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Kurzfassung 
 
Hochhäuser und setzungsempfindliche Gebäude können im Allgemeinen nicht 
auf Flachgründungen fundiert werden, sodass es einer Tiefgründung bedarf. 
Abhängig vom Bodenaufbau und den dazugehörigen Bodenparametern stellt in 
den meisten Fällen eine Pfahl-, Pfahl-Platten- oder Schlitzwandgründung die 
Lösung dar. Für diese Gründungssysteme ist die Einschätzung der Setzungen und 
differenziellen Verformungen üblicherweise das Kernthema. Um jedoch alle 
gegenseiteigen Beeinflussungen, welche innerhalb einer Tiefgründung auftreten, 
berücksichtigen zu können, ist der Einsatz von numerischen Methoden 
unverzichtbar. Die Finite Elemente Methode, neben anderen numerischen 
Verfahren, ist ein sehr leistungsfähiges Instrument für diese Art der 
Anwendungen. Da eine zweidimensionale Abbildung, der in dieser Arbeit 
untersuchten Problemstellungen, in der Regel nicht möglich ist, liegt das 
Hauptaugenmerk auf dreidimensionale Berechnungen. 
 
Neben dem Standard-Finite Elemente Verfahren, indem Pfähle mit 
Volumenelementen diskretisiert werden und die Pfahl-Boden Interaktion mit 
Interfaceelementen abgebildet wird, wird eine alternative Modellierungsvariante 
für Tiefgründungen - die "Embedded Pile" Option - diskutiert. Der größte Vorteil 
dieses Ansatzes liegt darin, dass der Pfahl in beliebiger Richtung angeordnet 
werden kann und das Finite Elemente Netz nicht beeinflusst, wodurch es 
ermöglicht wird, große Pfahlgruppen zu modellieren. In dieser Arbeit wird eine 
verbesserte Formulierung dieser Modellierungstechnik präsentiert. Die 
wesentlichsten Optimierungen des Ansatzes liegen in der Definition der 
Interfacesteifigkeiten und der Modifikation des sogenannten elastischen 
Bereiches. Eine Vielzahl von Validierungsbeispielen, unter Verwendung 
verschiedener Stoffgesetze, demonstrieren die Einsatzmöglichkeiten und Vorteile 
dieser fortgeschrittenen Modellierungstechnik. 
 
Letztendlich wird die Anwendung des optimierten "Embedded Pile" Konzeptes 
auf Randwertprobleme präsentiert. Unterschiedliche Tiefgründungssysteme 
werden hinsichtlich der maximalen Setzung, differenziellen Verformung und 
Wirtschaftlichkeit verglichen. Weitere Gegenüberstellungen unterschiedlicher 
Modellierungsansätze bekräftigen, dass die "Embedded Pile" Formulierung eine 
leistungsfähige Alternative zur Standard-FE Methode darstellt. Außerdem wird 
der Einfluss der Anfangssteifigkeit im Bereich kleiner Dehnungen auf das 
Setzungsverhalten von Tiefgründungen evaluiert. Die Ergebnisse zeigen, dass, 
sobald die hohe Anfangssteifigkeit bei kleinen Dehnungen berücksichtigt wird, 
der Einfluss der Randbedingungen auf die errechneten Setzungen deutlich 
abnimmt und man ein realistischeres Verformungsverhalten erhält. 
  





Abstract 
 
In general, high-rise buildings and building susceptible to settlements cannot be 
supported by shallow foundations and a deep foundation system is required. 
Depending on the soil profile and the corresponding soil properties, a pile, piled 
raft or diaphragm wall foundation is the solution for most cases. For these types 
of foundation systems assessment of settlements and differential settlements is 
generally the key issue, but to account for all interactions within a group of deep 
foundation elements, advanced numerical modelling is essential. The finite 
element method, amongst other numerical techniques, provides a very powerful 
tool for these applications. But since a 2D representation of the problem is 
generally not possible, the main focus of this thesis is on 3D analyses. 
 
Besides the widely used standard finite element approch, where piles are 
discretized by means of volume elements and the pile-soil interaction is modelled 
with interface elements, an attractive alternative to model deep foundations is 
discussed, namely the embedded pile concept. The substantial benefit of this 
approach is that piles can cross solid finite elements in an arbitrary direction and 
do not influence the finite element mesh, thus it is possible to model large pile 
groups. In this thesis, an improved formulation of this modelling technique is 
presented. The main enhancements are related to changed interface stiffnesses of 
the embedded pile and a modification of the so-called elastic region approach. A 
number of validation examples, using different types of constitutive models, 
demonstrate the capabilities and advantages of this advanced modelling 
technique. 
 
Finally, the application of the improved embedded pile concept to boundary 
value problems is presented. Different foundation concepts are compared 
concerning maximum settlements, differential settlements and economic 
efficiency. Further comparisons of the different modelling approaches clearly 
indicate that the embedded pile formulation is a conceivable alternative to 
volume piles. Additionally, the influence of small strain stiffness on the obtained 
settlement behaviour of deep foundations is studied extensively. The results 
demonstrate that once a model including small strain stiffness is used, the effect 
of the model boundary conditions on the computed displacement is diminished 
and a more realistic settlement behaviour can be obtained. 
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List of symbols 
 
The symbols used in this thesis are listed in alphabetical order. Additional 
explanation is provided in the text at first appearance. Units and abbreviations are 
not included in this list.  
 
Small letters 
 
b width of structure  
c cohesion  
c' effective cohesion  
cu undrained shear strength  
c'i effective cohesion of an interface 
d diameter of the embedded pile 
dco dilatancy cut-off 
dGB diameter of the grout body 
dq depth factor according to Hanson (1970) 
dv virtual diameter of the grout body 
d50 average grain size 
e void ratio 
einit initial void ratio 
emax maximum void ratio 
emin minimum void ratio 
eP spacing between piles 
f yield function 
f c volumetric part of yield function 
fGB enlargement factor for ground anchor facility 

fsu  ultimate shaft resistance  
h   slenderness ratio of a pile 
hO-Cell height of O-Cell jacking device 
l length of structure 
lpl length of plasticity along the pile shaft 
m power index, controlling stress dependency of stiffness 
p' mean effective stress 
p'eq equivalent stress on isotropic normal compression line 
p'hist highest mean effective stress 
p'initial initial mean effective stress 
p'p effective pre-consolidation stress 
pbu ultimate stress at the pile base 



plim. limiting stress at the pile base 
pref reference stress 
pw pore water pressure 
q Roscoe deviatoric stress invariant  
q' surcharge pressure 

q~  measure for deviatoric stress 
qa asymptotic value of shear strength 
qf ultimate deviatoric stress 
qr constant distributed load 
s; t axis of MIT representations of stress paths 
sE settlement of a single pile 
sG settlement of a pile group 
sq shape factor according to Hanson (1970) 
t thickness 
ti virtual interface thickness 
tskin skin traction 
tr raft thickness 
ts embedded pile shear stress in axial direction 
ts,max maximum shear stress in axial direction 
tn, tt normal stresses at an embedded pile 
tan  inclination of settlement trough 
u displacements within a solid soil element 
un vector of nodal displacements 
up pile displacements  
urel relative displacement vector 
urel relative displacement of the embedded beam and the virtual soil 

node 
us soil displacements 
up

n nodal displacement vectors of the embedded beam element 
us

n nodal displacement vector of the soil 
up embedded beam node displacement vector 
up

  displacement of embedded beam element node 
us virtual soil node displacement vector 
us displacement of virtual soil node 
uy vertical displacements 
up,el elastic pile deflection 
vg, ug global coordinates 
vloc, uloc local coordinates 
x, y, z Cartesian coordinates 



Capital letters 
 
A embedded pile cross section area 
Ak, Bk bearing capacity factors according to Berezantzev (1961) 
Am model dimensions  
Ap cross sectional area of a pile 
Ap,B cross sectional area at pile base  
B strain-displacement matrix 
BEM boundary element method 
Bm model width 
Br raft width 
CSP measure for amount of plasticity 
D pile diameter 
D elastic constitutive matrix 
Di constitutive matrix of an interface 
Dm model depth 
DoF degrees of freedom 
E Young's modulus 
E   stiffness ratio between pile and surrounding soil according to 

Rajapakse (1990) 
E50 deviatoric hardening modulus in Hardening Soil model at actual 

stress 
E50,ref deviatoric hardening modulus in Hardening Soil model at reference 

pressure 
E0 isotropic Young's modulus at very small strains 
EA axial stiffness 
Eel.R stiffness inside the elastic region  
Ei initial stiffness in a drained triaxial test 
EI flexural rigidity 
Eoed actual stiffness for primary oedometer loading 
Eoed,i actual stiffness for primary oedometer loading of an interface 
Eoed,ref reference stiffness for primary oedometer loading 
Ep Young's modulus of the pile 
Er Young's modulus of the raft 

Esoil Young's modulus of the soil 

Eu undrained stiffness modulus 
Eur stiffness for un- and reloading at actual stress 
Eur,ref stiffness for un- and reloading at reference stress 
EA axial stiffness 
EI bending stiffness 



EP embedded pile 
ESavg average element size 
Ffoot base resistance of an embedded pile 
Fmax maximum base resistance of an embedded pile 
Fmax,GA maximum force of the anchor rod 
FE finite element 
FEA finite element analysis 
FEM finite element method 
G shear modulus 
Gs group efficiency factor 
Gel

av the average shear stiffness of soil element 
Gel.R,B stiffness inside the elastic region above and below an embedded 

pile 
Gel.R,S stiffness inside the elastic region above along an embedded pile 
Gi shear modulus of an interface 
GL shear modulus of the soil at the level of the pile base 
G0 initial isotropic shear modulus at small strains 
G0,ref initial isotropic shear modulus at small strains at reference pressure 
Gs secant shear modulus 
Gt tangent shear modulus 
Gur un- and reloading shear modulus 
Gur,ref un- and reloading shear modulus at reference pressure 
HS Hardening Soil model 
HSS Hardening Soil Small model 
I2, I3 moments of inertia 
ID relative density 
Irr reduced rigidity Index according to Vesic (1972) 
J Jacobean matrix 
K coefficient of lateral earth pressure 
K   relative stiffness between pile and soil 
K'  drained elastic bulk modulus 
K0 lateral earth pressure coefficient at rest 
K0

nc
 lateral earth pressure coefficient at rest for normally consolidated 

conditions 
Kep global stiffness response of an axially loaded embedded pile 
Ke element stiffness matrix 
Kfoot embedded pile spring stiffness at the pile base 
Ks elastic shear interface stiffness  
Kn, Kt elastic normal interface stiffnesses  
Kv axial stiffness 



L pile length 
Ltot total anchor length 
LGB grout body length 

Lm model length 
Lr raft length 
M matrix according to van Langen (1991( 
M bending moment 
MC Mohr-Coulomb model 
LSC load-settlement curve 
Nelfixed fixed number of elements related to global mesh coarseness settings 
Nc, Nq, N bearing capacity factors 
Nc

*, Nq
* bearing capacity factors according to Vesic (1975) 

N matrix of interpolation functions  
Np matrix of interpolation functions of the embedded beam element 
Ns  matrix of interpolation functions of the soil 
OCR over-consolidation ratio 
P0 applied load 
POP pre-overburden pressure 
PRF piled raft foundation 

)(zP  resultant axial load in pile cross-section 
R pile resistance 
RA ratio Ap to area bounded by outer circumference of a pile 
Rb base resistance of a single pile 
Rbu ultimate base resistance of a single pile 
Req equivalent embedded pile radius 
Rinter interface reduction factor 
RPile load carried by piles 
Rs shaft resistance of a single pile 
Rsu ultimate shaft resistance of a single pile 
Rtot total load  
Rult ultimate load capacity of a single pile 
T transfer matrix 
Tskin material stiffness matrix of the embedded interface elements 
Ttop,max maximum skin friction at the top of the embedded pile 
Tbot,max maximum skin friction at the bottom of the embedded pile 

)(zT   contact traction in vertical direction 
Ux, Uy, Uz translational degrees of freedom 
VP volume pile  
W pile weight 



Small Greek letters 
 
  adhesion factor 
PR piled raft coefficient 
b depth ratio according to Berezantzev (1961) 
c model parameter defining the shape of the cap yield function 
 quantity Ktan ' in the -method 
 rotation angle 
 ' effective soil-structure friction angle 
 nodal displacement vector 
h radial displacement due to dilation 
v Virtual interface thickness factor 
  bulk unit weight 
0.7 reference shear strain in Hardening Soil Small model 
p plastic shear strain  
s shear strain
cut-off cut-off shear strains  
sat bulk unit weight of soil below ground water table 
unsat bulk unit weight of soil above ground water table 
1, 2 3 major, intermediate and minor principal strain 
v volumetric strain 
v

init initial volumetric strain 
v

p plastic volumetric strain 
 incremental strain 
 Lode's angle 
 nondimensional coefficient for the -method 
 Poisson's ratio 
' drained Poisson's ratio at large strains 
 Poisson's ratio of an interface 
'ur Poisson's ration for un- and reloading 
 intrinsic coordinates  
  degree of non-homogeneity of the soil 
'1, '2 '3 major, intermediate and minor effective principal stress 
'm centre of Mohr circle 
'n effective normal stress 
n normal stress 
n

avg average normal stress  
'p highest vertical stress reached  
'r0 initial effective radial stress  
'r increase of effective radial stress 



'rp increase of effective radial stress due to principal stress rotation 
'rd increase of effective radial stress due to interface slip dilation 
't  effective stress of the surrounding soil perpendicular to an EP  
'v vertical effective stress 
'yy, 'xx Cartesian effective stresses 
'zz,'xy Cartesian effective stresses 
'yy

0 in-situ effective vertical stress 
 incremental stress 
 shear stress 
f shear stress at failure 
xy, yz xz global shear stresses 
 friction angle 
' effective friction angle 
'cs effective friction angle at critical state 
'i effective friction angle of an interface 
'm mobilized friction angle 
 ultimate dilatancy angle 
 ultimate dilatancy angle of an interface 
m mobilized dilatancy angle 
 angle of plastification according to Janbu (1976) 
 

Capital Greek letters 
 
el.R correction factor for stiffness inside the elastic region  
foot multiplier for the foot embedded interface stiffness 
G,B multiplier for the elastic region approach above and below an EP 
G,S multiplier for the elastic region approach along an embedded pile 
n multiplier for the normal and tangential embedded interface 

stiffness 
s multiplier for the axial embedded interface stiffness 
 difference 
s  direct input value for axial embedded interface stiffness 
n direct input value for normal and tangential embedded interface 

stiffness 
 compensation factor for cap-plasticity 
Rpile sum of loads carried by piles 
x, y, z translational degrees of freedom 
 
 
 





1 Introduction 1 
 

1 Introduction 

1.1 Motivation 
 
The development of numerical methods and the increase of their application to a 
wide range of geotechnical boundary value problems led to the reality that 
nowadays, numerical geotechnics take an important position within the daily 
geotechnical business. But the potential of these methods is closely linked to the 
modelling technique - which generally involves a number of assumptions - and 
the constitutive models applied. Both require a profound knowledge of soil 
mechanics, awareness of limitations of the constitutive models and last but not 
least experience. The latter comprises on the one hand in-depth understanding of 
numerical modelling, and on the other, know-how from a practical point of view. 
A number of different numerical techniques have been developed in the last 30 
years, however the finite element method plays an important role in 
computational geotechnics these days.  
 
In this thesis the behaviour of deep foundations is studied by means of the finite 
element method. The influence of constitutive models on the behaviour of single 
piles, pile groups and piled raft foundations is investigated. 
 
It is well known that almost all boundary value problems in geotechnical 
engineering are of three-dimensional nature. Nevertheless, when using analytical 
methods, the problems are generally reduced to two-dimensional geometries. 
Also, when utilizing numerical methods it is common practise to define either 
plane strain or axisymmetric 2D models instead of full three-dimensional 
analysis. When dealing with deep foundations, such a simplification is due to 
geometrical restrictions usually not possible; therefore a full three-dimensional 
representation of the entire geometry is required. Hence, this thesis focuses 
mainly on 3D finite element analyses.  
 
In the standard finite element approach, deep foundation elements are discretized 
by means of volume elements and the pile-soil interaction is modelled with 
interface elements. But if a large number of piles, columns or barrettes have to be 
constructed the computational models, using the standard FE approach, get very 
expensive, leading to very large models and thus long calculation times. 
Additionally, the number of piles is limited because of soft- and hardware 
restrictions. As a consequence this approach is not very popular in practical 
engineering. 
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An attractive method to reduce the complexity of such models is the utilization of 
a so-called embedded pile formulation (Sadek & Shahrour 2004) where piles are 
not explicitly modelled with continuum finite elements but replaced by a special 
“formulation” which can take into account the behaviour of a pile penetrating a 
finite element in any orientation. The main part of this work deals with this 
alternative method of modelling deep foundation elements, which also enables 
the study of large pile groups or piled raft foundations, since a discretization of 
piles is not necessary. 
 

1.2 Scope and outline of thesis 
 
The thesis starts with a brief overview of single pile behaviour, where the main 
focus is related to the estimation of the ultimate base and ultimate shaft resistance 
of an axially-loaded pile. Additionally, different methods of calculating single 
pile settlements are discussed. In the following, the influence of the pile group 
effect is discussed and some special constraints related to piled raft foundations 
are presented. 
 
Chapter 3 gives a short introduction to numerical modelling of deep foundations 
by means of FEM, followed by an extensive literature review. It must be pointed 
out that the literature review only contains numerical studies of deep foundations 
performed with the finite element method. The author is aware that other 
powerful numerical methods also exist, however related references are given in 
the particular chapters. Chapter 3 also includes an overview of some basic terms 
and aspects of FEM for deep foundation analysis. The behaviour of interface 
elements and some special issues linked to deep foundations are emphasised. 
Then, the standard finite element approach is discussed in detail. The effect of 
mesh discretization and the influence of dilatancy are highlighted.  
 
The embedded pile concept is described in full detail in chapter 4. The 
geometrical definition of such an element is discussed first followed by the 
constitutive relations of an embedded pile. Special attention is addressed to the 
definition of the embedded pile interface stiffnesses and the so-called elastic 
region approach. 
 
Chapter 5 demonstrates at the beginning some deficiencies of the original 
embedded pile concept as currently implemented in PLAXIS 3DF. The influence 
of the embedded foot interface stiffness on the settlement behaviour is presented, 
followed by similar studies concerning the skin interface stiffness. The necessity 
of stress dependent interface stiffness is illustrated in detail as well. Next, the 
explanation for the influence of the vertical mesh coarseness is given. After that 
the elastic region approach is studied in detail investigating the stress flow inside 
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the created virtual volume and then a new definition of the stiffness inside the 
elastic region is proposed. Finally, the effect of the ultimate skin friction 
distribution on the behaviour of embedded piles is discussed and an improved 
embedded pile formulation is presented. 
 
Chapter 6 contains the validation of the improved embedded pile concept. First, 
axially-loaded single piles embedded in linear elastic soil are analysed and 
compared with results presented in the literature. Then elasto-plastic soil 
behaviour is used and the behaviour of the embedded piles is compared with 
measurements and results obtained with other modelling techniques. Horizontally 
loaded piles are then investigated. Subsequently the performance of vertically 
loaded pile groups and piled raft foundations is studied, again first assuming 
linear elastic soil conditions and finally using more advanced constitutive 
models. At the end of chapter 6, the behaviour of horizontally-loaded pile groups 
computed with the embedded pile formulation is compared with the pile group 
response obtained with other programs. 
 
The application to boundary value problems is provided in chapter 7. The first 
project discussed is the DC Towers in Vienna. Due to the small distance between 
the two towers, it is necessary to model both towers. A comparison of the 
executed foundation concept with an alternative foundation system, namely a 
piled raft foundation is discussed. The second boundary value problem is the Sky 
Tower in Bucharest, the most impressive part of the Floreasca City Centre. The 
optimisation of the deep foundation concept concerning a reduction of 
differential settlements in combination with an economical design will be 
presented. Also given are a parametric study and a validation of the numerical 
model, namely a back-analysis of a barrette load test. Then, another application 
of the embedded pile concept is highlighted: the ground anchor facility, where 
the grout body of an anchor is modelled by means of embedded piles. Obtained 
axial forces are compared with results published in the literature. Finally, the 
project "Wien Mitte", a large and - concerning the constructional constraints - 
complex railway station is discussed. The building is founded on jet grouted 
columns, which are modelled with embedded piles. To show the capability of the 
concept, preliminary studies are presented first. After that the settlement 
prediction of the entire construction is shown. 
 
Conclusions and some recommendations for further research are given in chapter 
8. References are provided in chapter 9. 
 
Details related to the constitutive models used are presented in Appendix A. In 
Appendix B the basic theory of an isoparametric interface element is illustrated 
and in Appendix C the displacement approximation within a solid 15 noded 
wedge element is discussed. 
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2 Deep foundations - An overview 

2.1 Introduction 
 
In this chapter an overview of the behaviour of single piles, pile groups and piled 
raft foundations is presented. For these types of deep foundation systems, 
assessment of settlements and in particular differential settlements are, most of 
the time, key issues. However, usual “static” approaches to calculate the ultimate 
capacity of piles are also discussed, where the behaviour of a pile is related to 
measured soil properties. This aims to show firstly that a number of different 
empirical and theoretical approaches exist, but secondly, and mainly, that these 
correlations can be used to define the input values for the embedded pile concept 
discussed below. “Dynamic” approaches, which use pile-driving data to estimate 
the load capacity of driven piles, are not presented. Also, the use of in-situ tests 
(e.g. CPT or SPT test) to predict the ultimate resistance of piles is not discussed 
in the following chapters. 
 

2.2 Behaviour of vertically-loaded single piles 

2.2.1 Ultimate load capacity 
 
The ultimate load capacity Rult of a single pile consists of two components, the 
ultimate shaft resistance Rsu and the ultimate base resistance Rbu. The sum of 
these two components less the weight of the pile (W) results in the ultimate load 
capacity Rult.  
 

WRRR busuult   (1) 

 
Rsu and Rbu are strictly speaking interdependent, but for all approaches presented 
in this chapter they are considered independent of each other. E.g. Yang (2006) 
showed that the influence zone above the pile tip has, depending on the soil type, 
a length up to 2.5 times the pile diameter D. Of course when dealing with finite 
element analyses the interaction of tip and shaft resistance is automatically taken 
into account.  
 
For drained conditions, Rsu can be calculated by integrating the pile-soil shear 
strength over the pile shaft surface.  
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 dzKcDR
L

vsu  
0

´tan´´   (2) 

 
L is the pile length, c' the effective cohesion, K the coefficient of lateral earth 
pressure, 'v the effective vertical stress and  ' the effective soil-structure friction 
angle. According to Poulos & Davis (1980), it is usually accepted that the 
ultimate base resistance for drained conditions can be evaluated using the 
classical bearing-capacity theory (Terzaghi 1943). 

 
)5.0´´(,  NDNqNcAR qcBpbu   (3) 

 
Ap,B is the pile cross sectional area at the base, q' is the magnitude of surcharge 
pressure at the surface,  is the bulk unit weight of the soil and Nc, Nq, N are 
bearing capacity factors. Prandtl (1920) derived with analytical stress field 
solutions expressions for Nc and Nq. N is found from an approximate calculation. 
Fig. 1 shows a schematic overview of the loads and resistances acting on a pile, 
where Rb and Rs represent the actual base and actual shaft resistance respectively. 
Both the base resistance and the shaft resistance of a single pile develop as a 
function of pile displacements, but in general Rsu and Rbu are not mobilized at the 
same displacement. Fig. 1 also represents the distribution of normal force along a 
pile.  
 

 
 
Fig. 1 Schematic overview of loads and resistances acting on a single pile 

(left), normal force distribution along a single pile (right) 
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Small loads result in small relative displacements between pile and soil and most 
of the load is supported by shaft resistance Rs. Once the ultimate shaft resistance 
is mobilized further, load is transferred to the pile base and the base resistance 
gets mobilized. In general, Rsu is mobilized at relatively small vertical pile 
displacements, while large settlements are necessary to mobilize Rbu. Kulhawy 
(1984) states that about 5-10 mm of vertical pile displacements are enough to 
reach the full shaft resistance and settlements of about 10% of the pile diameter 
are required to mobilize most of the base resistance. Körber (2009) showed that 
the application of lift cells enables a higher mobilization of base resistance at 
small vertical pile displacements.  
 
Depending on the behaviour of the pile two different cases can be distinguished: 
an end-bearing pile, where most of the load is carried by the base resistance Rb, 
and a skin friction pile, where the majority of the load is transferred via the pile 
shaft to the soil. If the sum of the pile resistances are plotted over the vertical 
displacements of the pile one obtains the load-settlement curve (LSC). Fig. 2 
shows the load-settlement curves for a skin friction and an end-bearing pile. With 
these curves it is possible to work out the actual resistances Rb, Rs and total pile 
resistance R for a certain amount of vertical pile displacements.  
 

 
 
Fig. 2 Load-settlement curve for skin friction pile (left) and end-bearing pile 

(right), (after Kempfert et al. 2003) 
 
The shape of the LSC depends on the pile installation, soil stiffness, soil strength 
and pile type. Rollberg (1978) presented different load-settlement curves found 
in the literature (Fig. 3). 
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Fig. 3 Influence of installation method (left), soil strength (middle) and load 

transfer (right) on load-settlement curves (after Rollberg 1978) 
 

2.2.1.1 Estimation of ultimate base resistance 
 
A brief summary of different methods for determining the ultimate base 
resistance available in the literature is given in the following.  
 
Meyerhof (1976) suggested that the maximum stress at the pile base pbu can be 
estimated as: 
 

.lim´´ pNNcp qvcbu    (4) 

 

plim. is a limiting value of pbu related to a critical depth of pile penetration into the 
bearing layer. Meyerhof (1976) provided a diagram with graphs for the bearing 
capacity factors Nc and Nq.  
 
Vesic (1975) defined the bearing capacity of deep foundations based on the 
cavity expansion theory.  
 

** ´´ qvcbu NNcp    (5) 
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´cot)1( **  qc NN  (8) 

 
Nc

* and Nq
* are the bearing capacity factors, which are related to the reduced 

rigidity index Irr as presented by Vesic (1972). Vesic (1975) provided tables for 
Nc

* and Nq
*. 

 
Hansen (1970) modified the classical approach of Prandtl (1920) and introduced 
a depth factor dq and a shape factor sq.  
 

qqqvbu sdNp  ´  (9) 

 

  kdq  2´sin1´tan21   (10) 

 

D

L
k    for L/D ≤ 1 (11) 

 









D

L
k tanarc  for L/D ≥ 1 (12) 

 

l

b
sq  ´sin1   (13) 

 
b and l are the width and the length of the deep foundation element; when dealing 
with piles, the ratio of b/l reduces to 1. For deep foundations, the L/D ratio is 
always bigger than 1; therefore Equation 12 in combination with Equation 10 is 
used for the calculation of dq. 
 
Janbu (1976) presented a theoretical approach where the bearing capacity factor 
Nq is related to an angle of plastification . Janbu (1976) states that  is in the 
range of about 60° for compressible to 105° for very dense soil types.  
 

´tan2
2

2 ´tan1´tan  




  eNq  (14) 

 
 
 



2 Deep foundations – An overview 9 
 

Berezantzev et al. (1961) presented results of theoretical and experimental 
investigations on the ultimate load capacity of vertically-loaded single piles in 
dense sand and reduced the bearing capacity factor Nq with increasing 
penetration depth L.  
 

LBDAp Bkkbu    (15) 

 
B is a function of the depth ratio L/B and the effective soil friction angle, Ak and 
Bk are the bearing capacity factors. Berezantzev et al. (1961) provided tables for 
the factors B, Ak and Bk. Cheng (2004) presented slightly corrected values of Nq. 
Fleming et al. (2009) suggested that Berenzantev's approach should be used 
following Bolton (1986), where ' is related to the relative density of the soil and 
corrected with the mean soil stress p' and the critical state friction angle 'cs. 
 

2.2.1.2 Estimation of ultimate shaft resistance 
 
A number of different approaches also exist concerning the ultimate skin 
resistance of axially-loaded piles. This chapter provides an overview of 
frequently used methods.  
 
The so-called -method introduced by Tomlinson (1957) relates the ultimate 
shaft resistance fsu of piles in clay to the undrained shear strength cu, where  is 
the so-called adhesion factor. 
 

usu cf   (16) 

 
It was found that  is not constant but reduces with increasing undrained shear 
strength. A comparison of values for the adhesion factors recommended by 
various workers can be found in Sladen (1992). Sladen (1992) showed that  can 
be expected to be a function of the effective stress level and the undrained shear 
strength (Equation 17). 
 

45.0
'

5.0 









u

v

c


  (17) 

 
Burland (1973) suggested that the ultimate shaft resistance should be estimated in 
terms of effective stresses. This approach is well-known in the literature as -
method, due to the fact that the quantity tan 'K is denoted as , a similar factor 
to  except that  is related to effective stress parameters ' and K. 
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vvsu Kf ´´tan´    (18) 

 
The stress state in the soil is of course influenced by the pile installation, hence 
the horizontal earth pressure coefficient K is different for different installation 
methods. Ratios between K and K0

nc
 (normally consolidated earth pressure 

coefficient) are summarized in Kulhawy (1984). They range from 0.5 for jetted 
piles to 2.0 for driven piles with large displacements. From Equation 18 it 
follows that, with the assumption that the ratio K/K0

nc = 1, the final distribution 
of shear stress at failure is very similar for a soil with high and a soil with low 
frictional strength. However, not only does the pile type (and thus the installation 
method) influence the bearing capacity, but also the construction technique of a 
drilled shaft, as reported e.g. by Brown (2002).  
 
Based on a large number of pile load tests, Vijayvergiya & Focht (1972) 
presented a semi-empirical approach for the prediction of the skin friction 
capacity of piles in clayey soils. This approach is mostly denoted as -method, 
the non-dimensional factor  being obtained from back-analysis of observed 
capacities of pile load tests. The value of  strongly depends on the pile length.  
 

)2'( uvsu cf    (19) 

 
Lehane et al. (1993) proposed an approach based on instrumented pile tests to 
estimate the ultimate skin resistance of sands that takes into account the increase 
of radial effective stress due to loading. Starting from an effective radial stress 
'r0 (related to the installation process and the soil type), the radial stress 
increases because of principal stress rotation and interface slip dilation by the 
quantity 'r until the ultimate shear stress is mobilized. According to Lehane et 
al. (1993), 'r related to the rotation of principal stresses ('rp) is relatively 
small for compression loading, and the increase due to dilation ('rd) can be 
assessed from a boundary displacement h applied to an elastic soil mass (with a 
shear modulus G). 
 

'tan)''( 0   rrsuf  (20) 

 

D

G
hrd   4'  (21) 

 
When estimating the skin friction for piles loaded in tension, the change of radial 
effective stresses should also be taken into account. Fleming et al. (2009) stated 
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that the change in skin friction due to loading in tension instead of compression 
is in the order of 15 - 30%.  
 
A comparison of a wide range of approaches to estimate the point and skin 
resistance of a single pile is given in Burgstaller (2010), including a number of 
correlations of CPT and SPT results with pile bearing capacities. 
 
For both point bearing capacity and skin resistance, some approaches use a so-
called critical depth, at which the resistance stays practically constant. Many 
authors argued that this limiting end-bearing stress and limiting side resistance is 
not a real phenomenon, but can be explained by a combination of other effects. 
Bolton (1986) showed that the dilatancy is suppressed under high confining 
stresses. Kulhawy (1984) demonstrated that tip and side resistance of deep 
foundations do not reach a limiting value. He outlined a rational explanation that 
the rate of increase for the tip resistance decreases with depth due to a reduction 
of the rigidity index. And the decrease of the shaft resistance with depth is related 
to the decreasing friction angle with overburden, and the variation of the 
coefficient of horizontal soil stress with depth. Fellenius & Altae (1995), Altae et 
al. (1993) and Fellenius (2001) argued that neglecting the presence of residual 
stresses is one reason for the fallacy of a critical depth. Also, Kraft (1991) gave 
several reasons for the misleading assumption of limiting values for unit shaft 
and toe resistance. Randolph (2003) showed that strain softening behaviour of 
the soil could also lead to a significant reduction of shear capacity, due to the 
reduction of the soil-structure friction angle ' to its residual value. 
 

2.2.2 Pile settlements  
 
In general, settlements of a single pile are a combination of displacements due to 
the tip load and deformations caused by skin friction plus the elastic shortening 
of the pile. Of course, if soil conditions are undrained, pile deformations are 
furthermore a combination of immediate and consolidation settlements. Poulos & 
Davis (1980) classified the calculation methods to predict pile displacements into 
three categories: "load-transfer" methods, methods based on the theory of 
elasticity and numerical methods. Group 1 uses measured relationships between 
pile resistance and pile settlements, while group 2 obtains the soil displacements 
using Mindlin's equations in most cases. In the following an overview of 
customarily-used methods is given. 
 
A widely-used approach is the one by Poulos & Davis (1980) or Poulos (2001a). 
They provided charts based on numerical analyses that take a number of 
parameters into account like pile and soil stiffness. A rather simple method of 
predicting settlements of single vertically-loaded piles was presented by Cassan 
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(1966), who used hyperbolic functions to describe the skin friction, the vertical 
stress in the pile and the resulting settlements. Vesic (1977) proposed a semi-
empirical method for calculating the settlements of a single pile, whereas 
Randolph & Wroth (1978) presented an approximate closed form solution for the 
settlement prediction of single piles. The method developed by Randolph & 
Wroth (1978) can deal with pile compressibility and soil inhomogeneity as well. 
The analysis is based on the idea that the load transferred from the pile shaft to 
the soil and the pile tip load are initially examined separately, and for the 
settlements of the entire pile, both effects are combined. A detailed description of 
the approach including some further developments is given in Fleming et al. 
(2009). In the literature one can find a number of other approximate methods for 
settlement predications based on the approach of Randolph & Wroth (1978). 
Most of the time, they differ in the assumptions concerning the distribution of 
stiffness with depth. Fleming (1992) presented another method to predict the 
settlements of axially-loaded piles where he proposed to use hyperbolic functions 
to describe the base and shaft resistance individually.  
 
In the author's opinion, all methods mentioned above are limited to the conditions 
assumed in their derivation. Thus, they are to be handled with care if they are 
applied to different circumstances. The finite element method provides a general 
tool that can be used with different constitutive models to account for varying 
boundary conditions, however it has to be clear that the behaviour of a pile is 
primarily dominated by the strength and the stiffness of the surrounding soil. And 
as stated by Poulos (1989), another advantage is that FEM offers the possibility 
to model the history of the pile, like installation processes or loading sequences, 
which, in combination with non-linear soil behaviour, results in a better 
understanding of pile behaviour. 
 

2.3 Behaviour of vertically-loaded pile groups 
 
Rarely do pile foundations consist of one single pile, but of a group of piles, 
therefore the behaviour of pile groups is briefly outlined in this chapter. Both the 
bearing capacity and the global stiffness response of a pile group differ in general 
from the behaviour of single piles. The main effects which influence the 
behaviour of pile groups are, according to Rudolf (2005): the stiffness of the raft 
and/or the superstructure, the pile type, the installation procedure, the size of the 
pile group, the ratio of pile spacing to pile length and the soil type. The 
settlements of a pile group in working load conditions are in general bigger than 
the vertical displacements of a single pile with equivalent load (Fig. 4). The 
group effect is related to increased settlements of a pile, if this pile is affected by 
the displacement field of a neighbouring pile (Randolph & Wroth 1979). At high 
load levels, pile groups show in general a stiffer response than single piles, which 
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comes from the fact that the stress state in the soil increases. But as stated by 
Kempfert et al. (2003), pile groups in the allowable load range experience 
generally higher displacements than single piles. Within a pile group, the 
behaviours of the individual piles also differ significantly. Fig. 4 illustrates the 
load-settlement behaviour of the centre, edge and corner pile of a 9-pile group. 
The load carried by the piles varies depending on the stiffness of the 
superstructure. If the raft and/or the superstructure is relatively stiff, more load is 
initially transferred to the corner piles. If the stiffness of the raft is low, the load 
distribution within a pile group strongly depends on the pattern of the applied 
load.  
 

 
 
Fig. 4 Single pile vs pile group (left); load-settlement behaviour of 

individual piles within a pile group (right) 
 
A typical quantity to describe the group effect is the group efficiency factor Gs, 
which is defined as the ratio of the average group settlement (sG) divided by the 
settlement of a single pile (sE) at the same load level.  
 

E

G
s s

s
G   (22) 

 
To evaluate the load-settlement behaviour of pile groups, a number of 
approaches are available in the literature. There are empirical methods as 
presented by Skempton (1953) or Hettler (1986) and other approaches that use 
equivalent piers or equivalent rafts (e.g. Randolph 1994). The size and the 
position of the equivalent raft depend on the load transfer mechanism of the pile 
(end-bearing or friction pile), while the equivalent pier needs an equivalent 
diameter and homogenized stiffness. Analytical methods to calculate settlements 
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of pile groups can be divided into a group that does not take pile-pile interaction 
into account and another group that accounts for pile interactions by means of 
interaction factors. Detailed information related to the first group is given in 
Rudolf (2005) and an overview of the possibilities of the latter group is presented 
by Poulos (2006).  
 
All approaches mentioned have deficiencies either to the geometrical definition 
of the pile group or to a realistic representation of the soil. In the author's 
opinion, pile groups are a typical example of boundary value problems where 
numerical analyses - and especially 3D modelling - are essential. Various authors 
showed the potential of different numerical methods; e.g. El-Mossallamy (1996), 
who used a coupled finite element and boundary element method; Comodromos 
& Bareka (2009), who conducted the finite difference method to analyse axially-
loaded pile groups; or Chow (2007), who applied a combination of finite layer 
and FE technique to study pile group effects. Of course, the finite element 
technique is also increasingly utilised to calculate the performance of such 
foundations. A detailed literature review, indicating the capabilities of the finite 
element method, is given in chapter 3.2. 
 

2.4 Behaviour of vertically-loaded piled raft 
foundations 

 
In contrast to conventional pile foundations in which the piles are designed to 
carry the entire load, the design of piled raft foundations allows sharing of the 
load between the raft and the piles. This separation of the load has a significant 
effect on the load-settlement behaviour of such foundations, the mobilization of 
skin friction and also the distribution of the shaft resistance along a pile. 
Compared with a pile group where a pile-pile and pile-soil interaction exists, a 
piled raft foundation (PRF) involves two additional interactions, namely a raft-
soil and raft-pile interaction. Fig. 5 shows schematically the concept of a piled 
raft foundation. The overall aim of a PRF is, in general, a reduction of vertical 
and differential settlements in combination with an economic design. Burland et 
al. (1977) coined in that context the term "settlement reducing piles".  
 
The load carrying behaviour of a PRF is generally represented with the PR 
factor, which is the ratio of the sum of the load carried by the piles (Rpile) and 
the applied total load (Rtot). Hanisch et al. (2002) reported that executed PRFs 
were generally designed with PR factors between 0.3 and 0.8. Of course PR is 
not a constant value, but depends strongly on the load level. 
 

tot

Pile
PR R

R
  (23) 
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Fig. 5 Soil-structure interactions for piled raft foundations (after Hanisch et 

al. 2002)  
 
Due to the raft soil interaction, the global stiffness response of a piled raft 
foundation is in general stiffer than a pile group with the same number of piles. 
Fig. 7 compares the load-settlement behaviour of a single pile with an equivalent 
load with LSCs of two piled raft foundations with different pile spacings (ep). 
Additionally, the load distribution between the individual piles and the raft is 
illustrated. This shows clearly the complex interactions of a piled raft foundation. 
Both the load distribution between the piles and the load carried by the raft vary 
significantly with increasing settlements.  
 

 
 
Fig. 6 Single pile vs PRF (left); variation of normalized load with 

normalized settlement (right) 
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To assess the behaviour of piled raft foundations various methods ranging from 
empirical and analytical to numerical are available. An overview of different 
approaches is given in Rudolf (2005), Hanisch et al. (2002) and Poulos (2001b). 
 
But because the relative proportion of load carried by piles and raft is the key 
point of interest regarding an economic design, it is necessary to take all the 
above-mentioned interactions into account. Additionally, the soil behaviour must 
be represented as realistically as possible to ensure that the different load 
carrying mechanisms, which depend on both strength and stiffness of the 
surrounding soil, can be represented by the calculation model. Thus, simplified 
or analytical methods are perhaps useful for preliminary design and rough 
settlement predictions, but for the design and frequently required optimisation of 
the final foundation concept (for example Reul 2010 or Schreib et al. 2010), 
numerical methods are, in the author's opinion, absolutely essential. 
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3 Numerical modelling of deep 
foundations by means of FEM 

3.1 Introduction 
 
Within the last decades, numerical modelling has been established as a widely 
used tool for deep foundation analyses. The finite element method, amongst other 
numerical methods, is a very powerful tool that takes into account all different 
interactions of complex structures existing within deep foundations. In today's 
engineering praxis, no high-rise buildings founded on piles or barrettes are 
designed without, at least, the support of numerical analysis. One reason is that in 
the last three decades the rapid development of computer technologies enabled 
the switch from rather simple 2D computational models to complex 3D analyses.  
 
However, numerical modelling needs a profound knowledge of soil mechanics, 
the behaviour of constitutive models and the numerical method used. This 
requirement of background knowledge in combination with practical experience 
is essential for complex numerical modelling. An overview of numerical 
modelling in geomechanics is given in Schweiger (1994). As mentioned in 
chapter 1, this thesis deals only with the finite element method, but naturally 
other numerical methods are also used in the field of deep foundation analysis. 
The theory of the finite element method (FEM) has been presented in a number 
of textbooks; detailed descriptions are given for example in Beer & Watson 
(1992), Zienkiewicz & Taylor (1991) or Bathe (1982).  
 
The first part of this chapter gives a general literature review of numerical 
modelling of deep foundations by means of FEM. Some basic aspects of the 
finite element method as used in this thesis for modelling deep foundations are 
discussed. Interface elements, which are important to model soil-structure 
interactions, are also presented, as well as the standard finite element approach. 
The influence of mesh discretization is studied and the effect of soil dilatancy is 
investigated. Finally, the current limitations of this widely used approach are 
stressed.  
 
All results discussed in this work are related to finite element codes of PLAXIS. 
The 2D studies were performed with the versions PLAXIS 2D Version 8 
(Brinkgreve et al. 2006), PLAXIS 2D Version 9 (Brinkgreve & Broere 2008), 
PLAXIS 2D 2010 (Brinkgreve et al. 2010) and PLAXIS 2D 2011 (Brinkgreve et 
al. 2011). For most of the three dimensional studies, PLAXIS 3D Foundation 
(3DF) Version 2 (Brinkgreve & Swolfs 2007) was used. However some analyses 
were also performed with PLAXIS 3D 2011 (Brinkgreve et al. 2011). 



18 3 Numerical modelling of deep foundations 
 

The constitutive models used are either the linear elastic-perfectly plastic Mohr-
Coulomb model (MC) or the Hardening Soil model (HS), which is a hardening 
plasticity model. In the last chapters of this thesis, the Hardening Soil Small 
model (HSS) is also used. A short summary of these constitutive models is given 
in Appendix A. A detailed description of the Hardening Soil model can be found 
in Schanz (1998) and Schanz et al. (1999). The HSS model is described in Benz 
(2007). In general, the results refer to drained conditions; if undrained conditions 
are considered, this is mentioned explicitly. 
 

3.2 Literature review 
 
Several methods to analyse the behaviour of single piles, pile groups and piled 
raft foundations exist. Poulos et al. (1997) divided them into three groups. Group 
one relates to simplified calculation methods, which involve a number of 
simplifications regarding the soil behaviour, the geometry and the loading 
condition. Group number two deals with approximate compute-based methods 
and group number three includes more rigorous computer-based methods. The 
latter group can be subdivided again into boundary element method (BEM), 
combined BEM and FEM analyses, finite difference method, finite layer 
technique (Small & Booker 1986) and FEM calculations. The lastly mentioned 
approach can be subdivided once more into simplified FEM calculations and full 
three dimensional finite element analyses (FEA). The literature review presented 
in the following is only related to the numerical modelling of deep foundations 
by means of the standard finite element approach. 
 
A number of authors investigated the behaviour of single piles by means of FEM. 
Ellison et al. (1971) studied the load deformation mechanism of bored piles with 
2D FE analyses, while Desai (1974) performed 2D FE calculations of axially-
loaded piles in sandy soils and presented distributions of shear and normal 
stresses along the pile shaft. Wittke et al. (1974) presented FE back analyses of a 
horizontal pile load test, which showed a good agreement with measurements. 
Baguelin & Frank (1980) conducted studies of vertically- and horizontally-
loaded piles and stated that FEM can be used to improve the theoretical 
knowledge of pile behaviour, and to evaluate existing design methods. Meissner 
(1983) used an elasto-plastic constitutive model to investigate the behaviour of 
vertically- and horizontally-loaded single piles. Jardine et al. (1986) investigated 
the influence of non-linear stress-strain behaviour in soil-structure interaction. 
Trochanis et al. (1991) performed 3D finite element analyses to evaluate the 
behaviour of axially- and laterally-loaded piles. They modelled the soil as 
Drucker-Prager material and defined interface elements, which enable pile-soil 
slippage and pile-soil separation. Lee & Salgado (1999) used a non-linear elasto-
plastic constitutive model to investigate the development of base resistance. El-
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Mossallamy (1999) presented comparisons of measurements, FEM and boundary 
element analyses of large diameter bored piles in overconsolidated clay. For the 
behaviour of the soil, he used a double hardening elasto-plastic constitutive 
model. More recently, Wehnert (2006) studied the influence of mesh dependency 
and presented results of different constitutive models. He stated that the most 
important thing for modelling a realistic base resistance is the right choice of soil 
stiffness, especially if a disturbance of the soil at the pile tip (due to installation) 
is expected. Lee & Long (2008) investigated the skin friction behaviour of drilled 
cast-in-place piles in sand. They included thin elements next to the pile shaft to 
model effects of localized shear during installation. Loukidis & Salgado (2008) 
conducted FE analysis to study the development of ultimate shaft resistance and 
the change in stress during axial loading of a vertical pile. Said et al. (2009) used 
an advanced interface model proposed by De Gennaro & Frank (2002) to back-
analyse full scale pile load tests. Also, Lashkari (2011) proposed a critical state 
compatible elasto-plastic model for the description of sand-structure interaction 
and validated his approach with experimental data of centrifuge tests. Mroueh & 
Shahrour (2009) presented 3D FEA of battered piles under combined (lateral and 
vertical) load. Basu et al. (2011) performed 1D FE analyses of jacked piles in 
sand. They showed that the number of jacking strokes plays an important role 
when determining the shaft resistance. Henke (2008) and Dijkstra (2009) 
modelled pile installation effects by means of finite elements and Engin & 
Andresen (2011) compared zipper type techniques for FEA to model pile 
penetration problems. Recently König (2008) and Giannnopoulos et al. (2010) 
studied the effects of time on the capacity of piles. They evaluated effects related 
to both consolidation and creep processes. Giannnopoulos et al. (2010) 
demonstrated that creep in piled foundations in soft clay can yield a significant 
increase of pile capacity. 
 
In order to reduce the computational effort, the first pile groups analysed were 
simplified to axisymmetric (Hooper 1973) or plane strain problems (Desai et al. 
1974) with the approximation of an equivalent stiffness for the pile group. 
Pressley & Poulos (1986) examined the mechanism of group effects among piles 
using 2D axisymmetric finite element models. They demonstrated that at close 
spacings a block failure mechanism develops and with increasing pile spacing the 
failure mechanism tends toward the behaviour of a single pile. Ottaviani (1975) 
presented 3D FEA to study the settlement behaviour and the load transfer 
mechanism of single piles and pile groups embedded in linear elastic 
homogeneous soil. Chow & Teh (1991) studied the behaviour of vertically-
loaded pile groups in nonhomogeneous soil. Liu & Novak (1991) investigated 
the pile-soil interaction of a raft supported by a single pile by means of finite and 
infinite elements. Katzenbach et al. (1994) and Arslan et al. (1994) conducted 3D 
finite element analysis of piled raft foundations using an elasto-plastic 
constitutive model. Katzenbach et al. (1998) studied the effects of interaction 
between raft and piles within a piled raft foundation employing 3D FEA. They 
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investigated different pile spacings and pile lengths. A parametric study on the 
behaviour of piled raft foundations was presented by Prakoso & Kulhawy (2001). 
They modelled a number of plane strain models to investigate the influence of 
system geometries on differential displacements, raft bending moments and load 
ratios. Reul (2000) and Reul & Randolph (2003) performed detailed back-
analysis of piled raft foundations in overconsolidated clay and compared the 
results with in-situ measurements. Reul (2004) demonstrated with numerical 
studies the influence of pile-pile and pile-raft interaction within a piled raft 
foundation. Therefore, he conducted various 3D FE calculations and considered 
different system configurations. Reul & Randolph (2004) presented, based on 3D 
FEA, strategies for an optimised design of piled raft foundations subjected to 
nonuniform load conditions. Krajewski & Reul (2009) studied the influence of 
mesh discretization on the behaviour of piled raft foundations. They investigated 
both the h-refinement, where the number of elements is increased, and the p-
refinement, where the interpolation function is increased, which means the 
characteristics of approximation of the element itself are better. Ittershagen 
(2009) conducted 3D FEA of a piled raft foundation and compared the measured 
and calculated load-settlement behaviour. Recently, Wehnert et al. (2010) 
presented back-analyses of three pile load tests by means of 2D and 3D 
calculations and finally a settlement analysis of a piled raft foundation supported 
by more than 500 large diameter bored piles. They stated that for the boundary 
value problem considered, neither a 2D cross section nor a simplified model of a 
specific part of the deep foundation would have been adequate to forecast the 
differential settlements. 
 

3.3 Basic terms and aspects of FEM of deep 
foundation analysis 

3.3.1 2D versus 3D modelling 
 
In order to apply FEM for boundary value problems geometrical idealizations 
and assumptions have to be made. Current practise for analyses of geotechnical 
problems uses 2D plane strain models. In special cases, like slopes or strip 
footings, where one dimension is very large compared to the other two 
dimensions, the assumption of plane strain conditions is justifiable. For other 
detached geotechnical problems a simplification to axisymmetric boundary 
conditions is possible, e.g. circular footings. But most of the time, finite element 
analyses are performed for projects where the geometry, the soil layering or the 
load situation of the problem is rather complex. And then, the "standard" 
question arises: Is full 3D modelling required? Potts (2003) also states that 2D 
plane strain or axisymmetric assumptions are often questionable in real 
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applications. He showed exemplarily the influence of a non-isotropic retaining 
wall stiffness on wall deflections where 3D modelling is naturally required.  
 
From the author's point of view, it is not necessary to go straight to full 3D 
modelling, because 2D modelling is very convenient for preliminary studies and 
a number of practical problems can also be analysed easily with 2D calculation, 
assuming plane strain conditions in certain regions. Therefore, it is very 
important to point out that 2D calculations are still up to date. Nevertheless, 
when dealing with deep foundations, the possibilities for two-dimensional 
models are very limited. Only the special case of an axially-loaded vertical single 
pile in horizontally layered soil can be modelled in axisymmetric conditions.  
 
The problem when modelling deep foundations in 2D is that the geometry and 
the layout of the foundation elements do not allow a plane strain representation 
and one has to modify either the dimensions or the stiffness of the deep 
foundation elements, e.g. Desai et al. (1974) or Prakosa & Kulhawy (2001). In 
the author's opinion, a combination of both approaches is the best choice for 
normal circumstances. But once the spacing between the piles is large the 
equivalent stiffness method should be adopted, otherwise, relatively small pile 
dimensions have to be used, leading to a different behaviour of the piles. 
 
In this thesis principle studies of axially-loaded single piles are modelled in 
axisymmetric conditions, but all other analyses are performed using 3D models. 
In chapter 7, comparisons of 2D plane strain cross sections with full 3D 
calculations, on the basis of a real boundary value problem, are presented. 
 

3.3.2 Finite elements as used in this thesis  
 
Two different element types are available in PLAXIS 2D, namely a six noded 
element with quadratic shape function or a fifteen noded element with a shape 
function of fourth order. In PLAXIS 3DF, 15 noded wedge elements (quadratic 
shape function) are used, and PLAXIS 3D uses 10 noded tetrahedral elements, 
also with an interpolation function of second order. Fig. 7 shows the different 
types of elements used in the PLAXIS codes. If inclined soil layers are defined in 
PLAXIS 3DF, the mesh generator automatically degenerates the 15 noded wedge 
elements to 13 noded pyramids or 10 noded tetrahedral elements. The stresses 
within the finite elements are worked out by means of numerical integration in 
stress points. The Gauss quadrature is used for the evaluation of stresses in 
standard finite elements, and the Newton-Cotes integration scheme is utilized at 
interfaces (see next chapter of this thesis). 
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Fig. 7 Finite elements as used in PLAXIS 2D (left), PLAXIS 3DF (middle) 

and PLAXIS 3D (right) 
 

3.4 Interface elements 
 
The nodal conductivity of the FE method constrains the adjacent structural and 
soil elements to move together. To model relative displacements between the soil 
and structures, interface elements are used. Principally, different methods to 
model soil-structure interfaces exist. Potts & Zdravković (1999) give an 
overview of methods presented in the literature. The programs used for this work 
use an interface formulation with a virtual thickness; this approach is similar to 
the one presented by Goodman et al. (1968). 
 
The shape functions of an interface have to be compatible with the soil elements, 
hence if a 15 noded soil element (Fig. 7) is used the interface consists of five 
pairs of nodes. When using 6 noded soil elements, it consists only of three pairs 
of nodes. The Newton Cotes integration scheme is used to evaluate the stresses at 
the interface elements, which means that the stress points coincide with the 
position of nodes and the number of stress points depends on the shape function 
used for the solid soil elements. Fig. 8 shows schematic representations of 
interface elements. The basic theory of an isoparametric interface element is 
given in Appendix B. 
 

3.4.1 Definition of interfaces 
 
An interface is defined geometrically with a virtual thickness (ti). This imaginary 
thickness controls, together with the interface stiffnesses, the elastic deformations 
of an interface. These deformations should be as small as possible, but numerical 
ill conditioning must be avoided. 
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Fig. 8 Interfaces as used in PLAXIS 2D (after Brinkgreve et al. 2011) 
 
In principle, it is possible to use different constitutive models for the surrounding 
soil and the interface elements, but a Mohr-Coulomb criterion is always used to 
define failure at the interface. The strength of an interface is defined with the 
interface reduction factor Rinter. 
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c'i is the effective cohesion of an interface, 'i is the effective interface friction 
angle and  and i are the dilatancy angle and the dilatancy angle of an interface, 
respectively. Strength reduction factors for various soils and construction 
materials can be found e.g. in Potyondy (1961). As long as the interface is elastic 
only elastic slip and elastic gap displacements can occur. Gap displacements are 
related to effective normal stresses 'n on an interface and a normal interface 
stiffness Kn, whereas elastic slip displacements are governed by shear stresses  
and interface shear stiffness Ks. 
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The oedometric interface stiffnesses Eoed,i and the shear interface stiffness Gi are 
related to the defined soil stiffnesses Eoed and G respectively. The Poisson's ratio 
of an interface i is defined as 0.45. 
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Equations 33 and 34 show that the elastic interface stiffness is controlled by 
Rinter, the virtual thickness factor of an interface v and the average element size 
of solid elements in the finite element model (ESavg). The first two values are an 
optional input to the analysis and the average element size is an internal defined 
value. The output program shows the internal calculated value of ESavg. But the 
calculated elastic displacements (according to Equation 27 and 28) - with this 
value of average element size - do not fit with the results obtained with the finite 
element software. Fig. 9 shows the difference of the calculated elastic gap 
displacements for a simple finite element model with a constant distributed 
normal stress 'n on the interface. The example was analysed with five different 
mesh coarsnesses.  
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Fig. 9 Elastic gap of an interface 
 
The value given in the output is related to the model dimensions and the total 
number of solid finite elements, whereas ESavg used internally is related to the 
settings of the global mesh coarseness (Nelfixed), meaning local mesh refinements 
do not have an effect on the average element size used for the definition of the 
virtual interface thickness. 
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When using the HS model for the definition of the interface, the stress 
dependency of stiffness is also taken into account for Ks and Kn. Equation 36 
shows the definition of interface shear modulus Gi, where Gur,ref is the un- and 
reloading shear modulus of the soil at reference pressure, pref is the reference 
pressure and m is the power index, controlling the stress dependency of stiffness. 
The factor  increases the deviatoric hardening modulus at reference pressure 
(E50,ref) to take additional cap-plasticity into account. This factor is defined 
internally and is related to a number of parameters as E50,ref, Eoed,ref, ' and others. 
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As long as the interfaces are not activated plastic behaviour is excluded, but 
elastic gapping and/or slipping can occur. For inactive interfaces, the stiffnesses 
Ks and Kn are increased by a factor of 10. As a consequence, both shear and 
normal stresses are potentially already present before the interface is activated. 



26 3 Numerical modelling of deep foundations 
 

3.4.2 Special issues related to deep foundations 
 

3.4.2.1 Singular plasticity points 
 
Van Langen & Vermeer (1991) presented a special use of interfaces to prevent 
singular plasticity points. Fig. 10 shows a singular plasticity point for a single 
pile problem. Standard finite elements cannot handle such singularities, because 
C0 continuity is required. Due to the fact that large displacement discontinuities 
occur at the edge of piles, the finite element analysis tends to overestimate the 
bearing capacity of a pile.  
 

 
 
Fig. 10 Singular plasticity point at the pile base (after Van Langen & Vermeer 

1991) 
 
With interface elements potential slip planes can be introduced in the model (as 
shown in Fig. 11), and as a consequence, point C is split into four separate points 
and can move freely. Van Langen & Vermeer (1991) stated that the simple mesh 
computes high stress concentrations close to the edge of the pile that yield, 
compared to the improved mesh with introduced slip planes, to a 25% higher 
bearing capacity of the pile. The difference is of course also related to the 
discretization of the finite element mesh. It is important to point out that these 
potential slip planes are not zones of weakness, because the same strength as in 
the surrounding soil is defined along the interface extension. 
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When using PLAXIS 2D or 3DF the same tendencies are obtained, but with 15 
noded elements and a reasonable fine mesh the influence on the load-settlement 
behaviour of a single pile is relatively small, due to the fact that the distance from 
the pile edge to the Gauss points in the soil is small. Nevertheless, standard finite 
elements without potential slip planes are getting highly distorted, and this lack 
of flexibility yields to a bad quality of both shear and normal stresses close to the 
edge of the pile base (stress oscillations).  
 

 
 
Fig. 11 Special use of interface elements (after Van Langen & Vermeer 1991) 
 

3.4.2.2 Numerical problems 
 
When dealing with interface elements, numerical ill-conditioning and problems 
related to unstable integration point stresses can occur. The problem of ill-
conditioning is related to the interface stiffnesses Ks and Kn. As shown in chapter 
3.4.1 of this thesis, interface stiffnesses have the dimension [kN/m3]. Potts & 
Zdravković (2001) state that it is hard to select appropriate stiffnesses for 
interfaces, because it is difficult to perform laboratory test to define the “correct” 
interface stiffness. Van Langen & Vermeer (1991) recommended that Ks and Kn 
should be defined in a way that the initial response of the global load-settlement 
behaviour of a structure should be similar to the initial computed load-settlement 
curve without interface elements. This ensures that the influence of an interface 
is restricted to plastic slip along the soil-structure interaction.  
 
Potts & Zdravković (2001) presented 2D axisymmetric calculations of a 
vertically-loaded single pile in homogenous undrained material. They studied the 
influence of the interface stiffness and performed two different calculations, with 
Ks = Kn = 1e3 kN/m3 and Ks = Kn = 1e5 kN/m3. Similar calculations were 
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performed with PLAXIS 2D. In general, the interface stiffnesses in PLAXIS are 
related to the global mesh coarseness settings, but because different mesh 
coarsnesses result in dissimilar behaviour of piles (see chapter 3.5.2), the 
interface thickness is changed directly in the “mesh file” of the project directory. 
Equation 33 indicates that the normal stiffness Kn is linked to the shear interface 
stiffness, hence it is not possible to define the same quantities. But for this type 
of problem, the normal stiffness of the interface is of minor importance. The 
PLAXIS calculations were performed with shear interface stiffnesses Ks of 
4,57e4 kN/m3, 3,36e9 kN/m3 and 6,71e2 kN/m3. Fig. 12 shows the difference in 
the pile behaviour when using different stiffnesses. When using low values for 
the interface stiffness, the behaviour of the pile is much softer. With the default 
value of 4,57e4 kN/m3 for the shear interface stiffness, the calculation shows 
reasonable agreement with the results presented by Potts & Zdravković (2001). 
 

 
 
Fig. 12 Influence of interface stiffness on load-settlement curve of an axially-

loaded single pile 
 
The upper bounds of interface stiffness are limited by possible ill-conditioning, 
which takes place if element stiffness matrices of adjacent elements vary in 
magnitude by a significant amount. Potts & Zdravković (2001) showed that ill-
conditioning of the global stiffness matrix could yield to stress fluctuations along 
the interface. They modified Ks and Kn independently und summarized that for 
the simple problem of an overturning elastic block stress oscillations occur once 
Ks or Kn are bigger than 100 times the surrounding soil stiffness. However, this 
ratio is most likely also problem dependent.  
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Tests with PLAXIS 2D showed that for the same problem of overturning of an 
elastic block, slight stress oscillations start to occur when Kn is bigger than 2000 
times the Young's modulus of the surrounding soil. But the results demonstrated 
that stress oscillations related to ill conditioning is not a severe problem. One 
explanation therefore is that the element stiffness matrix Ke is related to the 
inverse of the determinant of the Jacobean matrix J (Potts & Zdravković 2001).  
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where B is the element strain-displacement matrix, D is the elastic constitutive 
matrix, J is the Jacobean matrix,  and  are the intrinsic coordinates for 
numerical integration and t is the thickness, which is unity for plane strain 
problems. As J decreases when using finer solid elements close to the interface, 
the strain matrix B increases and the contribution of the surrounding solid 
elements to the global stiffness matrix increases. When using PLAXIS, the mesh 
is automatically refined in the region where interface elements are defined, hence 
less ill-conditioning occurs. Only when using really high values for the interface 
stiffnesses (Einterface > Esoile19) does the global stiffness become nearly singular 
and unable to be solved, but for practical applications, such high ratios are in 
general not used. However, when using PLAXIS stress oscillations also occur 
sometimes at interfaces. For example Fig. 13 shows a calculation of a single 
vertically-loaded pile in homogeneous soil and the obtained shear stresses along 
the shaft interface. The initial conditions are calculated with the K0-procedure. 
The soil parameters used for the calculation are given in Tab. 1. 
 
Tab. 1: Input parameters for Mohr-Coulomb model 
 

parameter  value unit 

Young's modulus E 1e5 kPa 

Poisson's ratio ' 0.30 -- 

effective friction angle  ' 25.0 ° 

effective cohesion c' 0 kPa 

dilatancy angle  0 ° 

bulk unit weight of soil  18.0 kN/m3

lateral earth pressure coefficient at rest K0 1.0 -- 
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Fig. 13 Finite element model (left) and mobilized skin friction (right) 
 
Three different interface strengths were defined. In the calculations with 
Rinter = 1.0 and 0.95, stress oscillations occur; in the third calculation - where a 
separate material set with a friction angle 'i of 10° is assigned to the interface - a 
smooth skin friction distribution is mobilized. This indicates that the quality of 
the shear stress distribution is actually related to the strength of the soil and the 
interface instead of to the interface stiffness, particularly the relative stiffness 
Gi/G. Fig. 14 shows the plastic points at failure for the calculation with 
Rinter = 1.0 and for the calculation with an interface friction angle 'i = 10°. In the 
calculation with reduced frictional behaviour in the interface, no plastic points 
are located in the soil body next to the pile and also no stress fluctuation occurs. 
This indicates that plasticity in the soil next to the pile is probably the reason for 
the stress oscillation. 
 
The same model recalculated with undrained shear parameter (cu = 50 kPa and 
' = 0) does not show any stress oscillations at the interface. Fig. 15 illustrates 
the stress paths of an integration point in the soil and the interface 15.7 m below 
the surface. The stress paths are plotted in the s-t representation, where s 
represents the centre and t the radius of the Mohr's circle. 'yy and 'xx are the 
vertical and the horizontal effective stress in the soil and '1 and '3 are the major 
and minor effective principal stresses. The subscript initial indicates the initial 
stress situation.  
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Fig. 14 Plastic points at failure – Rinter = 1.0 (left) and 'i (right) 
 
The Mohr circle of the soil is a bit smaller than the maximum allowable 
deviatoric stress. This is because the integration point is not located at the soil-
structure interaction plane, thus the stresses do not exceed the failure criterion. 
 

 
 
Fig. 15 Stress paths of the soil and the interface in a depth of -15.7 m 

(cu = 50 kPa; ' = 0) 
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In the calculation with effective strength parameters (Tab. 1) and a Rinter value of 
1, the situation is similar and the deviatoric stresses in the soil are a bit smaller 
than the shear stresses in the interface, but in this calculation significant stress 
fluctuations occur. Fig. 16 illustrates again the stress paths of an integration point 
in the soil and the interface 15.7 m below the surface. The allowable shear stress 
at the interface is governed by the effective normal stress 'n at the interface and 
the friction angle i. 
 

iinmax c´´tan´    (40) 

 
However in the soil, the maximum shear stress is related to the minor and major 
effective principle stress. Due to the different definitions of the failure criterion, 
the ultimate deviatoric stress in the soil and in the interface is not the same. This 
is the reason why the soil fails before the limiting interface strength is reached, 
even if the shear stress in the soil is smaller than at the interface.  
 
Of course the stresses in the soil are related to the mesh coarseness of the finite 
element model. When using 15 noded elements, the position of the Gauss points 
is already very close to the interface, meaning relatively large elements are 
necessary to induce a decrease of stress in the soil so that no failure occurs. But 
when using relatively coarse meshes in combination with 6 noded elements, the 
stress points in the soil could possibly not exceed the failure line and stress 
oscillations at the interface might not occur. 
 
If we assume for simplicity that the normal stress at the interface and the centre 
of the Mohr circle after loading are identical ('n = 'm) and the cohesion c'i is 0, 
a simple relation between the maximum shear stress in the soil and in the 
interface can be deduced. 
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Fig. 16 Stress paths of the soil and the interface in a depth of -15.7 m (c´ = 0; 

' = 25°) 
 
Equation 43 shows that the overestimation of the allowable shear stress in the 
interface, compared to the surrounding soil, increases with an increasing friction 
angle. Fig. 17 illustrates the influence of the friction angle on the difference of 
the ultimate shear stress in the interface versus maximum shear stress in the soil.  
 

 
 
Fig. 17 Influence of friction angle on allowable deviatoric stress  
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Another reason for stress oscillations is related to the integration scheme used for 
the evaluation of the element stiffness matrix. PLAXIS uses the Newton-Cotes 
integration scheme, where, according to Van Langen (1991), the quality of 
calculated stresses in the interface is much better compared to the Gauss 
integration. Detailed information related to integration rule utilized for interfaces 
is given in Appendix B. 
 

3.5 Modelling deep foundations employing the 
standard FE approach 

3.5.1 Introduction 
 
In the standard finite element approach, the piles are modelled with volume 
elements and the interaction of the pile with the surrounding soil is generally 
described with interface elements. The "roughness" of the soil-structure 
interaction is defined with a strength reduction factor Rinter, which determines the 
interface strength with respect to the soil strength. A detailed description of 
interface properties is given in chapter 3.4.1 of this thesis.  
 
Two-dimensional analyses are used in the following for principle studies of 
axially-loaded single piles. PLAXIS 3DF has the disadvantage that piles 
modelled with the standard finite element approach have to be vertical. This is 
because the 3D mesh is based on a 2D mesh of a horizontal cross section. 
Therefore, it is not possible to model inclined structures. Fig. 18 shows a 3DF 
finite element model for a single pile.  
 
The problem with this approach is that for a large number of piles, it leads to 
computationally demanding models that may be beyond the capabilities of the 
code or simply take too long to analyse from a practical point of view. Hence this 
modelling technique is not very popular in practical engineering. An alternative 
way to define piles in a 3D model is the embedded pile approach. This concept is 
explained in detail in chapter 4. 
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Fig. 18 Standard finite element approach in PLAXIS 3DF 
 

3.5.2 The influence of the mesh coarseness 
 
In this chapter, the influence of the mesh coarseness on the load-settlement 
behaviour of axially-loaded single piles is studied. The example chosen is similar 
to the one presented by Potts & Zdravković (2001). The model dimensions 
Lm/Bm/Dm are 50/50/55 m. The pile length L is 20.0 m and the diameter is 1.0 m. 
The soil is modelled as Tresca material with a saturated bulk unit weight sat of 
18 kN/m3, an undrained stiffness Eu of 1e5 kN/m2, an undrained shear strength cu 
of 100 kPa and a Poisson's ratio  of 0.49. The pile is defined as linear elastic 
material with a Young's modulus E of 2e7 kN/m2 and a Poisson's ratio of 0.15. 
The initial stresses are defined with a lateral earth pressure coefficient at rest K0 
of 1.0. Fig. 19 shows the different mesh coarsnesses studied, where model 1 and 
model 2 have globally the same mesh coarseness and model 3 and model 4 are 
discretized with local mesh refinements. In model 4, additional geometry lines 
are defined to force the program to generate very small elements next to the pile. 
It should be noted that models 2, 3 and 4 are discretized more or less with the 
same number of elements. 
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Fig. 19 Different mesh discretizations 
 
When using the standard finite element approach, the soil-structure interaction is 
usually modelled by means of interface elements, but it is also possible to model 
this sensitive zone close to the pile shaft with very thin solid elements. Therefore 
model 1 to 4 is analysed with and without interface elements. In addition to the 
h-refinement, where the mesh is discretized with more elements, the influence of 
the shape function (p-refinement) is also shown in Fig. 20. The reference solution 
presented by Potts & Zdravković (2001) is defined with a 5 cm thin layer next to 
the pile shaft. 
 
The theoretical ultimate shaft capacity, which is the undrained shear strength 
times the shaft area, is 6283 kN. The results show that for coarse meshes without 
interface elements the bearing capacity is highly overestimated. Even with model 
two and 15 noded elements the ultimate bearing capacity is about 60% higher 
than the reference solution. 
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Fig. 20 Influence of mesh coarseness (without interface elements) 
 
The reason is that the stresses are worked out in the Gauss points, which are not 
located in the soil-structure interaction plane, and that the used shape functions 
calculate a variation of stress over the finite element, which is not correct for 
these types of problems. Only with very fine meshes close to the pile shaft - 
hence a small distance between the integration points in the soil and the pile - is 
it possible to compute the shaft resistance Rs properly. 
 
Fig. 21 shows the load-settlement curves for model 2 and model 3 with interface 
elements along the pile shaft. The mesh coarsenesses are very similar to the 
models 2 and 3 shown in Fig. 19 but are not identical, because of the fully 
automatic mesh generation of the program, which enforces a local mesh 
refinement along interfaces (see chapter 3.4.2). It shows clearly that interfaces 
improve the behaviour significantly, due to the fact that the integration points are 
located at the “real” position of the problem (soil-structure interaction). But the 
mesh coarseness still has an effect on the behaviour, especially when using low 
order elements (6 noded elements). The different inclinations of the first part of 
the load-settlement curves are governed by the elastic deformations of the 
interface. 
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Fig. 21 Influence of mesh coarseness  
 
Similar studies were also performed with PLAXIS 3DF. Fig. 22 shows two mesh 
discretizations studied and Fig. 23 the obtained load-settlement curves. To reduce 
the number of elements and to allow a finer mesh discretization, an axis of 
symmetry is taken into account. The behaviour is similar to the two-dimensional 
studies: without interface elements fine mesh discretizations are necessary, and 
when using interface elements, the mesh dependency is reduced significantly. 
The first part of the load-settlement curves shows almost the same inclination; 
this indicates that the interface stiffnesses used are stiff enough.  
 
In general, the shape of a pile in PLAXIS 3DF is approximated, where only the 
corner nodes of the 15 noded wedge elements correspond with the circumference 
of the pile geometry. However, if the pile shape is optimised by means of 
"curved" elements, the middle nodes of the solid elements are also part of the pile 
boundary.  
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Fig. 22 Different mesh discretizations-PLAXIS 3DF 
 

 
 
Fig. 23 Influence of mesh coarseness – PLAXIS 3DF 
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3.5.3 The Influence of dilatancy 
 
When dealing with kinematically constrained problems in combination with 
dilatant soil behaviour, the shear dilatancy in granular materials has a significant 
effect on both the computed failure load and the global stiffness response of a 
structure. This effect was reported for example by Brinkgreve (1994) and 
Vermeer & De Borst (1970). An axially-loaded pile is a typical example where 
the change in volume associated with shear distortion yields to an increase of 
normal stress along the pile shaft, and as a consequence, to an increase of shaft 
resistance. Potts & Zdravković (2001) conducted numerical studies on axially-
loaded piles using the MC model with associated (' = ) and non-associated 
flow rule ( = 0). They showed that calculations with associated plasticity lead 
neither to a limiting value of shaft nor base resistance, and that the behaviour of 
the interface elements dominates the behaviour of the pile. 
 
A solution would be the use of  = 0, but most sands exhibit some dilation which 
would than lead to a conservative design as shown by Wehnert (2006). He 
presented a back-analysis of a pile load test in Berlin sand with  = 0, which 
results in a significant underestimation of the pile bearing capacities. To predict a 
realistic behaviour of an axially-loaded pile the plastic dilation has to be taken 
into account but bounded with a critical state condition. This can be done in the 
Hardening Soil model with a so-called dilatancy cut-off (see Appendix A). But, 
according to Equation 26, the problem arises that i is automatically set to zero 
for Rinter values smaller than 1. Thus a separate parameter set with reduced 
strength parameters must be assigned to the interface elements. But, it is 
important to generate the initial stresses with unreduced strength parameters, 
otherwise wrong normal stresses are present along the pile and as a consequence 
the ultimate shaft resistance is underestimated.  
 
Numerical studies of a 15 m long axially-loaded bored pile situated in loose sand 
(Tab. 16) were conducted to show the influence of the dilatancy cut-off (dco). 
The dilatancy angle is defined with 4°, however to show the influence of plastic 
dilation on kinematically constraint problems, some calculations were also 
performed with  = 0. The void ratios e - necessary for the dco option - are 
defined as emin = 0.63, emax = 1.0 and einit. = 0.88. Fig. 24 illustrates the load-
settlement curves for Rinter values of 1.0 and 0.7. As expected, the calculation 
with  = 0 significantly underestimates the bearing behaviour of the pile. At 
10 cm settlements, the difference in bearing capacity between the calculations 
with  = 0 and  = 4 is almost 150%. With a Rinter value of 1.0, the point where 
the critical state of density is reached can be evaluated. For these soil conditions, 
it happens at about 6 cm of vertical pile displacements. As a consequence the 
shaft resistance Rs remains almost constant for further loading. With a strength 
reduction factor of 0.7 the maximum void ratio is not reached, hence the 
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dilatancy cut-off is not active. Also interesting is that the influence on the base 
resistance is very small. Fig. 25 shows the base and shaft resistance normalized 
by the applied load. For this type of sand with a rather low dilatancy angle, the 
influence of dco on the load separation between pile shaft and pile base is 
relatively small. This is of course different for dense soils with high dilatancy 
angles. 
 

 
 
Fig. 24 Influence of dilatancy (after Kaineder 2009) 
 

 
 
Fig. 25 Influence of dilatancy on the normalized shaft and base resistance 

(after Kaineder 2009) 
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To calculate the change of e in an interface, the thickness ti is used. According to 
Equation 35, this interface thickness is related to the average element size ESavg. 
But in reality the thickness of the shear zone is a few times larger than the 
average grain size d50. Marcher (2003) recommended on the basis of a literature 
research a value of 10 times d50 for shear band thickness. When using the 
standard finite element approach in combination with the HS model, this real 
interface thickness real can be assigned to an interface. This value modifies the 
interface stiffnesses, and as a consequence, the behaviour of the dilatancy cut-off.  
 
To demonstrate the effect of the interface thickness on the computed load-
settlement curves, the same example was recalculated with a very dense sand ( 
= 16°). Fig. 26 illustrates load-settlement curves with different interface 
thicknesses. When using the default interface thickness, which is related to ESavg, 
the state of critical density is not reached (for Rinter = 0.7). With a realistic shear 
band thickness of 3.5 mm the load-settlement curve predicts a much lower 
bearing capacity of the pile. As a consequence, the mesh coarseness also has a 
significant influence on the dilatancy cut-off, because coarser meshes yield a 
bigger average element size, resulting in high ti values. Thus it is important to use 
a realistic interface thickness for piles embedded in dilatant material. 
 

 
 
Fig. 26 Influence of interface thickness on the load-settlement behaviour 
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3.5.4 Limitations of the standard finite element 
approach 

 
The limitations of the standard finite element approach as used in this thesis are 
mainly related to the maximum amount of degrees of freedom (DoF). The 
maximum number of DoF that can be solved by the software depends, of course, 
on the computer hardware, the constitutive model used and on the type of the 
analyses (e.g. drained or undrained). Numerical studies using PLAXIS 3DF and 
the HS model were conducted. With a standard Pentium (R) D 3GHz CPU, 3 GB 
RAM and a 32 bit operating system, it is possible to solved analyses with up to 
67 520 15 noded wedge elements. For undrained material behaviour, where the 
excess pore pressure is also an unknown solved in the finite element nodes, the 
ultimate number of elements was 48 400 elements. If a special calculation kernel 
is used, which allows it to address 3 GB virtual memory, FE models with up to 
104 640 elements in drained and 76 240 elements in undrained conditions can be 
analysed. With a 64-bit operating system and increased random access memory, 
the models able to be handled by the program increase significantly. Fig. 27 
illustrates the structural elements of a PLAXIS 3DF finite element model with 
137 volume piles. 
 

 
 
Fig. 27 Structural elements of a 3D FE model with 137 volume piles 
 
However, when dealing with complex deep foundations a reasonable fine mesh, 
discretization is necessary to obtain reliable displacements and even finer meshes 
to evaluate stresses, hence the number of piles that can be modelled with the 
standard FE approach is limited. Therefore an alternative modelling technique is 
discussed in the next chapter: the embedded pile concept. 
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Another limitation is related to some deficiencies of the interface elements. For 
instance, the interface elements used are not able to describe effects like soil 
softening or creeping. Information related to more advanced interfaces are given 
in Gennaro & Frank (2002) or Karabatakis & Hatzigogos (2002). 
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4 The embedded pile concept 

4.1 Introduction 
 
Numerical methods are increasingly utilised to calculate the performance of deep 
foundations, but as explained in chapter 3.3.1 of this thesis, a two-dimensional 
representation of pile groups is usually not sufficient and 3D modelling is 
required. This naturally leads to very large models if a high number of piles are 
discretized with volume elements, thus problems that are difficult to analyse. An 
attractive method to reduce the complexity of such models is the use of a so-
called embedded pile formulation, where piles are not explicitly modelled with 
continuum finite elements but replaced by a special “formulation” that can take 
into account the behaviour of a pile penetrating a finite element in any 
orientation. The benefit of this concept is that piles are not discretized by means 
of volume elements and thus do not affect the finite element mesh. 
 
Embedded piles are available in both finite element codes PLAXIS 3DF and 
PLAXIS 3D. The studies presented in this thesis are mainly related to PLAXIS 
3DF, nonetheless in chapter 6 some validations for PLAXIS 3D are also 
presented. 
 

4.2 Definition of embedded piles 

4.2.1 Geometrical and numerical definition of 
embedded piles 

 
An embedded pile (EP) consists of a beam element that can be placed in an 
arbitrary direction in the subsoil, embedded interface elements to model the 
interaction of the structure and the surrounding soil, and embedded non-linear 
spring elements at the pile base to describe the base resistance. When assigning 
the embedded pile, additional nodes are automatically generated inside the 
existing finite elements and the pile-soil interaction behaviour is linked to the 
relative displacements between the pile nodes and the "virtual" nodes in the soil 
element (Sadek & Shahrour 2004). Fig. 28 shows schematically an embedded 
pile within a 15 noded soil element (PLAXIS 3DF) and a 10 noded tetrahedral 
element (PLAXIS 3D).  
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Fig. 28 Embedded pile with a 15 noded wedge element (left) and a 10 noded 

tetrahedral element (right) 
 
Geometrically, an embedded pile remains a line element, although plasticity of 
the soil is disabled in a zone around the pile. Since the pile soil interaction is 
modelled along the beam element (line element), it was - until now - not possible 
to model complex installation effects. 
 
Beam element nodes are always generated when the embedded pile crosses a 
solid finite element. In PLAXIS 3DF the final node of the embedded pile can be 
located somewhere within the 15 noded wedge element, and the program 
automatically adds a third beam element node between the last intersection with 
the solid element and the final beam element node. In PLAXIS 3D the final node 
of the embedded pile corresponds with a corner node of the solid element (see 
Fig. 28). The reason why is explained in detail in chapter 5.4. 
 
If a single vertical embedded pile is modelled with a point load (P0) at the pile 
head, a finite element node is of course automatically defined at the position of 
the embedded pile. That implies that the vertical pile is geometrically situated at 
the edge of several 15 noded elements. However, numerically the EP is only 
related to one solid element (Fig. 29). 
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Fig. 29 Discretization of a single vertical-loaded EP 
 
As shown in Fig. 29, an embedded pile consists of 3 noded line elements with 
quadratic shape function. One node has six degrees of freedom (Ux, Uy, Uz, x, y, 
z). The embedded interface elements connect the virtual nodes inside the solid 
soil elements and the nodes of the embedded beam. The relative displacement 
vector urel, between the virtual soil node displacements us and the embedded 
beam node displacements up, describes the pile-soil interaction. 
 

n
sss uNu   (44) 

 
n

ppp uNu   (45) 

 

sprel uuu   (46) 

 
Ns and Np are matrixes of interpolation functions of the soil and the pile 
respectively and us

n and up
n are the nodal displacement vectors of the soil and the 

embedded beam element. The element stiffness matrixes of embedded piles are 
numerically integrated with the Newton-Cotes integration scheme. 
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4.3 Input parameters of an embedded pile 

4.3.1 Basic input 
 
The input for an embedded pile consists basically of three groups. The first 
group, which is described in detail in the next chapter of this thesis, defines the 
special interface elements - in other words, the pile-soil interaction. The second 
group is related to the beam properties of the pile and the third group describes 
the connection of the pile head with the solid finite elements. Three options exist 
in the latter group: free, hinged and rigid. In the first option, the top beam node of 
the embedded pile can move relative to the connected finite element. The 
standard case for a single pile, because otherwise parts of the load (depending on 
the relative stiffness) are transferred directly to the soil, yielding a completely 
different load-settlement response. In the second option, no relative 
displacements between these two nodes are allowed, and in the third option, the 
rotation is also coupled to the element at the pile head. Of course, such a 
coupling is only possible if the solid element has rotational degrees of freedom 
(e.g. floor elements). The third option is important when dealing with 
horizontally-loaded pile groups, where the pile-raft connection is thought to be 
bending stiff. 
 
The input for the beam consists of a diameter d, the cross section geometry (pile 
or tube), the unit weight  and the stiffness E. The diameter d determines an 
elastic zone in the soil around the beam, i.e. plastic soil behaviour is excluded in 
the vicinity of the beam element (Engin 2006). The cross section geometry 
defines the pile cross section area A in combination with d, thus the moments of 
inertia I2 and I3. If the piles are not circular an equivalent radius Req is calculated.  
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The unit weight  represents a delta unit weight to the surrounding soil, due to the 
fact that the beam is a line element. This means that layered soil conditions with 
different bulk unit weights yield automatically to a varying unit weight of the 
embedded pile. 
 
An alternative is the definition of a user-defined pile, where the cross section 
area and the moments of inertia are a direct input. Nevertheless, beam elements 
of embedded piles cannot have non-linear properties. 
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4.3.2 Pile resistance 
 
With embedded interface elements, it is possible to account for relative 
displacements between the EP and the surrounding soil. The pile-soil interaction 
behaviour is linked to these relative displacements between the embedded beam 
nodes and the virtual soil nodes. For the embedded pile interface elements, an 
elastic-plastic model is used.  
 
Equation 48 gives the constitutive equation, where tskin is the skin traction along 
the embedded pile and the Tskin matrix contains the stiffnesses of the embedded 
interface elements.  
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ts is the shear stress in axial direction, tn and tt are the normal stresses of the 
embedded pile, Ks is the axial interface stiffness, Kn and Kt are the normal 
interface stiffnesses and us and up are the displacements of the virtual soil node 
and the embedded beam element respectively. Fig. 30 illustrates schematically 
the embedded interface stiffnesses. 
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Fig. 30 Embedded interface stiffness at the pile shaft (left) and the pile base 

(right) (after Brinkgreve & Swolfs 2007) 
 
The constitutive equation for the base resistance of an embedded pile is very 
similar, with Ffoot denoting the base resistance of the embedded pile, Kfoot the 
spring stiffness at the pile tip and up

food and us
food the displacements of the last 

embedded beam node and the connected virtual node in the soil. 
 

 s
foot

p
footfootfoot uuKF   (52) 

 
A maximum base resistance Fmax must be assigned to the non-linear spring 
elements at the base of an embedded pile. 
 
As long as the shear stress ts is smaller than the maximum skin friction, only 
numerical relative displacements take place, depending on the interface stiffness 
Ks. Once the maximum skin resistance at an integration point is reached, relative 
displacements between the embedded pile and the surrounding soil occur. The 
same is true for the behaviour of the foot resistance.  
 
For the definition of the ultimate skin resistance three different options are 
available. The first and simplest one is the linear distribution, where a constant or 
linear distribution for the ultimate skin resistance is defined with two input 
values (Ttop,max, Tbot,max). The second option is the multi-linear distribution, with 
which it is possible to define values for the skin friction in certain depths. For 
example, this is necessary when layered soil conditions and therefore different 
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skin resistances, are present along the pile. In these two embedded interface 
definitions, the bearing capacity of the pile is therefore an input to the analysis 
and not a result, because the maximum skin friction is predefined and thus 
independent of the stress state in the surrounding soil. In the optimal case pile 
load test data is available to define the maximum bearing capacity of an 
embedded pile. If that is not the case, classical approaches as presented in chapter 
2 of this thesis can be used.  
 
Another option to work out the maximum skin friction and maximum base 
resistance of a single pile is to perform a 2D axisymmetric calculation. In the 
author's opinion, this procedure is preferable. But once dealing with pile groups 
or a piled raft foundations, the interaction between the piles has to be taken into 
account and, as a consequence, the influence on the bearing capacity. However, it 
is difficult to define prior ultimate skin friction profiles for piles within pile 
groups, because each pile mobilizes differently depending on raft stiffness, 
spacing, load level, etc. This deficiency is maybe not crucial for working load 
conditions, but once ultimate limit state considerations are an issue it may have a 
significant influence. 
 
The third option to define the skin resistance is the layer dependent option. With 
this definition, the maximum shear stress ts,max of an embedded pile is related to 
the strength parameters of the soil and the normal stress 'n

avg
 along the interface. 
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't and 'n are the effective stresses of the surrounding soil perpendicular to the 
pile. An embedded beam element is numerically always defined within one solid 
soil element (Fig. 29), hence the effective stresses of the six Gauss points of this 
element are extrapolated to the embedded beam nodes/stress points (Newton-
Cotes integration scheme) and transformed to the local coordinate system (s, t, n 
direction). With all components of the effective stresses perpendicular to the pile, 
'n

avg is calculated in each stress point of an embedded pile. 
 
When using the layer dependent option, the embedded interface elements behave 
similar to normal interface elements as used in the standard finite element 
approach (Equation 24 and 25), with the difference that the interaction is 
modelled along a line element. The input for the layer dependent option is a Rinter 
value for the strength reduction. In addition, a limiting value for the skin 
resistance has to be defined. With this definition of the skin resistance a potential 
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change of normal stress along the pile is automatically taken into account, for 
example due to the raft-soil interaction in piled raft foundations. Thus, the 
ultimate bearing capacity of the pile is a result of the analysis. 
 
The normal stresses tn and tt, at the embedded interface elements, are not limited 
with a failure criterion. But of course plasticity in the surrounding soil, outside 
the elastic region, can take place. As shown in chapter 6.2 of this thesis, 
embedded piles are also suitable for horizontal loads. If EPs are defined at the 
axis of symmetry, the input of the base and shaft resistance must be defined 
according to the symmetry conditions. 
 

4.4 Embedded pile interface stiffness 
 
As shown in Equation 48, mobilization of stresses along an embedded pile is 
determined by the relative displacement vector urel and the interface stiffness 
matrix Tskin

. In principle, the embedded interface stiffnesses should be defined 
with the result that the initial slope of the global load-settlement behaviour of a 
single pile is similar to the first part of the computed load-settlement without 
using interface elements. This ensures that the pile displacements up are governed 
by the stiffness of the surrounding soil and that the influence of an interface is 
restricted to plastic slip along the soil-structure interaction. Fig. 31 shows 
schematically the global stiffness response of a vertically-loaded single pile.  
 

 
 
Fig. 31 Global stiffness response of an axially-loaded pile 
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As long as the maximum skin friction is not reached, the relative displacements 
urel are only related to the interface stiffness Ks. This indicates that the interface 
stiffness must be high compared to the shear modulus G of the soil. In general, 
the definition of the interface stiffness, as used in the standard FE approach, is 
related to the shear stiffness of the surrounding soil. Due to the fact that an 
embedded pile is a line element, the traction along the pile skin tskin has the unit 
[kN/m], and as a consequence Ks has the same unit as the soil stiffness [kN/m2]. 
The normal and tangential stiffnesses Kn and Kt are linked to the axial stiffness of 
the EP. i is the interface Poisson's ratio, which has a default value of 0.45. 
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When considering Equation 52, it is clear that the foot interface stiffness Kfoot 
must have a different unit, namely [kN/m3]. 
 

eqfoot RGK  10  (58) 

 
If a primary loading problem is considered and the stress dependent stiffness of 
high order constitutive models is not taken into account (m = 0), a difference in 
the calculated shear stiffness of the soil comes from the different definition of 
elastic parameters in the constitutive models. The linear elastic-perfectly plastic 
Mohr-Coulomb model uses a Poisson's ratio . High order constitutive models 
like the Hardening Soil model use the unloading/reloading Poisson's ratio ur. 
Therefore, different embedded interface stiffnesses are defined when using 
different constitutive models for the adjacent soil. A simple example for typical 
input ratios shows the influence on the shear modulus G of the soil, and at the 
same time the influence on the embedded interface stiffnesses. The comparison 
indicates that when using a high order constitutive model, the embedded 
interface stiffnesses are much higher.  
 
Simple Constitutive models (e.g. MC model): 
 
E = Eprimary loading 

 = 1/3 
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High order constitutive models (e.g. HS model): 
 
Eur = Eprimary loading  5 
ur = 0.2 
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To study the influence of the embedded interface stiffnesses (see chapter 6) and 
to improve the global behaviour of the embedded pile approach, a modified 
calculation kernel was used, which allows the definition of the interface 
stiffnesses independently of the soil shear modulus. Additionally, the modified 
kernel allows the definition of independent embedded interface stiffnesses for the 
axial and the normal/tangential direction. 
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s is a multiplier on the shear modulus G for the axial interface stiffness, n for 
the normal and tangential interface stiffness, foot for the foot interface stiffness, 
and s and n are direct input values for Ks and Kn/Kt, respectively. 
 
Due to the fact that an embedded pile has no volume and the interfaces are 
defined at the position of the embedded beam element, instead of G at the stress 
point next to the pile, the Gel

av, which is the average shear stiffness of the 
allocated soil element, is used to define the embedded interface stiffnesses. When 
using constitutive models, which take the stress dependent stiffness into account, 
the shear stiffness at different stress points within one element is not the same. 
Fig. 32 shows schematically the definition of Gel

av. 
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Because of the non-linear behaviour of soils, the unbalanced force in a finite 
element calculation is applied in a number of load steps, and if the stress 
dependency of stiffness is taken into account the stiffness matrix is based on the 
stiffness at the beginning of each step. This means that the stiffness of the soil 
and, as a consequence, the embedded pile interface stiffness is updated at the 
beginning of each step on the basis of the stress state obtained at the end of the 
previous step. Thus the interface stiffnesses of an EP change during a calculation 
phase. 
 

pointsstressofNumber
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Hence the embedded interfaces as used in this thesis are generally defined as 
follows: 
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Fig. 32 Definition of the average shear stiffness of the allocated soil element 
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4.5 Elastic region approach 
 
Engin et al. (2007) showed that the computed load-settlement curves of 
embedded piles are strongly affected by the mesh discretization of the boundary 
value problem. They also showed that when using fine meshes, premature failure 
occurs due to numerical instabilities. To get rid of the mesh dependency and the 
numerical problems, they introduced the so-called elastic region. Fig. 33 shows 
that this simple approach improves the behaviour of embedded piles 
significantly. 
 

 
 
Fig. 33 Influence of elastic region approach on the load-settlement behaviour 

(Engin et al. 2007) 
 
The stiffness within the elastic region is defined similarly to the stiffness of the 
soil, which means that for high-order constitutive models, the element stiffness 
matrix at a particular load increment depends on the stresses determined at the 
previous load step. Since the stiffness matrix is determined by numerical 
integration, this procedure is referred to the integration (Gauss) points.  
 

  dVolT
e BDBK  (67) 

 
A summation over all stress points within the finite element is necessary for 
building up the element stiffness matrix. At the beginning of the calculation, 
there is a loop over all stress points to check whether they are inside the 
equivalent pile diameter Req. If that is the case, the stiffness is calculated for the 
surrounding soil but the Gauss points inside the elastic region are forced to 
remain elastic. Fig. 34 illustrates schematically the modified stress points inside a 
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15 noded wedge element. The elastic region consists of two sub-regions, namely 
the elastic region along the pile shaft and the elastic region above the pile and 
below the pile base. The latter regions are defined as half spheres with the 
diameter Req. 
 

 
 
Fig. 34 Schematic representation of the elastic region approach 
 
In the standard definition of the elastic region, the stiffness inside this region is 
not modified, thus the shear stiffness G is the same as in the surrounding soil. An 
adapted calculation kernel was used to study the influence of the stiffness inside 
the modified zone, which allows an increase of the stiffness inside the elastic 
region along the pile shaft Gel.R,S, by a factor G,S, and the elastic region above 
and below the EP Gel.R,B, by a factor G,B. 
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But a modification of the stiffness inside an elastic region creates a “virtual” 
volume with higher stiffness compared to the surrounding soil and the shape of 
this region is related to the mesh coarseness next to the embedded pile. Fig. 35 
shows the virtual volumes for two different equivalent radii Req,1 and Req,2. The 
shape of the elastic region along the pile shaft is influenced by the horizontal 
(2D) mesh coarseness and, for the elastic region below the pile base, by the 
vertical mesh discretization.  
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Fig. 35 Modified Gauss points inside the elastic region 
 
The modification of the stiffness inside the elastic region also has an effect on 
embedded interface stiffnesses Ks, Kn and Kt (Equation 64 to 66). However, the 
influence on the interface stiffnesses is quantitatively different compared to the 
influence on the global load-settlement behaviour, because globally, all Gauss 
points inside the equivalent pile radius Req are modified, but for the embedded 
pile interface stiffnesses only the modification of the stiffnesses of the 
"allocated" element has an influence (Fig. 35). For example, if a very coarse 
mesh in combination with a slender pile is modelled, it is possible that no stress 
points are inside the elastic region, so the embedded interface stiffness is 
consequently calculated with the shear stiffness of the soil. On the other hand, if 
a fine mesh is used, it could be that all stress points of the allocated element are 
inside the elastic region and the stiffnesses Ks, Kn and Kt are increased by the 
factor G,S. Of course, the foot interface stiffness is also affected by the factor 
G,B. 
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The explanations indicate that the global stiffness response of an embedded pile 
is a result of a number of effects, such as pile length, pile stiffness, surrounding 
soil stiffness, pile diameter, bearing capacity of the embedded pile, interface 
stiffnesses, mesh coarseness and stiffness inside the elastic region. The influence 
of particular effects is shown in the next chapter of this thesis. 
 
 
 



5 Numerical investigation of the embedded pile concept 59 
 

5 Numerical investigation of basic 
features of the EP concept 

5.1 Introduction 
 
For the embedded pile option it is necessary to fulfil the following four criteria: 
 

1.) Correct load-settlement behaviour. 

2.) Realistic distribution of the ultimate skin friction and realistic 

mobilization of the skin friction. 

3.) Mobilization of the end-bearing capacity. 

4.) Avoid numerical problems. 

 
These 4 criteria are not entirely independent of each other but are related to some 
extent. 
 
Some problems obtained with the standard definition of embedded piles, as 
implemented in the commercial calculation kernel of PLAXIS 3DF, are shown in 
the first part of this chapter. In the subsequent chapters, tests with different 
settings of the interface stiffnesses, the elastic region and the mesh coarseness are 
discussed. Finally an improved embedded pile concept is presented. The 
validation of the improved embedded pile option is presented in chapter 6 of this 
thesis and chapter 7 demonstrates the application of the improved approach to 
boundary value problems.  
 

5.2 Deficiencies of the original embedded pile concept 
 
Calculations of single, axially-loaded, embedded piles were performed, using 
three different mesh coarsenesses: fine, medium and coarse (Fig. 36). The finite 
element models have the dimension Bm/Lm/Dm of 20/20/20 m. The parameters of 
the embedded pile with an effective length of 9.5 m are given in Tab. 2. From 
that follows a maximum skin resistance of ~1913 kN, a maximum base resistance 
of 1320 kN and a total bearing capacity of about 3233 KN. The pile is located in 
overconsolidated clay, described with the Hardening Soil model. The properties 
are shown in Tab. 3. The overconsolidation is taken into account with a pre-
overburden pressure (POP) of 50 kN/m2 and a lateral earth pressure coefficient 
K0 of 0,8. The groundwater table is located 3.5 m below the surface. The point 
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load at the pile head is applied step-by-step. In total, 12 calculation phases were 
defined. 
 

 
 
Fig. 36 Finite element models of a single pile with coarse (left), medium 

(middle) and fine (right) mesh discretization 
 
Tab. 2: Input parameters for embedded pile 
 

parameter  value unit 

Young's modulus E 3e7 kPa 

bulk unit weight   5.0 kN/m3 

diameter  d 1.3 m 

skin resistance at pile top Ttop,max 201.37 kN/m 

skin resistance at pile bottom Tbot,max 201.37 kN/m 

base resistance Ffoot 1320 kN 

 
Fig. 37 illustrates the computed load-settlement curves. Numerical failure occurs 
too early ("premature" failure). The predefined bearing capacity is roughly 
3233 kN and the weight of the pile is ~63 kN, so the maximum point load to 
reach the predefined bearing capacity should be about 3169 kN. It turns out that 
the premature failure occurs once the skin resistance is fully or almost fully 
mobilized. When applying the theoretical failure load in one single calculation 
phase, it could be that no premature failure occurs. Other calculations with higher 
soil stiffnesses showed jumps and oscillations in the load-settlement behaviour. 
This behaviour indicated that some numerical problems occurred. 
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Fig. 37 also shows that the load-settlement behaviour of an embedded pile is 
strongly mesh-dependent. Fig. 38 illustrates that the mesh coarseness also has an 
influence on the mobilization of the base resistance, hence on the load separation 
between the pile skin and pile base. 
 
Tab. 3: Properties of overconsolidated clay (HS)  
 

parameter  value unit 

unit weight above groundwater table unsat 20.0 kN/m3 

unit weight below groundwater table sat 20.0 kN/m3 

reference secant stiffness in drained triaxial test E50,ref 45 000 kPa 

reference oedometric stiffness Eoed,ref 27 150 kPa 

reference unloading/reloading stiffness Eur,ref 90 000 kPa 

isotropic Poisson's ratio 'ur 0.2 -- 

reference pressure pref 100 kPa 

power index for stress dependency of stiffness m 1.0 -- 

effective friction angle ' 20 ° 

effective cohesion c' 20 kPa 

dilatancy angle  0 ° 

K0 value for normal consolidated conditions K0
nc 0.658 -- 

pre-overburden pressure POP 50 kPa 

 

 
 
Fig. 37 Load-settlement curves for different mesh coarsenesses 
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Fig. 38 Influence of mesh coarseness on mobilized base resistance Rs 

 
Another deficiency found is related to the foot interface stiffness. To show the 
influence of Kfoot the medium mesh discretization (Fig. 36) is used. To simplify 
the problem (to the essential), the linear elastic-perfectly plastic Mohr-Coulomb 
(MC) model was used for the soil (Tab. 4). The parameters for the MC model 
were adjusted, so that in the middle of the model both constitutive models yield 
the same initial stiffness. The pile properties are given in Tab. 2, with the 
difference that for this study no skin friction was allowed and the pile weight was 
set to 0. Three different definitions of the foot interface stiffness were 
considered, the default setting with foot of 1 and two increased foot interface 
stiffnesses with foot of 10 and 500.  
 
Tab. 4: Input parameters for Mohr-Coulomb model 
 

parameter  value unit 

unit weight above groundwater table unsat 20.0 kN/m3 

unit weight below groundwater table sat 20.0 kN/m3 

Young's modulus E 33 185 kPa 

Poisson's ratio ' 0.30 -- 

effective friction angle  ' 20.0 ° 

effective cohesion c' 20.0 kPa 

dilatancy angle  0 ° 

lateral earth pressure coefficient at rest K0 0.8 -- 
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Fig. 39 Influence of Kfoot on the load-settlement behaviour of a single pile 

 
Fig. 39 illustrates the calculated load-settlement curves. All three models reach 
the predefined bearing capacity of the pile (Fmax = 1320 kN). The difference 
between the default settings and an increase of the foot interface stiffness by a 
factor of 10 is significant. A further increase to a factor foot of 500 has a 
relatively small influence on the global stiffness response. This is because the 
relative displacements between the last embedded beam node and the connected 
virtual node in the soil, to mobilize the base resistance Rs, are linearly connected 
to Kfoot. Fig. 40 shows the vertical displacements and the relative displacements 
along the embedded pile for a load level of 1000 kN. The vertical displacements 
uy are almost constant because the relative stiffness between the pile and the soil 
is high. Fig. 40 shows that the difference of settlements is identical to the 
difference of the relative displacements (urel).  
 

 
 
Fig. 40 Influence of Kfoot on settlement behaviour (load level 1000 kN) 
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Another problem obtained with these calculations was that the vertical mesh 
dependency, or the position of the embedded pile tip node, has a significant 
effect on the computed settlements of an embedded pile. In principle, the 
settlements (up) are the sum of elastic pile deflection (up,el) plus soil 
displacements at the pile tip (us) plus the relative displacements (urel), to mobilize 
the base resistance. For floating piles, where the relative stiffness between the 
pile and surrounding soil is relatively large, the pile displacements up should be 
mainly governed by the soil displacements, thus the soil stiffness. 
 

relselpp uuuu  ,  (71) 

 
Fig. 41 explains the location of the last embedded beam node within a solid 
wedge element. Twelve different positions for the last embedded pile node were 
studied and the maximum vertical pile displacements (up) were compared. Due to 
the fact that no skin friction is defined along the embedded pile and the weight of 
the pile is defined with zero, the vertical displacements should be almost the 
same in all calculations. But Fig. 42 shows that this is not the case; the maximum 
settlements of the pile are obtained once the end of the embedded pile 
corresponds with an edge-node of a solid soil element. Once the last node of the 
embedded pile is in the soil element, the vertical displacements decrease. The 
minimum is found if the node position is in the middle of the "second half" of the 
wedge element. In this particular example, the difference of vertical settlements 
of the pile, as a result of different positions of the pile tip node, is roughly 35%. 
 

 
 
Fig. 41 Definition of nodes within a 15 noded wedge element (left) and 

positions of last embedded beam nodes (right) 
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Fig. 42 Influence of last embedded beam node position on vertical pile 

displacements 

 
If the skin resistance of an embedded pile is taken into account, the results show 
that the mobilized skin friction close to the pile base is largely affected by the 
foot interface stiffness Kfoot. Fig. 43 shows, for the load levels 500 kN and 1500 
kN, the mobilized skin friction ts along an embedded pile and the corresponding 
relative displacements. With the default foot interface stiffness the mobilized 
skin friction at the pile base is unrealistically large, but on the other hand, when 
increasing Kfoot by a factor of 100 small skin tractions, even negative values of ts, 
are mobilized close to the pile tip. 
 

 
 
Fig. 43 Influence of Kfoot on mobilized skin friction ts  
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5.3 On the influence of the embedded pile interface 
stiffnesses 

 
The global stiffness response Kep of an axially-loaded single pile is defined as the 
sum of the skin resistance Rs plus the base resistance Rb divided by the pile 
displacements. Equation 72 demonstrates that for a floating pile, the soil 
displacements us should dominate the global stiffness response and the relative 
displacements urel are relevant to the mobilization of the pile resistances. As long 
as the predefined pile resistances are not reached, these relative displacements 
should not have a big influence on Kep. Of course, the relative displacements are 
generally not constant along the pile length but depend on the pile stiffness, the 
load level, the soil stiffness and the pile bearing capacity. For an end-bearing 
pile, the pile stiffness should control mainly the load-settlement behaviour.  
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In principle, the soil stiffness, pile stiffness (relative stiffness), pile diameter and 
pile length have an effect on the mobilization of the shaft and base resistance. 
The influence of the pile length is taken into account automatically, because 
when using high order constitutive models the interface stiffnesses are related to 
the average stiffness of the allocated element. The diameter of the pile has a 
linear effect on the foot interface stiffness (Equation 66) but regulates the size of 
the elastic region.  
 
The geometry of the FEM model studied is shown in Fig. 44. The embedded pile 
has a diameter of 0.8 m, an effective length of 10.0 m and a Young's modulus 
(Ep) of 3e7 kPa. No groundwater is modelled and two different homogeneous soil 
conditions are considered, very dense sand and soft Rotterdam clay. The soil is 
described with both, the HS and the MC model. The input parameters are given 
in Tab. 5 to Tab. 8. 
 



5 Numerical investigation of the embedded pile concept 67 
 

 
 
Fig. 44 Finite element model  
 
Tab. 5: Hardening Soil properties of very dense sand 
 

parameter  value unit 

unit weight above groundwater table unsat 18.0 kN/m3 

unit weight below groundwater table sat 20.0 kN/m3 

reference secant stiffness in drained triaxial test E50,ref 60 000 kPa 

reference oedometric stiffness Eoed,ref 60 000 kPa 

reference unloading/reloading stiffness Eur,ref 180 000 kPa 

isotropic Poisson's ratio 'ur 0.2 -- 

reference pressure pref 100 kPa 

power index for stress dependency of stiffness m 0.6 -- 

effective friction angle ' 42 ° 

effective cohesion c' 0.1 kPa 

dilatancy angle  16 ° 

K0 value for normal consolidated conditions K0
nc 0.331 -- 
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Tab. 6: Hardening Soil properties of soft Rotterdam clay 
 

parameter  value unit 

unit weight above groundwater table unsat 16.0 kN/m3 

unit weight below groundwater table sat 18.0 kN/m3 

reference secant stiffness in drained triaxial test E50,ref 4 300 kPa 

reference oedometric stiffness Eoed,ref 1 800 kPa 

reference unloading/reloading stiffness Eur,ref 14 400 kPa 

isotropic Poisson's ratio 'ur 0.2 -- 

reference pressure pref 100 kPa 

power index for stress dependency of stiffness m 0.9 -- 

effective friction angle ' 27 ° 

effective cohesion c' 15 kPa 

dilatancy angle  0 ° 

K0 value for normal consolidated conditions K0
nc 0.546 -- 

 
Tab. 7: Mohr-Coulomb properties of very dense sand 
 

parameter  value unit 

unit weight above groundwater table unsat 18.0 kN/m3 

unit weight below groundwater table sat 20.0 kN/m3 

Young's modulus E 44 600 kPa 

Poisson's ratio ' 0.30 -- 

effective friction angle  ' 42.0 ° 

effective cohesion c' 0.1 kPa 

dilatancy angle  0 ° 

lateral earth pressure coefficient at rest K0 0.331 -- 
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Tab. 8: Mohr-Coulomb model properties of soft Rotterdam clay 
 

parameter  value unit 

unit weight above groundwater table unsat 16.0 kN/m3 

unit weight below groundwater table sat 18.0 kN/m3 

Young's modulus E 1 340 kPa 

Poisson's ratio ' 0.30 -- 

effective friction angle  ' 27.0 ° 

effective cohesion c' 15.0 kPa 

dilatancy angle  0 ° 

lateral earth pressure coefficient at rest K0 0.546 -- 

 

5.3.1 Foot interface stiffness 
 
Fig. 40 illustrates that the relative displacements to mobilize the full foot 
resistance are in the range of 20% of the total pile displacements (for foot = 1), 
but this value should be much smaller because the displacements beneath the pile 
base should primarily depend on the compressibility of the soil. As a 
consequence, the foot interface stiffness defined in the embedded pile 
formulation is probably too small and should be increased. To find a suitable 
value for the foot interface stiffness to improve the load-settlement behaviour, 
some studies are presented in this chapter. The aim is to find a factor for the foot 
interface that reduces the "additional" settlements necessary to mobilize the base 
resistance, and on the other hand, to find a value that does not lead to numerical 
ill conditions (chapter 3.4.2).  
 
Because of the difference of the soil conditions, different ultimate base 
resistances Fmax were defined. For the dense sand, Fmax is 2300 kN, and for the 
soft Rotterdam clay, Fmax equals 500 kN. These values are a cautious estimate 
using Vesic's approach (see chapter 2.2.1). To study the influence of Kfoot the 
load transfer via the pile shaft is set to zero. 
 
Fig. 45 shows the influence of the foot interface stiffness on the load-settlement 
behaviour of the pile, for very dense sand. There is a big influence on the load-
settlement behaviour between the standard definition of the base interface 
stiffness (foot = 1) and an increased spring interface stiffness. Until an increase 
by a factor of 5, the influence is significant. A further increase of foot from 5 to 
500 has a rather small impact on the global stiffness response of the pile.  
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Fig. 45 Influence of foot on the load-settlement behaviour (dense sand; MC) 
 

 
 
Fig. 46 Influence of foot on the load-settlement behaviour (soft Rotterdam 

clay; MC) 
 
The unrealistically high value of foot = 500 was chosen to check if numerical 
instabilities occur once the base interface stiffness is very high. But with the 
Mohr-Coulomb model, no numerical problems arise. Fig. 46 represents the same 
results for the soft Rotterdam clay. The settlements are unrealistically high, but 
the aim of this study was to prove the performance for extreme values of both the 
strength and stiffness of the surrounding soil.  
 
When using the Hardening Soil model for the surrounding soil, numerical 
problems were encountered. Fig. 47 shows the load-settlement curves when 
using the soft Rotterdam clay with a foot value of one for two different loading 
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procedures. In one analysis, the theoretical failure load is applied in one 
calculation phase, and in the other, the load is increased stepwise 
(10/100/300/500/525 kN). With higher values of foot, the numerical instabilities 
are even more pronounced. 
 

 
 
Fig. 47 Influence of loading procedure (soft Rotterdam clay; HS) 
 
A number of calculations showed that a modification of the iterative settings of 
the FEM program yield much better results. With deactivated arc length control 
(Memon & Su 2004), less numerical instabilities are found, but the load steps are 
relatively large and the program is “satisfied” earlier. The reason is most 
probably related to the global error check, where the weight of the soil is also an 
inactive load (Equation 76).  
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 and  are the incremental strains and the incremental stresses respectively, 
and CSP indicates the amount of plasticity. To force the program to apply the 
pile head load in more steps, the global tolerated error can be reduced. As a 
consequence the denominator of Equation 76 is smaller, thus making the result 
more accurate. 
 
To evaluate the influence of the foot interface stiffness when using the HS 
model, the tolerated error was reduced to 0.5% and the iteration procedure of the 
automatic step size algorithm was modified so that the load steps would not 
increase within one calculation phase. Of course the numerical problems are less 
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pronounced if skin friction along an embedded pile is allowed, because more 
plasticity is involved in the calculation and therefore the load steps applied are 
automatically smaller. 
 
Fig. 48 shows the influence of the foot factor on the load-settlement behaviour 
for the soft Rotterdam clay. When using the dense sand, the same impact of Kfoot 
on Kep was found.  
 

 
 
Fig. 48 Influence of foot on the load-settlement behaviour (soft Rotterdam 

clay; HS) 
 
The results for both materials and both constitutive models show that the 
interface stiffness is not high enough and the influence on the load-settlement 
behaviour is intolerably high. When using high order constitutive models, the 
influence of foot is smaller because Kfoot is controlled by the unloading/reloading 
stiffness Eur.  
 
Nonetheless, the foot interface stiffness should be increased by a factor of 5 to 
10. 
 

5.3.2 Skin interface stiffnesses 
 
The interaction of an embedded pile along the pile shaft is modelled by means of 
embedded interfaces (Fig. 30). Three different interface stiffnesses are used, 
namely an elastic shear interface stiffness Ks, and a normal and tangential 
interface stiffness Kn and Kt. The definitions of the stiffnesses are given in 
Equation 64 and 65. 
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In the first part of this chapter, the influence of the constitutive model on the 
embedded pile interface stiffness, and as a consequence on the skin friction 
mobilization, is presented. In the following, the necessity of a stress-dependent 
interface stiffness will be discussed and the influence of s, n, s and n on the 
global load-settlement behaviour is shown. For all calculations in this chapter the 
base resistance is set to zero. The studies were performed with the medium fine 
model shown in Fig. 36. The parameters used for the soil and the embedded pile 
are given in the Tab. 2, Tab. 3 and Tab. 4, but no overconsolidation (POP) is 
taken into account. The ultimate skin traction profile is defined with a constant 
distribution of skin friction (Ttop,max = Tbot,max = 201.368 kN/m); from that follows 
that the piles have a maximum shaft capacity of 1913 kN. 
 

 
 
Fig. 49 Skin friction mobilization for different load levels (MC model) 
 
The results for different load levels obtained with the Mohr-Coulomb model are 
illustrated in the Fig. 49 to Fig. 51. The mobilization of skin friction (Fig. 49) 
along the pile shaft is almost constant; a linear increase towards the pile base is 
notable only for load levels close to the failure load. The high skin friction 
mobilization close to the pile base comes from the influence of the missing foot 
resistance, which yields large values of relative displacements at the pile tip. The 
ultimate skin friction profile, or the ultimate bearing capacity, is reached (no 
premature failure). Due to the constant mobilization of skin friction, the normal 
force distribution is approximately linear (Fig. 50), and as a result of the high 
relative stiffness between the pile and surrounding soil the pile settlements are 
nearly constant (Fig. 51). 
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Fig. 50 Normal force distribution for different load levels (MC model) 
 

 
 
Fig. 51 Vertical pile displacements for different load levels (MC model) 
 
When using the HS model, stress dependency of stiffness is generally taken into 
account. Equations 63 to 66 show that the stiffness of the surrounding soil affects 
the embedded interface stiffnesses.  
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Fig. 52 shows the mobilized skin friction along the pile shaft for the load levels 
250 kN and 1000 kN. In one calculation the m value, which controls the change 
of stiffness related to the stress level, is set to zero, and in another calculation the 
standard m value of 0.9 is used. 
 
The mobilization of ts develops stepwise because Ks is related to the average 
value of G within the allocated soil element. Of course, this is true as long as the 
relative displacements are almost constant (high relative stiffness). From the 
inclined shear stress distribution along the pile shaft, it follows that the normal 
force in the pile has to decrease non-linearly over depth (Fig. 53). 
 

 
 
Fig. 52 Skin friction mobilization for different m-values (HS model) 
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Fig. 53 Normal force in the pile for different m-values (HS model) 
 
In the following, the embedded interface stiffnesses are defined independently 
from the soil stiffness (s = n = 0); instead, a constant value of 
Ks = s = 5e5 kN/m2 is used. Fig. 54 illustrates the mobilization of ts for the load 
levels 100, 500 and 1000 kN for both the HS and the MC model. The MC model 
mobilizes the skin friction almost constantly. When using the HS model for the 
surrounding soil in combination with a constant interface stiffness, no “step-
shaped” mobilization is obtained, but the skin friction is significantly inclined. 
The cause for this behaviour is the stress dependent stiffness of the surrounding 
soil, which yields a different relative displacement profile over depth (Fig. 55). 
 

 
 
Fig. 54 Skin friction mobilization for different load levels (HS & MC model) 
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Fig. 55 Relative displacements for different load levels (HS & MC model) 
 
The improved embedded pile concept should allow the calculation of both an 
accurate distribution of the skin friction and a realistic mobilization of the skin 
friction. As shown in Fig. 55, the constitutive model of the surrounding soil plays 
a significant role. Stewart & Kulhawy (1981) presented load transfer functions 
depending on the soil respectively pile stiffness. Rajapakse (1990) performed 
elastic analysis of axially-loaded piles in non-homogeneous incompressible 
elastic soil and presented the influence of relative stiffness, between pile and soil, 
and the impact of increasing soil stiffness over depth on the skin friction 
distribution (Fig. 56).  
 
Rajapakse (1990) normalized all results, with h  representing the slenderness 
ratio of the pile, )(zT  the contact traction in vertical resp. z-direction, E  the 
stiffness ratio and  the degree of non-homogeneity of the soil.  
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Fig. 56 Contact traction for different stiffness ratios (left) and different 

degrees of soil non-homogeneity (right) (after Rajapakse 1990) 
 
Rajapakse (1990) concluded that the traction along the pile shaft depends 
considerably on the slenderness ratio and the degree of soil non-homogeneity. 
With decreasing stiffness ratios, more skin friction is mobilized at the upper parts 
of the pile, because the relative displacements along the pile shaft are 
significantly affected by the elastic deflection of the pile. The increase of 
stiffness with depth yields an inclined skin friction profile, which increases 
towards the pile tip. 
 
The open question is if it is necessary to also use a stress dependent stiffness for 
the embedded pile interfaces. To study the effect of varying interface stiffnesses, 
a 2D axisymmetric model with the dimensions Bm = 50 m and Dm = 55 m was 
defined. The axially-loaded pile has a length of 20 m, a diameter of 0.8 m and a 
stiffness Ep of 3e7 kPa. To obtain reliable stress distributions close to the pile, a 
relatively fine mesh, consisting of nearly 1100 15 noded elements, is used, and 
interfaces with a Rinter value of 0.7 are defined. The four different scenarios 
investigated are given in Tab. 9, and Tab. 10 displays the HS parameters used.  
 
Fig. 57 illustrates the skin friction mobilization for different load levels. 
Scenarios A and C, with stress dependent stiffnesses, behave differently 
compared to the calculation with a constant stiffness of the interface. A and C 
mobilize more skin friction at the lower part of the pile and B and D show a 
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constant mobilization of shear stresses. As a result, more plasticity is also present 
in the calculations with constant interface stiffness. This is indicated with the 
length lpl in Fig. 57. The distribution of the ultimate skin friction is similar for all 
for cases (equation 40). The global load-settlement behaviour of a pile is 
governed by the stiffness of the soil, therefore case A and B, as well as C and D, 
yield similar load-settlement curves (Fig. 58). However, due to the different 
mobilizations, a difference in the first part of the load-settlement curve is 
obtained: the calculations with stress-dependent interface stiffnesses behave less 
stiff. Another important effect is that the maximum skin friction is mobilized at a 
different load level; this shift is related to a higher tip load when modelling the 
surrounding soil with stress dependent stiffness. 
 
Tab. 9: Different scenarios analysed 
 

 soil interface 

scenario A stress dependent stiffness stress dependent stiffness 

scenario B stress dependent stiffness constant stiffness 

scenario C constant stiffness stress dependent stiffness 

scenario D constant stiffness constant stiffness 

 
Tab. 10: Hardening Soil properties of dense sand 
 

parameter  value unit 

unit weight above groundwater table unsat 18.0 kN/m3 

unit weight below groundwater table sat 20.0 kN/m3 

reference secant stiffness in drained triaxial test E50,ref 30 000 kPa 

reference oedometric stiffness Eoed,ref 30 000 kPa 

reference unloading/reloading stiffness Eur,ref 90 000 kPa 

isotropic Poisson's ratio 'ur 0.2 -- 

reference pressure pref 100 kPa 

power index for stress dependency of stiffness m 0.55/0 -- 

effective friction angle ' 41 ° 

effective cohesion c' 0.1 kPa 

dilatancy angle  15 ° 
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Fig. 57 Shear stress mobilization for different load levels 
 
From this, it can be reasoned that the mobilization of skin friction is mainly 
related to the stiffness definition of the interface and not to the stiffness definition 
of the adjacent soil. However, the mesh coarseness also has an influence on the 
shear stress mobilization. 
 
Further calculations were conducted using different soil types, a loose sand and a 
soft clay. The obtained results show the same behaviour as the dense sand; 
furthermore, the influence of the stiffness ratio E  and calculations with a very 
soft pile (Ep = 1e5 kPa) were studied. As expected, the influence of the stress 
dependent interface stiffness is not very pronounced once the pile behaviour is 
governed by the elastic deformation of the pile. 
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These studies show that embedded piles, used in combination with stress 
dependent soil stiffness, have to take the stress dependent interface stiffness into 
account. 
 

 
 
Fig. 58 Load-settlement curves for all four scenarios 
 
To find a suitable value for the skin interface stiffness of an embedded pile and to 
evaluate the impact of Ks on the load-settlement behaviour, a number of 
calculations using the MC and the HS model were performed. The finite element 
model utilized is shown in Fig. 44, and the rather soft Rotterdam clay (Tab. 6 and 
Tab. 8) and a dense sand (Tab. 5 and Tab. 7) were used again. For these studies, 
both the skin and the base resistance of the EP were taken into account. The 
maximum foot resistance Fmax is defined with 500 kN for the Rotterdam clay and 
2300 kN for the dense sand. The foot interface stiffness is increased by a factor 
foot of 10. The maximum skin resistances are estimated according to DGGT AK 
2.1 (2007). A constant ultimate shear stress distribution of 50 kPa for the 
Rotterdam clay and 100 kPa for the dense sand was defined. Because of the 
results presented in Fig. 57, the interface stiffness was modified with an s value 
and s set to zero. The normal and tangential interface stiffnesses were not 
changed (n = 1, n = 0). 
 
Fig. 59 illustrates the results obtained with the Rotterdam clay using the MC 
model. The normal stress distribution is plotted for 50%, 75% and 100% of the 
theoretical failure load. Additionally, the mobilized base resistance for 75% of 
the bearing capacity of the pile is outlined. A modification of the skin interface 
stiffness does not have an effect on the normal force distribution along the pile, 
and thus has no influence on the skin friction mobilization. In Fig. 59 only the 
results for s of 1 and 10 are plotted. The influence on the mobilization of the 



82 5 Numerical investigation of the embedded pile concept 
 

base resistance is very small and the load-settlement curves for different skin 
friction stiffnesses are more or less identical, but the studies showed that with 
increasing Ks values, numerical problems (premature failure) arise. With the 
dense sand the findings are similar, but due to the higher soil stiffness, which 
affects the embedded interface stiffness, pronounced numerical problems 
appeared. 
 
Fig. 60 shows the normal force distribution and mobilized base resistance at a 
load level of 75% for the Rotterdam clay when using the Hardening Soil model. 
The results confirm that a modification of the skin interface stiffness does not 
influence the behaviour of an embedded pile.  
 

 
 
Fig. 59 Normal force distribution (left) and mobilized base resistance (right)-

Rotterdam clay (MC model) 
 

 
 
Fig. 60 Normal force distribution (left) and mobilized base resistance (right)-

Rotterdam clay (HS model) 
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Fig. 61 Load-settlement curves for different interface stiffnesses-Rotterdam 

clay (HS model) 
 
The global load-settlement behaviour of an axially-loaded pile is not affected by 
the s value, but like in the calculations with the MC model, premature failure 
arises if the skin interface stiffness is increased (Fig. 61). This problem will be 
discussed in detail in chapter 5.5 of this thesis. 
 
The results of the studies presented, show that the embedded pile interface 
stiffness should take a stress dependent stiffness into account, but a modification 
of the default settings (s = 1) is not necessary. It is important to remember that it 
is not possible to model the effect of dilatancy, as explained in chapter 3.5.3, 
with the embedded pile approach. The influence of  has to be considered when 
defining the ultimate bearing capacity of the embedded pile. 
 

5.4 Influence of vertical mesh coarseness 
 
The normal force distributions illustrated in Fig. 59 and Fig. 60 show an increase 
close to the pile base, which indicates that (also with an existing foot force) some 
problems related to the skin friction close to the pile tip occur; in other words, 
relative displacement urel. Fig. 62 shows a close-up of the normal force and the 
mobilized skin friction distribution close to the pile tip. To find the reason for 
this behaviour and to see the influence of the position of the tip FE node of an 
embedded pile, a detailed study was performed on the distribution of 
displacements in the soil and the pile (relative displacements). Due to the fact 
that the position of the end node of the EP is varied, information regarding the 
vertical mesh dependency was also obtained. The finite element model has the 
dimensions Bm/Lm/Dm of 30/30/30 m and consists of roughly 4000 15 noded 
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wedge elements. The parameters of the embedded pile with an effective length of 
10.0 m are given in Tab. 11. This results in a bearing capacity of nearly 
3411 KN. The foot interface stiffness is defined with the improved stiffness (foot 
= 10). The soil properties are given in Tab. 12. 
 
To realise that the tip node of the embedded pile ends at different positions inside 
the finite element, the mesh is modified in all calculations (Fig. 63). As a 
consequence, the pile length remains the same and the different calculations are 
comparable. The influence of the mesh coarseness, due to the modification of the 
vertical mesh, can be considered very small. Seven different embedded pile tip 
node positions were studied (Fig. 63).  
 

 
 
Fig. 62 Normal force distribution (left) and mobilized base resistance (right) 

close to the pile tip - Rotterdam clay (MC model) 
 
Tab. 11: Input parameters for embedded pile 
 

parameter  value unit 

Young's modulus E 3e7 kPa 

bulk unit weight   0.0 kN/m3 

diameter  d 0.8 m 

skin resistance at pile top Ttop,max 201.06 kN/m 

skin resistance at pile bottom Tbot,max 201.06 kN/m 

base resistance Ffoot 1400 kN 
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Tab. 12: Mohr-Coulomb model properties of loose sand 
 

parameter  value unit 

unit weight above groundwater table unsat 18.0 kN/m3 

unit weight below groundwater table sat 20.0 kN/m3 

Young's modulus E 11 890 kPa 

Poisson's ratio ' 0.30 -- 

effective friction angle  ' 34.0 ° 

effective cohesion c' 0.1 kPa 

dilatancy angle  0 ° 

lateral earth pressure coefficient at rest K0 0.441 -- 

 

 
 
Fig. 63 Schematic representation of EP discretization (left); modelling 

procedure (middle) and analysed tip node positions (right) 
 
Fig. 64 shows the shear stress and normal force distribution of tip node position 1 
for two load levels. Both the normal force and the shear stress distribution do not 
show any jumps close to the pile base. Also, the computed soil deformations, pile 
settlements and resulting relative displacements are consistent (Fig. 65).  
 
A jump in the skin friction profile occurs close to the pile tip if pile tip node 
position 4 is considered (Fig. 66), but the displacements of the soil nodes are 
smaller than the vertical displacements of the embedded pile.  
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Fig. 64 Normal force and mobilized shear stress for tip node position 1 
 

 
 
Fig. 65 Soil and pile displacements (left); soil, pile and relative displacements 

close to the pile tip (right) 
 
The reason for the negative skin friction and negative relative displacements is 
the evaluation of the displacement field inside the 15 noded wedge elements. The 
relative displacements urel are calculated at the position of the embedded pile 
nodes, and the displacements of the dedicated virtual soil nodes us are worked 
out using the nodal displacement values us

n and the matrix Ns, including the 
shape functions of the solid soil elements (Equation 44). The interpolation 
functions of a 15 noded wedge element are given in Appendix C. When 
calculating the virtual soil node displacements for different positions of the 
embedded pile tip node with a simple Maple program, it results in negative 
relative displacements in some cases. 
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Fig. 66 Normal force and mobilized shear stress for tip node position 4 
 
Fig. 67 shows the relative displacements urel close to the pile tip for 20% of the 
failure load. Different distributions of relative displacements are calculated 
depending on the position of the tip node. Apparently, the behaviour is 
appropriate only if the embedded pile tip node and a corner node of a 15 noded 
wedge element correspond. The studies also showed that the minimum relative 
displacements at the pile tip are obtained once the tip node of the EP coincides 
with a corner node of the solid soil element.  
 

 
 
Fig. 67 Relative displacements urel close to the pile tip 
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The influence of the foot interface stiffness on embedded pile and soil 
displacements close to the pile base is shown in Fig. 68. The load level is 20% of 
the theoretical failure load and the EP tip node position 4 is chosen. The 
behaviour is similar with a foot factor of 1, but due to the fact that the relative 
displacements necessary to mobilize the foot resistance are bigger, the EP 
settlements increase and no negative values of urel are obtained. Nevertheless, the 
mobilization of skin friction shows a non-physical jump close to the end of the 
pile. 
 

 
 
Fig. 68 Influence of foot on displacements close to the pile tip (left) and on 

the mobilized skin friction (right) 
 
The influence of the EP tip node position on the global load-settlement behaviour 
is illustrated in Fig. 69. Position 3 yields maximum pile settlements, while 
position 4 results in minimum pile settlements. A difference of roughly 30% is 
achieved at a load level of nearly 3400 kN. 
 
The presented results show clearly that both the global behaviour and the 
mobilization of pile resistance of an embedded pile are different for different 
positions of the final EP node within a 15 noded wedge element. Hence, it is 
necessary that the EP tip node corresponds with a corner node of a 15 noded 
finite element. In PLAXIS 3DF, this is possible by defining a horizontal 
workplane at the end of the embedded pile. In PLAXIS 3D the mesh generation 
automatically arranges a corner node of a 10 noded tetrahedral element at the end 
of the EP. 
 
If a large pile group is considered (with PLAXIS 3DF) and if the difference of 
pile lengths is small, it is perhaps necessary to model an average pile length in 
order to avoid very thin finite elements. 
 



5 Numerical investigation of the embedded pile concept 89 
 

 
 
Fig. 69 Global load-settlement behaviour for different EP tip node positions 
 

5.5 Influence of elastic region approach 
 
As shown in chapter 5.2, the mesh coarseness has a significant effect on the load-
settlement behaviour of an embedded pile. The influence of the vertical mesh 
coarseness is related to the position of the EP tip node within the finite element 
(see chapter 5.4), but additionally, the horizontal mesh coarseness also has a 
noteworthy impact on the displacements of a single pile. Fig. 70 shows a detail of 
vertical soil displacements next to the embedded pile. The FE model and the pile 
and soil parameters are the same as in the last chapter. The EP tip node position 1 
is considered. 
 
In reality, the distribution of vertical displacements inside the cross section of a 
concrete pile is almost constant, and the pile displacements up are mainly related 
to the stiffness and strength of the surrounding soil. Additional displacements 
inside the elastic region take place when modelling piles with the embedded pile 
concept, because inside the real pile dimensions only plasticity of the soil is 
excluded but the stiffness remains unchanged. The amount of vertical 
displacements obtained inside the elastic region depends on the horizontal mesh 
coarseness next to the EP, thus finer discretizations yield more deformations. 
 
To get rid of the mesh dependency, the settlements inside the elastic region must 
be reduced. This can be done with the factors G,S and G,B, which increase the 
stiffness inside the elastic zone. Hence, the stiffness can be modified in addition 
to a switch to elastic soil behaviour in all Gauss points. 
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Fig. 71 shows the effect for a pure friction pile (foot = 0). The FE model used is 
illustrated in Fig. 44 and the Hardening Soil input parameters of Rotterdam clay 
are given in Tab. 6. Because of the relatively fine mesh next to the pile, in 
combination with an EP pile diameter of 0.8 m, all Gauss points of the allocated 
finite element are multiplied by G,S, and as a consequence the skin interface 
stiffness Ks is also increased by the same factor. 
 

 
 
Fig. 70 Detail of vertical soil displacements next to the embedded pile (left) 

and schematic representation of displacements  
 
The normal force distribution along the embedded pile is more or less 
independent of the stiffness inside the elastic region, which also points out that 
the effect on the mobilized shear stresses is relatively small. Nevertheless, the 
analyses show that with higher interface stiffnesses the skin friction profile is 
more inclined, which indicates as well that the quantity of Ks has a slight 
influence on the skin friction mobilization. An increased stiffness inside the 
elastic region shows a significant effect on the load-settlement behaviour of an 
axially-loaded pile. Due to the fact that the program deals with a “virtual” 
volume (see chapter 4.5), a factor G,S of 3 already yields an excessive reduction 
of vertical displacements. But the size and the shape of the modified volume of 
course depends on the mesh coarseness and the equivalent pile radius Req of the 
embedded pile. 
 
When modelling a floating pile where both tip and shaft resistance are present 
(Fig. 72), the behaviour is very similar. Since the foot interface stiffness has a 
relevant impact on the vertical displacements of an EP (see chapter 5.3.1), two 
effects change the load-settlement behaviour, namely the increase of the foot 
interface stiffness and the modification of the soil stiffness inside the elastic 
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region. But as shown in Fig. 48, a further increase of foot from 10 to 500 leads to 
no noteworthy reduction of settlements. Thus the difference in the load-
settlement curves can be traced to the increase of stiffness within the elastic 
region. 
 
One problem recognized during the studies presented in this chapter is that in 
some circumstances, stresses inside the elastic region decrease. Therefore, the 
stress flow inside the elastic region and the consequent difficulties are discussed 
in the following chapter. 
 

 
 
Fig. 71 Normal force distribution (left) and load-settlement curves (right ) for 

different G,S factors 
 

 
 
Fig. 72 Load-settlement curves for different G,S factors 
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5.5.1 Stress flow inside the elastic region  
 
To study the stress flow inside the elastic region of the embedded pile concept, a 
very simple two-dimensional axisymmetric model was used. The model 
dimensions Bm/Dm are 50/55 m. The pile has a length L of 20.0 m and a "real" 
radius of 0.4 m. The elastic region and the embedded pile are modelled 
explicitly. The elastic region has the dimensions of the "real" pile (Req = 0.4 m), 
and the EP is defined as a very slender pile in the centre of the elastic region, 
with a radius of 3.0 cm. The load is applied as a constant distributed load at the 
top of the small cluster representing the embedded pile. Fig. 73 shows the 
axisymmetric finite element model. 
 
The soil is described with the Mohr-Coulomb model (Tab. 13) and the stiffness 
of the elastic region is the same as for the soil. To ensure that no embedded pile 
deflections occur, the inner cluster (with the radius of 3.0 cm) is defined with a 
very high Young's modulus of 3e15 kPa. The initial stresses are calculated with 
the K0 procedure using a lateral earth pressure coefficient at rest K0 of 1-sin ' 
(Jaky 1944). 
 

 
 
Fig. 73 2D axisymmetric finite element model  
 
Fig. 74 represents the deformed mesh and the rotation of principle stresses (stress 
flow) inside the elastic region for a pile head load of 500 kN. Due to this rotation, 
the stresses inside the elastic region vary. Fig. 75 illustrates the stresses next to 
the embedded pile after the generation of the initial stress filed, with a loading of 
500 kN, 1000 kN and 2000 kN. The Cartesian and principle effective stresses are 
worked out at Gauss points close to the embedded pile shaft.  
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Tab. 13: Mohr-Coulomb input parameters for medium dense sand 
 

parameter  value unit 

Young's modulus E 4e4 kPa 

Poisson's ratio ' 0.30 -- 

effective friction angle  ' 34.0 ° 

effective cohesion c' 0.1 kPa 

dilatancy angle  0 ° 

bulk unit weight of soil  18.0 kN/m3

lateral earth pressure coefficient at rest K0 1-sin ' -- 

 
At initial conditions, the vertical effective stresses 'yy and the major principle 
stresses '1 are equal. The same is true for 'xx and the minor principle stress '3. 
Additionally, the vertical and horizontal effective stresses at the pile base are 
calculated analytically. During loading, the Cartesian effective stresses stay more 
or less the same but the principle stresses change significantly, with '1 
increasing and '3 decreasing. At the load level 2000 kN, the minor principle 
stress '3 is positive along the entire pile shaft. Of course, if the distance between 
the embedded pile and the stress points is larger, the minor principle stress is 
affected at higher loads. 
 

 
 
Fig. 74 Deformed mesh and rotation of principle stresses 
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Fig. 75 Variation of stresses inside the elastic region during axial loading 
 
The stress flow within the elastic region seems to be the problem when using 
embedded piles in combination with high order constitutive models, which take a 
stress-dependent stiffness into account. Due to the fact that '3 decreases and the 
stiffness inside the elastic region is related to the minor principle stress (Equation 
78), the stiffness within the elastic region is getting very small. The threshold 
value of Eur is worked out with '3 of 0. 
 
But Fig. 76 indicates that the isotropic effective stress p' does not change much, 
while the deviatoric stress component q reduces significantly during loading. 
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Fig. 76 Variation of effective principle stresses, mean effective stress and 

deviatoric stress inside the elastic region 
 

5.5.2 Stiffness definition inside the elastic region 
 
The tests presented in the previous chapter showed that the principle stresses 
inside the elastic region change significantly during axial-loading of a pile. Due 
to the reduction of '3, the stiffness of the soil reduces if, for example, the HS 
model is used, and displacements inside the elastic region also occur. At higher 
load levels numerical problems, like premature failure, arise as well. 
 
Because of the averaging procedure for the definition of the embedded pile 
interface stiffnesses (see chapter 4.4), Ks, Kn, Kt, and Kfoot are also affected. But 
numerical tests with the HS model using different m values and different 
embedded interface stiffnesses indicated that the problem is rather related to the 
stress dependency of stiffness inside the elastic region (solid elements) instead of 
to a reduction of the embedded pile interface stiffnesses. With low m values, the 
reduction of '3 is much smaller, because the term of Equation 78 (which takes 
the stress dependency of stiffness into account) does not have a big influence. 
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However, without stress-dependent stiffness of both the soil inside the elastic 
region and the embedded interface stiffness, the mobilization of skin friction is 
not realistic (chapter 5.3.2). 
 
But Fig. 76 demonstrates that the mean effective stress p' does not change 
significantly. Thus, the use of p' for the definition of the stiffness inside the 
elastic region (Eel.R) could improve the behaviour of embedded piles. The 
problem with this approach is that if the Eel.R is related to p', different stiffnesses 
are present inside the elastic region and in the surrounding soil after the 
generation of the initial stress field, which is not sustainable. Hence, a correction 
factor el.R must be introduced which compensates the difference. If the stiffness 
Eur outside the elastic region is equated with Eel.R, which must be true for the 
initial conditions, el.R can be worked out easily. The el.R factor is in the range of 
0.5 to 0.75 for normally consolidated and slightly overconsolidated soils with K0 
values between 0.25 and 2.0. 
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Fig. 77 Finite elements next to the embedded pile 
 
Fig. 77 shows two 15 noded finite elements next to an embedded pile and Tab. 
14 and Tab. 15 display the stiffnesses of the six highlighted stress points for 
different vertical loads. The finite element model used is illustrated in Fig. 36 and 
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consists of 4556 elements. The groundwater level is 3.5 m below the surface. The 
Hardening Soil parameters for the soil are given in Tab. 16. 
 
When using the standard definition of stiffness inside the elastic region, Eel.R 
reduces with increasing load level. The closest Gauss point degrades at a load 
level of 500 kN to a threshold value of 2931 kPa. When using p' in combination 
with el.R as reference stress, the stiffness increases slightly during loading. At a 
vertical load of 1500 kN, the stiffness inside the elastic region is about 25% 
higher compared to the initial stiffness. But in the author's opinion, this change of 
stiffness can be classified as insignificant. Furthermore the distance of the Gauss 
point to the EP is of minor importance. 
 
Tab. 14: Stiffness for different load levels – reference stress '3 

 

stress point distance from EP [m] stiffness Eel.R [kPa] 

100 kN 500 kN 1500 kN 

1 0.16 25 831 2 931 2 931 

2  27 634 26 127 21 987 

3   27 633 26 218 23 473 

4 0.59 27 618 26 353 21 790 

5  27 669 27 508 25 555 

6  27 615 26 303 20 736 

 
Tab. 15: Stiffness for different load levels – reference stress p' 
 

stress point distance from EP [m] stiffness Eel.R [kPa] 

100 kN 500 kN 1500 kN 

1 0.16 27 728 28 609 34 357 

2  27 761 28 745 34 854 

3   27 729 28 627 34 304 

4 0.59 27 706 28 502 34 536 

5  27 707 28 508 34 523 

6  27 669 27 695 22 682 
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Tab. 16: Properties of loose sand (HS)  
 

parameter  value unit 

unit weight above groundwater table unsat 18.0 kN/m3 

unit weight below groundwater table sat 20.0 kN/m3 

reference secant stiffness in drained triaxial test E50,ref 12 000 kPa 

reference oedometric stiffness Eoed,ref 16 000 kPa 

reference unloading/reloading stiffness Eur,ref 60 000 kPa 

isotropic Poisson's ratio 'ur 0.2 -- 

reference pressure pref 100 kPa 

power index for stress dependency of stiffness m 0.75 -- 

effective friction angle ' 34 ° 

effective cohesion c' 0.1 kPa 

dilatancy angle  0 ° 

K0 value for normal consolidated conditions K0
nc 1-sin' -- 

 
Fig. 78 illustrates the contour lines of the current stiffness Eur for the standard 
definition of the elastic region and for the case where Eel.R is related to p'. Fig. 79 
shows the distribution of Eel.R close to the EP along the entire pile length. The 
considered load level is 500 kN. When using '3 as reference stress at a load level 
of 500 kN, the stiffness next to the EP is reduced along the entire pile to the 
threshold value. If p' is used instead of the minor effective principle stress, no 
relevant change of stiffness inside the elastic region occurs (at a load of 500 kN). 
A notable increase of Eel.R takes place solely at very high loads. However, this 
does not change the global behaviour of an axially-loaded pile. The effect on 
horizontally-loaded piles is shown in chapter 6.2.  
 
The analyses showed that the stress flow inside the elastic region (the previous 
chapter) is more or less independent of the reference stress used for the stiffness 
definition inside the elastic region. 
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Fig. 78 Influence of reference stress on the stiffness inside the elastic region 
 

 
 
Fig. 79 Stiffness next to an EP 
 
The effect of the mesh coarseness on the shape of the virtual volume (elastic 
region) is studied in the following. Two additional mesh discretizations (coarse 
and fine mesh) are investigated (Fig. 80). Fig. 81 shows the stiffnesses present at 
the Gauss points next to the EP. With the coarse discretization, the standard and 
new approach uses the same stiffnesses. This is because no stress points are 
inside the elastic region of the embedded pile, thus no stiffnesses are modified. 
Also interesting is that the stiffnesses change less when increasing the load. This 
indicates that the distance of the Gauss points to the embedded pile has a 
significant effect on the stiffness decrease. When using a very fine mesh in 
combination with the reference stress '3, the stiffness decreases already at very 
low load levels to a threshold value. Fig. 82 illustrates the contour lines of 
current stiffness for the fine mesh and a load level of 500 kN. The horizontal 
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cross section is 3,2 m below the ground surface and the dimension of the real pile 
is highlighted. With the improved approach, an approximately constant and 
unchanged stiffness is acting inside the virtual volume. Hence the numerical 
displacements inside the elastic region (see Fig. 70) are much smaller and a more 
realistic load-settlement behaviour can be obtained. 
 

 
 
Fig. 80 Coarse and fine mesh discretization 
 

 
 
Fig. 81 Stiffness next to an EP for a coarse (left) and a fine mesh (right) 
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Fig. 82 Contour lines of current stiffness at 500 kN 
 

5.5.3 Influence on load-settlement behaviour 
 
To demonstrate the influence of the stiffness definition of the elastic region on 
the load-settlement behaviour, the FE models presented in Fig. 36 and Fig. 80 are 
slightly modified so that the tip node of the embedded pile is located at a corner 
node of a 15 noded wedge element (see chapter 5.4). The base resistance is 
neglected to simplify the behaviour of the pile (foot = 0). 
 
Fig. 83 shows the load-settlement curve for the medium and fine mesh 
discretization and the two different reference stress approaches. The calculations, 
where p' is used as reference stiffness inside the elastic region, show a much 
stiffer global response, and the calculation with a medium mesh naturally 
behaves a bit stiffer compared to the calculation with a fine mesh discretization. 
The calculations with '3 as reference stress show kinks in the load-settlement 
curves. The analysis with the fine mesh shows the kink at about 100 kN and the 
calculation with the medium mesh at 500 kN vertical load. 
 
For friction piles, a kink in a load-settlement curve generally indicates the load 
level where the shaft resistance is fully mobilized, but the shaft resistance of the 
pile is defined with 1913 kN in the calculations presented, thus the kink is not 
related to Rsu. With the medium mesh, the vertical displacements - at a load level 
of 1000 kN - are more than 100% higher compared to the calculation with p' as 
reference stress. With the fine mesh the difference is even bigger. If the 
corresponding profile of the current stiffness next to the EP is worked out (Fig. 
84), one can see that when using the fine mesh, the stiffness is reduced to a 
threshold value at a load of 100 kN, and when using the medium mesh, the 
minimum stiffness is reached at a vertical load of 500 kN, the load level where 
the kinks occur. Thus, the reduction of stiffness inside the elastic region due to 
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the reduction of reference stress '3 is the reason for the kink in the load-
settlement curves presented in Fig. 83. The load levels where these kinks take 
place are related to the distance of the Gauss point to the embedded pile, or in 
other words, to the mesh coarseness of the problem. 
 
Of course, a kink also occurs once the ultimate skin friction is reached. But these 
kinks are rather related to the embedded interface definition (chapter 5.3.2) and 
the shape of the ultimate skin friction distribution (chapter 5.6), instead of to the 
elastic region approach.  
 

 
 
Fig. 83 Load-settlement curves for different mesh coarsenesses and reference 

stress definitions 
 

 
 
Fig. 84 Current stiffness next to the EP for different mesh coarsenesses and 

reference stress definitions 
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Fig. 85 shows load-settlement curves for vertically-loaded embedded piles, 
including a maximum foot resistance Fmax of 1320 kN. As explained in chapter 
5.3.1, foot has a notable influence on the load-settlement curves when using '3 
as reference stress. Once p' is used, an increase from foot of 1 to 5 does not 
significantly change the load-settlement behaviour. This is because the stiffness 
inside the elastic region does not reduce; hence the foot interface stiffness also 
remains almost constant during the calculation. Fig. 86 illustrates the distribution 
of relative displacements along the EP and the actual foot interface stiffness Kfoot 
at a vertical load of 1000 kN.  
 

 
 
Fig. 85 Load-settlement curves for different foot and G factors 
 
The averaging procedure (Equation 62) was used to work out the interface 
stiffness. With the improved definition of the elastic region, the foot interface 
stiffness is nearly independent of the mesh coarseness. That is also true for the 
skin interface stiffnesses Kn, Ks and Kt. Also, the distributions of relative 
displacements are almost the same for different mesh discretizations; a 
mentionable difference occurs only at the pile tip. Thus, higher base resistances 
are obtained with coarser meshes. But this deficiency is also present in the 
standard finite element approach, where coarser meshes yield higher base 
resistances. 
 
The studies also showed that an increased value of Kfoot to 5 in combination with 
p' as reference stress prevents the premature failure and therefore improves the 
numerical robustness of the model. 
 
The influence of an increased stiffness inside the elastic region is illustrated in 
Fig. 85. An increase of both the stiffness along the pile shaft (G,S) and the 
stiffness below the pile base (G,B) by a factor of 5 reduces the displacements 
inside the elastic region and yields, in this particular example with 2000 kN, to a 
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reduction of vertical displacements of roughly 30%. Of course, the modification 
of stiffness inside the elastic region also increases the interface stiffnesses of the 
EP and reduces the settlements of the first part of the load-settlement curve 
significantly (mainly governed by friction). Such a modification of stiffness 
inside the real pile dimension is potentially required for large diameter piles or 
piles with very high skin resistance, where otherwise significant numerical 
displacements inside Req are computed. The effect of G,B on the settlement 
behaviour is rather small.  
 

 
 
Fig. 86 Load-settlement curves for different foot interface stiffnesses (load 

level 1000 kN) 
 

5.6 Effect of ultimate skin friction distribution on the 
behaviour of EPs 

 
In chapter 5.3.2 of this thesis, the influence of stress-dependent interface stiffness 
on both the skin friction mobilization and the global load-settlement behaviour of 
a pile is investigated. In this chapter, the effect of the ultimate skin friction (ts,max) 
distribution is studied, which is an input to the analysis. The FE model used is 
shown in Fig. 44 and the soil parameters of Rotterdam clay are given in Tab. 6 
and Tab. 8. Both the Mohr-Coulomb and the Hardening Soil model were used. 
The foot interface stiffness is increased with a factor foot of 10 and the skin 
interface stiffness is defined with s of 1. The properties of the embedded pile are 
similar to those used in chapter 5.3. The ultimate skin resistance is the same in all 
calculations, but in one calculation a constant (Ttop,max = Tbot,max) is defined, and in 
the other, a linear ultimate distribution is defined. Fig. 87 shows the normal force 
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distributions and the corresponding ultimate skin friction profiles for both 
calculations when using the MC model. A constant ultimate skin friction 
distribution yields a linear decrease of normal force over the pile length, while a 
linear ultimate skin friction profile gives a non-linear decrease of normal force.  
 

 
 
Fig. 87 Normal force distribution at failure (left) and ultimate skin friction 

distribution (right) – MC model 
 
The global load-settlement behaviour is also influenced by the shear stress 
distribution at failure. Due to the fact that the pile is very stiff and the Mohr-
Coulomb model does not take a stress dependent stiffness into account, the 
mobilization of skin friction is almost constant (see chapter 5.3.2). As a 
consequence, the ultimate shaft resistance at the upper parts of the EP is 
immediately reached when using a linear ultimate skin friction profile, and this 
yields automatically to a less stiff global behaviour of the pile. Fig. 88 compares 
the load-settlement curves for both definitions of the ultimate skin friction.  
 
When using the HS model, the skin friction mobilization is not constant due to 
the stress-dependent stiffness of the soil and the embedded interface stiffness (see 
e.g. Fig. 52). Thus the calculation with a constant ultimate skin friction reaches 
the ultimate skin resistance first at the lower part of the pile. With a linear 
distribution of skin friction at failure, less plasticity at the pile shaft is present 
before the ultimate shaft resistance Rsu is reached. Hence the calculation with 
linear ts,max distribution shows a clear kink in the load-settlement curve, where the 
maximum shaft capacity is reached. No kink is obtained with a constant ts,max 
profile, because plasticity at the pile shaft occurs gradually. Fig. 89 illustrates the 
normal force along the pile and the load-settlement curves for the calculations 
with constant and linear ts,max profiles. 



106 5 Numerical investigation of the embedded pile concept 
 

 
 
Fig. 88 Comparison of load-settlement behaviour – MC model 
 

 
 
Fig. 89 Normal force distribution at failure (left) and load-settlement curves 

(right) – HS model 
 

5.7 Improved embedded pile definition 
 
The studies presented in chapters 5.3 to 5.6 demonstrate that the four criteria 
listed at the beginning of this chapter are influenced by a number of factors. The 
results indicate that the foot interface stiffness Kfoot is not high enough. When 
using high order constitutive models, the influence of foot is smaller, but 
nevertheless the stiffness should be increased by a factor of 5 to 10.  
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The skin interface stiffness studies show that the embedded pile skin interface 
stiffnesses must take a stress dependent stiffness into account to model the 
correct skin friction mobilization along an embedded pile. A modification of the 
size of Ks, Kn, and Kt is not necessary.  
 
The problems related to the vertical mesh dependency and the unrealistic 
distribution of skin friction close to the pile tip is associated with the position of 
the embedded pile tip node inside the solid finite element. This can be fixed with 
an embedded pile tip node, which corresponds with a corner node of a solid finite 
element. 
 
The stress flow within the elastic region yields problems when using embedded 
piles in combination with constitutive models that take a stress dependent 
stiffness into account. As '3 decreases, and the stiffness inside and the elastic 
region is related to the minor principle stress, the stiffness within the elastic 
region is also reduced. If the mean effective stress is used as reference stress for a 
stress-dependent stiffness inside the elastic zone, no relevant change of stiffness 
next to the embedded pile occurs. With this modification, the influence of the 
mesh coarseness on the load-settlement behaviour is also reduced to an 
acceptable value.  
 
The utilization of p' as reference stress in combination with an increased foot 
interface stiffness also prevents premature failure, meaning it improves the 
numerical robustness of the model. A global increase of the stiffness inside the 
elastic region reduces the numerical displacements resulting from the fact that an 
EP is a line element and does not occupy any volume. 
 
It is important to use realistic skin friction distributions at failure. The numerical 
studies demonstrate that the normal force, the skin traction and the load-
settlement behaviour are influenced by the choice of the input for the ultimate 
shaft resistance. Realistic results for single vertically-loaded piles using 
constitutive models, which take the stress dependency of stiffness into account, 
were obtained with a linear increased skin friction profile at failure. Of course, 
this is only true for drained, frictional material. For other applications it may be 
that another input of ultimate skin friction is appropriate. 
 
Tab. 17 indicates qualitatively the impact of particular modifications of the 
embedded pile concept on individual deficiencies of the EP concept. A value of 
zero stands for no effect, and a value of five for a large effect.  
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Tab. 17: Additional parameters for the Hardening Soil Small model 
 

criteria foot s G,S G,B Eel.R 

load-settlement behaviour 4 2 3 5 5 

distribution and mobilization of ts 1 1 2 1 5 

mobilization of Ffoot 5 1 1 3 2 

avoid numerical problems 3 3 1 1 5 
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6 Validation of embedded pile approach 
 
In the literature, a number of papers can be found on the validation of the 
standard embedded pile concept as implemented in PLAXIS 3DF. Septanika et 
al. (2007) and Engin et al. (2007) presented back-analyses of pile load tests. 
Septanika et al. (2008) showed that embedded piles could be applied for 
modelling soil reinforcements. Engin et al. (2008), Engin & Brinkgreve (2009) 
and Engin et al. (2009) investigated the pile group behaviour using EP. 
Regarding piled raft foundations, Lee et al. (2010) presented comparisons with 
other models. All these validation examples showed a reasonable agreement with 
other calculation approaches and/or measurements. But for most of the time, only 
load-settlement behaviour was considered, mainly governed by the stiffness of 
the surrounding soil. On the other hand, the aim of the following validations is to 
show that the improved EP concept is able to satisfy all four criteria mentioned in 
chapter 5.1 and to overcome the deficiencies discussed in chapter 5.2. 
 
In the following, the behaviour of the improved embedded pile concept is 
compared with results presented in the literature. In the calculations presented, 
the last node of the embedded pile corresponds with a corner node of a 15 noded 
wedge element, the foot interface stiffness is increased by a factor of 5 (foot = 5) 
and, if not explicitly mentioned, the stiffness inside the elastic region remains 
unchanged (G,S = G,B = 1).  

6.1 Performance of axially-loaded single piles 
 
In the first part of this chapter, linear elastic material behaviour is used to 
validate the general behaviour of the embedded pile concept related to mesh 
dependency, mobilization of skin friction for different stiffness ratios K  and the 
influence of non-homogeneous soil stiffness. In the second part, more advanced 
validation examples using non-linear soil behaviour are presented.  
 
The first example considered is a linear elastic axially-loaded pile in 
homogeneous linear elastic soil. This simple example was used by a number of 
geotechnical engineers to validate different calculation methods concerning the 
stress distribution along a single pile. Davis & Poulos (1980) used a method 
based on the theory of elasticity that employs the equations of Mindlin (1936). 
They studied the distribution of shear stress for piles with length to diameter 
ratios (L/D) of 25 and two different relative stiffnesses K  representing a more or 
less incompressible ( K  = 5000) and a compressible pile ( K  = 50).  
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RA is the ratio of pile section Ap divided by the area bounded by the outer 
circumference of a pile. RA equals one for solid piles. To enable rapid estimations 
in praxis, Poulos & Davis (1980) introduced two dimensionless parameters, one 
for the shear stress along the pile shaft and one for the depth below the ground 
surface (z/L). 
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In the following the results presented by Poulos & Davis (1980) are compared 
with results obtained with PLAXIS calculations (Fig. 90) using different 
programs and modelling techniques. The 2D axisymmetric model has the 
dimensions Bm/Dm of 30/35 consists of nearly 1600 15 noded elements. The pile 
has a diameter of 0.8 m and a length of 20 m (L/D = 25). To avoid stress 
concentrations below the pile tip, the interface is extended below the pile tip (see 
chapter 3.4.2).  
 
Poulos & Davis (1980) showed that the Poisson's ratio of the soil has hardly any 
effect on the shear stress distribution; hence a  value of 0.3 was chosen. In 
PLAXIS 3DF the same model dimensions were used and the pile was modelled 
with the both the standard finite element approach using volume piles (VP) and 
the embedded pile concept. The ultimate skin friction of the EPs is defined as 
layer dependent, thus no maximum skin resistance is defined because the 
surrounding soil is modelled as linear elastic material.  
 
For incompressible piles, the shear stress along the pile shaft is almost constant, 
but for compressible piles high skin friction develops near the pile head. For K  
equals 50 the embedded pile concept mobilizes less stress close to the pile head, 
however for high relative stiffnesses ( K  = 5000) the agreement of the embedded 
pile concept with the other results is almost perfect.  
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Fig. 90 Poulos & Davis (1980) vs PLAXIS results 
 
Chow & Small (2008) used the same example to validate the computer program 
APRILS (Analysis of Piled Rafts In Layered Soils). This program uses the finite 
layer technique developed by Small & Booker (1986) to model the soil layers 
and employs the finite element method for the piles and the raft. El-Mossallamy 
(1996) also used the example to examine the shear stresses obtained with his 
calculation program based on elasticity theory using Mindlin's equations (1936). 
Finally, the single pile was analysed using the boundary element program 
BEFE++ (Duenser et al. 2011). Ausweger (2012) showed that when using 
BEFE++ a reasonable fine discretization close to the pile tip is necessary. Fig. 91 
compares the results presented in literature with the EP concept. The EP 
approach shows a very good agreement with the solutions of other calculation 
models. 
 
The influence of vertical soil inhomogeneity is considered in the next example. 
The EP concept is compared with results obtained with the approximated closed 
form solution presented by Wroth & Randolph (1978). In the closed form 
solution, it is assumed that the soil stiffness increases linearly with depth, which 
is commonly referred to as Gibson soil (e.g. Gibson 1967 or Gibson 1974). 2D 
axisymmetric calculations were performed in the first step. The finite element 
model used consists of 1633 elements and has a width of 30 m and a depth of 
35 m. The pile has a length of 20 m and a diameter of 1.0 m, thus a length to 
diameter ratio L/D of 20. The soil is modelled as linear elastic material with a 
linear stiffness increase of 2000 kPa per meter depth (Fig. 92) resulting in a 
Young's modulus of 40000 kPa and a shear stiffness (GL) of 14286 kPa ( = 0.4) 
at the level of the pile tip. The pile head load is defined according to Equation 90. 
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Fig. 91 Normalized skin friction distribution along a pile  
 
In the following step, the example was analysed with the standard finite element 
and the EP approach using the layer dependent ultimate skin friction definition. 
Fig. 92 shows the shear stress along the pile obtained with the different analyses. 
Additionally, results presented by El-Mossallamy (1996) are shown. The pile 
length is normalized (z/L) and the shear stress is shown in a dimensionless form 
of  /GL.  
 

 
 
Fig. 92 Normalized skin friction distribution along a pile in "Gibson" soil 
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The embedded pile approach of course yields to a step shaped skin friction 
profile, due to the constitutive model of the embedded interface stiffness. The 
calculations with volume piles mobilize less shear resistance close to the pile tip, 
but all in all, the agreement is very good. 
 
In the following, analyses presented by Rajapakse (1990) are compared with the 
embedded pile behaviour. Rajapakse (1990) used a variational formulation 
coupled with a boundary-integral representation of the soil to study the response 
of axially-loaded piles in linearly non-homogeneous soil ("Gibson" soil). In 
addition to the factors given in Equation 79 to 82, he introduced a normalized 
resultant axial force )(zP .  
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In the first analyses the slenderness ration h  is defined with 40 and the degree of 
non-homogeneity  with 0.2. The stiffness ratio E  is varied and the influence on 
the axial load-transfer curves is studied (Fig. 93). The distribution of normal 
force in the pile computed with the embedded pile concept fits well with the 
results presented in the literature.  
 

 
 
Fig. 93 Embedded pile concept vs Rajapakse (1990) 
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Only for very high and very low relative stiffnesses do the load distributions 
show noteworthy differences. Also, the calculations with varying degrees of soil 
non-homogeneities (Fig. 93) are in accordance with Rajapakse (1990). These 
results show clearly that the soil non-homogeneity and stiffness ratios have a 
considerable effect on the contact traction along the pile shaft; however the 
embedded pile approach is fully capable of modelling the correct mobilization of 
skin friction for piles with different relative stiffnesses in non-homogeneous soil 
conditions. 
 
Trochanis et al. (1991) presented studies of 3D FE analysis to examine the non-
linear soil behaviour on the response of axially-loaded piles. They modelled the 
soil either as linear elastic material or as Drucker-Prager elasto-plastic material 
(Drucker & Prager 1952) and the interface strength is limited in the calculations 
presented by Trochanis et al. (1991) with a modified Coulomb friction model. 
The same examples were calculated with PLAXIS 3DF using the embedded pile 
approach. The model has dimensions Lm/Bm/Dm of 34/34/14 m and consists of 
22940 elements. The soil was modelled as MC material (Tab. 18), where the 
Drucker-Prager failure criterion used by Trochanis et al. (1991) was interpreted 
as a compression cone. The squared pile with a length L of 10.0 m and a width b 
of 0.5 m was modelled as linear elastic with a Young's modulus of 2e7 kPa and a 
Poisson's ratio of 0.3.  
 
Tab. 18: Properties of soil  
 

 sat = unsat 

[kN/m3] 

 

Eref 

[kPa] 
c' 

[kPa]  
' 
[°] 

soil 21.8 0.45 20 000 34 16.7 

 
Fig. 94 compares the load-settlement curves obtained with the EP approach with 
the results presented by Trochanis et al. (1991). The calculations with the default 
stiffness inside the elastic region (G,S = G,B = 1) result in a too soft response. A 
closer inspection of the displacement field showed that about 4 mm of vertical 
displacement are obtained inside the elastic region. If the stiffness inside the 
elastic region is increased by a factor of 10 (G,S = G,B), the results are in much 
better agreement.  
 
In the calculation with elasto-plastic material behaviour, the embedded pile was 
defined with a linearly-increasing ultimate skin friction profile, where Ttop,max = 
4 kN/m and Tbot,max = 86 kN/m. The ultimate foot resistance Fmax = 200 kN and 
the stiffness inside the elastic region is not modified. 
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Fig. 94 Load-settlement curve (left); contour lines of vertical displacements 

for load level 1000 kN (right) 
 
The computed load-settlement curve shows a very good agreement with the 
result presented in the literature (Fig. 95). The initial stiffness response of the 
calculation with elasto-plastic behaviour is much smaller compared to the linear 
elastic calculation, and no increase of stiffness inside the elastic region is 
necessary to predict the correct initial stiffness. Of course, this could be different 
when dealing with large diameter piles.  
 
Also Trochanis et al. (1991) stated that the nonlinearity of the soil material and 
corresponding interface significantly affects the pile response. Fig. 95 also shows 
the mobilized skin friction profiles for different load levels. The mobilization is 
very similar in both calculations. In the embedded pile approach, the last 
embedded pile node mobilizes both skin and foot resistance; therefore the 
distribution close to the pile toe is a bit different. 
 



116 6 Validation of the embedded pile approach 
 

 
 
Fig. 95 Load-settlement curves for elasto-plastic soil behaviour (left); contour 

lines of vertical displacements for load level 1000 kN (right) 
 
In addition, the example presented by Potts & Zdravković (2001) and discussed 
in chapter 3.5.2 concerning the influence of mesh coarseness was recalculated 
with the embedded pile option. The embedded pile was defined with a constant 
ultimate skin friction profile, where Ttop,max = Tbot,max = 314.2 kN/m and the 
ultimate foot resistance Fmax = 720 kN. Three different mesh coarsnesses were 
considered: coarse, medium and fine.  
 
Fig. 96 demonstrates the influence of mesh discretization. The initial stiffness of 
the pile is in general underestimated with finer meshes. This effect also comes 
from the influence of the elastic region approach (G,S = G,B = 1). However, the 
match of the embedded pile calculations with the reference solution presented by 
Potts & Zdravković (2001) is satisfying. 
 

 
 
Fig. 96 Load-settlement curve for elasto-plastic soil behaviour 
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The following validation calculations are based on the analyses discussed in 
chapter 3.5.3. In this example, the HS model is used for the soil, therefore an el,R 
of 0.72687 is used to ensure that a uniform stiffness is present in the model after 
the initial stress generation. The embedded pile is defined with an ultimate end-
bearing resistance of 3000 kN and a linear distribution for the ultimate skin 
friction (Ttop,max = 0; Tbot,max = 147 kN/m). Fig. 97 compares the load-settlement 
curves obtained with different programs and in addition the mobilizations of the 
base and shaft resistance.  
 

 
 
Fig. 97 Load-settlement curve and mobilized shaft / base resistance 
 
In this example, the EP approach yields a stiffer response from the shaft 
resistance than the standard finite element approach. The reason is a slight 
underestimation of end-bearing resistance for low load levels. Nevertheless, the 
agreement is very good, especially for the shaft and base resistance at higher load 
levels. For this example, an alternative ultimate skin friction definition was also 
used, the layer dependent option (see chapter 4.3.2) with a Rinter value of 0.7. 
With this calculation a similar load-settlement curve is obtained, however the 
ultimate skin resistance is slightly overestimated. 
 
The last validation example related to the behaviour of axially-loaded single piles 
is a back-analysis of a pile load test presented by Sommer & Hambach (1974). 
The pile has a length of 9.5 m and a diameter of 1.3 m and is embedded in 
slightly overconsolidated clay. The parameters used for the HS model are given 
in Tab. 3. Due to the overconsolidation, the K0 value is increased to 0.8. The 
groundwater table is located 3.5 m below the surface. The same pile load test was 
also used for numerical studies presented by Wehnert (2006) and Engin et al. 
(2007). The pile load test was recalculated with PLAXIS 2D, 3DF and 3D. The 
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finite element models have the dimensions Lm/Bm/Dm of 20/20/20 m. Due to the 
fact that PLAXIS 3D does not offer a possibility to read out normal forces inside 
piles, a workaround with the program SURFER 10 was performed, with the 
vertical stresses at the pile head being integrated over the cross section (Petternel 
2012). Fig. 98 shows load-settlement curves and the mobilized shaft and base 
resistances obtained with the different programs using the standard finite element 
approach. One can see that all calculations are in very good agreement.  
 

 
 
Fig. 98 Load-settlement curve and mobilized shaft/base resistance obtained 

with different programs 
 
In the following, the pile load test was recalculated with the embedded pile 
option. The ultimate skin friction profile was defined with a constant value 
(Ttop,max = Tbot,max) of 211 kN/m and the ultimate foot resistance Fmax = 2005 kN. 
The stiffness of the elastic region is adjusted with a el.R factor of 0.9231. Fig. 99 
illustrates the load-settlement curves calculated with the EP approach. The 
overall agreement with the measurements and the standard FE approach is 
reasonable. However, if one looks at the displacements that are necessary to 
mobilize the skin friction (or in other words, at the initial stiffness of the load-
settlement curve), one can see that the displacements obtained with the 
embedded pile models are higher. 
 
Fig. 100 illustrates contour lines of vertical displacements obtained with the EP 
and the standard FE approach at a load level of 1000 kN. When modelling the 
pile by means of volume elements, the vertical displacements within the pile 
cross section are more or less uniform. When using EPs, one can see that the 
vertical displacements computed are similar at the circumference of the pile, but 
significantly higher at the centre of the pile. The reason is the elastic region 



6 Validation of the embedded pile approach 119 
 

approach, because the stiffness inside the elastic region is (in general) not 
increased. The displacements outside the pile cross section are also almost 
identical for both approaches. In the following, the stiffness inside the elastic 
region was modified with a G,S factor of 5 but the stiffness below the pile 
remains unchanged (G,B = 1). Fig. 99 demonstrates that initial stiffness of the 
load-settlement curve is in much better agreement with the other solutions when 
using an increased stiffness inside the elastic region, because with G,S = 5 the 
displacements inside the elastic region are almost uniform. This effect is not that 
pronounced in other examples studied, because the pile studied in this chapter is 
relatively thick but short (L/D = 7.3), a rather untypical dimension for a bored 
pile. Finally, some tests with PLAXIS 3D were performed, which also showed a 
good agreement. 
 

 
 
Fig. 99 Load-settlement curves of Alzey pile load test 
 

 
 
Fig. 100 Contour lines of vertical displacements obtained with VPs and EPs  
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6.2 Performance of horizontally-loaded single piles 
 
The main focus of this Ph.D. is related to vertically-loaded single piles and pile 
groups, nevertheless some validation examples for horizontally-loaded single 
piles are presented in this chapter. The geometry and the soil parameters of the 
first example are based on studies presented by Potts & Zdravković (2001). The 
same example is also discussed in chapter 3.5.2. Two different mesh 
coarsenesses, with and without interfaces, are modelled in the first calculations 
with the standard finite element approach. The interfaces are defined with a Rinter 

value of 1.0 but no tension stresses are allowed; tensile stresses are tolerated in 
the soil. 
 
Fig. 101 shows the computed load-deflection curves. The overall behaviour is 
similar to the results presented in the literature, however volume piles yield a 
stiffer pile response compared to Potts & Zdravković (2001). The influence of 
the mesh coarseness is very small but the calculations with and without interface 
show a different behaviour. The reason for the big influence of the interface is 
related to tensile stresses in the soil. Fig. 101 shows the horizontal stress 
distribution “behind” the pile at a load level 2000 kN, as presented by Potts & 
Zdravković (2001). Of course, such a load transfer affects the global load-
settlement behaviour and results in an underestimation of settlements. If an 
interface is defined between the pile and the soil it is possible to model a gap 
between soil and pile; hence no tensile stresses can be transferred from the 
horizontally-loaded pile to soil.  
 

 
 
Fig. 101 Load-deflection curves (left) and effect of interface gapping (right) 

(after Potts & Zdravković 2001) 
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In the next step, the pile was modelled with the embedded pile concept. Due to 
the fact that the EP interfaces can only model plastic behaviour in an axial 
direction, gapping, as a consequence of horizontal loading, is not possible. 
Hence, it is necessary to ensure that the surrounding soil cannot sustain any 
tensile stresses. 
 
The study was performed once with the standard parameters given in chapter 
3.5.2 and once with the HS model using the parameters given in Tab. 16. To 
demonstrate the influence of tensile stress transfer in the soil, the calculation with 
the MC model was conducted once with and once without a tension cut-off. Fig. 
102 compares the horizontal deflection along the pile obtained with both 
constitutive models. The standard finite element approach and the embedded pile 
concept compute similar pile deformations. Fig. 103 shows that the calculated 
moments and shear forces along the pile are very similar in both calculation 
approaches, which indicates that the embedded pile concept is also very capable 
for horizontally-loaded piles. 
 
Another example investigated is a 15 m long drilled shaft with a diameter of 
0.6 m embedded in a linear elastic four layer soil deposit. The same example was 
also studied by Basu et al. (2009). The results with both the standard finite 
element approach and the embedded pile option show a reasonable agreement 
with Basu et al. (2009). However, when using EPs, the stiffness response is a bit 
underestimated.  
 

 
 
Fig. 102 Load-deflection curves with MC model (left) and HS model (right) 
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Fig. 103 Moments (left) and shear forces (right) – HS model 
 

6.3 Performance of vertically-loaded pile groups and 
PRFs 

 
In this chapter the pile group behaviour when using embedded piles is 
investigated. The first validation examples deal with linear elastic soil conditions 
to validate the general behaviour of pile groups modelled with EPs, e.g. group 
size, pile spacing, pile compressibility and the distribution of the load between 
individual piles. In the second part, more advanced validation examples using 
non-linear soil behaviour are presented.  
 
Butterfield & Banerjee (1971) presented numerical studies on a pile group 
consisting of 4 piles with a spacing ep of 2.5 times the pile diameter D. They used 
an integral equation developed from Mindlin's analysis to investigate the 
influence of pile length and relative stiffness on the response of the pile group 
embedded in linear elastic soil. Liang et al. (2009) used the same example to 
validate their calculation model, also based on the integral equation method.  
 
A 3D model was set up using geometry similar to that used by the other authors. 
The model has the dimensions Lm/Bm/Dm of 60/60/80 m and consists of 23200 
elements. The EP diameter is defined as 0.8 m, and therefore a raft width of 
4.0 m is modelled (5D). The diameter ratios L/D 0, 5, 10, 20, 30, 40 and 50 were 
studied. The pile compressibility is modelled with a relative stiffness E  of 6000. 
The pile and raft stiffness E is 3e7 kPa and the Poisson's ratio  is 0.2. As a 
consequence of E , the shear modulus of the soil is defined with G = 5000 kPa. 
The Poisson's ratio of the soil is defined with 0.49, due to the fact that a value of 
0.5, as used by Butterfield & Banerjee (1971) would yield an infinite elastic 
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constitutive matrix D. Fig. 104 compares the results presented by Butterfield & 
Banerjee (1971), Liang et al. (2009) and Ausweger (2012) with the results 
obtained when using the embedded pile approach, where the vertical pile head 
displacements up are expressed dimensionless according to Equation 92. Both the 
settlement behaviour and the percentage of load taken by the cap (or the load 
shared by the subsoil) are almost in perfect agreement with the results presented 
in the literature. 
 

pL uGD

P


 0  ssettlement  normalized  (92) 

 

 
 
Fig. 104 Settlement behaviour (left) and load carried by the cap (right) for 

different L/D ratios 
 
In the following, an example presented by Poulos et al. (1997) is used to 
investigate the behaviour of a 9- and a 15-pile group. Poulos et at. (1997) 
compared simplified calculation methods, as presented by Poulos & Davis (1980) 
and Randolph (1983), to approximate computer-based analyses like the strips on 
springs approach (Poulos 1991) or plate on spring approach (Poulos 1994), and 
finally with numerical methods. The hypothetical example is shown in Fig. 105. 
Three different cases are considered: Case A with 15 piles and 12 MN load, Case 
B with 15 piles and 15 MN load and Case C with 9 piles and 12 MN load (Tab. 
19). Fig. 106, Fig. 107 and Fig. 108 show the average pile settlements and the 
proportion of load carried by piles for the different calculation methods. As 
reported by Poulos (1997), noteworthy differences appear between the results. 
The EP approach yields similar results to the standard finite element approach, 
however the EP concept tends to result in higher average pile settlements and 
smaller pile loads compared to volume piles. 



124 6 Validation of the embedded pile approach 
 

 
 
Fig. 105 Geometry of hypothetical example (after Poulos 1997) 
 
Tab. 19: Cases analysed  
 

 No. of piles total load [MN] P1 [MN] P2 [MN] 

case A 15 12.0 1.00 2.00 

case B 15 15.0 1.25 2.50 

case C 12 12.0 1.00 2.00 

 

 
 
Fig. 106 Average pile settlements (left) and proportion of load carried by 

piles (right) - Case A 
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Fig. 107 Average pile settlements (left) and proportion of load carried by 

piles (right) - Case B 
 

 
 
Fig. 108 Average pile settlements (left) and proportion of load carried by 

piles (right) - Case C 
 
Poulos (2001c) used the same hypothetic example to study the influence of the 
number of piles on maximum settlements and the proportion of load carried by 
the piles. He also showed that very similar results are computed if a uniformly-
distributed load is applied instead of concentrated loads (Tab. 19). Fig. 109 
demonstrates that the same characteristics of the pile group are obtained 
employing the EPs. Of course the maximum settlement decreases with an 
increasing number of piles, but reaches an almost constant value for 20 or more 
piles. This comes from the fact that the load carried by piles increases 
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significantly for a limited number of piles, however for more than 20 piles, the 
rate of increase is rather small. 
 

 
 
Fig. 109 Effect of number of piles on maximum settlements (left) and load 

carried by piles (right) 
 
The next example was published by Hain & Lee (1978) and deals with an 8 x 8 
pile group. Hain & Lee (1978) represented the raft as thin "plate" finite elements 
with variable stiffness and the pile response is computed from boundary element 
analyses (linear elastic). The same pile group was also used by Kitiyodom et al. 
(2011) to validate their approximate numerical analysis, where the piles and the 
soil are treated as interactive springs. To consider different relative stiffnesses, 
Hain & Lee (1978) introduced a relative stiffness Kr in additional to K , which 
represents a relative stiffness between raft (Er) and soil (Esoil). 
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tr, Br and Lr are the raft thickness, width and length respectively and  is the 
Poisson' ration of the soil. The first validation was related to the behaviour of an 
unsupported squared raft loaded with a uniform load. Fig. 110 compares the 
obtained settlement troughs and bending moments (M) obtained with PLAXIS 
3DF with Hain & Lee (1978), Kitiyodom et al. (2011) and Poulos (1994). Kr 

values of 0.01 and 10 are considered, where 0.01 represents a relatively flexible 
raft and 10 a relatively stiff foundation. The vertical raft displacements uy are 
presented in normalized form, where qr is the applied constant distributed load. 
Both charts show a very good agreement between the different calculation 
methods. 
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Fig. 110 Comparisons between solutions for uniformly loaded raft 
 
In the next step, the different approaches for modelling piles are compared with 
the embedded pile option. A squared foundation is analysed, with Lr = Br = 50D 
supported by 64 piles with a regular spacing eP of 6.25D. For the finite element 
model, two axis of symmetry are taken into account; as a consequence, only 16 
piles are modelled. The soil is modelled as linear elastic material and the relative 
stiffness K  = 1000. Different pile slenderness ratios L/D and relative stiffnesses 
Kr are studied.  
 
Fig. 111 compares the maximum settlements for different Kr values and different 
pile slenderness ratios. Once the bending stiffness of the raft increases, the 
maximum vertical displacements decrease due to the fact that less differential 
displacements take place within the raft. One can see that the results of Poulos 
(1994) and Hain & Lee (1978) fit very well. The results of Kitiyodom et al. 
(2011) show less maximum displacements. Also, when using the embedded pile 
concept, the computed displacements are underestimated compared to Poulos 
(1994) and Hain & Lee (1978). One reason is probably because a limited depth is 
used for the finite element analyses, while the approach presented by Hain & Lee 
(1978) assumes a deep homogenous layer. In the author's opinion, another reason 
is that the settlements presented by Poulos (1994) and Hain & Lee (1978) are 
overestimated for L/D ratios larger than 50. The tendencies are nevertheless 
identical, and compared with Kitiyodom et al. (2011), the agreement is 
reasonable. Fig. 111 also shows the evaluation of maximum differential 
displacements (uy,max) of the raft for different relative stiffnesses. The agreement 
between Hain & Lee (1978) and the embedded pile approach is almost perfect. 
Also, the other models show similar results of raft deflections. It is important to 
keep in mind that differential displacements are in the majority of cases the key 
point of interest. 
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Fig. 111 Maximum settlements (left) and maximum differential displacements 

(right) obtained with different calculation models 
 
The next piled raft foundation investigated was presented by Chow & Small 
(2008). The geometrical conditions are shown in Fig. 112. They studied two soil 
profiles, one with four different layers (where the stiffness of the layers increases 
with depth) and another simplified profile with one homogenized soil layer. The 
example was recalculated with both conditions, but in the following, only results 
related to one homogeneous soil layer are presented. The soil stiffness is 
62.5 MPa and the Poisson's ratio is 0.175. The raft and the pile also behave linear 
elastic, with E = 2e4 MPa and  = 0.2. The piled raft is subjected to a constant 
distributed load of 50 kPa. A relatively fine mesh with about 54000 elements was 
defined, because in addition to the settlement troughs, the normal force in the pile 
and the skin friction distribution along individual piles are also compared.  
 

 
 
Fig. 112 Layout of piled raft foundation studied by Chow & Small (2008) 
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Fig. 113 illustrates the settlement troughs obtained with the standard finite 
element approach and with embedded piles. Both the maximum vertical 
displacements and the differential settlements (settlement troughs) are in very 
good agreement with the APRILS analysis presented by Chow & Small (2008). 
The difference between this analysis and the FEM calculation presented by Chow 
& Small (2008) is not discussed by the authors. Fig. 113 and Fig. 114 show the 
normal force and skin friction distributions of pile 1 and pile 2. For both piles, 
the normal force distribution shows reasonable agreement with the published 
data, and the skin friction distribution, computed with the EP concept, is very 
similar to the one presented by Chow & Small (2008).  
 

 
 
Fig. 113 Differential settlements (left) and normal force in pile P1 (right) 
 

 
 
Fig. 114 Normal force in pile P2 (left) and skin friction along pile P2 (right) 
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Finally, a numerical study of simplified piled raft foundations was performed. 
The key questions inspected and presented in the following is the relative 
proportion of load carried by the raft and piles and the mobilization of the skin 
friction with respect to different piled raft geometries. A simplified model based 
on a "unit cell approach" is chosen in order to compare 2D axisymmetric 
analyses with 3D analyses employing volume discretisation for the piles and the 
embedded pile concept. Two aspects are investigated, the influence of pile 
spacing and the influence of how the pile is modelled (volume element vs 
embedded pile). 
 
Fig. 115 illustrates the general layout of the model and the dimensions of the 
different models. Two geometric conditions are considered: piled raft I and piled 
raft II, which differ in the spacing of the piles, i.e. the dimension of the unit cell. 
The most important geometrical relation is the ratio between raft width divided 
by the diameter of the pile. For all studies presented, the same soil - a dense 
sand - is used, and no ground water is taken into account. The input parameters 
for the HS model are given in Tab. 20. The axisymmetric model for geometry 
piled raft I consists of 460 15 noded elements, and the model for geometry piled 
raft II has 750 elements. The pile soil interaction is modelled by means of 
interface elements and a constant distributed load is defined at the top of the raft. 
The 3D model, using the standard finite element approach, consists of 12600 
elements for piled raft I and 22230 elements for piled raft geometry II. 
 

 
 
Fig. 115 Geometry of simplified piled raft foundation 
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Tab. 20: Hardening Soil properties of dense sand 
 

unsat 
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[kPa] 
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m   
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' 
[°] 

c' 
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
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K0
nc 

[-]

19.0 6e4 6e4 1.8e5 0.2 100 0.55 38 0 8 0.38

 
Fig. 116 shows the mobilized skin friction of piled raft I obtained in the 2D 
analysis and the distribution of shear stresses for a single pile subjected to a point 
load of 2000 kN. The distribution of the skin friction increases with depth for a 
single pile due to the stress-dependent stiffness and the fact that the shear stress 
is related to the effective normal stress ´n along a pile. Additionally, the skin 
friction distributions (obtained with 2D and 3D analyses) of piled raft 
geometry II for different load levels are compared. The obtained results from the 
3D calculations are generally in very good agreement with the axisymmetric 
calculations. However, at the end of the pile one can see a difference between the 
2D and 3D results. This is because in the 2D axisymmetric calculations the 
interfaces are slightly longer than the pile to prevent stress oscillations (see 
chapter 3.4.2.1). This can also be done in the 3D calculations to improve the 
stress distribution at the end of the pile for high loads, but has not been done 
here.  
 

 
 
Fig. 116 Skin friction: piled raft I vs single pile (left); 2D vs 3D for piled raft 

geometry II (right) 
 
For geometry piled raft I, where the spacing between the piles is relatively small, 
almost no skin friction is mobilized at the top of the pile. For piled raft 
geometry II the mobilization of shaft resistance is strongly influenced by the pile-
raft interaction. As a consequence of the load transfer from the raft to the soil the 
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stress state in the soil increases, and as a result the maximum skin friction 
increases (see also Katzenbach et al. 2007). In the following, the raft-soil and 
raft-pile interactions are studied in detail. Therefore the PR factor is determined. 
Fig. 117 represents the evolution of the PR factor as well as the factor (1 - PR) 
that describes the amount of the load, which is transferred by the raft to the soil. 
The PR factor is not a constant value, but depends strongly on the load level. 
Fig. 117 also indicates the significant influence of the interaction between the 
soil and the pile (Rinter). In contrast to single piles, where the Rinter value has a big 
influence on the load-settlement behaviour, the effect of the strength reduction 
factor on computed displacements is not significant when dealing with piled raft 
foundations. However, the pile-soil interaction is essential for the load 
distribution of piled raft foundations and thus important for the design of such 
foundations. Fig. 117 also illustrates the mobilized resistances of a pile within the 
piled raft foundation. From that follows, for load levels where PR is high, that 
the shaft of the pile (Rs) takes most of the load. Once the load increases, more 
load is transferred from the raft to soil, which means the (1 - PR) value increases 
and more load is transferred from the pile base to the soil (Rb). 
 

 
 
Fig. 117 Behaviour of piled raft geometry II (left); piled raft geometry II vs 

single pile (right) 
 
In the following, piled raft geometry II was recalculated using the EP concept. 
The ultimate shaft resistance was definition with different profiles. The first 
distribution (constant) is defined with a constant value for the skin friction 
profile, and in the second calculation (multilinear), the skin friction profile at 
failure is defined with the values for the mobilized skin friction obtained in the 
appropriate axisymmetric model (Fig. 116). Results showed that the mobilized 
skin friction at working loads is influenced by the distribution of the ultimate 
skin friction profile. Of course, the change in the stress state at the top of the pile 
is not taken into account when using a predefined ultimate skin resistance, hence 
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the automatic increase of maximum skin friction due to the raft-soil interaction 
cannot be modelled with the linear or multilinear formulation. Therefore, another 
calculation with the "layer-dependent" skin friction definition and a strength 
reduction factor Rinter of 0.7 was performed. In contrast to the calculations with 
linear or multilinear definitions of the maximum skin friction distribution, the 
calculations with layer-dependent behaviour of the embedded piles (where the 
shaft resistance is related to the normal stress on the pile) are qualitatively in 
much better agreement with the 2D solution. Regarding the load-settlement 
behaviour, all calculation models yield very similar load-settlement curves. The 
maximum difference is less than 5% between the 2D and 3D results at a load 
level of 500 kPa. 
 

 
 
Fig. 118 Load-settlement curves of piled raft geometry II  
 
In the author's opinion, the linear and multilinear definition of the ultimate skin 
resistance is a very functional tool. Of course, when dealing with pile groups or 
piled raft foundations, the distribution of ts,max depends, besides the soil 
properties, on the load level and the foundation geometry. In addition, the 
distribution is different for different piles (corner pile, edge pile etc.). To define 
reasonable profiles of ts,max, simplified 2D studies - as presented in this chapter - 
are very convenient. Of course the layer-dependent option is an alternative, but 
due to the fact that the ultimate skin resistance is related to the stress state of the 
surrounding "soil" integration points, the mesh coarseness may have an influence 
on the pile capacity. Additionally, the EP concept cannot deal with a critical state 
of density; therefore in dilatant soils this option may lead to an overestimation of 
skin resistance. However, for settlement predictions in working load conditions, 
the different models yield very similar results. 
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6.4 Performance of horizontally-loaded pile groups 
and PRFs 

 
Chow & Small (2008) presented results of a horizontally-loaded pile group of 25 
piles. The same example was already used for the validation of a vertically-
loaded pile group (Fig. 112). Again, only one homogenized soil layer is 
considered and a constant distributed load of 50 kPa is applied on top of the raft. 
Due to the fact that a bending stiff connection between the piles and raft should 
be modelled, the raft is defined as plate elements. Thus it is possible to couple the 
rotational degrees of freedom of the raft with those of the piles. Fig. 119 shows 
the horizontal deflection and the consequential bending moments of the centre 
pile P1, and Fig. 120 shows the same for the corner pile P3. The computed 
horizontal deflections and resulting moments of the embedded piles are very 
similar to those obtained with the standard finite element approach and the 
results presented by Chow & Small (2008). Tests with finer discretizations were 
conducted as well, but the results showed that in this example the mesh 
coarseness does not have a noteworthy influence.  
 
The same example was recalculated with the Hardening Soil model and the 
parameters of loose sand given in Tab. 16. Fig. 121 illustrates the bending 
moments in pile P1, P2 and P3 and demonstrates that both calculation models 
yield very similar results. 
 

 
 
Fig. 119 Horizontal deflection (left) and bending moments of pile P1 (right) for 

homogeneous soil conditions 
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Fig. 120 Horizontal deflection (left) and bending moments of pile P3 (right) for 

homogeneous soil conditions 
 

 
 
Fig. 121 Bending moments of pile P1, P2 and P3for homogeneous loose sand 

(HS model) 
 
The final example considered was presented by Small & Zhang (2002). They 
used the APRAF program (Analysis of Piled RAft Foundations) to investigate 
the behaviour of piled raft foundations under lateral loading. The program uses 
the finite layer theory (Small & Booker 1986) to analyse the soil and the FE 
method to analyse the raft and the piles. The geometry of the studied piled raft 
foundation is given in Fig. 122. The piles have length of 15 m, a diameter D of 
0.564 m and spacing ep of 3D. The soil is defined as linear elastic material with 
Esoil of 10000 kPa and a Poisson's ratio of 0.3. The relative stiffness K  is defined 



136 6 Validation of the embedded pile approach 
 

with 3000. Small & Zhang (2002) also conducted FE analysis to validate the 
APRAF program. 
 
The same example was analysed with different approaches in PLAXIS 3DF and 
3D. For the standard FE approach, 9 pairs of concentrated point loads of 1 MN 
are applied at the top of each pile, and 9 point loads of 2 MN are assigned in the 
calculations with embedded piles. Fig. 123 compares the raft displacements 
along cross section A-A and the horizontal deflection of the centre pile A.  
 

 
 
Fig. 122 Geometry of piled raft foundation 
 

 
 
Fig. 123 Vertical displacements along cross section A-A (left) and horizontal 

deflection of pile A (right) 
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One can see that the obtained settlements are very similar for the different 
approaches and programs; only the APRAF calculation results in slightly higher 
heave and settlements. Also, the horizontal deflections computed with EPs agree 
very closely with those of the standard FE approach. 
 
The same piled raft foundation was recalculated with the Hardening Soil Small 
model to verify the improved embedded pile approach. The soil parameters given 
in Tab. 16 were used, as well as a G0 of 75000 kPa and a reference shear strain 
0.7 of 1.5e-4. The interfaces along the volume piles were 0.25 m extended (see 
chapter 3.4.2.1) and the embedded piles were defined with a constant skin 
friction distribution Ttop,max = Tbot,max = 100 kN/m. The ultimate foot resistance 
Fmax = 500 kN. Fig. 124 compares the horizontal pile deflection and the resulting 
bending moments obtained with the volume and the embedded piles.  
 
 

 
 
Fig. 124 Horizontal deflection (left) and bending moments of pile B (right) 

obtained with the HSS model 
 
The agreement between the different approaches is very good, which indicates 
that the improved EP formulation is well capable for horizontally-loaded pile 
groups as well. 
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7 Application to boundary value 
problems 

7.1 DC Towers Vienna 

7.1.1 General information 
 
The projects discussed are two very high and slender towers in Vienna. Tower I 
has a total height of about 220 m and tower II of 165 m. The deep foundation 
concept for both towers consists of box-shaped barrettes. The general behaviour 
of this deep foundation system is explained e.g. in Hoffman (2007). It is planned 
to build the foundations for both towers at the same time but to construct the 
superstructure of tower I first. Due to the fact that the distance between the two 
towers is only 24 m it is necessary to take the loads from the later-built tower II 
into account in the design of the foundation system of tower I. The excavation 
depth for constructing the base slabs of both towers is about 8.5 m. Fig. 125 
illustrates an image of the entire building (©beyer.co.at) and an overview of the 
designed layout of the diaphragm wall panels. The barrettes have a unit length of 
3.6 m and a unit width of 0.6 m. This layout is used for all calculations presented 
in the following. The circumference of the foundation elements indicates at the 
same time the dimensions of the two towers. Next to the towers, four stories of 
underground car parks are planned. 
 

 
 
Fig. 125 Project overview (© beyer.co.at) – DC Towers 
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The soil profile for the finite element simulation is based on core drillings with 
depths down to -70.0 m from the surface. The first 4 to 5 m consist of deposits, 
followed by a 6.5 m thick layer of gravel and then alternate layers of either sands 
or silty clays. A more detailed description of the soil condition is given in 
Würger (2007) and Martak et al. (2007). Fig. 126 shows the soil profile obtained 
with the borehole logs together with important levels of the construction and the 
evaluation of Eoed and Eur over depth. 
 

 
 
Fig. 126 Soil profile (left), geometry of towers (middle) and evaluations of Eoed 

and Eur (right) 
 
For the calculations presented, either the Hardening Soil or the Hardening Soil 
Small model was used to model the soil behaviour. The small strain shear 
modulus G0 is defined with the help of a correlation between very small strain 
stiffness and stiffness at larger strains after Alpan (1970). The therefore 
necessary static Young's modulus is interpreted as unloading/reloading stiffness, 
which correlates to recent published experimental data (Wichtemann & 
Triantafyllidis 2009). The value of 0.7 is taken from stiffness reduction curves 
after Vucetic and Dobrey (1991). The input parameters for the Hardening Soil 
model are given in Tab. 21 and the additional two parameters for the HSS model 
in Tab. 22. 
 
All slabs behave linear elastic and the diaphragm wall elements are modelled 
with the Mohr-Coulomb model. In addition, the tensile strength of the barrettes is 
limited to a value of 3000 kPa. 
 
 
 



140 7 Boundary value problems 
 

Tab. 21: Soil properties for the Hardening Soil model 
 

parameter unit deposit gravel sandy silt fine sand 

unsat kN/m3 17.5 21.0 20.0 20.0 

sat kN/m3 20.5 22.0 20.0 21.0 

E50,ref kPa 2 000 40 000 20 000 25000 

Eoed,ref kPa 2 000 40 000 20 000 25000 

Eur,ref kPa 6 000 120 000 50 000 62 500 

'ur - 0.2 0.2 0.2 0.2 

pref kPa 100 100 100 100 

m - 0.60 0.00 0.80 0.65 

' ° 27.5 35.0 25.0 32.5 

c' kPa 0.0 0.0 20.0 2.0 

 ° 0.0 5.0 0.0 2.5 

K0
nc - 0.538 0.426 0.577 0.463 

 
Tab. 22: Additional parameters for the Hardening Soil Small model 
 

parameter unit gravel sandy silt fine sand 

G0 kPa 150 000 62 500 78125 

0.7 - 1e-4 2e-4 2e-4 

 
All calculations are carried out as a drained analysis, thus final settlements are 
presented. But to obtain realistic final deformations a reliable stress distribution 
in the soil after the excavation is required. Consequently, it is necessary to model 
the construction process. This is done in the following phases: 
 

- Generation of initial stresses 
- Activation of the sheet pile wall 
- Excavation and groundwater lowering 
- Activation of barrettes (wished in place) 
- Activation of slabs 
- Full loads of tower I and loads from basement floors of tower II 
- Closing of settlement joint - tower I  
- Full loads of tower II 
- Closing of settlement joint - tower II 
- End of ground water lowering 
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As reported for example in Fross (1973), the soil layers in the region of Vienna 
are highly overconsolidated. This was taken into account in the generation of the 
initial stresses with a pre-overburden value (POP) of 600 kPa and an increased 
earth pressure coefficient K0 of 0.7. The influence of the overconsolidation on the 
yield surfaces of the HS respectively HSS model is explained in Appendix A. 
 

7.1.2 Optimisation of deep foundation system 
 
Because of the small distance between the two towers an interaction was 
expected and thus it was necessary to model both towers. First calculations with 
connected diaphragm wall panels led to an overestimation of the stiffness of the 
deep foundation system, hence a non-conservative prediction of differential 
displacements. But when modelling all barrettes explicitly, the numerical models 
get very expensive. To reduce the complexity of the 3D model, the barrettes of 
only one tower are first modelled in full detail and the foundation system of the 
other tower is modelled as a homogenized block, meaning that the zones of the 
subsoil in which panels are installed are defined with smeared properties. Fig. 
127 shows one finite element model, in which only tower I is modelled in detail. 
With this approach the global settlement behaviour of the entire structure is 
calculated because the interaction of the towers is taken into account. All 
barrettes are modelled by means of volume elements. 
 
However, to validate this modelling assumption an analysis where the 
foundations of both towers are explicitly modelled is also presented. The detailed 
model consists of nearly 137000 wedge elements. In these models, 317 barrettes 
are modelled as volume elements. The results shown in this paragraph are related 
to the HSS model. In the last section of this chapter the results are compared with 
the HS model and the benefit of the HSS model will be discussed. 
 

 
 
Fig. 127 Simplified finite element model 
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In the first analysis a constant length of 25.0 m for all barrettes was defined. The 
calculation was performed once for a detailed geometry of tower I and in a 
separate calculation for a detailed model of tower II. For both calculations 
maximum vertical displacements of about 80 mm were calculated, and the 
assumption that tower II contributes to settlements in the region of tower I was 
confirmed. Fig. 128 shows the contour lines of vertical displacements for the 
model where tower II is modelled in detail. Because of the eccentric loading of 
both towers the maximum settlements are also off-centre and large differential 
settlements are calculated. Therefore it is necessary to optimise the foundation 
system in a way that the expected maximum of deformation is in the centre of 
each tower. In addition, it is required to design the deep foundation elements of 
tower I with prevision of the settlements coming from the later built tower II. For 
this optimisation procedure a number of 3D analyses have been performed for 
both towers. 
 

 
 
Fig. 128 Contour lines of vertical displacements for detailed model of tower II 

with 25 m long barrettes 
 
The result of this study is a final layout of the panels with lengths between 20 
and 30 m. The maximum settlements calculated are again about 80 mm for both 
towers, but this foundation set-up does not yield eccentric settlement troughs. 
Fig. 129 shows the optimised layout for both towers obtained with the simplified 
models. 
 
Finally, a calculation with the detailed geometry for both towers and a much 
finer mesh discretisation was performed. Due to the size of the analysis, a 64-bit 
calculation kernel was used. The maximum vertical displacements are similar to 
the calculations using the simplified models, but concerning the interaction of 
both towers and the settlement trough between the buildings a more accurate 
result is obtained. Fig. 130 illustrates the optimised layout for both towers in a 
bottom view and the contour lines of vertical displacements of the structural 
elements when using the detailed FE model. 
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Fig. 129 Optimised barrette layout for tower I and tower II (simplified models) 
 
Due to the fact that the two towers are located in a densely built-up region, 
settlement troughs are also a key issue of the settlement prediction. Thus, some 
selected points are presented for which the differential settlements are worked 
out. Fig. 131 indicates the selected points and presents the vertical displacements 
uy and the inclination (tan ) between two neighbouring points. The railway lines 
are in the most critical area, where a maximum vertical deformation of 18 mm 
and an inclination of the settlement trough up to 1/600 are calculated. This value 
is acceptable from a mechanical point of view, after Bjerrum (1973). The 
settlements are 14 mm in the region of the highways and between the towers, 
where a road is situated, displacements up to 40 mm are computed. 
 
To demonstrate the effect of small strain stiffness the calculations with the final 
diaphragm wall layout are considered and the settlement distribution over depth 
is worked out for a point in the middle of the towers. This is done for the analysis 
performed with the HS and the HSS model. Fig. 132 shows the comparison of 
both constitutive models. Because the settlements are almost the same for both 
towers, only the graph for tower I is shown. Until a depth of 36.6 m below 
ground level, which is the level of the longest barrettes, the distribution of 
settlements obtained with the HS model is similar to the one obtained with the 
HSS model, but the HSS model computes 25% less settlements. Beneath the 
foundation elements the difference between the HS and HSS model increases and 
at a depth of -75.0 m below the surface the settlements obtained with the HSS 
model are 51% smaller than the one calculated with the HS model. This clearly 
shows the influence of small strain stiffness and indicates that once a model 
including small strain stiffness is used, the effect of the position of the bottom 
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boundary condition on the computed displacements is diminished and the right 
depth of influence is taken into account automatically by the constitutive model. 
Thus, a more realistic settlement behaviour can be obtained. 
 

 
 
Fig. 130 Optimised barrette layout for tower I and tower II (detailed model) 
 

 
 
Fig. 131 Schematic top view including adjacent structures 
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Fig. 132 HS vs HSS – Settlements over depth 
 
Another significant difference is the computed settlement trough. With the HS 
model, the settlements at the surface are higher and the spread of relevant 
settlements is wider compared to the HSS model. Fig. 133 shows the settlement 
trough of cross section A-A (Fig. 131) at the surface for both constitutive models. 
The Hardening Soil Small model computes differential settlements between point 
A2 and A3 in the range of 1/2000. When using the HS model, this value 
decreases significantly to a value of 1/1000. This decrease of tan  is related to 
the big difference in maximum vertical displacements obtained with the different 
models. If the settlements are normalized by their maximum values, the 
behaviour changes and the settlement trough computed with the HSS model is 
steeper. 
 

 
 
Fig. 133 Settlement troughs (left) and normalized settlement troughs (right) 
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In this particular project the HS model gives conservative results for both the 
maximum settlements and the differential settlements, but for other applications 
it is possible that the HSS model yields steeper settlement troughs, which is the 
more critical scenario when considering differential displacements. 
 
Finally a numerical study with different input parameters for G0 and 0.7 was 
performed. Tab. 23 illustrates the input parameters for the sandy silt layer; the 
other layers are modified with the same ratios. The aim of this study was the 
evaluation of the impact on the settlement behaviour. Fig. 134 exemplary shows 
the decay of stiffness for the different calculations and the settlements over depth 
in the middle of DC tower I. The results indicate that the computed displacement 
is relatively sensitive on G0 respectively 0.7, however a modification of 0.7 
shows less influence than a variation of G0/Gur.  
 
Tab. 23: Variation of HSS parameters  
 

 HSS HSS2 HSS3 HSS4 HSS5 

G0/Gur 3.0 3.0 3.0 6.0 1.5 

0.7 2e-4 1e-4 4e-4 2e-4 2e-4 

 

 
 
Fig. 134 Variation of stiffness for sandy silt layer (left), settlement profile over 

depth in the middle of DC tower I (right) 
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7.1.3 Comparison with alternative foundation concepts 
 
As an alternative deep foundation system pile raft foundations (PRF) are 
considered. For the PRFs different modelling approaches - namely the standard 
finite element approach and the embedded pile concept - are used. The first 
layout (Layout 1) studied consists of piles with a diameter of 1.5 m and a regular 
spacing of about six times the diameter. Fig. 135 illustrates the finite element 
model where 75 piles are modelled as volume piles.  
 

 
 
Fig. 135 Piled raft foundation modelled with standard finite element approach 
 
In this calculation, the pile-soil interaction is modelled by means of interface 
elements with a strength reduction factor Rinter of 0.8. The pile length varies 
between 20-30 m, similar to the final concept with diaphragm wall panels. The 
number of piles has been chosen by comparing similar projects presented in the 
literature, and aims first of all to check whether this significant decrease of 
foundation elements will lead to inacceptable settlements. However, secondly 
and more importantly, this layout is used for comparison with the embedded pile 
concept. Fig. 136 demonstrates that the maximum vertical displacements are 



148 7 Boundary value problems 
 

almost identical. Both the maximum vertical displacements and the differential 
settlement increase significantly compared to the deep foundation discussed in 
the previous section. As a consequence the layout was modified in a way that the 
spacing of the piles is decreased in the high loaded regions (Layout 2). Again the 
length of the piles is similar to the barrette foundation. Fig. 137 shows both a 
bottom view of the foundation system and a top view where the different zones 
with different pile lengths are also highlighted.  
 

 
 
Fig. 136 Settlements of PRF Layout 1 with volume piles (top) and embedded 

piles (bottom) 
 
This piled raft foundation reduces maximum vertical displacements of tower I 
from 120 mm to 87 mm and settlements of tower II from 139 mm to 88 mm. 
Also, the differential settlements are significantly reduced. Fig. 138 shows the 
differential settlements of tower I for the different foundation systems. The cross-
section A-A is shown in Fig. 137. The barrette foundation concept is compared 
with piled raft foundation Layout 1, Layout 2 and a shallow foundation. Since 
Layout 1 is analysed with both, the standard finite element approach and the 
embedded pile option, both curves are presented.  
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Fig. 137 PRF Layout 2 with embedded piles  
 

 
 
Fig. 138 Comparison of settlements along cross section A-A 
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The shallow foundation yields, as expected, to large vertical and differential 
settlements. Additionally, the maximum vertical displacements are off-centre, 
which would cause a tilting of the tower. The calculations of Layout 1 are 
performed with the standard finite element approach and the embedded pile 
option. Both calculation models compute almost the same differential 
settlements, but unfavourable differential displacements are again obtained. 
Layout 2 with an increased number of piles reduces both the vertical and 
differential settlements significantly compared to Layout 1. 
 
Fig. 139 compares the maximum vertical displacements of the different 
foundation systems investigated. Additionally, the number of deep foundation 
elements and the total length and total volume of barrettes or piles are shown. For 
the two piled raft foundations, the PR factor is also given. In terms of economics 
piled raft foundation (Layout 2) is a conceivable alternative to the executed 
foundation system with barrettes, but it has to be pointed out that this is a 
theoretical study because other considerations than purely technical have 
influenced the foundation design. 
 

 
 
Fig. 139 Comparison of foundation systems 
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Finally, the influence of the modelling approach and the effect of different 
definitions of the pile-soil interaction were studied. For the standard finite 
element approach, one calculation is performed where the strength reduction 
factor Rinter is increased from 0.8 to 1.0, which means the full strength between 
the piles and the soil is assumed. Also, the analyses with EPs were repeated with 
different definitions of the ultimate embedded pile resistance. Tab. 24 shows the 
definition of the pile-soil interaction for all calculations performed. For some 
calculations, unrealistically high values for the bearing capacity of the pile were 
chosen intentionally to show the maximum influence on the results.  
 
Tab. 24: Soil properties for the Hardening Soil model 
 

calculation Rinter [-] Ttop,max = Tbot,max [kN/m] Fmax [kN] 

Barrettes No interfaces - - 

Layout 1 (VP) 0.8 - - 

Layout 1Rint (VP) 1.0 - - 

Layout 1 (EP) - 471.2 (100 kPa) 10 000 

Layout 12 (EP) - 2000 100 000 

Layout 2 (EP) - 471.2 (100 kPa) 10 000 

Layout 22 (EP) - 471.2 (100 kPa) 1 500 

Layout 23 (EP) - 2000 50 000 

 
The influence on the displacements was studied for tower II along cross-section 
B-B (Fig. 137). Fig. 140 shows the computed displacements and Tab. 25 the PR 

and (1-PR) factors for the different calculations. The shallow foundation leads to 
high differential and maximum displacements for tower II. The calculation with 
increased Rinter value shows that the strength reduction factor plays a minor rule 
in this particular boundary value problem. This finding also confirms the 
calculation of the foundation concept with barrettes, where no interface elements 
are modelled around the diaphragm wall panels. Of course, this would not be true 
for very high loads. The definition of the embedded pile bearing capacity shows 
a significant influence on Layout 1, because in this foundation system the 
spacing of the piles is relatively large, thus the individual piles are highly loaded. 
The obtained results of Layout 2 show that the global behaviour of this layout, 
with a much smaller spacing of the piles, is not sensitive related to the bearing 
resistance of the EPs. Layout 23 (EP) is not shown because this calculation yields 
similar differential settlements as Layout 2 (EP). 
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Tab. 25: Comparisons of raft soil interactions 
 

 L.1 
(VP) 

L.1Rint 
(VP) 

L.1 
(EP) 

L.12 
(EP) 

L.2 
(EP) 

L.22 
(EP) 

L.23 
(EP) 

PR 0.43 0.47 0.41 0.58 0.82 0.80 0.83 

1-PR 0.57 0.53 0.59 0.42 0.18 0.20 0.17 

 

 
 
Fig. 140 Comparison of settlements along cross section B-B 
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7.2 Floreasca City Centre – Sky Tower 

7.2.1 Introduction 
 
In this chapter the optimisation of a deep foundation with diaphragm wall panels 
is presented. The project discussed is the Sky Tower, the most impressive part of 
the so-called Floreasca City Center in the north-eastern part of Bucharest. The 
entire site consists of the Promenada mall a shopping and entertainment centre, 
and two office buildings called the Office Wing and the Sky Tower. The 
calculations presented in the following focus only on the latter, which will be the 
highest building in Bucharest with a total height of 137 m. 
 
Fig. 141 illustrates a rendered image of the Floreasca City Center (©beyer.co.at) 
and the top view of the project layout. The excavation has a maximum length of 
93.4 m and a maximum width of 61.7 m. The bottom of the foundation slab is 
20.4 m below the ground surface. The two egg-shaped areas represent the regions 
where high point loads, up to 14900 kN, are acting. The thickness of the 
foundation slab is 2.5 m in the inner region of the excavation bit and 1.6 m in the 
outer areas. The diaphragm wall panels have a thickness of 0.8 m beneath the 
high loaded areas and sensitive zones and 0.6 m in the other regions. The 
diaphragm wall, which acts as a retaining wall for the excavation and as a 
foundation element, is 1.0 m thick. It is planned to install the deep foundation 
elements from the ground surface and to realise the excavation afterwards with 
the top-down method. As a consequence, the panels are acting as tension 
elements during excavation and minimise the heave. Detailed information about 
the construction sequence is given in Zehentner et al. (2011). 
 

 
 
Fig. 141 Project overview (© beyer.co.at) – Sky Tower 
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Due to the high loads in the core of the construction, large differential 
settlements of the foundation slab were expected. The aim of the 3D finite 
element analysis was to minimise both the total deformations of the construction 
and, even more importantly, the differential displacements of the slab.  
 
The soil profile for the finite element simulation is based on core drillings with 
depths down to 60.0 m from the surface. All borehole logs showed alternate 
layers of either sands or silty clays. For the calculations presented, the HS or the 
HSS model was used (Tab. 27). Fig. 142 shows for both soil types the evaluation 
of Eoed, E50 and Eur over depth. All walls and floors in the FE model behave 
linear elastic with a stiffness of 3e7 kN/m2 and a Poisson's ration of 0.2. The 
diaphragm wall elements are modelled with volume elements and described with 
the Mohr-Coulomb model. The tensile strength of the barrettes is limited to a 
value of 3000 kPa. The parameters for the deep foundation elements are given in 
Tab. 26. 
 

 
 
Fig. 142 Evaluations of Eoed and Eur (right) 
 
In order to get a first approximation of the behaviour of the structure, a 2D plane 
strain model consisting of 5500 15 noded elements has been made. In this project 
the geometry of the high loaded area is almost quadratic and restricts the 
applicability of 2D models. Therefore, it was expected that the displacements 
obtained in the 2D cross-sections would overestimate the settlements.  
 
Tab. 26: Properties of diaphragm wall panels 
 

  

[kN/m3]

 

Eref 

[kPa] 
c' 

[kPa]  
' 
[°] 

diaphragm wall panels 25.0 0.20 2.5e7 5100 45.0 
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Tab. 27: Soil properties for the HS / HSS model 
 

parameter unit silty clay sand 

unsat kN/m3 20.5 21.0 

sat kN/m3 21.0 21.5 

E50,ref kPa 12 000 30 000 

Eoed,ref kPa 10 000 30 000 

Eur,ref kPa 36 000 90 000 

'ur - 0.2 0.2 

pref kPa 100 100 

m - 0.70 0.65 

' ° 22.5 32.5 

c' kPa 25.0 0.0 

 ° 0.0 2.5 

K0
nc - 1-sin' 1-sin' 

G0,ref kPa 45 000 112 500 

0.7 - 2e-4 2e-4 

 
To reduce the complexity and size of the 3D models, symmetry axes were 
defined. This is possible because the high loaded area is almost symmetric and 
the influence of the non-symmetric outer part of the construction is expected to 
be small. In all 3D calculations, 15 noded wedge elements with quadratic shape 
functions are used. Fig. 141 shows the symmetry axis for the 3D models where 
half of the excavation bit is modelled (Model B). As an example, Fig. 143 shows 
one finite element model of Model B. All models analysed consist of around 
52000 finite elements. The model depth of all 3D models is 80.0 m. The deepest 
borehole reached only a depth of -60.0 m and it is therefore assumed that 
alternate layers of sands and silty clays continue. Nevertheless, sensibility 
analyses were performed to assess the influence of the uncertainties in the soil 
profile. All calculations were performed as drained analysis, which means final 
settlements are presented. This seems to be justified because of the alternate 
layers of sands and silty clays, which speeds up the consolidation procedure. To 
include the high stiffness of the superstructure, which influences both the stress 
distribution in the foundation slab and the calculated settlements, the core walls 
of the basement floors are also modelled. 
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Fig. 143 3D FE model (Model B) 
 
To obtain realistic deformations of the excavation bit and a reliable stress 
distribution in the soil after the excavation, it is necessary to model the real 
building process. All displacements presented and discussed in the following are 
obtained after the final calculation phase. The calculation phases are the 
following: 
 

- Generation of initial stresses 
- Pre-excavation to a level of -4.8 m 
- Activation of the diaphragm wall panels (wished in place) 
- Groundwater lowering to a level of -8.2 m 
- Excavation to a level of -8.2 m 
- Activation of the first floor (top-down excavation) 
- Groundwater lowering to a level of -15.0 m 
- Excavation to a level of -15.0 m 
- Activation of the third floor 
- Groundwater lowering to a level of -20.4 m 
- Excavation to a level of -20.4 m (bottom of foundation slab) 
- Activation of the foundation slab 
- Activation of the core walls 
- End of groundwater lowering  
- Activation of loads from superstructure 

 

7.2.2 Optimisation of the diaphragm wall panel layout 
 
All calculations presented in this chapter were performed with the Hardening 
Soil model. The layout investigated first is shown in Fig. 144 (layout 1). The 
diaphragm wall panels are arranged radially from the high loaded egg shaped 
area. All panels beneath the 2.6 m thick slab have a width of 0.8 m and a length 
of 25.0 m; the 0.6 m thick panels in the outer zones have a length of 15.0 m. This 
layout was used to work out the difference between a 3D calculation and the 2D 
plane strain model. The cross section for the 2D model is located in the 
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symmetry axes used for Model A (see Fig. 141). For this comparison it is 
assumed that beneath the depth of 60 m only silty clays are present. In the plane 
strain model, the stiffnesses of the diaphragm walls are reduced to take the 
spacing into account and assumptions related to the load conditions are chosen 
accordingly. Nevertheless the results show that in this particular case the 
obtained maximum and differential settlements in the 2D model are higher 
almost by a factor of two than the settlements obtained in the related 3D analysis. 
Fig. 145 illustrates the contour lines of vertical displacements calculated with the 
plane strain model. The result confirmed that a 2D model is too conservative and 
does not yield realistic results; as a consequence, 3D models are used for all 
further studies. 
 

 
 
Fig. 144 Top view of layout 1 and 2 for the deep foundation elements 
 

 
 
Fig. 145 Contour lines of vertical displacements – 2D plane strain model 
 
Fig. 144 also shows the layout 2 in which the panels are again arranged radially 
from the high loaded area but are only located beneath the columns of the 
superstructure. Additionally, the length of the panels outside the high loaded area 
is reduced to 15.0 m. Both modifications yield to a significant reduction of costs. 
Fig. 146 illustrates the FE model of the deep foundation elements of layout 2.  
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With respect to calculated settlements, layout 1 is a better solution and results in 
85 mm maximum settlements and about 42 mm differential settlements between 
point A, in the middle of the construction, and point B, which is located in the 
upper right corner of the 1.5 m thick foundation slab. From an economical point 
of view this variation is worthy of an improvement. Layout 2 saves 25% volume 
of diaphragm wall compared to layout 1, but the maximum vertical 
displacements increase to 100 mm and, even more critically, the differential 
settlements to 60 mm. 
 
Layout 3 and 4 are shown in Fig. 147. The barrettes outside the high loaded area 
again have a reduced length of 15.0 m. In layout 3, the volume of diaphragm 
walls is about 20% less compared to layout 1. The effect of the stiff connection 
between the radial arranged barrettes with the inner diaphragm walls yields a 
reduction of settlements compared to layout 2. The obtained values are 95 mm 
for the vertical displacements and 52 mm for the differential settlements. But the 
problem with this concept is that a stiff connection of the panels to the inner 
walls, as assumed in the finite element calculation, is technically very difficult to 
accomplish. 
 

 
 
Fig. 146 Diaphragm wall panels of layout 2 
 

 
 
Fig. 147 Top view of layout 3 and 4  
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Another problem is that the radially-oriented diaphragm wall panels lead to 
unfavourable stresses in the barrettes. Therefore an alternative geometry is 
investigated, namely layout 4 with radially and tangentially-arranged panels. This 
arrangement has the benefit that the high point loads coming from the 
superstructure are directly transferred to deep foundation panels. With layout 4, 
the calculated maximum settlements are again about 100 mm and the differential 
settlements are in the range of 60 mm. Fig. 148 shows the arrangement of the 
structural elements and the contour lines of vertical displacements in a bottom 
view. Compared to layout 1, 15% less volume of barrettes is required. But this 
foundation concept is also problematic from a practical point of view, because a 
stiff connection between the tangentially-arranged panels is very hard to achieve; 
as a consequence this foundation system is also not feasible. 
 

 
 
Fig. 148 Contour of vertical displacements – layout 4 
 
Due to these shortcomings of layout 1 to 4, another variation is studied where 
two discontinuous circles of panels (layout 5) are arranged in the area of 
concentrated loads (Fig. 149). For these calculations with the final layout of the 
deep foundation elements, another symmetry axis is defined. Hence, only a 
quarter of the construction is modelled (Model A), which enables a much finer 
discretization of the boundary value problem. In layout 5 the inner parts of the 
diaphragm wall panels are also disconnected with the consequence that the global 
stiffness of the foundation system is decreased, which automatically yields higher 
differential settlements. This drawback of the foundation system should be 
compensated with a second circle of barrettes installed beneath the high loaded 
region. In terms of economics, this solution needs more panels than the layouts 2 
to 4, but compared to the first design (layout 1) it still saves roughly 10% volume 
of deep foundation elements.  
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Fig. 149 Top view of layout 5 (final / executed foundation concept) 
 
The vertical settlements calculated are about 100 mm. Fig. 150 shows the 
contour lines of vertical displacements of the entire 3D model and of the deep 
foundation elements. The differential settlements of the foundation slab are 
presented in Fig. 149. Between point A and B, nearly 65 mm of differential 
settlements and approximately 47 mm within the 2.6 m thick slab (point A to 
point C) are computed. In order to evaluate the settlement reduction due to the 
diaphragm wall panels, an analysis without panels was performed. The maximum 
settlements obtained are in the range of 240 mm. 
 
A further variation involved the replacement of a sand layer by a silty clay layer 
below -60.0 m in order to take the uncertainty of ground conditions at deeper 
layers into account. This calculation concludes that settlements increase by 
10 mm. 
 

 
 
Fig. 150 Contour lines of vertical displacement of entire model (left) and deep 

foundation elements (right) 



7 Boundary value problems 161 
 

7.2.3 Parametric study 
 
The soil parameters used for the settlement predictions discussed above are based 
on the soil description in the geotechnical reports and laboratory tests. Because 
high order constitutive models - as used for the numerical analysis - need more 
input parameters in general than given in standard geotechnical reports, profound 
knowledge of the used soil models and experience with correlations between 
certain soil parameters play a significant role. In this section, a parametric study 
based on recently published soil data not available at the time of analysis is 
presented. The parameters given by Saidel et al. (2010), are typical for the soil 
conditions in Bucharest. The published data is based on drained and undrained 
triaxial tests, oedometer tests, direct shear tests, in-situ tests, cross hole seismic 
survey, cyclic triaxial tests, observational method and finally experience. In 
Saidel et al. (2010) a range of most of the input parameters necessary for the HS 
and HSS Model is given. The aim of this study was firstly to see how the 
parameters derived from the geotechnical reports and used for the settlement 
predictions fit to the parameters presented by Saidel et al. (2010), and secondly 
(and mainly), to work out the influence on the computed settlement troughs. For 
the comparisons presented in this section, the executed foundation concept was 
used, where the barrettes beneath the core have a length of 30 m instead of 25 m 
and the diaphragm wall - which acts as retaining wall and as foundation element 
- has altering lengths of either 15 or 25 m. This modification of the foundation 
system yields to a reduction of both maximum and differential settlements of 
about 6 mm, compared to the layout presented above.  
 

 
 
Fig. 151 Overview of soil parameters 
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Fig. 151 shows the input parameters for the HS and HSS model. The bars 
represent the range of the soil parameters, whereas the values on the horizontal 
axes are the used values for the settlement predictions and the light and dark grey 
bars indicate the deviation of the best and the worst-case scenario according to 
Saidel et al. (2010). Fig. 152 shows the computed settlement troughs along cross 
section A-A (Fig. 149). The results of the worst and best-case scenarios are 
compared with the differential settlements obtained with the parameters used for 
the settlement predictions presented in the last chapter. The results for both the 
HS and the HSS model are presented.  
 

 
 
Fig. 152 Settlement troughs along cross section A-A 
 
The difference between the HS and the HSS model clearly shows the influence of 
the small strain stiffness, where the settlements from deeper depths are 
automatically reduced. One can also see that the predicted settlement trough 
computed with the HS model, where the input parameters were derived from the 
geotechnical report, is more or less exactly between the worst and best-case 
scenario. The "best-case" calculation with the HSS yields only 25 mm maximum 
displacements. This comes from the fact that the additional parameters for the 
HSS model, namely the G0 and the 0.7, are very optimistic in this case. 
 

7.2.4 Validation of numerical model 
 
Although the models presented can be regarded as high level, it has to be made 
clear that in-situ measurements during construction are essential in order to 
verify the assumptions made in the calculations. This is especially important in 
this particular case where no information on ground conditions below -60.0 m 
from the surface is available. To obtain additional information of the settlement 
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behaviour of the deep foundation, an in-situ test was conducted on a diaphragm 
wall element (barrette) using the "Osterberg Method" (Osterberg 1989). In the 
first part of this chapter some principles of the testing procedure are discussed 
and in the second part a back-analysis of an O-Cell test is presented. 
 

7.2.4.1 Principles and numerical modelling 
 
A detailed description of the testing procedure is given e.g. in Schmertmann & 
Hayes (1997). The basic idea of the test is that due to the expansion of the 
Osterberg cell, the upper part of the pile acts as a reaction for the end-bearing and 
the end-bearing resistance acts as a reaction system for the shaft resistance. The 
upward load movement is mainly governed by the strength characteristics of the 
adjacent soil and the interface properties of the pile soil interaction. The 
downward load-movement is mostly influenced by the stiffness properties of the 
soil below the pile tip. The main advantages of the test are: 
 

- Reduction of costs compared to a conventional top load test. 
- Shear and end-bearing resistance are measured separately. 
- Multilevel testing is possible. 
- Improved safety - no overhead dead load. 
- Reduced working area - test can be performed in densely built up 

regions. 
 

Another important benefit is the high test load, which can be applied with the 
Osterberg method. According to England & Cheesman (2010), reaction systems 
for traditional top load tests in excess of 40 MN are almost non-existent. The 
drawbacks of the O-Cell system are a rather complex installation procedure and 
that the position of the O-Cell has to be "designed" in a way that the base and 
shaft resistance are almost equal.  
 
With an Osterberg test two primary results are obtained, namely the shaft 
resistance-deformation curve and the base resistance-deformation curve. But it is 
important to consider that at the start of the test, the initial load in the pile (at the 
level of the O-Cell) is carried structurally by the O-Cell, which means that the 
pressure in the cell is zero. According to Fellenius (2001) and Fellenius (2009), 
these "locked-in loads" are developed during and after the construction of the pile 
and are for slender and/or long piles normally larger than the buoyant weight of 
the pile. For the interpretation of the load test it is important to take these "locked 
in loads" into account. 
 
To model an O-Cell test with the Finite element technique it is necessary to take 
some special boundary conditions into account. Fig. 153 shows schematically the 
different boundary conditions and structural elements in the finite element model.  
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Fig. 153 Schematic representation of boundary condition for a FE model 
 
The calculation procedure for a numerical back-analysis of an O-Cell test must 
also contain some additional calculation phases. After the generation of the initial 
stress state, the pile/barrette is activated (wished in place installation); this has to 
be done with a small interface strength between the deep foundation element and 
the surrounding soil due to the fact that the concrete is not cured in reality. This 
ensures that a realistic initial stress state along the pile shaft and below the pile 
base is present. In the following calculation phase stiff plate elements 
representing the steel-bearing plates are activated, and next the "locked-in loads" 
have to be applied in both directions (load A and load B). This calculation phase 
does not yield to any pile displacements, because in reality, the "break" of the O-
Cell devise also cannot occur before the pressure in the O-Cell has become equal 
to the "locked-in load". In the following phases the O-Cell pressures are applied.  
 
Fig. 154 shows the "primary" results of an O-Cell back-analysis, namely the shaft 
and end-bearing mobilization. For the shaft resistance-deformation curve a node 
at the pile toe should be chosen. However, when dealing with drilled shafts the 
elastic shortening of the pile is relatively small. The shaft resistance shows a 
much stiffer response compared to the base resistance; only a couple of 
millimetres heave are enough to mobilize the entire skin friction. If the relative 
displacements instead of total vertical displacements are plotted, the value would 
be even smaller. Fig. 154 also illustrates the constructed equivalent top load-
settlement curve.  
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Fig. 154 Results of O-Cell load test (left) and equivalent top load-settlement 

curve (right)  
 
According to Osterberg (1998), it is assumed that for the construction of the 
equivalent top load-settlement curve, the side shear load-deflection curve 
resulting from the upward movement of the tested deep foundation element 
equals the downward side shear deflection curve in a conventional load test. In 
addition, it is assumed that the end-bearing load deflection curve resulting from 
an O-Cell test is the same as the end-bearing-load deflection component in a 
conventional top down load test. Adding the side shear and end-bearing force at 
the same deflection gives one point of the equivalent top down curve; by 
repeating this process for different vertical displacements the entire equivalent 
top down curve is obtained. Fellenius (2009) stated that it is also important to 
take the elastic shortening of the pile into account. 
 
A number of numerical studies were performed to confirm the assumptions for 
the construction of the equivalent top load curve recommended by Osterberg 
(1998), i.e., the Hardening Soil model without stress dependent stiffness (m = 0). 
In these calculations the upward and downward load of the O-Cell were activated 
separately to compare the results with a conventional test and a top loaded pile 
without base resistance. The results showed that the influence of the loading 
direction on the mobilized skin friction is rather small (Fig. 155). An influence of 
the O-Cell downward movement is notable only close to the pile toe. 
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Fig. 155 Normalized shear stress (left) and normalized relative displacements 

(right) along the pile shaft 
 
Fig. 156 shows contour lines of vertical displacements close to the pile base for a 
calculation where only the downward load of the O-cell is activated. The 
obtained vertical displacements of the soil in the lower part of the pile yield to 
additional mobilization of skin friction, but the influence of gained shear stress 
mobilization on the global load-settlement behaviour is rather small. However, it 
was also found that the vertical displacements in the soil yield to a downdrag of 
the pile and must be considered when constructing the equivalent top down curve 
based on FE results. 
 

 
 
Fig. 156 Contour lines close to the pile base  
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7.2.4.2 Back-analysis of O-Cell test 
 
The top of the 25.2 m long tested barrette is located 15.3 m beneath the surface 
and the "Osterberg Cell" is 9.0 m above the bottom of the panel installed. A 
numerical model was set up in close agreement to the real test. The soil profile 
and parameters used for the back-analysis are the same as mentioned above. The 
barrette is discretized by means of volume elements and the soil-structure 
interaction is defined with a strength reduction factor Rinter of 0.8. The finite 
element model consists of 82500 15 noded wedge elements. Fig. 157 shows the 
3D finite element model used and indicates the important levels of the in-situ 
test. 
 

 
 
Fig. 157 3D Finite element model of the in-situ test  
 
Fig. 158 shows the displacements of the load test for the upper and lower part of 
the barrette. As expected, the finite element analysis yields slightly higher 
displacements because of the cautious estimates of soil parameters used when 
analysing the entire foundation for the Sky Tower. Also, when using the HSS 
model, the global stiffness response of the O-Cell test is underestimated. The 
sudden increase of the upper part of the barrette can be approximately captured 
with the finite element analysis, but little effort has been put into modelling the 
sand fill and its very limited friction against the natural soil. For the lower part of 
the barrette, the agreement can also be considered as reasonable. But the 
measured kink of the load displacement curve at a load level of about 5 MN was 
not captured with the FE analysis. Numerical studies with modified soil 
conditions also did not show this kink. It is found as well that differences 
between drained and undrained conditions are not significant although the 
undrained analysis of course results in somewhat smaller settlements. 
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Fig. 158 3D finite element model of the in-situ test  
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7.3 Ground anchors 

7.3.1 Introduction 
 
The ground anchor facility consists of two different parts. The first part 
represents the free anchor length and the second part the grout body. The free 
length is modelled as a node-to-node anchor, which defines a connection 
between the grout body and for example a diaphragm wall. The grout body 
consists of embedded beam elements. Besides the geometry, six input parameters 
are required to define a ground anchor. Fig. 159 shows a schematic 
representation of a ground anchor. The anchor bar is modelled as a spring with a 
axial stiffness EA and, if elasto-plastic material behaviour is chosen, an ultimate 
force Fmax,GA. The soil-interaction along the grout body is defined with the two 
separate values for skin resistance (Ttop,max, Tbot,max), thus a constant and linear 
ultimate skin friction distribution can be defined (see chapter 4.3.2). 
 

 
 
Fig. 159 Schematic representation of a ground anchor 
 
For loads close to the theoretical pull out force, numerical failure may occur due 
to plasticity in the soil adjacent to the grout body. Although this is of course 
possible in reality, in the model it may be artificial and caused by the fact that the 
grout body is a line element. To overcome this problem in ultimate limit state 
conditions it is necessary to work with an enlarged diameter of the grout body, or 
in other words, with an increased elastic region (see also chapter 4.5). This 
virtual diameter dv of the grout body is defined with an enlargement factor fGB.  
 

GBGBv dfd   (94) 

 
A value of the enlargement factor fGB in the range of 2 to 4 is suggested. This 
modification of the elastic region does not affect the pull out force (this is an 
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input due to the input of the limiting skin resistance and the length of the grout 
body) and has a minor effect on the behaviour under working load conditions. 
 

7.3.2 Application 
 
In order to demonstrate the application of the ground anchors in the PLAXIS 
3DF, some results from a practical example are presented, namely a deep 
excavation in Berlin sand with prestressed anchors. This example was chosen for 
testing the ground anchor facility under working load conditions because a 2D 
reference solution was available (Schweiger 2000). The model dimensions and 
material sets for the soil layers have been taken from the 2D reference solution. 
Fig. 160 illustrates the deep excavation analysed and Tab. 28 and Tab. 29 give 
the soil parameters for the three sand layers. A detailed description of the model 
and further information regarding the soil properties are given in Schweiger 
(2000). 
 

 
 
Fig. 160 Geometry of deep excavation 
 
The diaphragm wall was modelled as a continuum element with linear elastic 
material behaviour and a stiffness of 3.0e7 kN/m2. The grout body of the ground 
anchors has a diameter dGB of 0.125 m and a Young's modulus E of 2e7 kPa. The 
hydraulic cut-off does not act as a structural element, thus the properties are the 
same as for the soil (Sand 20 - 40 m). Fig. 161 illustrates the 3D finite element 
model. The aim of the test was to see if the embedded pile model (employed for 
the grout body) works well in working load conditions, hence the ultimate skin 
resistance in the grout body has therefore been defined about two times the 
expected axial load in the node-to-node anchor.  
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Tab. 28: Input parameters for Mohr-Coulomb model 
 

parameter unit Sand 0 - 20 m Sand 20 - 40 m Sand > 40 m 

unsa t  kN/m3  17.0 17.0 

 sa t kN/m3  20.0 20.0 

E kPa 47 000 244 000 373 000 

' --  0.30 0.30 

' °  38.0 38.0 

c' kPa 1.0 1.0 1.0 

 °  6.0 6.0 

K0 -- 1-sin' 1-sin' 1-sin' 

 
Tab. 29: Soil properties for the Hardening Soil model 
 

parameter unit Sand 0 - 20 m Sand 20 - 40 m Sand > 40 m 

unsat kN/m3 17.0 17.0 17.0 

sat kN/m3 20.0 20.0 20.0 

E50,ref kPa 45 000 75 000 105 000 

Eoed,ref kPa 45 000 75 000 105 000 

Eur,ref kPa 180 000 300 000 315 000 

'ur - 0.2 0.2 0.2 

pref kPa 100 100 100 

m - 0.55 0.55 0.55 

' ° 35.0 38.0 38.0 

c' kPa 1.0 1.0 1.0 

 ° 5.0 6.0 6.0 

K0
nc - 1-sin' 1-sin' 1-sin' 

 
In the different calculations the material model, the shape of the limiting skin 
resistance and the enlargement of the grout body was varied (Tab. 30). In 
calculation HS5 the stiffness of the grout body is modified according to the ratio 
of the real diameter (0.125 m) to the fictitious enlarged diameter dv (0.125fGB = 
0.5m). 
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Fig. 161 Finite element model  
 
All analyses were defined with the following calculation phases: 
 

- Initial phase 
- Activation of diaphragm wall 
- Activation of hydraulic cut-off (reset displacements to zero) 
- Groundwater lowering to -4.8 m below ground surface  
- First excavation step to -4.8 m 
- Activating of first ground anchors row (prestress force 768 kN) 
- Groundwater lowering to -9.3 m 
- Second excavation step to -9.3 m 
- Activating of second ground anchors row (prestress force 945 kN) 
- Groundwater lowering to -14.35 m 
- Third excavation step to -14.35 m 
- Activating of third ground anchors row (prestress force 980 kN) 
- Groundwater lowering to -17.90 m 
- Fourth excavation step to -16.80 m 

 
It follows from Fig. 162 that neither the variation of the predefined limiting skin 
resistance of the grout body nor the fGB factor of the enlargement of the grout 
diameter have a significant influence on the axial forces predicted under working 
load conditions. If the Mohr-Coulomb model is employed, the results are of 
course slightly different. It is also notable that by increasing the fGB factor, 
displacements in the horizontal direction become smaller. The differences are in 
the order of 10%. With the MC model the highest deformations in horizontal 
direction are located around the grout body, whereas with the HS model this is 
not the case (Fig. 163). This effect also occurs with the assignment of a high fGB 
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factor. The settlements behind the diaphragm wall are in the range of 11 mm with 
the HS model (almost the same for the different variations), but with the MC 
model there is a heave of more than 14 mm, an effect which is well known (e.g. 
Schweiger et al. 2009). 
 
Tab. 30: Performed calculations 
 

calculation constitutive 
model 

distribution of 
ultimate skin friction 

enlargement factor 
fGB 

HS1 HS constant 1.0 

HS2 HS linear 1.0 

HS3 HS linear 2.0 

HS4 HS linear 4.0 

HS5 HS linear 4.0 

MC MC linear 1.0 

 

 
 
Fig. 162 Axial forces in the first anchor row 
 
In Fig. 164, axial forces in the first anchor row from calculation HS2 are 
compared with the axial forces from the 2D reference solution. In the 2D analysis 
the grout body of the ground anchor is modelled with geogrid elements. These 
elements have an axial stiffness (EA) but no bending stiffness (EI). The axial 
forces from a 2D plane strain calculation have the unit kN/m. To compare these 
results with the 3D analysis, it is necessary to divide the axial forces obtained in 
the 3D analyses by the anchor spacing. 
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Fig. 163 Contour lines of horizontal displacements of calculation HS2 (left) and 

calculation MC (right) 
 
One can see that the axial forces from the 3D calculations are in very good 
agreement with the reference solution. The deviation of the forces in the node-to-
node anchor between both calculations is less than 4%. Also the maximum 
vertical displacements and the settlement trough behind the diaphragm wall 
obtained in the 3D calculation are very similar to the ones from the 2D solution.  
 
The results indicate that it is not necessary to artificially increase the diameter of 
the grout body for working load conditions, but because the limiting skin friction 
is an input, the grout body length has a minor influence on the result and 
therefore the length cannot be determined from the analysis. The validation 
example demonstrates that the embedded pile concept is an efficient tool for 
modelling the grout body of a ground anchor. 
 
 

 
 
Fig. 164 2D vs 3D analysis 
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7.4 Project "Wien Mitte" 

7.4.1 General information 
 
The railway station "Wien Mitte" is one of the most frequented traffic junctions 
in Austria. The construction site has a length of about 180 m and a width of 
nearly 100 m. The planned superstructure, with heights between 35 m and 70 m, 
consists of 130000 m2 gross floor-area and is located above the existing railway 
station. Fig. 165 illustrates an image of the entire building (©beyer.co.at).  
 

 
 
Fig. 165 Project overview (© beyer.co.at) 
 
Most parts of the existing superstructure above the station will be removed, 
however the slab of these buildings, consisting of continuous prestressed 
concrete beams, will be partly utilized for the new project. Hence, the differential 
settlements are the key point of interest. Fig. 166 shows the project in the top 
view including the existing underground structures. In the area of the new 
superstructure two subway lines, the City Airport Train (CAT) and several ÖBB 
railway lines operate. In addition, a main sewerage channel crosses the building 
side and concentrated loads up to 2500 kPa are present.  
 
Due to these complex constructional constrains and the requirement that the 
serviceability of the railway station has to be ensured during the whole 
construction period, the use of jet-grouted columns as foundation elements is 
most likely the only feasible foundation concept. A total length of about 30000 m 
jet-grouted columns with maximum lengths up to 20.0 m and diameters between 
0.8 to 1.0 m were proposed. In distinct zones it was also designed to install 
inclined columns. 
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The soil profile for the finite element simulation is based on core drillings with 
depths down to -45.0 m. Fig. 167 shows the obtained soil profile and the 
evaluation of Eoed and Eur over depth. A more detailed description of the soil 
condition is given in Würger (2006) and Martak et al. (2007). The Hardening 
Soil model was used to model the soil behaviour (Tab. 31) and the 
overconsolidation of the soil (e.g. Fross 1973) is taken into account with a pre-
overburden value.  
 
All calculations were carried out as drained analyses and the following phases 
were defined: 
 

- Generation of initial stresses 
- Excavation until lower edge of the slab 
- Modelling of the existing subway tunnel U3 (wished in place) 
- Installation of deep foundation elements (wished in place) 
- Activation of slabs  
- Activation of loads from the superstructure 

 
 

 
 
Fig. 166 Top view of the project including existing underground structures 
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Tab. 31: Soil properties for the Hardening Soil model 
 

parameter unit gravel sandy silt I / II sand  stiff silt 

unsat kN/m3 21.0 20.0 20.0 20.0 

sat kN/m3 21.5 20.0 21.0 20.0 

E50,ref kPa 40 000 20 000 25 000 30 000 

Eoed,ref kPa 40 000 20 000 25 000 30 000 

Eur,ref kPa 120 000 50 000 62 500 90 000 

'ur - 0.2 0.2 0.2 0.2 

pref kPa 100 100 100 100 

m - 0.00 0.80 0.65 0.60 

' ° 35.0 27.5 32.5 27.5 

c' kPa 0.1 20.0 / 30.0 5.0 30.0 

 ° 5.0 0.0 2.5 0.0 

K0
nc - 0.426 0.538 0.463 0.538 

 

 
 
Fig. 167 Soil profile (left) and evaluations of Eoed and Eur (right) 
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7.4.2 Preliminary studies 
 
For the first analysis a 2D plane strain model along cross section P-P (Fig. 166) 
was defined. This model was convenient for principle studies of variations of 
inclinations or lengths of the jet-grout columns, but due to the geometrical 
restrictions in other parts of the construction the calculated settlements are not 
very reliable, therefore 3D modelling was necessary. However, before the entire 
structure was modelled, a preliminary study of a raft supported by a limited 
number of jet-grouted columns was performed with three different models: a 2D 
plane strain model, a full 3D model with volume discretisation of the columns 
and one model with the embedded pile formulation. The soil layering is similar 
to the real project and the overconsolidation is defined with 600 kPa. This value 
is at the lower limit for the soil conditions in this area of Vienna and has 
therefore been adopted for this study. The foundation slab is defined as linear 
elastic material with an elasticity modulus E of 2.8e7 kPa and a Poisson's ratio of 
0.15. The jet-grout columns are described with Mohr-Coulomb material 
behaviour (Tab. 32). Fig. 168 shows the 2D plane strain model for the example. 
Two different configurations are studied. In the first one, all jet-grout columns 
are vertical and in the second one the outer piles are inclined.  
 
Tab. 32: Properties of jet-grout columns 
 

 
 

sat = unsat 

[kN/m3] 

 

Eref 

[kPa] 
c' 

[kPa]  
' 
[°] 

jet-grout column 21.5 0.15 1E7 2700 32.5 

 

 
 
Fig. 168 2D plane strain model (left) and 3D model (right) 
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In the 2D analyses the stiffness of the jet-grouted columns, with a real diameter 
of 0.8 m, were converted into equivalent stiffnesses according to their spacing eP. 
The interaction between jet-grouted columns and the subsoil can be assumed as 
very rough, hence no interface elements were defined between columns and soil. 
For the 3D calculations, the 2D model is extended to a 3D strip (Fig. 168). Due 
to the fact that it is not possible to define inclined volume piles in PLAXIS 3D 
Foundation, just one calculation with vertical piles was investigated. However, it 
is possible to model piles in arbitrary direction in the soil with the embedded pile 
concept, therefore both configurations as considered for the plane strain case 
have been compared. The bearing capacity of the embedded pile is defined with a 
linear distribution of ts (Ttop,max = 0; Tbot,max = 502 kN/m) and a maximum base 
resistance Fmax of 600 kN. 
 
The results show that the inclination of the outer piles leads to a reduction of 
vertical displacements of roughly 4 mm which corresponds to about 5% of 
maximum vertical displacements. The maximum difference between the different 
modelling techniques is roughly 2% (Fig. 169), indicating that the EP 
formulation is applicable to modelling vertical and inclined jet-grouted columns 
in layered soil conditions. 
 

 
 
Fig. 169 2D plane strain model (left) and structural elements of 3DF model 

using embedded piles 
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7.4.3 Settlement prediction using 3D FE analyses 
 
In this section settlement predictions for the entire project are presented. The soil 
conditions are similar to those presented in the previous chapter, but the pre-
consolidation pressure was increased to 800 kN/m2. The design of the deep 
foundation based on the bearing capacity of individual piles required about 3000 
jet-grouted columns with diameters between 0.8 m to 1.0 m. The first analyses 
were performed with a simplified model where the zones improved by jet-grout 
columns are modelled as blocks, meaning that the zones of the sub-soil in which 
the columns are installed are defined with smeared properties (Fig. 170). The 
model with the dimensions Lm/Bm/Dm of 500/400/48 m consists of 
46478 elements. The foundation slabs are modelled by means of volume 
elements and defined as linear elastic material. 
 

 
 
Fig. 170 Structural elements of first 3D model ("Block" model) 
 
This simple model was used to study the effect of different column (resp. block) 
lengths. But because these calculations can neither consider plastic zones along 
or beneath jet-grouted columns nor the inclination of foundation elements, they 
are not applicable for an optimisation of the foundation concept. Additionally, 
the computed differential settlements are non-conservative due to the fact that 
blocks generally overestimate the stiffness of a deep foundation. Hence another 
modelling approach was chosen where two areas are distinguished: Areas that are 
not sensible for the superstructure and in which the load is not very high, and 
others where the loads are very high and the superstructure is very sensitive to 
(differential) settlements. The former are modelled as homogenized blocks, and 
for the latter, the embedded pile concept is applied. The capacity of the EPs is 
defined by a constant skin friction distribution (Ttop,max and Tbot,max = 251 kN/m) 
and a base resistance Fmax of 600 kN. Fig. 166 shows the three sensitive zones 
defined. Zone A is a critical zone because of the superstructure, Zone B because 
of very high concentrated loads and Zone C due to the complex geometrical 
constraints. Fig. 171 shows the entire 3D model and a zoom of Zone B where 
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615 jet-grouted columns with different lengths, inclinations and spacings are 
modelled explicitly. With these models it is possible firstly to predict the global 
settlement behaviour of the entire construction because the complete structure is 
modelled, including all areas with significant different load intensities. Secondly, 
detailed information in the section with embedded piles is obtained, for example 
relative displacements and mobilization of the skin friction along individual 
piles. 
 

 
 
Fig. 171 Entire 3D model (top) and zoom of sensitive zone B (bottom) 
 
In Fig. 172 contour lines of vertical displacements for all three models with 
sensitive zones, obtained with the HS model, are presented. With the optimised 
foundation layout, maximum settlements in Zone B of about 61 mm are 
predicted, and the subway tunnel (in the left part of the model) experiences 
settlements in the range of 10 mm.  
 
To illustrate the effect of small strain stiffness the model for sensitive zone B was 
also analysed with the HSS model. The two additional parameters were estimated 
very conservatively (Go = 3Gur; 0.7 = 0.0001). Fig. 173 shows the comparison of 
both constitutive models in the region where the maximum vertical 
displacements are obtained. Even with this conservative estimate of the 
parameters a difference of nearly 18% was calculated, which clearly shows the 
necessity to account for small strain stiffness in settlement analyses. 
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Fig. 172 Contour lines of vertical displacements 
 

 
 
Fig. 173 HS vs HSS model in the high loaded region of sensitive zone B 
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Finally, a calculation with a 64-bit calculation kernel was performed, where all 
three sensitive zones were defined in one finite element model. This very 
complex 3D model includes roughly 1200 embedded piles. The layout and the 
dimensions of the jet-grout columns for this analysis were adapted according to 
the detailed design. Fig. 174 shows the structural elements of the model and the 
contour lines of vertical displacements. The results are more or less identical to 
the displacements calculated with the simplified models. Only concerning the 
interaction of sensitive zones B and C a more accurate result is obtained. This 
confirms clearly that the simplified modelling procedure chosen at the beginning 
is an efficient tool when analysing complex deep foundation systems. 
 

 
 
Fig. 174 Structural elements (left) and contour lines of settlements (right) – 64-

bit calculation model 
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8 Conclusions and further research 

8.1 Conclusions 
 
If ground conditions are such that shallow foundations cannot support the load 
from structures such as high-rise buildings, several options exist. Depending on 
the soil profile and the corresponding soil properties, a pile foundation, a piled 
raft foundation or a diaphragm wall foundation is the solution for most cases. In 
this thesis the behaviour of such foundations is studied by means of finite 
elements. After a general overview of deep foundations, including single piles, 
pile groups and piled raft foundations, the advantages of numerical modelling of 
deep foundations are discussed. Due to the fact that a two-dimensional 
representation of boundary value problems is most of the time not possible, the 
main focus of this thesis is related to 3D analyses.  
 
The standard finite element approach is studied extensively. In this approach, the 
piles are discretized by means of volume elements and the pile-soil interaction is 
describes with interface elements. The behaviour of interfaces and its influence 
on the mesh discretization was investigated. It is shown that the use of interface 
elements reduces the mesh dependency significantly. Additionally, the effect of 
soil dilatancy on the shaft and base resistance is demonstrated. Results indicate 
that a neglection of dilatancy yields a very conservative design, whereas the 
consideration of the dilatancy in kinematically constraint problems requires the 
definition of a critical state of density.  
 
An attractive method to reduce the complexity of numerical models is the use of 
an embedded pile formulation, where piles are not explicitly modelled with 
continuum finite elements but replaced by a special “formulation”. The benefit of 
this concept is that piles are not discretized by means of volume elements and 
thus do not affect the finite element mesh. The main part of this thesis is related 
to this rather new and convenient modelling approach. After a short discussion 
about deficiencies of the current embedded pile version as implemented in 
PLAXIS 3DF, an improved formulation is presented which fulfils the following 
four criteria: 
 
 Correct load-settlement curve 
 Realistic mobilization and distribution of skin friction 
 Realistic mobilization of end-bearing resistance 
 Avoid numerical failure 
 
The main changes of the improved embedded pile version are related to different 
definitions of interface stiffnesses and a modification of the elastic region 
approach. It is shown that a stress-dependent interface stiffness is necessary to 
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model a realistic mobilization of skin resistance. Additionally, it was found that 
the tip node of the embedded pile should correspond with a corner node of a solid 
soil element. This finding was already utilized for the meshing procedure in 
PLAXIS 3D, in which the program connects the corner node of the 10 noded 
tetrahedral elements with the embedded pile tip node. A number of validation 
examples considering single piles, pile groups and piled raft foundations indicate 
the capabilities and advantages of this modelling technique.  
 
The application of the embedded piles concept to boundary value problems 
emphasized the benefit of this approach. Due to the fact that no discretisation of 
the piles is necessary, this concept allows the modelling of a high number of piles 
or columns and therefore very large computational models can be avoided. In 
addition, detailed information is obtained, for example relative displacements and 
mobilization of the skin friction, and the influence of different spacings, pile 
lengths and diameters can be evaluated with reasonable effort.  
 
In some projects presented in this thesis, two types of modelling have been 
combined, where only sensitive parts are modelled in full detail and the rest of 
the deep foundation system is modelled as homogenized blocks, meaning that the 
zones of the sub-soil in which panels are installed are defined with smeared 
properties. Verifications of this assumption using a 64-bit calculation kernel 
show that the global settlement behaviour can be captured by using simplified 
models, but of course, concerning interactions of sensitive regions, detailed 
models are required. For some projects, different arrangements and lengths of 
deep foundation elements have been investigated to find an economical and 
technical feasible foundation system. Others were used to compare the behaviour 
of different foundation concepts. The assumptions made in the calculations are 
verified with parametric studies, sensitivity analyses and back-calculations of in-
situ load tests. Comparisons of the Hardening Soil model with the Hardening Soil 
Small model show that once the high stiffness at small strains is taken into 
account, settlements from deeper levels are automatically reduced. Hence the 
influence of the model boundary conditions on the computed displacement is 
diminished and a more realistic settlement behaviour can be obtained.  
 
The comparison of the different modelling approaches to define piles within a 
piled raft foundation shows clearly that the embedded pile option is a convenient 
alternative to the standard finite element approach. In the author's opinion, 
serviceability limit state is most of the time the key issue of foundation design, 
hence considerations regarding settlements play a very dominant role. The 
embedded pile concept is well capable for these types of analyses and provides a 
very powerful tool for complex situations with a large number of deep 
foundation elements.  
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8.2 Recommendations for further research 
 
In the following, a guideline of useful further research in the field of numerical 
modelling of deep foundations is given. 
 

 With respect to the standard finite element approach, further research 
should concentrate on the development of more advanced constitutive 
models for interface elements. 
 

 Undrained behaviour of deep foundations, especially piled raft 
foundations should be investigated. 
 

 Numerical modelling of pile installation methods should be part of more 
extensive research. 
 

 Concerning the embedded pile formulation, further studies of horizontally 
loaded piles and pile groups are recommended. 
 

 For ultimate limit state considerations, further investigations of the 
embedded pile interface stiffness are necessary. 
 

 Other types of applications for embedded piles should be tested, e.g. rock 
bolts, passively loaded piles or large diameter piles etc. 
 

 Multi-processing of software packages in combination with 64-bit 
calculation kernels, in order to make full 3D analysis suitable for 
engineering offices. 
 

 Back-analyses of boundary value problems and validation against 
measured data. 
 

 Development of more advanced constitutive models, which enable 
modelling of cyclic loading. 
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Appendix A 

A.1 Linear elastic perfectly plastic model - Mohr-
Coulomb model 
 
The linear elastic-perfectly plastic Mohr Coulomb (MC) constitutive model is, 
due to its simplicity, probably still the most frequently used constitutive model in 
geotechnics. An substantial advantage of the model is that the used parameters 
are well established. The model represents only a first order approximation of the 
real soil behaviour, hence, for most practical applications and scientific research, 
it is not appropriate. But due to its popularity and the fact that linear elastic-
perfectly plastic models represent the simplest case of plasticity, the MC model 
was used for numerical studies and validation examples.  
 
The Mohr-Coulomb yield condition is an extension of the basic Coulomb friction 
law, where f is the shear stress at failure, ´n the normal stress on the failure 
plane and ´ and c´ are the effective strength parameters of the soil. 
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In terms of principle stresses (´1, ´2, ´3) the full Mohr-Coulomb yield 
condition is defined with six yield functions (f ).  
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Due to the fact that associated plasticity would yield to an overestimation of the 
dilatant behaviour of soil, the dilatancy angle  is used to define the plastic 
potential. Fig. A1 shows the yield surface of the Mohr-Coulomb model in the 
principle stress space. 
 

 
 

Fig. A1 Mohr-Coulomb yield surface in principle stress space (c´=0) (after 
Brinkgreve et al. 2010) 

 
The MC model requires the following five input parameters: 
 
 E elasticity modulus [kN/m2] 
  Poisson’s ratio [-] 
 c cohesion [kN/m2] 
  friction angle [°] 
  dilatancy angle [°] 
 
The major deficiencies of the Mohr-Coulomb model are: 
 

a) No plastic straining for stress paths which do not reach the Mohr-
Coulomb yield surface. 

b) No plastic straining for isotropic stress paths. 
c) Same stiffness is used for primary loading and un-/ reloading. 
d) No stress dependency of stiffness. 
e) Constant dilatancy angle. 
f) No small strain stiffness. 
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A.2  Hardening Soil Model 
 
The Hardening Soil model (HS) is an elasto-plastic constitutive model that 
enables modelling of both deviatoric and volumetric hardening (double 
hardening model). The model was developed by Schanz (1998) and Schanz et al. 
(1999) on the basis of Vermeer (1978).  
 
The basic features of the Hardening Soil model are: 
 
1. Stress dependent stiffness according to a power law.  
2. Hyperbolic relation between strains and deviatoric stress for drained 

triaxial stress paths (based on Duncan & Chang 1970). 
3. Distinction between deviatoric primary loading and unloading/reloading. 
4. Mohr-Coulomb failure criterion. 
 
Figure A2 shows a basic idea of the Hardening Soil model, namely the 
hyperbolic relationship of axial strain 1 and the deviatoric stress q in primary 
loading of a standard drained triaxial test. 
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with 
 
Ei   initial stiffness in a drained triaxial test 
qa  asymptotic value of shear strength 
qf  ultimate deviatoric stress 
 
Due to the fact that the model distinguishes automatically between primary 
deviatoric loading, primary compression and unloading/reloading, different 
stiffness input parameters are required. The stress dependency of soil stiffness is 
taken into account in the HS model as proposed by Ohde (1938), but slightly 
modified according to the following equations: 
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with 
 
E50,ref  reference secant stiffness modulus in a drained triaxial test 
Eur,ref  reference Young’s modulus for unloading and reloading 
Eoed,ref  reference oedometric stiffness 
pref  reference pressure 
Ko

nc Lateral earth pressure coefficient for normally consolidated 
conditions 

m  parameter which controls the amount of stress dependency 
 

 
 
Fig. A2 Hyperbolic stress-strain relation for a drained triaxial test (Brinkgreve 

et al. 2010) 
 
Figure A3 shows schematically the deviatoric yield surfaces according to the 
shear hardening law, which is a function of plastic (shear) strains. Additionally 
illustrated is the total yield contour (deviatoric locus and yield cap) of the HS 
model in the principle stress space.  
 
The flow rule of the deviatoric yield function is non-associated and based on the 
"stress dilatancy theory" of Rowe (1962), but slightly modified as explained by 
Schanz & Vermeer (1996). 
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with  
 

p
v   rate of plastic volumetric strain 
p   rate of plastic shear strain 

m  mobilised dilatancy angle 
´cv  critical state friction angle   
´m  mobilised friction angle 
 

 
 
Fig. A3 Deviatoric yield loci (left) and total yield contour in the principle 

stress space (Brinkgreve et al. 2010) 
 
The Hardening Soil model includes the possibility of limiting the dilatant 
behaviour of soils using a dilatancy-cut-off. Once the maximum void ratio emax 
(an input) is reached, m is set to zero (Figure A4). The change of void ratio e is 
related to the change of volumetric strain v. 
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Fig. A4 Schematically representation of dilatancy-cut-off option (after 

Brinkgreve et al. 2010) 
 
The so-called cap yield surface controls the plastic volumetric strains. The shape 
of the ellipse is mainly defined by the oedometric stiffness Eoed and K0

nc. For the 
plastic potential the same function as for the yield surface is used. The initial 
position of the cap yield surface in the p´-q space is computed from the initial 
stress state in the soil and expands as a function of the pre-consolidation stress 
p´p (Figure A5). Because the volumetric and deviatoric yield functions are 
shifted, the elastic region of the Hardening Soil model is increased. The 
mathematical definition of the cap yield surface is given in equation A15, where 
q~ is special measure for deviatoric stress and c a model parameter defining the 
shape of the cap yield function. 
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Fig. A5 Schematically representation of cap yield surface 
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The pre-consolidation stress p´p depends on the overconsolidation of the soil. If 
the soil is overconsolidated, one has two different options to model this effect in 
the initial conditions. The first option is to use an over-consolidation-ratio (OCR) 
value, which is the ratio of the highest vertical stress ´p reached in the past 
divided by the in-situ effective vertical stress ´yy

0. The second option is to use a 
so-called pre-overburden pressure (POP), which directly determines a geological 
overburden. Figure A6 compares these two approaches. An OCR value increases 
the effective vertical stress according to equation A16, whereas the POP value 
increases the vertical stresses by a constant value.  
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Fig. A6 OCR vs POP (left) and definition of K0 (right) (after Brinkgreve et al. 

2010) 
 
For normally consolidated conditions OCR is 1 while POP equals 0. In this case 
the highest mean effective stress p´hist reached in the past and the initial stress 
p´initial are the same and as a consequence p´p and p´eq also coincide (see Figure 
A5). 
 
In overconsolidated soils the value of K0 is expected to be larger than the K0

nc 
value. In the HS model the unloading stress path from ´p to ´yy

0 is defined as 
shown in Figure A6 and equation A18. 
 

0

0
0

´

´

yyp

xx
nc

p

yy

xx K















 (A18) 



212 Appendix A 

From this, it follows that when using an OCR for the definition of the 
overconsolidation a constant value of K0 is obtained. 
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When using a pre-overburden-pressure, the internally calculated K0 value 
increases with increasing ´yy, in other words, increases with depth.  
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However it is also possible to overrule the calculated lateral earth pressure 
coefficient values with the input of a constant K0. Relationships between K0 and 
OCR values are given e.g. in Mayne et al. (1982). 
 
The Hardening Soil model requires the following input parameters: 
 
c  cohesion [kN/m2] 
  friction angle [°] 
  dilatancy angle [°] 
E50,ref  reference secant stiffness modulus in a drained triaxial test [kN/m2] 
Eur,ref  reference Young’s modulus for unloading and reloading [kN/m2] 
Eoed,ref  reference oedometric stiffness [kN/m2] 
pref  reference pressure for stress dependent stiffness [kN/m2] 
m  parameter which controls the amount of stress dependency [-] 
ur  Poisson’s ratio for unloading/reloading [-] 
Ko

nc Lateral earth pressure coefficient for normally consolidated 
conditions 
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The major deficiencies of the Hardening Soil model are: 
 

a) No softening behaviour. 
b) Elastic behaviour in dynamic or cyclic loading. 
c) No small strain stiffness. 

 

A.2  Hardening Soil Small Model 
 
The Hardening Soil Small model (HSS) is based on the Hardening Soil model 
and additionally allows for modelling the high stiffness at very low strains. 
Compared with the Hardening Soil model, the HSS model needs two additional 
parameters to describe the stiffness behaviour at small strains. Namely, the initial 
shear modulus G0 and the shear strain level 0.7, which represents the amount of 
shear strains (s) where the secant shear modulus is reduced to 70% of its initial 
value. Figure A7 shows schematically the stiffness-strain behaviour in a 
logarithmic scale. The tangent shear modulus is defined according to equation 
A23 and bounded by the unloading/reloading shear stiffness Gur. From that 
follows the cut-off shear strain cut-off. 
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Fig. A7 Variation of stiffness with strain at small strain level (after Scharinger 

2007) 
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In contrast to the HS model, the HSS model shows, due to small strain stiffness, 
a hysteretic behaviour within unloading-reloading loops (Figure A8). The actual 
shear stiffness present in the model also takes the stress dependency into account, 
as in all other stiffness parameters. 
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Fig. A8 Stiffness parameters of the HSS model in a standard drained triaxial 

test (Benz et al. 2009a) 
 
The Hardening Soil Small model requires the following input in addition to the 
HS parameters: 
 
G0,ref  reference shear stiffness at very small strains [kN/m2] 
0.7  shear strain at which Gs = 0.722G0 [-] 
 
The major deficiencies of the Hardening Soil Small model are: 
 

a) No softening behaviour. 
b) No accumulation of strains in dynamic analyses. 
c) No liquefaction behaviour with cyclic loading. 

 
A more detailed description of the model can be found in Benz (2007) and Benz 
et al. (2009). 
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Appendix B 
 
In the following the basic theory of an isoparametric interface element is 
presented. Figure B1 shows a two-dimensional interface with second order shape 
function. It consists of 6 nodes, 3 at the top of the element and 3 at the bottom. vg 
and ug represent the global, and vloc and uloc the local coordinates.  is the rotation 
angle from the global to the local coordinate system. 
 

 
 
Fig. B1: Two dimensional interface element with quadratic shape function 
 
The interface stress consists of a normal stress component n and the shear stress 
component . These stresses are calculated from the element strains  and . Di 
represents the constitutive matrix of the interface.  
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with 
 
Ks   elastic shear stiffness 
Kn  elastic normal stiffness 
Kns / Ksn mixed terms 
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For isotropic linear elastic behaviour, Di reduces to Equation B3. 
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




n

s
i K

K

0

0
D  (B28) 

 
The strains of an interface are defined as relative displacements between the node 
pairs. In other words, the strains are the difference between displacements at the 
“top” and at the “bottom” of an interface (in local coordinates).  
 

top
loc

bot
locloc uuu   (B29) 

 
top
loc

bot
locloc vvv   (B30) 
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 (B33) 

 
The equations show that strains are defined as relative displacements (unit [m]). 
The global displacements ug and vg are calculated at every point via the shape 
function. In this example a quadratic shape function is used.  represents the 
intrinsic (local) coordinate axis. 
 

)1(
2

1
41  NN  (B34) 
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Or in short form:  
 

δB 










 (B37) 

 
Where  is a vector with all degrees of freedom within the interface element: 
 

 Tvuvuvuvuvuvu 665544332211δ  (B38) 

 
And the B matrix is defined as: 
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 (B39) 

 
And finally the element stiffness matrix is given by: 
 





1

1

di
T JBDBKe  (B40) 

 
where J is the determinant of the Jacobean matrix J. 
 

 
 
Fig. B2: Gauss (left) vs Newton-Cotes integration (right) 
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For the evaluation of the element stiffness matrix Ke, numerical integration is 
used. Two methods to do so are frequently applied, namely the Gauss quadrature 
and the Newton-Cotes integration scheme. For the first method the integration 
points are defined at certain positions between the finite element nodes; for the 
latter method, stress integration points and finite element nodes coincide (Figure 
B2).  
 
Van Langen (1991) studied a simple shallow foundation on homogeneous elastic 
material and showed that Gauss integration yields more stress oscillations than 
Newton-Cotes integration at the interface defined underneath the footing (Figure 
B3).  
 

 
 
Fig. B3: Normal stress distribution at the interface underneath a rigid footing 

(after Van Langen 1991) 
 
He introduced a stress transfer matrix T, which reduces to a unity matrix in the 
case where the same numerical integration procedure is used for both the 
interface and the surrounding soil. But when using Newton-Cotes integration for 
an interface and Gauss integration for the solid soil elements Mi and Msoil are 
completely different. 
 
 

Soili MMT  1  (B41) 

 

dST

Sc

  BBM  (B42) 

 
where the subscript “i” indicates an interface and “soil” a soil element. Van 
Langen (1991) concluded that for an interface element, which corresponds to a 
15-noded solid element (5 pairs of nodes), the Newton-Cotes integration 
suppresses two types and amplifies one type of stress oscillation. But, he also 
states that the suppressed types are likely to be present in stress results. 
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A detailed description of interface elements is given e.g. in Beer & Watson 
(1992) or Potts & Zdravković (1999).  
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Appendix C 
 
In the finite element method as used in this thesis, the unknowns of each FE node 
correspond to the displacement components. And within a finite element, the 
distribution is obtained using the nodal displacement values and the interpolation 
functions of the element (Brinkgreve & Swolfs 2007). 
 

nuNu   (C43) 

 
with 
 
u   displacement field within a solid soil element 
N  matrix with interpolation function of the finite element 
un  vector of nodal displacements 
 
The shape functions (interpolation functions) are defined using intrinsic 
coordinates. In the three dimensional case of a 15 noded wedge element the local 
coordinates ,  and  are used. Figure C1 shows the local numbering of a 
standard 15 noded wedge element as used in PLAXIS 3DF. The related 
interpolation functions are given in equation C2 to C16.  
 
More detailed descriptions of interpolation functions are given e.g. in Beer & 
Watson (1992). 
 

 
 

 
Fig. C1: Local numbering of a 15 noded wedge element (after Brinkgreve & 

Swolfs 2007) 
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  2/)22(1)1(1  N  (C44) 

 
  2/)22(1)(2  N  (C45) 

 
  2/)22(1)(3  N  (C46) 

 
  2/)22(1)1(4  N  (C47) 

 
  2/)22(1)(5  N  (C48) 

 
  2/)22(1)(6  N  (C49) 

 
2)1()1(7  N  (C50) 

 
2)1(8  N  (C51) 

 
2)1()1(9  N  (C52) 

 
)1)(1)(1(10  N  (C53) 

 
)1)(1(11  N  (C54) 

 
)1)(1(12  N  (C55) 

 
2)1()1(13  N  (C56) 

 
2)1(14  N  (C57) 

 
2)1()1(15  N  (C58) 
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