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Abstract
Insight is given on how and why thermal radiation is being calculated in the

automotive industry. The radiation method most used in this sector is described

along with recent developments in dealing with meshes of industrial size. A

coupling architecture between a computational fluid dynamics (CFD) code and a

thermal radiation solver is presented. It is demonstrated why one needs to know

how changing parameters will influence simulation results. Equations for local

sensitivity and uncertainty analysis are derived for conjugate heat transfer

problems and their usability is demonstrated on simple models. This treatment

constitutes an enlargement of the current state of knowledge on sensitivity and

uncertainty analysis in thermal radiation calculations.

Kurzfassung
Es wird ein Einblick in die Berechnung und Anwendungsgebiete der thermischen

Strahlung in der Automobilindustrie gewährt. Das in diesem Industriezweig

meistverwendete Strahlungsmodell wird beschrieben mit den neuesten

Entwicklungen zur Bearbeitung von Netzen industrieller Größe. Eine

Kopplungsarchitektur zwischen einem Programm zur Strömungsanalyse und einem

thermischen Strahlungslöser wird beschrieben. Es wird dargestellt warum man bei

einer Simulation wissen sollte, wie einzelne Parameter Einfluss auf das Ergebnis

nehmen. Gleichungen für eine lokale Sensitivitäts- und Unsicherheitsanalyse für

konjugierte Wärmeübergangsprobleme werden hergeleitet und diese Methode an

einfachen Beispielen demonstriert. Diese Arbeit stellt eine Erweiterung des

bisherigen Kenntnisstandes zur Sensitivitäts- und Unsicherheitsanalyse in der

Strahlungsberechnung dar.
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1 Introduction
Thermal radiation as one of the modes of heat transfer is taken into account in the

automotive industry with various levels of sophistication. One reason might be its

inherent non-linear nature, which makes it less accessible to an engineer

accustomed to linear models that depend on information about neighboring

elements in a discretization scheme. Radiation affects geometry as long as two

geometric entities see each other. While solution matrices of convection and

conduction models are spares, banded or blocked, and symmetric, this cannot be

said of radiation matrices. Furthermore, classes in radiation are not offered as

abundantly as in computational fluid dynamics (CFD), structural mechanics, or

conduction. It is more common to treat radiation as part of a heat transfer class.

The number of text books devoted to thermal radiation is also rather small

compared to the aforementioned topics. Radiation has found wide acceptance in

the space and building industries. Today the role of thermal radiation is also

growing in the automotive industry.

1.1 Topical Overview

The aim of this thesis is to provide insight into recent developments in the

automotive sector and to derive a method of reducing uncertainties in radiative

simulation results that are possibly coupled with convection and conduction.

In the second chapter a survey of thermal radiation models is presented, various

radiation solvers introduced, applications in the automotive industry cited, and the

role of radiation in the product development cycle is described.

The third chapter introduces the radiation model most commonly used in this

industry along with benchmarks for popular commercial tools.

Chapter four gives a brief description of requirements for coupling radiation with

convection and conduction together with a proposed software architecture and a

test case of industrial size.

In chapter five equations for a local sensitivity and uncertainty analysis are derived.

This chapter contributes with this approach to the scientific and industrial

communities.
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Chapter six gives an outlook on possible future research on this topic followed by a

list of literature in chapter seven and an appendix with tables and figures in

chapter eight.

1.2 Impact

Research in this thesis has influenced the software industry that is serving thermal

engineers. The publication of Rauch et al. (2007) together with corrected diagrams

in Rauch et al. (2008a) spurred the need for improvement in view factor

calculations for the common commercial software vendor. In these publications

some benchmark problems related to accuracy, memory requirements, and run-

time behavior were described along with the results of some codes. P+Z

Engineering published in its THESEUS-FE Newsletter, Volume 2, October 2007, their

response to Figure 3-37.

Figure 1-1: Memory requirements TheseusFE versus RadTherm by P+Z Engineering.

The benchmark ‘Coimbra’, which was used in this study, is described in chapter 3.5.

The red curve represents the improvements in memory requirement compared to

TheseusFE’s rival RadTherm (blue curves) and results of a previous version of

TheseusFE. More striking is the claimed improvement in run-time in Figure 1-2 as

compared to Figure 3-38. Though the claimed improvements were not validated by

the author of this thesis they are plausible considering the discussion on data

structures in chapter 3.4.
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The author suggested researching this topic which lead to publications such as

Fleischmann (2007).

Figure 1-2: Run-time TheseusFE versus RadTherm by P+Z Engineering.

The developer of ESARAD asked for the published benchmarks. The results were not

made known to the author. Whether the software passed the benchmarks

satisfactorily or not, it can be claimed that some results of this thesis have not only

influenced the automotive industry but also thermal software for the space

industry.

As P+Z Engineering profited from an improved data structure its competitor

Thermoanalytics Inc., developer of RadTherm, was influenced by the very first

publication of the author on the topic of thermal radiation (Rauch et al., 2004).

The research on radiation and human thermal comfort as mentioned in chapter 2.5

opened up a new field of application and a separately licensed module for their

software and the two rivals accelerated their research on improving the

predictability of a human thermal comfort model.
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2 Thermal Radiation and the Automobile

2.1 Introduction

This chapter presents an overview of various thermal radiation models and

introduces some important material properties related to thermal radiation. After

listing some programs offering thermal radiation calculations, a range of

applications in the automotive industry is shown. The product development process

as described in the last section of this chapter demands reliable simulation results

in order to minimize or even eliminate costly prototypes. To do so the

uncertainties and sensitivities of the results must be known in order to make sound

decisions by both management and the thermal engineer. The author became

aware of this issue when investigating the impact of radiative heat fluxes on human

thermal comfort. The magnitude of thermal radiation on some body parts depends

strongly on the boundary conditions such as the position of the sun and the

emissivity of the materials in the passenger compartment. This became the starting

point of the quest for a method that can predict how important various parameters

actually are on the simulation results.

2.2 Material Properties

Figure 2-1: Thermal radiation in the electromagnetic spectrum. Reprinted from (Modest, 2003),
Copyright © 2003, with permission from Elsevier Inc.
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When talking about thermal radiation, the visible and near infrared range of the

electromagnetic spectrum is meant.

Figure 2-2: Transmissivity of two windshields (Farrington and Rugh, 2000).

Materials transmit and emit energy at different wavelengths in different ways. The

greenhouse effect is explained by allowing glass to transmit solar energy. The

energy is absorbed by opaque surfaces and transmitted at a different temperature

with a different emissivity at different wavelengths. When the transmissivity at

different wavelengths is very low, the energy will be either reflected or absorbed

by the glass pane. This effect is desirable in greenhouses and solar thermal panels,

but undesirable in the passenger compartment of an automobile. Therefore,

windshields with a high reflectivity and a transmittance at the visible range due to

regulatory requirements are desired in order to reduce heating, ventilating and air

conditioning (HVAC) as described by Farrington and Rugh (2000).

Another important material property is reflectivity. A distinction is made between

hemispherical and directional reflectivity.
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Figure 2-3: Hemispherical directional spectral reflectivity of steel for various reflected directions
(Vujiĉić et al., 2006a). Copyright © 2006 Taylor & Francis Group.

Hemispherical means that the energy is summed over the entire hemisphere,

whereas directional deals with just one direction. For reflectivities the notation

holds that the first term refers to the incident energy and the second term the

reflected energy. In Figure 2-3, for example, the energy over all incident directions

is considered together with a specific direction of reflection over some

wavelengths. The reflectivity in this example shows a strong dependence on angle.

Spectral means that specific wavelengths are considered as opposed to total,

where the property is summed over all wavelengths.

Figure 2-4: Normal spectral emissivity for Inconel X (Siegel and Howell, 2002). Copyright © 2002
Taylor & Francis Group.
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The emissivity describes the fraction of energy the material is able to emit as

radiation. The term ‘normal’ means that the energy is radiated in the normal

direction from the surface. Figure 2-4 shows that the state of the surface has a

great influence on this value. The same holds for temperature and the level of

soiling on the surface. Hence, it is very important to get actual measurements of

the investigated object instead of relying on textbook values. But how important

are these properties for the simulation model? In chapter 5.3.2 a possible answer to

this question is provided.

2.3 Thermal Radiation Models

Figure 2-5: Thermal radiation models.

A basic distinction when dealing with thermal radiation exists in whether the fluid

between the solids also participates in radiation. The surface to surface model has

found wide acceptance in the automotive industry and is described in chapter 3.

How thermal radiation passes through participating media must be defined in an

equation. This fundamental equation is called the radiative transfer equation (RTE).

In its differential form it looks the following way according to Mishra and Prasad

(1998).
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In this formula i is the intensity,  die optical depth of wavelength ,  and  are

angles of the ray,  the scattering albedo, ib the blackbody intensity, and p an

anisotropic scattering phase function which describes the probability distribution of

the energy scattered in the direction of the rays traversing the volume from all

other directions ‘. The control volume for the RTE in differential form is depicted

in the following figure.

Figure 2-6: Control volume for the differential RTE.

This integro-differential equation is not only difficult to solve numerically, it

involves other seven unknowns, namely the three space coordinates, optical depth,

frequency, and two coordinates for photon travel. The right hand side (RHS) of the

RTE is called the source function, which has the unknown intensity to be integrated

over the angles. It is of little surprise that in the automotive industry, this equation

is used only in the combustion chamber, the lighting system, and the exhaust

system, if at all. Therefore, a very brief description will suffice.

The Zonal Method is a continuation of the surface to surface (STS, S2S) model and

enjoys wide usage for radiative applications due to its nearly analytical solution.

The difference to S2S is that view factors are not only calculated between surfaces

but also between volumes. The model has a simple algebraic equation but is rather

difficult to couple with conduction and convection because of the different mesh

resolution requirements. Grid coupling schemes have been devised to solve this

problem. Temperature dependent properties pose a challenge, as material

properties are included in the exchange factors which must be recalculated.



9

The Monte Carlo (MC) method can be very accurate but also time-consuming.

Photons are cast in random directions and their paths followed until all the energy

has been absorbed according to the RTE. The path is determined randomly at each

point of the medium. One disadvantage is that the solution always statistically

fluctuates so that multiphysics coupling becomes difficult when error bounds of

convergence are set too tightly, because they cannot be distinguished from

statistical fluctuations.

The spherical harmonics method PN approximates the angular dependent intensities

of Eq. (2-1) by a series of functions of direction cosines. N signifies the number of

terms in the series approximation. The result is a set of partial differential

equations. Due to its complex implementation in 3D, this method is prone to errors

in anisotropic conditions and for optically thin media for N=1.

The discrete ordinate method (DOM) discretizes the solid angles and expresses the

integral term of the RTE with higher numerical integral schemes such as Gaussian

quadrature. This equation can be spatially discretized by finite differences.

This method is adversely affected by the ray effect, which means that energy can

be lost when a ray does not fall into one of the discrete ordinate directions. The

method is also rather difficult to implement for complex geometries.

In the discrete transfer method (DTM) a ray is traced from one surface to another.

The RTE is simplified by neglecting scattering and assuming a homogeneous control

volume. Consequently, an algebraic equation is obtained. Calculated is the change

of intensity within a control volume.

The incident heat flux is expressed by numerical quadrature. Via backtracking of

rays that hit a surface, the intensities on the wall can be estimated.

The finite volume method (FVM) uses the same discretization procedures as for CFD

and is thus well suited for CFD codes.

A method of great promise is the collapsed dimension method. It transfers all

intensities normal to the two-dimensional solution plane and eliminates thus the

solid angles, which makes this a fast method.
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2.4 Thermal Radiation Solvers

Table 2-1: Thermal radiation solvers.

The above table provides a short overview of thermal radiation solvers or special

modules in codes written for other simulations in physics. Structural mechanics

codes provide a radiation model, usually S2S, in order to calculate thermal stress.

CFD codes offer models usually suited for participating media. PosRad is a module

for StarCD.

In chapter 3.5 an example is shown where a surface to surface model of a CFD code

is benchmarked against a specialized code which shows that a specialized code

usually offers more efficient implementations. In the building industry thermal

comfort calculation with its accompanying radiation analysis has a longstanding

tradition. But these codes are written for simple geometries with few faces. They

include a solar model which is often the primary source of heat in a building. In the

outer space environment, thermal radiation is the sole mode of heat transfer. The

codes use STS or the Monte Carlo method. Some codes were written by space

agencies in the 1960s. These legacy codes tend to be rather slow.

To the author’s knowledge there are two codes with the automotive industry in

mind. They seek to offer fast results for industrial meshes. They offer manual

coupling to CFD results and can calculate conduction.

RadTherm was written for military application and then taken over by Ford.

Presently, Thermoanalytics Inc. has the rights on this code. RadThermIR is based on

RadTherm with the addition of the postprocessing of wavelength dependent

materials. Its surface to surface model is based on a hemisphere method with finite
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difference discretization. The reader is referred to chapter 3.3.1 for a description

of the various numerical methods for view factor calculations in the surface to

surface model. The wall temperatures are calculated in two wave bands when the

solar model is used. In this way, the greenhouse effect can be modeled.

One competitive commercial product is TheseusFE by P+Z Engineering. This code is

based on numerical integration of view factors in the STS model and uses a finite

element discretization. It can handle volume meshes in addition to surface meshes

commonly employed for radiative analysis in non-participating media. Originally, it

was developed by BMW and includes several thermal comfort models.

In this paper RadThermIR was used by the author. As a benchmark TheseusFE was

briefly included.

This chapter has provided only a short overview on radiation solvers both

commercial and non-commercial codes. It is assumed that there are other

industrial codes developed and used internally such as is the case for AURA by AUDI

AG.

2.5 Thermal Radiation in the Automotive Industry

Figure 2-7: Heat sources in the underhood.

Figure 2-7 shows typical components that emit heat in an automobile. The most

obvious group of components is the exhaust system due to high temperatures.
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In the combustion chamber carbon dioxide and water are the main chemical

compounds that participate in thermal radiation.

Therefore, one of the models described in section 2.3 for participating media ought

to be employed. The exhaust gas passes through the manifolds, the catalytic

converter, a possible particulate filter, a pipe system and the muffler into the

environment. Sometimes a simplification is sought and the exhaust gas is treated as

non-participating.

Steinkilberg (2006), Arvin Meritor, performed simulations on the conjugate heat

transfer of manifolds. For thermal-shock cycle simulations he showed that transient

convective heat transfer coefficients are required for more accurate wall

temperatures.

He also employed an in-house developed model for a diesel particulate filter (DPF).

The model is necessary, as the gas passes through a porosity thereby changing its

temperature. A changing gas temperature has an effect on the surface temperature

of the DPF.

Figure 2-8: Muffler internals (left) and simulated surface temperatures (right) (Herrera and Lund,
2007).

Herrera and Lund (2007), Volkswagen, demonstrated how including the internals of

a muffler improved the accuracy of surface temperature calculations.

Frémond (2008), Volvo 3P, demonstrated how temperatures from a thermal image

are mapped onto a surface mesh in RadTherm. The mapped temperatures serve as

a boundary condition for an underhood simulation. This method is usually applied

for components that are difficult to model because of chemical reactions and

porous media.
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Figure 2-9: Mapping of surface temperatures from IR Thermography (Frémond, 2008).

Figure 2-10: Engine mount temperatures (Weidmann et al., 2004).

The purpose of conjugate heat transfer calculations is to find out the thermal load

on heat sensitive components. One such component is the rubber mounting of

engines. Weidmann et al. (2004) described protective devices which keep the

rubber within operating temperatures. This work is interesting because it shows a

way of measuring emissivity coefficients in the presence of soiling.
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Another rubber part is the hardy disc on the steering shaft. Moshammer (2006)

presented results for various manifold configurations, heat shields and convection

rates in order to determine the configuration that promises the lowest temperature

on the hardy disc, which is denoted as ‘rubber element’ in Figure 2-11.

Figure 2-11: Hardy disc temperatures (Moshammer, 2006).

Klaus et al. (2004), Adam Opel, investigated the temperature of the power cable of

the compressor of a pressurized proton exchange membrane (PEM) fuel cell and

determined appropriate countermeasures.

Figure 2-12: Battery temperatures in the trunk of a car (Michel et al., 2006).

The battery is a component that needs to be protected from heat in order to

extend its life time and maximize power output. Michel et al. (2006) for Daimler

investigated thermal soak of a conventional battery in a trunk which was affected

by waste heat from the exhaust system.
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Jansen (2008), Jaguar, investigated the noise emission of the compressor of the air

conditioning (AC) cycle. When the temperature of the refrigerant increases, the

compressor has to perform and more noise is radiated.

By performing a thermal analysis the optimal positions and thicknesses for line

insulations can be determined.

Jansen, (2004) also calculated the temperature on the disc brake after a cycle of

25 brakings by calculating the dissipated heat during braking and determining

convective heat transfer coefficients with CFD.

Figure 2-13: Disc brake cooling (Jansen, 2004).

When cars race, some energy is transferred to the road. This is particularly acute in

a Formula One race. The right choice of tires is determined by the road conditions.

The temperature of the Silverstone racetrack was calculated considering the solar

soak (Jussila, 2007).
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Figure 2-14: Temperature of Silverstone track (Jussila, 2007).

Figure 2-15: Coimbra box with dummy of 16 segments (Rauch et al., 2004).

Another issue in automobiles is estimating human thermal comfort. This topic has

received much attention and is worth mentioning in the context of thermal

radiation, as the human body is sensitive to radiative heat fluxes even at ambient

temperatures. The author (Rauch et al., 2004) performed a simulation with a

simplified cabin model as shown in Figure 2-15. The naked dummy was supplied

with heat at 16 sections imitating the human metabolism.

With air conditioning switched on, a coupled CFD and thermal radiation simulation

was conducted.
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Figure 2-16: Share of radiative heat flux for manikin of 16 segments (Rauch et al., 2004).

The results show that even at low temperature levels excluding solar radiation the

share of thermal radiation is quite high. Only the lower left arm had a modest

share of radiation because this body segment was exposed to a strong HVAC air

stream of 6.36 m/s with 290.65 K.

With known heat fluxes, thermal comfort indices can be evaluated. Clothing

protects the body from incoming radiation. As a result a microclimate between

body and clothing develops.

Bader et al. (2007), Volkswagen, demonstrated the use of CFD and thermal

radiation calculation for defogging issues of the lighting system. It is necessary to

know the surface temperatures to locate areas where water vapor condensates.

Kumar et al. (2010), TATA, predicted the top hose temperature, which is the

coolant inlet temperature for the radiator, by a coupled CFD, thermal radiation,

and 1D power train cooling simulation.

Jussila (2008) calculated the surface temperatures for the paint curing process. In

the car manufacturing process, the development of a “skin” of paint is desired

before the chassis enters the convective zone of the oven. There, wet paint would

be blown out, decreasing the protective layer of the paint layer.
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Cold spots such as welding spots or foams delay the formation of the “skin” in the

infrared heating zone of the oven. By performing a thermal radiation analysis the

transient behavior of the car body can be predicted. The speed of the car moving

through the paint oven and the required heating power and oven geometry can be

optimized.

2.6 Thermal Radiation in the Product Development Process

Thermal radiation simulation is receiving increased attention in the automotive

industries due to the need to reduce the amount of prototypes. An increase in the

product portfolio and a stricter emissions legislation of EURO 5/6 can shorten the

product development time (Frémond, 2008).

Figure 2-17: Level of awareness for thermal radiation.

The resources an organization is willing to invest on thermal radiation depends on

the profit its application promises and the level of knowledge in that subject. It

happens that companies do not perform a radiation analysis because decision

makers have not heard much about this heat transfer mode or believe that

radiation plays no significant role in their process below a certain temperature

level.

Once the need for radiation has been recognized, rough estimates can be made.

These can be simplified correlations or charts.
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The author of this thesis created a simple tool that incorporated an empirical

relation for convection, conduction, and a simplified radiation model for a pipe to

simulate a turbo charger. At this level companies are not prepared to invest a lot

of resources on this topic. The next development step is the simulation of local

components. A component that requires a certain operating temperature range is

modeled together with a possible heat source or sink. The rest of the system is

neglected. At this stage a company either outsources these calculations or starts

buying licenses and training a small group of employees which usually do these

calculations along with many other computer-aided engineering (CAE) activities.

Employing a global model simulates the entire system and identifies the impact of

all components. This requires highly skilled engineers and an established work flow.

At this stage multiphysics simulations are an integral part of the development

process.

Finally, as skilled engineers become aware of the shortcomings of their global

models as boundary conditions are usually not available, the material properties

are measured instead of relying on text book values. At this stage the experimental

department not only provides validation measurements, but also begins designing

experiments together with the simulation department to provide boundary

conditions for difficult to simulate zones, such as the internal combustion engine or

catalytic converters. The simulation engineer needs to understand the limitations

of the models making an immersion into the theory of radiation necessary.

Figure 2-18: Basic development process.

Figure 2-18 refers to a typical development process when confidence in simulation

is unsatisfactory. In the pre-study phase basic concepts are investigated and

simplified relations and charts will do. In the design phase the simulation of fluid

flow and heat transfer can begin when the surface topology of the car is available

from computer-aided design (CAD) data.
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But unless a prototype is available simulation results are not valuable. Only

experiments will provide boundary conditions and validate simulations. The

advantage of simulation is not evident at this stage. The situation is even more

complicated as this process is highly iterative, for there are many conflicting design

requirements.

Figure 2-19: Advanced development process.

When the confidence in simulation results is high, a prototype might be omitted, as

far as regulation permits, and simulations provide valuable information in the

repetitive design process. Even production issues can be incorporated as indicated

by the term ‘pilot vehicle tests’ in Figure 2-19. Of course, thermal radiation is only

one part in the process but it must be considered in order to shorten development

times. For this advanced development process to work, it is not only important to

have a thorough knowledge of radiation and multiphysics coupling but the

cooperation between the various departments within the company is essential.

Figure 2-20: Heat protection activity flow at Jaguar/Land Rover (Jansen, 2007).
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When all the requirements of various components are available, target heat loads

and temperatures can be specified and the model designed. Then the model can be

iteratively coupled with airflow requirements and simulated in a thermal solver,

such as RadTherm. It is then passed on to other departments to check heat

management requirements. Investing amply in communication is essential for

minimizing interpersonal friction and reducing iteration cycles.

Sensing the need for adequate and timely simulation results, the question remains

to be answered, how one might reduce uncertainties in multiphysics simulations.
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3 Surface-to-Surface Model

3.1 Introduction

The surface-to-surface (S2S) model is the oldest model known. Its derivation began

in the early 20th century. This model is introduced in the following section. One

important parameter is the view factor with methods shown for improving its

accuracy and more rapid calculation. This chapter ends with benchmarks on some

programs’ accuracy and speed of view factor calculations. It was during these

benchmark runs when the author seriously challenged the need to calculate view

factors up to a certain number of digits. The assumption arouses that view factors

need a level of accuracy suited to the boundary conditions. Knowing the

parameters involved in the model allows one to estimate their respective

influences on the results.

3.2 Energy Balance

The net-radiation formulation for enclosures with finite diffuse-gray areas is shown

because this formulation is widely used such as in the solver RadThermIR. The

derivation can be read in Siegel and Howell (2002) and shall not be reproduced

here. It is sufficient to say that the derivation stems from first-principle

thermodynamics in an enclosure.
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Qj is the net heat flow from the outside of face j, Aj the area of j, Fkj the form

factor from k to j, kj the Kronecker delta,  the Stefan-Boltzmann constant, T the

surface temperature, N the number of faces, and j the emissivity. The net heat

flow is the amount of energy required to keep a specified temperature. There are

two possible boundary conditions. Either the temperature of the face is given, or

the heat flow is specified. Correspondingly, the equation above has to be

reformulated. In thermal engineering it is common to fill a matrix and solve for all

unknowns. The emissivity is not allowed to become zero, as this would create a

singularity. The set of linear equations can be solved for T4 or Q.
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When temperature dependent properties are introduced the set of equations

becomes non-linear. But when initial temperatures are estimated, one can simply

solve the equations iteratively until the estimated temperatures coincide within a

tolerance with the calculated temperatures. It should be noted that from the

system outgoing radiation is positive contrary to the thermodynamic sign

convention.

For the thermal engineer, the other heat transfer modes and transient behavior

must be investigated, too. According to Thermoanalytics (2003) the equation is

expanded the following way by first rewriting Eq. (3-1):
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Then one can add:
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Tf represents the fluid temperature, hk the convective heat transfer coefficient, kkj

the thermal conductivity, which in this study is presumed to be independent of

temperature, Akj the area bordering a neighboring thermal element, lkj the distance

between two thermal node centers, qimp,k the imposed heat, cp,k the specific heat

capacity, mk the mass, t time, and NCond the number of thermally conducting

neighbors. In this way radiation is coupled to convection and conduction but has T

and T4 as unknowns. A popular way to solve the last two equations is by

linearization. For example one can use the Crank-Nicholson scheme for discretizing

the temperature derivative in time and solve for the temperature of the current

time step T’ and creating conductors C for Radiation Rad, Conduction Cond, and

Convection Conv:
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In order to calculate the net heat flow the following equation is used:
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An alternative way of calculating T and Q is by using radiosity qo. This parameter

represents the heat flux emitted and reflected from a face and is actually

measured by infrared (IR) detectors.
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(Eq. 3-9)

This relation describes the net radiative flux qk as a function of radiosity qo,k, view

factor Fjk, and area Ak for all N faces and states the first law of thermodynamics for

radiation. The relationship between radiosity and temperature is given as:
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(Eq. 3-10)

It actually serves as definition for the radiosity. Due to its simplicity these two

equations will play a prominent role in chapter 5.

Goral et al. (1984) was the first to use the radiosity concept in computer graphics:
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j
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 (Eq. 3-11)
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Instead of heat fluxes light intensity I and reflectivity k are used. Since

temperature does not appear there are no temperature dependant properties. As a

boundary condition intensity is required as a light source. Eq. (3-11) is always

linear. Therefore, publications on solving for the balances in computer graphics

cannot be applied for conjugate heat transfer problems. But there is extensive

research in the field of computer graphics on calculating form factors as efficiently

as possible.

3.3 View Factors

A fundamental task of filling the solution matrix of the S2S model is to compute the

form factors Fij. They are also called view factor, configuration factor, shape factor,

or angle factor. View factors have been the subject of research for many years. To

the author of this thesis, the first known researcher who elaborated on a closed

form factor derivation between two rectangles sharing a common edge with an

angle of 90 degrees was Lambert and was cited in Schröder and Hanrahan (1993):

“Although this task appears very simple its solution is considerably more knotted

than one would expect. For it would be very easy to write down the differential

expression of fourth order, which one would need to integrate four fold; but the

highly laborious computation would fill even the most patient with disgust and

drive them away from the task. The only simplification which I was able to achieve

was to reduce the expression to a second order differential, using the above

theorems [formula for differential surface element to polygon form factor], with

which I was able to perform the computation.”

The following study shall give an overview of the methods to calculate and correct

view factors.

3.3.1 Taxonomy of View Factor Estimation

The view factor is defined as the fraction of energy leaving a surface that arrives at

the receiver surface. To derive the relation two infinitesimal elements 1 and 2

exchange energy as depicted in Figure 3-1. The differential solid angle d is

defined as:
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
  (Eq. 3-12)

With r as the distance between the two differential areas, A area, and  as angle

between normal and connecting line. The total energy Q leaving A1 is:

111121
2 cos  ddAiQd dd  (Eq. 3-13)

Figure 3-1: Differential solid angle.

Substituting the solid angle with i as intensity:

2
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 (Eq. 3-14)

The same can be written for area 2. Using the definition of the view factor and

assuming a Lambert surface, i.e. the energy is emitted and reflected diffusely, one

can write:
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The configuration factor between a differential and finite area requires

integration:
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(Eq. 3-16)
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Finally, the form factor between two finite areas is:
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Cohen and Wallace (1993) provide an overview on methods of form factor

calculation that are shown in Figure 3-2.

Figure 3-2: Form factor taxonomy according to Cohen and Wallace (1993).

The methods can be divided into how many integrals must be solved. Another

distinction is whether a form factor is calculated between two individual faces or

all faces at once. First the situation without obstructions shall be considered.

The method to solve Eq. (3-17) is called double area integration (2AI). In order to

speed-up the calculation the cosines do not need to be calculated. Instead, they

are replaced by a product of the normal vector n and the vector connecting the

centers between the finite areas r. When expressing the integrals as summations of

N subdivided edges it can be written that:
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Shapiro (1985) describes the operation count as 114N4+86N² which amounts to

O(N4) in the big O-notation for run-time complexity, which renders this method

rather unsuitable for large scale problems.
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When applying Stokes’ theorem the area integrals are converted into line integrals

where C is the contour and  the contour vector differential.
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When dividing the contours into E segments with  as the angle between N contour

vector elements it can be seen that:
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Shapiro (1985) describes the time complexity as 464N²+24N which amounts to O(N²).

The numerical integration is skipped when the angle  is zero, which happens to be

at two perpendicular edges. In Figure 3-2 this method corresponds to contour

integration between two areas and is called double line integration (2LI).

Figure 3-3: Nomenclature for single line integration (1LI) (Walton, 2002).

When one of the contour integrals is solved analytically the following relation is

obtained by using the nomenclature in Figure 3-3.
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Shapiro (1985) counted 864N+288 operations for the N contour vector segments.

This still leads to a run-time complexity of O(N²) for the single line integration (1LI),

though in general, the run-time behavior is linear. In Cohens’ taxonomy, this

method corresponds to a contour method for area sampling. The time complexity

suggests using 1LI. Unfortunately, a singularity occurs when two faces are adjacent.

Therefore, a different method needs to be applied in that situation.

There are studies on formulating analytic expressions. Walton (2002) reproduces a

closed form solution for a differential element to polygon with the nomenclature of

Figure 3-4:
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Figure 3-4: Nomenclature for single area integration (1AI) (Walton, 2002).

The magnitude of vector gi equals the angle g and the direction is outward of the

plane passing through the vectors a and b. With c as the cross product from a and b,

e the length of c, d as the dot product of a and b, and reformulation in order to

avoid some singularities the following simplification can be made:
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Walton (2002) describes this single line integration (1AI) as of the order of 4N²,

thus being slightly faster than double line integration. This method would best fit

to uniform area sampling.
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In area sampling in Cohen’s taxonomy, the Monte Carlo method would shoot rays in

a random direction and the number of rays hitting a face divided by the number of

rays shot would be the form factor. The same applies to the area to area view

factor for Monte Carlo with the addition that the starting point of the rays can now

vary as well. Hierarchical area to area view factors are calculated by first dividing

a face, calculating the view factors for each individual sub-face, and then summing

these view factors up.
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Ap is the area of the original patch and N the number of sub-faces in that patch.

Analytical form factors have been mentioned for single area integration. There are

collections of analytically derived view factors in standard text books on thermal

radiation such as Siegel and Howell (2002) and Modest (2003). Howell (2010) has

published a collection on the internet which continuously undergoes correction.

The collections are usually divided into view factors between area to area,

differential area to area, and special cases. Schröder and Hanrahan (1993; 1993a)

have actually derived an analytic relation between two arbitrarily oriented

polygons. In certain situations it uses a dilogarithm which slows down the algorithm

significantly. When using the aforementioned methods of view factor calculation,

namely 2AI, 1AI, 2LI, and 1LI numerical integration must be performed. This can be

done by regularly distributed areas or lines.

Figure 3-5: Run-time behavior for view factor models (Walton, 2002).
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The figure above shows the run-time for a hundred thousand view factors as a

function of edge divisions for two opposed squares. The curves follow the operation

count and time complexity estimation. For very crude approximations double area

integration is the fastest, but it quickly reveals its power-of-four behavior. Single

line (1LI) and single area (1AI) integration follow a power-of-two curve. Single line

integration is the fastest approach because of its linear time complexity.

When introducing Gaussian quadrature formulas instead, Walton (2002) observed

that for the same number of divisions, accuracy improved by several orders of

magnitude. The integration points are specially selected as shown in the following

figure.

Figure 3-6: Point locations for Gaussian area integration (Walton, 2002).

The points tend to be placed towards the edges of polygons. Krishnaprakas (1998)

demonstrated the use of double area integration for triangles by transforming the

area integrand to area coordinates. This resulted in reducing the number of

summation loops from four to two. Rao and Sastri (1996) used Gaussian integration

for the double line integration. For curved edges, a non-linear transformation was

developed.
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Figure 3-7: Study of point source shadows by da Vinci. Copyright © 2003 Wiley. Used with
permission from (Hasenfratz et al., 2003).

Figure 3-8: Shadow construction by Lambert. Copyright © 2003 Wiley. Used with permission from
(Hasenfratz et al., 2003).

Leonardo da Vinci observed the casting of shadows from point sources as shown in

Figure 3-7. Lambert constructed shadows with geometric considerations as in

Figure 3-8.

Figure 3-9: Hard shadow. Copyright © 2003 Wiley. Used with permission from (Hasenfratz et al.,
2003).
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The construction of a hard shadow is quite simple. When there are several

occluders, the shadow area is the union of all individual shadows. In computer

graphics a light source might be considered as a point source, when the distance

from the emitter is much larger than the distance from the occluder to the

receiver. But even the sun is an area light source. There are very few analytical

expressions for occluded view factors. One such derivation known to the author

between a differential element and a rectangle with a single rectangle as an

occluder was done by Deiveegan et al. (2004) using contour integration. Even there,

the assumption was made that the angle between the normal vectors of the

occluder and receiver is zero.

Figure 3-10: Soft shadow. Copyright © 2003 Wiley. Used with permission from (Hasenfratz et al.,
2003).

The more common area light source casts several shadows. For polygonal objects,

shadows must be traced from the vertices and the edges. The penumbra is the area

on the receiver from one point source. The union of all penumbrae is the umbra

where the light source is completely blocked.

Figure 3-11: Soft shadow with two obstructions. Copyright © 2003 Wiley. Used with permission
from (Hasenfratz et al., 2003).
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Combining the shadows of two occluders is not simply the sum of the two shadows

as shown in Figure 3-11. The umbra can be larger as indicated by the red

highlighted zone. Even though both occluders individually would allow some light to

pass into the red zone, acting together they block it completely.

In terms of thermal radiation, there are two strategies to obtain view factors with

occlusions. The simplest strategy is to expand Eq. (3-18) by a blockage factor b.
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Figure 3-12: Partially obstructed view for blockage factor (Walton, 2002).

The blockage factor bi,j can be either one or zero. It is determined by casting a ray

from each differential source to each differential receiver. If the ray hits a

different element that is located between emitter and receiver the blockage factor

is zero.

The second strategy is projecting a shadow on the receiving face as shown in Figure

3-12.
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Figure 3-13: Shadow projection.

Walton (1986) used shadow projection for each obstacle and double line integration.

For each shadow the view factor is calculated and subtracted from the unoccluded

view factor. Care must be taken that only the fraction of shadow that has not been

cast by a previous occluder is taken into account.

This process is very time consuming as the resulting polygon in general is not

convex and has many edges. This method is problematic because a negative view

factor might occur by subtracting them. Walton (2002) modified this approach by

employing single area integration. All obstacles are first projected on the receiver

and then numerical integration occurs.

In one of the first studies on radiosity, Nishita and Nakamae (1985) determined

umbra and penumbrae by the blockage factor as shown in Figure 3-10 and Figure

3-14.

Figure 3-14: Determination of blockage factor (Nishita and Nakamae, 1985). © 1985, ACM, Inc.
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The visibility is checked by considering the triangle Pi, Pm1, and Pmk. The obstacle is

projected on Sa and the line source clipped against the contour line.

Figure 3-15: Adaptive subdivisioning (Walton, 2002).

Adaptive integration is also used. When Gaussian integration for two different

numbers of weighing points gives similar results, calculation stops. Otherwise the

surface is divided as shown in Figure 3-15. This procedure is repeated recursively.

Saltiel and Kolibal (1993) used adaptive grid generation to improve view factor

accuracy and a blockage factor for possible obstructions. They employed two

different amounts of weighing points (p-refinement) and mesh (h-) refinement as a

first criterion, depending on which method causes an error tolerance to pass a

threshold. As a second criterion under- and oversampling is considered.

Undersampling can occur when the first criterion is satisfied, no refinement is

made the last two iterations, but the contribution of the refined view factor is

significant. Oversampling happens when a single view factor has no significant

impact on the row sum of the view factor of the subelements after refinement.

Finally, a third criterion checked whether the first two criteria failed due to poor

error thresholds. By adapting the first two thresholds with the third one they

obtained the following results for two planes at an angle of 60° with k as the

number of iterations, N the number of elements on one plane, E the error of the

view factor, and t the run-time:
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Figure 3-16: Adaptive mesh refinement (Saltiel and Kolibal, 1993). Copyright © 1991 by AIAA, Inc.
Reprinted with permission of the American Institute of Aeronautics and
Astronautics.

It can be seen that by this method run-time rises significantly when the maximum

error of the view factor is set too tightly.

Up to now, only view factor calculations whose obstructions needed to be taken

into account, separately, were considered. Figure 3-2 shows a family of methods

that do consider view factors and obstructions simultaneously. In its original form

they are projection methods between a differential element and a finite surface. A

plane, a hemi-cube, or a hemisphere is constructed around the differential

element with unit length or diameter. This results in a base with unit area around

the differential element. Therefore, this family of methods bears the name

hemisphere sampling.
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Figure 3-17: Projection on a hemi-cube (Fleischmann, 2007).

The existing surface around the differential area is divided into sub-elements. The

view factors of those sub-elements are called -view factors and can be pre-

computed. The polygon B is projected on those sub-elements and the sum of the -

view factors gives the form factor. When there are occluders, these are projected

too and for each sub-element the face that is closest to it is recorded. In computer

graphics this is usually done by z-buffering. In this way possible occluders are taken

care of, for they reduce the number of sub-elements between A and B. The

justification to use a hemisphere, hemi-cube, or hemi-plane lies in Nusselt’s

analogy, that the projection of a sub-element BH of a hemi-cube yields the same

result as the projection on the hemisphere BS as shown in Figure 3-18. This

assumption cannot be true in situations where a face is situated near the base of

the hemisphere. In that case a hemi-plane simply would not have any sub-elements

to project on. This leads one to investigate the possible errors of the hemisphere

sampling methods with the hemi-cube method as an example.

Figure 3-18: Nusselt’s analogy (Fleischmann, 2007).
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Baum et al. (1989) performed a study on this subject and defined three errors:

1) Proximity Assumption: Eq. (3-16) presumes that the source is infinitesimally

small and, consequently, only one integral of the destination area needs to

be resolved. The more a source surface deviates from this idea, such as long-

stretched rectangles, the greater the error, as shown in the following figure:

Figure 3-19: Relative error in view factors for hemi-cube by Baum et al. (1989). © 1989, ACM, Inc.

Figure 3-19 shows several possible orientations between faces and ray

positions. The diagram plots a relative error between view factors and a

normalized distance. This distance is defined as the distance between the

element and patch centers divided by the patch diameter. Though not stated

explicitly in Baum et al.’s work, it is custom to define the relative error as

the difference between calculated and analytical value divided by the

analytical value. In this plot, the parallel-center curve coincides with the

radial-center curve. This plot between two squares would suggest that a

normalized distance less than one would create great deviations, whereas

over a distance of five all view factor errors tend to become negligible.
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2) Visibility Assumption: Because of the simplification by the differential

element 1 all occlusion tests are conducted from the center of the face only.

As a result, surface 1 in Figure 3-20 can see the complete surface 2, because

the ray cast from the center misses surface 3. The view factor from 1 to 2

will be overestimated.

Figure 3-20: Visibility assumption (Baum et al., 1989). © 1989, ACM, Inc.

3) Aliasing Assumption: The third assumption stems from computer graphics

terminology. Because all subelements have the same size, partial covering of

a projection will cause an overestimation of the -factor if the center of the

subelement is just covered as in Figure 3-21, whereas if the centers are not

inside the projection areas, those -factors are not counted.

Figure 3-21: Aliasing effect (Baum et al., 1989). © 1989, ACM, Inc.
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Belonging to the same family of methods is the hemi-sphere-base method.

Figure 3-22: Hemi-sphere-Base projection. Copyright © 2009 Wiley. Used with permission from
(Yamada et al., 2009).

The figure above shows how a face is projected onto the unit base by projecting

vertices and edges. Doi and Itoh (1998) introduced the discretization of polygons

into triangles before projection in order to reduce the aliasing error. On the one

hand the projection takes quite a few operation counts, on the other hand it must

be done only once per surface, whereas the hemi-cube method must undergo the

projection test possibly on all sides of the hemi-cube. The edges are assigned to an

element of the screen by a meridian test. This procedure is easily parallelizable.

Figure 3-23: Cell registration on Hemi-sphere-Base. Copyright © 2009 Wiley. Used with permission
from (Yamada et al., 2009).
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Another method of the hemisphere sampling base is a Monte Carlo (MC) method

based on the hemi-cube, hemi-plane, or hemi-sphere. Projection does not occur.

Instead, rays are cast from the base to the subelements for the first

aforementioned methods and then, as done for the hemisphere, oriented in radial

direction to the surrounding. Thus, MC involves a ray-surface intersection for each

ray and surface.

Pellegrini (1997) states that the hemisphere sampling methods have a linear worst

time complexity.

Comparing Monte Carlo (MC), double area integration (2AI), and base-hemisphere

(HS) for a simple cube, Yamada et al. (2009) found that MC was slow and yielded

the largest error. 2AI had the highest accuracy but was also the slowest. HS was the

fastest and the range of error was between the other two methods.

Sakai and Maruyama (2003) simplified their view factor calculations by assuming

two differential elements in the spirit of Figure 3-19. Only neighboring faces used

an analytical equation. This way they speeded-up their calculations but lost in

accuracy.

3.3.2 View Factors and Thermodynamics

Two very important relations concerning form factors need to be satisfied:

1
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N

j
ijF (Eq. 3-26)

The sum of all receiving view factors Fij should be one. This represents first-

principle thermodynamics. The reciprocity relation comes from the following

reasoning as mentioned in Loehrke et al. (1995):
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4 (Eq. 3-27)

This equation describes the heat flow Qi-j
k from the face i to j, with ik as emissivity

at wavelength band k, Ai the face area,  the Stefan-Boltzmann constant, Ti
k the

temperature at wavelength band k and Fb,i
k as the fraction of blackbody emission in

wavelength band k. For each wavelength band a separate calculation must be made.

Therefore, the superscript k is omitted. When two surfaces i and j have the same
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temperature and emissivity one can write the same Eq. (3-27) for surface j, set

them equal, and simplify:

jijiji FAFA  (Eq. 3-28)

This very important reciprocity equation comes from fixing two faces to the same

temperature. In this situation the net heat flux is zero and thus obeys second-

principle thermodynamics.

3.3.3 Correcting View Factors

There are two main reasons for correcting or smoothing form factors.

1) Reducing the error and thus adhering to the first and second law of

thermodynamics.

2) Allowing for a compact storage of view factors when symmetry of the view

factor matrix F is achieved.

There are several possibilities for correcting view factors. Clarksean and Solbrig

(1994) came up with one of the more simple ways to determine view factors and

relied on the reciprocity and summation relations to fill the view factor matrix.

Very similar is a method called ‘naive’ by Taylor and Luck (1995) which discards

the entries below the diagonal of the view factor matrix as well as employing the

summation rule to the diagonal entry:
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F is the view factor and N the number of elements. This simple method has the

disadvantage that it might give physically meaningless negative values.

Van Leersum (1989) describes a simple method that avoids negative form factors.

1) A correction factor di is calculated with m being the number of nonzero view

factors in row i:
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2) This correction factor is added to each nonzero view factor in the row. For

the number of negative factors obtained, m is reduced by the number of

negative values in the row and di is recalculated, bypassing negative view

factors. Steps 1) and 2) are repeated until there are no more negative

factors.

3) Apply reciprocity relation for column i. Steps 2) and 3) are repeated for each

row-column pair.

4) Repeat Steps 1) to 3) for each row.

5) Repeat Steps 1) to 4) until di is sufficiently small.

This procedure is reported to have good convergence behavior by Taylor and Luck

(1995).

Lawson (1995) modified this procedure by substituting steps 1 to 3 replacing each

view factor in the row with the following equation:
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This procedure with F’
ij being the corrected form factor is claimed to prevent

negative view factors and maintains reciprocity by taking the relative areas into

account.

Taylor and Luck (1995) also mention a least-squares optimization problem:
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Here, y corresponds to the weighted sum-square error, wij to a weighting factor,

and Foij to corrected view factors. Employing these methods for view factor

rectification in a simple test case gave the following results:
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Figure 3-24: Heat flux standard deviations for view factor rectification (Taylor and Luck, 1995).
Copyright © 1995 by AIAA, Inc. Reprinted with permission of the American
Institute of Aeronautics and Astronautics.

In this figure view factors were randomly generated and additional variances added

from left to right for the columns in Figure 3-24: diagonal dominant, counter

diagonal, row dominated, column dominated, upper triangle, and random. These

view factors were corrected with the naive method, van Leersum’s method, and

least-squares optimization with and without a weighting function. Overall,

weighted least squares yielded the best results. If weighting factors are not

available, the unweighted optimization would be the choice. Van Leersum’s

method yielded good results and is considered to be a simple method. Naive

enforcement of closure and reciprocity is not recommended.

Loehrke et al. (1995) used a modified least-squares method for view factors by the

Monte Carlo method. They defined the error bound Cij very similar to Eq. (5-2):
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With K being a confidence measure and Ni the number of rays shot from face i. New

estimates for F’
ij are obtained with the following equation:
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Following this step again energy must be conserved. It would be tempting to

correct the main diagonal entry, because in this way reciprocity would not be

violated. But this procedure could produce negative view factors. Therefore,

Loehrke et al. (1995) resort to least-squares optimization. For the convergence

measure Ci serves:

 






N

j i

ijij
i N

FF

N

K
C

1

1
(Eq. 3-35)

N is the total number of faces. They found that this procedure yields an overall

improvement in the root mean square (RMS) of the difference of the view factors

to their analytic solutions.

3.4 Data Structures for View Factor Calculation

Data structures are such an important issue that they would deserve entire

dissertations. For the purpose of this paper only a very brief overview of this topic

is given.

3.4.1 Space Partitioning

In order to speed-up calculation of view factors data needs to be arranged in a way

that makes access to information as fast as possible. Trees offer such an

arrangement. This is necessary for determining the obstructions between two faces.

The ray-face intersections should be as few as possible. Consequently, only faces in

the vicinity of the two faces and the shaft between should be examined. Examining

possible obstructions is called obstruction culling or view culling in computer

graphics.
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Figure 3-25: Octree (Paulke, 2007).

A tree is a set of nodes. In the case of an octree each node either has none or 8

children nodes as shown in Figure 3-25. The top circle is the root node which

corresponds to the entire space as shown as the cube on the left side. The second

row of circles stand for nodes representing sections of the original cube. The lines

between the nodes are called edges. In level three of the nodes, edges are drawn

only from one node. That means that one level two node has eight child nodes and

each level three node shares one parent node. The level one node is called the root.

The nodes without children are called leaves. The other nodes are called internal

nodes. The leaves contain the actual faces in one octant of their parent cubes. In

all nodes the planes bordering the respective space are saved.

Traversing the nodes in such a way that no node is visited twice is called a path.

The longest possible path, which must be from the root to a leaf, is called the

height of the tree. The reason why a tree provides fast access lies in its height. The

octree above has the height 2 meaning two edges must be traversed from the root

to a leaf in a worst case scenario. The tree has a search time of the order O(lg2 N)

with lg2 being the logarithm of the base two and N the number of nodes. This is

valid only under the assumption that the tree is balanced. The ideal would be if all

nodes on level two had their children nodes. Then, on level three, the tree would

contain 82=64 leaves. In that case all paths from the root to each leaf would have

the same length and the tree would be perfectly balanced. In the example the tree

is not balanced, because of level three leaves. This situation would be aggravated

if additional nodes were inserted on the level three nodes as it would enlarge the

height of the tree.
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Another important tree is the kd tree. With the octree the space is evenly

subdivided. As a result, it might be that some octants contain many elements and

some none at all. The kd tree can circumvent this, for it is desirable that the

elements are evenly distributed among the leaves.

Figure 3-26: Kd Tree in 2D (Fleischmann, 2007).

The kd tree has at most two children. Subdivisions are done sequentially along the

coordinate axis. In 2D the x-direction is used first followed by the y-axis which is

followed again by the x-axis.

Crucial is the choice of the position of the partitioning plane. One possibility is the

object median, a plane dividing the set into an equal number of elements.

Figure 3-27: Occlusion calling with kd tree (Paulke, 2007).
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Figure 3-27 demonstrates an advantage of this tree for occlusion culling. After

building the tree shading detection can take place between the two bold leaves. In

this tree one can give the range in which the possible occluders might be

investigated allowing a great saving without incurring inaccuracies. The more apart

the leaves are the more ray element intersection tests might have to be done. A

possible danger in using this tree lies in the build-up phase as the tree might not be

well balanced.

Figure 3-28 shows a kd tree in 3D for a passenger compartment.

Figure 3-28: Kd tree in 3D (Paulke, 2007).

The binary space partitioning tree (bsp) is even more flexible than the kd tree as it

does not require axis aligned partitioning planes. This tree is often used for

backface culling. This procedure determines which elements are facing each other.

Those pairs that do not face each other do not need to be included in view factor

calculations.
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Bittner (2002) describes an occlusion tree which basically is a bsp tree in 5D. This

tree is built from the source element emanating rays. The leaves contain the rays

that are either blocked or unoccluded.

Figure 3-29: BSP tree (Fleischmann, 2007).

3.4.2 Bounding Volumes

The aim of bounding volumes is to further reduce the number of ray intersection

tests. In order to determine visibility between two elements a shaft is created that

includes the two elements. Possible obstructions are tested to determine whether

a ray hits a simplified volume that wraps an element within the shaft. If the ray

does not hit the bounding volume no further ray intersection tests need to be done

for that element.

Figure 3-30: Bounding volumes modified from (Fleischmann, 2007).

The Sphere has the simplest ray intersection test but also the largest void volume.

An axis aligned bounding box (AABB) is a simple hexahedron with planes aligned
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with the axis. Oriented bounding boxes (OBB) have the hexahedron aligned with

the element. Convex hulls make sense when there are several elements combined

but the construction takes O(Nlg2N) with N being the number of elements. The

more void space in the bounding volume, the easier the ray intersection tests, but

one risks more hits by rays calling for ray element intersection tests. These

bounding volumes can be structured in trees further reducing the amount of tests if

a leaf of a tree is not hit.

3.5 Benchmarks

Having looked at various methods and data structures to calculate view factors for

the surface to surface method, the thermal engineer must now test the accuracy

and speed of the code employed, made either by himself or commercially. Emery

et al. (1991) was the first known to the author, who compared various thermal

radiation programs. He created among other cases randomly oriented and

positioned quadrilaterals of the same size with varying package density. He

recommended employing the hemi-cube method for complex scenes.

Malalasekera and James (1993) and later Tuomaala and Piira (2000) presented some

benchmark cases. They used simple geometries such as a cube and simplified rooms

as thermal comfort calculations. The solar load of buildings has been of broad

interest to the building industry. The wall temperatures in these benchmarks were

fixed and radiation heat contours were published. Heat flows are more susceptible

to errors than temperatures.

Vujiĉić et al. (2006) investigated two parallel plates that were successively refined.

They found by employing Monte Carlo that refining the mesh without increasing the

number of rays will produce less accurate results. This may seem counterintuitive

at first. The surface to surface method is based on the assumption of constant

temperature for a face. This assumption is met for differential elements. Therefore,

refinement as in CFD seems to be a proper choice. Unfortunately, view factors are

susceptible to round-off errors. The smaller the sub-elements the more likely the

errors will sum up. In the extreme case, the sub-elements do not see each other.

For methods involving rays intersecting an element that is either further apart or

smaller becomes increasingly difficult.
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The other extreme of calculating primitive shapes such as parameterized cylinders

was investigated by Walker et al. (2010). The aim was to prevent the creation of

surface meshes, thus speeding up the workflow. But the calculation time reported

was unacceptable.

The author (Rauch et al., 2007) performed an analysis on view factor accuracy and

speed for two thermal radiation solvers specialized in the automotive industry,

namely RadThermIR 8.1 and TheseusFE 1. A third code View3D from the National

Institute of Standards (NIST) serves for comparison purposes. It cannot solve the

balances.

The first test case is a simple hexahedron as shown in Figure 5-10 with two three

by three units length for the opposite squares holding a distance of 90 units to each

other. The emissivity is set to 0.9 for all faces and the temperature of all faces is

kept at 293.15K except the one opposing square which is kept at 333.15K. No

conduction or convection is allowed and radiation is permitted only inside the

enclosure. The difficulty lies in the correct estimation of the form factor of these

opposite planes. The system of linear equations was solved by using successive

over-relaxation (SOR) with a relaxation factor of 1.25 and a maximum tolerance of

10-9. Figure 3-31 shows the results for view factors from the hot wall to the

opposite side. The relative error is defined as the difference between the given

and the analytical solution, divided by the analytical solution and multiplied by one

hundred.

Figure 3-31: View factor error for the hexahedron for various programs (Rauch et al., 2007). ©
2007, Chandos Publishing (Oxford) Ltd.
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Here, programs using ray tracing techniques as used by RadTherm suffer a

disadvantage, because emanating rays are more likely to hit the sidewalls. Usually

there are statistically less rays cast at the normal angle of the emitting surface.

This accounts for the large deviation of both form factors and fluxes for RadTherm.

‘RadTherm low’ and ‘RadTherm high’ refer to settings employed in RadTherm: The

lowest setting emanates about 512 rays and the highest setting 294912 rays per

quadrilateral.

Theseus solves the double area integration in equation five by Simpson’s

integration and optionally Gaussian quadrature. Also, an ‘analytical’ and a ‘mixed’

method is offered, which switches between methods according to a factor based on

differences between cells. It is possible to change the threshold for this switching

which offers the specialist a fine tuning for a specific problem. Because of the

increase in complexity this feature has not been investigated more closely. Both

methods investigated offer very good results. View3D shows excellent agreement

with the analytical solution of 0.00316205683875.

Figure 3-32: Heat flux error for the hexahedron for various programs (Rauch et al., 2007). © 2007,
Chandos Publishing (Oxford) Ltd.
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For the heat flux the energy balance with the view factors of View3D were used.

Again, it showed the smallest deviation from the analytically determined heat flux

of 1.3392 W/m². The reason why the commercial tool show an increase in the

relative error compared to the error of the view factors can be explained by the

errors of other view factors in the system. A closer examination of the case of

‘Theseus Simpson’ revealed that the configuration factors for the perpendicular

large sides deviated up to 50%. Even though these sides have the same temperature

as the small receiving plate, they still contribute to the other sides’ radiative heat

fluxes by their reflectances as the emissivity permits 10% reflection.

Walton (2002) used a benchmark first described in a textbook by Shapiro

(Reference in Walton, 2002). Originally, two opposing squares with unit lengths and

distance had a two-dimensional plate three fourths of a unit away from the first

plane in between them. This time Rauch et al. (2007) created a cube with unit

length and placed the plate inside. The square plate has a length of 0.75 and is

placed centrally in front of the opposite square as shown in Figure 3-33.

Figure 3-33: Benchmark Shapiro with front side removed (Rauch et al., 2007). © 2007, Chandos
Publishing (Oxford) Ltd.

To simplify calculation the emissivity is set to 1 because the energy matrix is now

an identity matrix and each row can be solved independently. The temperatures

are chosen to be the same as for the hexahedron where the source with 333.15K is

the side furthest away from the plate opposing it. The side facing away from the

source is thermally insolated.
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Figure 3-34: View factor error for Shapiro for various programs (Rauch et al., 2007). © 2007,
Chandos Publishing (Oxford) Ltd.

The source plate and its opposing, partially hidden face are investigated. In this

case Theseus fails to detect the obstruction, because partial occlusions are not

supported. RadTherm, on the other hand, does quite well here, because many rays

hit the unobstructed area of the receiving plate. It is more likely to cast rays to the

side than exactly to the front of the face.

Figure 3-35: Heat flux error for Shapiro for various programs (Rauch et al., 2007). © 2007, Chandos
Publishing (Oxford) Ltd.

A search was conducted to discover the reason why the heat flux for ‘RadTherm

low’ failed so badly. After examining the view factor from the hot plate to the

obstructed plate which did not show much error, the view factor from the

obstructed to the hot plate was scrutinized. It was observed that RadTherm ignored



56

the reciprocity relation which states that a view factor from surface ‘1’ to ‘2’

times the area of ‘1’ equals the form factor of ‘2’ to ‘1’ times the area of ‘2’.

Instead, RadTherm predicted no view from the obstracted plate to the hot plate.

Older versions of RadTherm were able to import view factors. Therefore, the

author (Rauch et al., 2007) imported the view factor RadTherm calculated for the

hot plate to the obstructed plate and the resulting heat flux for the obstructed

plate correlated with the error of the view factor as expected.

The third case is a study of a cabin with a dummy sitting on the right side. Several

meshes with various resolutions were created ranging from 30 to 40 mm in length

for each side of a quadrilateral of the cabin walls. The resulting meshes consisted

of 14993, 19056, and 26860 predominantly quadrilaterals and two meshes consisted

of 27504 and 71918 triangles.

All but the mesh with the highest number of elements were created by SPIDER. The

mesh with the largest number of cells was created by CFD-VisCART distributed by

ESI GmbH. The emissivity was set to 0.9 for all surfaces with a wall thickness of 1.5

mm. This time no temperatures were given but there was a heat source of 100W at

the windscreen and a heat sink of -100W at the rear screen. All walls were

considered adiabatic and conduction and convection neglected as much as possible.

In this setting the energy balance matrix was solved for the temperature. The

calculations were carried out for steady state.

Figure 3-36: Benchmark Coimbra without roof (Rauch et al., 2007). © 2007, Chandos Publishing
(Oxford) Ltd.
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In this benchmark series memory requirements and run-time are of interest for the

user of such software tools. Figure 3-37 displays the results for various mesh

resolutions. Here the term ‘patches’ means the number of cells or the number of

patches created if explicitly stated.

The RAM requirement for the view factor (VF) calculation for both commercial

tools is negligible. Computer memory must be sufficient to store only the mesh. A

totally different matter is the disk space (HD) to save the view factors. Theseus

saves the lower triangular matrix of view factors including zeros as floating

numbers by default (10). Thus, the memory requirements can be estimated in

advance. A mesh with 71000 surfaces would require roughly 10 GB of space or more

accurately the product of the number of cells times the number of cells minus one

multiplied by two.

In the big O notation this means an order of two for the number of patches N O(N²).

RadTherm, on the other hand, does not save zero entries and thus the size of the

view factor file depends on the complexity of the geometry. The moderate

increase in size between 14993 and 19056 cells can be explained by the mesh. The

finer resolution was obtained by refining the dummy, keeping the surfaces of the

cabin the same. The sizes of the view factor files also affect RAM requirements.

Even though both codes use SOR for solving the radiative balances both load the

whole matrix into memory at once, thus forgoing the main advantage of iterative

solvers, namely memory savings. Consequently, about the same amount of RAM is

needed allowing for some disk space for SOR.

Both programs offer patching as a means of avoiding too large memory

requirements. In RadTherm each view factor is calculated individually and then put

together with an area factor. Theseus puts cells together and calculates a common

view factor. This results not only in memory savings but also in a significant

calculation time reduction. On the other hand these patches form the basis of the

energy balances which in terms of radiation means using a coarser mesh.
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Figure 3-37: Memory requirements for Coimbra (Rauch et al., 2008). © 2007, Chandos Publishing
(Oxford) Ltd.

According to Figure 3-38 the runtime for Theseus follows the order of the power of

three, because it is programmed naively and does not employ any data structure.

Figure 3-38: Run-time for Coimbra (Rauch et al., 2007). © 2007, Chandos Publishing (Oxford) Ltd.

The single point at 2909 patches is the runtime requirement for a patched case of

the highest resolution mesh. RadTherm employs voxels, which are evenly spaced

volumes resulting in a runtime behavior of the order of n or even n times log2 n

which would be the best possible case according to current software engineering.

In Figure 3-38 the curve for RadTherm actually possesses two slopes. Because the

two cases with the highest number of cells consist of triangles only and RadTherm

subdivides a triangle into three instead of four parts as it does for quadrilaterals,

fewer rays are cast in total.
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The CFD Code FLUENT also offers a surface to surface model. Consequently, a

comparison with RadThermIR was made. The mesh consisted of a total of 58758

faces of a mixture of quadrilaterals and triangles. FLUENT offers the selection of

the number of faces on the hemi-cube and the number of subdivisions for a face.

RadThermIR offers the choice of the number of subdivisions and the number of rays

cast from a sub-face. The mesh contains obstructions resulting in a less dense view

factor matrix indicating when the two models have reached a similar level of

accuracy because zeros are not stored. The more accurate, the more faces will

actually be seen until the size of the view factor matrix does not change anymore.

Given the time spent to calculate this matrix it can be seen that this approach is

not practical. Therefore, a few settings were tried and the file sizes compared.

Figure 3-39: File size for Coimbra (Rauch et al., 2008a). Copyright © 2008 by ASME.

Figure 3-39 shows the binary file sizes for various settings. For FLUENT the first

number signifies the number of faces of the hemi-cube. The second number

represents the number of sub-faces. RadThermIR 9.0.1 was used with a setting of

2048 sub-faces and 4608 rays cast from each sub-face. RadThermIR has the biggest

file size indicating the most accurate calculation. In FLUENT the hemi-cube faces

have the most substantial influence on the results.
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Figure 3-40: Number of face entries of face 58758 for Coimbra.

Figure 3-40 shows the number of faces seen from a particular face. The highest

setting used for FLUENT comes closest to the number of faces recognized by

RadThermIR.

Figure 3-41: RAM usage for Coimbra (Rauch et al., 2008a). Copyright © 2008 by ASME.

The RAM usage for 4 CPUs shows that FLUENT occupies more memory with rising

hemi-cube faces. RadThermIR mainly needs the memory for the file and a small

overhead. When trying to increase the hemi-cube faces further, the memory per

CPU exceeds 2 GB thus forfeiting the distributed memory ability, for many clusters

are limited by their RAM per CPU. RadThermIR is more memory efficient but only

available on shared memory process (SMP) systems.

The runtime for the view factor calculation is presented in Figure 3-42.
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Figure 3-42: Runtime for Coimbra with FLUENT.

Although RadThermIR is able to detect more view factors it is considerably faster

than the models in FLUENT. RadThermIR is able to finish within 8 hours whereas

FLUENT 50_10 takes 23 hours for four CPUs.

FLUENT also offers a method using Gaussian quadrature for the view factor

calculation. It is not only slower but also unable to calculate the benchmark

presumably due to the quality of the mesh. In industrial applications a fast as well

as a robust method is needed.

These findings show that specialized programs must be used and consequently

coupling is necessary.

This chapter described diffuse view factors. In reflective materials such as heat

shields and hydrogen tanks, directional view factors are more appropriate.

Ambirajan A. et al. (2010) presented a directional view factor which is much more

time-consuming to calculate than its diffuse equivalent. Therefore, directional

view factors do not find use in everyday radiation simulation in the automotive

industry.

Considering all the efforts in obtaining speedy and accurate view factors, the

question remains just how accurate those factors need to be for each given

situation.
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4 Coupling of Thermal Systems

4.1 Introduction

In order to provide the research engineer with valuable tools some effort has been

put into CAE development. A fundamental design question is whether all equations

of the physical phenomena are to be solved together which is called the monolithic

approach. Usually, better convergence is achieved but often the memory

requirement is prohibitive and one has to write his own code. Alternatively, one

can apply partial coupling, employing state-of-the-art commercially available

software. This paper deals with this kind of approach. The following sections are

concerned with a system requirements analysis and a proposed architecture.

Following, a test drive is presented that, as a proof of concept, is being compared

with calculation results using the coupling strategy described in this chapter by

coupling a CFD code with a thermal radiation solver. Most thoughts have been

published in Rauch et al. (2008; 2008a). It was the example in section 4.4 and more

particularly Figure 4-10 that made me search for a systematic way of finding out

just how much each parameter contributes to the results.

4.2 Systems Requirements

From the systems development point of view several issues have to be taken care

of for a successful industrial application.

The first and foremost requirement is the automation feature of the coupling. Many

programs provide an interface for exchanging files, but research engineers should

be freed from the task of checking whether a program has finished its task in order

to start another program with those results. Writing script files is a first approach

to that problem. The problem with scripting lies in the fact that one has virtually

no way of checking whether the calculation is performing as desired and to react

accordingly. Also, one is limited to the feature provided by the program of

importing files. Thus, a program has to be written, that recognizes the condition of

the simulation software whether it has converged or an unprecedented error

occurred and, consequently, is able to react in an appropriate way.
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The second issue deals with files. Large files are difficult to handle. Especially

ASCII files can become corrupted and thus interrupt the exchange of information.

Avoiding those files would require a direct communication with the respective

software tool. For this purpose an Application Programming Interface (API) is

usually provided.

The third requirement is independence from using a specific code. There are

solutions provided already such as the ANSYS Workbench, MDICE by CFDRC, or EXA

PowerFLOW. The disadvantage is of being pinned down to specific solutions and

variables for data transfer provided by the developer. Simulation departments have

good reasons to use their codes acquired over time. An industrial organization

usually is focused on increasing gains and therefore, there is little inclination to

spend money and time on new licenses, training, validation, and development of a

new working methodology.

The next requirement is distributed simulation. One reason for distributing a

calculation among different computers lies in having node locked licenses for

specific codes or that the code was written on a specific platform, only. Another,

more subtle, reason is memory usage. The present author showed in Figure 3-37

that the memory usage for thermal radiation codes is quite demanding. It can be

seen that for cases of industrial size the memory need will rise extensively.

Interestingly, the codes in Figure 3-37 do not offer parallelization for distributed

systems. For this reason, these programs need to run on separate machines. There

are parallelized radiation solvers, too, offered by CFD codes but usually they are

better suited for radiation in participating media and less usable for large scale

automotive applications such as the passenger cabin or the exhaust system.

Therefore, a coupling tool should be able to communicate with the other program

across a network.

There are systems available that will fulfill the requirements so far such as MpCCI.

Another issue concerns the license for the data transfer system. It is desirable to

forfeit extra expenses, since annual license fees are burdening research and

development budgets.
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Mapping of surface and volume data on meshes with different resolution is also a

concern. Data should be transferred between the codes in such a way that not only

the global balances of the whole system remain conservative, but also the local

balances. For example, weighting factors help in achieving global conservatism

when the sum of the weighting factors equals one. But this does not guarantee that

on a local scale data is mapped on a surface or volume in a correct way because

the individual weighting factor for a face could have been corrected for global

conservatism’s sake.

Figure 4-1: Differing mesh topology. (Heinstein and Laursen, 2003).

Figure 4-1 shows the dilemma. The two meshes have their discrete surfaces c
h.

They distinguish themselves not only in their discretization but also in their

topology. There are gaps and overlaps. The question remains, when do two

surfaces still coincide. The difference in topology can occur, because different

physics require different mesh resolutions.

Jiao and Heath (2004) gave a brief taxonomy on data transfer methods.

(1) With a pointwise interpolation an interpolant is created from available data.

Consistent interpolation creates a function of the same order as the source

function, whereas alternative interpolations uses basis functions of higher

order than the source basis function. A disadvantage is that most

interpolation methods are not conservative.

(2) Area-weighted averaging evaluates intersections, sometimes with integration.

This form is the simplest conservative method.
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(3) Mortar element methods chose one interface as the mortar side. The no-

mortar side sends data to the mortar side by weighted residuals.

(4) Common-Refinement-Based method refines both meshes, so that for each

vertex on one mesh there is a corresponding vertex on the other mesh.

Figure 4-2: Common refinement mesh. Copyright © 2004 Wiley. Used with permission from (Jiao
and Heath, 2004).

These considerations have significant practical implementations for the automotive

industry.

Figure 4-3: Underbody temperatures with coupling (Tastan, 2008).
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Tastan (2008) showed a coupling between a CFD code and the thermal radiation

solver RadTherm. As a coupling tool MpCCI v3 was used. Figure 4-3 top left shows

the result of the coupling, when TGrid was employed for the CFD mesh and

RadTherm surface grid was meshed in ANSA. Top right shows the results with

Harpoon used for the CFD grid. The bottom picture used Harpoon for both meshes.

Tastan (2008) reported differences in the results of up to 20 K.

The next requirement that would benefit in coupling simulations with different

time step sizes or significant step changes in the boundary conditions would be the

ability to couple the systems in an implicit way. Thus, if there is a change in the

values in between time steps the coupling tool should be able to repeat a certain

time step with more time accurate boundary conditions. Valli et al. (2008)

investigated the coupling of multi-physics systems and stated that in the case of

nonlinear couplings a pseudo transient approach might be more effective than it

solving the stationary equations iteratively. In this way larger time steps to steady-

state, that do not yield time-accurate solutions, might promise faster convergence.

It also should be possible to send data of different dimensions such as arrays and

tensors, data with and without a connection to geometry, such as spray, and

without the need for a specific ordering of the data. By that it is meant that some

codes order the data in a relative way on each processor without disclosing an

absolute index for an entity. In that case data should be able to be sent in a

relative context such as for each processor.

The last significant requirement for a successful coupling between two codes is its

ability to handle large amount of data that is parallelized in an efficient way.

If we sum up all the requirements a system is considered to be desirable if it can

handle the coupling automatically, without writing and reading large files. It should

be independent from any specific code, with the ability to communicate with

computers on a network. Additionally, it should cost little or nothing at all in terms

of license fees. The conservative mapping of data on a local and global scale for

different mesh resolutions is a must. It should offer the option of implicit coupling,

transferring data of different dimensions, and handle large amount of parallelized

data.
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4.3 Coupling Architecture

The authors have worked on a coupling between the CFD code FLUENT 6.3 and

RadThermIR 8.1.1, and later version 9.1, which is a thermal radiation solver. In

order to meet the requirements mentioned above, a software architecture was

designed, as depicted in Figure 4-4.

Figure 4-4: Component diagram of coupling architecture (Rauch et al., 2008). Reprinted with
permission from SAE Paper No. 2008-01-0389 © 2008 SAE International.

In the component diagram three big components can be seen. On the right hand

side the coupling interface for RadThermIR is shown as component

‘RadThermInterface’. On the left hand side the component ‘FluentInterface’ is

drawn to represent the interface for Fluent. In the center a certain data transfer

tool with the name ‘ACCI’ developed by AVL is shown. Its purpose is to transfer

data between the interface components. It has the ability to transfer data of

various dimensions at certain time or iteration steps and provides 3D surface and

volume mapping by area-weighted averaging. It does not use files and

communicates with anyone applying the interface as named ‘ACCI’ by network

communication. At the time of development, the coupling tool required no

separate license and was able to be employed for parallelized tools. Therefore,

ACCI was chosen for the basic exchange of data. But it should be mentioned that

other exchange tools such as MpCCI could be used in principle, as long as the

necessary features are supported or added by the user.

All that is left to do is to describe the interfaces. The idea is to split the

component ‘RadThermInterface’ and ‘FluentInterface’ into two components as

shown in Figure 4-4. This splitting enables implicit coupling. Since neither FLUENT

nor RadTherm offers the feature to redo a calculation of a time step one has to

break off the calculations and do a restart at the appropriate time step. If one
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would employ a traditional data transfer tool such as ACCI the stopping of one code

would cause the other code to be stopped as well. Now, the respective server

interface has the responsibility to keep in touch with ACCI. Therefore, a stopping

of the client does not necessarily lead to a termination of the coupling procedure.

Other duties of the server are the communication with the client, starting the code

to be coupled, and checking whether the boundary conditions are good enough and

to interrupt the calculation if necessary.

When we turn our attention to the deployment diagram of Figure 4-5 we see how

the objects that are part of the components of the FLUENT interface are

distributed.

Figure 4-5: Deployment diagram for the standard FLUENT interface in parallel (Rauch et al., 2008).
Reprinted with permission from SAE Paper No. 2008-01-0389 © 2008 SAE
International.

FLUENT creates a host process when it is run in parallel and the desired numbers of

compute nodes are being created. Each compute node and the host call the

subroutine which generates objects of the client interface. In Figure 4-5 a sample

object is shown of this component as working on each node and the host.

The server interface communicates with the host by special pipes called “FIFOs”

and shared memory (SMP). This is possible because the host process always runs on

the cluster node with the client server.

The host can send messages to all the compute nodes but only node zero can send

messages to the host. If one wants a piece of information from a node, the host
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sends a query to all compute nodes. The appropriate node fetches the information

and sends it to node zero which in turn delivers it to the host. This indirect

communication is very time consuming and was applied by the prototype of the

client interface, only. It has been proven to be too slow for large applications due

to the massive amount of inter-process communication.

Figure 4-6: Deployment diagram for the parallel architecture (Rauch et al., 2008a). Copyright ©
2008 by ASME.

The reason rests in the massive amount of inter-process communication. Referring

to Figure 4-6, FLUENT starts a host process which does not do any calculations on

its own. The compute nodes are doing this.

Node 0 is responsible for communicating with all other compute nodes and

transferring their data to the host. This approach slows down the data exchange,
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significantly. Therefore, a new architecture for parallel runs was devised. Now, the

client interface has an additional responsibility. It has to start its own slave server.

Each compute node communicates now with its own slave server. The slave server

has the responsibility of the original server interface with the exception of not

starting the CFD code anymore. The original server interface is now called master

server interface with its duty of starting the CFD code and checking for a restart.

Only when initializing the slave server this architecture employs message passing

for a view bytes of data. After that MPI is not used by this interface thus reducing

inter-process communication drastically. Since ACCI now starts a process for each

compute node each slave server can transfer data of the node without waiting for

other nodes. Also, data management has been eased, because FLUENT uses relative

cell, face, and vertex numbers. With the original proposal an absolute index had to

be stored for faces and cells. Now, only relative vertex indices need to be handled

with care.

4.4 Test Case

A series of measurements have been conducted for validation purposes. The test

car is a BMW X3 3.0 D SUV. The exhaust system has received numerous

thermocouples of type K with a wall thickness of 1.5 mm to assure that the wall

temperature is being measured. Those thermocouples have been placed in such a

way that one sensor is attached on the exhaust pipe looking to the ground ‘Bot’,

one sensor being attached to the pipe facing the floor pan ‘Top’, and one sensor

being attached to the floor pan facing the sensor on the pipe. In that way one can

get insight into the temperature distribution fairly well. An overview of the

locations of the sensors at the exhaust system is depicted at Figure 4-7.
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Figure 4-7: Measurement points for the exhaust system (Rauch et al., 2008a). Copyright © 2008 by
ASME.

The track chosen was a section of a highway of about 19 km on the 23rd June 2006.

The track is without any significant inclinations. At one point of the track the

temperature of the lane was given with 280.15 K and the air temperature was

measured to be 287.25 K. The sky was clouded and the lane dry. A lambda probe

together with the measured exhaust gas temperature TAGnKAT with 679.71 K gave

a calculated mass flow of 0.07 kg/s with a specific heat capacity of 1.12 kJ/kg/K.

The car was driven at a speed of 130 km/h without switching on the HVAC system.

For each of the measurement points a thermocouple had been placed on the

bottom of the tube facing the road which is named ‘Bot’. The thermocouple

opposite to it and facing the heat shield is named ‘Top’. Finally there is a sensor

placed on the heat shield opposite to the one just mentioned described as ‘Plt’.
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4.5 Simulation

In order to apply the described systems architecture a simulation run is conducted

and compared with the measurements. The volume mesh of the car aerodynamics

consists of 12 million volume cells created by SPIDER an automated unstructured

mesh tool. In Figure 4-8 the surface mesh of the coupling selection is shown to

demonstrate how well the actual surface is resolved.

Figure 4-8: CFD coupling interface (Rauch et al., 2008a). Copyright © 2008 by ASME.

Before starting the coupled run a cold run was being conducted to speed up

convergence and give estimates for the initial conditions. The CFD code FLUENT 6.3

was used with the realizable k- turbulence model and the enhanced wall model

which was found to be quite satisfactory for heat transfer calculations of industrial

sized problems with a y+ above 5. In order to employ SST or k- mesh refinement

would have been necessary for decreasing y+ below 5. The convergence condition

for the turbulent energy was set to 10-4. The inlet velocity was taken as 36.1 m/s

and the FLUENT fan model with an intake of 1.55 kg/s at 373 K was chosen in order

to estimate the velocity distribution in the engine compartment which in turn

affects the flow situation at the floor pan. This value for the intake reflects the

author’s experience in taking into consideration the characteristic curve of the fan.

The run was done in steady state. The results of this run were fed into the coupled

simulation as an initial condition for the transient run. 60 time steps with a time

step size of 0.005 and a maximum of 25 iterations were calculated where the

coupling happened to be at every twentieth time step. The convergence rate for

the energy balance was set to be 10-9. The coupling interface consisted of 1.1

million surface faces at the lower half of the car.
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The upper half of the car is considered to not affect the energy balance around the

exhaust system since no heat source terms for the passengers or solar irradiance

were considered. FLUENT provides for the convective heat transfer coefficient and

the corresponding fluid temperature at the first cell next to the face. Also, the

face geometry is retrieved by the coupling interface at the beginning as required

input for the mesh mapping. In turn it imports the wall temperature provided by

RadTherm.

Figure 4-9: RadTherm coupling interface (Rauch et al., 2008a). Copyright © 2008 by ASME.

RadTherm on the other side provides for the wall temperature values and imports

the convective heat transfer coefficient and fluid temperature of FLUENT.

RadTherm actually performs the energy balance for the walls. For this run surface

temperatures of the aforementioned measurements were set on the pipe.

RadTherm interpolates temperatures along the exhaust system from those points.

An emissivity factor of 0.7 was presumed and a constant road surface temperature

of 280.15 K was used. The convergence parameter of 0.01 K was chosen for the

wall temperatures. The exchange surface consisted only of the lower part of the

car since the sun was not modeled as it was hidden by clouds. There were 340,000

faces created by VisCART v2006.

FLUENT with its interface, RadTherm and its interface, and the ACCI server were

all located on different machines. The FLUENT mesh was distributed among 8 CPUs.

RadTherm was run on two CPUs as a shared memory process.
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Figure 4-10: Temperature differences of measurement and simulation at the floor pan heat shield.

The results of the coupling for sensor positions at the floor pan heat shield are

shown in Figure 4-10 for the third time step. Here, e.g. t_EP_Plt_1 signifies the

sensor on the floor pan heat shield facing t_EP_Top_1 in Figure 4-7. Because of the

explicit nature of the coupling with three time steps only three updates at the

coupling interface were being performed. After examining the geometry close to

the position where the connector pipe is breaking through the floor pan it was

found that the coarse mesh for the radiation solver was connected to the floor pan

at the catalytic converter resulting in an unrealistic high temperature distribution

both at the floor pan and the sensor on the pipe opposite to the floor pan. There

was also a high input via conduction at the pipe clamp of the kick-up pipe giving to

high temperatures for t_EP_Plt_4. The unwanted thermal conduction was

prevented by setting the thermal conductivity coefficient almost to zero where

unwanted mesh connections occurred. This resulted in the red bars of Figure 4-10.

Another issue was choosing an appropriate emissivity factor. Therefore,

thermographic pictures were taken after a test drive. Emissivity stickers for

calibration purposes were attached and the temperatures measured. When

adjusting the camera to the temperature of a thermocouple one obtains an

emissivity factor.
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Figure 4-11: Thermographic image of connector pipe (Rauch et al., 2008a). Copyright © 2008 by
ASME.

Figure 4-11 shows the very in-homogenous temperature distribution. One gets the

following emissivities  for the encircled values in Table 4-1:

Table 4-1: Emissivity coefficients of the connector pipe (Rauch et al., 2008a). Copyright © 2008 by
ASME.

It can be argued that with this method, heat losses from convection and

complicated 3D conduction is neglected. This is indeed the case. Nevertheless, this

method provides much better values for complex geometries than textbooks do

because one gets the values at the actual temperature needed including soiling and

current level of corrosion.

Since RadTherm can only set one emissivity value for each selection and the

number of selections is practically limited, the authors chose to set a value of 0.75

for the exhaust tubes and mufflers and a value of 0.4 for the heat shield. These

corrections resulted in the yellow bars of Figure 4-10.

Increasing the complexity of the coupling the interpolation of measured

temperatures on the exhaust pipes were replaced by a third coupling client.
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Figure 4-12: Volume mesh of the exhaust system (Rauch et al., 2008a). Copyright © 2008 by ASME.

The exhaust system consisted of 666,000 cells and 83,000 boundary faces. The

mesh is being shown in Figure 4-12. It was resolved with 5 boundary layers. Since

no temperature profile was known, an average temperature of 592 K was used. For

this purpose the average of t_OCC_CON_1 in Figure 4-7 with 504 K and TAGnKAT

was calculated. The realizable k- turbulence model was chosen with 60 time steps

of time step size 0.005 s. FLUENT 6.3 was used.

The original architecture in Figure 4-5 took 13 minutes for exchanging 100,000

values because of the message passing bottleneck. The new architecture in Figure

4-6 can do this well under one second giving a speed-up of more than 7,000 for the

actual data exchange.

Figure 4-13: Simulation temperature differences to measurements at the floor pan heat shield
(Rauch et al., 2008a). Copyright © 2008 by ASME.

The heat shield temperatures at the connector pipe correspond well with

measurements.
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The temperatures at the height of the kick-up pipe show greater discrepancies.

Because of the third coupling client the system takes more time for convergence.

Figure 4-14: Simulation temperature differences to measurements at the exhaust pipe facing the
road (Rauch et al., 2008a). Copyright © 2008 by ASME.

Figure 4-15: Simulation temperature differences to measurements at the exhaust pipe facing the
heat shield (Rauch et al., 2008a). Copyright © 2008 by ASME.

Since the last results do not show satisfactory results another coupling run was

performed. This time, the heat of the main water cooler was included with 31 kW.

This means, that a warm stationary calculation for initialization was done.

Additionally, the thermal inertia of the solid was removed by assigning a zero

specific heat capacity to all the surfaces in RadTherm. In this way, the results are

less dependent from initial guesses. 200 time steps were calculated and after every

other time step a coupling performed.
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Figure 4-16: Simulation temperature differences to measurements at heat shield for cp=0.

Compared to Figure 4-13 results show great improvements and a trend of lower

levels of error at the connector pipe.
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Figure 4-17: Simulation temperature differences to measurements at the exhaust pipe facing the
heat shield for cp=0.

Figure 4-17 shows the greatest deviations from measurements. Compared to Figure

4-15 the overall results have been improved with the exception of the first

measurement location.
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Figure 4-18: Simulation temperature differences to measurements at the exhaust pipe facing the
heat shield for cp=0 and coupling time step of 0.02 s.

The last figure shows the results when the coupling is done every 20 time steps.

This figure suggests that it is better to use greater coupling time steps. The fact,

that after one second simulation differences are actually increasing suggests that

convergence has not been achieved.

The results of this test case, especially Figure 4-10 raises the question, what

parameters deserve more attention in order to improve coupled simulation results.
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5 Sensitivity and Uncertainty Analysis
It is in the interest of the thermal simulation engineer to estimate how well his

predictions coincide with the real system. Unfortunately, measurements are

expensive and not always feasible. Also, there is a need to understand the entire

system at hand, for the number of measurements is limited and the thermal

behavior of the complete system should be known. A convergence in one place

does not necessarily guarantee the convergence in the whole realm of investigation.

For example, there might be numerical diffusion, or the nonlinear behavior of

thermal radiation dominates, locally. Therefore, the purpose of this chapter is to

introduce sensitivity and uncertainty analysis.

5.1 Taxonomy

According to Saltelli et al. (2008) “sensitivity analysis studies the relationship

between information flowing in and out of the model”.  Closely related to

sensitivity analysis is uncertainty analysis, which seeks to quantify uncertainties in

the response as a consequence of uncertainties in the model input. In other words,

it is investigated how uncertainties are propagated from the input to the output of

a model.

There are various reasons for using sensitivity analysis.

(1) Model Validation: It is investigated, whether all significant effects are taken

care of and whether some parameters are just tuned in order to suit the

proposed model in a way that is not physically justified.

(2) Most Influential Model Parameters: The parameters that affect the model

the most are identified. It can serve as a guide for measurements.

(3) Insignificant Model Parameters: These are parameters that might be

eliminated from the model.

(4) Locating the region of parameters that vary the model output the most.

(5) Which regions of the parameter space to use for calibration.

(6) Determining the Interaction of parameters.
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Espinar et al. (2009) refer to the General Law of Uncertainty Propagation according

to an ISO standard. It introduces the following notation for uncertainties:
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Here, uc(y) is termed the combined standard uncertainty (CSU) of y, y being the

result of the function f and N input parameters x. The partial derivative ∂f/∂xs is

the sensitivity coefficient and describes how y varies with a change in xs. If all

variables are used for uncertainty calculations CSU is called total CSU, partial CSU

otherwise. The term u(xs) is called standard uncertainty (SU). In Type A

uncertainties this term is derived from statistical analysis such as a probability

distribution function. A Type B uncertainty is non-statistical. Expert knowledge,

look-up tables, or analytic solutions are used for the SU quantification. Espinar et

al. (2009) explain the term uncertainty as “… an estimate of the likelihood of

nearness to the best value that is consistent with presently available knowledge”.

Figure 5-1: Taxonomy of sensitivity analysis.

Following the taxonomy of Saltelli et al. (2008) sensitivity analysis (SA) can be

categorized into screening, local, and global SA. It should be noted, that screening

could as well be attributed to local and global SA. Thus, this taxonomy represents

the opinion of Saltelli et al. (2008) and is subject to change in this young discipline.
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Figure 5-2: Taxonomy of screening.

Screening is employed when dealing with a large factor space, where factors can

be parameters from outside the model or variables inside the model. It seeks to

reduce the number of calculations. The disadvantage is that they only yield

qualitative results in ranking the input factors according to their importance. The

most basic one is one-at-a-time (OAT) approach, where one factor is changed and

the outcome calculated at a time. Opposed to it is Factorial Experimentation in

which all factors are perturbed simultaneously in a way that all possible values are

covered. Because full factorial simulations often are too time consuming fractional

factorial (FF) only examines some of the possible interactions. Even more

aggressively, the iterated fractional factorial design (IFFD) prescribes a set of

statistical simulation runs that reduce the number of required simulation runs to

less than the number of factors under investigation. Morris performs randomized

OAT runs in such a way, that the entire factor space is covered.

Figure 5-3: Taxonomy of global SA.



83

Global Methods differ to screening methods in that they calculate uncertainties,

thus providing a quantitative analysis. Monte Carlo analysis performs simulations

with randomly selected input parameters. From the results uncertainties in form of

expected values and variances are calculated and correspondingly apportioned to

the input parameters by sensitivity analysis. Sobol’s method decomposes the

parameter space into summands of increasing dimensions. Therefore, the variance

can be decomposed, as well. Each summand is computed by Monte Carlo

integration. With the variances known sensitivity factors are estimated.

The Fourier Amplitude Sensitivity Test (FAST) also calculates the same sensitivity

indices as Sobol’s method. A multidimensional integral over the entire parameter

range is transformed to a one-dimensional integral by scanning the whole

parameter range with a single frequency for each parameter. The fractional

sensitivities are obtained by Fourier decomposition.

The response surface methodology is very similar to Monte Carlo with two

distinctions: First, there are no probabilistic weights assigned to the factors for

determining the simulation runs. Second, a response surface is constructed from

the simulations results from which uncertainties are calculated.

The First-Order Reliability Method (FORM) deals with a hyper-surface of input

parameters that should not exceed a certain value.

An interesting derivative of a Monte Carlo simulation, called subset simulation,

provided Thunnissen et al. (2007), recently. When the task is to quantify

uncertainties in the extreme ranges such as critical component temperatures for

failure analysis, it is advantageous to express a small failure probability as a

product of larger failure probabilities. First, a screening is done by Monte Carlo and

the responses sorted. A threshold level is selected that reduces the parameter

space for further calculations. In the next refinement level 1 a series of Markov

Chains determine the next simulations. The goal is to limit the parameter space in

such a way that higher values on the ordinate are reached. With each level, smaller

failure estimates on the abscissa are reached for subsequently more critical

response values, assuming normal distribution. In this way, a significant reduction

in model evaluations can be achieved compared to Monte Carlo analysis.
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Figure 5-4: Subset simulation procedure (Thunnissen et al., 2007). Copyright © 2006 by AIAA, Inc.
Reprinted with permission of the American Institute of Aeronautics and
Astronautics.

Figure 5-5: Taxonomy of local SA according to Blackwell and Dowding (2006).

In local methods the sensitivity coefficients are calculated for a specific parameter

set instead of covering the entire parameter space as in global methods.

According to Blackwell and Dowding (2006), the finite difference method seeks to

approximate the derivates by finite differences in a post processing step. For each
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parameter it needs an additional simulation. The derivatives are dependent on the

step size change. In order to circumvent the step size issue the complex step

method treats the equations in the complex plane. By automated software

differentiation a compiler does the differentiation from the source code. In the

sensitivity equation method the equations are differentiated manually.

Lange and Anderson (2010) choose to further classify the last method mentioned in

continuous, where the derivatives are first derived and then discretized, and

discrete, where the governing equations are first discretized and then

differentiated.

An increased measure of complexity adds the consideration of spatial data. Phillips

and Marks (1996) considered an evapotranspiration model over a certain region.

Since data of three input parameter were available only at discrete locations,

these data sets were interpolated by kriging. The resultant uncertainties were

determined by calculating 100 Monte Carlo simulations for each grid point.

Watanabe et al. (2010) used a parallelized finite element method (FEM)

formulation for coupled heat, fluid flow, and solid displacement. Because spatial

and time dependant parameters over a long time period were considered, a

screening Monte Carlo procedure limited to 10 runs first determined the most

influential parameters. Then, more Monte Carlo runs followed with the parameters

just obtained.

When considering time dependant sensitivity coefficients, two methods are

mentioned by Lange and Anderson (2010). In forward mode direct differentiation

the sensitivities are calculated as the solution advances in time. The reverse mode

adjoint method starts with the last solution in time and recedes in time for each

sensitivity coefficient. Lee et al. (2003) solved the governing equations and

sensitivity equations simultaneously as a set of ordinary differential equations

(ODE). Korycki (2010) used a finite element method (FEM) formulation for an

objective heat and mass transport optimization using the adjoint sensitivity method.

Recently, there has been made a distinction between aleatory and epistemic

uncertainties.
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Figure 5-6: Epistemic and aleatory uncertainty (Guo and Du, 2007). Copyright © 2007 by AIAA, Inc.
Reprinted with permission of the American Institute of Aeronautics and
Astronautics.

Aleatory uncertainties are stemming from measurement uncertainties or other

irreducible uncertainties. They are being described by random variables or

probability theory. Epistemic uncertainty, on the other hand, describes a lack of

knowledge which can be reduced if further investigations are being conducted. It is

often associated with the model itself but can also contain uncertainties from

boundary conditions or material properties which could be reduced by further

sampling of data. There is another way of looking at uncertainties by separating

model from input data uncertainties. The method chosen in this work for

estimating uncertainties for coupled thermal systems neglects the distinction of

epistemic and aleatory uncertainties because it would yield a range of ranges

which might not be straightforward for interpretation for the thermal engineer. A

single range of temperatures is a desirable outcome for the practicing engineer in

determining if and what sub-model or coupling client promises the greatest benefit

for improvement. Since the equations for a finite difference method of thermal

radiation can be easily formulated promising greater insight into the thermal model,

direct discrete first order local sensitivity and uncertainty analysis was chosen as a

research topic. First order sensitivity has been selected because higher derivatives

would be more time consuming. In this way the method behaves like a Taylor

approximation and higher order derivatives describe interdependencies between

the parameters.

5.2 Previous Research on View Factor Uncertainties

Williams (2010) examined non-equilibrium thermal radiation phenomena as derived

from the radiative transfer (RT) equation. In his formulation he uses configuration

factors, both between two surfaces, and between a surface and a fluid volume.

Because of complex geometries the integral term in the RT may not always yield
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simple expression by the variational method. Consequently, he resolved to

polynomial chaos expansion in order to solve the integral term numerically.

Sánchez and Mahan (2010) examined distribution factor uncertainty from the Monte

Carlo method with purely statistical methods. In that method distribution factors

are defined as the ratio of the number of energy bundles absorbed from one face

to another and the number of energy bundles N emitted from that face. They can

be either gray or represent a band of wavelengths. The idea in their formulation is

that tracing a ray in Monte Carlo behaves like a binomial experiment, where

success is related to absorbing a ray on the surface, thus relating the distribution

factor Dij to a sample proportion. From the definition of confidence interval the

following relation for the uncertainty u is derived:
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Here, Wc is the critical value of the W-Test and the superscripts distinguish

between true t and estimated e distribution factors. They even derived the mean

uncertainty bound for all distribution factors for the total number of faces n:
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One should note that this result is independent of the actual geometry. They

demonstrated this method on a surface of up to 150 faces and calculated a

necessity of 4 million rays in order to keep the mean uncertainty below one

percent. They employed Shapiro-Wilks W-Test tests for normal distribution of

samples. Unfortunately, the recommended sample size should not exceed 2000

according to De Muth (2006), which makes it unusable for industrial sized

geometries. Alternatively, the chi-square goodness-of-fit test suffers from

susceptibility to small deviations from normality.

Shuai et al. (2008) derived the same expressions. They focused on the influence of

random number generators on the uncertainties of the distribution factors, which

they called Rij. Figure 5-7 graphs the uncertainties between two distribution factors

Rij according to Eq. (5-2). For a randomly determined distribution factor the

highest uncertainties are expected in the middle range of values. This effect is

more pronounced when fewer rays are cast.
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They also stated that calculating distribution factors in the Monte Carlo method

nowadays is less of a concern related to speed of calculation but more to accuracy

because statistical fluctuations can be in the range of the accuracy of a

convergence criterion during thermal coupling.

Figure 5-7: Uncertainty Rij for distribution factor Rij Reprinted from (Shuai et al., 2008), Copyright
© 2007, with permission from Elsevier Inc.

Turning the attention to the surface-to-surface method (S2S) in the author’s

opinion the first known treatment on view factor uncertainties were done by Taylor

et al. (1993). They gave an excellent treatment on the impact of view factors on

the outcome of the energy balances. They were able to show by an academic

example, that the accuracy of some form factors might influence the whole system,

significantly. They developed sensitivity balances for emissivity and temperature

for diffuse-gray radiation when a temperature is set as boundary condition. They

observed, that by adhering to the reciprocity and closure relation of view factor

algebra, sensitivities can be reduced, significantly. They further elaborated on this

topic by expanding the sensitivities to changes in area and heat flux boundaries

(Taylor et al., 1994; Taylor et al., 1995).
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This equation is the derivation of the radiosity qo with respect to the view factor Fij.

I is the diagonal identity matrix, FT the transpose view factor matrix, Da a diagonal

matrix for area, and De
M the diagonal matrix for emissivity. The superscript M

means that the first M rows are zero.

Taylor and Luck (1995) published a paper that compared several view factor

correction methods. They found that the weighted least squares correction for

view factors gave the most promising result in producing meaningful configuration

factors out of approximate view factors. Korycki (2006) derived local sensitivity

factors of the first order in the context of the finite element method (FEM). He

derived quite lengthy expressions for conjugate heat transfer including the effect

of changing view factors due to shape optimizations as well as a radiation

formulation for participating media. He formulated both an adjoint approach as

well as the direct method to sensitivity analysis. Bhatia and Livne also (2008)

developed sensitivity equations in the context of the finite element method. They

employed two sets of meshes. On the coarser mesh, external boundaries were

calculated using FEM whereas the finer mesh was used for radiation in a cavity.

Both meshes were coupled by a connectivity matrix. Since thermal stresses and

deformations were investigated, deformed view factors were approximated by a

first order Taylor series expansion using first order sensitivity factors of the view

factor in relation to a shape design variable, which showed some descent results. In

another paper Bhatia and Livne (2009) also showed a way to put all temperature

dependent parameters into the main diagonal of a matrix with consequent Taylor

series expansion to get the inverse of a matrix. It should be noted that their

biggest mesh size for radiation consisted of merely 3072 elements. Furthermore,

they treated transient heat transfer.
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5.3 Mathematical Formulation

I am employing a commercial radiation solver based on an element centered finite

difference method (FDM) as a starting point of my investigations. Therefore, I

proceed by deriving the balances of first order local sensitivity factors for view

factors for the element centered finite difference formulation. Siegel and Howell

(2002) in their standard work show how to formulate the net-radiation method,

which is based upon first principle thermodynamics in non-participating media.

More precisely, the Poljak approach is taken and as such this treatment can be

regarded as a continuation of Taylors’s et al. (1995) work by expanding their

approach for combined conduction and convection. The reason for taking Poljak’s

approach is its simplicity. There are no fractions and the problem is split into two

equations which allows for a more simple derivation.

5.3.1 Sensitivity of View Factors

The following treatment was first published in Rauch and Almbauer (2010) as uses

scalar notation instead of the matrix notation by Taylor et al. (1995). I start with

the relation for a given boundary heat flux bk as a function of radiosity qo, view

factor Fij, and area Ak:
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(Eq. 5-5)

Equation (5-5) shows the relation of the kth face between the boundary flux bk and

radiosity qok to all other N faces in the enclosure. For more convenience in

differentiation, the kth radiosity is taken into the summation where sk represents

the Kronecker delta:
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A total differentiation with respect to the view factor Fij between faces i and j is

conducted the following way with running index r:
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In this treatment I presume the geometry not to be affected by thermally or load

induced displacements. Consequently, the derivative of the heat flux bk with

respect to area amounts to zero. It behooves me now to derive the gradient of the

boundary heat flux and radiosity:
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Likewise, the derivation of bk with Fsk:
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Substituting Eq. (5-8) and Eq. (5-9) into Eq. (5-7) and switching from index r to s

one receives the following equation by observing that in a partial derivation the

gradients are one only when r equals s and zero otherwise:
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The derivative of the first term of the right hand side in Eq. (5-10) is the unknown

to be determined. The gradient of the second term in Eq. (5-10) can be simplified

to be 1 if s equals i and j equals k, zero otherwise, if one presumes that each view

factor can be changed, independently. It should be noted, that other relations for

the derivation of the view factor term could be applied, when one presumes

following the summation or the reciprocity rule in view factor algebra. In this work,

these relations are not strictly enforced in the thermal radiation solver employed.

The interested reader is referred to Taylor et al. (1995) for a treatment of closure

and reciprocity in the uncertainty relation.
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So far, the author has followed the papers of Taylor et al. (1994, 1995). They did

not make a distinction between different heat transfer modes. In the present

treatment the author wishes to distinguish those modes in order to be able to

observe the propagation of uncertainties for each respective property representing

a transfer mode. Therefore, the boundary heat flux is written as:
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Tf represents the fluid temperature, hk the convective heat transfer coefficient, kkt

the thermal conductivity, which in this study is presumed to be independent of

temperature, Akt the area bordering a neighboring thermal element, lkt the

distance between two thermal node centers, qimp the imposed heat, which is

treated as a constant with respect to a view factor in this work, and NCond the

number of thermally conducting neighbors. Figure 5-8 depicts a thermal node with

corresponding heat fluxes and area definitions. For clarification, the radiative flux

is defined positive when leaving the system, as opposed to the convective and

conductive fluxes. That is why Eq. (5-5) is written for radiation and Eq. (5-12) for

conduction and convection, respectively. As demonstrated in Eq. (5-7) a partial

differentiation with respect to the view factor is applied to Eq. (5-12).

Figure 5-8: Thermal node with heat fluxes.
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The partial derivative of the order one with respect to the node temperature is:
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The partial derivative with the neighboring node temperature is:
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Substituting Eqs. (5-14) and (5-15) into Eq. (5-13) one gets:

ij

t
N

t
kt

kt

kt

kij

k
N

t
kt

kt

kt

k
k

ij

k

F
TA

l
k

AF
TA

l
k

A
h

F
b CondCond


























 

 11

11
(Eq. 5-16)

Now, one can substitute Eq. (5-16) into Eq. (5-11).
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Since I now have two unknown gradients of radiosity and nodal temperature with

respect to the form factor, I need a second relation.  Poljaks approach provides for

a relation between radiosity and temperature:
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In this relation the emissivity  is introduced, otherwise the left hand side is quite

similar to Eq. (5-5). The derivation of this relation with respect to the view factor

follows the same pattern. First, the first term is drawn into the summation term:
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Then, partial differentiation is applied:
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The same considerations as for Eq. (5-7) apply with the addition that the emissivity

is a material property and thus stands in no relation to the view factor. The

derivations of the boundary heat flux with respect to radiosity and form factor are:
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These relations are substituted into Eq. (5-20).
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Equation (5-23) can be simplified at the second term of the right hand side in the

same way as in Eq. (5-11).
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It is now time to introduce the temperature T:

4
kkk Tb  (Eq. 5-25)

In this work the emissivity is kept to be independent of temperature. Again, partial

differentiation is applied and yields:
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Equation (5-28) is set equal with Eq. (5-24):
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Equation (5-29) provides a relation for the temperature gradient:
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The same relation as above is used to express the temperature gradients for the

neighboring faces:

    
ij

so
N

s
st

t

s
tststtstst

ttij

t

F
q

F
A
A

F
TF

T














 



,

1
3 111[

4
1




  ]1 ,io
j

i
jtjsi q

A

A
  (Eq. 5-31)

Equations (5-30) and (5-31) are now substituted into Eq. (5-17):

    io
j

i
kjsi

ij

so
N

s
sk

k

s
sksksk q

A
A

F
q

F
A
A

F ,
,

1
11  
















    
ij

so
N

s
sk

k

s
kskskksksk

kk F
q

F
A
A

F
T 










 



,

1
3 111[

4
1




  







 



CondN

t
kt

kt

kt

k
kio

j

i
jkjsi A

l
k

A
hq

A
A

1
,

1]1 

     
  












CondN

t ij

so
N

s
st

t

s
tststtstst

tt
kt

kt

kt

k F
q

F
A
A

F
T

A
l
k

A 1

,

1
3 111[

4
1[1




  ]]1 ,io
j

i
jtjsi q

A

A
  (Eq. 5-32)

Separating the terms containing an unknown I obtain the final relation for

calculating the derivative with respect to radiosity:
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Once the radiosity derivative has been calculated by Eq. (5-33), one can simply

multiply the result vector by Eq. (5-29).

The first term on the left-hand-side (LHS) of Eq. (5-33) is the radiative term as

published by Taylor et al. (1995). The second term is a mixed convective and

conductive term and the last term of the LHS is a conductive term. The same holds

for the right-hand-side (RHS). One should note the summations in the terms.

Equation (5-33) can only be solved for all elements – more precisely thermal nodes

in the finite difference formulation - simultaneously. In other words one has a

dense solution matrix. On the RHS there will be only one: When the index j of the

view factor coincides with the thermal node number. Including conduction, terms

with neighbors of a thermal node with index t are added.

The aforementioned derivations presumed that the temperature of node k was not

fixed. If it is fixed, Eq. (5-29) can be taken. Since the derivative of node

temperature with respect to the view factor will be zero in that particular case one

can calculate the change of radiosities with respect to the view factor by the

following equation:
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With the radiosity derivative with respect to view factor known, Eq. (5-11) can be

used to calculate the change in net heat flux on that node.

5.3.2 Sensitivity of Emissivity

The following treatment was published in Rauch and Almbauer (2010a).

We start again from Eq. (5-6) which shall be rewritten as:
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Now, the partial derivatives of the heat flux with respect to emissivity have to be

calculated:
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The partial derivatives for the area and the view factor with respect to the

emissivity can be ignored, as we do not consider changes in geometry due to

thermal stresses. The radiosity will usually change with changing parameter and is

duplicated from Eq. (5-8).
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Substituting eq. (5-37) into eq. (5-36) with all the aforementioned simplifications

yields:
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Equation (5-12) is rewritten as:
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A partial differentiation with respect to emissivity is conducted:
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The partial derivative of the order one with respect to the node temperature is:
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The partial derivative with the neighboring node temperature is:
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Placing those last two equations into Eq. (5-40) we get:
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Equation (5-43) can now be substituted into Eq. (5-38):
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Taylor et al. (1995) in their work were able to calculate the radiosity derivative,

because there were no terms containing temperature. In Eq. (5-44) there are the

partial derivative of temperature and radiosity as unknowns. Therefore, we need a

second equation, relating temperature to radiosity which we already showed in Eq.

(5-19).
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The total derivative of this equation is:
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The partial derivatives are:
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The last derivation can be simplified to:
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Equations (5-49) and (5-47) are substituted into Eq. (5-46):
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The other side of Eq. (5-45) is:
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The total derivation with respect to emissivity yields:
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Putting Eq. (5-53) and Eq. (5-54) into Eq. (5-52) one gets:
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Substituting this equation into Eq. (5-50) we have the following relation:
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This is our second relation for the unknown derivatives T and radiosity in emissivity.

Eq. (5-56) is rewritten to explicitly calculate the temperature derivatives:
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When we replace the index k with t we have:
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In order to obtain the final equation the last two equations are put into Eq. (5-44):
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Separating LHS terms from RHS terms one gets the equations as it is implemented:
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Once the radiosity derivative has been calculated by Eq. (5-60), one can simply

multiply the result vector by Eq. (5-57).

To the reader is pointed out that there is no sole radiative term on the RHS. This

means, that in the absence of conduction and convection the radiosity gradient will

be zero. In that case Eq. (5-57) is simplified. It then states that a change of

temperature by emissivity is proportional to the difference of radiosity and node

temperature. In an IR camera radiosity is measured and interpreted as temperature

by assuming an emissivity. Changing that assumed emissivity lets one find the

temperature iteratively.
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If the node temperature is fixed, Eq. (5-57) can be taken. Since the derivative of

node temperature with respect to emissivity will be zero in that particular case we

can calculate the change of radiosities with respect to emissivity by the following

equation:
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With the radiosity derivative with respect to emissivity is known, Eq. (5-38) can be

used to calculate the change in net heat flux on that node.

5.3.3 Sensitivity of Fluid Temperature

I start again from Eq. (5-6) which shall be rewritten as:
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The partial derivatives of the heat flux with respect to the fluid temperature Tf

have to be calculated:
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This is a particular simple derivative so far.

Equation (5-12) is rewritten as:
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Again, total derivation is applied to that equation:
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When equaling this equation with Eq. (5-65) I get the following:
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Now, I need the second relation of Poljak’s approach:
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The total derivative with respect to the fluid temperature is:
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The corresponding partial derivative is:
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Now, the temperature relation needs to be differentiated:
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Substituting this equation into Eq. (5-76) I obtain the following relation:
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This equation is reformulated to explicitly express the differential node

temperature and the differential neighboring node temperature with respect to the

fluid temperature:
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In order to obtain the final equation the last two equations are put into Eq. (5-72):
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The final equation is found by separating RHS from LHS terms:
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Once the radiosity derivative has been calculated by Eq. (5-85), one can simply

multiply the results vector by Eq. (5-82).

If the node temperature and all neighboring node temperatures are fixed, Eq. (5-

72) can be taken. Since the derivative of node temperature with respect to fluid

temperature will be zero in that particular case I can calculate the change of

radiosity with respect to fluid temperature by the following equation:
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With the radiosity derivative with respect to fluid temperature known, Eq. (5-65)

can be used to calculate the change in net heat flux on that node.

5.3.4 Sensitivity to Conductance

Here, conductance Ckt is defined as:
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The reason for deriving this lumped term instead of conductivity is the ease of

extracting this information from the commercial solver. Again, I start my treatment

of sensitivity on conductance with the following equation:
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The total derivative with respect to conductance is:
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Equation (5-12) is rewritten with conductance as:
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A full derivation is applied to get:
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When changing a conductance from i to j the conductance from j to i will also

change:
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Putting the above relations into Eq. (5-93) one gets:
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This equation is set equal to Eq. (5-91):
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The same procedure is applied to the second equation in Poljak’s method:
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As was done for other parameters, the last equation is rearranged in order to

express the temperature derivative with respect to conductance, explicitly:
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Finally, Eq. (5-109) and Eq. (5-110) are substituted into Eq. (5-99):
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On the RHS there will be two entries. Once the radiosity derivative has been

calculated by Eq. (5-111), one can simply multiply the results vector by Eq. (5-109).

If the node temperature is fixed, Eq. (5-99) can be taken. Since the derivative of

node temperature with respect to conductance will be zero in that particular case

we can calculate the change of radiosity with respect to conductance by the

following equation:
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With the radiosity derivative with respect to conductance known, Eq. (5-91) can be

used to calculate the change in net heat flux on that node.

5.3.5 Calculation Procedure for Sensitivity Coefficients

The method proposed here is a posteriori, because first, a conjugate heat transfer

case needs to be calculated. The results of this simulation such as node

temperature and radiosities need to be extracted along with geometric information,

boundary conditions, and view factors in order to calculate the radiosity gradients

as described in Eqs. (5-33), (5-60), (5-85), and (5-111). Because this has to be done

for a change in every node, LU factorization has been employed. In this way, all
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radiosity gradients are obtained by vector matrix multiplication. Once those

radiosity gradients are known, temperature gradients as described in Eqs. (5-30),

(5-57), (5-82), and (5-109) can be calculated. These gradients are used in Eq. (5-

113) after rendering them dimensionless. Along with standard uncertainties actual

temperature ranges can be provided by multiplying the combined standard

uncertainty by the node temperature.

Figure 5-9: Activity diagram for calculation procedure.

Some other applications for sensitivity coefficients would be in inverse calculations

and model reduction.
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5.4 Uncertainty

The combined standard uncertainty can be formulated as follows:
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(Eq. 5-113)

It should be noted, that the standard uncertainties are drawn outside of the

uncertainty factors. The reasons are that in general either not enough information

is available on a local basis, or processing all bits of information would be

cumbersome. Concerning the first issue, the present author already elaborated on

the topic, that for partially obstructed view factors only for the simplest cases

analytical view factors are available. Figure 5-7 provides a quick way of estimating

view factor standard uncertainties, provided they were calculated by a random

method, such as ray tracing or Monte Carlo integration. In many cases, expert

knowledge is needed to estimate standard uncertainties. For the second issue, the

example of emissivity might be given. In real word problems a material part does

not have a single value of a property. The author has pointed out already, that

various parameters such as soiling, temperature, state of oxidation, or influences

of manufacturing can alter emissivity. Since these influences vary with space, also

emissivity will. It is one thing making measurements of them, but quite another to

use the information of special distribution in a commercial radiation solver and

transfer it to uncertainty analysis. Usually, this information is averaged.

Another issue in Eq. (5-113) is the topic of scaling and dimension. The derivatives

are also called sensitivity coefficients in this context. In order to compare or add

them, they need to be made dimensionless as is demonstrated in the above

equation. Taylor et al. (1995) did not multiply sensitivity coefficients by emissivity

and view factor. The reasoning was that these two parameters are dimensionless

and normalized. A value between zero and one is not always guaranteed for view

factors, as Taylor and Luck (1995) showed. Therefore, I chose to normalize also

emissivity and form factor. Consequently, when the view factor is zero, the

sensitivity coefficient is also zero and does not contribute to the uncertainty

coefficient. In another example, I use unscaled sensitivity coefficients.
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5.5 Case Hexahedron

Figure 5-10: Case hexahedron.

A simple case shall be used to investigate uncertainty analysis. The hexahedron has

a length of 0.9 m on the small side. The long side has a length of 9 m. The small

front face is kept at a constant temperature. The temperatures of the other faces,

that are facing each other, are calculated. All faces are insulated at the backside.

Therefore, this system is a closed one. The boundary conditions are given in the

following table. Conduction has been neglected.

Entity Unit Front Other
 [-] 0,9 0,9
T [K] 373,15
h [W/m²/K] 1
Tf [K] 293,15

Entity Unit Front Other
 [-] 0,9 0,9
T [K] 373,15
h [W/m²/K] 1
Tf [K] 293,15

Table 5-1: Boundary conditions for hexahedron.

Three different sets of view factors were employed by the thermal radiation solver

RadThermIR: A setting with 512 rays cast without subdivisioning, another setting

had a fourfold subdivisioning amounting to 294.912 rays per face, and finally

analytically determined view factors which are shown in chapter 8.1. Since

RadThermIR 9.3.1 was not able to import view factors a simple solver was written.

The results for the relative deviations in view factor and temperatures for the

three cases are shown in the following two figures where the relative error is

defined as:

100*
analytic

calculatedanalytic
rel F

FF
Error


 (Eq. 5-114)

F is the analytical or actually calculated view factor. The energy source face is

named ‘Front’ with the others named intuitively.
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Figure 5-11: Relative view factor error for the hexahedron from face ‘Bottom’.

The case with 512 rays shows, that the face ‘Bottom’ has a different view towards

the back and front faces which should not be the case due to symmetry.
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Figure 5-12: Calculated face temperatures for the hexahedron.

Next, the radiative heat fluxes from face ‘Back’ are drawn in the following diagram.
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Figure 5-13: Radiative heat flux from face ‘Back’ for the hexahedron.

An increase in accuracy of view factors brings with it a change in radiative heat

flux and radiosity.
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Figure 5-14: Radiosity flux from face ‘Back’ for the hexahedron.

The following diagram shows the calculated normalized sensitivity coefficients (SC)

for emissivity when that variable is changed at the face ‘Back’. In principle, the

coefficients follow the trends of radiosity and net radiative flux. But the magnitude

of change would not have been possible to predict by observing radiosity alone.
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Figure 5-15: Dimensionless, normalized sensitivity coefficient of emissivity from face ‘Back’ for the
hexahedron.

Sensitivity analysis, basically, is a first principle analysis for the energy balance

which has been taken as a starting point. This analysis strives to unveil the change

of the system when changing a parameter or even a model.

The sensitivity coefficient for the face ‘Front’ is larger in magnitude. This is a

general observation for changes in heat fluxes as fluxes cause higher changes than

changes in temperature would.
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Figure 5-16: Uncertainty factor of emissivity for the hexahedron.
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The uncertainty factor (UF) is the sum of the changes from all faces of the system.

This makes it rather unpredictable which factor will raise or fall for complex

systems. Even in this simple case it would not be possible to explain why these

uncertainty factors with analytical view factors do not follow the trend that the

low and high quality form factors suggest. For this reason it would be dangerous to

shortcut obtaining the sensitivity coefficients of the whole system in order to

speed-up the calculation. This would require a deep understanding of the system at

hand which is often lacking in industrial settings.

The reader is invited to draw his attention to the behavior of form factor

uncertainties.
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Figure 5-17: Dimensionless, normalized sensitivity coefficient of form factor from face ‘Back’ to
‘Bottom’ for the hexahedron.

The rise in temperature for the analytic setting was accompanied by a rise in the

net radiation and radiosity flux. Consequently, the system will be more responsive

to changes. But for the entire system, sensitivity coefficients did not change much.

  
N

calcanalytic SCSC
N

RMS 21 (Eq. 5-115)

The root mean square (RMS) is here defined with N as the number of sensitivity

coefficients for either a change of temperature or a change of radiation flux. For

the temperature SC the RMS changes from 0.0055 for 512 rays to 0.005 for the

large ray setting.
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The net radiation flux RMS for sensitivity coefficients from the face ‘Front’ rises

from 0.0075 to 0.0356. The trends show that sensitivity coefficients for heat fluxes

change more than those for temperature.
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Figure 5-18: Uncertainty factor of form factor for the hexahedron.

The uncertainty factor (UF) of dimensionless, normalized SC of view factors did

actually rise. One might intuitively expect view factor UF to reduce with improved

view factors. But form factors are responsible for the geometric distribution of

radiation fluxes. A change in configuration factors leads simply to a redirection of

the fluxes and the uncertainty equations in this chapter are based on the change of

those fluxes. The UF based on heat flux change sees a remarkable reduction for the

analytical case which compensates somewhat the rise at the other faces. Taylor et

al. (1995) showed that a significant change in sensitivity coefficients is expected

when the summation and reciprocity relation were violated and put into order.

To finish this simple hexahedron case, the uncertainty factors for the fluid

temperature Tf are shown in the next figure. Because the radiative heat flux is

rising, the influence of convection is diminishing slightly. The face ‘Front’ did not

have convection defined. When one compares Figure 5-16, Figure 5-18, and Figure

5-19, one can see that view factors have the most significant influence in the

system, followed by the fluid temperature. Emissivity has only a small influence in

the system.
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Figure 5-19: Uncertainty factor of Tf for the hexahedron.

5.6 Numerical Analysis

Another example shall serve for a numerical analysis.

Figure 5-20: Muffler with two test faces.

A generic muffler without internals is used as a case. The geometry consists of 260

quadrilaterals. The muffler is topped by a heat shield. The case is set up in

RadThermIR 9.1. An in-built heat transfer model was used. The exterior boundary

conditions were chosen in a way that would be similar to a highway drive. They are

shown in the following table. The form factors were calculated with 512 rays per

face. The exhaust gas is modeled as air without soot formation. Though a severe

simplification, the exhaust gas serves merely as a heat source. The exhaust gas

itself is held at a constant temperature.
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Entity Unit Heatshield Muffler
Outside Inside

Emissivity [-] 0,6 0,216 0,9
Thickness [m] 0,002 0,001 0,001
Conductivity [W/m/K] 17,3056 52,019 52,019
Air Velocity [m/s] 20 20 20
Air Temperature [K] 303 303 413

Table 5-2: Boundary conditions for the muffler.

5.6.1 Numerical Stability

Attempting to implement an iterative solver failed because of instability. Therefore,

a numerical analysis was conducted.

The Gershgorin circle theorem helps in estimating eigenvalues and thus stability of

a solver because it gives the maximum possible value of  by the radius r. The

eigenvalue  assures stability if it is less than or equal to 1. This is guaranteed

when the radius r is less than or equal 0.5. In that case it can be expected, that the

set of equations can be handled by an iterative solver without preconditioning. N is

the number of entries of the solution matrix and aij are actual entries.






N

ij
j

ijar
1

(Eq. 5-116)

Figure 5-21: Stability analysis for the radiation term for the muffler (Rauch and Almbauer, 2010).
Copyright © 2010 by AIAA, Inc. Reprinted with permission of the American
Institute of Aeronautics and Astronautics.
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The first 60 nodes constitute the heat shield. The next 200 nodes belong to the

exterior of the muffler, and the last 200 nodes constitute the inside of the muffler.

Figure 5-21 shows the value of the main diagonal entry aii which is always one.

Here, only the radiation term for sensitivity coefficients is employed. All heat

shield entries are below one. Diagonal dominance is another assurance of

numerical stability. Just one entry of the exterior is greater than one but many

entries of the interior of the muffler. Consequently, stability is not assured.

Figure 5-22: Stability analysis for radiation and convective terms for the muffler (Rauch and
Almbauer, 2010). Copyright © 2010 by AIAA, Inc. Reprinted with permission of
the American Institute of Aeronautics and Astronautics.

Figure 5-23: Stability analysis for radiation and conduction terms for the muffler (Rauch and
Almbauer, 2010). Copyright © 2010 by AIAA, Inc. Reprinted with permission of
the American Institute of Aeronautics and Astronautics.
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When using both radiative and convective terms in the calculations, diagonal

dominance assures stability as demonstrated in Figure 5-22.

But when using the radiative and conductive terms as in Figure 5-23, the inside of

the muffler will prevent convergence, to which the present author can testify.

For the sake of completeness, the stability analysis for the case when all heat

transfer modes are taken into account is shown.
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Figure 5-24: Stability analysis for radiation, convection, and conduction terms for the muffler.

In order to achieve a solution, the suggestion of Taylor et al. (1995) was followed

by implementing an LU factorization algorithm. Unfortunately, this solver will be,

to the present author’s best knowledge, not suitable for large industrial models

except for a parallelized distributed memory version. Otherwise, an iterative solver

would be needed, and hence, there would be a need for a suitable preconditioner.

The infinity norm


M is another indicator for stability.





N

j
ij

Ni
aM

1
1
max (Eq. 5-117)

M is the solution matrix and the other parameters are defined as in Eq. (5-116).

The values are in the order of the just conducted stability analysis, 2.2, 61.2,

49856.6, and 49915.7. These values show in increased likelihood for instability.
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5.6.2 Partial Uncertainties

To round-up the present test case, the first-principle analysis of two faces, as

marked in Figure 5-20, is presented in the following table.

Node 28 is situated at the center of the heat shield. Radiation has the largest value,

which would presume it will have the largest impact on a change followed by

convection. Node 96 indicates that conduction is the most import term followed by

convection.

Node 28 96

Radiation 21,22 -91,08
Convection -19,16 -3.598,71
Conduction -2,00 3.688,99

[W/m²]
Node 28 96

Radiation 21,22 -91,08
Convection -19,16 -3.598,71
Conduction -2,00 3.688,99

[W/m²]

Table 5-3: Heat fluxes for two nodes of the muffler.
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Figure 5-25: Partial uncertainty calculation for node 28 of the muffler system.

Usually, partial uncertainty calculation is practiced when calculating certain

differentials becomes too cumbersome. Though this is not applicable in this case, it

serves as a demonstration how interactions between the parameters have been

taken care of.
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The first column in Figure 5-25 has been calculated with the radiation term, only.

Both emissivity and view factors (VF) exhibit values well below one, indicating that

their influence might not be dominant. The second column deals with radiation and

convection terms. Fluid temperature clearly shows its prominent role for that node.

Emissivity and view factor dropped by one order of magnitude. When considering

the radiation and conduction terms, emissivity and view factor dominate by two

orders of magnitude. Considering all heat transfer modes yields the last column.

Now, conductance becomes even more insignificant as expected by the heat flux

magnitude. But convection dominates the results in change, which could not have

been predicted by fluxes alone. A significant change in accuracy, such as fulfilling

reciprocity and closure relation, or the realization of obstructions could alter

uncertainties of form factors, significantly.
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Figure 5-26: Partial uncertainty calculation for node 96 of the muffler system.

A similar behavior is found for node 96. Here, heat fluxes predict dominance of

conduction, whereas convection prevails as the most important factor for change.

Conductance, actually, plays no role in this example. Including conductance in the

observations lets the UF of the view factor slightly overtake the UF for emissivity.

It should be stressed, that all the equations are based on radiosity, where view

factors play a prominent role. A discontinuity, whether an obstruction is partial or

complete, could not be foreseen by this method.
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5.6.3 Accuracy of Uncertainty Prediction

Finally, the question remains how accurate those predictions of the uncertainty

analysis are. To answer that question, a separate calculation of the muffler was

conducted with the only change of lowering the external air temperature by 10 K.

Figure 5-27: Difference of new simulation with prediction by uncertainty of the front nodes.

The values above were calculated as follows:

 ffkkkk uUFTTTT  293 (Eq. 5-118)

Tk is the difference between simulated node temperature Tk293 with new boundary

condition and original simulated temperature Tk, uncertainty factor UFf, and

standard uncertainty uf for the change in external air temperature.

Figure 5-28: Difference of new simulation with prediction by uncertainty of the backside nodes.
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The last figure shows, that when the uncertainty factor becomes zero, as it

happens to the back of the heat shield, no combined uncertainty can be calculated.

In this example, this happens because the back of the heat shield is treated as

isolated for radiation. The only way those backside nodes receive energy, is by

conduction. But in real world models, radiation and reflection can only be switched

off when the mass has no internal energy at exactly 0 K, which has not been

detected yet, and the material is either a black body or is positioned inside a black

cavity. These are extreme out-of-the-world conditions, which not even spacecrafts

are exposed to.

For sake of completeness, uncertainty factors for this example are presented in

chapter 8.2.

Another, more simple example is investigated where conduction plays a larger role.

Figure 5-29: Case step.

The step example consists of three squares as thermal nodes with a side length of

0.1 m. To simplify the analysis the backside has been isolated. On node ‘1’ a heat

of 50 W is imposed. The step is placed inside a box in order to simulate the

environment by a constant radiation temperature. Properties and boundary

conditions for the base setting can be taken from Table 5-4.
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Entity Unit
Emissivity [-] 0,9
Thickness [m] 0,01
Air Temperature [K] 293,15
Heat Transfer Coefficient [W/m²/K] 10
Radiation Temperature [K] 293,15
Conductivity [W/m/K] 100
Density [kg/m³] 8000
Specific Heat [J/kg/K] 800

Table 5-4: Boundary conditions for the step example.

Nodes ‘1’ and ‘2’ have no radiative heat exchange with node ‘3’ because the

respective view factors have the value zero. Node ‘3’ only receives information on

changes in heat fluxes from the other nodes by conduction. A steady-state solution

with the aforementioned heat flux on node ‘1’ is obtained.

A simulation experiment is conducted by changing various parameters from the

base setting. In order to investigate the changes on the fluid temperature Figure

5-30 shows the temperatures of the step.
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Figure 5-30: Temperatures for Step at Q=50W with changing fluid temperature.

These changes are almost linear and it can be assumed that local sensitivity

coefficients can predict this behavior well. Because the sensitivity coefficients for
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the three thermal nodes share the same sign and the changes in fluid temperature

are the same as well, uncertainty factors can be used to predict the resulting node

temperatures.

Figure 5-31: Temperature differences for Step at Q=50W with changing fluid temperature.

Eq. (5-118) has been used but with dimensional uncertainty factors and differences

as standard uncertainties. Figure 5-31 shows the deviations between temperatures

obtained by UFs at the base setting and temperatures obtained by simulations with

changed fluid temperature. As expected the deviations are small over the entire

range.

Figure 5-32: Temperature differences for Step with different heat sources and changing fluid
temperature.
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When using different heat fluxes at node ‘1’, the tendency is basically the same,

when considering that at higher heat fluxes the node temperatures are higher.

Figure 5-33: Temperatures for Step at Q=50W with changing view factor error.

In Figure 5-33 the temperatures are depicted over the error of the view factor from

node ‘1’ to ‘2’ to the analytical value. This view factor has been chosen, because

only between these two nodes of the example there is a view. There is also a view

from the three nodes to the environment, which was taken into account for the

sensitivity estimations but shall not be investigated here. As with Figure 5-30 the

temperature curves are linear. On the abscissa it can be seen, that the error is

quite small which speaks of the quality of the code used. Figure 5-34 shows the

differences between simulated and by UFs estimated node temperatures when view

factors do change. At this point, there is a comment on this methodology necessary.

The method presented does calculate sensitivities between nodes even when there

is no view between them. Also, planarity is ignored, which increases UFs

unnecessarily. Node ‘3’ only sees the environment and, therefore, it is presumed

that it has the largest errors in this diagram. The other two nodes do have a view

between them such that this unwanted effect is less pronounced. When changing

the heat source at node ‘1’ the deviations are higher with higher heat fluxes, which

substantiates the suspicion just raised.
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Figure 5-34: Temperature differences for Step at Q=50W with changing view factors.

Figure 5-35: Temperature differences for Step with different heat sources and changing view
factors.

In order to remedy this issue un-scaled UFs seem to be the wrong choice. When

scaling them, only sensitivities are left where there is an actual view. As view

factors usually do not change homogeneously, standard uncertainties, or in this

case deviations, should be multiplied for each individual sensitivity coefficient

resulting in importance factors. But all in all, the deviations are very small in this

example.

When looking at the temperature curves for changing emissivity the non-linearity of

the system is revealed.
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Figure 5-36: Temperatures for Step at Q=50W with changing emissivity.

Figure 5-37: Temperature differences for Step at Q=50W with changing emissivity.

As expected, the greater the non-linear behavior, the greater the deviations. This

observation is confirmed when raising the heat flux at node ‘1’. The highest input

reveals the highest deviations.
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Figure 5-38: Temperatures for Step with different heat sources and changing emissivity.

Figure 5-39: Temperature differences for Step with different heat sources and changing emissivity.

Finally, the change in conductance is elaborated. In Figure 5-40 the thickness is

shown on the abscissa. This value directly influences conductance. When changing

thickness, one can control the relative share of conduction on the total heat fluxes.

When radiation becomes the strongest player temperature changes in a strong non-

linear way. Figure 5-42 confirms the deviations at small thicknesses. Here,

conduction is hampered because of the small interfacial area.
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Figure 5-40: Temperatures for Step at Q=50W with changing thickness.

Figure 5-41: Heat fluxe shares for Step at Q=50W with changing thickness.
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Figure 5-42: Temperature differences for Step at Q=50W with changing thickness.

Figure 5-43: Temperature differences for Step with different heat sources and changing thickness.

But this cannot explain the large deviations on the right of Figure 5-41 where

conduction is predominant. This effect is even more pronounced when raising the

heat flux at node ‘1’. In order to explain this phenomenon, UFs were calculated at

a thickness of 0.05m and the temperatures estimated with them. The behavior on

the right site of Figure 5-44 shows a big improvement at the expanse of some

slightly raised errors on the left side of the diagram. The same trend can be

observed in Figure 5-45 for node ‘1’. This issue with parameter dependant UFs is

the same as for non-linear equation solvers as gradients can change severely.
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Figure 5-44: Temperature differences for Step at Q=50W and UFs at a thickness of 0.05m with
changing thickness.

Figure 5-45: Temperature differences for Step with different heat sources and UFs at a thickness of
0.05m with changing thickness.

This discussion, by no means, shall diminish the usability of the equations derived.

It shows that these coefficients are valid at the base setting and there reveal a lot

of information for the thermal analyst. With this work the present author hopes of

having been able to derive hands-on formulations that the practicing engineer can

employ for real-world applications.
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6 Conclusions
Even though the author made an effort to elaborate on the use of the surface-to-

surface (S2S) model for automotive applications, this by no means can cover the

entire research effort. Despite of the age of this model, there are still areas left

for research. For example, in deriving the first order derivatives for the finite

difference formulation in the previous chapter, the treatment for the heat transfer

coefficient (HTC) was omitted. Since the HTC does depend on the fluid

temperature and the element temperature, this parameter cannot be regarded as

independent from a statistically point of view. In order to quantify the assumed

degree of interaction or covariance, a global sensitivity analysis would have to be

conducted. The interaction in the proposed method is taken care of. The second

order derivative would allow for estimating saddle points. Generally, higher order

terms would one allow formulating the expected change in view factors by applying

a Taylor series expansion, thus allowing a formulation of a simple reduced model

for thermal radiation.

Another open area of research would be the numerical treatment of the equations

of uncertainty. As has been shown, introducing the conductive term necessitates

preconditioning for use in iterative solvers. In this work, only a closed solution by

LU factorization was presented, which renders the method difficult to employ for

industrial sized applications.

According to Saltelli et al. (2008) local sensitivity analysis is not suitable for non-

linear models and for parameters differing in several orders of magnitude.

Introducing temperature dependant properties such as emissivity, a strong non-

linear behavior of the uncertainty equations is expected. A comparison with global

sensitivity methods such as Monte Carlo might be necessary. Second order

derivatives might help in increasing the range of applicability of the method.

Introducing time dependency greatly increases computation time. The applicability

of the reverse mode adjoint method or the forward mode direct differentiation

needs to be investigated along with possible shortcuts.
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When conducting uncertainty calculations for view factors, it was shown, that the

effort is of the order of N² not counting the actual matrix vector multiplications for

the RHS. This is another stumbling block for industrial applications. One way of

dealing with this would be the use of patching or Monte Carlo screening methods to

approach full-scale uncertainty results.

For the practicing thermal simulation engineer of great benefit would be to see

how uncertainties might contribute in defining a convergence criteria for coupled

simulations.

In this work, only parametric uncertainties were considered. The influence of

discretization might be investigated. Also, epistemic uncertainties might be

quantified with the goal in mind how the results as range of ranges might aid the

engineer in decision making.

The derivations of sensitivity factors simplified the approach by assuming that all

neighboring nodes are either all temperature fixed or all have a heat flux specified.

The equations need to be reviewed for the situation of neighbors with mixed

boundary conditions.

At present, view factors are looked up by the binary search algorithm, because

view factors are stored at the thermal node according to their destination j.

Because the reciprocity relation was not guaranteed the corresponding view factor

has to be looked-up at the receiving node j. Because zero entries were not saved,

binary search was employed. Introducing a suitable data structure could speed-up

large-scale problems. Alternatively, the equations could be reformulated for

enforced reciprocity and closure.

The lumped term ‘conductance’ was treated in this thesis, because this term was

readily available from the commercial solver. Using thermal conductivity and

geometric parameters instead would be more consistent with the other derivations.

Since in this work local sensitivity is considered, the range of validity needs to be

investigated more deeply. The question needs to be answered without simulation

experiments of the last chapter, how large the incremental change is allowed to

become for a valid prediction.
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A local derivative presumes a continuous, differentiable function. Occluders are

introducing discontinuities. At present partial shading cannot be predicted. Global

uncertainty analysis is more suitable for this phenomenon.

In the derivations it was presumed that a change in one thermal node would

independently occur from other nodes. In industrial cases of radiation solvers

selections exists, where thermal nodes share physical properties or view factor

settings. It remains to be investigated, how changing a parameter for several nodes

in a selection simultaneously would improve the usability of the proposed method

of uncertainty estimation for large-scale models.

The continuous sensitivity equation method should be used to obtain gradients free

of discretization errors. By the method of manufactured solutions an analytical

solution can be obtained.

Sensitivity coefficients play an important part for inverse heat transfer solutions.

For example, by Tikhonov regularization some questions in industrial applications

could be answered such as how the surrounding geometry should be shaped or what

material properties are needed to maintain a system at a specified temperature.

Effort has been put into presenting an overview on thermal radiation use in the

automotive industries. The radiation method most used in this sector has been

described along with recent developments in dealing with meshes of industrial size.

A coupling architecture has been developed. It was attempted to show why one

needs to know how a simulation model will behave in changing a parameter. A local

sensitivity and uncertainty analysis has been applied to the conjugate heat transfer

problem and its usability demonstrated on a simple model.
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8 Appendix

8.1 Case Hexahedron for Uncertainty Calculation

Left Right Front Back Bottom Top
Left 0 0,38638249 0,02492095 0,02492095 0,28188781 0,28188781
Right 0,38638249 0 0,02492095 0,02492095 0,28188781 0,28188781
Front 0,24920949 0,24920949 0 0,00316206 0,24920949 0,24920949
Back 0,24920949 0,24920949 0,00316206 0 0,24920949 0,24920949
Bottom 0,28188781 0,28188781 0,02492095 0,02492095 0 0,38638249
Top 0,28188781 0,28188781 0,02492095 0,02492095 0,38638249 0

Left Right Front Back Bottom Top
Left 0 0,38638249 0,02492095 0,02492095 0,28188781 0,28188781
Right 0,38638249 0 0,02492095 0,02492095 0,28188781 0,28188781
Front 0,24920949 0,24920949 0 0,00316206 0,24920949 0,24920949
Back 0,24920949 0,24920949 0,00316206 0 0,24920949 0,24920949
Bottom 0,28188781 0,28188781 0,02492095 0,02492095 0 0,38638249
Top 0,28188781 0,28188781 0,02492095 0,02492095 0,38638249 0

Table 8-1: Analytical view factors for hexahedron.

Left Right Front Back Bottom Top

Left 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,135320 0,204170 -0,045733 0,132120 0,129900 0,129900
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Right 0,204170 0,135320 -0,045733 0,132120 0,129900 0,129900
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Front 0,273350 0,181170 -0,061231 0,176890 0,173920 0,173920
0,181170 0,273350 -0,061231 0,176890 0,173920 0,173920
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,002201 0,002201 -0,000687 0,017842 0,002201 0,002201
0,173920 0,173920 -0,061231 0,176890 0,273350 0,181170
0,173920 0,173920 -0,061231 0,176890 0,181170 0,273350

Back 0,129060 0,085541 -0,028910 0,083521 0,082116 0,082116
0,085541 0,129060 -0,028910 0,083521 0,082116 0,082116
0,000120 0,000120 -0,002629 0,000108 0,000120 0,000120
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,082116 0,082116 -0,028910 0,083521 0,129060 0,085541
0,082116 0,082116 -0,028910 0,083521 0,085541 0,129060

Bottom 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950 -0,033365 0,096390 0,094769 0,094769
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,129900 0,129900 -0,045733 0,132120 0,135320 0,204170

Top 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950 -0,033365 0,096390 0,094769 0,094769
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,129900 0,129900 -0,045733 0,132120 0,204170 0,135320
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
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Left Right Front Back Bottom Top

Left 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,135320 0,204170 -0,045733 0,132120 0,129900 0,129900
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Right 0,204170 0,135320 -0,045733 0,132120 0,129900 0,129900
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Front 0,273350 0,181170 -0,061231 0,176890 0,173920 0,173920
0,181170 0,273350 -0,061231 0,176890 0,173920 0,173920
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,002201 0,002201 -0,000687 0,017842 0,002201 0,002201
0,173920 0,173920 -0,061231 0,176890 0,273350 0,181170
0,173920 0,173920 -0,061231 0,176890 0,181170 0,273350

Back 0,129060 0,085541 -0,028910 0,083521 0,082116 0,082116
0,085541 0,129060 -0,028910 0,083521 0,082116 0,082116
0,000120 0,000120 -0,002629 0,000108 0,000120 0,000120
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,082116 0,082116 -0,028910 0,083521 0,129060 0,085541
0,082116 0,082116 -0,028910 0,083521 0,085541 0,129060

Bottom 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950 -0,033365 0,096390 0,094769 0,094769
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,129900 0,129900 -0,045733 0,132120 0,135320 0,204170

Top 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950 -0,033365 0,096390 0,094769 0,094769
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,129900 0,129900 -0,045733 0,132120 0,204170 0,135320
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000

Left Right Front Back Bottom Top

Left 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,135320 0,204170 -0,045733 0,132120 0,129900 0,129900
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Right 0,204170 0,135320 -0,045733 0,132120 0,129900 0,129900
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Front 0,273350 0,181170 -0,061231 0,176890 0,173920 0,173920
0,181170 0,273350 -0,061231 0,176890 0,173920 0,173920
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,002201 0,002201 -0,000687 0,017842 0,002201 0,002201
0,173920 0,173920 -0,061231 0,176890 0,273350 0,181170
0,173920 0,173920 -0,061231 0,176890 0,181170 0,273350

Back 0,129060 0,085541 -0,028910 0,083521 0,082116 0,082116
0,085541 0,129060 -0,028910 0,083521 0,082116 0,082116
0,000120 0,000120 -0,002629 0,000108 0,000120 0,000120
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,082116 0,082116 -0,028910 0,083521 0,129060 0,085541
0,082116 0,082116 -0,028910 0,083521 0,085541 0,129060

Bottom 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950 -0,033365 0,096390 0,094769 0,094769
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,129900 0,129900 -0,045733 0,132120 0,135320 0,204170

Top 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950

Left Right Front Back Bottom Top

Left 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,135320 0,204170 -0,045733 0,132120 0,129900 0,129900
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Right 0,204170 0,135320 -0,045733 0,132120 0,129900 0,129900
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,094769 0,094769 -0,033365 0,096390 0,148950 0,098721
0,094769 0,094769 -0,033365 0,096390 0,098721 0,148950

Front 0,273350 0,181170 -0,061231 0,176890 0,173920 0,173920
0,181170 0,273350 -0,061231 0,176890 0,173920 0,173920
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,002201 0,002201 -0,000687 0,017842 0,002201 0,002201
0,173920 0,173920 -0,061231 0,176890 0,273350 0,181170
0,173920 0,173920 -0,061231 0,176890 0,181170 0,273350

Back 0,129060 0,085541 -0,028910 0,083521 0,082116 0,082116
0,085541 0,129060 -0,028910 0,083521 0,082116 0,082116
0,000120 0,000120 -0,002629 0,000108 0,000120 0,000120
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,082116 0,082116 -0,028910 0,083521 0,129060 0,085541
0,082116 0,082116 -0,028910 0,083521 0,085541 0,129060

Bottom 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950 -0,033365 0,096390 0,094769 0,094769
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
0,129900 0,129900 -0,045733 0,132120 0,135320 0,204170

Top 0,148950 0,098721 -0,033365 0,096390 0,094769 0,094769
0,098721 0,148950 -0,033365 0,096390 0,094769 0,094769
0,000966 0,000966 -0,021141 0,000871 0,000966 0,000966
0,008357 0,008357 -0,002608 0,067739 0,008357 0,008357
0,129900 0,129900 -0,045733 0,132120 0,204170 0,135320
0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
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Table 8-2: Normalized sensitivity coefficients with analytical view factors for the hexahedron.
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Table 8-2 represents sensitivity coefficients for each column face. Each row

represents a view factor that is changed. For example, the ninth row states, that a

change of the view factor from ‘Right’ to ‘Front’ will cause the sensitivity

coefficients for the faces in each column in that row. The 10th row treats the view

factor from ‘Right’ to Back’ and so forth. It should be noted, that the third column

has the sensitivity coefficient with respect to the net heat flux qk, because for the

face ‘Front’ the temperature was fixed. All other columns have the sensitivity

coefficient with respect to face temperate Tk, as the temperature was calculated

for those faces.

8.2 Uncertainty Factors for the Muffler

Figure 8-1: Uncertainty factor for fluid temperature for front nodes of the muffler.
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Figure 8-2: Uncertainty factor for fluid temperature for back nodes of the muffler.

Figure 8-3: Uncertainty factor for emissivity for front nodes of the muffler.
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Figure 8-4: Uncertainty factor for emissivity for back nodes of the muffler.

Figure 8-5: Uncertainty factor for view factor for front nodes of the muffler.
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Figure 8-6: Uncertainty factor for view factor for back nodes of the muffler.

Figure 8-7: Uncertainty factor for conductance for front nodes of the muffler.
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Figure 8-8: Uncertainty factor for conductance for back nodes of the muffler.


