law, the following equilibriwvith the inertia forcepa, and
the stresses;j on the cut surfaces is obtained:

9°&

whered is a symmetrical second order tensor containing the st@spanentssij. For

small values ofg—i:, %—‘Q = %—‘g holds (@], pp. 175),@2], pp. 28). Therefore, using
Lagrange’s representation in the actual configuration isvadent to using Euler’s repre-
sentation in the reference coordinate systéﬂ ([67], pp. M8Erting [2.26) and (2.27) the

following relationship can be obtained:

9%&

GAE +(A+G)O(D-&) +fa=pa = 55

(2.32)
This is the general differential equation for elastic datiry motions. It is of second
order with respect to space and time with the displacemearibwvé as its argument. On
the left hand side two operators appear. This indicates(h@8) comprises two wave
equations simultaneously. Introducing a scalar and vexdtantial for the divergence-free
and irrotational part of (Helmholtz decomposition):

E=00+0OxY (2.33)
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allows, for the homogeneous pafg & 0), the formulation of two wave equations with
different wave number, andkg

d2o

W+k(,2Aq>:o, (2.34)
2w
S HkeAw =0, (2.35)

The solution for the elastodynamic problem can thereby beisfp a wave equation for
longitudinal waves[(2.34) and one for transversal Wa@QZ(], pp.74-88), @3],
pp.94-96).

2.4.2 n-degree of freedom mechanical system

Consider now a multi body system withdegrees of freedom. With the application of the
Euler-Lagrange equations (|45], pp. 60ff) one obtains tiing general equation of
motion for a non-linear multi body system ([69], pp. 188ff):

M (q.t)q+k(a,q,t) = F(q,q,t). (2.36)

In this equationg is an n-dimensional vector of the generalized coordinat®k.is the
symmetric[n x n] mass matrix of the systemk is the gyroscopic force vector of the
dimensionn x 1] andF is the[n x 1] vector of the generalized forces.

Performing a linearisation around a position of equilibrigs(t) with q(t) = gs(t) +
q(t), the following equation of equilibrium is obtained:

M(®)a(t) +P1)qt) +Qt)a(t) = F(t). (2.37)

The vectorg denotes the displacements around the position of equitibgs. The gy-
roscopic forcek are now described by the sum of the producP@f) with the velocity
vector@ and ofQ(t) with the displacement vectar. P andQ are[n x n] matrices contain-
ing the information of the gyroscopic effects and the caupbf the bodies. If the matrices
are constant and gyroscopic effects are neglected thewlbwing differential equation
of second order is obtained:

M-+ Dg+Kq = F(t). (2.38)

In this equatiorD denotes a symmetrioxrn matrix called damping matrix and is also
a symmetridn x n] matrix and is referred to as stiffness matrix. The first temtlee left
hand side determines the kinetic energy of the system amahéhwvith the stiffness matrix
K the potential energy. The damping matthdetermines the dissipation occurring in the
mechanical system and thus leads to a non-conservativansyst

The same equation of motion can be derived for an elastodgreystem in[(2.3R), if
for example the Ritz method is applied toﬂ[33]. A specigblagation of the Ritz method
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realized by the finite element method is presented in theteHdp}. The investigated body
is discretized with finite elements consisting of nodes tloatespond to mass points. The
connection of the nodes can be imagined as springs withasiffaccording to the material
properties.

Solution in frequency domain For structural vibration problems, typically stationary
investigations are of interest, where the external fdfde a harmonic function with a
frequencyQ and an amplitud€. If the investigated problem is asymptotically stabEI[ESQ
pp. 205), then the transient oscillations can be neglestade the homogeneous solution
decays. Only the particular solution remains. Theref@g8) can be transformed in the
frequency domain and the following equation is gained:

(—Q?M + jOD+K)§ =F. (2.39)
This leads to a steady-state problem where the displaceraeturd is determined by

4= (—Q°M + jQD+K)IF (2.40)

Modal transformation Regarding the undamped system only, a so-called modaltrans
formation of the mechanical system can be carried out fodgue and symmetric system
matricesM andK [@],[@]. To this end, the homogeneous undamped part ohtamju
(2.38) is considered:

M§+Kg =0 (2.41)

and the eigenvaluel and the eigenvectors are computed. The homogeneous solution
can now be obtained as a linear combination of the eigenisaiith the coefficientg i =
1,2, ...n

n

qt) = Z\riZa(U- (2.42)

The eigenvectors; can be arranged in a matrik, the so-called modal matrix. Further-
more a new displacement vectocontaining the modal coordinatgascan be set up and a
transformation of the modal coordinates to the originalrdowtes with the modal matrix
R can be carried out:

q(t) = Rz(t). (2.43)

Inserting this relationship int¢_(2.40) with no dampirg £ 0) and multiplying with the
transposed modal matrix from the left results in

= (—Q°R"MR +RTKR)RTF (2.44)
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or, with the following orthogonality properties
RTMR =1 RTKR = diag(w?) (2.45)

one obtains
G = (—02 +diag(«?)) ‘RTE. (2.46)

It can be seen i (Z2.46) that the solution of the displacemeator x is determined by
two terms. One is the product of the transposed modal maitix tlve excitation force
vector. This results in a vector whose entii@se zero if the force vectdt is orthogonal
to the eigenvectors.. The second term is determined by the inverse of the diftererf
the excitation frequenc and the eigenfrequencies. The entries therefore are large
for excitation frequencies near the eigenfrequenciesdigenvectors corresponding to
eigenvalues near the excitation frequencies thereforardaethe displacement vectir

For damped systems, a similar derivation is possible as &snifpe damping matrix is
constructed accordingly i.e. as a linear combination ofrtfass and stiffness matrices.
Then, the eigenvectors stay the same and are orthogonalifedespect to the damping
matrix (@], pp. 202-204).

2.5 Acoustics

Acoustic media are typically homogeneous, inviscid andtational fluids and shall be
defined in a domaiQ. The acoustic fluid with the densify shall move with a velocity.
The law of continuity therefore is as foIIow&t?S], pp. 83ff

J

a—f+l:l-pv:0. (2.47)
The pressure is acting on the acoustic medium and, furthermore, for ttke s gener-
ality, an external volume force vectb(external source) shall be given. The equation of

motion can now be obtained with Euler’s equation for norcetss fluids:

dv

Pt

For the further derivations, the external sourteball be omitted. For acoustical investi-
gations, only small vibrations in the air are typically oferest. So, the total derivati\%

can be replaced by the partial derivat@{é Furthermore, a linearisation of the dengity
and the pressurpg around the nominal atmospheric valygsand pg can be carried out:

+Op=Ht. (2.48)

P =po+p, P=pot+Pp (2.49)
Neglecting higher order terms, this results in
Z—f+polil-v:0, (2.50)
ov
po— +0Op=0. (2.51)

ot
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The relation of the pressu@and the density can be expressed by the thermodynamic
laws for polytrope behaviour. However, typically adiabatonditions are assumed for

acoustic investigations which results in a linear relatidrthe sound pressure and the
density:

_(9p _
Op = (dp)ol:lp =c’Op (2.52)

wherec = v KRT is the sound velocity in air.
Multiplying (2.51) with O from the left, differentiatingl(Z.50) with respect to tirhand
using [2.5P) results in the wave equation for acoustic flindke time domain:

Ap(r,t)—c——(r,t) =0 (2.53)

wherer denotes the position of a point {2. For stationary conditions, a Fourier transfor-
mation can be performed and the Helmholtz equation is obtkin

AP(r)+k2p(r) = 0. (2.54)

wherek = £ is the wave number for the angular frequeneyThe solutions for the sound
pressureg and the sound particle velocityare then determined with:

p(t) = Re(pe), v(t) = Re(Vel). (2.55)

As the pressure is a scalar quantity, these wave equatidesrdee longitudinal waves,
cf. (234). Letl be the surface enclosin@ with the unit normal directiom. Normal
components are denoted by the subsaripthe following Dirichlet boundary conditions
onl4, Neumann boundary conditions 6 and mixed boundary conditions én can be
defined:

p(r) =mp(r), rely (2.56)
Un(r) = m%)dg? — Vn(r), rern (2.57)
B(r) = Z(r)in(r) = p;wZ(r)as(nr), rer, (2.58)

wherep(r) andv,(r) denote prescribed functions for the sound pressure andiguasticle
velocity on the surface. The normal impedance boundaryitiond(r) relates the sound
pressure to the sound patrticle velocity on the surface. iSlufen used to account for e.g.
boundary layers of insulation materials. For exterior aidn problems and considering
wave propagation in free space a further boundary condittme so-called Sommerfeld
boundary condition

: ap(r) . B
‘rl‘@w\r\ <T+ Jkp(r)) =0 (2.59)
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has to be satisfied &t,. This means that no reflection of the waves occurs at infiAjpy.
plying these boundary conditions, a solutionof (2.54) caddtermined either analytically
by separation of variables or numerically by using FEM or BEke sectioh 41.5.



3 ANALYTICAL COMPUTATION APPROACH

In the following, the development of a comprehensive amayimethod to determine the
noise behaviour of electrical machines is presented. Ilf@®s the determination of the
air gap field and its harmonics. The derived force harmomiesteen used as the boundary
condition for the structural model, i.e. an infinitely longlinder. The obtained surface
oscillations subsequently serve as boundary conditionthidacoustic radiation model.
The derivations presented are based oh [42] and [68]. Aamdtid of this method will be
shown in chaptdrl5.

3.1 Air Gap Field

The electromagnetic causes of acoustic noise in electriaahines are mainly determined
by the magnetic field in the air gap and its resulting forceshenstator and rotor teeth.
The determination of the field is complicated as there arerséfactors, e.g. the configu-
ration of the windings, the shape of the air gap or the mdteraperties, that influence its
behaviourEb].

For analytical investigations, several assumptions ardent@a get comprehensive for-
mulations for the field computation. First of all, the fieldassumed to be homogeneous.
Furthermore, the magnetic field problem is reduced to a plprablem assuming an in-
finitely long machine. The magneto-motive forces in ironaeglected as its permeability
Ure is much larger than in air and therefomge = o is assumed. The integral form of

(2.10) then yields:
Vs(6.1) = Hi(9.)5(9,1) = %Br<¢,t>6<¢,t> (3.1)

whereV; is the magneto-motive force in the air gai, is the radial component of the
magnetic field intensityB, the radial component of the magnetic flux denshtyhe radial
extent of the air gapyo the permeability of air an¢gg denotes the azimuthal coordinate in
the air gap.

Introducing an azimuthally distributed, axially directaatface current density = ae;,
the following relation for the magneto-motive force can i¢amned:

Vs = R/a(¢,t)d¢ Let), (3.2)
:

whereR is the radius of the air gap. The consta(it) has been discussed im68] as
the contribution of the homopolar fluxes. However, thesgalair fluxes typically are

29



30 3 Analytical computation approach

negligibly small and therefore are omitted for the furtherastigations which yields:
Vs(9.0) =R [ a(6.t)dp 33)
¢

Inserting this relation in[{3]1), the magnetic flux dendiyin the air gap can then be
determined as follows:

Br(¢7t) :A(¢7t)V5<¢7t) (34)

whereA\ is the permeance function. This approach assumes infirsitesfl slot openings.
The slotting effects are considered by a modified air gaptfan@”. Both the magneto-
motive forceVs and the permeanaot vary with the azimuthal coordinaig according to

the winding configuration and the slot configuration, resipely. The idea of analyti-

cal approacheﬂhZ]Eb8] is to represent the variation aspgrposition of single wave
components determined by a two dimensional Fourier decsitipo.

3.1.1 Permeance harmonics

The variation of the permeance can be determined by a cdristam/\; and a periodic
termA,:

Ho
3(¢.t)

The periodic term\, (¢,t) shall now be determined as a superposition of wave compo-
nents with an amplitudAA, a spatial ordinal numbeéx, a rotational speed, and a phase
angley, . Furthermore the variations can be attributed to severahpimena: the varia-
tion of stator and rotor slotting (subscript SL), the pernmeavariation due to saturation
(subscript Sa) and the variation due to eccentricitiesgstat E):

N($:t) = Mg +Mgat Mg = No+ S Ay cosA g —2mFyt+ 4y ). (3.6)
A

The variation of the permeance due to the stator and rottiirgjaesults in a superpo-
sition of permeance wave componeniss,

~ >N
/\)\SL = ZA)\SL COiASL(P —27Tf)\SLt—|—Lp)\SL), ASL: glNSZIZ gZNR, f)\SL = f(l—S)g pR,
AsL
(3.7)
g1 =0,+1,+2 43, ... Gp=0,+1,+2 43, ...

with a spatial ordinal numbeXs;, which is a linear combination of the number of stator
slots Ns and rotor slotdNg. In the following the subscript§ and R denote stator and
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rotor components, respectively. The coefficients are gwith the countergy; and gp.

For g2 = 0 only the stator slotting determines the permeance vangtand the rotor is
considered as smooth. The opposite is the casg fer0. Additionally, for the permeance
variations of the rotor slots the rotor rotation has to bestdered by the angular frequency
faq - The frequency is determined by the current feeding frequénthe pole pair number

p of the electrical machine, the slgpand the spatial ordinal number due to the rotor
slotting determined witlgoNRr. For the determination of the amplitudes, the permeance
wave componentd ) gr are typically decomposed into components evoked by therstat
N\, s and rotor slotting\, g as well as the interacting componenissg [@], [@].

A further influence on the permeance is given by the saturatiohe teeth. The largest
saturation occurs at positions where the fundamental ntiagietd with a spatial ordinal
numberp has a positive or negative maximum. The permeance Way¥gdue to saturation
is therefore given with the spatial ordinal numieg= 2p and the frequency df, = 2f:

Msd®:t) = 5 Ag,cofAsap —2mhit+Uns)  Asa=0s2p  fig,=ga2f  (3.8)
Asa
g3=+1,+2,43,...

Typically, the casegz > 1 can be neglected as their influence is only relevant forljigh
saturated machines. An approach to determine the amplityddor gz = 1 is proposed

in [6€], [53].

The last contribution to the permeance variations arises the eccentricity of the rotor.
The dislocation of the axis of the rotor compared to the stz have several reasons, e.g.
manufacturing inaccuracies or deflection of the rotor. Tisodation leads to a decrease
of the air gap at a distinct circumferential position. Thenpeance wave component can
be derived as follows:

/\AE:/\OE+Z/\AEcos(/\E¢—2anEt+LpAE) Ag =+1,42,43,... (3.9)
AE

For a static eccentricity,. = 0 and for the dynamic eccentricithy_ = f%E(l —5). The
amplitudes are functions of the deflection of the rotor asosfthe stator axi@B]@B].
3.1.2 Magneto-motive force harmonics

Performing a two dimensional Fourier analysis, the curdbstribution of anm-corded
winding can be described as foIIovE[ESS]:

a(9.t) == &avsin(v —2mfut = yu) v=p(L+2mg (3.10)
Vv
g=0,+1,4+2 +3 +4. ...

where, denotes the winding factor which accounts for the influerafethe winding
configuration and is determined as follows:

&y =¢&z2,€5s,€sk, (3.11)
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whereéz, denotes the factor for the winding distributiofy, the factor for the winding
pitch andésy, the factor for the skewing. The winding facty is a function of the spatial
ordinal numbew. Inserting this relationship in_(3.3) results in the foliog harmonic
superposition for the magneto motive force:

Vs(,t) = ZREV%cos(vcp—anvt—va) (3.12)

3.1.3 Air-gap flux density

Using a simplified but physically relevant machine mode#, pineviously introduced rep-
resentation of the magneto motive force and permeance gegosisition of wave compo-
nents with distinct spatial ordinal numbers and angulayfescies now allows the deriva-
tion of the magnetic flux density as a superposition of fielthponents with the spatial
ordinal numbek:

B(¢,t) = Zékcos(kd) — 21t — ). (3.13)

To maintain the physical allocation to the origin of the fie@mponents, the decompo-
sition is performed, on the one hand, for discrete windirggiming constant permeance
No, i.e. A =0, resulting in winding field8ying:

Buind(9,t) = ARY Ev%cos(vgb—anvt—Lp\,) (3.14)

and, on the other hand, for permeance waves due to slottognticities and saturation,
resulting in parametric fieldBparam

Bparan{¢.t) = R Z/A\,\fv%cos(utp —2mfyut — ), (3.15)
2
with
U=VEA, (3.16)
fu="fu 1), (3.17)
Yu =y Ey,. (3.18)

as the resulting spatial ordinal numbers, angular fregesrand phase angles of the field
components for the permeance harmonics. By breaking timegagrce harmonics further
down, an assignment to the stator, rotor and interactingreicfields and moreover to the
saturation and eccentricity fields can be attained,/see [68]

As, in general, magnetic fields are induced in both the sttalrthe rotor, the inter-
action of these fields has to be taken into consideration.fiélols with the same spatial
ordinal number and frequency typically a damped magnetit fesults. In|E|8] the deter-
mination of complex damping factors using an equivalerdgusirfor higher harmonics is
presented. If the number of cords and poles of stator and aoéodifferent (e.g. squirrel
cage induction machine), then further magnetic field coreptsarise.
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3.1.4 Determination of the electromagnetic stresses

To calculate the electromagnetic forces due to the maghelicharmonics in the air gap
the Maxwell stress tensor df (2]20) is represented in cyidadlcoordinates fou = const
and the constitutive law = %B:

[ (BF-3B%) BBy BB,
T= o ByB, (B3 —1B%)  ByB; (3.19)
BB BBy  (BZ-3B?)

with r, ¢ andz denoting the radial, azimuthal and axial direction of thechiae. The
surfacd” where the stress tensor is to be evaluated shall be definecbasial cylindrical
surface in the air gap. The stresses shall be applied to dher tore. Thus, the normal
vectorn of the defined surface in cylinder coordinatesis [-10(.

With (2.21), the following stress vector is obtained foe L:

1 BZ — B3 — BZ
On(r,¢,zt) = 20 2B By (3.20)
ZB¢ BZ

The radial component of the obtained stress vector is negai. it points from the stator
to the air gap. As the magnetic field has been determined asgunplanar problem, no
axial component of the stress occurs (siBge= 0). In @], @] it is pointed out that the
azimuthal component does not contribute to the noise betawf electrical machines.
Furthermore, the structural response due to azimuthaé$acmainly determined by the
vibration behaviour of the teeth of the machine which inesha very detailed structural
model. Since the used analytical model does not reflect ghawour the azimuthal com-
ponent of the stress vector is neglected.
With By = LigHy < By, the radial stress component is thus determined only byaitialr

magnetic flux density. Inserting(3]13) then results in:

2

5 Br,cogkg — axt — k)
_BHY _ LK (3.21)

2o 2o

O-l'(d)?t):

The subscript for the radial magnetic field componerits shall be omitted from now
on. With appropriate operations, this equation can be mafitated to determine the radial
stress as a series of stress wave components. The relatiamddial stress wave compo-
nentoy (N, ¢,t) in the air gap resulting from the two field componeBisandB; with the
field amplitude$,;, Bkj, the spatial ordinal numbeks kj and the angular frequencies and
phase angleay;, wj andyki, Y; is obtained as:

ByiBx;

Ur(nad’,t) == 2“0

cogng — 2mfpt — Yn), (3.22)
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with
n=k; £k, (3.23)
fn= fkj + fy,, (3.24)
Un = Y £+ Py (3.25)
wheren, f, and Y, are the corresponding spatial ordinal number, the frequand the
phase angle, respectively, see [@],[49]. Two magfietd wave componen; and

Bj therefore result in six stress components: two stress coerge composed only &
with n = 0 andn = 2k; for the spatial ordinal numbers amd= 0 andw = 2w for the
frequencies. Further two stress components composed bBlywith n = 0 andn = 2k;
for the spatial ordinal numbers arfd= 0 and f = 2f; for the frequencies. The last two
stress components are determinedpgndB; with the spatial ordinal numbers= kj £k;
and the frequencies = fj & fj.

As it will be shown in the next section, mainly the stress vgawgth spatial ordinal
numbers up to 10 are relevant for the vibrations. Furtheenibie representation obtained
shows that each stress wave has a distinct frequency. Itthgides with a structural
resonance frequency, large vibration amplitudes will occu

3.2 Structural Vibration Computation

The determined pressure waves revolving in the air gap watingt frequencies, spatial
ordinal numbers and amplitudes serve as input for the stralctibration computation.

A model to determine the deformation of the stator has beebkshed by Jordan (see
[@]). The stator has been considered as an infinitely lofigasr. To determine the radial
deformation amplitud¥ resulting from a stress wavg (n, ¢,t), the elastodynamic equa-
tions have been set up with Cauchy’s law (2.31) and assurmegr material properties
(2.27). To obtain a compact formulation, the influence ofashatresses on the deflec-
tion and the rotational inertia have been neglected. Furtbee, a linearization has been
applied to discard terms of higher order.

The method assumes stationary behaviour, therefore theatiean can be carried out in
the frequency domain. Jordan’s formula to determine theegiral deformation amplitude
Y (n) in radial direction of orden = 0 yields:

. ~ RNG(n=0)

and forn > 2:

$i(n) = —— G (). (3.27)



3.3 Acoustic Computation 35

This is a compact formulation depending on the charactemstitation parameter§;,

the inner stator radiuR, the radiusN of the elastic line, the bulk modulus of the dy-
namo sheets, the yoke heightand the material-dependent resonance frequerfpja$

in azimuthal directionfy(n) in radial direction,fq for the pulsating eigenmode arydor

the excitation frequency related fg. The determination of the resonance frequencies in
azimuthal and radial direction can be derived from [42].

Therefore, for an excitation with an ordinal numbrertwo singularities (resonances)
occur with the influence of,(n) being more important since this frequency value normally
lies in a more critical range for noise computations. The goted deformation amplitude
in (3.27) has the same spatial ordinal numibas the stress component acting on the ring
and no other characteristics are excited due to the orttadgpof the excitation modes on
the eigenforms of the ring. This is not the case for a 3D statndel as will be discussed
in chaptefb.

To achieve better results for the resonance frequenciesyra authentic consideration
of the material composition of the stator is necessary. frt@ans that the influence of the
windings, teeth and slot wedges has to be included more aetyr This can be achieved
by an approach proposed by Eickhoff (s@ [25]) expandindaits model by modified
eigenfrequencies.

To consider windings, teeth and slot wedges, a mean valubddlexural stiffnessEl),
wherel is the 2nd moment of inertia, and for the extensional stef{&A), whereA is
the sectional surface of the stack, are introduced. In thewong, the mean values are
denoted with the subscript. An adapted mean densitpV ), related to the mean radius
am corresponding to the radius of the elastic line of the ringlelas determined, which
is, due to the modifications, now different from Jordan’s elod

With the modified material parameters, the eigenfrequsratie computed with the ad-
vanced circular ring model by Federhol@[Z?] foe O:

o _ 1/ (EAm
fb(n = O) =0, fi (n = ) = on af??n(pA)m7 (3.28)
and forn > 2:
fp(n) = %_[ %i;z:], fi(n) = fi,v nZ—1. (3.29)

The factork depends on the spatial ordinal numbexnd can be derived frorﬂb?].

3.3 Acoustic Computation

The previous computations provide the deformation of thestring model. The linear
structural computation is performed in the frequency dom@hus the velocity, the time
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derivative of the displacement with its componewtsn’x-direction andvy in y-direction,
can be obtained by a multiplication w in the frequency domain:

vz[y}:jw[gx] (3.30)
y y

wherew is the angular frequency ang anduy are the deformation amplitudes in tke
andy-directions. For acoustic computations, the normal corepbof the velocity to the
radiating surface is needed, see sedtioh 2.5. In the presastigation, we consider the
stator as the radiating surface. This seems not very pahctiee to the potentially large
influence of the housing. But for cylindrical-like machingkere the stator is encased by
a cylindrical shell directly fixed to the stator and due to filoet that we are considering a
plane model, this approximation seems to be acceptableh&omng structure, the normal
direction of the velocity is the radial direction. Henceldas

U(n, w)n =V = joY;(n) (3.31)

with Y; the deformation amplitude in the radial direction (SEef®,2n as the surface
normal vector and;, the velocity normal component in the radial direction.

The sound radiating from the surface is described by the tate sariables sound pres-
surep and the sound particle velocity. "The general form of the acoustic wave equation
has been derived in sectibnR.5.

For radiating cylinders, the sound pressure can be detedmmcylindrical coordinates

1, [@]. The determination of the sound pressure in tegdiency domain is thus given
as:

JPoC

 dHP (ko)
d(krro)

p(n1,w) = HA? (ke F)0n(n, ) (3.32)

whereHéZ) is then-th order Hankel function of the second kindl,is the acoustic wave
number in radial directiorrg is the radius of the radiating surface gmgandc denote the
density and the sonic speed in air, respectively.

The relation between sound particle velocityahd sound pressune can also be ex-
pressed by a sound impedante

Z(n,w) = — (3.33)

A

ﬁ(n7 Ol)) = Z(n7 0))\7,-(”, Ol)) (334)

The sound intensityy and thus the sound powérare

A

[— por 5= /Fdr (3.35)
r
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wherel™ denotes the surface area anthe complex conjugateSis a complex value and,
similarly to electrical power, it consists of an active angtactive part. The reactive part
is dominant in the near-field and is decreasing fast with teiadce from the surface. The
active part of the power is that emitted into the far-field @imals relevant for acoustical
computations. The radiation factor

Re(S)

is a factor relating the active sound-power to the absolateevof the calculated sound-
power withv'as the root mean squarewof ~
The general radiation factor of an infinitely long cylindandoe calculated as

0 for kg < k;
Gkr) = — 29 forkg>k, (3.37)

(2)
dHpy 7 (ker)
mk? der)

wherek; is the wavenumber in the axial direction. The acoustic wawdrerkg is derived
from the two components in axial and radial direction, k.= k? + k2. The radiation
gaugel is determined by the relation

Ly = 10logp(0). (3.38)

The radiation factor (or gauge) is low until a characteci$tequency is reached, i.e. as
long as low sound radiation occurs. For higher frequendtes,structure is generally
fully radiating. The finite length of a cylinder leads to retiens on the boundaries and
furthermore to a shift of the critical frequencies to higbhaes of shorter cylinders can be
observed4].






4 NUMERICAL METHODS

This chapter presents the numerical methods for the eleeiyjaetic, structural mechanic
and acoustic simulations. First the finite element appraathiefly introduced followed
by the application to the electromagnetic field and strattuibration computation. At
last the boundary element method used for acoustic wave waiigns is presented along
with the fast multipole method.

4.1 Finite element method - Ritz-Galerkin method with speal basis
functions

Electromagnetic field and structural problems which aniserigineering and physics are
typically described with appropriate differential eqoats and boundary conditions, which
lead to boundary value problems. The origin for the finitaredat method is not the
classical formulation, i.e. the differential equationst the variational formulation, i.e. an
integral formulation, of such a problevﬁOS].

A time independent partial differential equatibiiu) = Diu— f = 0 with a differential
operatoD1 and a functionf in a domainQ with the unknown solutiom shall be defined.
The integral or weak formulation can then be stated as

/V(Dlu— f)dQ = 0 4.1)
Q

wherev is an arbitrary scalar or vector function (test function)etsatisfies the homoge-
neous boundary conditions= 0 on the boundary of the domairmQ. This is an alternate
formulation of the boundary value problem. For more congiéd problems, finding an
exact solution (analytically) can be difficult or even impitde. With the weak formula-
tion it is possible to set up methods to obtain an approxirsakation instead. This leads
to the method of weighted residuals and, further, to Gaksknethod, which are briefly
explained in the following.

To obtain an approximate solution of the weak formulatlodl(4the following ansatz
for the unknown solution shall be applied:

n
UQuh:uD-i—Zujpj (4.2)
J

whereup, denotes the approximate solutiom, satisfies the inhomogeneous Dirichlet bound-
ary conditions. p; aren linearly independent functions that satisfy the homogaseo
Dirichlet boundary conditions, i.g0j = 0 onl” andu; are the (constant) coefficients pf.
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In a next step, the method of weighted residdﬁ[lOS] isiapgpd the weak formulation.
Therefore, instead of the function a finite set of weighting functions; is introduced.
The number of weighting functions is equal the number offaciehtsu;. With (4.2) this
results in

/Wi(Dluh—f)dQ:O i—12 . .n (4.3)
Q

This is a set of algebraic equations from which the unknownsan be determined. The
term (Dyun, — f) denotes a residual and (#.3) is a weighted integral of tisislval. This
weighted residual is forced to zero with all weighting fuoos. For this method, any
set of linearly independent weighting functions can be udédv; = pﬂ l.e. the same
test functions are used for the weighting as for the apprasion of u, this leads to the
Galerkin method:

[ pi(Psun— oo —o,
Q

n
Zuj/piDlpde:/pifdQ—/piDluDdQ i=12..n (44)
0 Q Q

The obtained set of equations is the following linear equmatiystem in matrix notation
with the stiffness matridD,}, the vectom with the coefficientas; and the right hand side
vector (load vector:

Dipu= fh (45)
For a differential equatio®(u, u, ) = Dju+ Dou+ D3l — f = 0 with the time deriva-
tivesu = %’ andu'= %, the following approximation functions
n
Un(r,t) = ug(r,t) + Y uj (O)p; (1), (4.6)
]
du, 1 du;
Sth _ - 4.7
d?uy, . D d?y
d =Y e P (4.8)

wherer denotes the space coordinates and the coefficigiits are time functions, are
applied to its variational formulation. The following Geden equations are obtained:

/pi(Dluh—l—DzUh—i—De,Uh—f)dQ:O i=1,2,...n,
Q

LActually it is the derivative of the approximation functiaith respect to the unknowng = %—‘L’j’i‘ = pi.
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n
Z/piDlui Dde+/piDzUj Dde+/piD3l'Jj pjdQ =
) Q Q

/ pifdQ — / 0iD1UpdQ— / piDalipdQ — / piD3iipdQ.
Q Q Q Q
(4.9)
A system of second order ordinary differential equatiorsbigined of the form
Dipu+ DZhU + D3pl = fi (4.10)

with the system matricd3,;,, Do, andDg;, and the right hand side vectipr For symmetric
differential operator®1, D, andD3 the system matrices are symmetric as well.

4.2 Application of the finite element method

For the application of the finite element method, the testtionsp; have to be defined in
a special way. To obtain an efficient algorithm, the follogvaspects should be considered.
The matriced;, and the load vectdi, should be easily computed and an increase of the
number of test functions should lead to a decrease of theetization erroffju— up||. The
fundamental idea of the finite element method is to use finetions, i.e. functions with
local supports, as the test functiops

A volume Q is discretized with a distinct number of elements of e.gratetdral or
hexahedral shape. Each corner of an element is representedde. In special cases,
nodes on the edges or in the inner domain of the element caefeed. Neighbouring
elements have to have a common node, a common edge or a comeets fFor each node
atest functiorp; = N; is defined. The nodal shape functidsare chosen to be continuous
and piecewise polynomial and non zero only in some limitechaio, the support. They
satisfy

1 atnodej
N = { 0 atall other nodes (4.11)
When approximating vector functions, edge shape funcigreatisfying
.1 ifi=],
/ Nivar _{ 0 otherwise (4.12)

edgg

are used.

A common approach for the discretization is the use of ismpetric finite elements
defined in a local coordinate systdipe,| es, &) with the coordinates, s, andt ranging
from —1to 1. Furthermore, a global coordinate systge,q€y,q€;) is defined. The global
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positionsx;, y; andz for each noden; are then defined with the same shape functions as
those used for the approximationwf

X= i\Ni(r, S, t)X y= i\Ni(r, s,t)y, z= i\Ni(r, st)z (4.13)

This way, the boundaries of the geometry are described Wélsame order as the shape
functions. This reduces the discretization error whenyapglthe finite element method
to curvilinear boundaries.

The choice of piecewise polynomial functions leads to spagstem matrice® .
Their entries and those of the load vecfgrcan be computed element-wise after per-
forming a numerical integration - typically the Gauss quaduire Eb] is used for this - for
each element. The approximation error @giis typically reduced by a finer discretization
or the choice of higher order shape functions. However,dtger the number of elements
the higher the required memory amount and thus the compo#dtiemand.

4.3 Finite element method for electromagnetic fields

In the following, the application of the finite element medio electromagnetic phenom-
ena for low frequencies shall be presen@ [15]. Theretbeemagnetic vector potential
A and the (modified) electric scalar potentiadhall be introduced, which satisfy the fol-
lowing relations:

B—OxA, - 9A g

ot e (4.14)

Inserting these relationships into the equatigng (2.8212) results in the following dif-
ferential equations:

O x (%DXA) =Jo in Qp, (4.15)

1 0 :
IZIxHEIxA-i—EG(A-i—EIV):O in Qc, (4.16)
—%D-J(A-H:Iv) =0 in Q¢ (4.17)

with the following Dirichlet or Neumann boundary condit®anQp andQc:

Axn=0 or %Dx(Axn):O onlcandlp, (4.18)

A a
V=\Vp=constant or n- (—% — 0; V) =0 onle. (4.19)
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On the interfacd ¢ of the conducting and non-conducting region the tangeontaipo-
nent ofH and the normal component Bfare continuous and therefore follows:

DXAc‘nc+DXAn‘nn:O andVCDXAanc+VnDXAann:O (420)

For the definition of the quantities, refer to secfiod 2.20Bymmetric differential operator
matricesD1 and D> including the Neumann boundary conditions can now be sendp a
the boundary value problem can now be written as

Dl{e}+D2{€}:b (4.21)

whereb is the corresponding right hand side vector. The approxanatf the vector
potentialA shall now be carried out with the linearly independent edggdfunctionsN;
and that of the scalar potentialvith the linearly independent nodal basis functidis

Ne Nn
A~An=Ap+ Zaka, VX Vh,=Vp+ ZVka (4.22)
i= i=

which both satisfy the homogeneous Dirichlet boundary d@s. ne is the number of
unknown edge shape functiohs andn, the number of unknown nodal shape functions
N;. Setting up a variational formulation df (4]121) and insggtthe approximations fok
andv, the Galerkin equations can be obtained and a linear ordoiferential equation
system can be set up as follows, €f. {4.9):

dx
Dth—i— Dzha = bh(t) (4.23)

with the coefficient matrice®;, andD,, and the load vectob,. For a more detailed
derivation see appendix A.3 or refer @1[15]. The vectshall be defined as a vector con-
taining the coefficientsy, k=1,...,neandvg, k=1,...,n,, respectively. The coefficient
matrices typically are symmetric and sparse and apprepdiaect and iterative solvers
exist to solve the equation system([in (4.23). If the elecagnetic finite element problem
is excited by an external electric circuit, as is the case &g multi-slice models@4],
then non-symmetric matrices arise. To account for the nmaat material behaviour, an
iteration process has to be carried out at each time steplui@o of (4.23) in the time
domain can be obtained for example with the backward Eutes tliscretization method.

The application of the finite element method to electricathmaes is described in the
following chapters, where the simulation models are preskoo.

4.4 Finite element method in structural mechanics

For the structural finite element approach it is typical tplgphe principle of virtual work
to Cauchy’s law[(2.31). The principle of virtual work demarttiat for any infinitesimal
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variation of the displacement in harmony with the given ¢aists, the work of the im-
pressed forces is zero at the state of equilibrium. Muligy2.31) with the weighting
functiondu and integrating over the domaihyields @]

/55-(D-6+f8—pa>d§z=o. (4.24)

Applying Green'’s formulae

g—” vdQ = — g" udQ + / uvdr (4.25)

to the first integral statement, an integratlon by parts efittst integral term can be carried
out. This results in

/53-(D~6)d\/:

J J
/[axx (0s1) +0Xy(0y(552>+0_x(6s3>)+”' dQ
Q
r

Similarly to (2.26), a virtual strain tens@€ can now be introduced for the first term and
for the second one a surface force density For (4.24), the following equation is then
obtained:

/5s~deV +/5s~f5d8—/5E .GV —/55. padV = 0 (4.27)
V S N J B
5\7Vrext 5\7Vr|nt M;,ertia

where the single terms of the virtual work can be combinedh&work of the external
forcesdWey;, the inner forcedW,: and the inertia force8Winertia. The tensor®@ ande
shall now be arranged as column vectarande (Moigt notation):

T

0:( Oxx Oyy Ozz Oxy Oyz sz) (4.28)
T

£:(€xx Eyy EZZ Exy Eyz 82)() :DS (429)

whereD denotes a differential operator matrix e [s1, S, 53]T the displacement vector
defined in a Cartesian coordinate syst@ney,e,). The tensor produdr € can now be
written as the scalar produat- € which results in:

/5s-de\/+/5s-fsd8—/5£-ad\/—/5s-padV:O. (4.30)
Vv S Vv Vv
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This variational formulation is precisely the weak form leétequilibrium equations.

Introducing the shape function$; for the nodej of a structural finite element, the
displacement field can be approximated with the nodal digpheents;j for theith degree
of freedom at nodg, cf. (4.2):

n
s(x,y,zt)~ s, (X,y,zt) =S, + Z N;j (X, Y, Z)uij (t) i=123. (4.31)
=1

For simpler notation, a matrix of shape functions can be ddfas follows, fony, nodes
at elemenmwith three degrees of freedom:

N1(X,Y,2) 0 0 oo Nn, (XY, 2) 0 0
HM — 0 Ni(X,Y,2) 0 . 0 Nn,, (X, Y, 2) 0
0 0 Ni(X,y,2) ... 0 0 N, (XY, 2)
(4.32)

The displacement field™ and the strains(™ (assuming"™ =0, i.e. noinhomogeneous
strains) in element can then described with the matrix of the shape functions

506,20 ™ = s(x,y,2) 5V +H(x,y,2)Mu™ (4.33)
en(x,2™ = DH(xy,2™ul™ = B(x,y,2)Mu™. (4.34)

The stress-strain relationship according to Hook’s lavbigmed with the elasticity matrix
C as follows:

1-v vV vV 0 0 0
% 1-v % 0 0 0
% % 1-v O 0 0
o =Ce¢, C= 0 0 0 1,22\, 0 0 (4.35)
0 0 o o0 & o
0 0 o o o

Inserting these relationships in the variational formolabf the elastodynamic equation

(4.27) results in
M +Ku = F. (4.36)

S For a detailed derivation of the system matrices see appédl The obtained mass
matrix M and stiffness matriX are sparse and symmetric. Damping effects can be con-
sidered for example as Rayleigh dampi@ [69], [33]. An imngadion of a mechanical
system of this form has been presented in seéfidn 2.4. For strostural application, as

is the case in the investigation of noise behaviour of adtmachines, it is sufficient to
focus on the stationary behaviour of the system,[cf. (2.A85uming linear material be-
haviour and small displacements, the solution for the nddgdlacement vector can then
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be determined with appropriate iterative or direct solvéksth the determination of the
homogeneous solution with an appropriate eigensolvegittenmodes and eigenfrequen-
cies of the discretized body can be obtained. The applicafithe structural finite element
method to electrical machines will be discussed in detaiéfollowing chapters.

4.5 Boundary element method in acoustics

For problems involving unbounded domains, the boundanpetd method (BEM) is an
alternative simulation method. The problem is solved by fietermining the boundary
variables on the boundary surfacef the domairQ. In a next step, the field variables in
the domaimQ\I" can be obtained by using the boundary surface results.

There exist two main types of formulations for the boundatggral equations, the di-
rect and the indirect method. The first one can be applieeetthinterior or exterior
problems. The domaif® has to be a closed domain and relates the sound pressure in any
field pointP € Q\T to the sound pressure and velocity on the surfacd# the domain.
This method is applied using the collocation method and tyyisally leads to fully pop-
ulated and non-symmetric matrices. In contrast to thisintigect formulation, using the
Galerkin method, solves the interior and exterior problamu#taneously and does not re-
quire a closed surface. For this work, the focus lies on tleeofishe indirect method. For
more details about the direct method referf td [21].

For the indirect method, an arbitrary surfdceshall be defined with the superscript
defining quantities on the exterior of the surface and thesgpipt— on the interior. Two
potentials shall be introduced, the double layer poteptial p™ — p~, which stands for
the jump of pressurg, and the single layer potential = % — % which stands for the
jump of the normal derivative of the pressure. Using the &setinctionG(r,r’), which
satisfies the the inhomogeneous Helmholtz equation

AG(r,r") +K2G(r,r") = 3(]r' —r]), r,r'eQ. (4.37)

whered denotes the Dirac delta function, the sound prespargat any point inQ\I" can
be defined as follows:

p(r) = / (u(r')%rr;r') ~ a(r’)G(r,r’))dF reQ\r (4.38)

r

This formulation relates the sound pressure at an observatintr, that satisfies the
homogeneous Helmholtz equatidn (2.54), the boundary tiondi[2Z.56){(2.58) and the
Sommerfeld radiation conditionh{2159), to the single andlde layer potential at a source
pointr”inT.

Now for the boundary element method, an approximation obthendary surface and
the boundary variables, i.e. the single and double layesmia, with a set of nodal shape
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functionsN is performed:

Nn Nn
M~ Hh = N, o~ 0h= ) 0N (4.39)
k=1 K=1
The set of shape functions is defined within small surfackesnents) on the boundary. A
solution for the potentialsy, andy, can be obtained by a variational formulation[of (4.38)
[|2_;l|] and using the Galerkin method. A symmetric matrix eguratan then be obtained

as:
ERIHRH

whereA, B andC denote the submatriceg,andpu are the vectors with the nodal values
oi and 1. The right hand side is represented by the vectgrandf,. The boundary
conditions according tg (2.56)-(2]57) are expressed &misl

p"=p =P only = pu=0 (4.41)
+ —
aain = % = —JpowVy oONnlp =0=0 (4.42)

The double layer potential is therefore zero on the Dirichtaindary and the single layer
potential on the Neumann boundary. The imposed pressureeocity distributions ap-
pear in the vectork; andf,. The mixed boundary condition (2]58) results in a mixed form
for the single and double layer potential and appears in tteicesC andB.

Summing up, the indirect boundary element method leaddllyogapulated, complex,
frequency dependent but symmetric system matrices. Fgerdgroblems this method is
therefore faster than the direct method which has unsyneneatrices. If the excitation
frequency is equal to a resonance frequency of the inner tho@rathen the exterior ra-
diation problem has no unique solution. Spurious modesroimuboth the direct and
indirect boundary element method. Different approachebdth methods can be applied
to overcome this problerﬁ}zs]. With the indirect method thrigblem of inner resonances
can be eliminated by applying an appropriate impedance danyrcondition on the sur-
face. After determining the results on the boundary, thexdqaressure on the field can be
determined at any point outside the surface.

As the system matrices are fully populated, the efficienoyngfly decreases with the
size of the model. A recently evolving method to overcoms daficiency of the boundary
element method is the application of a fast multipole mettiddM), which can achieve
nearO(N) computational complexity, whend is the number of equations. For this, the
obtained system matrix is decomposed into several levalgtwhatrices (hierarchical clus-
tering). The created admissible blocks are then approeidaith an appropriate method.
One efficient method is the adaptive block approximationciitionstructs a degenerated
approximation using nodal interpolation in points deterada in an adaptive way while
realizing the aIgorithrHEZ]. For a detailed descriptiortteé FMM refer to [@2].






5 LIMITATIONS OF THE ANALYTIC COMPUTATION
APPROACH

In the design process of electrical machines analyticalprgation methods play an im-
portant role since, once implemented, they allow fast cdatpns with given machine
parameters and, moreover, the variation of input param&benbtain for example an op-
timal geometry. However, as such methods are typically dasesimplified machine
models, they may lack in accuracy.

The following section deals with the validation of the ani@gzomputation results ob-
tained with the approach presented in chapter 3. The imasti machine types are
squirrel-cage and slip-ring induction machines. For eamhputation step, i.e. electro-
magnetic fields, structural vibration and noise computatgocomparison with numerical
simulations and/or measurement results is carried out.airheof this investigation is to
outlay and discuss the occurring deviations and to list ithé@dtions of the analytic ap-
proach. Moreover, some identified effects with a possilfla@mce on the noise behaviour
of electrical machines motivate the investigations cdrdet in the following sections.

This work has been presented at the XIX International Cemniez on Electrical Ma-
chines [Ll_Qb] and has been published in its full exten@llOl

5.1 Electromagnetic Field Computation

For noise computation purposes, the focus lies on the detation of the magnetic field
components leading to problematic forces, i.e. those \aitlpd amplitudes as well as fre-
guencies and spatial ordinal numbers which coincide wgbmances. Note that each force
component is caused by two magnetic field components, armbthbination of these two
may also result in problematic frequencies or spatial @idimumbers. As proposed in
[68],[29], only distinct sets of the winding and paramefiids, cf. [3.1%) and(3.15),
need to be computed. The sets are defined according to the ofitne harmonic compo-
nents, i.e. winding, slotting, saturation and eccenyidturthermore, the sets are extended
by an allocation to the stator and rotor components, whistgedined in section 3.1, are
denoted with the subscripSandR. This allows the assignment of problematic noise
peaks to the causing magnetic field components. Eventdlaibyis the key advantage of
the analytic method enabling the machine design to be mdddieandle the problematic
harmonics.

In the following, the sets of magnetic field components coragdior this investigation
are presented. As the focus of this work lies on the noisewbetiaof induction machines,
the following computations are confined to this machine tgpg. In particular, two
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types of induction machines have been investigated, nasagliyrel cage and the slip ring
induction machines. For other machine types refer to@b [75

Winding fields The winding field components are determined by the conseam@ance
Ao and the harmonics of the current distributiap, cf. (3.14). The assignment to the
stator and rotor winding distribution results in the fielargmonents,ying, andBying, With
different spatial ordinal numbers and frequerﬁies

a
vaindSR(¢7t) :/\ORZ EVSV—VSS COiVSd) - anVst - L)UVs)+
’s 5 (5.1)
NoRY EVRV—V; COS(VR — 27Tfyt — Wg).
VR

 Stator winding fields:
The amplitudes of the stator winding fielBginq, are determined by the current dis-
tribution ayg on the stator. The spatial ordinal numbersfor the stator winding
fields depend on the number of stator cords and pole pairs rendedermined ac-
cording to [(3.1%). The frequency of the stator winding figkl¢he line frequency,
typically fys = f1 = 50Hz

» Rotor winding fields due to fundamental (stator) field:
The field in the air-gap leads to a current distributang on the rotor according to
the number of rotor cords and slots. For this evaluationy ¢im¢ current induced
by the fundamental stator fieBl is considered as the largest current arises for it.
The following spatial ordinal numbers and frequencieBfi4, for the squirrel cage
induction machine occur:

VR= P+ 0NR g=0,+1,+2 ..., (5.2)

fre="H1 (1+9N—§(1— 5)) (5-3)
and for the slip-ring induction machine:

VR = p(1+2mg) g=0,+1,+2, ..., (5.4)

fur = f1(1+2mg(1—79)). (5.5)

The field withg = O denotes the armature reaction on the fundamental field and
has to be considered for the resulting fundamental vi&yeln combination with

the fundamental field, rotor fields with> 1 result in forces with large amplitudes
and problematic frequencies. Fo+= 0, i.e. the no load operating point, these field
components are zero.

The components with the same spatial ordinal number andiérazy result in a superposition of the
corresponding components to a resultant field wave (armadaction).
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Parametric field components The parametric field components are determined by the
multiplication of the winding harmonics with the harmonafsthe permeance vairations,
see sectiof 3.1.3. Permeance variations due to the sldtjing saturatiom\,__ and ec-
centricity\,_, cf. (3.8), lead to magnetic field components categorizedlasvs:

* Slotting fieldsA, :
The permeance variation due to the stator and rotor sloisirggven in [3.7) and
the resulting magnetic field components are determinedrdicgpto [3.15) with
the harmonics of the magneto-motive force wawgs,, again due to stator and
rotor currents. For this investigation only componentswlite fundamental current
distributionayp, i.e. v = p, are considered. The magneto-motive force harmonics
of higher order are neglected as either the amplitudes arenall, or the resulting
field components contribute to force waves with very largefiencies only. The
slotting field components are obtained by splitting the pente variations given in
(3.7) into stator, rotor and interacting components:

BoL — R(Epsaps'*‘ EprOpe) (

> AsisCOS st — 2rrtyug t— Psig)+

P Hsig

Hslg

> NAsispCoS Usigd — 2mfpg  t— l.USLSR)> :
Hsigg

The spatial ordinal numbeis for the stator slotting fields are therefore determined
with s = p+9sNs for gs = +1,42,... and the frequency is the same as for the
winding fields, i.e.f,y, = f1 = 50Hz. The amplitude of the resulting field for these
spatial ordinal numbers is determined by an addition of tireesponding winding
and slotting field components with the phases considerece pHEnametric fields
due to the rotor slotting arise with the spatial ordinal nensips, = p+ grNgr for

gr==*1,+2, ... and the frequenciet§1SLS =f; (1+ gRN—pR(l— s)) and also have to
be superimposed to the corresponding winding fi@gg.

The permeance variation due to the interaction of the rotor $tator slotting in
combination with the fundamental current distributmgleads to field components
with the following spatial ordinal numbeyss, ., and frequenciesﬁuSLSR:

HSLSR: p+ gSNS+ gRNR gS,R: ilvizw"? (57)
N
fusige = T2 <1+ QRFR(l—S))- (5.8)

« Stator saturation fields:
Further parametric stator fields are caused by the permeanegion due to satura-
tion, see section 3.7.1.
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The permeance variation witksz in combination with the higher harmonics of the
current distribution, in particular the slot-harmonicstiwig = 1+ gNs for g =
+1,+2,..., lead to magnetic field componerBg,, with spatial ordinal numbers
Hsa = V§+Asaand a frequency ofys, = (1+2gs3) fu:

Bsa(9,1) RZ Z/\ASafvS 2 COS{IJS&,‘P wusas Ll’us%> (5.9)

VS )\Sa

Rotor fields due to fundamental saturation field:

The saturation fieldsg, with u = 3p (the fundamental saturation field) gives rise
to a current distributiom,, in the rotor withvg = 3p that, in combination with the
permeance variation of the rotor slotting, causes field comeptsBs,, with spatial

ordinal numbergis,, = 3p+ gNr and frequenciessg, = f1 <3+ g%f(l— s)):

’\

Bsg(¢,t) = Rz/\/\SaESpR 3p * COY s § — Wuga t — Wus,,) (5.10)
Hsar

Rotor fields due to eccentricities:

The static and dynamic eccentricity of the rotor also caysereneance variation as
explained in section 3.1.1. Again, only the fundamentatenirdistributionay, in
combination with the permeance variations with a spatidinal numbeig = +1

is considered, as those amplitudes are the largest. Thegfisld component8g
are determined as follows

(&psOps + EprQpr)
p

Be =R > AecosHed — @t —the)  (5.11)
HE

with the resulting spatial ordinal numbeug and frequencie$,:

Ue = pE1+gNR, (5.12)

fue =0 for static eccentricity (5.13)
N

fue = f1 <1+ g?R(l— s)) for dynamic eccentricity (5.14)

The computation of the appropriate winding factégsand amplitudes for the current
distribution@, and permeance wavés, is taken from EB],EM]. For skewed induction
machines a skewing factor has to be applied to account foretthection of the induced
voltage in the rotor [68].
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5.1.1 Validation of the magnetic field results and the compud stress wave
components

The validation of the computed magnetic field componentarnsed out for a squirrel cage
induction machine with its rotor skewed one stator slottpitdhe machine parameters
are listed in Tablé_All in the appendix. In order to validdte analytical results for the
magnetic field components, a comparison with numerical lsitian results is carried out.
An electromagnetic finite element simulation has been ped for a 2D multi-slice
model Eh]— ]. A nonlinear, transient simulation has mearried out for the nominal
operating point with a stator current of 150 A and a rotatispeed of 2991 rpm for
the rotor. A detailed description of the finite element médgland the evaluation of its
results in the air gap is presented in chapier 6. There, thatim of the flux in axial
direction due to the skewing is investigated. To be able togare the numerical results
with the analytical ones, the magnetic field along the airgaghe stator side is taken and
its harmonics are computed with a two-dimensional Fourimstformation@8].

In Fig. [5.1, the amplitudes of the magnetic field componemt&0OHz are depicted for
each spatial ordinal number for the numerical and the aicalytomputations. Especially
the fundamental field componeBg and the stator slot harmonics with the spatial ordinal
numbers ofvg = p+ g&Ns are sticking out. In Fig[ 512, the harmonics due to the rotor
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— Magpnetic field amplitudes: numerical
Y

< < < < o
N w e o [o2]
T T T T T

Magnetic field amplitude in Tesla

o
-
T

gT.;.;._.._.-w%OtVV?l $‘?vw99‘{u-g._.._.¢T9 |
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Figure 5.1: Comparison of the numerical and analyticallte$ar the magnetic field am-
plitudes forf =50 Hz

slotting, with the spatial ordinal numbers, = p(1+ ghNr) and frequenciesquLR, are
depicted.
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Figure 5.2: Comparison of the numerical and analyticalltedar the magnetic field am-
plitudes due to rotor slotting

The comparison of the frequencies and spatial ordinal nusnblethe magnetic field
components of the numerical and the analytical solutiomsvsha very good agreement
especially for those due to the rotor slotting and the stittma This is a very important
result, since the prediction of the excitation frequenciethe forces is of great interest in
order to determine an adequate offset to structural resenfaaquencies.

The comparison of the magnetic field components shows g¢iaoees of the ampli-
tudes and phases. The numerical solution for the first slohbaics of the stator and
the rotor fields yields larger amplitudes than the anal/scéution. For the stator field
the deviations are about 50%. However, the second slot acsi¢or the stator fields
match quite well, although their contribution to large ®amplitudes is low. For the rotor
slotting fields, the deviations increase with the spatidiraal number and the frequency
respectively. The main cause for these differences is the ahetailed model of the finite
element simulation where nonlinear and leakage effects@rsidered in a more accurate
way. The multiplication of the field components, necessantlie determination of the
stress wave components, therefore leads to even largeepésties which can also be
seen in Figd, 5|3 arid 5.4.

The stress waves acting on the stator teeth in the air gapoanputed according to
(3.22) with the previously obtained magnetic field compdsein Figs.[5.B and 54, the
stress amplitudes at a frequency of 1794z and 18947 Hz resulting from the rotor slot
field harmonics are depicted with the corresponding modebeusnand are compared to
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the numerical solution. Obviously the most striking comgairis the stress wave resulting
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Figure 5.3: Comparison of the numerical and analyticalltedar the stress amplitudes
for f =17947 Hz
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Figure 5.4: Comparison of the numerical and analytical ltedar the stress amplitudes
for f = 18947 Hz

from the fundamental fiel8, and the rotor slot harmonid,.. However, the correspond-
ing spatial ordinal number is very large and, as mentionecthapteif 8, only forces with
low spatial ordinal numbers are of interest, because tremdtrin large bending deforma-
tions and thus problematic structural vibrations. Thedatgomponents with low spatial
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ordinal numbers arise from the combination of the statdrlslomonics and the rotor slot
harmonics. The comparison of the analytical with the nuoatniesults shows large dis-
crepancies for these components. The large deviationsechrad traced to the deviations
of the field components which of course affect the amplituafdébe stress components as
mentioned before.

In summary, the comparison shows a very good agreementddrefjuencies and spa-
tial ordinal numbers. The amplitudes of the field compongigkls adequate results, in
particular for the stator and rotor slotting fields. The dépancies of the forces are the
largest for the lower spatial ordinal numbers. Howeverséhare said to be the ones which
lead to the largest structural vibrations and thus contigiuost to the noise behavi016].
An investigation regarding the components with higherigpatdinal numbers, which can
have very large amplitudes, is presented in chapter 7. Angkbint shortly mentioned pre-
viously is the obvious change of the flux in axial directioreda the skewing. This also
leads to forces with an axial variation. An approach to deiee this variation is pre-
sented in chaptél 6. An investigation of the influence of laxiarying force distribution
is shown in chapterl 7.

5.2 Structural Vibration Computation

This section deals with the investigation of the analylicabmputed structural vibra-
tion results. Therefore, in a first step, a comparison witiration amplitudes obtained
with a three-dimensional finite element model of a cylinderarried out. Following that,
the influence of the modified eigenfrequencies on the straktasponse is analysed and
discussed. After that, a comparison with measurementtsasutarried out and the eigen-
frequencies and the computed structural responses adatedi

5.2.1 Comparison of the computation results

The computation of the structural response due to the elaeignetic force wave with an
amplitudeo; (n), a frequencyf (n) and a spatial ordinal numberis performed with the
computation model presentedin3.2. In a first step, the infla®f the teeth and windings
is not considered. Therefore, the frequency dependentrdatmn amplitude of the ring is
analysed with the eigenfrequenciggn) and f; (n) determined according to Jord@[42].
To validate the analytical solution, a comparison with a etigal structural simulation
of a corresponding three dimensional cylinder model has Ipegformed. The homoge-
neous cylinder is discretized with second order hexahedeahents and the mass matrix
M and the stiffness matriK are computed. A surface force distributiin= G, el (nd—at)
with 6; = 1 N/m? andn = 4 is applied to the structural finite element model, resgltin
a nodal force vectoF. The mechanical stress is impressed on the inner side ofrtge r
only and is uniformly distributed in axial direction. Thelgton for the nodal displace-
mentsu can then be obtained frorn (4136) for the undamped mechasystéém. As only
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the stationary solution is of interest, a harmonic ana)ygig(Z2.39), is performed for each
angular frequencw = 2mtf for f =0 to 300HZz

(—w?M +K)a =F, (5.15)

and the nodal displacemeriisare obtained for the applied nodal force vedkoin the
frequency domain. The normal (i.e. radial) componegrifthe surface velocity is then
obtained for the numerical result as follows:

Vr=V-n=jwl-n. (5.16)

The result for the absolute value of the velocity amplitudelee surface of the cylinder is
depicted in Fig[ 5J5 along with the computation results fdmrdan’s model. It can be seen
that the curve is nearly the same up to the first occurringn@sce. The corresponding
mode excited at this frequency has a spatial ordinal numideuoin azimuthal direction.
For higher excitation frequencies it can be seen from theltesf the three dimensional
model that further resonances occur. As presented in s¢8iy the radial deformation
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—— 3D numetricalmodel |]
107 ¢ 1
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Figure 5.5: Analytical and 3D numerical solution of the @ty amplitude against excita-
tion frequency

computed with the analytical model for the infinitely londinger also depends on the az-
imuthal material properties. Actually, the radial forcerqmnent gives rise to a resonance
at fi(n), which corresponds to an azimuthal mode shape. This fadtéas aeglected as
the eigenfrequencyj (n) is much larger tharf,(n) and mostly out of the considered fre-
quency range. For the three-dimensional simulation matiel,material properties are
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coupled in the radial, azimuthal and axial directions. Te&ls to mode shapes with ax-
ial deformation characteristics with eigenfrequencieghefrequency range of interest for
noise computations. This behaviour has also been confirmathsurements, see section
522

The deviation of the primal resonance is due to the simptibos conducted in the
derivation of the analytic formulation for the deformat@mplitude. The larger the spatial
ordinal number, the larger are the discrepancies compar@dumerical simulation result.
Generally, the analytic model results in higher eigenfegtuies for eigenmodes of higher
order. For spatial ordinal numbems= 6, the deviations are aroundi3@.

In a further investigation step, the influence of the modigegkenfrequencies i (3.28)
and [3.29) on the vibrational behaviour is analysed. Thidoise by comparing the fre-
guency dependent deformation characteristics due to feaves with different spatial or-
dinal numbers. The modified computation of the structurédmheation is performed with
the modified resonance frequencies (§ee (3.28)[and (3.28rtior 3.2). The comparison
of the results is shown in Fig._53.6. It can be seen that theaegeod agreement for the

n=2 n=3 ‘ n=4 | n=5 |

Deformation Amplitude in m

—— Jordan Model
---—Modified Model

0 500 1000 1500 2000
Frequency in Hz

Figure 5.6: Comparison of the Jordan results and the adapbele! for the harmonic re-
sponses of the structural deformation

excitations with the spatial ordinal numbers two and thidge higher the resonance fre-
quencies of the excitation with distinct spatial ordinahrher, the higher is the deviation
of the deformation amplitude. The resonance frequencestafted to lower frequencies
which is due, on the one hand, to the influence of the addedasgmsd, on the other hand,
to the different method of computing the eigenfrequen@e2d) and[(3.29).
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5.2.2 Comparison with measurements

A validation of the modified resonancds (3.28) aind (|3.29)aisied out by a compari-

son with measurements on a laminated stator core stack. igéefieequencies for spatial
ordinal numbers up to 5 have been determined by measuriniyeitpeency response on
the surface of the stator core when exciting the structurefually with an electromag-

netic shaker. Stacks with and without windings, slot wedgas$impregnation have been
investigated.

In Table[5.1 the measurement results for the eigenfreqasmtian impregnated stack
without winding (model 1, outer diametBA = 0.4m) and for an impregnated stator core
with winding (model 2, outer diamet&A = 1m) are listed with the corresponding spatial
ordinal numbers and the computed results. For some spadiald numbers several mea-
surements have been conducted and therefore the highettealoavest frequency values
are depicted only.

Table 5.1: Measured and computed eigenfrequencies of adted core

Model 1 (DA=0.4m) Model 2 (DA=1m)
N || fmeasiNHZ | fcompin HZ || fmeasin HZ | fcompin Hz
2 661.3 663.2 142.2/143.7 138.7
3 1767.4 1791.0 382.3/386.0 386
4 3107.5 3237.8 699.5 725
5 - 4897.2 1038/1052.4 1138

As model 1 has no windings, the computation of the eigen&aqies according to
(3.28) and[(3.29) has been performed by adapting the measitgépV ), to take into
account the additional teeth mass. For model 2, the additimass of the winding has
also been included i(pV)m. Furthermore the flexural stiffne$g1)m has been adapted to
consider the influence of the slot wedges and the winding. rékelts for the resonance
frequencies are given in Tallle 5.1 and show a good agreeniénth® measurements of
these two different models.

The results above are related to spatial ordinal numberhéazimuthal direction and
a uniform characteristic in axial direction. However, fhetthree-dimensional model fur-
ther resonances occur, as the previously presented siorutasults have also shown. To
analyse the vibration behaviour along the axial directimhier measurements have been
conducted on model 2. In Fig5.7, the frequency responsgitimof the measurement re-
sults is depicted. This result has been obtained by meagtimnaccelerations at 60 points
(12 azimuthal angles and 5 axial positions) on the surfadbdetaminated core. It can
be seen in Fig_5l7 that there are more resonances occuggigds the purely azimuthal
modes. The corresponding eigenforms are characterizeddiyanal axial characteristics
(besides azimuthal). This three-dimensional behavionnctbe estimated with the pre-
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Figure 5.7: Measured frequency response on the surfacetatica sore stack

sented computational method and the influences are themeédiconsidered in the whole
noise computation approach. Additionally the mountinghef stator in the housing and
the housing itself have an impact on the structural beha\[lﬁ,], and, depending on the
construction design and complexity, their influences cabemeglected.

As a further step in the validation of the analytical apptgaccomparison of Jordan’s
amplitude function(3.27) with the eigenfrequencies aditay to (3.29) and measurements
of the deformation of a stator core stack is presented. Thesssurements have been
carried out on a machine where problems have arisen withtthetsral moden = 5.
This mode is dominantly excited at approximately 640 Hz fetador frequency of 50 Hz.
The investigated machine is a squirrel cage induction nm&chiith a nominal power of
0.9 MW, a stator frequency of 50 Hz, 72 stator teeth, 89 rotahtaad a pole pair number
of 6. To get the characteristic behaviour of the excited madeariation of the stator
frequency from 30 Hz to 55 Hz has been performed. The actrleisensors are placed on
the surface of the stator core stack as depicted inFi§). &, Bteady-state measurements
have been carried out followed by a transient measurememe. rdsult for the velocity
amplitude against the frequency is shown in Hig.] 5.9 and ewatpwith the simulation
result of the modified analytical model for the velocity aiyae of the relevant mode. It
can be seen that the measurement results yield very goodnagn¢ with the simulation
result. Due to machine load limitations, the frequency sweeuld not be continued,
therefore the rise in the deformation amplitude could notdréied.

To sum up, the measurements have shown that the influence ohgiregnated wind-
ings and the wedges leading to an increase in the stiffnébe édminated core, and of the
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Figure 5.8: Measurement assembly - placement of the aatielersensors on the surface
of the investigated stator core stack

10 T T

Steady-state measurement

Transient measurement

Normal velocity in m/s

p Simulation result

1 1
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Frequency in Hz

Figure 5.9: Comparison of the measured and analyticallypeded velocity amplitude
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mass of the windings resulting in a decrease of the eigeméirecjes cannot be neglected,
a fact also discussed i83ﬂ25]. Generally, the preskapproach for the resonance fre-
qguencies works very well. However, it should be noted thabjgms may occur for stator
sheets with a large tooth height compared to the yoke heighhis case the resonances
of the teeth may occur near eigenfrequencies of the ringlamglresult in larger errors for
the computational results. Furthermore, the three-dimeasnature of the system leads
to further resonances which cannot be determined with tleedivwmensional model. This
results in further uncertanties in the design of a low-naisleiction machine. In addition,
the coupling of the stator core stack to the housing and thsihg itself may influence the
structural vibration behaviour. An investigation regagithis topic is presented in chapter

.

5.3 Acoustic Computation

The analytical approach takes an infinitely long cylindedétermine the radiation gauge,
cf. section’3.B. With the determined velocity on the surfatéhe structure, the sound
pressure can be computed accordind o (3.32). In a first tenfluence of the modified

eigenfrequencies shall be investigated again, now for mhi¢ted sound pressure. There-
fore, the sound pressure for the results in Figl 5.6 is coatpatcording td(3.32). The

resulting sound pressure level is depicted in [Fig. 15.10. rEkalts for the deviations are
quite analogous to the results shown in Figl] 5.6. For loweitatton modes the variance
is not larger than 4 dB. For excitations with higher mode narslthe deviation becomes
quite large - up to 10 dB - due to the shift of the eigenfrequesncThis shows that a wrong
determination of the eigenfrequencies can lead to largetiens regarding the computed
sound pressure.

5.3.1 Comparison with measurements

In this section a comparison of the analytically determisednd pressure resulting from
the magnetic field harmonics in the air gap with measuremsmiaried out. The analyt-
ical computation first yields the magnetic field componertd, drom these, the resulting
stresses on the stator core stack are determined for eaithtiexcfrequencyf;. For allk
stresses with different spatial ordinal numberat this excitation frequency; the sound
pressure componenpk(N,r, ) have to be computed. Finally, the resulting sound pres-
sure atf; can be determined by summing up all sound pressure commnEl@nce, a
noise spectrum is gained, which can be compared with maasmts. These are taken
at a distance of one meter from the investigated machine@dogpto ﬂ] and [EZ] respec-
tively, see Fig[5.1l1, and deliver the frequency spectruth@fA-weighted (see appendix
or @]) sound pressure levels. However, for comparirgrheasurement results with
the computed ones, the A-weighting of the measurementsohias tompensated. The
measurement data of about thirty different induction maesihave been investigated and
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Figure 5.10: Comparison of the Jordan results and the adlapdelel for the sound pres-
sure level
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Figure 5.11: Acoustic measurement assembly

compared to the analytical results. To show all comparisemsdd be beyond the scope
of this work, thus the results of two different induction rhaw types, presented in Fig.
and Fig.[5.13 and representing the major effects anolgms that occur, shall be
discussed in more detail.

In Fig.[5.12, the measurement results for the induction nma&ckith squirrel cage rotor,
see appendix Al5, and the results of the analytical comipuatédr the nominal operating
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point are shown. In Fig. 5.13, the comparison results of @tofed induction machine
are shown for the cascade operating-point. The parametetki§ machine are given in
Table[A.3. One striking difference between these machipesys the number of excitation
frequencies of the rotating force waves. The rotor field twamics of the squirrel cage rotor
depend on the number of rotor slots whereas, for the doublenfiuction machine with

the slip ring rotor, the rotor field harmonics depend on th@lber of windings in the rotor.

Thus many more excitation frequencies exist for the lattacmme type. This makes it
very difficult to set up a proper design because, with thermpos amount of excitation
frequencies, the probability to catch a structural resoaasvery high.
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Figure 5.12: Comparison of the measurement results withcéimeputation results of a
squirrel cage induction machine

The measured sound pressure levels comprise the typicsd obaracteristics of elec-
tric machines. There exist striking peaks in the sound predsvels. These can be clearly
attributed to the exciting forces resulting from the electagnetic fields. The comparison
with the analytical results shows a good agreement of thegpotea excitation frequencies
and the frequencies of the measured noise peaks. The soesslpe level amplitudes
however do not agree at every peak, which is even more gjrfkinthe double fed induc-
tion machine.

The deviations can be explained by the differences of thenetagfield results as ex-
plained in sectiol 5.7l.1 leading to a different excitatidrttee structure. Furthermore,
the two-dimensional structural model fails to mimic the gdex machine behaviour since
it lacks bearings, cooling devices etc. Especially thecstimal influence of the housing
can be grave. The plates encasing the electrical machivesahdense distribution of the
structural eigenfrequencies in the frequency range istiexgfor noise investigationEbQ],
due to the flexural behaviour of the plates. If one of thosecstiral eigenforms is excited,
large deformation amplitudes due to the plate bending mawyrcand this will result in a
high sound radiation.
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Figure 5.13: Comparison of the measurement results witbdhgutation results of a dou-
ble fed induction machine

Especially in Fig[5.12, measured noise peaks can be seearthaot predicted by the
presented analytical approach. The finite element sinmuatf this machine, see section
[6.4, has shown that there are higher harmonics occurringalsaturation, in particular
for the machine of Fig[[ 5.12. If saturation is considere@ntimost of the unassigned
spectral lines of the noise peaks can be computed. A commpsaleeapproach where
the radiated noise is determined with numerical means isepted in chaptérd 8. These
frequencies are considered there and, again, the compaigel results are compared to
measurement results. Note that this grave influence of thueageon fields on the noise
spectrum is typically only present for two pole machines.ehable analytical approach
for the determination of the amplitude of these magnetid famponents and thus the
sound pressure values has not yet been found by the authoer Sidurces for the noise
peaks are not quite clear yet and have to be determined mefurivestigations.

Nevertheless, a good match can be seen for critical noidespa@aning that the re-
sults from the analytical computation are good means togaminduction machines with
critical noise behaviour.






6 AXIAL RECONSTRUCTION OF STRESS WAVES

For three dimensional structural analyses of inductionhimes the stresses acting on
the stator teeth in the air gap have to be determined. Theis§en¥ the rotor bars, a
common method to reduce harmonics of the torque, has inuendhe characteristics
of the magnetic field harmonics in the axial direction of tiregap and this also results
in a variation of the stresses in axial direction. To consit$einfluence properly, a three-
dimensional model of the electrical machine has to be seb [However, extensive
efforts are required to set up an adequate three-dimendioita element model. As
for noise investigations, the magnetic field and in paréicits harmonics are of interest.
Therefore, a very fine mesh is needed in the air gap, whictsleadodels that require
a large amount of memory for the finite element simulatione ftodelling of the air-
gap mesh is even more complicated if the machine is skeweegcrdly if a consistent
mesh is required in the simulation process. To compute tlgnete field for the nominal
operating point, the rotor rotation has to be considerednarsient simulation. First of all,
this requires an appropriate coupling of the rotating angtrating parts. Furthermore,
for acoustic simulations mostly the steady state resuftirgerest. This is reached not until
the transient effects have decayed. For this, and to obtaiager frequency resolution of
the steady state magnetic field, a large number of time ssapseided. This results in high
computational costs and long simulation times.

An alternative method enabling faster simulations of sleewkectrical machines, es-
pecially if considering rotor movement, is the multi-sliceethod. This method couples
several two-dimensional models (slices) via an electricuii. Hence, no fields in axial
direction are computed and the end-region effects are m#idered. However, for noise
investigations this method is an adequate means as the igra§tsint magnetic field com-
ponents are those in radial and azimuthal direction. Hemitk this method the modelling
of the machine can be carried out more easily and, beyondtiei€omputational costs to
determine the magnetic field in the air gap are not as largerabkrfee-dimensional mod-
els. After computing the magnetic field in the air gap, thesgracting on the stator teeth
can be determined. However, a solution exists only at diséirial position, i.e. where the
slices are modelled. In this chapter, an investigation efvidriation of the magnetic field
and thus the forces in axial direction is carried out. Thisasessary if the forces have to
be applied to a three-dimensional structural model. A wrdmgracteristic may lead to a
wrong result for the vibration.

In a first step, to get an idea of the variation of the flux in bdigection, the analytical
approach presented in chapiér 3 is taken and modified to acémuthe skewing. It is
shown that spatial ordinal numbers in axial direction facheanagnetic field component
can be computed which determine their characteristic ial akrection.

67
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In a next step the application of the multi-slice method towdate skewed induction
machines and compute the rotating force waves necessduyrtloer investigations on the
noise behaviour is presented. The results of multi-sliceifations with different numbers
of slices and the problems of the interpolation in axial clien, resulting in a wrong
estimation of the force distribution, will be discussed.islthen shown that by taking
the analytically determined spatial ordinal numbers irabdirection this problem can be
overcome. To validate this approach a three-dimensiondkir@as been set up which will
be shown in a last step. This novel approach has been prdsaritee 14th Biennial IEEE
Co[%ence on Electromagnetic Field Computation (CE@Innd has been published
in ].

6.1 Analytic approach to determine the magnetic field distrbution

The magnetic inductioB in the air gap for slotting and winding fields can be computed
as follows, see also chapfér 3:

The magnetic field in the air gap shall be decomposed intoaitsnbnics with a Fourier
decomposition which leads to the following relation:

B(t,¢) = Z Z\Alavcoiwp —2mfut — v, )A  coSA ¢ — 2mTf t — vy ) (6.2)
)

where\75v now denotes the amplitude of the magneto-motive force compio The sub-
script o is omitted from now on. The affiliation of the amplitudes, alay frequencies
and phase angles to the corresponding spatial orders isadeby their indexing with the
relevant spatial order numbersor A, cf. chaptefB.

A breakdown to winding field$ (3.14) and parametric fie[d4%3, which has been in-
troduced in.3.113, is not necessary for this investigatidns means thaf(6.2) denotes the
sum of [3.14) and(3.15).

The following derivation only considers the permeanceatayns due to the rotor and
stator slotting. For magnetic fields arising from nonlinetiects or eccentricities, appro-
priate formulations have to be derived.

The harmonic¥, andA\, are now further split up according to their origin, eithextet,
specified by the subscrif§ or rotor, stated by the subscrigt

Vs = Z\A/VSC()S( Vsps— 21tfust — Wg), (6.3)
Vr = ZVVRCOE{ VROR — 27Tfyt — Vir), (6.4)
Ns=" N CoAsps— V), (6.5)

AR = Zf\,\RcoiAR¢R —2mf) t—Vag)- (6.6)
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Since, due to the skewing, the azimuthal coordingates different for stator and rotor
permeance and magneto-motive force waves, appropriatdinatesps and¢r are intro-
duced. The skewing is defined as the twisting of the statdmerdtor bars along the axial
direction, denoted with the coordinateat a distinct angle. Depending on whether the sta-
tor or the rotor bars are skewed, eitlggyor ¢r is a function of the axial coordinate. The
machine that has been investigated here has a rotor thavgedifor one stator slot pitch.
The variation of the rotor anglgr in z-direction can be stated by the following relation

$r=ps— Yz (6.7)

wherey stands for the slope, a function of the number of stator tigtdnd the lengthre
of the iron core stack, and is computed by

B 21
NSI Fe

(6.8)

for the investigated machine, as there the rotor is skewedre stator slot pitch. This
relation indicates that the harmonics of the permeancetatbagnetomotive force aris-
ing from the skewed rotor part are characterized by an additispatial order in axial
direction.

The resulting harmonics of the magnetic flux density are nompmuted by the product
of the permeance waves with the magnetomotive force waveeedtator or of the rotor.
E.g. the product of the magnetomotive force waand the permeance waye; results
in the magnetic induction for the stator-rotor fields witdéx SR Thus, after applying the
addition theorem, the following results are obtained:

stator-stator field8ss

~ ~ 1
BSS: Z ZVVSAAsé[COi(VS_ )\S) ¢S_ <2anS - an)\s)t - (VVS - V)\s))

Vs )\S

+co(Vs+As)ps— (211fys + 21f) )t — (Vs + Yag))] (6.9)

stator-rotor field8sr

Bsr= Z ZVVS/A\)\R% [cog(Vsps — ARPR) — (271fyg — 21T ) )t — (Vis — Vag))

Vs )\R

+cog(Vsps+ ARPR) — (2mfus + 2mhy )t — (Vs + Vag))]  (6.10)

rotor-stator field8Brs

~ ~ 1
Brs= Y ZV"RA)‘SE [COS(VRPR — Asps) — 27Tfyet — (Vi — Yas))

VR )‘S

+COY (VRPR + Asps) — 27Tfuet — (Vg + Vag))] (6.11)



70 6 Axial reconstruction of stress waves

and rotor-rotor field8Brr

~ o~ 1
BRR: Z ZVVRAARE[COE((VR - )\R)d)R - (anVR - ZHfAR)t - (yVR - y)ﬂq))
VR AR

+coq(VR+AR)pr — (27T + 27Tf)\R)t — (Vg + V)\R»] (6.12)

The sum of these magnetic field harmonics yields the reguftingnetic induction in
the air gap:

B(t, 0, Z) = Bgs+ Bsr+ Brs+ Brr (6.13)
which now also describes its variation in axial direction.

The frequencies and spatial orders in azimuthal directidimeorotor and stator magneto-
motive forces and the corresponding slotting fields areinbtbby known relations, which
can be taken fronm8]m30] and have also been presentedaiptein3. With the relation
for the rotor angle specified i (6.7), the spatial ordinamier in axial direction can

now be computed for each harmonic. For example, for therstator fields, the term
(vsps+ Argr) can be transformed as follows

(VsdJszf:)\Rd)R) = (VS:E)\R)d)S:F)\R)/Z. (6.14)

Thus the spatial ordinal numbérin azimuthal direction, with the inde$Rfor the
stator-rotor fields, yields

kSR: Vszl:)\R (6.15)
and the spatial ordds; in axial direction is computed as
kZSR — :F)\RV (616)

For the other fields, the transformation has to be appliedrdaagly which results in the
following spatial ordinal numbers in axial direction:

kZRs: :FVRV,7 (617)

Keer = — (W FAR)Y. (6.18)

For the investigated machine, stator-stator fields do neg laamy dependencies in axial
direction.
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Rotor rotation adjusted for each slice according to axial position |

B EE
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|R0t0r currents in slices coupled via electric circuit|

Figure 6.1: FEM multi-slice model of squirrel cage induatimachine with five slices

6.2 Finite element simulation with the multi-slice method

The electromagnetic field computation to determine the reagflux densityB is carried
out with a finite element simulation using the multi-slicethoel @l], E‘}’]. This method
is an established and improved technique for investigatidiskewed electrical machines,
e.g. the estimation of the load-dependent mean torque. Eecteand effects in axial
direction cannot be taken into account with this model baséhare negligible for noise
computation purposes. Investigations on end-windingdgakand axial flux confirming
this assumption are presented for exampl@‘n [48].

For multi slice simulations, the axial dimension is dividatb several slices, each rep-
resented by a two-dimensional model with the correspontbitay teeth position due to
the skewing. The currents in the rotor bars of each slice aupled with an electric cir-
cuit. A schematic overview for a five slices multi-slice mbeshown in Fig.[61l. The
investigated induction machine is skewed for one statdrsioh.

The electromagnetic simulation with the multi-slice methtzlivers the magnetic flux
density in the air gap of each slice, which is needed to coenth# mechanical stress
acting on the stator core stack.

The skewing of the rotor leads to variations of the magnetig ih axial direction.
For the fundamental wave, this is linear with the skewingr lkigher harmonics of the
magnetic field, the variations can have a multiple peridgiof the skewing determined
with the spatial ordinal numbers derived in the previousisac

However, the multi-slice method only delivers the resutslie magnetic field for a few
number of slices at distinct axial positions, which can beafed as the sampling points
of the magnetic field characteristic in axial direction. Cioethe low number of these
sampling points, aliasing and leakage effects odcur [5Bgréfore, common interpolation
techniques deliver wrong results for the force distribaitibhe problem can be avoided, if
the exact spatial ordinal numbers in axial direction aredkmo
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6.3 Reconstruction of the magnetic field distribution

With the introduced analytic determination of the spatialers and frequencies of the
magnetic induction and the results of the multi-slice seioh, the distribution of the
magnetic field and thus the mechanical stress in the air gap@a be reconstructed.

The variation of the magnetic field in axial direction can le¢edmined by a harmonic
superposition

m
B(k, f,2) = 5 Ci,cogks2) +Cy;sin(ky2) (6.19)
=)

with the known spatial ordels, , the unknown amplitudes;, andC,,, andmdenoting the
number of spatial orders occurring at a distinct harmonegdding the higher harmonics
only the stator-rotor and rotor-rotor fields have the sareguencies. This is the case e.g.
for the rotor slot harmonics for which

fus = fp= fug. (6.20)
The resulting frequenciefk of the magnetic fieldBy are then obtained as:
fi, = fp+ g or fi, = fp— g (6.21)
For f,, the following two spatial ordinal numbers arise:
kzy = —ARY kz, = (VR—AR)Y (6.22)
and thus
B(Kky, fi,,2) = C1,€08 Ky, 2) + Cp,Sin(ky, 2) + C1,c08kz,2) + Cp,Sin(Ky,2) (6.23)

For the the multi-slice results, a two-dimensional Fouti@nsformation has to be carried
out, the first according to time and the second accordingg@#imuthal coordinate. As a
result, the amplitudelékj (k, fx) for specific frequencie§ and spatial ordersin azimuthal
direction are obtained for each sligeand thus in discrete points in axial direction. The
frequencies and spatial orders can now be related to thgtmadlly determined frequen-
cies and spatial orders in azimuthal direction. This ergatile correlation of the spatial
orders in axial direction to the computed amplitudes of tregnetic flux density of the
multi-slice solution.

With the computed amplitudes of the multi-slice simulatitime unkown coefficients
can be determined with a least square methad [44]. To getquarsolution, a multi-slice
model of at least four slices is necessary. With this methedtignal can be reconstructed
from non equidistant points, too. This can be importantabee first of all it is not always
possible to model equidistant slices and, furthermores, liteineficial to shift the slices at
distinct positions to avoid sampling at points where a zgossing of a magnetic field
harmonic can occur making the reconstruction problematic.
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To sum up, this approach enables the reconstruction of tigmetia field in the air gap
to obtain the variation in axial direction with the help ofadytical solutions. For this
approach, the field components taking into account eitlaorsor rotor slotting have been
considered. The interaction of the slotting permeance svaia® leads to distinct magnetic
field components. However, their spatial ordinal numbexs fa@quencies are included
in those of the stator-rotor and rotor-stator componeetsyectively. The reconstruction
therefore also takes these components into account.

6.4 Numerical example

The electromagnetic simulation of an induction machinehwi® stator slots, 36 rotor
slots, a pole pair numbgy = 1 and skewed for one stator slot pitch is carried out with
a 2D multi-slice model. A non-linear, transient simulatioas been carried out for the
nominal operating point with a stator current of 150 A £ 50 Hz) and with a rated slip
s=0.3% (rotor speed of 2991 rpm). This is the same machine intedlin sectiofn 5]1.
More detailed machine parameters are listed in appéndix A.5

The electromagnetic simulation has been carried out withrvedels, one with four
slices and one with five slices in order to compare the resmitisthus validate the intro-
duced analytic approach.

\ On surface boundary: Axn=0\
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Figure 6.2: Material parameters for FEM multi-slice model

The model is discretized with quadrilateral and triangelaments of second order and
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the A,v— A formulation see sectidn 4.3 is used to solve the nonlineastent eddy cur-
rent problem for the nominal operating point. The appliedemnals and boundary con-
ditions are sketched in Fig._6.2. For the stator and rotop#reneabilityure is defined
as a function of the magnetic field intenskly For the shaft, the nonlinear permeability
Ureshaf{H) is used and the permeability of the slot wedges is set to aaotssy. At the
stator windings, the current densily is applied for a three phase system with two layers.
The rotor bars are defined as the eddy current region. On thedaoy of the stator no flux
is entering the surface and therefdrex n = 0. To consider the rotor movement, a sliding
interface is applied in the air gap between the rotating antnotating parts. In every
time step, the geometry modification due to the rotation rsaered by linear constraint
equations@?], 0].

For each time step, the stator currents are applied apptefyriand the rotor movement
is considered by adjusting the rotor position accordinghi rotational velocity. Only
steady state results are relevant and in order to reduceahsieént oscillation and thus
to reach the steady state with less computation effortspproaimate frequency domain
technique@] Is used to estimate the initial conditionstifie simulation.

The time stepht and the number of time steps to be computed depend on thedesir
frequency resolution and the corresponding pefiodd method to reduce the number of
time steps and therefore the computational costs has beeduced in@l]. The transient
simulation is truncated and leakage and aliasing effeetaldowed. The correct spectrum
of the magnetic flux density is reconstructed by determitiv@gspectral lines analytically
and computing the corresponding amplitude values. Thelaton delivers the magnetic
flux density in the air gap of each slice. In Hig.]6.3, the iptdated and reconstructed vari-
ation of the magnetic induction in axial direction for thesed slot harmonic with 3639.3
Hz and a spatial ordinal number pf gNr = 73 in azimuthal direction are depicted. The
direct interpolation has been performed with a cubic spiwe¢hod. The analytic approach
delivers the spatial ordinal numbeksg, = —2m- 2.0555 1/m andkz,, = —2m-2.084 1/m
in axial direction for the reconstruction algorithm. Theximaal detectable spatial ordinal
numberkz,, for the model with four slices is, applying the Shannon teewr2t- 1.7986
1/m and for five slices #-2.398 1/m. The aliasing effect that occurs for the four slices
multi-slice model can be seen for the interpolated solutidfig.[6.3. The variation yields
a completely different axial behaviour as compared to thectly interpolated solution for
five slices. The reconstructed results themselves, alsctédpn Fig. [6.8, match very
well. The slight deviations that occur arise from the diferraccuracy of the multi-slice
models due to the different number of slices. The deviatcmmspared to the direct inter-
polated solution, however, are strong. It is interestingdte that the direct interpolation
of the five slices results also delivers a wrong variatiothalgh no aliasing occurs.

After determining the magnetic field harmonics, the surfecee distribution on the
stator side of the air gap is computed frdm (A.2) and (A.2) ppendixCA.1 in the fre-
qguency domain. Thus, the errors occurring with the direterpolation method result in a
wrong estimation of the force distribution as can be seerign[€4 showing the surface
force distribution for the second slot harmonic at 3589.3d4zhe interpolated multi-slice
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Figure 6.3: Characteristic of the magnetic flux density ategdency of 3639.3 Hz and
with a spatial order in azimuthal direction of 73 for the np@lated and recon-
structed simulation results

results and for the reconstructed results of the four sliodeh

6.5 Validation with 3D model

To validate the previously introduced method, a nonlingansient electromagnetic sim-
ulation of a three-dimensional model of the induction maetias been carried out, since
measurements of the flux density in the air gap are very complesketch of the model
is depicted in Fig_616.

The model has been set up with a consistent mesh with an elafivision of 12 in
axial direction. In the air gap, special elements conneetstewed rotor and the stator.
A hexahedral element has therefore been divided into a pgralament with the nodes
(2,6,7,3,8) and tetrahedral elements with the nodes (24,8,8,5,6) and (2,4,8,3) as
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Figure 6.4: Surface force distribution at the stator sid¢hefair gap for a frequency of
3589.3 Hz a) direct interpolated solution for 4 slices bgdinnterpolated so-
lution for 5 slices c) reconstructed solution for 4 slices

depicted in FigL 6J]5. In particular, only second order edgenents have been used, and
the simulation has been carried out applying the — A formulation, see section 4.3.
The same material properties as for the

multi-slice model are used. On the bound- 6 7

ary of the model agai\ x n = 0 as no
flux passes the surface. The rotor bars have
been modelled together with the end ring 3
to account for end region effects and both 8
are part of the eddy current domain. On
both ends of the machine, a layer of air en-
closes the machine model. The influence of 1 4

the shaft has been neglected for this inves- o _
tigation, since, at short circuit operatiorf,19ure 6.5: FEM multi-slice model of squir-

very low flux is going through it. Hence, rel cage induction machine with
this part is omitted and the outer boundary five slices

surface is comprised by the inner rotor sur-

face.

Since the consideration of the rotor rotation in 3D is praidéic (mesh interface be-
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tween skewed rotor and stator), the simulation has beenucted for a short circuit op-
erating point, with fixed rotor. Thus the effects of the ratarrents and therefore of the
resulting fields are taken into account. To reduce the coatijputtime, the method ivﬁél]
has been applied.

’ On surface boundary: AX"=O‘ ]Air covering the end-region\

Stator windings J,

Stator y..(H)

———

~
SIot wedges Wgy

Rotor bars skewed for one stator
slot pitch (eddy current region)

| Rotor bars plus end ring |

Figure 6.6: FEM multi-slice model of squirrel cage induatimachine with five slices

Besides the 3D simulation, a multi-slice simulation withlisess at short circuit opera-
tion has also been performed and the introduced reconstnutiethod has been applied,
thus enabling a comparison of the two results. In Fig] 6.&,ntagnetic flux density of
the 3D solution along the axial direction for the spatialioadlnumber of 73 in azimuthal
direction are depicted. For the reconstruction of the rrlitie results, the spatial orders
Kzgr = 1211 2.033 1/m andkz,, = +21- 2.068 1/m have been computed with the analytic
approach. The result is also depicted in Figl 6.7. It can ke #eat the 3D results yield
the same variation. The slight deviation of the amplitude loa explained by the coarser
mesh, the consideration of the end rings and the occurrdrare axial flux component in
the 3D model.
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Figure 6.7: Reconstructed characteristic and results afiBilation of the magnetic flux

density in axial direction for a frequency of 50 Hz and a sgairder in az-
imuthal direction of 73



7 INFLUENCE OF DIFFERENT ROTATING STRESS WAVES ON
THE 3D VIBRATIONAL BEHAVIOUR

As presented in chaptEl 5, the analytical approach for remsgputation is based on the
decomposition of the air gap field into its harmonics and thess wave components can
then be determined with Maxwell’'s stress tensor. The vibnaand noise are then com-
puted with simple structural and acoustical models by thatrdmutions of each stress
wave. With this decomposition, the assignment to the caisbetsing, saturation, etc.) of

problematic noise peaks can be retained. This idea of iilgastg the structural and then
acoustical response of distinct force wave componentslbapeoved to be of value when

using numerical methods to compute three dimensional mac‘nbdels@Q],ﬂ?].

One weak point of the analytical structural models is thaittypically do not com-
prise all structural details (stator, rotor, housing, Jetand they are mainly derived for
two-dimensional considerations. It has been shown in enfjptthat such models do not
account for all vibrations, since additional resonancesraonde shapes occur for three-
dimensional structures.

In the following an investigation of the influence of distinmit stress wave compo-
nents on the three-dimensional structural vibration beheof a squirrel cage induction
machine is investigated. The analysis shows how differeeass wave components affect
the structural vibration behaviour. The machine is the sashe one introduced for the
electromagnetic field simulation in chapfér 6 and the resalitained from the electromag-
netic field simulation determine the frequencies and spatthnal numbers taken for this
investigation.

The chapter is arranged into two main parts. First, thestsase components which are
of interest in the course of this analysis are defined. In & step, the three-dimensional
structural model is presented and the computed structespbnses to the different stress
wave components are compared and discussed.

This work has been presented Mm:a] and will be publishe{@]. A special focus
lies on components with large spatial ordinal numbers wiiely have large amplitudes
as shown in sectidn 8.1 and chagfer 6. Following up on therfgedof [97], it is shown in
this chapter that, for stresses with spatial ordinal nusibear the number of teeth, an un-
dersampling occurs and new components with lower spatithak numbers arise. These
components contribute to the vibration and need to be cereildin the noise computa-
tion of electrical machines. In a next step, the influencéheftariation of the stresses in
axial direction is investigated. The obtained structuesionse is compared to that with
a uniform distribution in axial direction. Furthermoresests waves with a spatial ordinal
number of one are investigated, as this may lead to signtficghrations, especially when
acting on the rotor side. For this, some considerationgdaggthe frequency of the forces

79
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acting on the rotating rotor have to be made.

7.1 Definition of stress wave components

The forces crucial for the noise computation of electricathines are those acting on the
tooth tips of the stator or rotor teeth. These arise from tlagmetic field in the air gap
and can be determined with the Maxwell stress terisor |(2.B@)ces acting in the iron
(magnetostriction) or at the inner side of the teeth areewtgtl, because their influence is
considered to be small compared to the forces acting on ttk tips, especially for small
machines@O].

For this investigation, the simulation results of the magnield in the air gap (along
the whole circumference) are taken from the numerical alyresented in chapter 6.
The magnetic fields have been obtained by a transient fitaezit multi-slice simulation
of the squirrel cage induction machine for the nominal openapoint. The skewing of
the machine and the rotor rotation have been consideredsgpiplication of a multi-slice
model.

As only the stationary problem is of interest for the strugkanalysis, a Fourier trans-
formation of the transient solution along the peripheralag from the time domain to
the frequency domaiB(t, ¢) — B(w, ¢) is performed. The mechanical stresée&w, ¢)
and dy(w, ¢) can then be determined by a convolution in the frequency dofoathe
radial and azimuthal direction, cf_(A.2) aid (A.3).

A common approach is to further decompose the mechaniesssinto stress wave
components

o(n,¢,t,z) = d(n)cogng — 21tfut — Yn(2) — Pn) (7.1)

by carrying out a second Fourier transformat®fw, ¢) — &(w,n) [@] with respect to
the peripheral angl¢. This way, a relation between the cause - the magnetic fieitt co
ponent - and the effect - the deformation of the structuren-bEaobtaine 2]@9]. The
notation also considers the axial variation with the phasgeal,(z). As shown in chapter
B, for the force waves related to the slotting fields, the pleayleyin(z) is determined by
the spatial ordinal numbeks of the contributing magnetic field components.

As the second Fourier transformation is carried out aloegathole azimuthal perime-
ter, stresses are computed at positions where actuallyresssts can occur, i.e. at the
positions of the slots where no material (only air) is présd&o evaluate the stress wave
component acting on the teeth only, a periodic rectangigaasw(¢, z) is defined with a
period determined by the number of slots, which is zero aslbtpositions and one at the
teeth positions. The rectangular signal is then multipligth the stress wave component
ag(n,¢,t,z) leading to a new componeat w, ¢,t, 2)

a(n¢,t.2)=a(n@,t,zw(¢,2z) (7.2)
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This operation sets the obtained stress values at the gqositithe slots to zero. These
may be nonzero because the field there is not exactly zerkagiedfields). In Fig[7]1,
the stress value&(n), not considering the influence of the slots, and the stregées
considering the slots, at a frequenfy= 18946 Hz with the spatial ordinal numbenrs
that arise, are depicted. The results in Eig] 7.1 are olddhoen the first slice. The spatial
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Figure 7.1: Spatial spectra of mechanical stresses at adney of 1894.6 Hz

ordinal numbers with or without slots considered are theesdtrtan be seen that the most
striking amplitudes arise for the spatial ordinal numbet 38,n = —4 andn = 80. The
multiplication with the rectangular signed ¢, z) now leads to a change of the amplitudes
of up to 20%. In particular, an increase of the amplitude lher ¢patial ordinal number of
4 and a decrease of the spatial ordinal number of 38 can be.ndtes phenomenon is
discussed in more detail in the following section.

7.1.1 Higher order stress waves

In the following, the influence of the sampling of the teethdistinct stress wave com-
ponents is investigated. The computed spectrum depictédgin[7.1 for the first slot
harmonic atf,, = 18946 Hz shows that the largest component has a spatial ordinabeu
of n= 38. For the slot harmonic d}, = 17946 Hz this would ben = 36.

The mechanical stress waves accordind fg] (7.1) are now sehdipmpressed on the
structural finite element model. For the further invesimad, only stress waves with am-
plitudes of one are considered. In order to impress thisasigppropriately on the finite
element mesh, first of all the element division in azimutha¢ation has to be set ap-
propriately. In Fig.[ZP the stress wave with the spatiairatdnumbem = 38 applied
on a mesh with six times the number of stator teeth is depictéet number of sample
points is sufficient to avoid aliasing effects, however perfing a linear interpolation of
the resulting points of the stress signal, as is the case h Wkh linear shape functions,
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results in the modulated amplitude shown in [igl] 7.2. Thisotfis well known, however
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it should be mentioned here because it plays a role espefmalhigher ordinal numbers.
A compromise between computational effort and the occgreimor has to be made.

The second and more interesting effect occurring is, asaexgd above, due to the slots,
where no forces are acting. In Fig. 7.2 the resulting stres@wmpressed on the 42 stator
teeth is depicted. Interestingly, the resulting signaénelsles a wave with a spatial ordinal
number ofn = 4. This can be explained by studying the spectrar,ofr andw(¢).

In Fig. [Z.3 the Fourier transform of the stress wave assuminglots and the rectan-
gular signaw(¢) are shown along with the resulting stress wave acting onebidnt The
multiplication of the two signals in the time domain, thusaweolution in the frequency
domain, means that the stress wave witlk 38 acting on the teeth now also contains
lower and higher ordinal numbers depending on the numbelots.sIn this special ex-
ample wheren = 38 and the number of stator teeth is 42, the effective strase \was a
fundamental wave with the wave number 4 superimposed withdriharmonics. In gen-
eral, when stress waves with spatial ordinal numinersNs+ n are applied on the stator
teeth, a subharmonic with a spatial ordinal numben afises. If that is low, i.en < 6
the contribution of this stress wave component can not béeaegl. When impressing
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Figure 7.3: Fourier transform of periodic rectangular sign(¢) , of the original stress
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Figure 7.4: Fourier transform of periodic rectangular sigm(¢) , of the original stress
wave withn = 38 and of the stress wave effectively acting on teeth

force waves on the stator core, the main deformation is dubedending of the yoke
and, as outlined in_[42], lower ordinal numbers in azimuttliakction thereby result in
larger deformation amplitudes than higher ordinal numb&tss means that, because of
the fundamental wave occurring, the higher spatial ordmahbers are of interest when
investigating the structural vibration behaviour.
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The amplitude of the subharmonic is influenced by the widthof the teeth. The
broader the teeth compared to the slot widtithe more of the higher harmonics occur
and the less the amplitude and thus the influence of the fuedi@ihwave is. This is
shown in Fig.L.7Z¥ where the resulting stress harmonicd®fgb = 1/2 andbr /b =5/6
are depicted. The amplitude is nearly halved for the brotetsh.

7.1.2 Stress waves with axial variation

A further aspect that influences the force distribution gltire teeth not only in azimuthal
but also in axial direction is the skewing of the rotor barsevéhthe winding and the
permeance vary in axial direction according to the skewmgea This influences the field
and therefore the stress distribution in axial directionctaptefs, an approach has been
presented to account for the axial variation of the field. réhspatial ordinal numbers
in axial direction are determined and a reconstruction otetb obtain a valid axial field
distribution of the magnetic field is presented.

For the analysis presented here, the field components wislziamuthal spatial ordinal
number ofn = 37 andn = —41 are considered. Those lead to a stress component with an
azimuthal spatial ordinal number aof= —4 (andn = 78, which is not of interest here).
The field component with = —37 is a rotor slotting field that has spatial ordinal numbers
in axial direction ofk,; = —2m1.021 1/m andk,, = —2m1.05 1/m. In Fig['Z.b, the results
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Figure 7.5: Real part of the stress wave with spatial ordeioof and consideration of
skewing

for the mechanical stress wave is depicted. A striking Wamain axial direction can be

detected. The application of this force distribution magutein a bending of the core
stack in axial direction or excite distinct eigenmodes dngstmay influence the structural
behaviour in a critical way.
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7.1.3 Stress waves acting on rotor

For the noise computation of electrical machines, maing/ftrces acting on the stator
teeth play an important role. However some force componentthe rotor core may
excite the structure to critical vibrations. This is theesagresulting forces acting on the
bearings of the machine appear, which is the case for stragsswvith a spatial ordinal
number of one.

Due to the even number of slots and the pole pair number of foneg waves with
a spatial ordinal number of one only will arise due to the atugties of the rotor, see
sectio.3.1]1, which however are unavoidable. Furthernstotting leads to subharmonics
with n = 1 for a stress wave with the spatial ordinal numbenef 37 acting on 36 rotor
teeth.

Due to the rotational movement of the rotor, the frequenofethe stress wave com-
ponents acting on the rotor have to be determined accosdirighe frequencyf? of a
mechanical stress wave acting on the rotor surface with a&wawnbem, is given as
follows:

fR=f5—n fm (7.3)
where the superscrir denotes the moving coordinate system on the rotor, the scipetr
Sthe fixed coordinate systenfiy;, is the mechanical speed in Hz ahthdexes the spatial
ordinal number and the frequency in the moving coordinaséesy. The mechanical stress
wave acting on the rotor side, therefore, results in

0 = Gicogk¢R — 2m( 3y f)t — @) = Gicog MR —§2mfr —yy)  (7.4)

wheres can be derived as

fS—nfn _
fR= fiS'fi_s'm —§fS. (7.5)
|

With the finite element method, the equation of motion in tlegfiency domain for the
rotating part yields the following equation:

(—Q&MRr+KR)lr = Fr (7.6)
whereQg = 2mfR is the excitation frequency. Insertirfig(7.5) [N {7.6) thégigs
(—Q5°MRr+KR)0R = Fr (7.7)

with Qs = 2nfi5. This means that the mass, i.e. the density, of the rotatingtsre has to
be modified if a rotating force is acting there.
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7.2 Structural simulation

As mentioned in the introduction, the resonances and thetstial response have to be pre-
dicted by the structural simulation as accurately as péessibenable a low noise design.
In the following, the finite element method, see sectiom k.4ised to analyse the struc-
tural response of the modelled induction machine. This ptetmables detailed vibration
investigations of complex structures. Although existimgnputational and memory re-
sources enable simulations of very large models, compesihiave to be made between
the degree of accuracy of the model, e.g. the heterogeneaysosition of the stator core
stack, and the computation time, depending on the focuseos$ithulation. The investi-
gated machine is the squirrel cage induction machine afrpegsented in chaptkl 6. The
machine parameters are listed in appendiX A.5.

A three-dimensional model of the squirrel cage inductiorcin@e with a cylindrical
cooling jacket has been set up. The effect of the water flowintipe cooling jacket is
neglected. The stator is mounted via a tight fit in the housindpe machine. Since this
work does not focus on rotor-dynamical problems, the mouglbf the brush bearings
has been simplified and the rotor and housing are connecieal fixed support, i.e. the
rotor is supported in the end shields of the housing. Thettra is meshed with 20-node
hexahedral elements for extensive volumes, and 2nd ordiergwell elements for thin
plates, respectively, i.e. the housing of the machine. tn [fi8, a sectional drawing of
the discretized model is depicted. The main parts of the madre of steel, and linear

Figure 7.6: Meshed structural model and meshed stator daodte®th

mechanical material properties are assumed, since thentitions are small. To consider
the influence of the lamination of the stator and rotor cagielsta homogenization with an
orthotropic material model has been applied accordir@]) [Bhe corresponding material
parameters are listed in Tal)le A.4. The insulation of thedinigs is neglected and linear
copper material properties have been chosen.

The simulations are performed in the frequency domain esamdy steady state results
are of interest. Stress distributions with different waueners are set up and the resulting
nodal forces acting on the stator and rotor teeth are computed and apgdiddundary
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conditions for the finite element simulation (see sediidl).4The system equation

(—Q°M +K)a=F

(7.8)

with the mass matris and the stiffness matriK then has to be solved for an excitation
frequencyQ to obtain the nodal displacemeritsThe frequency range of interest is from
1000 Hz to 2200 Hz, because, as shown in se€fionl5.3.1, thisase most problematic ex-
citation frequencies occur. The quasi-static simulatemescarried out every 30 Hz. Thus,
fourty computations are necessary to get the structurpbrese resulting from one stress
wave component. The computational demands are, therefenghigh. Because of this,
the structural finite element model is meshed rather coardemore detailed structural
modelling is presented in chapfér 8 where the vibrationsaasdysed more closely and
afterwards are applied as boundary conditions for an alogistulation.

7.2.1 Simulation results

The structural investigation focuses on the effect of thesfime occurring excitations ex-
plained above. Therefore, distinct stress waves with aoges of one and with different
wave numbers are impressed on the stator and rotor teethg iy and Fig[ 718, the

results for the root mean square velocities on the surfatkeeoinvestigated machine are
plotted against the excitation frequency.
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Figure 7.7: Simulation results for the mean square velamityhe surface of the machine
due to different stress waves acting on the stator



88 7 Influence of different rotating stress waves on the 3D vibral behaviour

Generally, it can be said that the higher the order of theefavaves, the less is the
deformation, i.e. the velocity amplitude on the surfacehefinachine. The consideration
of skewing leads to an axial variation of the force distribnt which results in forced axial
bending modes of the stator. In FIg. 7.7 it can be seen thpécesly at 1060 Hz and at
1840 Hz, the velocity peaks are larger than iioe 4 without skewing. Furthermore, it
is striking that the frequency responses of stress wavdsnwt 38 andn = 37 resemble
the responses fan = 4 andn = 5, respectively. This can be attributed to the fact that
the effective stress wave acting on the teeth consists ohdaimental wave and higher
harmonics as explained previously. Foe 38 a fundamental wave numbermof 4 arises
and forn = 37 a fundamental wave numberm#f 5.
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Figure 7.8: Simulation results for the root mean squarecigion the surface of the ma-
chine due to different force waves acting on the rotor

Very large velocity values arise from the excitation with aws number of one, both
for excitations on the stator and on the rotor teeth. In Fid8, the root mean square
velocity on the surface for forces acting on the rotor sidéeigicted. Considering the rotor
rotation with a rotor speed of 2991 mihfor nominal operating point and taking (¥.5) into
account results iy = 0.953 for an excitation frequency of 1060 Hz agd= 0.976 for
2060 Hz, respectively, for a spatial ordinal number of onée €igenfrequencies of the
rotor are shifted by 49.85 Hz, which can be seen in Eigl 7.&kample at the excitation
frequencies between 1400 and 1500 or between 2000Hz andHA,50here resonance
peaks can be detected.

Stress waves with spatial ordinal number larger than onéemdtor result in velocity
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amplitudes three orders of magnitude smaller than thosegagh the stator teeth, which
can be seen in Fig._1.8 for a spatial ordinal numben ef 4 applied without considering
the rotor rotation. Thus, stress waves acting on the rotor lbeaneglected in the noise
computation process. However, for= 37, without considering the rotor rotation, the
structural response is in the same order of magnitude aefudts forn = 1. The same
effect occurs, as described above,rice 38 andn = 37 impressed on the 42 stator teeth,
which results in force waves resembling= 4 andn = 5. The 36 rotor teeth result in an
effective stress wave with a fundamental wave with 1. Due to the skewing of the rotor
slots, the functionv(¢, z) now varies ire-direction, too and therefore so does the resulting
stress distribution. This will result in forced axial bengj similar as for the stress wave
n = 4 where skewing is considered.

In Fig. [Z.8, the structural response for for tangentialsstreomponent witln = 4 is
depicted, too. As shown irELhG], too, its contribution to thibrations is one order of
magnitude lower than that of the radial component. The sashmcity peaks occur for
them as for the radial component, except at 1220 Hz whichusezh by the azimuthal
component only.

The velocity peaks arising at distinct frequencies leacheodonclusion that eigenfre-
qguencies are excited at these positions. A modal analystsea$tructural model, which
has been conducted separately, delivers the eigenfreigsesnad eigenforms of the me-
chanical system, describing the structural behaviour sttrdit frequencies. The modal
simulation delivers more than 300 eigenfrequencies fro®01i8z to 2400 Hz, i.e., on
average, a resonance occurs every 5 Hz.

If the structure is split into three parts - namely statot pstator core stack with wind-
ing), rotor part (rotor core stack and rotor shaft) and theshg part - the overall defor-
mation characteristic can be composed by the contributénise three parts. The high
modal density, for example, can be traced back to the platdibg modes of the housing
part. In Fig[Z¥, approximately 8 striking peaks can befified. More detailed studies of
the modal simulation results supported the expectaticmstiiese peaks can be attributed
to a strong contribution of the stator part at these freqi@sndén chapter]8, a more detailed
analysis of the modal results is presented.

Summing up, it has been shown that stress waves with higld@nradmumbers in az-
imuthal direction or with a varying distribution in axialrdction can not necessarily be
neglected. For further investigations, the influence ofrdter rotation should be consid-
ered for higher harmonics that may be problematic when gaimthe rotor teeth.






8 INFLUENCE OF COMPLEX STRUCTURAL BEHAVIOUR ON
THE ACOUSTIC NOISE RADIATION

In the chapte[l6, the electromagnetic field computation with multi-slice method has
been presented. An investigation of a skewed induction macthowed that the mag-
netic field in the air gap leads to stresses with an axial tarnaf the stresses acting on
the stator (and rotor teeth). The influence of such stregsliisons as well as stress
distributions with larger spatial ordinal numbers has baealysed. In this chapter, the
computed stresses of chapiér 6 are applied to the statbrdadtdetailed structural and
acoustic investigations of the skewed induction machieesarried out. The computations
for three-dimensional models are carried out with both thigefielement method and the
boundary element method.

In a first step, the modelling of the structural finite elemmeash is presented and the
used material parameters are discussed. In a next stegribtugal vibration behaviour
is analysed with a modal analysis. It is shown that, due t@laie structure, a high modal
density occurs, in particular at the housing. It is then ghtivat, the eigenmodes near the
excitation frequency and especially those with the stadotrdouting to the deformation,
obviously influence the surface vibrations of the machine.

To determine the emitted sound pressure, a boundary elemmiel of the induction
machine has been set up. Special issues, in particulardiieigenfrequencies that may
arise are shortly discussed and a workaround is presenteckaEh excitation frequency,
the sound pressure on the surface of the machine and on fielt$ gsarrounding the ma-
chine is computed. At last, the measured noise spectruntinted in Figl 5.12 in chapter
Is compared with the computed numerical results.

This work has also been presented@ [98] and has been peenblist@]. The aim
has been to show the influence of the three-dimensionaltiobraf the housing on the
radiated noise. In the scope of this investigation, somélproatic issues are discussed,
for example the modelling of the structure and the appliegpsfications as well as the
used material properties.

8.1 Structural vibration computation

To determine the structural vibration results, an appegpstructural model of the investi-
gated induction machine has to be set up first of all. Sinyilrkthe investigations carried
out in[4, all relevant structural components are includkd:Housing of the induction ma-
chine comprises the cylindrical cooling jacket of the maehwith the water guide rails;
the front and back of the machine are encased by plates norgdhe bearings mounting

91



92 8 Influence of complex structural behaviour on the acoustiseradiation

the rotor shaft and lamination stack; the laminated stadoe s embedded in the cylin-

drical housing; furthermore the feet of the machine andegland ribs influencing the

stiffness and thus the structural behaviour are modelleanddel the end-windings, some
simplifications have been made. They are not modelled seghgrbut as a homogeneous
body connected to the stator core. Not all structural effeohcerning the end-windings
are considered thereafter, butitis assumed that theieindle on the whole machine model
can be neglected in the simulation of the noise radiatiomddethe modelling efforts are

reduced enormously.

8.1.1 Finite Element Modelling

For the following structural computations a detailed stal model of the induction ma-
chine, comprising stator core stack with windings, rotaafsland core stack with rotor
bars and end rings and the housing encasing the structuset igp. The structural in-
vestigations are carried out with 3D finite element simolagi The different parts of the
induction machine are dicretized separately. For the felg#enent mesh of the geometry,
solid elements (hexaedra and tetraedra), are used for \mdume. the stator and rotor
core stack and the rotor shaft, as well as solid-shell elésrfenplates. The end-windings,
again, are considered as homogeneous bodies. The resutingonforming meshes are
then connected via contact and target elements [6]. Thisapp enables a much easier
set up of the finite element model, because it is not necessdnyild consistent meshes
between the machine parts with different geometry sizeg;iwhould result in high mod-
elling efforts and a large number of elements and thus coatipaial costs. In Fid. 81, the
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Figure 8.1: Meshed structural model and meshed stator widlwendings

structural mesh is shown. It can be seen, that the disctietizisa much finer compared to
the model in chaptél 7 (cf. Fig._7.6), especially for the lingglates but also for the stator
core stack to catch all the bending modes. This is importspe@ally for the housing, as
the vibration characteristic on the surface influencesithi¢ed sound pressure. The struc-
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tural finite element model comprises 419,926 nodes and I6%@ments, thereof 39,554
are contact elements. Only second order elements are udgtleanumber of degrees of
freedom is 1,258,218.

Material Properties

After discretizing the geometry, proper material modelstf@ different parts of the ma-
chine have to be defined. The main parts of the housing are corsteel plates and ribs,
therefore, a linear, isotropic material model is sufficikmtthe material assignment.

For the modelling of the laminated stacks some simplificegtibave to be made, as it
is not adequate to model each sheet and connect them viactomtaels. Recent in-
vestigations in@l] andIéZ] have shown that an orthotrapaterial model, i.e. with a
decreased Young's and shear modulus in axial directioneressary. These assumptions
are supported by experimental investigations carried otié course of this work [50].
For laminated stacks with and without teeth, structuraleexpental investigations have
been carried out and the eigenfrequencies and mode shapasiticular in axial direc-
tion, have been identified. The resulting frequency respd@s been presented in Fig.
[5.4. This investigation has shown that resonance peaksigémmodes that also show an
axial deformation characteristic, occur.

To account for this structural behaviour, an investigabba structural finite element
stator model with homogeneous but anisotropic materigbgnttes has been carried out,
similarly to ]. A variation of the material parameterspecially the Young’s modulus
and shear modulus in axial direction, has shown that, withopgr adjustment of these
parameters, the measured response could be reproduceslifitient accuracy.

However, this adjustment has to be carried out for each latethstack individually.
For the investigated squirrel cage induction machine ia work no such investigation
has been possible. Nevertheless, to consider the infludribe dower stiffness in axial
direction due to the lamination, the anisotropic materaigmeter set obtained from the
investigation inEb] is taken. In the radial and azimuthatdtions, the material properties
of common steel are used. In axial direction, the Young’s nhasland the modulus for
shear in this direction have been set accordingly, see Taldle Furthermore, for the
laminated stacks, a constant damping is assumed. The pondisng damping coefficient
has been set to 1%. This is in acceptable agreement with thpidg values obtained by
the measurements.

Although in @] it is stated that modelling the windings, leedded in the stator core
stacks, as additional masses is sufficient, linear isatrsiififness of copper has been de-
fined for them. The influence of the insulation and the resebbeen not yet been inves-
tigated in detail. This is a task for future work on this tapidis is also the case for the
end-windings. For this investigation it is assumed thatethé-windings mainly influence
the structure as additional mass. Their density has be¢n 5810 kg'm? for the modelled
volume (65% copper). The Young’s modulus of the end-wingliisgset to 11- 10'° Pa.
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8.1.2 Investigation of the structural behaviour

After setting up the finite element model, the mass matriand the stiffness matrik can
be computed, see also¥.4. A proper means to investigatértlotusal behaviour, and get
insight in the deformation behaviour of the structure atidics frequencies, is to perform a
modal analysis. For this, the homogeneous solutioh of |2h@8 to be determined, which
leads to an eigenvalue problem for a slightly damped syst@eme method to determine
the appropriate eigenfrequencies is the so-cgIBOAMPmethod implemented IANSYS
[@], [6]. For this, in a first step, the eigenvalugsand eigenvectors; of the undamped
problem

(AM +K)ri = 0. (8.1)

are computed with the Block-Lanczos method [9]. With theaoi®d results, a modal
transformation, see sectibn 2.4.2 of the damped equat&irrsycan be carried out and the
following system equations are obtained:

(?RTIDR)(§>+<_OI diag;)(q2>)(§)=<8). (8.2)

The eigenvalues and eigenvectors of this problem can theleteemined with a general
eigenvalue solver|Z[9], pp. 887ff). With this approach, gdex frequencies are obtained.
However, the eigenvectors are real since they are derioed 8.1).

A modal analysis computed with this method at a frequencygeaf 1880 Hz to 1975
Hz showed around thirty eigenvalues and eigenvectors. Aigis modal density can be
attributed to the complex structural geometry model, bpeemlly to the structural be-
haviour of the plates of the housing which form a wide rangeesfding modes.

In Fig. [B8.2, the modal solution for the structural model ipideed for the computed
eigenfrequency of 1588 Hz. For the stator, a mode= 4 in azimuthal direction can be
identified. This is in accordance with the analytical santwhich yields 1597 Hz, see
appendiX_/A.b. However, plate bending modes occur on theihgugth amplitudes five
times larger than for the stator.
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Figure 8.2: Eigenform of the structure at a frequency of 158&
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In Fig.[8.3, the deformation characteristic at 18PHz is depicted. It can be seen that,
at this eigenfrequency, the deformation is also dominaygaldte bendings of the housing,
i.e. the cooling jacket and the plates connecting the fedteinduction machine. These
bendings are much more dominant than the deformation of thterscore stack. The
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Figure 8.3: Eigenform of the structure at a frequency of 18%

deformation characteristic of the stator itself shows thetding, with two maxima in
axial direction occurs. This behaviour can be attributethtomaterial properties taken
for the stator core stack, i.e. the rather low elastic maslutaxial direction compared to
the radial and azimuthal directions. This eigenfrequesgyairticularly problematic, as it
coincides with an excitation frequency. The obtained $tmat response is analysed in the
following section.

Summing up, the results of the modal investigation show st@ng bending of the
plates occurs near the excitation frequencies. For sombeskteigenfrequencies, for
example at 1588 Hz, the stator is also contributing to the eigenform. Thist fand its
consequence is discussed in the next section, where tretustaresponse due to forces
on the stator is computed.

The eigenforms, especially the plate bending modes areemtkd very much by the
set of chosen material properties. Small changes in thermalgparameters may lead to
different eigenmodes. For future works, further invedimas on the material properties
and comparisons with measurements are necessary. Inypartithese bending modes
occurring on the surface of the machine influence the noidmtran strongly, because
the surface oscillations result in pressure fluctuationaiirand thus in sound. This is
discussed in the last section of this chapter.

8.1.3 Harmonic analysis at excitation frequencies

The modal analysis has shown that the structural behawsalominated by eigenfrequen-
cies with housing deformations as eigenforms. In the falhgythe structural response to
different excitations is computed with the structural #retement model. The deformation
characteristic is then analysed and compared to the moligicsts.

Again, only the stationary result is of interest. As the mategroperties for this struc-
tural model include damping, e.g. for the laminated stattiesfollowing equation for the
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guasi-static problem has to be solved with respedt see also sectidn 2.4.2:
(—Q°M + jOD+K)0 =F. (8.3)

As a boundary condition, zero displacement constraintagae assigned to the feet of the
induction machine. As a second boundary condition, therele@gnetic stresses acting on
the stator teeth are applied with the corresponding fregjesn In Fig.[8.4, the spectrum
of the radial stresses in the frequency domain obtained thighapproach presented in
chapteiL6 is shown. It can be seen that the largest stresstadeparises at 1694.6 Hz,
1794.6 Hz and 1894.6 Hz. The fields contributing the most iodtiess components are
the fundamental field together with the first slot harmonitdfeomponents. For them,
spatial ordinal numbers of 34, 36 and 38 arise, cf. appdndix As shown in chaptéd 7,
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Figure 8.4: Absolute values of the stress amplitudes irataliiection acting on a tooth

the large spatial ordinal applied on the 42 stator teethslé@adub-harmonics with spatial
ordinal numbers ofi = 8 6 and 4. Thus, at 1894.6 Hz, a larger deformation is expected
since a stress wave component with a large amplitude and apatial ordinal number
occurs which dominates the stress spectrum.

The structural analysis is carried out for the excitaticggfrencies); =1594.6 Hz,
1694.6 Hz, 1794.6 Hz, 1894.6 Hz, 1994.6 Hz, 2094.6 Hz and B184. Along with
the radial stress components, also the azimuthal ones plie@po the structural model.
In Fig. [8.3, the displacement results of the induction neeldt 1794.6 Hz and 1894.6
Hz are now depicted, i.e. the real part of the sum of the digpleent vectors. It can be
seen that the largest displacements occur at the outenggaltket and at the plates con-
necting the feet. As suspected, the deformation amplitud824.6 Hz is larger than that



8.1 Structural vibration computation 97

for 1794.6 Hz. On the one hand, this can be attributed to teestvave components with
lower spatial ordinal numbers (subharmonics). On the dihed, the excitation frequency
of 1894.6 Hz coincides with a resonance at 1894.6 Hz.
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(a) Deformation at 1794.6 Hz in m (b) Deformation at 1894.6 Hz in m

Figure 8.5: Real part displacement solution of the harmanalysis for the induction ma-
chine
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Figure 8.6: Real part displacement solution of the harmanalysis for the induction ma-
chine at 2094.6 Hz

In Fig. [8.6, the deformation of the stator and the housingna¢xeitation frequency
of 2094.6 Hz is displayed along with two modal solutions néar excitation frequency.
The stator amplitudes are small compared to the deformafidine housing, however it
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can be seen that there is a specific characteristic in thé dixégtion with two minima.
Comparing the deformation of the housing with the modalltesu Fig.[8.6, it can be seen
that the plate bendings, especially those on the feet plaassmble more the eigenmode
at 2103.5 Hz than that at 2097.3 Hz, although the latter omee@er to the excitation
frequency.

Considering[(2.46), two terms are identified that deterrttieestructural response. One
term is determined by the inverse of the difference of thetation frequencyQ and the
eigenfrequenciesy. If the excitation frequency is near to or even coincideshwite
eigenfrequency, as is the case at 1894.6 Hz, the deformatiptitude will be large. The
second term, and the one that may be the reason for the rasEits [8.6, is the product
of the force vector with the transposed modal matrix. Thesstdistribution at 2094.6
Hz seems to be orthogonal to the eigenvector at 2097.3 Hz amesemble more the
eigenvector at 2103.5 Hz.

Summing up the deformation mainly depends on the eigenfagasthe excitation fre-
guency and thus these eigenvectors determine the deforataracteristic. The results
for the other excitations are depicted in appendix A.8.

8.2 Noise computation

In a last step of this analysis, the noise radiated by the machbrations, in particular
the surface oscillations, is computed. Due to the intevactif the solid with the fluid,
the surface vibrations excite the acoustic fluid, i.e. aiglesing the machine. This leads
to pressure fluctuations in the form of acoustic waves, tlusd is radiated from the
machine.

The exterior radiation problem that has to be solved is aarmxtNeumann problem.
The compatibility condition on the surface of the machirgurees the velocity of the solid
and the fluid to be equal. The normal component of the givefasaivelocitied,

In = jQ0-n. (8.4)

with the normal vecton and the displacement valiie leads to the Neumann boundary
condition [4.4D) for this problem. To determine the sounespure field in the exterior
domainQ™* the indirect boundary element method is chosen, see s@tfon

A surface model has been set up and disctretized with 103&6¥ular elements, see
Fig. [B1. The average element size has been set0tbr. This means, that for the
maximum frequency of 2198 Hz around 10 elements per wave length= c/f exist.
Thus, the wave can be represented with sufficient accuracy.

As mentioned in section 4.5, the solution for the exteriatiaion problem is pol-
luted by fictitious eigenfrequencies. This issue is of pu@hematical nature due to
the boundary element formulation. For the indirect BEM, @pproach to overcome
this problem is to apply an impedance boundary conditiorr okre inner side of the
cavity. As described ir@ﬂ, prescribing a constant valfie-d133kg/n?/s (= —cp
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at a temperature of 20) as impedance on the internal surface allows to completely
damp the spurious frequencies polluting the solution ofierwhole frequency range.
The simulation has been carried
out with LMS Virtual.Lab Rev.11
[B], which also contains a fast
multipole BEM solver, see sec-
tion[453. This has been used to
increase the efficiency, in particu-
lar regarding the amount of mem-
ory. To consider the reflections of
the sound waves at the ground, a
half space solution is computed.
Therefore, arigid plane is inserted
representing the floor on which
the machine is mounted.

In Fig. [8.8 and Fig[(819 the re-
sults for the sound pressure on the
machine’s surface are depicted. It

can be seen that the maxima of the .
sound pressure, especially on tHggure 8.7: Surface mesh for boundary element simu-

lation

cooling jacket, correlate to the de-
formation characteristics obtained
in sectior 8.1.13. The obvious influence of the structurabdaftion on the sound radiation
can thus clearly be seen. Also at the plates of the bottomeofrtachine a high sound
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Figure 8.8: Sound pressure distribution on the surfaceefrtiuction machine at 1794.6
Hz

pressure level can be detected. On the one hand, this caadeel tback to the high struc-
tural deformation occurring at the vertical plate connegtihe feet. On the other hand,
however, at the horizontal plate, reflections of the radiateund pressure must occur,
which lead to a high sound pressure level there, althoughbtthetural deformation is low

compared to the vertical plate, see also Figl 8.5. The efultthe other excitations are
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Figure 8.9: Sound pressure distribution on the surfaceeirtiuction machine at 1894.6
Hz

depicted in appendix Al9.

To investigate the radiation from the surface into air, aa@ation grid has been set up,
discretized with quadrilateral surface elements. The dquassure is computed in these
points and the noise radiation can be investigated. Theuatrah grid consists of three
planes each perpendicular to one of the coordinate axes.

In Fig. [8.11, the radiation characteristic of the noise agireg from the machine is
depicted. It can be seen how the maximum sound pressurerimgrat the cylindrical
housing spreads out radially and decreases with the destaDepending on the vibra-
tion, the maximal sound pressure occurs at different possti The results for the other
excitations are depicted in appendixA.10.
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Figure 8.10: Sound pressure distribution at the field paatsounding the induction ma-
chine at 1794.6 Hz

8.2.1 Comparison with measurement

In sectior5.3]1, acoustic measurements have been présemteompared with analytical
computation results. To compare the numerical results thghmeasurements, a cuboid
field has been modelled that encloses the machine at a déstdiricm. The A-weighted
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Figure 8.11: Sound pressure distribution at the field paatsounding the induction ma-
chine at 1894.6 Hz

root mean squares of the sound pressure level are compatled tweasurement results
in Table[8.1. The results show no clear tendency. The lasgestd pressure level occurs

Table 8.1: Squirrel cage induction machine - Measured amdpided Sound pressure lev-

els (SPL)
Excitation Frequency Measured SPLL Computed SPL
15946 Hz 525dB(A) 50 dB(A)
16946 Hz 61 dBA) 74 dBA)
17946 Hz 68.3 dB(A) 72dBA)
18946 Hz 80.5dB(A) 77 dBA)
19946 Hz 64 dB(A) 61 dB(A)
20946 Hz 61.5dB(A) 65 dB(A)
21946 Hz 50 dB(A) 62 dB(A)

at a frequency of 1894.6 Hz. However, compared to the meamnes this is still an
underestimation as is also the case at 1594.6 Hz, thouglsrgrase, and at 1994.6 Hz.
For other frequencies the computed sound pressure leveedgdhe measured one, for
some cases enormously.

One point that explains the deviations is of course the siraglstructural modelling,
in particular the laminated stack, the windings, the lackhef water in the cooling etc.
Further detailed experimental and computational invasibgs are necessary to obtain
proper approaches to consider the complex compositioreofredal machines.






9 CONCLUSION

The computation of audible noise of electrical machineddegh an issue for a long time.
However, in recent days, the increase of the applicationgléxtrical machines and the
rising sensitivity towards noise leads to more severe etguis to decrease the exposure
of human beings to noise. This demands comprehensive catigpuimethods to provide
low noise designs.

The review of literature in the first chapter has shown thatelare several causes lead-
ing to audible noise of electrical machines, namely, aemadyic, mechanical and elec-
tromagnetic causes. The latter ones are the most probleorads, since they lead to a
noise spectrum with large noise peaks at distinct freq@sncihe overview is structured
according to the computation chain, i.e. electromagnesicactural mechanics and noise
radiation. Each topic comprises first of all the computatisethods, i.e. analytical and
numerical or, more recently, combinations of the two, aedpadly, experimental investi-
gations especially concerning the structural modelling.

The fundamentals and theoretical background along wittyaca and numerical noise
computation methods are presented in the chajpter§l2 to pte&fBadeals explicitly with
the noise computation of induction machines and preseras@i@hensive analytic noise
computation method. The main advantage of this approadteipassibility to retain the
relationship of the noise peaks to the causing electrontagfields. Failure to provide
this is a disadvantage of the numerical approaches, whgdieaon to electromagnetics,
structural mechanics and acoustics is shown in chapter 4h®one hand, those methods
enable a more detailed modelling and, thus, more reliallgtsemay be obtained. On the
other hand, the more detailed the model, the larger are timpetional efforts as well
as the computation times. This makes the analytical metsiiltlan important tool in the
design process of electrical machines.

Therefore, an investigation concerning the reliabilityaafomprehensive analytical ap-
proach has been carried out in chapler 5. For each compusiép, the results have been
compared to numerical and/or experimental results. Thepanisons have shown that the
analytical approach yields very good results for the fregies of the magnetic fields and
thus the frequencies of the noise peaks. However, discegggmmay occur for the com-
puted amplitudes, in particular of the magnetic fields. Ehesults are well known in the
literature, however, some effects occur that have not y@tmntly been paid attention to.
First of all, the comparisons have shown that stress hawaawith large spatial ordinal
numbers may have large amplitudes, however, their influendke structural vibrations is
mostly neglected in the literature. This is because it ism&sl that those stress wave com-
ponents do not contribute to the vibrational behaviour. Ahfer point that is derived from
the comparisons is the variation of the magnetic field aldvegaxial direction of the air
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gap for skewed machines. This results in a variation of theealong the axial direction,
too. Along with the three-dimensional vibration behavjaiso presented in this chapter,
this may result in problematic vibrations. Thus, with théamme of this validation several
objectives have been identified to which attention has beahip the following chapters.

The axial variation of the magnetic field in the air gap hasldaeestigated in detail in
chaptef 6. For a squirrel cage induction machine, a finitselg multi-slice simulation
has been carried out at the nominal operating point. The stagfield components in
each slice have been analysed for a model with four and ficesslilt has been shown
that a cubic spline interpolation in axial direction, whisttypically carried out to obtain
the field along the axial direction, leads to completelyatéit distributions. A more
detailed analysis of the magnetic field components alsoidensg the analytic approach
has shown that the variation in axial direction is proparéibto the skewing angle. The
magnetic field components for the two multi-slice modelsenbeen reconstructed and
the comparisons have shown a clear agreement. A comparisiora\three-dimensional
model supported the validity of this approach.

The influence of the axial variation of the obtained stressethe structural vibration
behaviour has been analysed in the chdgter 7. The focusihasnldhe investigation of
stress waves with large spatial ordinal numbers. Thergéotleree-dimensional structural
finite element model has been set up and different stresssvagpyaied to the stator and
rotor teeth. The results have shown that for stress wavédsspdtial ordinal numbers in
the magnitude of the number of teeth (either stator or ratepending on which of them
the stress acts) lead to sub harmonics of large amplituadkmarspatial ordinal numbers.
This again results in large deformation amplitudes on thgstand thus large vibrations
on the housing. Regarding the stresses varying in axiattitwrg, it has been shown that
certain eigenmodes of the stator may be excited and thueaases may occur. Besides
that also analyses for stress waves with a spatial ordimaben of one have been carried
out and have shown that those lead to the most critical vdorat either if applied to the
stator teeth or to the rotor teeth.

The vibration structure, especially the housing, excitessurrounding air and leads to
pressure fluctuations and thus audible noise. The influehtigechousing on the noise
radiation has been mentioned in the literature, howevdy, femv works exist which ex-
plicitly deal with this phenomenon. This is the topic presenn chaptel18 of this work.
Therefore, a very detailed three-dimensional finite eléameodel has been set up. The
main problem thereby is the setting of the material pararaetgpecially for the laminated
stacks and their insulated windings. To obtain an efficieodeh some assumptions have
been made and a homogeneous body assumed. A modal anatheiswiicture has shown
a high modal density, mainly due to the plates of the houdimg. next step the structural
responses due to the stress harmonics acting on the sietfoatenominal operating point
are computed. In addition to the structural model, a boyndiEment model has been set
up to determine the noise radiation. The results show tleatdise radiation clearly corre-
sponds to the plate bending of the housing. A comparisoneo$tifess spectrum, obtained
after the electromagnetic field computation, and the costpnbise spectrum also shows
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different characteristics. One obvious reason for thistlaeestructural eigenfrequencies
that may lead to large vibration amplitudes even for forcék small amplitudes. A fur-
ther reason may be the cancellation of acoustic waves. Hmise seen for some field
results, however, their effect on the noise reduction carbaeasily be determined. The
main problem that has arisen in this work is the determinadiothe material parameters
of the laminated stator core. More detailed investigatmmshe vibrational behaviour of
such stacks with the aim of obtaining a proper parameteosété vibration computation
is a task for future work.






A APPENDIX 1

A.1 Supplements to the Maxwell stress tensor

In cylinder coordinates the following time dependent sresctor is obtained in air with
U = Mo and forB; = 0:

1 ([ B?—Bj
O'm(r,‘paz,t)—_z—uo( ZBrB¢ ) (Al)

In the frequency domain the relation for the surface foraesdg is computed by a con-
volution of the frequency spectra of the corresponding comepts of the magnetic flux
densityB(jw) as

61160 = 5, (Br(0) B (j0) ~ By (1) By [0) (A2)
0p(16) =~ (Br(]®) By (jo) (A3)

wherew is the angular frequency.

A.2 Physiological acoustics

A healthy human ear typically covers a frequency range fréiizlto 16KHz. However,
humans’ physiological sensation of loudness is varying e frequenC)}EZ]. Statistical
investigations have been carried out according to DIN 45G88DIN EN 60651, respec-
tively, to determine the sensation of loudness in relatofiequency and sound level. In
Fig. [A.1a the equal-loudness contour is depicted. Withdiagram it is possible to de-
termine the loudness for a corresponding sound level agdémcy. The loudness level is
measured in phon and equals the sound level in dB for a fregueil 000Hz. For tech-
nical applications, the non-linear physiological sermais typically accounted for with
valuation curves. According to DIN 45 634, four weightingnétions/curves denoted with
A, B, C and D are determined, which are depicted in Eig._A.1be Most important for
industrial applications is the A-weighting function, whicorresponds to the inverse of
the loudness curve for 30Hz. The A-weighted sound presswed is then denoted with
dB(A).
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Figure A.1: Noise level and weighting curv@[SZ]

A.3 Galerkin equations for quasi static fields

In the non-conducting domai@, the following Galerkin equations arise:

/DxNi vaAth:/NiJon i—12..n inQn  (A4)
Qn Qn
In the conducting domaif). the Galerkin equations are as follows:

/D « Nj v % Ath+/%Ni UAthJr/%Ni oOwdQ =0 inQ. (A5)
Q¢ Qc Qc

/%DN,- aAth—i—/%DNj o0vndQ = 0 (A.6)
Q¢ Qc

i=12...Ne i=12...,n (A7)

Ne is the number of unknown edge based shape funchipasdn, the number of unknown
nodal based shape functioNs Both, the shape functiom for the vector potentiah and

N; for the scalar potentialare linearly independent. However, there are linear iejeed-
dences between the edge based shape functions and the aseldidhape functions as the
gradient of the nodal based functions are in the functiocemd the edge based shape

functions EB]:
Ne
0N, = ZlCika, i=12,...,np—1 (A.8)
i=

(A.9)
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By taking the curl of[[A.8), the linear combinations of theuatjons in[[A.b) result in the
same equations as in_(A.6). Thus, the obtained system nigsirgular.

A.4 Derivation of system matrices of mechanical finite elenré system

Inserting the approximation functioris (4133) ahd (4.34) #re constitutive law{4.35) in
the formulation for the virtual worK{4.30) the Galerkin eqions are obtained as follows:

U+

3 / B<m>TC<m>B<m>dv<m>} U—
m
v (m)

S ( / HMT I gy (m) / H(m)Tf(Sm)dA(m)) (A.10)
(m)

m Al

{Z / H T oH (M) gy (m)
m
v (m)

for
3s(x,Y,2)™ = H(x,y,2)™, 5e(x,y,2)™ = B(x,y,2) ™. (A.11)

The obtained terms can now be gathered in a mass nitrix

M= / HMT oH Mgy (M) (A.12)
M)
a stiffness matrixx
k=3 [ 8™ cmpmaym (A.13)
m
v(m)

and a nodal force vectdr

T T
F:; (/ HM T gy (m) / H(m f(sm)dA(m)) . (A.14)

(m) AlM)
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A.5 Machine parameters

Table A.1: Squirrel cage induction machine - Machine Patarse

Nominal Power P 1.25 MW
Feeding voltage f 5.5kV
Stator current for nominal operating point; 1505 A
Slip at nominal operating point S 0.3%
Rotor speed at nominal operating point| n 29911 rpm
Line frequency f1 50 Hz
Number of stator slots Ns 42
Number of rotor slots NR 36
Number of pole pairs p 1
Number of cords m 3

Table A.2: Squirrel cage induction machine - Eigenfrequesic

Mode O

Mode 1 Mode 2 | Mode 3

Mode 4

Mode 5

17449 Hz

24619 Hz | 3355Hz | 8942 Hz

15927 Hz

23745 Hz

Table A.3: Slip-ring induction machine - Machine Parameter

Nominal Power P 2.2 MW
Stator current for nominal operating point; 22223 A
Slip at nominal operating point S —0.9683%
Rotor speed at nominal operating point| n 10097 rpm
Line frequency f1 50 Hz
Number of stator slots Ns 72
Number of rotor slots Nr 54
Number of pole pairs p 2
Number of cords m 3

Mode 6
32016 Hz
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A.6 Frequencies and spatial ordinal numbers of magnetic fiel
components for squirrel cage induction machine

A.6.1 Rotor slot harmonics

k= p:I:NR k1:37 k2:—35
N
fi = fl(li(l—s)f) fi, = 18446 Hz f, = —17446 Hz
A.6.2 Stress components due to fundamental field
n=p+tk nll=p-+k; =38 nl2=p+ky=-34
n21=p—ky=—-36 n22=p—k, =36
fo=fi+fc  fll=f+ fy, = 18946 Hz f12= f; + fy, = —16946 Hz
f21= fl — fkl =—-17946 Hz f22= fl — sz =17946 Hz
A.7 Material parameters for the structural simulation of th e squirrel

cage induction machine

Table A.4: Material parameters for the laminated stacks

Density P 75257 kg/m°®
Young’s modulus irx-direction | Ey 2-101pPa
Young’s modulus iry-direction | Ey 2-10'1Pa
Young’s modulus ire-direction | E; 25.1019Pa
Shear modulus iry-direction | Gyy 7.7-10"9Pa
Shear modulus igzdirection | Gy, 1.1-10Pa
Shear modulus irzdirection | Gy, 1.1-101%Pa
Poisson ratio vV 0.31
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A.8 Deformations due to electromagnetic force excitation Finite
element simulation results
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(a) Deformation of stator in m (b) Deformation of housing in m

Figure A.2: Real part displacement solution of the harmamalysis for the induction
machine at 1594.6 Hz
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Figure A.3: Real part displacement solution of the harmamalysis for the induction
machine at 1694.6 Hz
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Figure A.4: Real part displacement solution of the harmamielysis for the induction
machine at 1794.6 Hz
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Figure A.5: Real part displacement solution of the harmamielysis for the induction
machine at 1894.6 Hz
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Figure A.6: Real part displacement solution of the harmamielysis for the induction
machine at 1994.6 Hz
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Figure A.7: Real part displacement solution of the harmamalysis for the induction
machine at 2094.6 Hz
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Figure A.8: Real part displacement solution of the harmamialysis for the induction
machine at 2194.6 Hz
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Figure A.9: Sound pressure distribution on the surface @frtduction machine at 1594.6
Hz
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Figure A.10: Sound pressure distribution on the surfacheirtduction machine at 1694.6
Hz
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Figure A.11: Sound pressure distribution on the surfach®iriduction machine at 1794.6
Hz
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Figure A.12: Sound pressure distribution on the surfach®iriduction machine at 1894.6
Hz
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Figure A.13: Sound pressure distribution on the surfacheiriduction machine at 1994.6
Hz
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Figure A.14: Sound pressure distribution on the surfacheirtduction machine at 2094.6
Hz
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Figure A.15: Sound pressure distribution on the surfacheiriduction machine at 2194.6
Hz
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A.10 Noise result on field points
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Figure A.16: Sound pressure distribution at the field pasntsounding the induction ma-
chine at 1594.6 Hz
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Figure A.17: Sound pressure distribution at the field pasntsounding the induction ma-
chine at 1694.6 Hz
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Figure A.18: Sound pressure distribution at the field pantsounding the induction ma-
chine at 1794.6 Hz
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Figure A.19: Sound pressure distribution at the field patsounding the induction ma-
chine at 1894.6 Hz

0,129 77.1
I 0,151 70,3
0,124 I 53,5
00,0865 55,7
00434 =0
00121 43,2
-0,0253 35,3
-0,0626 29,7
0,1 22,9
I -0,137 I 16,1
-0,175 =, 5
(a) Sound pressure in Pa (b) Sound pressure level in dB

Figure A.20: Sound pressure distribution at the field pasntsounding the induction ma-
chine at 1994.6 Hz
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Figure A.21: Sound pressure distribution at the field pasntsounding the induction ma-
chine at 2094.6 Hz
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Figure A.22: Sound pressure distribution at the field pasntsounding the induction ma-
chine at 2194.6 Hz
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