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Abstract

This thesis applies a molecular statics and a continuum mechanics approach, independently
of each other, in order to analyse the buckling behaviour of carbon nanotubes. The remarkable
properties of carbon nanotubes are an immediate consequence of the interatomic interactions.
These are considered in the internal potential of the atomistic structure, which models the bonded
energy and the non-bonded energy by means of interatomic potentials. In combination with the
energy of external contributions, the total potential of the loaded carbon nanotube can be stated
for the discrete atomistic structure. The total potential of the continuous counterpart, which is
represented by a surface, is defined by an application of the quasi-continuum method.

The molecular statics approach directly considers the interatomic potentials in a discrete setting.
The search for equilibrium configurations of the atomistic structure leads to a non-linear system of
equations, which is linearised and solved iteratively. Within this model, finite element equivalents
are set up for the bonded and non-bonded interactions, enabling the use of non-linear finite element
frameworks. With the molecular statics approach, in particular, the influence of the in-layer and
the inter-layer non-bonded interactions is investigated.

In the continuum mechanics approach, the constitutive behaviour is derived from the underlying
lattice structure. In particular, the quasi-continuum method is applied and a so-called mixed
atomistic-continuum model is obtained. Thereby, the coupling between deformations on the
atomistic level and the deformation of the continuum surface is done by an expanded Cauchy-
Born rule. Furthermore, the continuum is discretised by means of finite elements and the derived
non-linear system of equations is linearised and solved iteratively. Consequently, the continuum
approach provides an alternative to the full atomistic calculations.

Applying both approaches, the buckling characteristics of carbon nanotubes in consequence
of different loading conditions are studied and the results are compared. Instability points are
detected by an accompanying eigenvalue analysis of the global stiffness matrix in combination
with a bisection algorithm. By means of branch switching, investigations into the behaviour
of carbon nanotubes in the postbuckling regime are enabled. With the help of this framework,
numerical simulations are performed for various carbon nanotubes under torsion, axial compression
and bending.
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Kurzfassung

Diese Arbeit untersucht das Beulverhalten von Kohlenstoffnanoröhren unter Verwendung zweier
unabhängiger Modellierungsansätze. Dabei kommen eine Formulierung der Molekularstatik und
ein Modell auf der Grundlage der Kontinuumsmechanik zur Anwendung. Die außergewöhnlichen
Eigenschaften von Kohlenstoffnanoröhren sind eine unmittelbare Konsequenz aus den Wechsel-
wirkungen der Atome. Diese werden im inneren Potential der atomaren Struktur zusammengefasst,
welches mittels interatomarer Potentiale die Energieanteile aus den gebundenen und ungebundenen
Atomwechselwirkungen berücksichtigt. Durch die zusätzliche Modellierung der Energie aus
externen Belastungen kann das Gesamtpotential der belasteten Kohlenstoffnanoröhre angegeben
werden. Dies erfolgt für die diskrete Atomanordnung und unter Verwendung der Quasi-
Kontinuumsmethode für eine Fläche als kontinuierliche Ersatzstruktur.

In der Molekularstatik werden die interatomaren Potentiale direkt in der diskreten Beschreibung
modelliert. Zur Ermittlung von Gleichgewichtskonfigurationen der atomaren Struktur wird das
beschreibende nichtlineare Gleichungssystem linearisiert und iterativ gelöst. In diesem Modell
werden für die gebundenen und ungebundenen Interaktionen der Atome äquivalente finite Elemente
definiert. Dadurch ist eine rechnerische Umsetzung auf Basis der nichtlinearen Methode der finiten
Elemente möglich. Mit dem Verfahren der Molekularstatik wird insbesondere der Einfluss der
lageninternen und lagenübergreifenden ungebundenen Wechselwirkungen untersucht.

Im Falle des kontinuumsmechanischen Modells wird das Werkstoffverhalten direkt von der zu-
grundeliegenden Gitterstruktur abgeleitet. Hierzu wird die Quasi-Kontinuumsmethode angewandt
und das sogenannte gemischt atomistisch-kontinuierliche Modell erhalten. Zur Kopplung der
Verformungen der atomaren Ebene und der kontinuierlichen Fläche wird eine erweiterte Cauchy-
Born Regel verwendet. Die daraus erhaltene kontinuierliche Modellbeschreibung wird unter Einsatz
von finiten Elementen diskretisiert. Das resultierende nichtlineare Gleichungssystem wird nach der
entsprechenden Linearisierung auf iterative Weise gelöst. Dieses kontinuumsmechanische Modell
stellt somit eine Alternative zur vollständig atomaren Simulation zur Verfügung.

Die Untersuchung des Beulverhaltens von Kohlenstoffnanoröhren behandelt unterschiedliche
Belastungssituationen. In den Simulationen kommen beide Modellierungsvarianten zur Anwendung
und die erhaltenen Resultate werden entsprechend verglichen. Die kritischen Punkte der
Deformation werden mittels einer begleitenden Eigenwertanalyse der globalen Steifigkeitsmatrix
und eines Bisektionsalgorithmus ermittelt. Eine Pfadwechselprozedur erlaubt die Beobachtung
des Verhaltens von Kohlenstoffnanoröhren im Nachbeulbereich. Unter Anwendung dieser Vorge-
hensweise werden numerische Simulationen für verschiedene Kohlenstoffnanoröhren unter Torsion,
axialer Kompression und Biegebelastung durchgeführt.
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1 Introduction

1.1 Motivation

In the last decades, nanostructures captured the advertence of many researchers. In particular,
carbon nanotubes became very popular, probably because of their predicted remarkable properties
in distinct scopes. Among these, mechanical and electrical attributes are of special interest.
Additionally, the remarkable chemical and thermal performance makes carbon nanotubes promising
materials for the future. As a consequence, carbon nanotubes were brought up for discussion in
various applications. For a better understanding of their assumed potentials, much work was
performed in the experimental community as well as in the field of numerical simulations. In the
course of this, the applied numerical approaches run up the different levels from quantum mechanics
beyond molecular mechanics up to continuum mechanics. Of course, all of these methods own their
special advantages and disadvantages.

The central idea of quantum mechanical simulations is the solution of the Schrödinger equation
for atoms and molecules. This solution provides detailed informations related to the electronic
structure of the involved atoms. However, analytical or exact solutions are ascertainable only for
simple problems. Consequently, approximations and assumptions are made, leading to various
numerical procedures like density functional theory, Hartree-Fock method and tight-binding
method. More informations on quantum mechanical simulations can for instance be found in
the books of Allen and Tildesley [1] and Leach [27] or in the overview papers of Qian et al. [41]
and Liu et al. [32]. While the quantum mechanics offers the most accurate results, it is up to now
only applicable in relative small systems for a short interval in time.

In the case of molecular mechanics, the complex electronic structure of each atom is not taken into
account. In particular, the smallest unit to be modelled is the atom, which is represented as a soft
sphere. Thus, nanostructures are represented as multi-particle systems of interacting atoms. The
interactions among the individual atoms are commonly specified by empirically derived interatomic
potentials. On the basis of these interatomic potentials, the total potential of the entire system
and the forces between the atoms can be calculated. The related major methods are molecular
dynamics and molecular statics. In the case of molecular dynamics, the atomistic configuration is
allowed to vary in time and the associated evolution is obtained by Newton’s equations of motion.
In contrast, a molecular statics approach is characterised by the exclusion of the dynamic and
thermal effects. In particular, the atomistic structure is considered at a temperature of 0 K, where
the kinetic energy terms are neglected. The desired static equilibrium configurations of the system
are then obtained by a minimisation of the total potential. For a full treatment on this subject
see for example Allen and Tildesley [1], Rappé and Casewit [42] and Leach [27]. The approaches
of molecular mechanics allow to perform simulations of systems that contain a large amount of
atoms at relatively high accuracy compared to the quantum mechanics procedures .

Finally, at the level of continuum mechanics, the discrete atomistic structure of materials is
not taken into account and continuous bodies are considered. The constitutive behaviour of
the body is generally described by phenomenological macroscopic strain energy densities. See
classical text books on continuum mechanics for instance Bonet and Wood [9] or Marsden and
Hughes [34] for a detailed treatment. But besides that, the microscopic atomistic structure can be
considered by the application of homogenisation approaches. In this context, the quasi-continuum
method developed by Tadmor et al. [52] and Tadmor et al. [53] is very popular. This approach
derives the strain energy density function from the underlying lattice and the associated interatomic
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potentials by linking the continuum deformation to that of the atomistic structure. In the case of
continuum mechanics, the problem is often numerically handled on the basis of the finite element
method. Thereby, various finite element types are applied in the studies of carbon nanotubes. As
guidance for the concepts of the finite element method, classical text books for example Bathe [7],
Zienkiewicz and Taylor [64, 65] and Wriggers [61] can be recommended. The main disadvantages
of the continuum mechanics approaches is the fact that local effects at the level of atoms cannot be
modelled. However, they allow the simulation of very large systems and offer remarkable agreement
to molecular mechanics approaches for moderate local deformations.

In order to combine the advantages of these methods and to overcome their individual limitations,
several multi-scale approaches were developed. These approaches for instance use a continuum
mechanics model in all regions with smooth deformation and a molecular mechanics method or
even a quantum mechanics procedure in a small subset where the behaviour at the atomistic level
is essential. Consequently, the investigated systems can be quite large so that they would not be
accessible for a isolated full atomistic simulation. An overview of multi-scale approaches can for
instance be found in Liu et al. [32] with a focus on their application in nanotechnology.

Of special interest within the experimental and numerical studies is the structural stability of
carbon nanotubes and consequently, their buckling behaviour under different loading scenarios.
By collecting the works of several researchers, Wang et al. [59], Wang et al. [58] and Shima [46]
provide a literature survey that gives a review of the progress in the buckling analysis of carbon
nanotubes. To get insight into this interesting behaviour of carbon nanotubes simulations using
different approaches based on various length scales were performed.

With the help of molecular dynamics, Yakobson et al. [62] investigated the buckling behaviour
of single-walled carbon nanotubes. Iijima et al. [26] realised experimental studies on bent carbon
nanotubes and performed comparative atomistic simulations. Using molecular mechanics, Cao
and Chen [12] as well as Mylvaganam et al. [36] investigated single-walled carbon nanotubes
upon bending. Simulations on the basis of molecular statics were performed by Guo et al. [23]
for the buckling analysis of bent single-walled carbon nanotubes. The buckling of multi-walled
carbon nanotubes under axial compression was studied by Sears and Batra [45] using molecular
dynamics. Applying molecular statics, Liu et al. [30] and Leung et al. [29] investigated carbon
nanotubes under axial compression. Wackerfuß [56] used a molecular statics approach for the
buckling analysis of single-walled carbon nanotubes under axial compression and torsion. These
molecular mechanics approaches consider the entire multi-particle system of the carbon nanotube
and are therefore able to model local features at the atomic order of magnitude. However, as each
atom has to be considered, the feasible size of the investigated carbon nanotubes is limited.

In addition to these molecular mechanics approaches, a good deal of work was spent in the
development of continuum mechanics based simulation methods for nanotubes. These approaches
mostly use different thin shell formulations. Based on phenomenological macroscopic constitutive
models the buckling of carbon nanotubes was studied by Yakobson et al. [62] and Ru [44] using
linear elasticity and by Pantano et al. [39] and Pantano et al. [40] applying non-linear elasticity.
To avoid the parameter fitting for these models and the uncertain definition of a shell thickness
other approaches based on the quasi-continuum method, given in Tadmor et al. [52] and Tadmor
et al. [53], were introduced. These approaches use the Cauchy-Born rule to link the atomistic level
to the deformation of the continuum. Arroyo [2] and Arroyo and Belytschko [3, 4, 5, 6] extended
the classical Cauchy-Born rule for an application to single layer crystalline films and analysed the
buckling behaviour of carbon nanotubes. A different extension, denoted as higher order Cauchy-
Born rule, was proposed by Leamy et al. [28]. The concept of the higher order Cauchy-Born rule
was applied by Guo et al. [24] and by Sun and Liew [49, 50] for analysing the buckling behaviour
of carbon nanotubes. The simulation methods based on continuum mechanics use the standard
finite element formulation and the framework behind. This allows the construction of a discrete
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system of unknowns independent from the number of atoms in the analysed structure. Of course
these approaches cannot capture all the local properties of the atomistic model but they are more
efficient with respect to computational aspects in the simulation of large carbon nanotubes.

All these scientific observations on the buckling behaviour of carbon nanotubes provide enough
motivation for an entrance into this astonishing subject. In particular, the interest lies on a
numerical investigation into the structural stability analysis of carbon nanotubes under different
loading conditions. Moreover, the direct comparison of independent simulations on the basis of
molecular mechanics and continuum mechanics approaches is desirable.

1.2 Outline of the work

The thesis presents a study on the buckling analysis of carbon nanotubes. In particular, it
applies a molecular statics approach and a mixed atomistic-continuum model. Both approaches
are used side by side such that the obtained results can be compared. Furthermore, this allows
the clarification of the associated advantages and limitations. With regard to molecular statics, a
special formulation is applied that allows the integration of atomistic simulations into a framework
on the basis of the finite element formalism. In doing so, the implementation utilises the design
configuration proposed by Wackerfuß [56]. The mixed atomistic-continuum model stems from the
quasi-continuum approach given in Tadmor et al. [52] and Tadmor et al. [53] and is mainly based
on the thesis of Arroyo [2] and the related papers of Arroyo and Belytschko [3, 4, 5, 6]. The
numerical treatment of this model is performed by means of the finite element method. Therefore,
both approaches, the molecular statics approach and the mixed atomistic-continuum model, can
be integrated into a single stand-alone computational framework. Consequently, the essential
algorithms with regard to the entire structural stability analysis are shared among them.

• Molecular statics approach

For the application of molecular statics, the definition of the total potential energy of the
discrete carbon nanotube structure is crucial. This energy consists of the contributions of
the bonded potential, the non-bonded potential and the potential of the external loads. In
the course of this, the bonded energy is widely modelled by the interatomic Tersoff-Brenner
potential proposed by Brenner [11] on the basis of the bond-order formalism of Tersoff
[54]. However, this short-range interatomic potential does not take into consideration the
van der Waals interactions. Therefore, these long-range interactions have to be considered
independently by an additional non-bonded energy. For that purpose, the Lennard-Jones
‘6-12’ interatomic potential, as inspected by Girifalco et al. [22], is applied in many studies
on non-bonded interactions. Especially in the simulation of multi-walled carbon nanotubes,
it is common to model non-bonded interactions across the distinct layers. Simulations related
to this topic can for instance be found in Pantano et al. [39], Pantano et al. [40], Arroyo and
Belytschko [5, 6] and Qian et al. [41] as well as the references therein. The inclusion of this
type of non-bonded reaction is evident from the fact that these interactions are responsible for
the relative alignment of the individual walls and, therefore, affect the behaviour of the loaded
carbon nanotubes. In particular, in the case of buckled multi-walled carbon nanotubes, these
so-called inter-layer non-bonded interactions prevent the tube from penetration of different
walls. In addition, non-bonded interactions have to be considered also within one layer of
multi-walled carbon nanotubes and in single-walled carbon nanotubes. The treatment of
these in-layer non-bonded interactions is based on a usual convention of molecular mechanics.
This convention implies that pairs of atoms, which are not linked directly by the short-range
bonded interatomic potential, should be considered separately by long-range van der Waals
interactions. Nonetheless, the in-layer non-bonded interactions are sparsely incorporated in
the simulations of carbon nanotubes. In this context, Chen et al. [15] and Cheng et al. [16]
investigated the influence of in-layer non-bonded interactions on the mechanical properties
of single-walled carbon nanotubes. In another telling example, Arroyo and Belytschko
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[4, 5, 6] considered the in-layer non-bonded interactions in the simulation of a twisted single-
walled carbon nanotube that folded onto itself. Recapitulating, the in-layer non-bonded
interactions are essential to prevent single-walled carbon nanotubes and individual layers of
multi-walled carbon nanotubes from self-intersection. Particularly in the stability analysis of
carbon nanotubes, the in-layer non-bonded interactions affect the behaviour of the buckled
structure. In order to integrate the molecular statics into a computational framework, using
the formalism of the finite element method, two different approaches have been developed.
These notations consider the atomistic structure and the dedicated interatomic potentials
for the definition of finite element equivalents. The first one is known as bond-related finite
element and models the interactions of the bond-wise interatomic potential directly or by
replacing the individual terms by different springs. Elements of this type can for instance
be found in Nasdala and Ernst [37] or Zhang [63]. The second type is the atom-related
finite element, which relies on a reference atom and the neighbourhood of atoms within the
interaction range of the interatomic potential. Liu et al. [30] proposed the so-called atomic-
scale finite element method (AFEM), which is valid for various interatomic potentials and
applicable for multi-scale simulations. This method was successfully applied to the buckling
analysis of carbon nanotubes in the papers of Liu et al. [30], Liu et al. [31] and Leung et
al. [29]. Another finite element of this formulation was developed by Wackerfuß [56] in a
universal manner and numerical simulations of carbon nanotubes with different interatomic
potentials were performed. The use of the atom-related finite element methods ends up in the
same equilibrium equations that are achieved by classical molecular statics approaches and are
therefore exact in that sense. That is because the appendant equilibrium configurations of the
atomistic structure are characterised by the state of minimal potential energy. Consequently,
solution methods based on the first-order derivative of the total potential energy with respect
to the degrees of freedom are commonly employed in molecular statics. For this reason,
conjugate gradient methods, quasi-Newton methods as well as the steepest descent method
are often applied in the numerical treatment of the direct minimisation problem. Alternatively,
the non-linear equilibrium equations can be solved using the Newton-Raphson approach. A
summary of these minimisation algorithms is for example given in Rappé and Casewit [42]
and Leach [27]. In the case of the Newton-Raphson approach, the first-order and second-order
derivatives of the total potential energy with respect to the degrees of freedom are essential.
These expressions are related to the global residuum vector and the global stiffness matrix of
the non-linear finite element method. The formulation of an atom-related finite element allows
to assemble these global quantities in an efficient way directly from elemental contributions.
Thus, the atom-related finite element permits to take advantage of assemblage algorithms
and solution methods that are implemented in non-linear finite element frameworks. In
particular, as examined by Liu et al. [30], the application of the Newton-Raphson procedure
for solving the non-linear system of equilibrium equations is beneficial. Additionally, the
availability of the global stiffness matrix enables the investigation of the structural stability
of equilibrium states. Thus, the implementation of the atom-related finite element into the
classical non-linear finite element framework provides an effective method for the buckling
analysis of carbon nanotubes based on molecular statics. Following this thoughts, the thesis
applies the atom-related finite element proposed by Wackerfuß [56] in the structural stability
analysis of carbon nanotubes. In particular, the corresponding finite element patch is set
up for the interatomic Tersoff-Brenner potential in order to model bonded interactions. In
addition, the important influence of modelling non-bonded interactions is analysed. For this
task, the distinction into in-layer and inter-layer non-bonded interactions is carried out. In
doing so, particularly, the modelling of in-layer non-bonded interactions is discussed. For
the implementation of both types of non-bonded interactions, an appendant non-linear finite
spring element is used. Furthermore, a complete linearisation of the necessary atomistic
kinematics and the interatomic potentials is given. The stability analysis is accomplished by
means of an accompanying eigenvalue analysis of the global stiffness matrix and the critical
point is detected using a bisection algorithm. The corresponding buckled configurations are
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obtained with the help of a branch switching algorithm. The buckling is analysed on single-
walled and double-walled carbon nanotubes under different loading conditions. Within these
simulations, special focus is spent on the importance of the different types of non-bonded
interactions on the morphology of the buckled tubes.

• Mixed atomistic-continuum model

In the mixed atomistic-continuum model, the discrete multi-particle structure of the carbon
nanotube is replaced by an appropriate continuum. Furthermore, the constitutive behaviour
of the continuum is obtained from the underlying lattice by a homogenisation process. For this
purpose, the quasi-continuum method as given in Tadmor et al. [52] and Tadmor et al. [53] is
applied. In particular, this method defines a strain energy density for the continuum on the
basis of a reference cell and the interatomic potentials of the associated underlying atomistic
structure. For this purpose, the linkage of the atomistic deformation of lattice vectors to
that of the continuum is required. In the case of space-filling crystals and homogeneous
deformations on the atomic level, this correlation is defined by the classical Cauchy-Born
rule as given in Born and Huang [10]. The natural replacement of single-layer crystalline
films, such as graphene and individual layers of carbon nanotubes, would be a free formed
continuum surface. However, as pointed out by Arroyo [2] and Arroyo and Belytschko [3], the
direct application of the classical Cauchy-Born for that type of continuum is not expedient.
Consequently, they proposed an extension to the standard Cauchy-Born rule rendering its
application to single-layer crystalline films possible. This so-called exponential Cauchy-Born
rule allows the modelling of monolayer crystals as free formed continuum surfaces without
thickness. Additionally, in their works, a local approximation scheme for that extension
relying on the principal curvatures of the considered continuum surface is provided. This
idea of the exponential Cauchy-Born rule is incorporated and another approach for its
local approximation on the basis of the normal curvature is presented. With the help of
the exponential Cauchy-Born rule and its local approximations, the strain energy density
for bonded interactions can be integrated into the constitutive model of the continuous
replacement of the carbon nanotube. The non-bonded interactions are separately integrated
into the constitutive model on the basis of a strain energy double density. In the course of this,
in-layer and inter-layer non-bonded interactions are considered. Subsequently, the constitutive
model can be used in conjunction with possible external contributions for the definition of a
total potential of the continuum surface. This total potential is the basis for the specification
of equilibrium configurations. Moreover, it allows to give a criterion for the structural stability
of these configurations. For a numerical treatment, the continuous setting is efficiently
approximated by the finite element method. This allows to create a discretisation of the
continuum model that is independent of the underlying atomistic structure. Consequently,
not every single atom has to be tracked and larger systems in comparison to a molecular
statics approach can be observed. In a series of numerical studies, Arroyo [2] and Arroyo and
Belytschko [3, 4, 5, 6] applied a model of that kind successfully in the buckling analysis of
carbon nanotubes. Thereby, finite elements on the basis of subdivision surfaces, as introduced
by Cirak et al. [18], are applied. In addition, equilibrium configurations of the system are
obtained by a direct minimisation of the discretised total potential. Consequently, only the
gradients of the total energy with respect to the nodal degrees of freedom are necessary.
The studies demonstrate the accuracy of the discretised continuum model by a comparison
with full atomistic simulations. On the basis of these publications, the thesis applies a
mixed atomistic-continuum model in the structural stability analysis of carbon nanotubes.
In particular, the continuous replacement of the carbon nanotube is given by a free formed
surface without thickness. Furthermore, the linkage of the continuum deformation to the
deformation of the atomistic structure is realised by the exponential Cauchy-Born rule. In
doing so, two local approximation schemes are used. The first approach is specified on the
basis of the principal curvatures of the surface whereas the second method relies on the
normal curvature of the continuum surface. These two approaches are compared against each
other by means of numerical simulations. In these numerical simulations, the continuum

5



1 Introduction

surface is discretised by triangular and quadrilateral subdivision finite elements. Equilibrium
configurations of the discrete setting are obtained either by a standard Newton-Raphson
procedure or by an arc-length method. The detection of instability points is accomplished
by an accompanying eigenvalue analysis of the global stiffness matrix in combination with a
bisection algorithm. Moreover, a branch switching algorithm allows to reach the corresponding
buckled configurations and to follow secondary branches. In order to make these procedures
possible, a complete linearisation of the mixed atomistic-continuum model is provided. The
buckling behaviour is numerically analysed for different carbon nanotubes under various
loading scenarios. In this context, the mixed atomistic-continuum model is checked and
validated against the results of a molecular statics approach for the full atomistic structure.

The thesis is organised as follows:
Chapter 2 gives a preliminary overview of the structure of carbon nanotubes. In Section 2.1,
the bonding structure, and in Section 2.2, the characterisation of carbon nanotubes, are briefly
discussed. Section 2.3 describes the modelling of bonded interactions and Section 2.4 is concerned
with the modelling of non-bonded interactions. Chapter 3 introduces the applied molecular statics
approach. Section 3.1 specifies the governing equations of molecular statics and in Section 3.2,
the structural stability of the associated equilibrium configurations is discussed. The necessary
atomistic kinematics with its essential derivatives is the topic in Section 3.3. In Section 3.4, the
incorporation of the molecular statics into the finite element framework is presented. This includes
the introduction of the atom-related finite element for bonded interactions and the non-linear
finite spring element for non-bonded interactions. In Section 3.5, the entire algorithm is applied to
the buckling analysis of various carbon nanotubes under different loading scenarios. A summary,
in Section 3.6, closes the chapter on molecular statics. Chapter 4 specifies the mixed atomistic-
continuum model. A brief overview of the continuum kinematics in Section 4.1, and the standard
Cauchy-Born rule in Section 4.2, discusses the space-filling body. In Section 4.3, the kinematics for
the continuum surface is presented and, subsequently, Section 4.4 discusses the associated extended
Cauchy-Born rules for this solid of reduced dimensionality. Section 4.5 develops the constitutive
model for the mixed atomistic-continuum approach. In Section 4.6, the global equilibrium of the
carbon nanotube is formulated and in Section 4.7, the associated criterion for structural stability
is presented. The numerical treatment of the mixed atomistic-continuum model using the finite
element method is highlighted in Section 4.8. Section 4.9 shows the performance of the realised
model by means of selected numerical examples on the buckling analysis of carbon nanotubes.
The summary, in Section 4.10, completes the chapter on the mixed atomistic-continuum model. A
final summary of the numerical studies and concluding remarks appear in Chapter 5. In addition,
Appendix A gives supplementary notes concerning the variation and the further linearisation of
the mixed atomistic-continuum model. Moreover, the shape functions for finite elements on the
basis of subdivision surfaces are described. Finally, the Bibliography completes the thesis.
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2 Structure of carbon nanotubes

In this chapter, an introduction to the structure of carbon nanotubes is given. Thereby, on the basis
of the graphene sheet, the bonding mechanism of the involved carbon atoms is briefly discussed.
Furthermore, the characterisation scheme for the various possible types of carbon nanotubes is
given. In doing so, the linkage between the flat graphene and carbon nanotubes is examined.
A more advanced treatment on this subject can for instance be found in O’Connell [38], Qian
et al. [41] and Dresselhaus et al. [21]. Thereafter, the modelling of bonded interactions by
means of interatomic potentials is discussed. In particular, the associated first-order and second-
order derivatives with respect to the relevant interatomic measurements are specified. Finally,
the modelling of non-bonded interactions, with the important distinction between in-layer and
inter-layer non-bonded interactions is described. See classical text books concerned with atomistic
simulations, for example Allen and Tildesley [1], Rappé and Casewit [42] and Leach [27] for a
detailed discussion on atom interactions and interatomic potentials.

2.1 Bonding structure

Carbon nanotubes are an allotrope of carbon and can be considered as the result of rolling up a
graphene sheet. Consequently, the bonding structure between the carbon atoms in nanotubes is
related to that of graphene. The graphene sheet as well is an allotrope of carbon and exhibits a
planar honeycomb structure. In the course of this, each carbon atom forms three strong covalent
bonds with neighbouring carbon atoms. These so-called σ-bonds are separated by an angle of
120◦ and lie within a plane. In addition, the remaining electrons form so-called π-bonds and the
related electron cloud of these weak bonds is distributed perpendicular to the plane of the strong
σ-bonds. The delocalised out-of-plane π-bonds interact with the π-bonds on the neighbouring
layers. In this work, the strong σ-bond formed between two carbon atoms is denoted as “bonded
interaction”. Additionally, the weaker long-range interaction among different π-bonds is identified
as “non-bonded interaction”. Moreover, the studies in this work disregard bond breaking and bond
rearrangement within the carbon nanotube.

2.2 Characterisation

In the characterisation of carbon nanotubes a distinction is made between single-walled and multi-
walled types. Thereby, a single-walled carbon nanotube (SWCNT) can be imagined as the result of
rolling up a graphene sheet into cylindrical shape. Following this, multi-walled carbon nanotubes
(MWCNT) can be presented as several concentrically rolled graphene sheets. Consequently, the
structure of each layer is described by the way of rolling the individual graphene sheets. For that
purpose, an integer pair (n1, n2) combined with the base vectors B1 and B2 of the two-dimensional
graphene honeycomb lattice are essential. Based on the illustration in Figure 2.1, these quantities
are used to define a chiral vector Ch.

Ch = n1B1 + n2B2 (2.1)

This vector specifies the circumferential direction of the tube so that after rolling its two end carbon
atoms coincide. Furthermore, the circumference of the rolled cylinder is given by the length Ch of
the chiral vector.

Ch = ‖Ch‖ =
√

Ch ·Ch = A0

√
3 (n2

1 + n1n2 + n2
2) (2.2)
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2 Structure of carbon nanotubes
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Figure 2.1: Illustration of the chiral vector Ch defining the rolling direction of the graphene sheet
in order to obtain a carbon nanotube layer. The chiral angle Θ0 and the directions for
the zig-zag and armchair carbon nanotubes are indicated. The base vectors B1 and B2

of the graphene sheet are specified. The shift vector P links the two simple triangular
sublattices that are depicted by black and white dots.

Consequently, the circumference is solely defined by the chirality (n1, n2) of the tube and the
carbon-carbon distance A0 within the graphene sheet. Subsequently, the radius R0 of the carbon
nanotube can be evaluated.

R0 =
Ch

2π
=
A0

2π

√
3 (n2

1 + n1n2 + n2
2) (2.3)

In addition, the chiral angle Θ0 is defined as the angle between Ch and the B1 direction.

Θ0 = arctan

( √
3n2

2n1 + n2

)
(2.4)

The characterisation of carbon nanotube layers using the chirality (n1, n2) includes two specific
types of carbon nanotubes. Thereby, the so-called zig-zag carbon nanotube is characterised by
(n1, 0) or equivalently Θ0 = 0. Furthermore, two identical integers of the chirality define an
armchair carbon nanotube by (n1, n1) and an related chiral angle of Θ0 = 30◦. In Figure 2.1,

8



2 Structure of carbon nanotubes

the corresponding zig-zag and armchair directions are indicated. The various types enclosed by
these two special cases are called chiral carbon nanotubes. In the case of multi-walled carbon
nanotubes, each individual layer is characterised by its related chirality. Thus, the structure
of carbon nanotubes is uniquely defined by the chirality (n1, n2). In addition, the vector L is
introduced on the graphene sheet, perpendicular to the chiral vector, in order to specify the length
L0 of the carbon nanotube.

L0 = ‖L‖ =
√

L · L (2.5)

For the purpose of defining the mapping from the flat graphene sheet to the cylindrical carbon
nanotube, the Cartesian coordinates

{
X1, X2

}
are introduced. Thereby, the X1 direction is given

by the vector L and the X2 direction is specified by the chiral vector Ch. Furthermore, because
the hexagonal structure of the graphene sheet is a Bravais 2-lattice, an additional shift vector P
is necessary to spot every carbon atom. Therefore, as illustrated in Figure 2.1, the entire lattice
can be viewed as a set of two simple triangular sublattices indicated by black and white dots.
Then, the position vectors of all carbon atoms are given by Xn = n1B1 + n2B2 + mP. In this
expression n1 and n2 are integers whereas, depending on the desired lattice side, m is either zero
or one. Subsequently, the Cartesian coordinates

{
x1, x2, x3

}
define the rolled configuration of the

graphene. Thus, the position vector xn of each atom in the carbon nanotube is determined by the
related roll-up mapping as:

x1
n = X1

n

x2
n = R0 sin

(
X2
n

R0

)
(2.6)

x3
n = −R0 cos

(
X2
n

R0

)

The handling of multi-walled carbon nanotubes requires the realisation of this mapping for each
of the individual layers. In the roll-up procedure from the graphene sheet to the carbon nanotube
the bond lengths and the bond angles change. Additionally, in multi-walled carbon nanotubes,
the interlayer interactions may not be balanced. The resulting carbon nanotube is therefore
geometrically compatible but the structure is not in an equilibrium state. Consequently, the
carbon atoms will rearrange in order to reach their equilibrated positions.

2.3 Modelling of bonded interactions

The modelling of bonded interactions in carbon nanotube simulations is often done by means
of the so-called Tersoff-Brenner bond-order potential, proposed by Brenner [11] on the basis of
the bond-order formalism given by Tersoff [54]. This interatomic potential delivers an analytic
potential energy expression capturing the essential chemistry and physics, which can be used for
molecular mechanics simulations. Furthermore, the definition of the constitutive model within a
mixed atomistic-continuum method is often based on interatomic potentials.

2.3.1 The Tersoff-Brenner interatomic bond-order potential

Within this potential, the energy Eij of a single bond ij between two carbon atoms i and j, as
illustrated in Figure 2.2, is described by its bond length aij and the lengths of neighbouring bonds
aik, ail, ajm and ajn as well as the angles θijk, θijl, θjim and θjin formed with those. The total
bonded energy of the structure can then be calculated by the sum over all bonds.

πb =
∑

ij

Eij =
∑

i

∑

j > i

Eij (2.7)
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i
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aij
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l
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Figure 2.2: Structure of the Tersoff-Brenner bond-order potential for a single carbon-carbon bond
with all kinematic measurements essential for energy evaluation.

The expression for the bond-wise energy is given by:

Eij = VR (aij)− B̄ij (aik, ail, θijk, θijl; ajm, ajn, θjim, θjin)VA (aij) (2.8)

Herein, VR(aij) represents the repulsive part of the interaction whereas VA(aij) describes the
analogous attractive part.

VR(aij) =
D(e)

S − 1
· e−
√

2·S·β·(aij−R(e)) · fc(aij) (2.9)

VA(aij) =
D(e) · S
S − 1

· e−
√

2
S ·β·(aij−R(e)) · fc(aij) (2.10)

The term B̄ij (aik, ail, θijk, θijl; ajm, ajn, θjim, θjin) represents the multi-body coupling between the
bond from i to j and the local environments of both atoms. It is also known as empirical bond-order
function given by the average of the terms associated with each atom in the bond.

B̄ij (aik, ail, θijk, θijl; ajm, ajn, θjim, θjin) =
1

2
[Bij (aik, ail, θijk, θijl) +Bji (ajm, ajn, θjim, θjin)]

(2.11)

Bij (aik, ail, θijk, θijl) = [1 +G(θijk) · fc(aik) +G(θijl) · fc(ail)]
−δ

(2.12)

Bji (ajm, ajn, θjim, θjin) = [1 +G(θjim) · fc(ajm) +G(θjin) · fc(ajn)]
−δ

(2.13)

So, each of these many-body coupling terms depends on two bond lengths and two valence angles.
With the bond angle function

G(θ) = a0 ·
[

1 +
c0

2

d0
2 −

c0
2

d0
2 + [1 + cos(θ)]

2

]
(2.14)

and the cut-off function

fc(a) =





1 a < R(1)

1
2 ·
{

1 + cos

[
π(a−R(1))
R(2)−R(1)

]}
R(1) ≤ a ≤ R(2)

0 a > R(2)

(2.15)
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2 Structure of carbon nanotubes

the bond-wise energy can be calculated. The parameters for the interatomic potential are taken
from the second parameter set of Brenner [11].

D(e) = 6.000 eV , S = 1.22 , β = 21 nm−1

R(e) = 0.1390 nm

R(1) = 0.17 nm , R(2) = 0.20 nm (2.16)

δ = 0.50000

a0 = 0.00020813 , c0 = 330 , d0 = 3.5

These values are applied in all numerical simulations, using either the molecular statics approach
in Section 3.5 or the mixed atomistic-continuum model in Section 4.9. The first-order and second-
order derivatives with respect to the bond lengths and valence angles of the essential sub-functions
building the bond-wise energy are given in the following.

• Repulsive interactions function VR(a)

V ′R(a) =−
√

2 · S · β · D
(e)

S − 1
· e−
√

2·S·β·(a−R(e)) · fc(a)

+
D(e)

S − 1
· e−
√

2·S·β·(a−R(e)) · fc
′(a) (2.17)

V ′′R (a) =
(
−
√

2 · S · β
)2

· D
(e)

S − 1
· e−
√

2·S·β·(a−R(e)) · fc(a)

− 2
√

2 · S · β · D
(e)

S − 1
· e−
√

2·S·β·(a−R(e)) · fc
′(a)

+
D(e)

S − 1
· e−
√

2·S·β·(a−R(e)) · fc
′′(a) (2.18)

• Attractive interactions function VA(a)

V ′A(a) =−
√

2

S
· β · D

(e) · S
S − 1

· e−
√

2
S ·β·(a−R(e)) · fc(a)

+
D(e) · S
S − 1

· e−
√

2
S ·β·(a−R(e)) · fc

′(a) (2.19)

V ′′A (a) =

(
−
√

2

S
· β
)2

· D
(e) · S
S − 1

· e−
√

2
S ·β·(a−R(e)) · fc(a)

− 2

√
2

S
· β · D

(e) · S
S − 1

· e−
√

2
S ·β·(a−R(e)) · fc

′(a)

+
D(e) · S
S − 1

· e−
√

2
S ·β·(a−R(e)) · fc

′′(a) (2.20)

• The multi-body coupling term associated with one atom depends on two bond lengths and
two valence angles and is, therefore, rewritten in a compact form for the evaluation of the
first-order and second-order derivatives. Depending on the considered atom and its local
environment, the appropriate lengths and angles have to be inserted.

B (a1, a2, θ1, θ2) = [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)]
−δ

(2.21)
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2 Structure of carbon nanotubes

In the following derivatives, i and j are either 1 or 2, and δij denotes the Kronecker symbol.

∂B

∂ai
= −δ · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)]

(−δ−1) ·G(θi) · fc
′(ai)

∂B

∂θi
= −δ · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)]

(−δ−1) ·G′(θi) · fc(ai) (2.22)

∂2B

∂ai∂aj
=− δ · (−δ − 1) · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−2) ·G(θi) · fc′(ai) ·G(θj) · fc′(aj)

− δ · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−1) ·G(θi) · fc′′(aj) · δij
∂2B

∂ai∂θj
=− δ · (−δ − 1) · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−2) ·G(θi) · fc′(ai) ·G′(θj) · fc(aj)

− δ · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−1) ·G′(θj) · fc′(ai) · δij
∂2B

∂θi∂aj
=− δ · (−δ − 1) · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−2) ·G′(θi) · fc(ai) ·G(θj) · fc′(aj)

− δ · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−1) ·G′(θi) · fc′(aj) · δij
∂2B

∂θi∂θj
=− δ · (−δ − 1) · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−2) ·G′(θi) · fc(ai) ·G′(θj) · fc(aj)

− δ · [1 +G(θ1) · fc(a1) +G(θ2) · fc(a2)](−δ−1) ·G′′(θj) · fc(ai) · δij (2.23)

• Bond angle function G(θ)

G′(θ) =
−2 · a0 · c02 (1 + cos(θ)) · sin(θ)

(
d0

2 + (1 + cos(θ))
2
)2 (2.24)

G′′(θ) = 2 · a0 · c02





1− 2 · cos2(θ)− cos(θ)
[
d0

2 + (1 + cos(θ))
2
]2 −

4 · (1 + cos(θ))
2 ·
(
1− cos2(θ)

)
[
d0

2 + (1 + cos(θ))
2
]3





(2.25)

• Cut-off function fc(a)

fc
′(a) =





0 a < R(1)

− 1
2 · π

R(2)−R(1) · sin
[
π(a−R(1))
R(2)−R(1)

]
R(1) ≤ a ≤ R(2)

0 a > R(2)

(2.26)

fc
′′(a) =





0 a < R(1)

− 1
2 ·
[

π
R(2)−R(1)

]2
· cos

[
π(a−R(1))
R(2)−R(1)

]
R(1) ≤ a ≤ R(2)

0 a > R(2)

(2.27)

The second-order derivative of the cut-off function is not continuous at the boundaries, where
a = R(1) or a = R(2). Because for quadratic convergence of a Newton-Raphson procedure a
twice continuously differentiable function is essential, this cut-off function could be replaced
by alternative expressions. Nevertheless, this area of bond length is hardly entered and no
downsides were recognised in the numerical simulations with the original cut-off function.

2.3.2 The ground state of a graphene sheet

Using the Tersoff-Brenner potential and neglecting non-bonded interactions, the ground state of a
flat graphene sheet can be calculated. As a perfect graphene sheet consists of ideal hexagons, all
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2 Structure of carbon nanotubes

bond lengths have the same value and all valence angles are the same. Consequently, the valence
angle has a value of 120◦. In this structure, one carbon atom forms bonds with its three nearest
neighbouring atoms and of course one single bond is build by two atoms. As a consequence, the
energy per atom in the planar graphene sheet is only a function of the bond length. This function
can be seen in Figure 2.3. In this plot, the equilibrium carbon-carbon bond length of A0 =
0.14507 nm and the associated ground state Egraphene = −7.37563 eV/atom for the graphene sheet
are labelled. The lower and the upper boundaries for the smooth cut-off function are additionally
marked.

Tersoff-Brenner potential energy per atom of perfect graphene

bond length [nm]
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Figure 2.3: The evolution of the Tersoff-Brenner interatomic potential energy per atom in infinite
graphene with equal valence angles as a function of the carbon-carbon bond length.

2.4 Modelling of non-bonded interactions

The long-range pair-wise interactions are accounted for in the non-bonded energy. A non-bonded
interaction is considered between two atoms of a structure, which are not interacting through
covalent bonds. As a consequence, the number of non-bonded pairs in modelling is quite large,
and in numerical simulations, an upper cut-off radius is therefore introduced. The non-bonded
interactions are modelled by pair-potentials, which depend on the distance aij between two atoms
of the whole structure. The total non-bonded potential πnb of the system is calculated by a sum
over all pairs ij of atoms. This expression can further be rewritten by a double sum over all atoms
i and j.

πnb =
∑

ij

Vnb (aij) =
∑

i

∑

j > i

Vnb (aij)

2.4.1 The Lennard-Jones interatomic pair-potential

A commonly used pair potential for the modelling of non-bonded interactions is the Lennard-Jones
‘6-12’ potential. This potential consists of an attractive part and a repulsive part depending on
the distance aij between the two atoms under consideration.

Vnb (aij) = − A

a6
ij

+
B

a12
ij

(2.28)

13



2 Structure of carbon nanotubes

The first-order and second-order derivatives of the Lennard-Jones interatomic pair-potential with
respect to the atomic distance read:

V ′nb (aij) = 6
A

a7
ij

− 12
B

a13
ij

V ′′nb (aij) = −42
A

a8
ij

+ 156
B

a14
ij

(2.29)

The constants for the Lennard-Jones ‘6-12’ potential are taken from Girifalco et al. [22].

A = 15.2eVÅ
6

B = 24.1 · 103eVÅ
12

(2.30)

Å = 10−1nm

In the numerical simulations, applying the molecular statics approach in Section 3.5 and the mixed
atomistic-continuum model in Section 4.9 these values are used. In Figure 2.4, the evolution of the

Lennard-Jones potential energy of a single non-bonded carbon-carbon pair
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Figure 2.4: The evolution of the Lennard-Jones interatomic potential energy for a single non-
bonded carbon-carbon pair as a function of the atomic distance.

Lennard-Jones interatomic pair-potential versus the atomic distance is plotted using the constants
given above. In this graph, three interesting points are additionally marked. Thereby, ε is the
depth of the potential well and rm is the associated distance at which the minimum −ε appears.
Furthermore, at the atomic distance σ the interatomic potential is zero. The upper cut-off radius
for the Lennard-Jones potential is often introduced at a distance rc = 2.5σ, in order to reduce the
total number of atom-atom interactions. Based on the values of A and B, these constants can be
calculated using the correlations:

ε =
A2

4B
= 2.39668 · 10−3 eV (2.31)

σ = (B/A)
1/6

= 0.34148 nm (2.32)

rm = 21/6σ = 0.38330 nm (2.33)

rc = 2.5σ = 0.85369 nm (2.34)

The obtained value for the upper cut-off radius serves as guidance for the numerical simulations
of carbon nanotubes, using molecular statics in Section 3.5 and the mixed atomistic-continuum
model in Section 4.9. By neglecting all non-bonded interactions, exhibiting a distance beyond that
barrier, the computational effort of the calculations can be reduced.
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2 Structure of carbon nanotubes

2.4.2 The in-layer non-bonded interactions

The modelling of non-bonded interactions within one layer of graphene or one wall of a nanotube
needs special attention. On this account, a single atom and its neighbourhood as shown in Figure
2.5, is considered. Within this picture, all covalent bonds that are influenced by the central atom
(blank circle) are drawn with a solid black double line. According to Rappé and Casewit [42],
the atoms building these bonds (1st and 2nd neighbours or 1-2 and 1-3 interactions) must not
be considered when searching for non-bonded interactions of the central atom. In the perfect
graphene sheet, these interactions lie inside a circle of radius A1-3 =

√
3A0 = 0.25127 nm around

the central atom. In the derivation of this radius, the honeycomb structure of the lattice and
the associated equilibrium carbon-carbon bond length A0 are considered. All other atoms are in
general allowed to build non-bonded pairs with it. The different force fields used in molecular
mechanics often scale the 1-4 interactions (3rd neighbours) by a factor of 1/2 or completely neglect
them. When modelling carbon nanotubes, it turns out that these 1-4 interactions lead to high
repulsive forces because of small atomic distances. A possibility to overcome this problem is to
exclude all atoms forming bonds (solid black lines) with the 2nd neighbours, so that the 1-4 non-
bonded interactions are neglected. All these interactions are located in the space of a circle of
radius A1-4 =

√
7A0 = 0.38382 nm around the central atom. In the numerical examples on carbon

nanotubes provided in Section 3.5, the results of simulations with and without 1-4 non-bonded
interactions are compared based on a molecular statics approach. In order to emphasise that the
calculations without 1-4 non-bonded interactions exclude the 1-3 and the 1-2 interactions as well,
the phrase up to third neighbours non-bonded interactions excluded is used equivalently. In the
same sense, the analysis with the included 1-4 non-bonded interactions is also denoted as up to
second neighbours non-bonded interactions excluded. As a consequence of the fast decreasing of
the non-bonded interaction described by the Lennard-Jones potential with larger distances, the
high number of non-bonded pairs can be reduced by introducing an upper cut-off radius. This
means that all pairs of atoms having a distance larger than this specific upper barrier are not
considered in the calculation of the non-bonded interactions.

A
1-3 A1-4

Figure 2.5: Illustration for the valid range of
in-layer non-bonded interactions.

Figure 2.6: Illustration for the range of inter-
layer non-bonded interactions.

2.4.3 The inter-layer non-bonded interactions

In contrast to the in-layer interactions, the non-bonded interactions between different layers of
graphene or multi-walled nanotubes are not influenced by covalent bonds. This fact is illustrated
in Figure 2.6, where an atom of one layer (blank circle) can build non-bonded interactions with
all atoms (black dots) of the other layer. Again, an upper cut-off radius is introduced to exclude
atomic pairs of large distances from the set of non-bonded interactions.
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3 Molecular statics

This chapter provides the important components of a molecular statics approach, in order to study
the buckling behaviour of carbon nanotubes at the level of atomistic structures. In the course
of this, a special formulation is used, so that the molecular statics model can be integrated into
a computational framework on the basis of the classical non-linear finite element formalism of
continuum mechanics. This gives the possibility to reuse well established solvers for non-linear
systems of equations. In addition, algorithms related to the structural stability analysis are made
accessible. In particular, the formulation proposed by Wackerfuß [56] is applied and, consequently,
the present derivation partly follows this paper. The chapter is organised as follows: Firstly,
the calculation of equilibrium configurations in molecular statics is specified. This is followed
by the criterion for structural stability of the atomistic structures. Then, the essential atomistic
kinematics are given. Subsequently, the formulation of molecular statics, suitable for an integration
into computational frameworks based on the classical finite element formalism, is introduced.
Finally, the implemented molecular statics approach is applied to the buckling analysis of carbon
nanotubes.

3.1 Equilibrium configurations

In molecular statics, the deformation of an atomistic structure at a temperature of 0 K is to
be considered. This structure of arbitrary shape is composed of a total number of N atoms in
interaction with each other. The interactions consider the influence of directly bonded atoms and
all pairs of non-bonded atoms. In general, a description within a three-dimensional Euclidean
space is used. This allows to state the position of an atom i in the material (Lagrangian) as well
as in the spatial (Eulerian) configuration. In the material configuration, specified by the standard
basis {E1,E2,E3} with Cartesian coordinates {X1, X2, X3}, the corresponding position vector
is denoted by Xi. The vector xi in contrast gives the deformed atomic position in the spatial
configuration, which is characterised by the standard basis {e1, e2, e3} in combination with the
Cartesian coordinates {x1, x2, x3}. Two different atoms i and j in the Eulerian structure feature a
distance vector aij = xj−xi. This composition in molecular statics is loaded by atom-wise external
forces (f ext)i, which are imposed quasi-statically. Additional displacement boundary conditions are
also considered per atom. The total potential energy π of the system now consists of the bonded
potential πb, the non-bonded potential πnb and the potential of the external forces πext.

π = πb + πnb + πext (3.1)

The potential πb, defining the total energy stored in the atomic bonds, can be defined by so-
called interatomic potentials. These interatomic potentials are in general analytic expressions
for the properties of the atomic bonds. The interatomic potentials normally have a short-range
character, meaning that an atom is only directly influenced by its nearest neighbouring atoms.
The characteristics of the energy depend on the bond lengths and bond angles of the structure.
These scalar values can directly be calculated by the position vectors of the involved atoms. As a
consequence, the bonded potential is a function of the position vectors of all atoms in the structure.

πb = πb (x1,x2, . . . ,xN ) (3.2)

The non-bonded potential πnb accounts for the interaction of atoms not directly bonded to each
other. This van der Waals correlation depends on the distance between the atomic pairs. Therefore,
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the non-bonded potential is also a function of the atomic position vectors.

πnb = πnb (x1,x2, . . . ,xN ) (3.3)

The potential of the external forces πext can be defined on the assumption that the external loads
are conservative. Additionally, the external loads are constant so that the related potential can
be calculated by the sum of all atom-wise external force contributions. As these external forces
are known, the external force potential is a function of the position vectors of the corresponding
atoms.

πext = −
N∑

i=1

(f ext)i · xi = πext (x1,x2, . . . ,xN ) (3.4)

Altogether, the total potential of the atomistic structure depends only on the unknown position
vectors of its atoms.

π = π (x1,x2, . . . ,xN ) (3.5)

For a compact writing, the local atomic position vectors xi are collected into a global position
vector x and the atom-wise external forces (f ext)i into a global external force vector f ext.

x =




x1

x2

...

xN




f ext =




(f ext)1

(f ext)2
...

(f ext)N




(3.6)

The equilibrium configuration of the system is characterised by the state of minimal potential
energy which is equivalent to the first variation of the total potential being zero. As the position
vectors are the only unknowns, this is also equivalent to a discrete minimisation problem.

δπ (x) = δπb (x) + δπnb (x) + δπext (x) = 0

δπ (x) =

N∑

i=1

[
∂πb (x)

∂xi
+
∂πnb (x)

∂xi
− (f ext)i

]
· δxi = 0 (3.7)

Taking into account the fact that the virtual displacements δxi fulfil the displacement constraints
but are arbitrary elsewhere, the terms in the bracket give a non-linear system of equations. This
system is solved iteratively using the Newton-Raphson approach, thus requiring the linearisation
of the varied potential around an initial guess x̃i for the atomic positions.

∆δπ (x̃) = ∆δπb (x̃) + ∆δπnb (x̃) + ∆δπext (x̃)

∆δπ (x̃) =

N∑

i=1

N∑

j=1

[
∂2πb (x̃)

∂x̃i∂x̃j
+
∂2πnb (x̃)

∂x̃i∂x̃j

]
∆x̃j · δx̃i (3.8)

This gives an approximation for the varied potential at the equilibrium state xi.

δπ (x) = δπ (x̃) + ∆δπ (x̃) + . . . = 0

δπ (x) =

N∑

i=1

[
∂πb (x̃)

∂x̃i
+
∂πnb (x̃)

∂x̃i
− (f ext)i

]
· δx̃i +

N∑

i=1

N∑

j=1

[
∂2πb (x̃)

∂x̃i∂x̃j
+
∂2πnb (x̃)

∂x̃i∂x̃j

]
∆x̃j · δx̃i = 0

δπ (x) =

N∑

i=1


∂πb (x̃)

∂x̃i
+
∂πnb (x̃)

∂x̃i
− (f ext)i +

N∑

j=1

(
∂2πb (x̃)

∂x̃i∂x̃j
+
∂2πnb (x̃)

∂x̃i∂x̃j

)
∆x̃j


 · δx̃i = 0 (3.9)
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Considering the fact that this equation has to be fulfilled for arbitrary virtual displacements δx̃i,
this leads to a linear system of equations to calculate the unknown displacement increments ∆x̃j .

N∑

j=1

[
∂2πb (x̃)

∂x̃i∂x̃j
+
∂2πnb (x̃)

∂x̃i∂x̃j

]

︸ ︷︷ ︸
Kij(x̃)

∆x̃j = −∂πb (x̃)

∂x̃i
− ∂πnb (x̃)

∂x̃i︸ ︷︷ ︸
−(f int)i(x̃)

+ (f ext)i i = 1, . . . , N

N∑

j=1

Kij (x̃) ∆x̃j = − (f int)i (x̃) + (f ext)i i = 1, . . . , N (3.10)

With the global stiffness matrix K (x̃), the global internal force vector f int (x̃) and the global
external force vector f ext

K (x̃) =




K11 (x̃) · · · K1N (x̃)
...

. . .
...

KN1 (x̃) · · · KNN (x̃)


 f int (x̃) =




(f int)1 (x̃)
...

(f int)N (x̃)


 f ext =




(f ext)1
...

(f ext)N


 (3.11)

the linear system of equations can be written as

K (x̃) ∆x̃ = −f int (x̃) + f ext (3.12)

where

∆x̃ =




∆x̃1

...

∆x̃N


 (3.13)

is the global displacement increments vector. This increment vector is used to update the actual
atomic positions.

x = x̃ + ∆x̃ (3.14)

Because for non-linear problems one Newton-Raphson iteration is not enough to reach equilibrium
states, several iteration steps (m+ 1) are necessary. For this purpose, the linear system of
equations, given in Equation (3.12), and the update rule for the atomic positions, specified in
Equation (3.14), are reformulated for an iterative procedure.

K(m)∆x(m+1) = −f
(m)
int + f ext x(m+1) = x(m) + ∆x(m+1) m = 0, 1, . . . (3.15)

These iterations are repeated till the energy residuum
∣∣∣
(
−f

(m)
int + f ext

)
·∆x(m+1)

∣∣∣ is less or equal

a given tolerance. If convergence is achieved, the next load step can be analysed by a new Newton-
Raphson iteration loop.

3.2 Stability of equilibrium configurations

Beside the task of finding equilibrium states of the atomistic structure under consideration, it is
also of interest to check if this state is stable. This stability is fulfilled if the total energy at the
equilibrium state π (x) is smaller than the one of a slightly perturbed configuration π (x + δx).

π (x + δx)− π (x) > 0

π (x1 + δx1,x2 + δx2, . . . ,xN + δxN )− π (x1,x2, . . . ,xN ) > 0 (3.16)
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A truncated Taylor series expansion of the perturbed state gives

π (x1 + δx1,x2 + δx2, . . . ,xN + δxN ) = π (x1,x2, . . . ,xN ) + δπ (x1,x2, . . . ,xN )

+
1

2
δ2π (x1,x2, . . . ,xN ) (3.17)

By using the stationary condition for the total potential energy δπ (x1,x2, . . . ,xN ) = 0, the
stability condition reads

δ2π (x1,x2, . . . ,xN ) > 0

N∑

i=1

N∑

j=1

∂2π (x1,x2, . . . ,xN )

∂xi∂xj
δxj · δxi > 0 (3.18)

Within this expression, the second-order partial derivative of the total potential energy with respect
to the position vectors of all atoms in the structure correlates with the global stiffness matrix K
at the equilibrium state. The current state is stable if Equation (3.18) is fulfilled for arbitrary
perturbations δxi and δxj . This condition is achieved by a positive definite global stiffness matrix
K. If this condition is not in line, the state is either indifferent (δ2π (x1,x2, . . . ,xN ) = 0) or
unstable (δ2π (x1,x2, . . . ,xN ) < 0). Especially if it is unstable, a so-called bifurcation into a
state with lower energy might be possible. The definiteness of the global stiffness matrix can
be checked by the calculation of the eigenvalues ωi (i = 1, . . . , N). For the exact detection of
these instability points with zero eigenvalues, several methods are available. From this set of
approaches, the bisection algorithm is selected. In addition, the corresponding eigenvectors µi
give the chance to show the shape of the lower energy mode. These eigenvectors are further
essential in a branch switching approach to achieve the appropriate buckled configurations. For
that purpose, the method suggested by Wagner and Wriggers [57] is applied. This algorithm relies
on the eigenvector µc associated with the critical zero eigenvalue at the bifurcation point. In
addition, the global position vector xc at the corresponding state of deformation and a scaling
factor ν are essential. On the basis of these quantities, the starting vector x(0) = xc + νµc for the
iterative calculation of the equilibrium state on the postbuckling path is specified. Finally, after
successful branch switching, the buckled configuration is obtained and the postbuckling path can
be further investigated.

3.3 Atomistic kinematics

The calculation of the bonded potential, using the Tersoff-Brenner interatomic bond-order potential
given in Subsection 2.3.1, requires the scalar bond lengths and valence angles formed by the
participating atoms. For the evaluation of the non-bonded potential, which applies the Lennard-
Jones interatomic pair-potential specified in Subsection 2.4.1, the distance between two atoms is
necessary. On this account, Figure 3.1 illustrates a set of atoms with a characteristic bond length
and a representative valence angle. In what follows, these quantities and their derivatives with
respect to the positions of the atoms involved are given in an exact geometric setting.

3.3.1 The bond vector and the distance vector

For the evaluation of the bond lengths, of the distance between atoms and of the valence angles, the
distance vector between two different atoms i and j is necessary. The calculation of the distance
vector and its first-order and second-order derivatives with respect to the position vectors of the
involved atoms can be performed in the following way. In these expressions, and in the derivations
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Figure 3.1: The kinematics for a set of interacting atoms. Illustration of the position vectors xi
and xj , the bond vectors aij and aik, the bond length aij and the valence angle θijk.

thereafter, α and β are either i or j, and δ◦∗ denotes the Kronecker symbol.

aij = xj − xi (3.19)

∂aij
∂xα

= 1
(
δαj − δαi

)
= 1δαij (3.20)

∂2aij
∂xα∂xβ

= 0 (3.21)

3.3.2 The bond length and the distance between atoms

The distance aij between two atoms i and j in the structure directly bonded to each other or
building a non-bonded interaction makes use of the distance vector aij . The interatomic distance
itself and its first-order and second-order derivatives with respect to the position vectors of the
involved atoms are given by:

aij = ‖aij‖ = [aij · aij ]1/2 (3.22)

∂aij
∂xα

=
aij
aij

(
δαj − δαi

)
=

aij
aij

δαij (3.23)

∂2aij
∂xα∂xβ

=
δαijδ

β
ij

aij

[
1− aij ⊗ aij

a2
ij

]
(3.24)

3.3.3 The valence angle

The valence angle, as illustrated in Figure 3.1, describes an angle included between two bonds
arising from a central atom. This angle is necessary for the evaluation of the interatomic potential
of bonded interactions. As a consequence of the geometric setting, the calculation is based on the
two corresponding bond vectors.

θijk = arccos

(
aij
aij
· aik
aik

)
(3.25)

Then, the evaluation of the first-order and second-order derivatives of the valence angle with respect
to the position vectors of the involved atoms is possible. In the following expressions α and β are
either i, j or k. In addition, the abbreviations δαij =

(
δαj − δαi

)
and δαik = (δαk − δαi ) are used, where

α can be exchanged by β to get the respective terms.

∂θijk
∂xα

= − 1

sin (θijk) aijaik

[
δαijaik + aijδ

α
ik − cos (θijk)

(
aij
aij

δαijaik + aij
aik
aik

δαik

)]
(3.26)
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∂2θijk
∂xα∂xβ

=− cos (θijk)

sin (θijk)
3
aijaik

[(
δαijδ

β
ij

aik
aij

+ δαikδ
β
ik

aij
aik

)(
aij
aij
⊗ aij
aij

+
aik
aik
⊗ aik
aik

)]

− cos (θijk)

sin (θijk)
3
aijaik

[(
δαikδ

β
ij + δαijδ

β
ik

)(aij
aij
⊗ aik
aik

+
aik
aik
⊗ aij
aij

)]

+
1

sin (θijk)
3
aijaik

[(
δαijδ

β
ij

aik
aij

+ δαikδ
β
ik

aij
aik

)(
aij
aij
⊗ aik
aik

+
aik
aik
⊗ aij
aij

)]

+
1

sin (θijk)
3
aijaik

[(
δαijδ

β
ik + δαikδ

β
ij

)(aij
aij
⊗ aij
aij

+
aik
aik
⊗ aik
aik

)]

− 1

sin (θijk) aijaik

(
δαijδ

β
ik + δαikδ

β
ij

)
1 +

cos (θijk)

sin (θijk) aijaik

(
δαijδ

β
ij

aik
aij

+ δβikδ
α
ik

aij
aik

)
1

− 2 cos (θijk)

sin (θijk) aijaik

[
δαijδ

β
ij

aik
aij

aij
aij
⊗ aij
aij

+ δαikδ
β
ik

aij
aik

aik
aik
⊗ aik
aik

]
(3.27)

3.4 Molecular statics within the finite element formalism

With the achievements of the previous sections, the search for equilibrium configurations within the
molecular statics approach is already possible. For this task, the global force vector and the global
stiffness matrix can be directly set up from the definition of the total potential. However, this
procedure does not take into consideration the local structure of the interatomic potentials when
setting up the global quantities. In contrast, in a classical finite element calculation, the global
quantities are assembled from lower dimensional element-wise contributions. As the atomistic
structure is discrete from nature, a discretisation and potentially a mesh refinement is not required.
To make the assemblage process available for molecular statics, an equivalent to the standard finite
element is necessary. This design is possible and known as atom-related finite element. One variant
of this type was established by Liu et al. [30] and is named atomic-scale finite element (AFEM).
Wackerfuß [56] proposed a similar approach also suitable for various interatomic potentials. With
such an element-wise description, the extensive use of existing finite element frameworks is possible.
This enables the effective use of assemblage algorithms and solvers. Additionally, a decisive
advantage is the usage of available stability analysis tools. In particular, bisection algorithms
and branch switching procedures are of interest. In what follows, appropriate finite elements will
be given for the bonded and the non-bonded interactions.

3.4.1 The atom-related finite element for the Tersoff-Brenner potential

In this section, the equivalent finite element design for the bonded interactions is given on the basis
of the approach of Wackerfuß [56]. In an atom-related description, a finite element is defined for
each atom of the whole structure by the interaction of this reference atom with its neighbouring
atoms. For this formulation, the interacting range of the interatomic potential is essential. This
range includes all atoms of the entire structure, which are in direct relation with the reference
atom through the description of the interatomic potential. For the Tersoff-Brenner interatomic
bond-order potential, this range is illustrated in Figure 3.2. The corresponding patch consists of
the reference atom 0, its first neighbours 1, 2 and 3 and its second neighbours 4, 5, 6, 7, 8 and 9,
resulting in an atom-related 10-node finite element. For this patch, the element-wise energy as well
as the element force vector and the element stiffness matrix have to be defined properly. If this is
done the same way as in classical finite element methods, double counting of element contributions
would occur. In a first step, the bonded energy per bond according to Equation (2.8) is split up
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Figure 3.2: The relevant neighbourhood of the reference atom and the structure of the atom-related
10-node finite element equivalent for the Tersoff-Brenner bond-order potential.

into the parts per atom i and j because of aij = aji being valid.

Eij = +
1

2
VR (aij)−

1

2
Bij (aik, ail, θijk, θijl)VA (aij)

+
1

2
VR (aji)−

1

2
Bji (ajm, ajn, θjim, θjin)VA (aji) (3.28)

Then, a list Lijkl containing the relevant atom interactions (bond lengths a and valence angles θ)
of the atom-related 10-node finite element is defined.

Lijkl = {(0, 1, 2, 3) , (0, 2, 3, 1) , (0, 3, 1, 2) , (1, 0, 4, 5) , (1, 4, 5, 0) , (1, 5, 0, 4) ,

(2, 0, 6, 7) , (2, 6, 7, 0) , (2, 7, 0, 6) , (3, 0, 8, 9) , (3, 8, 9, 0) , (3, 9, 0, 8)} (3.29)

The use of this list allows the specification of an element-related bonded energy.

πeb =
∑

Lijkl

1

2
[VR(aij)−Bij (aik, ail, θijk, θijl)VA(aij)] (3.30)

For the calculation of the total bonded energy of the structure only the first three entries of Lijkl
must be taken to avoid double counting of energy contributions upon assembling. The sum over
in total 12 terms is only necessary for the calculation of the element force vector and the element
stiffness matrix as it contains all expressions depending on the position of the element central
atom. The overlapping of adjacent finite elements can lead to double counting of the elemental
contributions in the global force vector as well as in the global stiffness matrix. This double counting
is avoided by only considering the influence of the neighbouring nodes on the reference node (node
0) and not the other way round. Starting from the element-related energy πeb, the element force
vector feb and the element stiffness matrix Ke

b can be generated by the first-order and second-order
derivatives with respect to the positions of the reference node and its neighbouring nodes.

feb =
∂πeb
∂x0

(3.31)

Ke
b =

[
∂2πeb
∂x0∂x0

∂2πeb
∂x0∂x1

· · · ∂2πeb
∂x0∂x9

]
(3.32)
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The essential first-order and second-order derivatives are:

∂πeb
∂x0

=
∑

Lijkl

1

2

[
∂VR

∂x0
−Bij

∂VA

∂x0
− ∂Bij

∂x0
VA

]

=
∑

Lijkl

1

2

[
(V ′R −BijV ′A)

∂aij
∂x0

−
(
∂Bij
∂aik

∂aik
∂x0

+
∂Bij
∂ail

∂ail
∂x0

+
∂Bij
∂θijk

∂θijk
∂x0

+
∂Bij
∂θijl

∂θijl
∂x0

)
VA

]

(3.33)

∂2πeb
∂x0∂xα

=
∑

Lijkl

1

2

[
∂2VR

∂x0∂xα
−Bij

∂2VA

∂x0∂xα
− ∂VA

∂x0
⊗ ∂Bij
∂xα

− ∂Bij
∂x0

⊗ ∂VA

∂xα
− ∂2Bij
∂x0∂xα

VA

]

=
∑

Lijkl

1

2

[
(V ′′R −BijV ′′A )

∂aij
∂x0

⊗ ∂aij
∂xα

+ (V ′R −BijV ′A)
∂2aij
∂x0∂xα

− V ′A
∂aij
∂x0

⊗
(
∂Bij
∂aik

∂aik
∂xα

+
∂Bij
∂ail

∂ail
∂xα

+
∂Bij
∂θijk

∂θijk
∂xα

+
∂Bij
∂θijl

∂θijl
∂xα

)

− V ′A
(
∂Bij
∂aik

∂aik
∂x0

+
∂Bij
∂ail

∂ail
∂x0

+
∂Bij
∂θijk

∂θijk
∂x0

+
∂Bij
∂θijl

∂θijl
∂x0

)
⊗ ∂aij
∂xα

−
(
∂Bij
∂aik

∂2aik
∂x0∂xα

+
∂Bij
∂ail

∂2ail
∂x0∂xα

+
∂Bij
∂θijk

∂2θijk
∂x0∂xα

+
∂Bij
∂θijl

∂2θijl
∂x0∂xα

+
∂2Bij
∂aik∂aik

∂aik
∂x0

⊗ ∂aik
∂xα

+
∂2Bij
∂aik∂ail

∂aik
∂x0

⊗ ∂ail
∂xα

+
∂2Bij

∂aik∂θijk

∂aik
∂x0

⊗ ∂θijk
∂xα

+
∂2Bij

∂aik∂θijl

∂aik
∂x0

⊗ ∂θijl
∂xα

+
∂2Bij
∂ail∂aik

∂ail
∂x0

⊗ ∂aik
∂xα

+
∂2Bij
∂ail∂ail

∂ail
∂x0

⊗ ∂ail
∂xα

+
∂2Bij

∂ail∂θijk

∂ail
∂x0

⊗ ∂θijk
∂xα

+
∂2Bij
∂ail∂θijl

∂ail
∂x0

⊗ ∂θijl
∂xα

+
∂2Bij

∂θijk∂aik

∂θijk
∂x0

⊗ ∂aik
∂xα

+
∂2Bij

∂θijk∂ail

∂θijk
∂x0

⊗ ∂ail
∂xα

+
∂2Bij

∂θijk∂θijk

∂θijk
∂x0

⊗ ∂θijk
∂xα

+
∂2Bij

∂θijk∂θijl

∂θijk
∂x0

⊗ ∂θijl
∂xα

+
∂2Bij

∂θijl∂aik

∂θijl
∂x0

⊗ ∂aik
∂xα

+
∂2Bij
∂θijl∂ail

∂θijl
∂x0

⊗ ∂ail
∂xα

+
∂2Bij

∂θijl∂θijk

∂θijl
∂x0

⊗ ∂θijk
∂xα

+
∂2Bij

∂θijl∂θijl

∂θijl
∂x0

⊗ ∂θijl
∂xα

)
VA

]
(3.34)

where α = 0, 1, . . . , 9 runs over all nodes of the element. As a result of this definition for the
elemental contributions, the global force vector and the global stiffness matrix can be assembled
line by line. The global stiffness matrix resulting from this process is then symmetric and due to
the local character of the interatomic potential also sparse.

3.4.2 The finite element for modelling non-bonded interactions

As already pointed out in Section 2.4, a non-bonded interaction involves two atoms i and j of
the structure. It is therefore an obvious choice to model this property by a two-node spring
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element. This spring element based on the Lennard-Jones interatomic pair-potential has a non-
linear behaviour on the bond length aij with the element-related potential given as follows.

πenb = Vnb (aij) (3.35)

The element force vector fenb can be calculated by:

fenb =

[
∂Vnb(aij)

∂xi
∂Vnb(aij)
∂xj

]
= V ′nb (aij)

[
∂aij
∂xi
∂aij
∂xj

]
= V ′nb (aij)

aij
aij

[
−1

+1

]
(3.36)

The element stiffness matrix Ke
nb is given by:

Ke
nb =



∂2Vnb(aij)
∂xi∂xi

∂2Vnb(aij)
∂xi∂xj

∂2Vnb(aij)
∂xj∂xi

∂2Vnb(aij)
∂xj∂xj




=


V
′′
nb (aij)

∂aij
∂xi
⊗ ∂aij

∂xi
+ V ′nb (aij)

∂2aij
∂xi∂xi
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(3.37)

Applying an appropriate assemblage procedure, this local elemental contributions can be brought
to the global level. As a consequence of the non-bonded interactions built by arbitrary pairs of
atoms, additional entries in the global stiffness matrix are generated. The long-range character
thus ends up in an increased bandwidth of the global stiffness matrix.

3.5 Numerical examples on buckling of carbon nanotubes

The aims of this section are the numerical testing of the molecular statics approach based on the
formalism of the finite element method and the investigation into the influence of non-bonded
interactions on the buckling behaviour of carbon nanotubes. For this purpose, a stand-alone finite
element code including the essential algorithms for the entire buckling analysis was developed.
In numerical simulations, various configurations with and without non-bonded interactions are
investigated. In order to reduce the total number of possible non-bonded interactions, an upper
cut-off radius is introduced in certain simulations to exclude pairs of atoms with a large distance.
In the selection of this barrier, the deliberations of Subsection 2.4.1 serve as a guide for the specific
cut-off radius in the relevant simulations. The use of such a cut-off radius results in a varying total
number of non-bonded interactions depending on the current state of deformation. Therefore, an
additional loop around the current load step is accomplished. At the start of each of these runs,
a list that contains all relevant non-bonded interactions is updated. In doing so, the distance
between all potential pairs of atoms is checked, and those interactions that are beneath the cut-off
radius are gathered. Then, the related equilibrium configuration is calculated on the basis of this
current set of non-bonded interactions. Once the actual number of non-bonded interactions remains
constant, the complemental loop is terminated. Subsequently, the next and following load steps are
investigated in the same manner. In the absence of the cut-off radius, a simplified procedure can
be applied because the total number of non-bonded interactions is constant throughout the entire
loading. Thus, the additional update loop is not needed, and the list of relevant interactions is
evaluated just once at the outset of the simulation. The numerical results are given for single-walled
(SWCNT) and double-walled (DWCNT) carbon nanotubes under different loading conditions. The
simulation results are compared, if available, with corresponding results from the literature.
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3.5.1 Single-walled carbon nanotubes under torsional load

The examples on carbon nanotubes under torsional load are performed by a displacement-driven
mode. In a first step of the analysis, the tube is relaxed and the resulting state is the basis for the
further calculations and the ground state for all energies. The torsional load is applied by rotating
both ends of the relaxed tube in opposite direction while holding their axial positions fixed.

Perfect and imperfect structure

In this first twisting example, a (20,0) zig-zag carbon nanotube with a length of 19 honeycomb
cells under twisting load is spotted. Calculations are performed for a faultless structure, and for an
imperfect structure. The same carbon nanotubes were also simulated by Wackerfuß [56] although
different boundary conditions were used. Here, boundary conditions representing the torsional
load are implemented as displacement constraints on the outermost atoms of both tube ends.
In particular, the axial positions of the considered atoms are fixed whereas their circumferential
positions are prescribed. By rotating the atoms with their relaxed radius around the axis of the
nanotube, the required displacements are specified. Thereby, the twisting is accomplished by the
fact that the atoms of each side are rotated in opposite directions. Within this series of simulations,
the non-bonded interactions modelling is not included. The first intent of this example is to show
the difference between the unstable and the stable deformation paths. The second objective is to
illustrate the possibility of simulating carbon nanotubes with vacancy defects on the basis of the
atom-related finite element. The perfect structure has 800 atoms. For the imperfect structure, one
carbon atom is removed so that it has 799 remaining atoms. The diagram on the left side in Figure
3.3 presents the evolutions of the total energy, respectively, for the twisted tubes with respect to
the twisting angle applied on each side. In the course of this, the number of load increments was
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Figure 3.3: Molecular statics approach: The total energy evolutions for the twisted (20,0) carbon
nanotubes and the corresponding deformed structures with colour mapping of the local
total energy per atom [eV/atom] for the unstable (top), the buckled stable (middle)
together with the defective tube (bottom).

21 for both calculations with the perfect nanotube and 19 for the analysis of the defective carbon
nanotube. The curves for the perfect tube coincide up to an angle of 7.546◦ where it loses stability.
After that point in a first calculation, the unstable path is further followed leading to a nearly
quadratic energy plot. The final deformed unstable configuration is given in the topmost images
on the right side showing a lateral and a front view. In a second calculation, a branch switch is
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performed at the critical point and the resulting buckled configuration is continued twisting. The
associated energy versus twisting angle shows a nearly linear behaviour for this stable path. The
total energy for the stable path is indeed lower than the total energy for the unstable path after
passing the critical point of stability. For this stable path, the corresponding buckled structure is
plotted in the central images on the right. The third curve in this figure represents the defective
tube. This energy curve alters from an approximately quadratic region to a nearly linear one
with increasing twisting angle. The defected nanotube has a lower energy level than the perfect
ones throughout the whole loading cycle. The lowermost images on the right side show the two
views for the imperfect structure. Within these images, the vacancy defect and the missing bonds
can be seen. The colour mapping in all illustrations presents the local change in total energy
per atom relative to the relaxed nanotube. Although globally the unstable configuration has the
highest value of the average total energy, the locally highest value arises in the imperfect structure
near the absent atom. A similar buckled pattern for the ideal tube and a matchable deformed
configuration of the defective nanotube were obtained by Wackerfuß [56]. These facts indicate the
proper implementation of the atom-related finite element.

Folding under torsional load

In this example, a (10,10) single-walled armchair carbon nanotube with a length of 100 honeycomb
cells is twisted. This tube has 4000 carbon atoms in total. The aim of this example is to show the
importance of the in-layer non-bonded interactions, when simulating the buckling of single-walled
carbon nanotubes. The in-layer non-bonded interactions exclude all pairs of atoms that are within
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Figure 3.4: Molecular statics approach: The energy evolutions for the twisted (10,10) carbon
nanotube with markers at the four instability points. The associated twisting angles
of the critical states are 28.557◦, 50.434◦, 186.500◦ and 205.579◦.
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three covalent bonds (3rd neighbours or 1-4 interactions) as well as all pairs that have a distance
larger than a specific cut-off radius. For this example, an upper cut-off radius of 1.8 nm is applied
in order to include potential non-bonded interactions of diametrically opposed atoms right from
the beginning of the calculation. In a first step, the tube under consideration is relaxed and the
corresponding energies are used as reference. In what follows, the relaxed tube is twisted up to
the first bifurcation point at an angle of 28.557◦. At this point, the corresponding eigenvector is
calculated and a branch switch into the lower energy mode is performed. After further twisting to
an angle of 50.434◦, the structure reaches another instability point. A bifurcation into the stable

Figure 3.5: Molecular statics approach: The deformed structures of the twisted (10,10) carbon
nanotube with colour mapping of the local bonded energy per atom [eV/atom] (left)
and the local non-bonded energy per atom [eV/atom] (right) for different twisting
angles of 0.0◦, 28.557◦, 50.434◦, 186.500◦, 205.579◦, 360.0◦ aligned from rear to front.

path then gives a structure where the opposite walls at the centre of the tube close up to the van
der Waals equilibrium distance. If the in-layer non-bonded interactions were not considered, the
opposite walls would intersect. On further twisting, this closing proceeds to both ends of the tube.
At an angle of 186.500◦, the opposite walls of the tube are all closed up and another bifurcation

Figure 3.6: Molecular statics approach: The deformed structure of the twisted (10,10) carbon
nanotube in the last load step at a twisting angle of 360.0◦ on each end with colour
mapping of the local total energy per atom [eV/atom].

point is detected. The corresponding stable deformation path gives a structure where the walls
of the tube start to fold onto itself. At the centre of the tube, this folding is finished at an angle
of 205.579◦, where the walls come to equilibrium non-bonded distance. The process of folding is
then forced to both sides of the tube. At a twisting angle of 360.0◦ on each end, the loading of the
nanotube is finished using a total number of 128 increments. Figure 3.4 shows the evolution of the
bonded energy as well as the non-bonded energy and the total energy as a function of the twisting
angle. Within these curves, the four instability points are highlighted with markers. The relaxed
tube and the deformed structures of the nanotube at the specified bifurcation points can be seen
in Figure 3.5 together with the final folded configuration. Thereby, the colour mapping represents
the local changes in bonded and non-bonded energy per atom relative to the relaxed tube. In
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addition, Figure 3.6 displays the folded carbon nanotube in the last load step at a twisting angle
of 360.0◦ on each end with a colour mapping of the local changes in total energy. Comparable
folded structures and related energy curves for this twisted single-walled carbon nanotube were
determined by Arroyo [2] and Arroyo and Belytschko [4, 5, 6]. However, this comparison can only
be done qualitatively as the detailed specification of their non-bonded interaction modelling is
not available. Although this fact is obvious, a similar behaviour of the energy evolutions can be
observed. To sum up, the modelling of in-layer non-bonded interactions is of great importance for
the simulation of this single-walled carbon nanotube under torsion because otherwise intersection
would occur and the folding would not be possible.

3.5.2 Single-walled carbon nanotubes under axial compression

The examples on axially loaded carbon nanotubes are analysed either by a displacement-driven or
a force-driven simulation. Again, the first step of the analysis is the relaxation process to achieve
a reference configuration for the further calculations and a ground state for the energies.

(8,0) carbon nanotube under axial compression

This example investigates an (8,0) zigzag carbon nanotube with a length of 19 hexagonal cells under
displacement-driven axial compression. The atomistic structure is composed of 320 atoms resulting
in a modelling with the same amount of atom-related finite elements. Within this example, the
non-bonded interactions are not incorporated at all. The deformed structures and the evolution
for the total energy can be found in Figure 3.7. The diagram shows the total energy versus axial
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Figure 3.7: Molecular statics approach: The total energy evolutions of the (8,0) carbon nanotube
under axial compression. Comparison between the stable and the unstable deformation
paths. Deformed structures of the stable path with a colour mapping of the local total
energy per atom [eV/atom] for the relaxed tube (topmost), the first bifurcation point
(second from top), the buckled tube at the second instability point (third from top)
and the final state (undermost).

compression evolution for the stable and the unstable paths of the deformation. Thereby, the
final unstable configuration was received after 21 load steps whereas for the entire stable path, 46
increments, mainly due to the necessity of two bisections and the subsequent branch switchings,
were necessary. At the beginning, the total energy increases nearly quadratically up to the first
critical point. Because of the symmetries of the structure, two zero eigenvalues are present at the
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instability point. This point is detected at an axial compression of 7.919% with an corresponding
average total energy of 0.1150 eV/atom. The values at the bifurcation point show a perfect match
with the results of Wackerfuß [56]. After this bifurcation point, two different paths can be followed.
The first possibility is the continuation of the primary path, which is now unstable. The alternative
is a branch switch with the eigenform of the critical point leading to the stable postbuckling path
with slightly lower energy than the unstable path. The resulting buckled configuration is similar to
the Euler-beam-buckling mode with two-sided clamped constraints. On further axial compression,
the tube moves sideways more and more, causing a bending load in the tube. At an axial strain
of 8.104% and a relative total energy of 0.1204 eV/atom, the next instability occurs. This critical
point gives a buckling mode similar to the modes obtained for single-walled carbon nanotubes
under bending load of Subsection 3.5.3, building a kink in the middle of the tube. With the branch
switch into this path, the total energy curve changes to an approximately linear dependence on the
axial strain. The images on the right side of Figure 3.7 give the four most important configurations
of the stable path for the (8,0) carbon nanotube under axial compression. The topmost picture
is the relaxed nanotube whereas the second picture from top shows the configuration at the first
bifurcation point. The next image illustrates the Euler-like buckled tube at the point where it
loses its stability. The picture at the bottom presents the final deformed structure with the kink
in the middle. All the images show a colour mapping of the local total energy per atom.

(18,0) carbon nanotube under axial compression

This example is about an axially compressed (18,0) zig-zag carbon nanotube with a length of 39
honeycomb cells. On both ends of the tube axial, forces are applied to generate the compression. In
order to avoid a global Euler-like buckling mode as observed in the previous example, additional
displacement constraints have to be incorporated. A straightforward implementation of these
constraints requires the existence of atoms at the four quadrants of the circular cross section of
the relaxed tube. This condition is fulfilled by the investigated (18,0) zig-zag carbon nanotube. In
addition, because of a length of 39 honeycomb cells, the tube’s middle is not occupied by atoms.
Thus, the eight atoms located at the four quadrants of the two cross sections that are immediately
adjacent on both sides to the middle of the tube are essential. These eight atoms are constrained
to move solely in radial direction so that the global buckling mode is prevented. Within this force-
driven simulation, the first buckling mode is analysed and the non-linear load-deformation path
is calculated with the help of a modified Riks algorithm as given in Hibbitt et al. [25]. Further
informations on path-following procedures can be found for instance in Riks [43], Wriggers [61] and
Bonet and Wood [9]. Three different calculations are performed, where the first simulation is done
without modelling non-bonded interactions at all. In a second analysis, non-bonded interactions are
excluded up to the 1-4 interactions (3rd neighbours) and with no upper cut-off radius. Finally, in a
third calculation, non-bonded interactions are excluded up to the 2nd neighbours (1-3 interactions)
and without the implementation of an upper cut-off radius. The instability points are detected
using an accompanying eigenvalue analysis and a bisection algorithm. In particular, the obtained
critical values of axial compression ε are: 4.491% (all non-bonded interactions excluded), 4.407%
(up to third neighbours non-bonded interactions excluded) and 4.192% (up to second neighbours
non-bonded interactions excluded). After locating the exact instability point, a branch switching
is performed to follow the corresponding postbuckling paths. Figure 3.8 reports the total energy -
axial compression ε and the load factor λ - axial compression ε diagrams for all simulations. The
number of load increments that were required to specify the respective final buckled configuration
is as follows: 99 (all non-bonded interactions excluded), 108 (up to third neighbours non-bonded
interactions excluded) and 113 (up to second neighbours non-bonded interactions excluded). With
respect to total energy, the behaviour is approximately quadratic in the primary deformation
path and changes to a nearly linear curve in the postbuckling regime. The load factor λ - axial
compression ε plot starts with a linear part, which is followed by a snap back. This attribute
is also observed in the buckling of thin cylindrical shells under axial compression as for instance
reported in von Kármán and Tsien [55] and Wohlever and Healey [60]. In their simulations on
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Figure 3.8: Molecular statics approach: The total energy - axial compression ε evolutions and
the load factor λ - axial compression ε diagrams of the (18,0) carbon nanotube under
force-driven axial compression. Comparison between different variants for modelling
the in-layer non-bonded interactions.

axial compression of carbon nanotubes, Pantano et al. [39] obtained comparable postbuckling
diagrams with an elastic shell theory. By comparing the three simulations, it turns out that
the inclusion of the 1-4 non-bonded interactions results in a stiffer response of the tube under
compression than the other two analyses. This is due to the repulsive character of these additional
“mid-range” interactions that react against the external load in axial direction. Taking the tube
without non-bonded interactions as reference, the inclusion of non-bonded interactions leads to a
softer (1-4 interactions excluded) or a harder response (1-4 interactions included) of the carbon
nanotube in the first part of the postbuckling regime. In the middle region of deformation, the
non-bonded interactions soften the global response. At the end of deformation, the inclusion of non-
bonded interactions prevents the nanotube from self-intersection and stiffens its behaviour under
compression. Figure 3.9 shows the resulting postbuckling pattern with the three perpendicular
fins at the end of deformation. The colour mapping indicates the local changes in bonded energy

Figure 3.9: Molecular statics approach: The deformed structures of the axially compressed (18,0)
carbon nanotube with colour mapping of the local bonded energy per atom [eV/atom]
(left) and the local non-bonded energy per atom [eV/atom] (right) for the simulations
with included 1-4 non-bonded interactions, excluded 1-4 non-bonded interactions and
completely without non-bonded interactions, aligned from rear to front.

(left) and non-bonded energy (right) relative to the relaxed carbon nanotube. At the back, the
simulation with included 1-4 non-bonded interactions is illustrated whereas the middle pictures
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report the tube with excluded 1-4 non-bonded interactions and the images in the front show
the tube without non-bonded interactions. Comparable buckled structures are reported in the
literature for example by Arroyo [2], Arroyo and Belytschko [5], Leung et al. [29], Liu et al. [30],
Liu et al. [31], Pantano et al. [39], Sears and Batra [45], Sun and Liew [50] and Yakobson et al.
[62] for various carbon nanotubes under axial compression. This example depicts a possible variant
for the evaluation of complex non-linear load-deformation graphs with the help of path-following
algorithms. The handling of these intricate paths confirms the reliability of the implementation.
Within this example, the need for an inclusion of non-bonded interactions is highlighted once
more and the influence of their particular modelling is worked out. Additional investigations on
the influence of the different variants for modelling non-bonded interactions are performed in the
following simulations on carbon nanotubes under bending.

3.5.3 Bending of carbon nanotubes

Here, two types of displacement-driven loading are distinguished: the so-called ideal bending and
the sharp bending type, which differ in the way of applying the bending constraints. In a first step
for both models, the nanotube is relaxed to achieve an unbent tube. This unbent carbon nanotube
owns its characteristic diameter and length, which are further necessary for the calculation of the
displacement constraints. In addition, the relaxed carbon nanotube serves as energy ground state.
Figure 3.10 illustrates the relaxed carbon nanotube with two constrained ends. Moreover, for a
given bending angle α, the locations of these ends are given for the two different types of bending
constraints. The detailed evaluation of the prescribed locations is specified in the following.

replacements

αα

αα

tube’s middle

relaxed tube

ideal bending

sharp bending

constrained

left end

constrained

right end

Figure 3.10: Molecular statics approach: Illustration of the displacement-driven ideal bending and
sharp bending type. The relaxed carbon nanotube with two constraint ends and the
resulting locations for these ends if the displacement constraints dedicated to ideal
and sharp bending are applied for the same bending angle.

• Ideal bending

Within the ideal bending, the ends of the tube are rotated rigidly in opposite direction. The
positions of the corresponding atoms (two rows per side) can be calculated by assuming that
the deformed centerline forms an arc having the fixed length of the relaxed tube. The cross
sections of the constrained endings are perpendicular to the ideal deformed axis during the
entire loading. In contrast to a pure bending mode, the cross sections of the constrained ends
remain circular whereas cross sections in the middle of the bent tube become oval.

• Sharp bending

Within the type of sharp bending, the constraints are imposed as follows. Starting from
the relaxed tube, the bending constraints are imposed by rotating both ends of the tube in
opposite direction. This rotation is performed about an axis through the tube’s middle and
perpendicular to the centerline of the relaxed tube. Here, on both ends, two rows of atoms are
constrained. These two rows per end therefore undergo a rigid body rotation with constant
distance from the pivot. As a consequence, the cross sections of these rows remain circular
throughout the whole process of loading.
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In Figure 3.10, the dashed-dotted green line represents the centerline of the relaxed tube having
its associated length. Applying the indicated bending procedures for a given bending angle α, the
locations of the constrained ends can be specified. Thereby, the length of the dashed-dotted blue
line (ideal bending) and the length of the dashed-dotted red line (sharp bending) are even and
equivalent to the length of the relaxed tube. In addition, it can be seen that for the same bending
angle, the sharp bending type generates a larger deformation compared to the ideal bending type.

Single-walled carbon nanotube under ideal bending

This first example deals with a single-walled (10,10) armchair carbon nanotube with a length of
40 honeycomb cells under displacement-driven ideal bending loading. The aim of this example
is to show the effect of modelling the in-layer non-bonded interactions. For this purpose, three
different settings are distinguished. In the first one, the non-bonded interactions are completely
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Figure 3.11: Molecular statics approach: The energy evolutions for the ideally bent (10,10) carbon
nanotube. Comparison between the different types of modelling in-layer non-bonded
interactions.

neglected. In the second case, all non-bonded interactions between atoms up to three bonds
apart (1-4 interactions) are disregarded. In the last modelling step, only the non-bonded pairs of
atoms up to two bonds distance (1-3 interactions) are excluded. In addition, in the two settings,
which consider in-layer non-bonded interactions, an upper cut-off radius of 1.8 nm is implemented.
In all cases, the carbon nanotube is bent to the point where the structure loses stability. The
associated critical bending angles are 18.914◦ (all non-bonded interactions excluded), 18.313◦ (up
to third neighbours non-bonded interactions excluded) and 17.030◦ (up to second neighbours non-
bonded interactions excluded). At this point, the corresponding eigenform is superimposed, and
the buckled configuration featuring a single kink in the middle of the tube is further bent. The
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loading was always applied in 25 steps and ends at a bending angle of 22.0◦. Figure 3.11 shows
the evolution of the energies for the different simulation setups. From this it can be seen that the
case of only excluding non-bonded interactions up to the second neighbours gives slightly different
energy plots compared with those of the other two variants. Especially, the non-bonded energy
starting with an initial ascent suffers a large decrease at the buckling point. Another interesting
fact is the jump of the bonded energy to a higher level after the instability is passed while both
remaining variants show a drop in this curve. The combination of both energies leads to a decay
in the buckled configuration, which strengthens the principle of minimum energies for the stable
path. A clarification and explanation for the occurrence of a jump in the energy evolutions at
the corresponding buckling point is given in the studies of Subsection 4.9.3. With regard to the
total energy behaviour, the second neighbours variant is subjected to the highest energy level
throughout the whole loading process. It can also be seen that the critical buckling angle depends
on the type of modelling the non-bonded interactions with the second neighbours variant exhibiting
the lowest critical angle. In conclusion, it can be said that the non-bonded interactions modelling
with the second neighbours variant imposes additional stretching of bonds. This is because the
small distance between atoms only three bonds apart results in high repulsive non-bonded forces.
Figure 3.12 shows the mapping of the local bonded and non-bonded energy per atom for the final

Figure 3.12: Molecular statics approach: The deformed structures of the ideally bent (10,10)
carbon nanotube with colour mapping of the local bonded energy per atom [eV/atom]
(left) and the local non-bonded energy per atom [eV/atom] (right) for different types
of in-layer non-bonded interactions modelling. The topmost structures show the
second neighbours variant (1-4 interactions included) and the middle ones the third
neighbours variant (1-4 interactions excluded) whereas the lowermost are modelled
completely without non-bonded interactions.

configurations of the different variants at 22.0◦ of bending angle. The colouring gives the relative
changes in energies with the relaxed nanotubes as basis. Here again, the locally largest increase in
energies can be found in the second neighbours variant.

Single-walled carbon nanotube under sharp bending

In this second example, the single-walled (10,10) armchair nanotube with a length of 40 hexagon
cells from the previous simulation is studied again. Now, the loading is applied in the sharp bending
variant up to an angle of 22.0 degrees. The non-bonded interactions are once again modelled with
the three different variants from before. The energy plots for these settings were computed by
means of 25 load increments and are given in Figure 3.13. Again, the second neighbours variant
diverges from the other types with its bonded energy being lower and its non-bonded energy being
higher during the loading process. The critical bending angle for this variant is lower compared
to the others as well. In particular, the obtained critical bending angles are as follows: 11.533◦

(all non-bonded interactions excluded), 11.339◦ (up to third neighbours non-bonded interactions
excluded) and 10.890◦ (up to second neighbours non-bonded interactions excluded). When it comes
to the total energies, all variants show a decay when switching from the primary path to the buckled
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Figure 3.13: Molecular statics approach: The energy evolutions for the sharply bent (10,10) carbon
nanotube. Comparison between the different types of modelling in-layer non-bonded
interactions.

Figure 3.14: Molecular statics approach: The deformed structures of the sharply bent (10,10)
carbon nanotube with colour mapping of the local bonded energy per atom [eV/atom]
(left) and the local non-bonded energy per atom [eV/atom] (right) for different types
of in-layer non-bonded interactions modelling. The topmost structures show the
second neighbours variant (1-4 interactions included) and the middle ones the third
neighbours variant (1-4 interactions excluded) whereas the lowermost are modelled
completely without non-bonded interactions.
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3 Molecular statics

configuration branch. These buckled structures show a single bulge in the tube middle section that
can be seen in Figure 3.14, which maps the local changes in bonded and non-bonded energy per
atom. When the bending angle gets larger then about 17◦, the alternate sides of the tube’s middle
section attain the van der Waals equilibrium distance for the non-bonded interactions. This is
characterised by a flattening and a subsequent increase in the non-bonded energy evolutions. In
Figure 3.14, it can be seen that the opposite zones of the undermost tube have already moved
closer compared with the other variants. This confirms the need for an inclusion of in-layer non-
bonded contributions to avoid self-intersections of the tube on further bending. In the case of
sharp bending, the locally highest increase in bonded energy is detected in the variant without
non-bonded contributions due to the sharper kink.

Single-walled carbon nanotube: ideal bending versus sharp bending

This survey compares the behaviour of the single-walled (10,10) carbon nanotube with a length
of 40 honeycomb cells under ideal bending loading with the one of the sharp bending scenario.
The objective of this section is to demonstrate the influence of the displacement constraints on the
deformation characteristics of the bent nanotubes. From the three variants of modelling the non-
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Figure 3.15: Molecular statics approach: The energy evolutions for the comparison between the
ideally and sharply bent (10,10) carbon nanotube.

bonded interactions, the one excluding all interactions up to the third neighbours (1-4 interactions)
is picked up for comparison. For this, the corresponding results of the preceding studies are reused.
Figure 3.15 plots the energy evolutions for both types of loading. The curves for the bonded energy
shows that the sharp bending leads to higher values before buckling and to lower values after a
certain bending angle. This is a result of the bending displacement constraints that lead to a
larger strain in the middle of the tube for the sharp bending mode. As a consequence, the critical

35



3 Molecular statics

bending angle is reached earlier for this mode, too. To be more accurate, the ideally bent carbon
nanotube buckles at a bending angle of 18.313◦ whereas the sharply bent nanotube loses stability
at a bending angle of 11.339◦. Nevertheless, both types of loading end up with a single buckle in
the nanotube. Similar results of buckled configurations are for instance reported in the papers of
Arroyo and Belytschko [3], Cao and Chen [12], Guo et al. [23], Iijima et al. [26], Mylvaganam et al.
[36], Pantano et al. [40], Sun and Liew [49] and Yakobson et al. [62] for bent single-walled carbon
nanotubes with mixed dimensions. The change in non-bonded energy relative to the relaxed tube
shows a decrease for both loading modes. For the sharp bending mode, an increase in non-bonded
energy at higher bending angles can be observed. This is the result of the opposite wall faces
that converge to the range of the van der Waals equilibrium distance bewaring the nanotube from
self-intersection. The evolution of the total energy shows a jump to lower energy for both loading
versions. At the beginning of the loading, the sharp bending mode has a higher total energy level.
This fact changes at an angle of about 15◦ when the ideal bending mode reaches a higher total
energy. The deformed structures for the end of loading at 22.0◦ are given in Figure 3.16 with
colour mappings of the relative local changes in bonded and non-bonded energy per atom. The
ideally bent tube on the top has a smoother buckle compared with the sharply bent nanotube on
the bottom.

Figure 3.16: Molecular statics approach: Comparison between the deformed structures of the
ideally (top row) and the sharply (bottom row) bent (10,10) carbon nanotube with
colour mapping of the local bonded energy per atom [eV/atom] (left) and the local
non-bonded energy per atom [eV/atom] (right).

Double-walled carbon nanotube under bending

In this example, a (10,10) - (15,15) double-walled carbon nanotube with 50 hexagonal cells in
length under bending load is considered. A comparison between sharp and ideal bending is
performed. With respect to the non-bonded interactions, the influence of the in-layer and inter-
layer interactions is analysed. For the in-layer non-bonded properties, possible interactions are
excluded up to the third neighbours (1-4 interactions). In addition, for both types of non-bonded
interactions, an upper cut-off radius of 0.9 nm is introduced to reduce the large amount of potential
interactions. Whereas the inner layer owns 2020 atoms, the larger outer layer has 3030 atoms. The
diameters of the two walls are chosen such that the space between them is approximately the van
der Waals equilibrium distance. In a first calculation step, the multi-walled carbon nanotube is
relaxed to get a reference configuration. This relaxed tube is the basis for applying the different
displacement constraints. Altogether, 23 increments were relevant for each bending procedure
to obtain the final buckled structure. Figure 3.17 reports the energy graphs for both types of
loading. As already perceived in the numerical examples on single-walled nanotubes, the sharply
bent double-walled carbon nanotube again reaches the critical point earlier than the ideally bent
tube. In particular, the ideal bending mode gives an associated bending angle of 14.219◦ and the
sharp bending mode results in a bending angle of 9.775◦. A response similar to the examples above
can also be found in the total energy progress with the ideal bending mode having a lower level
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Figure 3.17: Molecular statics approach: The energy evolutions for the comparison between the
ideally and sharply bent (10,10) - (15,15) carbon nanotube.

at the beginning and a higher level at the end of deformation. In all curves, the buckling point is
characterised by a jump in energy. In Figure 3.18, it can be seen that the buckled configurations
exhibit a single kink in the middle of the double-walled tubes. After passing the buckling point,
the non-bonded energy jumps to a higher level in both modes. After that, it slightly increases
followed by a new decrease to a local minimum. At this stage, the opposite walls of the inner
layer come into relevant self-contact within approximately the van der Waals equilibrium distance
for the non-bonded interactions. This can be seen in particular for the sharply bent type due
to its earlier appearance. The ideally bent tube shows a similar response at a larger bending
angle. After passing this local minimum, the approached walls of the inner layer are forced to
move closer. This pushes them out of the equilibrium distance, resulting in an increase of the
non-bonded energy. Figure 3.18 reports the deformed configurations for the bent double-walled
carbon nanotube mapping the local change in both bonded and non-bonded energy relative to the
relaxed tube. The three structures at the top represent the ideally bent tube with a fragmentation
into outer and inner wall and their combination with translucent outer layer. The same method of
illustration is performed for the sharply bent nanotube in the three images at the bottom. It can
be observed that the ideal bending mode forms a smoother buckle than the sharp bending mode.
Locking at the different walls, the kink in the outer layer is sharper for both types of bending
loading. Comparable results for the sharply bent carbon nanotube with the same dimensions can
be found in Arroyo [2] and Arroyo and Belytschko [5]. The single kinks in the middle of bent
double-walled carbon nanotubes were reported by Iijima et al. [26] as well. When focusing on the
buckle, the significance of the inter-layer non-bonded interactions comes into play. This type of
interactions ensures that the kink develops in both walls of the tube and that penetration does
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Figure 3.18: Molecular statics approach: Comparison between the deformed structures of the
ideally and sharply bent (10,10) - (15,15) carbon nanotubes with colour mapping of
the local bonded energy per atom [eV/atom] (left) and the local non-bonded energy
per atom [eV/atom] (right). The three images at the top of both sides show the ideally
bent nanotube with separated walls and in combination with transparent outer wall.
The sharply bent carbon nanotube is displayed in the three images at the bottom
of both sides in a joint version with translucent outer layer and a split version with
individual walls.

not occur. The relative change in energies at the final deformed configurations is higher in the
sharp bending variant for both the bonded and the non-bonded energy. The colour mapping also
shows that the inner wall suffers the locally larger changes in energies for both methods. Although
the level of change in non-bonded energy is much smaller than the change of bonded energy, in
particular, this non-bonded contributions determine the morphology of the kink.
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3.6 Summary

A molecular statics approach is applied in order to analyse the buckling behaviour of carbon
nanotubes. In particular, the atom-related finite element formulation proposed by Wackerfuß
[56] is used. This approach allows the incorporation of molecular statics into the classical finite
element framework. As a consequence, efficient and well established algorithms can be reused,
which enable the opportunity to analyse nanostructures in a numerical setting. These structures
are represented in molecular statics by a discrete number of interacting atoms. The total potential
energy of the carbon nanotube considers bonded-interactions, non-bonded interactions and external
contributions. Therefrom, equilibrium configurations of the atomistic structure are specified.
The resulting non-linear system of equations is solved iteratively, using either a Newton-Raphson
approach or an arc-length procedure. Additionally, a criterion for the structural stability of the
carbon nanotube is derived. For these purposes, a complete linearisation of the fully non-linear
molecular statics model is given. An atom-related finite element for the consideration of bonded
interactions is formulated and the associated element force vector and the element stiffness matrix
are specified. Furthermore, the non-bonded interactions are implemented into the computational
framework by means of a spring finite element. The stability of the structure is observed by
an accompanying eigenvalue analysis of the global stiffness matrix, and the critical points are
located by a bisection procedure. A branch switching algorithm is applied in order to determine
the buckled configuration of the carbon nanotube. The universal applicability of the implemented
molecular statics approach is indicated by various numerical simulations of carbon nanotubes under
different loading conditions. In the observed examples, in particular, the importance of modelling
non-bonded interactions and their influence on the buckling behaviour is emphasised.

The first example on twisted carbon nanotubes is used to study the difference of the unstable
and the stable, buckled structure. In addition to these perfect structures, a defective nanotube is
simulated for comparison. The second nanotube under torsional loading investigates the modelling
of in-layer non-bonded interactions, and it is highlighted that their inclusion is important to avoid
the nanotube from self-intersection. This example confirms the handling of complex deformation
paths with multiple instability points. Consequently, this simulation relies on a proper stability
analysis and a suitable branch switching algorithm.

In the numerical simulations of carbon nanotubes under axial compression, global and local
buckling characteristics are observed. The first example exhibits a global Euler-like buckling mode,
which on further compression leads to bending and therefore an additional instability point with
a localised single kink in the middle of the tube. An additional example deals with a larger
carbon nanotube under axial compression, constrained to a local buckling mode. This nanotube is
analysed by a path-following procedure, and a non-linear load-deformation plot is derived showing
the well-known snap back behaviour from thin shell buckling. In addition, the influence of non-
bonded interactions on the buckling behaviour of carbon nanotubes and their type of modelling is
studied within this simulation.

In the examples on the bent single-walled and double-walled carbon nanotubes, the influence
of modelling non-bonded interactions is analysed. In the bending scenarios, the load is applied
in two different ways, denoted as ideal bending and sharp bending. Thereby, the sharp bending
constraints lead to a higher local deformation in the tube’s middle than the ideal bending type,
inducing a smaller buckling angle. In particular, detailed studies into the modelling of in-layer
non-bonded interactions are carried out on a single-walled carbon nanotube. The analysis of inter-
layer non-bonded interactions is performed by a double-walled carbon nanotube. These studies
emphasise that a proper modelling of in-layer and inter-layer non-bonded interactions is important
to prevent the carbon nanotubes from self-intersection and penetration.
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4 Mixed atomistic-continuum model

This chapter introduces the mixed atomistic-continuum model and its application in the numerical
buckling analysis of carbon nanotubes by means of the finite element method. The mixed atomistic-
continuum model is based on the quasi-continuum method as given in Tadmor et al. [52] and
Tadmor et al. [53]. In particular, the generalisation of this universal method to curved crystalline
monolayer sheets, developed by Arroyo [2] and Arroyo and Belytschko [3, 4, 5, 6], is used and, in
a second step, modified. Within this approach, arbitrary shaped single-layer lattices are modelled
as free formed continuum surfaces without thickness. The chapter is organised as follows: At
the outset, a brief overview of the continuum mechanical treatment of space-filling bodies is
given and the linkage of the atomistic deformation to that of the continuum is specified. Then,
the continuum mechanical description for solids of reduced dimensionality is presented for the
purpose of handling surfaces without thickness. This is followed by a discussion on the correlation
between the deformation of the lattice vectors and the deformation of the curved continuum
surface. Then, the constitutive model for the continuum approach is formulated on the basis
of the quasi-continuum method. In the course of this, the underlying atomistic structure and the
associated interatomic potentials are considered and, consequently, the approach is denoted as
mixed atomistic-continuum model. Next, the continuous description for the global equilibrium is
handled and the corresponding criterion for structural stability is specified. Then, the numerical
implementation of the mixed atomistic-continuum model, employing the finite element method,
is given. Finally, numerical studies on buckling of carbon nanotubes demonstrate that the mixed
atomistic-continuum model is able to reproduce the behaviour of the full atomistic calculation.

4.1 Continuum kinematics for space-filling bodies

This section introduces briefly the continuum mechanical background for the kinematics of space-
filling bodies. In general, a space-filling body can be imagined as an open subset of the ambient
Euclidean space. However, the following overview concentrates on three-dimensional bodies
embedded in a three-dimensional Euclidean space. In particular, the finite kinematics of the
continuum is outlined. Firstly, the motion of a body and its related deformation map are presented.
Then, the deformation gradient and the right Cauchy-Green deformation tensor are introduced.
See classical text books on continuum mechanics for instance Bonet and Wood [9] or Marsden and
Hughes [34] for a detailed treatment.

4.1.1 Deformation map

In classical continuum mechanics, the subject under consideration is a continuous body assembled
of material particles. This body can be described in different configurations, which are illustrated
in Figure 4.1. In the initial setup at time t = 0, the particles of the body are characterised by their
position X. The associated position vector X is defined by Cartesian coordinates {X1, X2, X3} in
the standard basis B0 = {E1,E2,E3}. This undeformed state Ω0 is called material or Lagrangian
configuration. As time passes by, the body deforms and the positions x of the particles at t 6= 0
are attained. The dedicated position vector x is denoted in the standard basis B = {e1, e2, e3}
by Cartesian coordinates {x1, x2, x3}. The corresponding deformed status Ω is called spatial
or Eulerian configuration. The motion of particles between the undeformed and the deformed
configuration is specified by the deformation map Φ. This map allows the definition of the current
particle position vector x = Φ (X, t) as a function of its initial position vector and time. For the
purpose of a numerical formulation, an additional parametric or reference body Ω̄ is introduced.
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Figure 4.1: Kinematic setting of the space-filling continuous body. The Lagrangian configuration
Ω0, the Eulerian configuration Ω and the parametric body Ω̄ with the corresponding
non-linear deformation maps.

In this parameter configuration, the positions of particles are specified by ξ. Additionally, the
related position vector ξ is described by Cartesian coordinates {ξ1, ξ2, ξ3} in the standard basis
B̄ = {Ē1, Ē2, Ē3}. With the help of this parametric body, an undeformed configuration map ϕ0 can
be defined. In addition, the parametric body is mapped into the deformed body by the deformed
configuration map ϕ. On the basis of these correlations, the deformation map from the undeformed
to the deformed body can finally be rewritten as:

Φ = ϕ ◦ ϕ−1
0 (4.1)

The parameter configuration allows a description of position vectors in the Lagrangian configu-
ration as X = ϕ0 (ξ), or in a more common notation as X = X (ξ). Furthermore, the position
vectors in the Eulerian configuration are denoted as x = ϕ (ξ, t), or equivalently as x = x (ξ, t).

4.1.2 Deformation gradient

The deformation gradient F is an important quantity in continuum mechanics. As illustrated
in Figure 4.2, this quantity allows the linkage of infinitesimal material vectors dX to their
corresponding infinitesimal spatial vectors dx.

dx = FdX (4.2)

Therefore, the deformation gradient maps vectors from the tangent space TΩ0 of the undeformed
configuration to the tangent space TΩ of the deformed configurations and is defined as:

F =
∂Φ

∂X
= ∇XΦ (4.3)
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Figure 4.2: The local deformation gradient F defines a linear map between material and spatial
line elements such that dx = FdX.

If the motion is expressed in a commonly used notation as x = x (X, t), the deformation gradient
can be given in a well-known format as:

F =
∂x

∂X
(4.4)

As the deformation gradient is part of both the Lagrangian and Eulerian configuration, it is called
a two-point tensor. With the introduction of the parametric body, two additional linear tangent
maps appear. These are the tangent map of the undeformed configuration J = ∇ξX and the
tangent map of the deformed configuration j = ∇ξx, which are known as Jacobian tensors. On
the basis of these quantities, the deformation gradient can be derived by a composition of the two
Jacobians in the following form:

F =
∂x

∂X
=
∂x

∂ξ

∂ξ

∂X
= j J−1 (4.5)

4.1.3 Right Cauchy-Green deformation tensor

The right Cauchy-Green deformation tensor C is defined in terms of the deformation gradient F.

C = FTF (4.6)

If two different elemental vectors dX1 and dX2, which deform to dx1 and dx2 are considered,
a general measure of deformation is given by the change in their scalar product. An illustration
of this situation is given in Figure 4.3. Using the right Cauchy-Green deformation tensor C, the

X

Ω0

dX1

dX2

x

Ω
dx1

dx2

ds1 ds2
θΦ

F

Figure 4.3: Two different elemental vectors dX1 and dX2 deforming to dx1 and dx2. The lengths
ds1 and ds2 as well as the enclosed angle θ of the infinitesimal spatial vectors.

scalar product of the infinitesimal spatial vectors can be found in terms of the material vectors.

dx1 · dx2 = dX1 ·CdX2 (4.7)

The change in scalar product includes the stretching of the two vectors and, additionally, the
change in their enclosed angle. In terms of the material vectors dX1 and dX2 together with the
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Green-Lagrange strain tensor E = 1/2 (C− 1), this change is defined as:

1

2
(dx1 · dx2 − dX1 · dX2) =

1

2
(dX1 ·CdX2 − dX1 · dX2)

=
1

2
dX1 · (C− 1) dX2

= dX1 ·EdX2 (4.8)

The right Cauchy-Green deformation tensor C allows to calculate the length ds of an infinitesimal
spatial vector dx by means of its corresponding infinitesimal material vector dX.

ds = ‖dx‖ =
√

dx · dx =
√

dX ·CdX (4.9)

Furthermore, the angle θ between two elemental spatial vectors dx1 and dx2 can be calculated
on the basis of their material counterparts dX1 and dX2 together with the right Cauchy-Green
deformation tensor C.

cos (θ) =
dX1

ds1
·CdX2

ds2
(4.10)

4.2 Standard Cauchy-Born rule for space-filling bodies

The aim of this section is to establish a kinematic relation between the continuum and the atomistic
structure of the body under consideration. The so-called Cauchy-Born rule, stemming from Born
and Huang [10], is a widely accepted fundamental kinematic assumption for the linkage of the
atomistic deformation to that of a continuous medium. This rule relies on the assumption that the
deformation of the lattice is homogeneous at the atomistic level. Therefore, the deformed lattice
can be determined by the deformation gradient F at the corresponding continuum point. The
setting is illustrated in Figure 4.4, displaying the continuum configurations with the underlying
atomistic structure, subjected to homogeneous deformation. Starting from an undeformed lattice
vector A, the application of the Cauchy-Born rule delivers the deformed lattice vector a.

a = FA (4.11)

Taking into account the relations from standard continuum mechanics, the geometry of the
deformed lattice can be determined. The first relevant quantity is the length a of a deformed

X

Ω0

A

B

x

Ω

a

b

Φ

F

Figure 4.4: Illustration of the standard Cauchy-Born rule for space-filling bodies.

lattice vector a. This value is calculated on the basis of its associated undeformed lattice vector
A and the right Cauchy-Green deformation tensor C.

a = ‖a‖ =
√

a · a =
√

A ·CA (4.12)
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Another important factor is the angle θ between two deformed lattice vectors a and b. Once again,
this quantity is evaluated from the corresponding undeformed elements.

cos (θ) =
A

a
·CB

b
(4.13)

Applying these expressions, the geometry of the embedded deformed lattice is solely specified by
the deformation measures of the continuum. As a result of its construction, the standard Cauchy-
Born rule is only applicable in the absence of inhomogeneities at the magnitude of atomic spacing.
In addition, it is only suitable for space-filling crystals because the deformation gradient maps the
tangent space of the undeformed body into the tangent space of the deformed body. To enable the
use of the Cauchy-Born rule for inhomogeneous cases and monolayer films, several modifications
and extensions were developed. In this context, Leamy et al. [28], Guo et al. [24], Sunyk and
Steinmann [51] and Chandraseker et al. [14] extended the standard Cauchy-Born rule by using
the gradient of the deformation gradient. This second-order deformation gradient introduces an
additional correction term that accounts for the inhomogeneous part of the deformation. Arroyo
and Belytschko [3, 5] proposed an extension to the standard Cauchy-Born rule using a concept of
differential geometry. This approach is universally applicable in the study of single-layer crystalline
films such as carbon nanotubes.

4.3 Continuum kinematics for solids of reduced dimensionality

In this section, the kinematics and the geometric setting for a continuum surface are investigated.
With reference to Arroyo [2] and Arroyo and Belytschko [3, 4, 5, 6], this surface is introduced in
order to enable the treatment of arbitrary shaped monolayer crystal lattices by means of continuum
mechanics. According to the informations given in Section 2.2, the replacement is natural as carbon
nanotubes are built of several one atom thick layers of rolled graphene. First, the configurations
and the deformation map are specified. Then, the geometric setting of the surface is discussed.
Starting with the convected basis, the metric tensor, the curvature tensor and the deformation
gradient are introduced. Finally, the normal curvature and, subsequently, the principal curvatures
of the continuum surface are presented.

4.3.1 Deformation map

The undeformed configuration Ω0 and the deformed configuration Ω of the carbon nanotube
are represented by arbitrary shaped surfaces in three-dimensional Euclidean spaces. As the
surface itself is only two-dimensional, the corresponding reference system Ω̄ is a plane. In what
follows, the setting and the necessary kinematic variables are established. Figure 4.5 presents the
various configurations and the non-linear deformation maps relating them. The referential body
Ω̄ is described by Cartesian coordinates {ξ1, ξ2} with its standard basis B̄ = {Ē1, Ē2} and the

corresponding reciprocal basis B̄∗ = {Ē1
, Ē

2} is given through Ē
α · Ēβ = δαβ , where δαβ here and

in what follows denotes the Kronecker symbol. The undeformed or Lagrangian configuration Ω0

at time t = 0 is described by Cartesian coordinates {X1, X2, X3} with the orthonormal standard
basis B0 = {E1,E2,E3}. The associated reciprocal basis B∗0 = {E1,E2,E3} is defined as well.
The orthonormal standard basis B = {e1, e2, e3}, the related reciprocal basis B∗ = {e1, e2, e3}
and the Cartesian coordinates {x1, x2, x3} define the deformed or Eulerian configuration Ω at time
t 6= 0. With respect to the parametric space, the undeformed configuration map ϕ0 and the
deformed configuration map ϕ can be introduced. With these two distinct maps, the deformation
map Φ = ϕ ◦ ϕ−1

0 from the Lagrangian to the Eulerian configuration is given. This map allows
to specify the current particle position x = Φ (X, t) on the basis of its initial position and time.
Furthermore, the application of the undeformed configuration map enables the specification of
position vectors in the Lagrangian configuration as X = ϕ0 (ξ) or equivalently as X = X (ξ). The
position vectors in the Eulerian configuration are denoted as x = ϕ (ξ, t) and also in a more usual
representation as x = x (ξ, t). Consequently, the position vectors, in both the material and spatial
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Figure 4.5: Kinematic setting of the continuous surface. The Lagrangian configuration Ω0, the
Eulerian configuration Ω and the parametric body Ω̄ with the corresponding non-linear
deformation maps.

setting, are ascertainable from the referential position of the associated particle in the parametric
plane.

4.3.2 Convected basis and the tangent plane

As illustrated in Figure 4.6, for the undeformed configuration Ω0 at point X, and for the deformed
configuration Ω at the correlating point x, the plane tangent to the surface can be introduced.
Each of these planes represent a linear space, which is denoted as tangent space. In particular, the
tangent space TΩ0 of the undeformed surface is defined by the convected basis C0 = {G1,G2}.
Moreover, the convected basis C = {g1,g2} specifies the tangent space TΩ related to the deformed
setting. Considering the dependence of the undeformed position vector X and the deformed
position vector x on the curvilinear coordinates {ξ1, ξ2} of the parametric space, the covariant
base vectors of the tangent plane are defined as:

Gα =
∂X

∂ξα
=
∂XA

∂ξα
EA and gα =

∂x

∂ξα
=
∂xa

∂ξα
ea α = 1, 2 (4.14)

The corresponding reciprocal bases C∗0 = {G1,G2} and C∗ = {g1,g2} are defined by the relations
Gα ·Gβ = δαβ and gα ·gβ = δαβ . In addition, the unit normals to the undeformed and the deformed
body are given by:

N =
G1 ×G2

‖G1 ×G2‖
and n =

g1 × g2

‖g1 × g2‖
(4.15)

Taking into consideration the tangent plane and the normal vectors of the surface, a local convected
basis C̃0 = {G1,G2,N} for the Lagrangian configuration and a local convected basis C̃ = {g1,g2,n}
for the Eulerian configuration can be defined.

The following notations and conventions are as from now used in the current Chapter 4 and in
Appendix A. Vectors and tensors are denoted by boldface letters. Furthermore, the components of
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ξ1

ξ2

J = Tϕ0 j = Tϕ

F = TΦ

ξ

X

x

Ω̄

Ω0 Ω

Ē1

Ē2

G1

G2
g1

g2

TΩ0

TΩ

Figure 4.6: The tangent planes of the undeformed and the deformed configuration of the continuous
surface with their convected bases and the associated tangent maps.

vectors and tensors in various bases are specified by index notation. Components in the standard
basis B0 of the undeformed configuration are specified by upper case Latin indices (A,B,C,D,E, F )
and run in generally from 1 to 2, however, solely for the current Section 4.3, their range is from
1 to 3. Lower case Latin indices (a, b, c, d, e, f, g), running from 1 to 3, denote components in the
standard basis B of the deformed setting. Components in the convected bases C0 and C of the
associated tangent space, as well as components in the parametric standard basis B̄, are denoted
by lower case Greek indices (α, β), which run from 1 to 2. The same indices and ranges are valid for

the corresponding reciprocal bases. Moreover, components in the convected basis C̃ of the Eulerian
configuration are specified by lower case Fraktur indices (a, b), and run from 1 to 3. If the declared
indices are repeated in any expression, summation is implied across the associated range. Other
indices are not used for the representation of vector and tensor components and, consequently,
summation is not implied on occurring repeated indices. Furthermore, the symbol δ equipped with
two freely placed indices denotes the Kronecker symbol.

4.3.3 Metric tensor and curvature tensor

With the help of the covariant base vectors of the undeformed and the deformed configuration,
the corresponding metric tensors can be calculated with respect to different bases. The material
metric tensor G reads

G = GαβGα ⊗Gβ (4.16)

where its covariant components are defined via the covariant base vectors as:

Gαβ = Gα ·Gβ (4.17)

In addition, the material curvature tensor K is given by:

K = KαβGα ⊗Gβ (4.18)

46



4 Mixed atomistic-continuum model

The covariant components depend on the unit normal and the derivatives of the covariant base
vectors with respect to the curvilinear coordinates.

Kαβ = N ·Gα,β with Gα,β =
∂Gα

∂ξβ
(4.19)

The spatial metric tensor g, with covariant components is given by:

g = gαβgα ⊗ gβ with gαβ = gα · gβ (4.20)

The spatial curvature tensor k, expressed in covariant components reads:

k = kαβgα ⊗ gβ where kαβ = n · gα,β with gα,β =
∂gα
∂ξβ

(4.21)

Using the metric tensors, the measurement of distances, angles and areas in the undeformed
surface Ω0 and the deformed surface Ω is possible. By means of the curvature tensors, additional
information about the surfaces like principal curvatures as well as Gaussian and mean curvature
can be stated.

4.3.4 Deformation gradient and pull-back operations

The deformation gradient F maps elements from the tangent space TΩ0 of the undeformed surface
to the tangent space TΩ of the deformed configuration via the tangent of the deformation map Φ.

F = TΦ = T
(
ϕ ◦ ϕ−1

0

)
= Tϕ ◦ Tϕ−1

0 (4.22)

For the evaluation of the deformation gradient, the tangent maps

J = Tϕ0 = Gα ⊗ Ē
α

and j = Tϕ = gα ⊗ Ē
α

(4.23)

of the configurations are necessary, with the result that the deformation gradient reads:

F =
(
gα ⊗ Ē

α) ◦
(
Ēβ ⊗Gβ

)
= δαβgα ⊗Gβ = gα ⊗Gα (4.24)

The right Cauchy-Green deformation tensor C is defined as the pull-back of the spatial metric
tensor g.

C = Φ∗g = FTgF

= gαβGα ⊗Gβ

= gαβ
∂ξα

∂XA

∂ξβ

∂XB
EA ⊗EB

= CABEA ⊗EB (4.25)

In the same fashion, the pull-back of the spatial curvature tensor k defines:

K = Φ∗k = FTkF

= kαβGα ⊗Gβ

= kαβ
∂ξα

∂XA

∂ξβ

∂XB
EA ⊗EB

= KABEA ⊗EB (4.26)
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4.3.5 Normal curvature and principal curvatures

The normal curvature k, at a point x of the deformed surface, in the direction of the tangential
vector w = wαgα, is defined by:

k =
wαkαβw

β

wαgαβwβ
(4.27)

By changing the direction of the tangential vector w, the normal curvature k changes its value.
The maximum and minimum of these values are denoted as principal curvatures kI and kII , and
the corresponding directions as principal directions vI and vII . The principal curvatures and
directions are the solution of the generalised eigenvalue problem

(k− kI,IIg) vI,II = 0 (4.28)

The two principal directions are tangential to the surface and are g-orthogonal vectors.

vI = (vI)
α

gα vII = (vII)
α

gα (4.29)

vn · g vm = (vn)
α
gαβ (vm)

β
= δnm n,m = I, II (4.30)

By appropriate pull-back operations, the spatial normal curvature k can be expressed in the
undeformed configuration with W = WAEA as:

k =
WAKABWB

WACABWB
(4.31)

The principal curvatures kI and kII , and the pull-back of the principal directions, namely VI and
VII , are obtained by solving the generalised eigenvalue problem:

(K− kI,IIC) VI,II = 0 (4.32)

The two eigenvectors VI and VII are now tangential to the undeformed surface and C-orthogonal.

VI = (VI)
α

Gα VII = (VII)
α

Gα (4.33)

Vn ·C Vm = (Vn)
A
CAB (Vm)

B
= δnm n,m = I, II (4.34)

In terms of the principal curvatures, the Gaussian curvature

K = kIkII (4.35)

and the mean curvature

H =
kI + kII

2
(4.36)

are well defined. As the two principal directions vI and vII are tangential to the deformed surface
and are orthogonal unit vectors, they can be used to define a local orthonormal basis D = {vI ,vII}
of the tangent space. Furthermore, the cross product of the two principal directions defines the
unit normal n = vI ×vII , which is equal to the unit normal vector of the deformed surface that is
specified in Equation (4.15). Consequently, taking into consideration the principal directions and

the unit normal, a local orthonormal basis D̃ = {vI ,vII ,n} for the Eulerian configuration can be
defined. Components of vectors in this basis are denoted by a lower case Fraktur index c and run
from I to III. If the index is repeated, summation across the associated range is implied.
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4.4 Cauchy-Born rules for solids of reduced dimensionality

This section is about the linkage of the atomistic lattice deformation to the deformation field of the
continuum. When dealing with monolayer crystalline films, it is obvious to treat the substituting
continuum solid as a surface. Furthermore, the atoms of the lattice are supposed to lie on this
surface and, consequently, the lattice vectors or bonds are chords of the surface. Figure 4.7 shows
the undeformed and the deformed continuum with the atoms of the underlying lattices lying
on the associated surface. Two representative undeformed lattice vectors A and B result due to
deformation in their deformed counterparts a and b. The objective of this section is to characterise

Ω0 ΩΦ

A

B
a

b

Figure 4.7: The substitute continuum surfaces and the subjacent atomic lattice. The undeformed
lattice vectors A and B are transformed to the deformed lattice vectors a and b. In
that process, it is supposed that the atoms of the lattice lie on the substituting surfaces.

the geometry of the deformed lattice in terms of continuum deformation measures together with the
structure of the undeformed lattice configuration. For this purpose, the undeformed configuration is
from now on represented by a plane surface that replaces the flat crystalline sheet. As a consequence
of loadings, this sheet deforms and the current configuration is modelled as a curved surface. During

G1

G2

g1

g2nA a

Φ

Ω0

Ω

Figure 4.8: The deformation map Φ transforms the undeformed bond vector A into the exact
deformed bond vector a which is a chord of the continuum surface.
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the process of deformation, an undeformed bond vector A changes into the associated deformed
bond vector a. Thereby, the two atoms building a bond are assumed to stay on the surface and
the resulting bond is a chord. This general setting is illustrated in Figure 4.8. In the following,
several methods for the approximation of the deformed bond vector will be discussed.

4.4.1 Standard Cauchy-Born rule

A first method for the linkage of the continuum deformation to the deformation of the atomistic
structure is the use of the standard Cauchy-Born rule. This rule is a widely accepted method,
as reviewed in Section 4.2, in the case of space-filling bulk materials. Nevertheless, in the case of
solids of reduced dimensionality, the direct application of the standard Cauchy-Born rule leads to
some discrepancies. If monolayer crystalline films are modelled as continuum surfaces, the lattice
vectors are chords of this surface. An illustration of this fact is given in Figure 4.7 for the entire
lattice and in Figure 4.8 for a single bond vector. Thereby, the chords are vectors of finite length
that do not belong to the tangent space of the surface. The deformation gradient, however, is only
applicable for the mapping of infinitesimal vectors or tangent vectors of the surface. Nevertheless,
the usage of the standard Cauchy-Born rule in the treatment of solids of reduced dimensionality
maps the undeformed bond vector A to a so-called tangent deformed bond vector w = FA, which
belongs to the tangent space TΩ of the deformed surface. This situation is presented in Figure

G1

G2

g1

g2nA

w

Ω0

Ω

TΩ

F

Figure 4.9: In the case of solids of reduced dimensionality, the standard Cauchy-Born rule
transforms the undeformed bond vector A into the tangent deformed bond vector
w, which belongs to the tangent space TΩ of the deformed surface.

4.9, and as pointed out by Arroyo [2] and Arroyo and Belytschko [3] a direct application of the
standard Cauchy-Born rule in the case of single-layer lattices is not compatible. However, this
deficiency can be improved by various modifications, which are discussed in the following.

4.4.2 Higher order Cauchy-Born rule

With the objective of developing an advanced linkage between atomistic and continuum deforma-
tion, so-called higher order Cauchy-Born rules were introduced. Starting from different points,
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these approaches lead to the same modifications.

The first variant of such a kind was developed, independently from each other, by Leamy et
al. [28] and by Guo et al. [24]. In the following, the ideas and outcomes of this modification
are reproduced. The deformation gradient F (X) from continuum mechanics maps infinitesimal
vectors of the undeformed configuration to infinitesimal vectors of the deformed configuration.

dx = F (X) dX (4.37)

In contrast, the standard Cauchy-Born rule maps by definition vectors of finite length via
the deformation gradient. As discussed above, this mapping is only exact for homogeneous
deformations and, consequently, for a constant deformation gradient along the undeformed bond
vector. However, an exact calculation of lattice vectors is possible when taking into account their
finite length. For this purpose, Equation (4.37) is integrated once to obtain the deformed lattice
vector a as:

a =

a∫

0

dx =

A∫

0

∂x

∂X
dX =

A∫

0

F (X) dX (4.38)

The integration requires further information on the change of the deformation gradient F (X) as a
function of the undeformed position X. If F (X) is expanded into a Taylor series about X = 0, the
starting point of the undeformed lattice vector, Cauchy-Born rules of various order can be stated.

F (X) = F (0) +∇XF (0) ·X +∇X∇XF (0) :
1

2
(X⊗X) + . . . (4.39)

From this thoughts, the standard Cauchy-Born rule of Equation (4.11) can be recovered if only
the constant term of the Taylor series expansion is taken into account.

a =

A∫

0

F (0) dX = F (0) A (4.40)

A higher order Cauchy-Born rule is obtained via the additional inclusion of the linear part of the
Taylor series expansion. Herein, the gradient of the deformation gradient, namely the second-order
deformation gradient G (0) = ∇XF (0) is essential.

a =

A∫

0

F (X) dX =

A∫

0

[F (0) + G (0) ·X] dX (4.41)

By a proper parametrisation of the line integral alongside the undeformed bond vector A, the
integration is feasible and an enhanced approximation for the deformed lattice vector a is possible.

a = F (0) A + G (0) :
1

2
(A⊗A) (4.42)

If compared with the standard Cauchy-Born rule, the additional second-order term takes into
account the inhomogeneous part of the deformation and adds a correction that brings the deformed
bond vector closer to the exact chord. This correction considers the curvature properties that
result from deforming the continuum surface. If the deformation is homogeneous, the standard
Cauchy-Born rule given in Equation (4.11) is recovered. The inclusion of even higher order terms
allows an approximation of better accuracy with the drawback of increasing computational effort.
Nevertheless, for highly contorted crystalline sheets, the achieved approximation for the deformed
bond vector is not a chord of the surface. The second-order Cauchy-Born rule is illustrated in
Figure 4.10. In the course of this, the deformed bond vector is composed of the part from the
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G1

G2

g1

g2nA

w

a
∆w

Ω0

Ω

TΩ

F,G

Figure 4.10: The second-order Cauchy-Born rule transforms the undeformed bond vector A into the
deformed bond vector a by using the deformation gradient F and the second-order
deformation gradient G. The deformation gradient creates the tangent deformed
bond vector w equal to the standard Cauchy-Born rule whereas the second order
deformation gradient G generates the correction term ∆w so that a = w + ∆w.

standard Cauchy-Born rule and the additional correction due to its extension. An alternative
derivation of this higher order Cauchy-Born rule is feasible if the integration in Equation (4.38) is
approximated by the midpoint rule and a subsequent Taylor series expansion.

a =

A∫

0

F (X) dX = F (0 + A/2) A = F (0) A + G (0) :
1

2
(A⊗A) (4.43)

A second variant for the derivation of the second-order Cauchy-Born rule relies on the
deformation map Φ from the undeformed to the deformed configuration. This approach was used
by Chandraseker et al. [14] and by Sunyk and Steinmann [51]. Thereby, the following deliberations
lead to the extended Cauchy-Born rule. A direct application of the deformation map on the two
points I and J defining the undeformed lattice vector A provides their corresponding deformed
locations. Subsequently, the connection between these two deformed locations i and j defines the
deformed lattice vector a. Without loss of generality, the material position vector of point I is set
to X = 0. Then, the material position vector pointing to J is given by 0 + A and the deformed
bond vector follows as:

a = Φ (0 + A)−Φ (0) (4.44)

By expanding the first term on the right hand side into a Taylor series expansion about X = 0
and retaining up to the second-order term, the approximation reads:

a = ∇XΦ (0)A +∇X∇XΦ (0) :
1

2
(A⊗A) (4.45)

Finally, using the deformation gradient F (0) = ∇XΦ (0) and the second-order deformation
gradient G (0) = ∇X∇XΦ (0), the second-order Cauchy-Born rule of Equation (4.42) is recovered.
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4.4.3 Exponential Cauchy-Born rule

For the investigation of carbon nanotubes, Arroyo [2] and Arroyo and Belytschko [3, 5] proposed
an extension to the standard Cauchy-Born rule. The modification is formulated on the basis of
the exponential map, denoted as EXP, from the field of differential geometry, which for instance is
discussed in do Carmo [20]. Again, this extension is important in the study of monolayer crystalline
films, where the lattice vectors are presumed to be chords of the continuum surface. For general
undeformed and deformed surfaces, this extension is a three step procedure, which reduces to
only two steps if the undeformed continuum is a plane. Starting from the undeformed lattice
vector A, which is a chord of the continuum surface, the application of the inverse exponential
map EXP−1 delivers the tangent undeformed lattice vector W. If the undeformed surface is
planar, the undeformed lattice vector A and the tangent undeformed lattice vector W coincide
and the first step of the extension is not needed. The vector W lies in the tangent plane of
the undeformed surface and, therefore, can be mapped to the corresponding tangent plane of the
deformed continuum by applying the deformation gradient F. This step represents the use of the
standard Cauchy-Born rule and results in the tangent deformed lattice vector w. Finally, the
exponential map EXP brings this vector back to the surface. The resulting chord describes the
deformed lattice vector a. By combining these steps, the exponential Cauchy-Born rule can be
expressed as:

a = EXP
[
F (X) EXP−1 (A)

]
(4.46)

The exponential map EXP requires the determination of the geodesic curves. The calculation of
solutions for these curves is not easily done and, therefore, approximations for the exponential map
are of interest. Together with the introduction of the exponential Cauchy-Born rule, Arroyo [2] and
Arroyo and Belytschko [3, 5] suggested an approximation using the principal directions and the
principal curvatures of the continuum surface. Consequently, this scheme is from now on referred
to as principal curvatures approach. Another approach for the requested local approximation can
be constructed directly on the basis of the local normal curvature of the surface. Hence, this
method is denoted as direct curvature approach. The two different approaches are developed in
detail in the upcoming derivations. If the exponential Cauchy-Born rule is applied to space-filling
crystals, in consequence of its structure, the standard Cauchy-Born rule is exactly recovered.

4.4.4 Approximations of the exponential Cauchy-Born rule

Approximation of the exponential Cauchy-Born rule: principal curvatures approach

In the case of a planar undeformed monolayer crystalline sheet, the exponential Cauchy-Born rule
is a two step procedure. The first step of the approach is the use of the standard Cauchy-Born
rule in order to map the undeformed bond vector A of the planar sheet to the tangent deformed
bond vector w.

w = FA (4.47)

In a next step, the vector w from the tangent space of the deformed surface is transformed to the
deformed bond vector a by the local approximation EXPkI ,kII of the exponential map.

a = EXPkI ,kII w (4.48)

For this approximation, the metric tensor g and the curvature tensor k as well as their related pull-
backs C and K for the deformed surface are essential. These quantities can be calculated according
to the derivations given in Subsection 4.3.3 and Subsection 4.3.4. The principal curvatures kI , kII
and the principal directions vI ,vII can then be found either in the current configuration or in
the undeformed configuration by solving the corresponding generalised eigenvalue problem given
in Equation (4.28) or Equation (4.32). With the help of the principal directions and the unit

normal n = vI × vII , a local orthonormal base system D̃ = {vI ,vII ,n} is defined in the current
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configuration in accordance with Subsection 4.3.5. This basis is used for the formulation of the local
approximation of the exponential Cauchy-Born rule. The geometric setting and the approximation
for the deformed bond vector obtained by the principal curvatures approach is illustrated in Figure
4.11. In order to obtain the approximation, the tangent deformed bond vector w is split into its

G1

G2

g1

g2nA

w

VI

VII

vI

vII a

Ω0

Ω

TΩ

F, EXPkI ,kII

Figure 4.11: The configurations of the continuum surface and the geometric setting for the principal
curvatures approach. Illustration of the principal directions, which are essential for
the local approximation of the exponential Cauchy-Born rule that transforms the
undeformed bond vector A into the deformed bond vector a.

parts related to the principal directions. For the calculation of these two components, the fact that
vI and vII can be obtained by push-forward operations of VI and VII is used.

w = FA = wIvI + wIIvII (4.49)

wI = w · vI = AACAB (VI)
B

(4.50)

wII = w · vII = AACAB (VII)
B

(4.51)

The central idea behind this approach is to approximate the exponential map by decoupling the
principal directions. This is done by the introduction of a fictitious cylinder for each principal
direction with a radius of the inverse principal curvature. Thereof, two individual corrections ∆wI

and ∆wII are obtained by mapping the tangent deformed bond vector w exponentially onto these
cylinders. A detailed graphical explanation of this process is given in Figure 4.12 and the necessary
correction terms are illustrated. In particular, the components of these corrections in the local base
system D̃ are specified as:

[∆wI ]D̃ =




1
kI

sin
(
kIw

I
)
− wI

0

1
kI

(
1− cos

(
kIw

I
))


 [∆wII ]D̃ =




0

1
kII

sin
(
kIIw

II
)
− wII

1
kII

(
1− cos

(
kIIw

II
))


 (4.52)
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Applying these two corrections, the approximation of the exponential Cauchy-Born rule, employing
the principal curvatures approach, is given by:

a = EXPkI ,kII w = w + ∆wI + ∆wII (4.53)

Thus, the approximated deformed bond vector is obtained by combining the tangent deformed
bond vector with the acquired corrections. Finally, its components in the local orthonormal base

n

n

n

n

w

w

vI

vI

vI

vII

vII

vII

TΩ

TΩ

∆wII

∆wII

∆wI

∆wI

1
kI

kIw
I

1
kI

sin
(
kIw

I
)

1
kI

[
1− cos

(
kIw

I
)]

wIv1

1
kII

kIIw
II

1
kII

sin
(
kIIw

II
)

1
kII

[
1− cos

(
kIIw

II
)]

wIIvII

Figure 4.12: The exponential map based on the principal curvatures and the principal directions of
the surface for the approximation of the deformed bond vector. The fictitious cylinders
for the two decoupled principal directions and the associated correction terms.
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system D̃ read:

[a]D̃ =




1
kI

sin
(
kIw

I
)

1
kII

sin
(
kIIw

II
)

1
kI

(
1− cos

(
kIw

I
))

+ 1
kII

(
1− cos

(
kIIw

II
))


 (4.54)

Starting from the undeformed bond vector A and taking into consideration that the principal
curvatures and the principal directions can be calculated by means of a generalised eigenvalue
problem on the reference configuration via the right Cauchy-Green deformation tensor C and the
pull-back of the spatial curvature tensor, namely K, the components of the approximated deformed
bond vector [a]D̃ in the local orthonormal basis depend only on quantities expressed in the reference
configuration. In conclusion, this approach offers a useful method for the calculation of deformed
bond vectors for monolayer crystalline sheets.

Approximation of the exponential Cauchy-Born rule: direct curvature approach

If the undeformed configuration of the considered single-layer lattice is a plane, the exponential
Cauchy-Born rule is a two step procedure. The first step of the approach is the application of
the standard Cauchy-Born rule. This process maps the undeformed bond vector A of the planar
crystal to the tangent deformed bond vector w.

w = FA (4.55)

Secondly, the local approximation EXPkn of the exponential map is utilised. Thereby, the tangent
deformed bond vector w is transformed to the deformed bond vector a.

a = EXPkn w (4.56)

The practical realisation of the local approximation is presented in the following. An important
feature of the approach is the tangent plane to the deformed surface, which can be specified by the
local covariant basis C = {g1,g2} that is defined according to Subsection 4.3.2. This base system
in conjunction with the formulation of the deformation gradient specified in Equation (4.24) allows
to give a description for the tangential vector w.

w = FA = (gα ⊗Gα)AAEA = AAGαAgα = wαgα (4.57)

The associated length w of the tangent deformed bond vector w is given by:

w = ‖w‖ = (w ·w)
1/2

=
(
wαgαβw

β
)1/2

(4.58)

Furthermore, the contravariant base vectors g1 and g2 according to Subsection 4.3.2 are introduced.
This allows the calculation of the spatial metric tensor g and the spatial curvature tensor k on
the basis of the derivations given in Subsection 4.3.3. With these quantities, the normal curvature
k of the deformed surface in the direction of the tangent deformed bond vector w = wαgα can
be evaluated. The idea of the extension for the exponential map is visualised in Figure 4.13,
presenting a part of the continuum surface in both the material and spatial configuration. In
the spatial configuration, the local convected basis C̃ = {g1,g2,n} that is defined with reference
to Subsection 4.3.2 and a tangent deformed bond vector w are indicated. In order to obtain
an approximation of the deformed bond vector a, the surface is sliced by a plane spanned by
the unit normal vector n and the tangent deformed bond vector w. At the origin, the resulting
intersection curve is further replaced by the osculating circle with a radius of the inverse local
normal curvature k. Moving the length of the tangent deformed bond vector w, namely w, along
this circle an approximation for the deformed atomic position is achieved. A detailed graphical
interpretation of this strategy is given in Figure 4.14. Finally, this gives the possibility to specify
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Figure 4.13: The configurations of the continuum surface and the geometric setting for the
direct curvature approach. Illustration of the local convected basis for the spatial
configuration and the osculating circle of the surface, which are essential for the
transformation of the undeformed bond vector A to the deformed bond vector a
by means of the locally approximated exponential Cauchy-Born rule.

w

a

n

kw
1
k

1
k sin (kw)

1
k [1− cos (kw)]

os
cu
la
ti
n
g
ci
rc
le

Figure 4.14: The approximation of the exponential map by means of the direct curvature approach.
Illustration of the osculating circle and the components of the deformed bond vector.

necessary correction terms for the calculation of the deformed bond vector a. As a consequence
of the design of this extension, it is referred to as direct curvature approach. In what follows, the
essential quantities for this extension of the standard Cauchy-Born rule are stated. The scalar local
curvature k of the osculating circle is determined with reference to Equation (4.27) by projecting
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k to the unit vector w/w.

k =
wαkαβw

β

wαgαβwβ
(4.59)

When taking into consideration the corrections given in Figure 4.14, the introduced approximation
for the exponential map of w finally gives the secant vector of the osculating circle that represents
the deformed bond vector a.

a =
1

k
sin (kw)

w

w
+

1

k
[1− cos (kw)] n

=
1

k
sin (kw)

w

w
+

2

k
sin2

(
kw

2

)
n (4.60)

Within this approach, the main steps of calculation are performed on the current configuration and,
consequently, pull-back operations carried out on the spatial tensors g and k are not necessary. To
sum up, this extension to the Cauchy-Born rule allows a straightforward calculation of deformed
bond vectors for single-layer crystalline surfaces.

4.5 Constitutive model

A material is denoted as elastic if its constitutive behaviour is only a function of the current
state of deformation. In addition, if the work that is done during a deformation depends only on
the initial state and the final deformed state, the material behaviour is path-independent. Such
kinds of materials are known as hyperelastic. For this hyperelastic material response, a strain
energy density W can be defined, which represents an energy per unit undeformed volume. To
fulfil objectivity, or equivalently frame-indifference, the strain energy density is often defined by
invariants of the right Cauchy-Green deformation tensor C. Together with some experimentally
determined material parameters, the phenomenologically defined macroscopic strain energy density
as a function of the right Cauchy-Green deformation tensor C reads:

W = W (C) (4.61)

A full treatise of constitutive formulations for finite deformations can for instance be found
in Bonet and Wood [9], Marsden and Hughes [34], Wriggers [61] and Zienkiewicz and Taylor
[65]. In the quasi-continuum method developed by Tadmor et al. [52] and Tadmor et al. [53],
the phenomenological macroscopic strain energy density is replaced by considering directly the
properties of the underlying lattice via the interatomic potentials. The important task is to find the
correlation between the stored energy of the lattice on the microscopic scale and the strain energy
density of the continuum on the macroscopic level. This operation is performed by considering a
representative cell of the atomistic structure. For this cell, the energy Ecell of the encased deformed
lattice structure can be calculated on the basis of interatomic potentials. In addition, the volume
or the surface, denoted as Vcell, of the corresponding undeformed cell is evaluated. Then, the strain
energy density W of the continuum is specified by dividing the energy of the representative cell by
its characteristic size.

W =
Ecell

Vcell
(4.62)

In what follows, the strain energy density for carbon nanotube and graphene structures is
developed. This is done, by considering the contributions of the bonded and the non-bonded
energy, separately. However, before working on these energies in detail, the undeformed bond
vectors for graphene and, consequently, carbon nanotubes need some advanced handling that is
highlighted in the following.
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4.5.1 Lattice structure of graphene and the inner displacements

As already pointed out, the flat graphene sheet as illustrated in Figure 4.15 characterises the
undeformed body for the mixed atomistic-continuum model. Within this hexagonal lattice, the

A01

A02

A03

X1

X2

Θ0

η

η

η

B1

B2

P
η

A1

A2

A3

Figure 4.15: The hexagonal Bravais 2-lattice of graphene. The two triangular sublattices are
denoted by black and white dots. The solid lines identify the perfect lattice, which has
three inequivalent undeformed bonds A0i. The inner displacements η between the two
sublattices are introduced to ensure the equilibrium of atoms. This inner relaxation
results in the dashed lattice with the relaxed undeformed bond vectors Ai = A0i +η.

undeformed bond vectors are defined. This lattice needs some special attention because, as
discussed in Section 2.2, its not of a simple Bravais type. To be exact, the hexagonal structure turns
out to be a Bravais 2-lattice. Therefore, the lattice can be viewed as a set of two simple triangular
sublattices. Thus, in order to spot every atom of the graphene sheet, lattice basis vectors B1 and
B2 of one sublattice as well as an additional shift vector P are required. The perfect hexagonal
lattice has three inequivalent undeformed bonds A0i (i = 1, 2, 3). These bonds are specified in the
local coordinate system of the graphene sheet. The orientation of the bond vectors is defined by
the chiral angle Θ0 and their length by the equilibrium bond length A0. These two quantities and
the alignment of the coordinate system are used in conformance with Section 2.2. Considering the
angles inside a regular hexagon, the three inequivalent undeformed bonds are defined as:

A01 = A0

[
cos Θ0

sin Θ0

]

A02 = A0

[
cos (Θ0 + 2π/3)

sin (Θ0 + 2π/3)

]
(4.63)

A03 = A0

[
cos (Θ0 − 2π/3)

sin (Θ0 − 2π/3)

]

If applying any of the discussed Cauchy-Born rules to the undeformed bond vectors of the Bravais
2-lattice of graphene, additional requirements concerning a homogeneous deformation have to be
considered. In particular, with regard to standard theories of inner crystal elasticity, as for instance
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discussed in Martin [35] and Cousins [19], the assumption of homogeneous deformation is made for
each of the sublattices. This results in a rearrangement of the distinct atoms against each other
and, consequently, in modified bond vectors. A proper description of the structure, therefore,
needs some additional variables to account for relative shifts between the simple lattices. With
reference to Arroyo [2], Arroyo and Belytschko [3, 4, 5], Cousins [19], Martin [35] and Tadmor et al.
[53], these so-called inner displacements are included via the shift vector η. Moreover, this inner
displacement vector is defined in the undeformed configuration to guarantee invariance against
rigid-body rotation. Adding the inner displacement vector η to each of the three undeformed bond
vectors A0i, the three undeformed bond vectors Ai (i = 1, 2, 3) of the relaxed lattice are obtained.

Ai = A0i + η (4.64)

As the inner displacements describe some kind of relaxation of atom positions, the three
inequivalent vectors Ai of the graphene sheet are denoted as relaxed undeformed bond vectors.
Taking into consideration a deformation of the continuum, these relaxed undeformed bond vectors
are transformed to their deformed counterparts by applying an appropriate variant of the extended
Cauchy-Born rules given in Section 4.4 for the continuum surface.

4.5.2 Strain energy density for bonded interactions

The definition of the strain energy density for bonded interactions requires a suitable interatomic
potential for the graphene sheet and, consequently, the carbon nanotube. One member from
this appropriate set is the Tersoff-Brenner bond-order potential, which is often used for carbon
nanotubes. It expresses the energy in one bond by the corresponding bond length and the lengths
of adjacent bonds as well as the angles formed with neighbouring bonds. A detailed investigation
of this potential is given in Subsection 2.3.1. This description can be reused in the formulation
of a constitutive law for the mixed atomistic-continuum model, however, a slight modification of
the many-body coupling term is necessary. At the outset, in each point of the continuum surface,
a fictitious atomistic structure of the graphene sheet is imagined. Then, for the formulation of
the strain energy density a representative cell has to be defined on the basis of this underlying
structure. In Figure 4.16, a cut-out of a graphene sheet is illustrated together with a proper
representative cell. This areal cell is hexagonal and contains three full bonds. The cell also has
one full atom located in its centre and, in addition, it shares three atoms with two neighbouring
cells. Altogether, the representative hexagonal cell contains an average of two atoms. Considering
the equilibrium bond length A0 of the graphene sheet, as specified in Subsection 2.3.2, the area of
the cell is:

Scell = S0 =
3
√

3

2
A2

0 (4.65)

The calculation of the cell-based energy requires a summation of the appropriate bond-wise
energies. For that purpose, the three bonds within the representative cell in their deformed
setting have to be considered. The related energy of each of these bonds can be specified by
the Tersoff-Brenner potential. Nevertheless, if taking a closer look at the definition of the Tersoff-
Brenner potential in Subsection 2.3.1, the many-body coupling term needs attention. This term
incorporates the local environment of both atoms that are building a bond together. Therefore,
besides the three bonds within the representative cell, also the six directly attached bonds and
their geometric setting influences the energy within the cell. To circumvent this problem, the
atomistic structure is assumed to be the same in both local environments. As a consequence,
the corresponding multi-body coupling term depends only on the local environment of the central
atom which is a member of all bonds in the cell. Finally, this allows to calculate the energy of
the representative cell solely from bond lengths and valence angles emerging from within the cell.
For this task, the central atom and the three bonds of the cell are considered in their deformed
configuration as illustrated in Figure 4.16. In order to obtain a compact notation of the energy
per cell, the bond lengths and valence angles are relabelled as well. These scalar quantities can be
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Figure 4.16: Derivation of the strain energy density for bonded interactions in carbon nanotubes.
Illustration of a cut-out of the undeformed graphene sheet with its appropriate shaded
representative hexagonal cell. This cell contains three bonds and an average of two
atoms. Visualisation of the deformed bonds of the representative cell with their
appendant bond lengths ai and valence angles θi (i = 1, 2, 3).

calculated directly from the deformed bond vectors. Resulting from the executions of Subsection
4.5.1, these vectors are influenced by the undeformed bond vectors of the graphene sheet and the
inner displacements. A proper variant of the Cauchy-Born rule provides the desired deformed bond
vector and wields additional influence. In this work, the focus lies on the exponential Cauchy-Born
rule outlined in Subsection 4.4.3 and, especially, on the two different approximations of this rule
given in Subsection 4.4.4. Based on the chosen approximation, the bond lengths ai and the valence
angles θi (i = 1, 2, 3) depend on different local strain measures as well.

• Approximation of the exponential Cauchy-Born rule: principal curvatures approach

ai = ai (C,K; Ai) = ai (C,K,η; A0i) (4.66)

θi = θi (C,K; Aj ,Ak) = θi (C,K,η; A0j ,A0k) (4.67)

• Approximation of the exponential Cauchy-Born rule: direct curvature approach

ai = ai (g,k; Ai) = ai (g,k,η; A0i) (4.68)

θi = θi (g,k; Aj ,Ak) = θi (g,k,η; A0j ,A0k) (4.69)

With this notation and the Tersoff-Brenner potential, the cell-based energy of the deformed cell is
given by a sum over the three bonds i with {i, j, k} being an even permutation of {1, 2, 3}.

Ecell =

3∑

i=1

[VR (ai)−Bi (aj , ak, θk, θj)VA (ai)] (4.70)
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Taking into consideration Subsection 2.3.1, the adapted repulsive and attractive components of the
Tersoff-Brenner potential as well as the cut-off function for the introduced notation are defined as:

VR(ai) =
D(e)

S − 1
· e−
√

2·S·β·(ai−R(e)) · fc(ai) (4.71)

VA(ai) =
D(e) · S
S − 1

· e−
√

2
S ·β·(ai−R(e)) · fc(ai) (4.72)

fc(ai) =





1 ai < R(1)

1
2 ·
{

1 + cos

[
π(ai−R(1))
R(2)−R(1)

]}
R(1) ≤ ai ≤ R(2)

0 R(2) < ai

(4.73)

Furthermore, the simplified many-body coupling term that only includes the local environment of
the central atom is given by:

Bi = [1 +G(θk) · fc(aj) +G(θj) · fc(ak)]
−δ

G(θi) = a0 ·
[

1 +
c0

2

d0
2 −

c0
2

d0
2 + (1 + cos θi)

2

]
(4.74)

For the evaluation of all these terms, the constants provided in Subsection 2.3.1, are used. Finally,
as the energy and the area of the representative cell are defined, the relevant strain energy density
for bonded interactions is given by:

W =
Ecell

Scell
=

1

S0

3∑

i=1

[VR (ai)−Bi (aj , ak, θk, θj)VA (ai)] (4.75)

The two local approximations of the exponential Cauchy-Born rule lead to a dependence of the
strain energy density on the relevant local deformation measures at the observed continuum point.
Furthermore, both variants base on the undeformed bond vectors and the inner displacements.

• Approximation of the exponential Cauchy-Born rule: principal curvatures approach

W = W (C,K,η; A0i) (4.76)

• Approximation of the exponential Cauchy-Born rule: direct curvature approach

W = W (g,k,η; A0i) (4.77)

The obvious dependence of the strain energy density on the fixed undeformed lattice vectors A0i

will be omitted in the further executions without loss of generality.

4.5.3 Inner relaxation

As observed in Subsection 4.5.2, the inner displacements η, which where introduced in Subsection
4.5.1 on the undeformed graphene sheet, influence the constitutive model of the bonded
interactions. With reference to Arroyo [2], Arroyo and Belytschko [3, 5] and Tadmor et al. [53],
the inner displacements are viewed as internal variables and can be eliminated at the constitutive
level. For this purpose, a deformation of the continuum surface is assumed and the minimisation of
the strain energy density W with respect to the inner displacements η is carried out. This process
is called inner relaxation and yields η̂, the relaxed inner displacements.

∂W

∂η
= 0 ⇒ η = η̂ (4.78)
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The resulting non-linear system of equations is solved iteratively by expanding ∂W/∂η into a
Taylor series expansion, delivering an update rule for the inner displacements.

∂W

∂η
(η + ∆η) =

∂W

∂η
(η) +

∂2W

∂η∂η
(η) : ∆η + . . . = 0 (4.79)

∆η = −
[
∂2W

∂η∂η
(η)

]−1

:
∂W

∂η
(η) (4.80)

For this minimisation process, the first-order and second-order derivatives of the strain energy
density W with respect to the inner displacements η are necessary. The explicit expressions for
these quantities are given in Appendix A.1 and for comparison in Arroyo [2] and Arroyo and
Belytschko [5]. After minimisation, a relaxed strain energy density is obtained, which implies that
the dependence on the inner displacements is eliminated. According to Tadmor et al. [53], the
minimisation can be history dependent. Consequently, if the load is applied incrementally, it is
necessary to store the obtained inner displacements of the actual load step. After that, these stored
values serve as starting point for the Newton-Raphson iterations of the inner relaxation procedure
in the following increment.

4.5.4 Strain energy double density for non-bonded interactions

The non-bonded or van der Waals interactions include the influence of non-bonded pairs of atoms.
As observed in Section 2.4, there are two types of interactions that arise in the simulation of
carbon nanotubes. At first, there are the in-layer non-bonded interactions appearing in single-
walled tubes and in the individual layers of multi-walled carbon nanotubes. This type requires a
specific treatment in its modelling, because only pairs of atoms that are not covalently bonded
have to be included. The second type considers the inter-layer non-bonded interactions that
occur in multi-walled carbon nanotubes. Within this type, each atom of a specific layer can
build a non-bonded pair with all atoms of the other layers. In combination, these two types
are of particular importance for the simulations because of their influence on the morphology of
the deformed structures. Especially, in the buckled configurations, these interactions beware the
carbon nanotubes from self-intersection and penetration. This fact is confirmed by the numerical
simulations given in Section 3.5 using molecular statics and in Section 4.9 applying the mixed
atomistic-continuum model. The non-bonded interactions are usually described by a pair potential.
Here, according to the discussion in Subsection 2.4.1, a Lennard-Jones pair potential is used.
This interatomic potential consists of an attractive and a repulsive part, which depend on the
distance between the two atoms building the non-bonded pair. With regard to the mixed atomistic-
continuum model, this distance is denoted as d and in combination with the constants given in
Subsection 2.4.1 the adapted formulation of the pair potential reads:

Vnb (d ) = − A
d6

+
B

d12
(4.81)

Thereof, the non-bonded energy double density Wnb for the mixed atomistic-continuum model is
defined by considering two distinct representative cells of the hexagonal type that is illustrated in
Figure 4.16. Moreover, with reference to the observations of Subsection 4.5.2, each of these cells
owns an area S0 and contains two atoms. Within the continuum model, the discrete location of
the atoms is not accessible. However, the distance d (x,y) between two arbitrary points x and y
in the deformed configuration of the surface is well defined and given by:

d (x,y) = ‖x− y‖ = [(x− y) · (x− y)]
1/2

(4.82)

Finally, the strain energy double density for non-bonded interactions is defined as:

Wnb = Vnb (d (x,y))
2

S0

2

S0
(4.83)
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To sum up, the modelling of non-bonded interactions in the mixed atomistic-continuum model
depends on the distance between two points on the continuum surface. Furthermore, this distance
is characterised by the position vectors of the involved points in the deformed surface. If evaluating
this non-bonded energy double density, the distances have to be carefully inspected such that pairs
of bonded atoms are not additionally included via in-layer non-bonded interactions.

4.6 Global equilibrium

From the achievements of Section 4.5, the total potential Π of the carbon nanotube using the mixed
atomistic-continuum model can be stated. This total potential Π consists of the potential Πb of
the bonded interactions, the potential Πnb of the non-bonded interactions and the potential Πext

of the external loads. These individual terms generally depend on the deformation map, which
links the undeformed and the deformed configuration. As a consequence of the fixed undeformed
configuration, the total potential Π depends on the current state of deformation x, exclusively.

Π = Πb + Πnb + Πext (4.84)

The potential Πb of the bonded interactions can be expressed using the strain energy density,
which is defined according to Subsection 4.5.2 in combination with the process of inner relaxation
stated in Subsection 4.5.3. As a consequence of the inner relaxation, the strain energy density W
is evaluated at the state of relaxed inner displacements η = η̂. The integration of this relaxed
strain energy density over the initial planar body Ω0 delivers the required potential Πb of the
bonded interactions. In the following derivations, it is implied that the strain energy density and
all ensuing terms are evaluated at the state of relaxed inner displacements. Based on the chosen
local approximation of the exponential Cauchy-Born rule, different expressions are obtained as a
function of the related local strain measures.

• Approximation of the exponential Cauchy-Born rule: principal curvatures approach

Πb =

∫

Ω0

W (C,K;η (C,K)) dΩ0 (4.85)

• Approximation of the exponential Cauchy-Born rule: direct curvature approach

Πb =

∫

Ω0

W (g,k;η (g,k)) dΩ0 (4.86)

The potential Πnb of the non-bonded or van der Waals interactions between non-bonded pairs of
atoms relies on Subsection 4.5.4 and the strain energy double density Wnb stated there. Herein,
the influence of the in-layer and the inter-layer non-bonded interactions is considered.

Πnb =
1

2

∫

Ω0

∫

Ω0−BX

Wnb (d) dΩ0Y dΩ0X (4.87)

For the in-layer interactions, the fact that this potential must not affect bonded atoms is important.
Therefore, at a distinct point X (x) of the undeformed surface a circle with a specific radius is
introduced, and the domain Ω0−BX identifies the remaining exterior area. This is the allowed zone
for the co-partner location Y (y) of the in-layer non-bonded interaction in order to exclude bonded
atoms from this potential. For the inter-layer non-bonded interactions, this circle vanishes because
the two forming atoms are located on different deformed surfaces, thus, on diverse undeformed
domains. Consequently, inter-layer interactions can reach the highly repulsive range of the non-
bonded potential that prevents the layers from penetration. The limit radius for the restriction of
in-layer non-bonded interactions is chosen on the basis of Subsection 2.4.2.
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The potential Πext of the external loads can be defined if the external contributions are conservative.
Additionally, the external contributions are assumed to be applied as a constant force field f , on the
atoms of the structure. Considering a representative hexagonal cell, according to Subsection 4.5.2,
the continuum counterpart of the external loads in the mixed atomistic-continuum model is given
by a body force per unit undeformed area. The representative cell owns an area S0 and contains two
atoms. Consequently, the potential Πext of the external loads for the mixed atomistic-continuum
model can be defined in the following form.

Πext = −
∫

Ω0

2

S0
f · x dΩ0 (4.88)

On the basis of the description for the total potential Π, the global equilibrium configurations of
the system are characterised by the stationary condition at time t+ ∆t.

t+∆tδΠ = t+∆tδΠb + t+∆tδΠnb + t+∆tδΠext = 0 (4.89)

In view of the later use of the finite element method and the resulting system of non-linear
equations, various solution approaches are possible. Numerical methods that only require gradients,
like the non-linear conjugate gradients method or quasi-Newton methods are directly based on
Equation (4.89). Beyond that, the commonly used Newton-Raphson solution method needs an
additional linearisation of the stationary condition. In doing so, the variations of the bonded Πb

and the non-bonded Πnb potential are approximated at time t via linearisation. Furthermore, the
considered external contributions, given at time t + ∆t, eventuate in a displacement independent
variation of the potential Πext of external loads.

∆tδΠb + ∆tδΠnb + . . . = − t+∆tδΠext − tδΠb − tδΠnb (4.90)

In what follows, the variations and the linearised variations for the bonded Πb and the non-bonded
Πnb potential are formulated. Moreover, the variation and the linearised variation of the external
potential Πext are specified. As stated above, the components of the total potential Π depend
solely on the current configuration x of the continuum surface. Consequently, only the associated
variation δx and the increment ∆x have to be considered.

Once again, based on the chosen local approximation for the exponential Cauchy-Born rule, two
different formulations for the bonded potential and, consequently, for the variation δΠb and its
increment ∆δΠb, have to be distinguished.

• Approximation of the exponential Cauchy-Born rule: principal curvatures approach

δΠb =

∫

Ω0

dW

d 1
2C

: δ
1

2
C +

dW

dK : δK dΩ0 (4.91)

∆δΠb =

∫

Ω0

[ (
d2W

d 1
2C d 1

2C
: ∆

1

2
C +

d2W

d 1
2C dK

: ∆K
)

: δ
1

2
C + S : ∆δ

1

2
C

+

(
d2W

dK d 1
2C

: ∆
1

2
C +

d2W

dK dK : ∆K
)

: δK + M : ∆δK
]

dΩ0 (4.92)

In this formulation, all quantities are calculated on the initial (Lagrangian) configuration.
Thereby, dW

d 1
2C

is identified as second Piola-Kirchhoff membrane tensor S and dW
dK is denoted

as second Piola-Kirchhoff bending tensor M.

• Approximation of the exponential Cauchy-Born rule: direct curvature approach

δΠb =

∫

Ω0

dW

d 1
2g

: δ
1

2
g +

dW

dk
: δk dΩ0 (4.93)
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∆δΠb =

∫

Ω0

[ (
d2W

d 1
2g d 1

2g
: ∆

1

2
g +

d2W

d 1
2g dk

: ∆k

)
: δ

1

2
g + τ : ∆δ

1

2
g

+

(
d2W

dk d 1
2g

: ∆
1

2
g +

d2W

dk dk
: ∆k

)
: δk + m : ∆δk

]
dΩ0 (4.94)

In contrast to the aforementioned approach, this formulation is defined on the spatial
(Eulerian) configuration. Consequently, dW

d 1
2g

is called Kirchhoff membrane tensor τ and the

term dW
dk is declared as Kirchhoff bending tensor m.

It has to be pointed out that by an appropriate push-forward operation, the principal curvatures
approach can be characterised on the current configuration as well. On the other hand, the direct
curvature approach may be treated on the initial configuration by applying a suitable pull-back
of the involved terms. Nevertheless, both formulations need the first-order and second-order total
derivatives of the strain energy density with respect to the corresponding strain measures. In
the course of this, it has to be emphasised that the relaxed strain energy density depends on the
relaxed inner displacements η = η̂, which are in turn a function of the strain measures. In order
to obtain a compact notation of the required derivatives, the strain measures are symbolised by
( ) and [ ]. For the principal curvatures approach, ( ) and [ ] are either 1

2C or K whereas for the
direct curvature approach these brackets are either 1

2g or k. The first-order total derivative of the
strain energy density with respect to ( ) is given by:

dW

d ( )
=
∂W

∂ ( )
+
∂W

∂η
:
∂η

∂ ( )
(4.95)

Considering the fact that an ideal inner relaxation is performed, the second term drops out due
to Equation (4.78) and the total derivative of the strain energy density can be replaced by the
related partial derivative at the state of relaxed inner displacements. However, the full expression
of Equation (4.95) is essential for its further total derivatives. Otherwise, the influence of the
inner relaxation on the second-order derivatives of the strain energy density is omitted and the
corresponding correction term is missing. With this fact in mind, the second-order total derivative
of the strain energy density with respect to [ ] reads:

d2W

d ( ) d [ ]
=

∂

∂ [ ]

(
dW

d ( )

)
+

∂

∂η

(
dW

d ( )

)
:
∂η

∂ [ ]

=
∂

∂ [ ]

(
∂W

∂ ( )

)
+

∂

∂ [ ]

(
∂W

∂η

)
:
∂η

∂ ( )
+
∂W

∂η
:
∂

∂ [ ]

(
∂η

∂ ( )

)

+

[
∂

∂η

(
∂W

∂ ( )

)
+

∂

∂η

(
∂W

∂η

)
:
∂η

∂ ( )
+
∂W

∂η
:
∂

∂η

(
∂η

∂ ( )

)]
:
∂η

∂ [ ]
(4.96)

This expression is further simplified by using the fulfilment of the inner relaxation. Therefore, the
total derivative of Equation (4.78) with respect to ( ) is computed.

d

d ( )

(
∂W

∂η

)
=

∂

∂ ( )

(
∂W

∂η

)
+

∂

∂η

(
∂W

∂η

)
:
∂η

∂ ( )
= 0 (4.97)

This equation allows to give a characterisation for the partial derivative of the inner displacements
η with respect to the strain measures, which are again symbolised by ( ).

∂η

∂ ( )
= −

[
∂2W

∂η∂η

]−1

:
∂2W

∂η∂( )
(4.98)

Taking into account of Equation (4.97), Equation (4.98) and the ideal inner relaxation of Equation
(4.78), the second-order total derivative of the strain energy density simplifies to:

d2W

d ( ) d [ ]
=

∂2W

∂( )∂[ ]
− ∂2W

∂η∂[ ]
:

[
∂2W

∂η∂η

]−1

:
∂2W

∂η∂( )
(4.99)
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It is pointed out again that within this expression, the relaxed strain energy density is considered
and, consequently, all terms are evaluated at the relaxed inner displacements η = η̂. The necessary
quantities for the evaluation of the first-order and second-order partial derivatives of the strain
energy density with respect to the proper strain measures are listed explicitly in Appendix A.1.
The variations of the strain measures and their increments are given in Subappendix A.3.1.

The variation δΠnb and its increment ∆δΠnb follow directly from the definition of the non-bonded
potential Πnb in Equation (4.87).

δΠnb =
1

2

∫

Ω0

∫

Ω0−BX

∂Wnb

∂d
: δd dΩ0Y dΩ0X (4.100)

∆δΠnb =
1

2

∫

Ω0

∫

Ω0−BX

[(
∂2Wnb

∂d∂d
: ∆d

)
: δd+

∂Wnb

∂d
: ∆δd

]
dΩ0Y dΩ0X (4.101)

The first-order and second-order derivatives of the strain energy double density Wnb with respect
to the distance d (x,y) of two points on the deformed surface can be calculated in a straightforward
manner and are given in Appendix A.2. Additionally, the variation δd, the increment ∆d and the
increment ∆δd are essential.

d (x,y) = ‖x− y‖ = [(x− y) · (x− y)]
1/2

(4.102)

δd (x,y) =
1

d (x,y)
(δx− δy) · (x− y) (4.103)

∆d (x,y) =
1

d (x,y)
(∆x−∆y) · (x− y) (4.104)

∆δd (x,y) = − 1

[d (x,y)]
3 [(∆x−∆y) · (x− y)] · [(δx− δy) · (x− y)]

+
1

d (x,y)
(δx− δy) · (∆x−∆y) (4.105)

The variation δΠext results from the potential due to external loads defined in Equation (4.88).

δΠext = −
∫

Ω0

2

S0
f · δx dΩ0 (4.106)

Due to the consideration of a constant force field f , this variation is independent of the deformation
and, consequently, its increment ∆δΠext vanishes.

4.7 Stability of global equilibrium

On the basis of the previous Section 4.6, equilibrium configurations of the continuum surface for the
mixed atomistic-continuum model can be calculated. In addition, the structural stability of this
states is significant for a buckling analysis. In order to give a criterion for stable configurations, the
total potential of neighbouring states is compared. If the total potential Π (x) at the equilibrium
state is smaller than the total potential Π (x + δx) of an infinitesimally perturbed configuration,
the observed equilibrium configuration is designated to be stable.

Π (x + δx)−Π (x) > 0 (4.107)
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Next, the infinitesimally perturbed configuration can be approximated by a truncated Taylor series
expansion around the equilibrium state.

Π (x + δx) = Π (x) + δΠ (x) +
1

2
δ2Π (x) (4.108)

Moreover, for the equilibrium configuration, the stationary condition δΠ (x) = 0 is valid and,
consequently, the stability condition reads:

δ2Π (x) > 0 (4.109)

On the contrary, the observed equilibrium state is indifferent if δ2Π (x) = 0 or even unstable if
δ2Π (x) < 0. In particular, at unstable configurations, a neighbouring state with lower potential
energy is possible.

4.8 Numerical implementation

This section supplies information about the numerical implementation of the mixed atomistic-
continuum model on the basis of the finite element method. For a full treatment on the concepts
of the finite element method see classical textbooks for instance Bathe [7], Wriggers [61] and
Zienkiewicz and Taylor [64, 65]. The application of the finite element method for the approximation
of the mixed atomistic-continuum model requires a proper choice of the finite element space. For
that purpose, suitable finite elements are specified. The calculation of equilibrium configurations
is performed by discretising the linearised stationary condition and employing an iterative solution
procedure. The necessary expressions for setting up the finite element equations are specified.
In particular, considering the bonded and the non-bonded interactions as well as external
contributions, the relevant element force vectors and element stiffness matrices are provided.

4.8.1 Finite element approximation employing subdivision finite elements

The constitutive model for the simulation of carbon nanotubes, derived in Section 4.5, sets essential
conditions on the finite element space. This is because the two distinct approximations of the
exponential Cauchy-Born rule deliver a strain energy density that depends on the spatial curvature
tensor and, therefore, the total potential of bonded interactions alike. As a consequence, the finite
element space has to provide bounded second square integrable derivatives. This requirement on
the finite element shape functions is evident from the definition of the spatial curvature tensor in
Equation (4.21). One possibility to observe this request is the use of finite elements on the basis
of subdivision surfaces. Subdivision surfaces are tools for shaping curves and surfaces, which were
developed in the area of computer graphics. Thereby, the main fields of application are animation
movies, computer games and computer aided geometry design. However, subdivision surfaces were
also applied as finite elements for special purposes. In this context, Cirak and Ortiz [17] and Cirak
et al. [18] successfully introduced the idea of subdivision surfaces to the finite element analysis
of thin shells. In particular, a triangular type of subdivision surfaces according to Loop [33] is
used. The call for comparable quadrilateral subdivision finite elements is satisfied by the scheme
of Catmull and Clark [13]. These two schemes offer the desirable property that a polynomial
representation of the surface within an element is possible and, hence, the shape functions of the
finite element are well defined. In what follows, the characteristics and the patches of the triangular
and quadrilateral subdivision finite elements are specified.

Triangular subdivision finite element

This type of finite element is non-local and offers an approximative character. The illustration
in Figure 4.17 depicts a referential finite element patch that is mapped into the undeformed and
the deformed configuration by the concept of isoparametry. The three distinct configurations
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Figure 4.17: The triangular subdivision finite element. Illustration of the reference configuration
and the mapped material (graphene sheet) and spatial (carbon nanotube) configura-
tion of the triangular subdivision finite element patch.

of the finite element and their bases are defined according to Subsection 4.3.1. The non-local
character results from the fact that the approximated field within the shaded central face depends
not only on nodal values of its corners. In addition, the coefficients of the nodes in its first
neighbourhood are important as well. This results in 12 shape functions for the whole patch,
nonetheless, the parametrisation is executed solely for the considered central element 4-7-8, which
is referred to as finite element. Explicit expressions for the shape functions NI

(
ξ1, ξ2

)
are given

in Subappendix A.4.1. Herein, the index I characterises the local node number while ξ1 and ξ2

are the local curvilinear coordinates of the unit triangle in the parametric space. This allows to
state an approximated position vector within the finite element in its Lagrangian and Eulerian
configuration on the basis of the shape functions and the related nodal coefficients.

Quadrilateral subdivision finite element

The quadrilateral non-local subdivision finite element patch is illustrated in Figure 4.18. Herein,
the referential patch consists of the central quad, termed as finite element, and its eight surrounding
quads. Following the isoparametric concept, this reference element is mapped into each undeformed
and deformed finite element. In doing so, the three distinct configurations and their bases are
defined in conformance with Subsection 4.3.1. Again, the non-locality is characterised by the
additional influence of the nodal coefficients of the surrounding nodes on the approximation field
inside the central quad that is enclosed by the corner nodes 6-7-10-11. Thus, in total 16 shape
functions are necessary for the parametrisation of the finite element. Based on the local curvilinear
coordinates ξ1 and ξ2, for each local node I in the patch, a shape function NI

(
ξ1, ξ2

)
is defined

according to Subappendix A.4.2. Using these shape functions and the nodal coefficients, the
approximation of a position vector inside the finite element is possible. Thus, its material and
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Figure 4.18: The quadrilateral subdivision finite element. Illustration of the reference configuration
and the mapped material (graphene sheet) and spatial (carbon nanotube) configura-
tion of the quadrilateral subdivision finite element patch.

spatial description are well defined.

Configurations of the finite element

The description of the approximated geometry by a finite element requires a set of nodal coefficients
in combination with the appropriate shape functions. In the case of the subdivision finite elements,
the nodes of the patch exhibit only translational degrees of freedom. However, using either the
triangular or the quadrilateral finite element, the resulting parametrised surface is smooth. This
circumstance is received due to their non-local character. Taking everything into account, the
approximations of the position vectors, for the geometry of the finite elements in the material
(Lagrangian) X and spatial (Eulerian) x configuration, are given by:

X = NI
(
ξ1, ξ2

)
XI (4.110)

x = NI
(
ξ1, ξ2

)
xI (4.111)

In these expressions and in what follows, summation on the local node index I is performed.
In addition, the quantities XI and xI depict the nodal coordinates in the material and spatial
configuration, respectively. The shape functions NI

(
ξ1, ξ2

)
are selected depending on the type of

discretisation. For that purpose, the triangular finite element (I = 1, . . . , 12) and the quadrilateral
finite element (I = 1, . . . , 16), which where introduced above are available. Applying the finite
element approximation, the covariant base vectors of the undeformed configuration, which are
defined in Equation (4.14), are obtained in their discrete form as:

Gα =
∂X

∂ξα
= (NI),α XI = (NI),α (XI)

A
EA (4.112)
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Herein, (NI),α denotes the first-order partial derivative of the shape function NI with respect to
the curvilinear coordinate ξα. In a similar manner, considering Equation (4.14), the approximated
covariant base vectors of the surface in its deformed configuration are given by:

gα =
∂x

∂ξα
= (NI),α xI = (NI),α (xI)

a
ea (4.113)

Subsequently, the discretised initial Jacobian tensor, following Equation (4.23), reads:

J = Gα ⊗ Ē
α

= (NI),α (XI)
A

EA ⊗ Ē
α

(4.114)

This Jacobian tensor, strictly speaking its inverse, is important for the pull-back operations
performed on the spatial metric tensor and the spatial curvature tensor. Therefore, especially
its components

JAα = (NI),α (XI)
A

(4.115)

with respect to the bases EA and Ē
α

are of interest. The discretised current configuration Jacobian
tensor according, to Equation (4.23), is given by:

j = gα ⊗ Ē
α

= (NI),α (xI)
A

ea ⊗ Ē
α

(4.116)

This quantity is specified for the sake of completeness although it is not explicitly needed in the
implementation. Furthermore, for the spatial curvature tensor, the derivative of the covariant base
vectors in the deformed surface with respect to the local curvilinear coordinate ξβ is necessary.

gα,β =
∂gα
∂ξβ

=
∂2x

∂ξα∂ξβ
= (NI),αβ xI = (NI),αβ (xI)

a
ea (4.117)

In that expression, (NI),αβ denotes the second-order partial derivative of the shape function NI
with respect to the curvilinear coordinates ξα and ξβ . On the basis of these approximations, the
essential strain measures g,k and, consequently, C,K can be calculated according to Subsection
4.3.3 and Subsection 4.3.4 in a straightforward manner. In addition to that, the analogies to the
variations of the strain measures and the increments of these variations, namely their derivatives
with respect to the degrees of freedom, follow the representation of Subappendix A.3.2.

4.8.2 Global equilibrium in the discrete setting

In order to obtain the finite element equations for the global equilibrium that is derived in its
continuous setting in Section 4.6, a discretisation by means of subdivision finite elements is applied.
In that process, the undeformed domain Ω0 and the deformed domain Ω are partitioned into a set
of nel elements. This fragmentation, additionally, introduces a specific number nn of global nodes
K with various feasible and dedicated coefficients. Each finite element e owns its undeformed area
Se as well as its deformed area se. Moreover, two distinct elements do not overlap. Consequently,
the entire undeformed body Ω0 =

⋃nel

e=1 Se is the union of all element-related undeformed domains.
The identical thought delivers Ω =

⋃nel

e=1 se for the deformed domain. As a consequence of
this discretisation, the overall quantities of the considered domain are obtained by collecting the
individual elemental contributions. According to Subsection 4.8.1, the use of subdivision finite
elements solely introduces translational degrees of freedom. Therefore, the nodal position vector
XK in the material configuration as well as the nodal position vector xK in spatial configuration
are assigned to each global node K of the discretisation. In addition, the virtual displacements
δx and the increments ∆x are approximated in accordance with the geometry by finite elements
and their associated shape functions. Consequently, a vector of virtual displacements δxK and a
vector of displacement increments ∆xK is assigned to each node of the finite element mesh. The
calculation of global equilibrium configurations for a specified external load level is characterised
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by the associated stationary condition given for the continuous setting in Equation (4.89). As a
consequence of the discretisation by finite elements and the introduction of nodal coefficients, a
non-linear system of equations originates. This system of equations is further linearised in order
to enable an iterative solution procedure. Therefore, on the basis of the linearisation given in
Equation (4.90), a linear system of equations has to be solved repeatedly. For this purpose, the
variations of the total potential and their increments in the discrete setting are given below.

δΠ = δΠb + δΠnb + δΠext

δΠ =

nn∑

K=1

[
∂Πb

∂xK
+
∂Πnb

∂xK
+
∂Πext

∂xK

]
· δxK

δΠ =

nn∑

K=1

[(fb)K + (fnb)K − (f ext)K ] · δxK

δΠ =

nn∑

K=1

[(f int)K − (f ext)K ] · δxK (4.118)

The expressions (fb)K and (fnb)K denote the global force sub-vectors associated with the global
node K. These forces arise from the bonded interactions and the non-bonded interactions, which
are, additionally, collected into a global internal force sub-vector (f int)K . Consequently, the global
external force sub-vector (f ext)K considers the contributions of external loads related to node K.

∆δΠ = ∆δΠb + ∆δΠnb + ∆δΠext

∆δΠ =

nn∑

K=1

{
nn∑

L=1

[
∂2Πb

∂xK∂xL
+

∂2Πnb

∂xK∂xL

]
∆xL

}
· δxK

∆δΠ =

nn∑

K=1

{
nn∑

L=1

[(Kb)KL + (Knb)KL] ∆xL

}
· δxK

∆δΠ =

nn∑

K=1

{
nn∑

L=1

(K)KL ∆xL

}
· δxK (4.119)

The sub-matrices (Kb)KL and (Knb)KL of the global stiffness matrix incorporate the bonded and
the non-bonded interactions. Moreover, these individual sub-matrices are combined to a tangent
stiffness sub-matrix (K)KL associated with the global nodes K and L.

The concatenation of the discrete forms of the variations and the linearised variations, under
consideration of arbitrary virtual displacements δx, delivers a linear system of equations.
Consequently, the finite element equations for the iteration (m+ 1) of the global equilibrium can
be set up.

nn∑

L=1

(
K(m)

)
KL

∆x
(m+1)
L = −

(
f

(m)
int

)
K

+ (f ext)K K = 1, . . . , nn and m = 0, 1, . . . (4.120)

Furthermore, this index representation of the finite element equations can be transformed into a
matrix notation. In the course of this, the introduction of the global tangent stiffness matrix K(m)

and the global vector ∆x(m+1) of displacement increments is necessary.

K(m) =




(
K(m)

)
11

· · ·
(
K(m)

)
1nn

...
. . .

...(
K(m)

)
nn1

· · ·
(
K(m)

)
nnnn


 ∆x(m+1) =




∆x
(m+1)
1
...

∆x
(m+1)
nn


 (4.121)
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In addition, the global internal force vector f
(m)
int and the global external force vector f ext are

accordingly defined.

f
(m)
int =




(
f

(m)
int

)
1

...(
f

(m)
int

)
nn


 f ext =




(f ext)1
...

(f ext)nn


 (4.122)

As a consequence, the linear system of equations for the iteration (m+ 1) of a Newton-Raphson
procedure can be written as:

K(m)∆x(m+1) = −f
(m)
int + f ext (4.123)

This system is solved to obtain the increments ∆x(m+1) of the global nodal position vector x(m)

and, subsequently, an update of these positions is realised.

x(m+1) = x(m) + ∆x(m+1) (4.124)

The iterations are repeated till the energy residuum
∣∣∣
(
−f

(m)
int + f ext

)
·∆x(m+1)

∣∣∣ is less or equal a

given tolerance. If convergence is achieved, the next load step can be investigated.

In the following, the essential element-wise contributions to the global force vectors and the global
stiffness matrix are specified. In particular, the bonded and the non-bonded interactions are
observed and the associated element force vectors and the element stiffness matrices are defined.
Furthermore, the element-related external force vector resulting from the external loads is given.
Thereby, index notation is used and the conventions given in Subsection 4.3.2 are applied. In
addition, the indices I and J characterise local nodes within a finite element whereas the indices
K and L represent global nodes of the entire discretisation. Following this conventions, the
components of global and element force vectors are specified by a node index and a coordinate index.
In the same fashion, the components of global and element stiffness matrices are characterised by
two node indices and two coordinate indices.

Potential of bonded interactions

With reference to Equation (4.85) and Equation (4.86), the potential Πb of bonded interactions
is defined by the integral of the relaxed strain energy density over the undeformed domain. The
relaxed strain energy density is obtained by evaluating the strain energy density W , which is
given according to Equation (4.76) and Equation (4.77) for the two types of approximations of the
exponential Cauchy-Born rule, at the state of relaxed inner displacements η = η̂, received from the
minimisation process as specified in Equation (4.78). Due to the discretisation of the continuous
surface by means of finite elements, the integral over the undeformed domain Ω0 can be split into
a sum of element-wise integrals.

Πb =

∫

Ω0

W dΩ0 =

nel∑

e=1

∫

Se

W dSe =

nel∑

e=1

Πe
b (4.125)

Furthermore, the integrals within the element-related bonded potential Πe
b are transformed to

correlated integrals on the reference element. At this stage, the determinant of the initial
Jacobian tensor is crucial. Finally, the exact integration is approximated by numerical quadrature.
Therefore, quadrature points q = 1, . . . , nqb at the referential coordinates (ξ1

q , ξ
2
q ) with their

corresponding weights wq are introduced. As a consequence, the relaxed strain energy density
and the determinant of the initial Jacobian tensor det (J) have to be evaluated at this quadrature
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points.

Πe
b =

∫

S̄e

W det (J) dS̄e ≈
nqb∑

q=1

W
∣∣
(ξ1q ,ξ2q)

det (J)
∣∣
(ξ1q ,ξ2q)

wq (4.126)

The representation of the relaxed strain energy density for the numerical integration requires the
relaxed inner displacements η = η̂. These have to be calculated for each quadrature point according
to Subsection 4.5.3 via an internal Newton-Raphson procedure.

Internal forces due to bonded interactions

In the discrete setting of the finite element method, the virtual displacements within an element
are approximated in the same fashion as the geometry by shape functions and nodal coefficients.
On this account, for each global node K the related virtual displacement vector δxK is introduced.
This allows to give the discrete form of the variated bonded potential as:

δΠb =

nn∑

K=1

∂Πb

∂xK
· δxK =

nn∑

K=1

(fb)K · δxK (4.127)

Within this expression, the derivative of the bonded potential with respect to the global nodal
coefficients defines the global force sub-vector (fb)K of the discrete system. An element force
vector (feb)I can be defined, if the corresponding coefficients δxI of the local nodes I are extracted
from the global ones. Then, the derivative of the element-wise bonded potential Πe

b with respect to
the components (xI)

a
of the actual local displacement vector gives the corresponding components

of the internal force vector. Following these thoughts, the force vector components (feb)Ia for the
two formulations of the extended Cauchy-Born rule are assignable in their numerical integration
complying form.

• Approximation of the exponential Cauchy-Born rule: principal curvatures approach

(feb)Ia =

nqb∑

q=1

[
dW

d 1
2CAB

∂ 1
2CAB

∂ (xI)
a +

dW

dKAB
∂KAB
∂ (xI)

a

]

(ξ1q ,ξ2q)
det (J)

∣∣
(ξ1q ,ξ2q)

wq (4.128)

• Approximation of the exponential Cauchy-Born rule: direct curvature approach

(feb)Ia =

nqb∑

q=1

[
dW

d 1
2gαβ

∂ 1
2gαβ

∂ (xI)
a +

dW

dkαβ

∂kαβ
∂ (xI)

a

]

(ξ1q ,ξ2q)
det (J)

∣∣
(ξ1q ,ξ2q)

wq (4.129)

By an appropriate assemble procedure, these various local element force vector components (feb)Ia
are converted into the unique global force vector (fb)K . The components of this global force vector
(fb)Ka are specified according to the global node number K and the coordinate direction a. In
the computational implementation, the force vectors are effectively stored in this two-dimensional
representation, exhibiting a node index and a coordinate index. The total first-order derivative
of the strain energy density can be calculated by following the deliberations given in Section 4.6
and, subsequently, considering Appendix A.1 and the statements therein with the discrete strain
measures acting as input. The derivatives of the strain measures with respect to the components
of the actual displacement vector are stated in Subappendix A.3.2.

Tangent stiffness matrix due to bonded interactions

For the application of the Newton-Raphson procedure, the increment of the variated bonded
potential is crucial. Therefore, displacement increments ∆xL are introduced in each global node L
of the discretisation. The displacement increments within each finite element are approximated on
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the basis of these nodal coefficients and the shape functions. With regard to the global displacement
increments, the discrete form of the increment of the variated bonded potential can be stated as:

∆δΠb =

nn∑

K=1

[
nn∑

L=1

∂2Πb

∂xK∂xL
∆xL

]
· δxK =

nn∑

K=1

[
nn∑

L=1

(Kb)KL ∆xL

]
· δxK (4.130)

Herein, the second-order partial derivative of the bonded potential with respect to the global
nodal coefficients identifies the sub-matrices (Kb)KL of the global stiffness matrix. In order to
make use of the intention of the finite element method, appropriate element stiffness matrices can
be introduced. For that purpose, the element-wise bonded potential Πe

b is derivated twice with

respect to the components of the actual local displacement vectors (xI)
a

and (xJ)
b
. Therein, the

indices I and J refer to the local node number within the element while a and b are indices related
to the base vectors of the coordinate frame. The realisation of the derivatives in the given notation
delivers the element stiffness matrix components (Ke

b)IaJb for the two different approximations of
the exponential Cauchy-Born rule under consideration of numerical integration.

• Approximation of the exponential Cauchy-Born rule: principal curvatures approach

(Ke
b)IaJb =

nqb∑

q=1

[ (
d2W

d 1
2CAB d 1

2CCD

∂ 1
2CCD

∂ (xJ)
b

+
d2W

d 1
2CAB dKCD

∂KCD
∂ (xJ)

b

)
∂ 1

2CAB

∂ (xI)
a

+

(
d2W

dKAB d 1
2CCD

∂ 1
2CCD

∂ (xJ)
b

+
d2W

dKAB dKCD
∂KCD
∂ (xJ)

b

)
∂KAB
∂ (xI)

a

+ SAB
∂2 1

2CAB

∂(xI)
a
∂(xJ)

b
+MAB ∂2KAB

∂(xI)
a
∂(xJ)

b

]

(ξ1q ,ξ2q)

det (J)
∣∣
(ξ1q ,ξ2q)

wq

(4.131)

The components of the second Piola-Kirchhoff membrane tensor SAB are defined as dW
d 1

2CAB

and, moreover, dW
dKAB identifies the second Piola-Kirchhoff bending tensor components MAB .

• Approximation of the exponential Cauchy-Born rule: direct curvature approach

(Ke
b)IaJb =

nqb∑

q=1

[ (
d2W

d 1
2gαβ d 1

2gγδ

∂ 1
2gγδ

∂ (xJ)
b

+
d2W

d 1
2gαβ dkγδ

∂kγδ

∂ (xJ)
b

)
∂ 1

2gαβ

∂ (xI)
a

+

(
d2W

dkαβ d 1
2gγδ

∂ 1
2gγδ

∂ (xJ)
b

+
d2W

dkαβ dkγδ

∂kγδ

∂ (xJ)
b

)
∂kαβ
∂ (xI)

a

+ ταβ
∂2 1

2gαβ

∂(xI)
a
∂(xJ)

b
+mαβ ∂2kαβ

∂(xI)
a
∂(xJ)

b

]

(ξ1q ,ξ2q)

det (J)
∣∣
(ξ1q ,ξ2q)

wq (4.132)

In this expression, dW
d 1

2 gαβ
denotes the Kirchhoff membrane tensor components ταβ . Further-

more, the Kirchhoff bending tensor components mαβ are given by dW
dkαβ

.

Once more, these local element stiffness matrix components (Ke
b)IaJb are assembled to obtain the

global stiffness matrix components (Kb)KaLb by using the correlation between the local nodes I, J
and the global nodes K,L. Subsequently, the sub-matrices (Kb)KL can be specified. Nevertheless,
in the computational implementation the stiffness matrices are stored in their four-dimensional
structure, having two node indices as well as two coordinate indices. This specific notation delivers
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an effective setup of the individual quantities. The calculation of the first-order and second-
order total derivatives of the strain energy density with respect to the strain measures follows
Section 4.6 and, additionally, Appendix A.1. Thereby, the discrete strain measures, calculated at
the quadrature points, are serving as input for the evaluation. The first-order and second-order
derivatives of the strain measures with respect to the components of the actual displacement vector
are stated in Subappendix A.3.2.

Potential of non-bonded interactions

The potential Πnb of non-bonded interactions according to Equation (4.87) is defined as an
integral of the strain energy double density Wnb. In the discrete setting, the in-layer non-bonded
interactions within an element are disregarded such that possible point-to-point distances in the
regime of the bonded interactions are prevented from the outset. Then, the double integral over
the adequate domains is replaced by a double sum over the elements, denoted by e and f . The
integrals over the elements are further transformed to correlated integrals on the reference element.
In addition, the fact that each pair of elements has to be considered only once is used to save steps
of calculation.

Πnb =
1

2

∫

Ω0

∫

Ω0−BX

Wnb (d) dΩ0Y dΩ0X (4.133)

=

nel∑

e=1

∫

S̄e




nel∑

f=e+1

∫

S̄f

Wnb

(
def
)

det
(
Jf
)

dS̄f


det (Je) dS̄e (4.134)

In this expression, the deformed distance of two arbitrary points, one in each element, is denoted as
def . Subsequently, the paired element-related non-bonded energy occurring between two elements
e and f > e follows as:

Πef
nb =

∫

S̄e

∫

S̄f

Wnb

(
def
)

det
(
Jf
)

dS̄f det (Je) dS̄e (4.135)

Now, the exact integration is replaced by a numerical quadrature. Therefore, for element e
quadrature points qe = 1, . . . , neqnb at the referential coordinates (ξ1

qe , ξ
2
qe) with their corresponding

weights wqe are introduced. Similarly, the points qf = 1, . . . , nfqnb at the referential coordinates

(ξ1
qf , ξ

2
qf ) with their corresponding weights wqf are defined as quadrature points for element f .

Although not necessarily required, the number of non-bonded quadrature points is in general
the same for all elements. As already pointed out in the continuous setting, this potential must
not affect bonded interactions. This special requirement solely affects the in-layer non-bonded
interactions of two finite elements on the same carbon nanotube layer. In Subsection 2.4.2 , these
interactions are examined directly on the atomistic structure. In the course of this, the exclusion
of 1-2 and 1-3 interactions from the set of non-bonded interactions is emphasised. Additionally,
the separate consideration of 1-4 non-bonded interactions is discussed. However, in the mixed
atomistic-continuum approach, the atomistic structure is not accessible. Consequently, another
criterion for the identification of valid in-layer non-bonded interactions is necessary. For that
purpose, the non-bonded interaction distances A1-3 or A1-4 of the undeformed graphene sheet,
which are defined in Subsection 2.4.2 are used as lower limits. In doing so, in-layer non-bonded
interactions are only considered for pairs of integration points of which the undeformed distance
is larger than the specific threshold value. The evaluation of valid pairs of in-layer non-bonded
integration points is, therefore, performed on the basis of the undeformed plane continuum surface.
Additionally, in multi-walled carbon nanotubes or bundles of carbon nanotubes, inter-layer non-
bonded interactions are essential. This type of interaction is not influenced by the potential of the
bonded interactions. Consequently, inter-layer non-bonded interactions are generally taken into
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account for all pairs of integration points of which the associated finite elements are located on
different layers. In order to reduce the total number of non-bonded interactions, an extra upper cut-
off radius is specified in accordance with Subsection 2.4.1. In doing so, all non-bonded interactions
exhibiting a distance larger than the upper cut-off radius are not considered. The distances for this
comparison are calculated on the deformed configuration of the continuum surface. Furthermore,
the evaluation of the strain energy double density Wnb also requires the deformed distance def

(qe,qf )

between quadrature point qe in element e and qf in element f . For the discrete setting, these two
points are connected by the distance vector

def
(qe,qf )

=
(
def

(qe,qf )

)a
ea = xeqe − xf

qf
(4.136)

where the indices qe and qf denote the evaluation of the position vectors within the elements at
the dedicated curvilinear coordinates of the quadrature points. According to Equation (4.111),
these positions are defined in the discrete setting by the shape functions and the spatial nodal
coordinates of element e and f , respectively.

xeqe = Ne
I

(
ξ1
qe , ξ

2
qe
)
xeI (4.137)

xf
qf

= Nf
I

(
ξ1
qf , ξ

2
qf

)
xfI (4.138)

Subsequently, the corresponding approximated form of the scalar distance value follows directly
as:

def
(qe,qf )

= ‖xeqe − xf
qf
‖ = ‖Ne

I

(
ξ1
qe , ξ

2
qe
)
xeI −Nf

I

(
ξ1
qf , ξ

2
qf

)
xfI ‖ (4.139)

Then, the numerically approximated non-bonded energy between two distinct elements is given
by:

Πef
nb =

neqnb∑

qe=1

nfqnb∑

qf=1

Wnb

(
def

(qe,qf )

)
det
(
Jf
) ∣∣(

ξ1
qf
,ξ2
qf

)wqf
︸ ︷︷ ︸

wf
qf

det (Je)
∣∣
(ξ1qe ,ξ2qe)

wqe
︸ ︷︷ ︸

we
qe

(4.140)

For a compact notation, here and henceforth, extended weights weqe and wf
qf

are used. These are
defined as scaled standard weights of the quadrature points. The scaling factor is specified by the
determinant of the initial Jacobian tensor, evaluated at the appendant quadrature point.

Internal forces due to non-bonded interactions

Following the same train of thoughts as in the derivation of the internal forces due to bonded
interactions, the discrete form of the variated non-bonded potential is defined as:

δΠnb =

nn∑

K=1

∂Πnb

∂xK
· δxK =

nn∑

K=1

(fnb)K · δxK (4.141)

The derivative of the non-bonded potential with respect to the global nodal coefficients xK defines
the global non-bonded force sub-vector (fnb)K of the discrete system. The element force vectors
due to non-bonded interactions follow from the definition of the non-bonded potential occurring
between two elements e and f > e as given above. The dependence on two distinct finite elements
results in force vectors related to the local nodes of both of them. Therefore, the derivatives of
the interaction distance def

(qe,qf )
with respect to the components of the local element-wise actual
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displacement vectors are necessary. Using Equation (4.139), these terms are obtained as:

∂def
(qe,qf )

∂(xeI)
a = +

(
def

(qe,qf )

)a

def
(qe,qf )

Ne
I

(
ξ1
qe , ξ

2
qe
)

(4.142)

∂def
(qe,qf )

∂
(
xfI

)a = −

(
def

(qe,qf )

)a

def
(qe,qf )

Nf
I

(
ξ1
qf , ξ

2
qf

)
(4.143)

Then, in a first step, the non-bonded forces (fenb)I in the nodes of element e are obtained by
the derivative of the element-pair-related non-bonded interactions potential with respect to the
components (xeI)

a
of the local actual displacement vector corresponding to element e. Under

consideration of Equation (4.142), these force vector components can be written as:

(fenb)Ia =
∂Πef

nb

∂(xeI)
a = +

neqnb∑

qe=1

nfqnb∑

qf=1

W ′nb

(
def

(qe,qf )

)
(
def

(qe,qf )

)a

def
(qe,qf )

Ne
I

(
ξ1
qe , ξ

2
qe
)
wf
qf
weqe (4.144)

Secondly, in the nodes of element f the non-bonded forces
(
ffnb

)
I

appear. By calculating the

derivative of the element-pair-related non-bonded energy with respect to the components
(
xfI

)a

of the local actual displacement vector for element f and using Equation (4.143), the force vector
components are:

(
ffnb

)
Ia

=
∂Πef

nb

∂
(
xfI

)a = −
neqnb∑

qe=1

nfqnb∑

qf=1

W ′nb

(
def

(qe,qf )

)
(
def

(qe,qf )

)a

def
(qe,qf )

Nf
I

(
ξ1
qf , ξ

2
qf

)
wf
qf
weqe (4.145)

For the evaluation of the first-order derivative of the strain energy double density with respect to
the point-to-point distance the expressions given in Appendix A.2 are applied. The global non-
bonded force vector components (fnb)Ka according to the global node numberK and the coordinate
direction a are obtained by an assemblage of the elemental contributions. With that, the global
non-bonded force sub-vectors (fnb)K are specified as well. In the computational implementation,
the index notation, utilising a node index and a coordinate index is used again. This allows to
store the various non-bonded force vector components in a two-dimensional representation.

Tangent stiffness matrix due to non-bonded interactions

The discrete form of the increment of the variated non-bonded potential is essential for the
Newton-Raphson procedure. Thereby, the way of proceeding follows the sequence given within
the discussion for bonded interactions. This allows to state the discrete form of the incremental
variated non-bonded potential as:

∆δΠnb =

nn∑

K=1

[
nn∑

L=1

∂2Πnb

∂xK∂xL
∆xL

]
· δxK =

nn∑

K=1

[
nn∑

L=1

(Knb)KL ∆xL

]
· δxK (4.146)

The sub-matrices (Knb)KL of the global stiffness matrix are given by the second-order partial
derivative of the non-bonded potential with respect to the global nodal coefficients. Based on the
paired element-related non-bonded energy Πef

nb, coupled element stiffness matrices, incorporating
two finite elements e and f > e, can be specified. For this reason, the various second-order
derivatives of the interaction distance def

(qe,qf )
with respect to the components of the local element-

wise actual displacement vectors are essential. Starting from the associated first-order derivatives,
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given in Equation (4.142) and Equation (4.143), those terms are obtained as:

∂2def
(qe,qf )

∂(xeI)
a
∂(xeJ)
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∂2def
(qe,qf )

∂
(
xfI

)a
∂
(
xfJ

)b = +


 δab

def
(qe,qf )

−

(
def

(qe,qf )

)a (
def

(qe,qf )

)b

[
def

(qe,qf )

]3


Nf

I

(
ξ1
qf , ξ

2
qf

)
Nf
J

(
ξ1
qf , ξ

2
qf

)
(4.150)

It can be seen from this that all four expressions share the same expression in square brackets,
which is, therefore, abbreviated into one single quantity.

D̃ab =
1

def
(qe,qf )

[
δab −Dab

]
(4.151)

Herein, an additional second short-form is introduced, which is given by:

Dab =

(
def

(qe,qf )

)a (
def

(qe,qf )

)b

[
def

(qe,qf )

]2 (4.152)

This allows to specify the four element-pair-related non-bonded stiffness matrices. In the course
of this, the term

(
Wef

nb

)ab
= W ′nb

(
def

(qe,qf )

)
D̃ab +W ′′nb

(
def

(qe,qf )

)
Dab (4.153)

appears in all four expressions so that its collection into an other short-form is advantageous.
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These local element-pair-related non-bonded stiffness matrix components are used within the
computational implementation in their four-dimensional notation. This allows a convenient and
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straightforward evaluation of these quantities. The utilisation of the first-order and second-order
derivatives of the strain energy double density with respect to the point-to-point distance is
explicitly specified in Appendix A.2. In a final step, the correlation between the local nodes
I, J and the global nodes K,L enables the assemblage of the global non-bonded stiffness matrix
components (Knb)KaLb and, consequently, the related sub-matrices (Knb)KL.

Potential of external loads

The potential Πext of external loads is defined according to Equation (4.88) by an integration of
the external contributions over the undeformed domain of the continuum surface. This integral
can be further split into a sum of element-wise integrals using the finite element discretisation.

Πext = −
∫

Ω0

2

S0
f · x dΩ0 =

nel∑

e=1


−

∫

Se

2

S0
f · x dSe


 =

nel∑

e=1

Πe
ext (4.158)

Subsequently, the integral within the undeformed element is transformed to the correlated integral
on the reference element involving the initial Jacobian tensor. Additionally, the application of a
numerical quadrature replaces the exact integration. Therefore, quadrature points q̂ = 1, . . . , nqext

with weights wq̂ at the referential coordinates (ξ1
q̂ , ξ

2
q̂ ) are introduced and the essential quantities

are evaluated at these points.

Πe
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2
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(ξ1q̂ ,ξ2q̂)

det (J)
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(ξ1q̂ ,ξ2q̂)

wq̂ (4.159)

For the evaluation of the external potential within the finite element, the approximated position
vector at the quadrature points is necessary. This position is given by the shape functions and the
spatial nodal coordinates of the element according to Equation (4.111) as:

x
∣∣
(ξ1q̂ ,ξ2q̂)

= NI
(
ξ1
q̂ , ξ

2
q̂

)
xI (4.160)

External forces

In accordance to the derivation of the internal forces due to bonded and non-bonded interactions,
the discrete form of the variated potential of external forces is defined as:

δΠext = −
nn∑

K=1

[
−∂Πext

∂xK

]
· δxK = −

nn∑

K=1

(f ext)K · δxK (4.161)

Thereby, the negative derivative of the potential due to external forces with respect to the global
nodal coefficients xK defines the global external force sub-vector (f ext)K , related to the global
node K of the discrete system. The element-wise external force vector components (feext)Ia can be
specified by the derivative of the negative element-wise external potential Πe

ext with respect to the
components (xI)

a
of the actual local position vector.

(feext)Ia = − ∂Πe
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∂(xI)
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2
q̂

)
det (J)
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(ξ1q̂ ,ξ2q̂)

wq̂ (4.162)

The local element-related external force vector components (feext)Ia can then be assembled into the
global external force vector components (fext)Ka by the appropriate correlation between local nodes
I and global nodes K. Consequently, the global external force sub-vectors (f ext)K are defined. In
the computational implementation, the related components are again stored in the two-dimensional
representation, holding a node index and a coordinate index. The permitted external contributions
result in an external force vector, which is independent of the deformation.
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4.8.3 Stability of global equilibrium in the discrete setting

In Section 4.7, the condition for the structural stability of equilibrium configurations is specified
for the continuous case on the basis of the second variation of the total potential energy. In the
finite element method, this criterion is defined accordingly and, thus, the second variation of the
total potential energy in the discrete setting is necessary.

δ2Π = δ2Πb + δ2Πnb + δ2Πext

δ2Π =

nn∑

K=1

{
nn∑

L=1

[
∂2Πb

∂xK∂xL
+

∂2Πnb

∂xK∂xL

]
δxL

}
· δxK

δ2Π =

nn∑

K=1

{
nn∑

L=1

[(Kb)KL + (Knb)KL] δxL

}
· δxK

δ2Π =

nn∑

K=1

{
nn∑

L=1

(K)KL δxL

}
· δxK (4.163)

The derivation of this term is closely related to the increments of the variation of the total potential
energy, which is specified in Equation (4.119). Consequently, in the discrete setting, the second
variation of the total potential energy includes the global stiffness matrix of the equilibrium state.
In accordance to Equation (4.109), the discrete stability criterion reads:

δ2Π =

nn∑

K=1

{
nn∑

L=1

(K)KL δxL

}
· δxK > 0 (4.164)

In order to obtain a more compact notation, the global virtual displacements vector δx and the
global tangent stiffness matrix K are expressed in matrix notation.

δx =




δx1

...

δxnn


 K =




(K)11 · · · (K)1nn

...
. . .

...

(K)nn1 · · · (K)nnnn


 (4.165)

Now, the stability criterion can be rewritten using matrix algebra.

δ2Π = δxTK δx > 0 (4.166)

This basic condition for stability has to be fulfilled for arbitrary perturbations δx. As a
consequence, the observed equilibrium configuration is stable if the global tangent stiffness matrix
K is positive definite. The calculation of the eigenvalues ωi (i = 1, . . . , nn), of the global stiffness
matrix K, enables the determination of its definiteness. From this it follows that an instability point
is characterised by the occurrence of a zero eigenvalue. Additionally, the eigenvector µi identifies
the shape of the configuration, associated to eigenvalue ωi. This is why these eigenvectors are
essential for problems exhibiting bifurcation points, because in the treatment of secondary branches
they can be used to achieve the appropriate buckled configurations. For this reason, the branch
switching approach suggested by Wagner and Wriggers [57] is applied. This algorithm provides a
starting vector x(0) for the iterative calculation of the equilibrium state on the secondary branch.

x(0) = xc + νµc (4.167)

Therein, the vector xc denotes the state of deformation at the detected critical point. Furthermore,
the associated eigenvector µc and a scaling factor ν are essential. A successful branch switch
generates the requested equilibrium configuration on the secondary path. Consequently, the
buckled configuration is obtained and the postbuckling path can be further investigated.
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4.9 Numerical simulations on buckling of carbon nanotubes

The aim of this section is the application of the mixed atomistic-continuum model in the buckling
analysis of carbon nanotubes. The validation of the model is done by a check against the results
obtained by the full atomistic simulation using the molecular statics approach. In particular, the
equilibrium configurations and the appendant energy evolutions of both methods are compared.
Moreover, the characteristic deformation parameters, which specify the critical states of structural
stability in both approaches are checked against each other. In this verifications, the molecular
statics approach is taken as reference for the specification of accuracy statements and relative
errors for the mixed atomistic-continuum model. In addition, a comparison between the different
approximation schemes for the exponential Cauchy-Born rule is performed. The modelling of in-
layer and inter-layer non-bonded interactions in the context of the mixed atomistic-continuum
model is investigated. For these purposes, various carbon nanotubes under different loading
scenarios are considered. The numerical simulations are realised with the implementation of
a stand-alone finite element framework. In the course of this, the calculation of equilibrium
configurations is accomplished by means of a classical Newton-Raphson procedure or an arc-
length method. See for instance Wriggers [61] and Zienkiewicz and Taylor [65] for a collection of
solution algorithms for non-linear systems of equations. With respect to stability, an accompanying
eigenvalue analysis of the global stiffness matrix is carried out, and the critical configurations
are detected using a bisection algorithm. To gain insight into the postbuckling behaviour of
carbon nanotubes, a branch switching is performed. In the numerical examples that consider non-
bonded interactions, certain simulations include an upper cut-off radius in order to reduce the
amount of possible non-bonded interactions. In the selection of the specific threshold value, the
derivations of Subsection 2.4.1 serve as guidance. The use of an upper cut-off radius requires an
additional loop around the iterations of the current load step. This is because the actual set of
non-bonded interactions depends on the current state of deformation. Consequently, the current
load step is repeatedly evaluated, and at the start of each iteration loop a list that contains all
relevant non-bonded interactions is updated. Thereby, the distance between all potential pairs
of non-bonded integration points is examined and those interactions that are beneath the cut-off
radius are considered. On the basis of this current set of non-bonded interactions, the equilibrium
configuration of the intermediate state is calculated. If the initially varying number of non-bonded
interactions remains constant, the complemental loop is terminated. After this, the next and
subsequent load steps are handled in the same manner. This procedure simplifies if the upper
cut-off radius is not used and, consequently, the total number of non-bonded interactions is the
same throughout the entire loading. Then, the additional update loop is not required and the
relevant set of interactions is evaluated just once at the start of the numerical simulation. With
this computational framework in hand, numerical simulations on the basis of the discretised mixed
atomistic-continuum model are performed for several types of carbon nanotubes under different
loading cases. The obtained results are checked against the molecular statics approach and, if
available, with corresponding simulations from the literature.

4.9.1 Rolling of the graphene sheet to a carbon nanotube

The first step within all the simulations is the establishment of a relaxed carbon nanotube. This
process starts from the flat continuum surface, representing the undeformed graphene sheet. With
reference to Section 2.2, the graphene sheet for a specific carbon nanotube has a length L0 and
a height Ch. This rectangular slab of graphene is the undeformed body of the mixed atomistic-
continuum model and is, consequently, discretised by finite elements. In particular, referring to
Subsection 4.8.1, subdivision finite elements are applied. In the continuum setup, the rolling of
the undeformed planar graphene sheet produces a cylindrical surface. This cylinder is the initial
deformed configuration that owns, according to Equation (2.3), a radius R0. However, due to
the approximative character of the considered shape functions, a computational radius RC of the
control mesh is needed. This fictitious radius is given by RC = R0/ (8/12 + 4/12 · cos (2π/ncd)).
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For this specification, a structured grid with equally sized quadrangles is assumed. Furthermore, it
becomes additionally necessary that the number of quadrangles in the circumferential direction ncd

of the grid is even. The number of quadrangles in the longitudinal direction nld is not restricted.
On the basis of this grid, the mesh of a quadrilateral finite element discretisation is specified
as nld xncd in the numerical simulations. In line with this, 2 xnld xncd characterises the finite
element mesh of a triangular discretisation, which is obtained by cutting the quadrangles of the
grid into halves. With reference to the numerical experiments realised by Arroyo [2], the numerical
integration of the relaxed strain energy density for bonded interactions using the triangular finite
element is performed by two integration points. If quadrilateral finite elements are applied, the
numerical integration of the relaxed strain energy density for bonded interactions is realised by
means of four integration points. For each global node K of the discretisation, the mapping of the
Lagrangian nodal position vector XK of the plane mesh to the Eulerian nodal position vector xK
of the fictitious cylindrical mesh can be specified.

x1
K = X1

K

x2
K = RC sin

(
X2
K

R0

)
(4.168)

x3
K = −RC cos

(
X2
K

R0

)

The resulting tube is then geometrically compatible, but the cylindrical surface is not in an
equilibrium state. In the transition from the graphene sheet to the cylinder, the bond lengths ai and
valence angles θi (i = 1, 2, 3) change due to the repositioning of the atoms. As a consequence, the
potential Πb of the bonded interactions, specified according to Equation (4.85) or Equation (4.86),
is affected. Furthermore, the potential Πnb of the non-bonded interactions, given in Equation
(4.87) changes. Thus, in order to achieve a global equilibrium configuration of the structure, the
constitutive model has to be fulfilled. This process is performed in an initial step of calculation,
leading to the relaxed carbon nanotube, which is the initial state for the further loadings and the
ground state for all energies.

4.9.2 An (18,0) carbon nanotube under axial compression

This series of numerical simulations investigates an (18,0) zig-zag carbon nanotube with a length
of 8.7 nm. The tube under consideration is loaded by axial compressive forces, which are applied
antagonistic on both ends of the cylinder. Within these simulations, the non-bonded interactions
are completely neglected in order to put the focus on the different approaches for the extended
Cauchy-Born rules. Additionally, a discretisation on the basis of the triangular and quadrilateral
subdivision finite elements enables a direct comparison of the corresponding results. The external
load is implemented by increasing axial forces, applied on the first row of finite element nodes
on each side of the tube. Additionally, these nodes are constrained to move only radially with
reference to the perfect cylindrical tube. In order to avoid a global buckling mode, similar to the
Euler-beam-buckling, the nodes on the four quadrants of the circular cross section, in the middle
of the tube, are constrained in radial direction. The first step of each simulation is the relaxation
process. This initial step generates a reference configuration for the further loading. In addition,
the relaxed carbon nanotube represents the ground state for the energies. To evaluate the non-
linear load-deformation path, a modified Riks algorithm, as given in Hibbitt et al. [25], together
with an accompanying eigenvalue analysis of the global stiffness matrix is carried out. Additional
informations on path-following procedures can be found for instance in Riks [43], Wriggers [61] and
Bonet and Wood [9]. The important bifurcation points are found via bisection and an associated
branch switching is performed.
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Comparison between the principal curvatures approach and the direct curvature approach

The aim of this simulation is to make a comparison between the two different approximations
of the exponential Cauchy-Born rule that were discussed in Subsection 4.4.4. Additionally, these
continuum approaches are checked against the solution obtained by molecular statics in Subsection
3.5.2. In the course of this, the first eigenform of the axially compressed (18,0) zig-zag carbon
nanotube is studied. For the numerical calculations, in the continuum setting, the graphene
sheet and, therefore, also the carbon nanotube is discretised by 2x48x24 triangular subdivision
elements. Consequently, the finite element mesh has 1176 relevant nodes. The structure of
the associated molecular statics simulation consists of 1440 carbon atoms. The right hand side
of Figure 4.19 demonstrates the obtained load factor λ - axial compression ε diagrams. These
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Figure 4.19: Mixed atomistic-continuum model: The total energy - axial compression ε and load
factor λ - axial compression ε diagrams for the first eigenform of the (18,0) carbon
nanotube under axial compression. Comparison between the principal curvatures and
direct curvature approach and their check against the results obtained by molecular
statics.

curves are characterised by a linear correlation between load and axial compression until the first
instability point is reached. In the outset of this linear part, both continuum approaches are almost
indistinguishable. In addition, the slope of these lines agrees very well with the corresponding slope
of the molecular statics path. Then, the direct curvature approach loses stability slightly before the
principal curvature approach. In spite of that, the continuum methods exhibit a lower critical load
level than the molecular statics simulation. However, as reported in Table 4.1, the values of axial
compression for the predicted instability points are located close together. Subsequently, the branch

principal curvatures direct curvaturemolecular statics
approach approach

critical axial compression 4.491% 4.338% 4.174%

relative error - 3.4% 7.1%

Table 4.1: Mixed atomistic-continuum model: The critical value of compression for the axially
loaded (18,0) carbon nanotube. Comparison between the principal curvatures and direct
curvature approach and their check against the results obtained by molecular statics.
The relative errors for the principal curvatures and direct curvature approach.

switching results in a snap back regime of the corresponding secondary paths. This postbuckling
regions are further followed up to an axial compression of 10.0% using an arc-length method. From
this it can be seen that both continuum approaches and the molecular statics show the same trend
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in the evolution of the postbuckling branch. However, the direct curvature method exhibits a lower
load level at the same extent of compression than the principal curvatures approach. Furthermore,
in the last part of compression, the lowest load level can be seen for the molecular statics calculation.
Similar postbuckling diagrams of compressed carbon nanotubes were obtained by Pantano et al.
[39] using an elastic shell theory. Furthermore, the snap back attribute is known from the buckling
of thin cylindrical shells under axial compression as for instance observed in von Kármán and Tsien
[55] and Wohlever and Healey [60]. In the left side of Figure 4.19, the average total energy is plotted
over the axial compression and the results obtained with the two different continuum methods are
compared with Arroyo’s solution (see Figure 3.8(b) of [2]) and the results obtained from molecular
statics. Here, both continuum approaches show a similar trend again and the model based on the
direct curvature approach gives the lower energy level at the same axial compression. Nonetheless,
the lowest energy level is found in the calculations using molecular statics. Another important
point is the fact that the energy curve obtained by Arroyo [2] via direct minimisation methods
coincides in the important fields with the corresponding curve evaluated with the modified Riks
method. The relative errors of total energy at an axial compression of 10.0% are 11.2% (principal
curvatures approach) and 5.7% (direct curvature approach). The stiffer response of the continuum
approaches results partly from the homogenisation process within the mixed atomistic-continuum
approach. This process can suppress the development of locally severe deformations by a smoothing
character. In particular, this smoothing has less influence if the dimensions of the finite element
are in the scale of the atomic bond length. In the case under consideration, this suggestion is
satisfied. However, there are also fewer degrees of freedom in the finite element mesh than in the
atomistic structure. This circumstance results in an additional stiffening of the continuum model.
Consequently, one can improve the agreement by a finer discretisation, adding more degrees of
freedom and obtaining even smaller finite elements. In that case, the advantage of the continuum
approach, to reduce the degrees of freedom compared to a molecular mechanics calculation, gets
lost. It is then more appropriate to directly use a molecular mechanics approach. The softer
response of the direct curvature approach compared to the principal curvatures method originates
from the individual treatment of each of the three bond vectors within the unit cell. In Figure 4.20,

Figure 4.20: Mixed atomistic-continuum model: The final buckled configurations of the (18,0)
SWCNT under axial compression with a colour mapping of the local total energy
per atom [eV/atom]. Comparison between the molecular statics (left), the principal
curvatures approach (middle) and the direct curvature approach (right).

the resulting postbuckling patterns at the end of deformation are presented. This structure exhibits
three flattenings, perpendicular to each other, in the middle of the tube. The colouring corresponds
to a mapping of the averaged local total energy. In the literature, various carbon nanotubes under
axial compression were investigated for instance by Arroyo [2], Arroyo and Belytschko [5], Leung
et al. [29], Liu et al. [30], Liu et al. [31], Pantano et al. [39], Sears and Batra [45], Sun and Liew
[50] and Yakobson et al. [62] and comparable buckled structures are reported.
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Comparison between the first and second eigenform of buckling

In this numerical calculation, the first and second eigenform of the (18,0) zig-zag carbon nanotube
under axial compression are investigated. For that purpose, the constitutive model, resulting
from the principal curvatures approach is used. Furthermore, the tube is discretised by means of
quadrilateral or triangular subdivision finite elements. The quadrilateral mesh contains 64x32
elements and the triangular discretisation has 2x64x32 finite elements. Consequently, both
discretisations are generated by the same amount of nodes. The determined load factor λ - axial
compression ε and the total energy - axial compression ε curves are given in Figure 4.21. Thereby,
the plots related to the first eigenform are similar to the ones obtained in the example before that.
In a further simulation, the first instability point is bypassed and the second bifurcation point is
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Figure 4.21: Mixed atomistic-continuum model: The total energy - axial compression ε and load
factor λ - axial compression ε evolutions for the first and second eigenform of the
(18,0) carbon nanotube under axial compression. Comparison between the response
obtained by triangular and quadrilateral subdivision finite elements.

detected. Again, a branch switching enables the evaluation of the associated postbuckling path,
which exhibits a snap back behaviour. The numerically obtained values of axial compression at the
first and second instability point are reported in Table 4.2. This list indicates that the influence of
the applied finite element type on the calculation of the critical states is vanishingly low. At the end

critical axial compression

first eigenform second eigenform

triangle 4.303% 4.439%

quad 4.303% 4.439%

Table 4.2: Mixed atomistic-continuum model: The critical values of compression for the first and
second eigenform of the axially loaded (18,0) carbon nanotube. Comparison between
the response obtained by triangular and quadrilateral subdivision finite elements.

of loading, the load factor as well as the total energy for the second eigenform are higher than the
values for the first eigenform. In addition, the simulations show that in the postbuckling region the
quadrilateral finite element gives a slightly softer response than the triangular finite element. The
images in Figure 4.22 display the buckled configurations related to the first and second eigenform
of the axially compressed (18,0) carbon nanotube. In particular, it can be seen that the first
eigenform develops three perpendicular fins, whereas the second eigenform only consists of two.
Additionally, the colouring represents the averaged local total energy. Similar to the behaviour
of the global energy response, the locally higher values of averaged total energy are found in the
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Figure 4.22: Mixed atomistic-continuum model: The final buckled configurations related to the
first and second eigenform of the (18,0) SWCNT under axial compression with a
colour mapping of the local total energy per atom [eV/atom]. Comparison between
the response obtained by triangular and quadrilateral subdivision finite elements.

buckled configuration of the second eigenform.

This series of numerical simulations on the buckling of an (18,0) carbon nanotube under axial
compression provided some interesting insights. With regard to the applied approximations of
the exponential Cauchy-Born rule, the direct curvature approach and the principal curvatures
approach deliver analogous results. The check against the molecular statics calculation provides
an agreement of the obtained total energy and load factor evolutions. Additionally, the type of
finite element slightly influences the behaviour of the carbon nanotube, despite the fact that the
discretisations are based on the same set of nodes. Furthermore, the application of an arc-length
method allows to follow complex non-linear load-deformation paths. Finally, the accompanying
structural stability analysis and the branch switching procedure enable the evaluation of buckled
configurations and associated postbuckling paths.

4.9.3 A (10,10) carbon nanotube under sharp bending

In this numerical simulations, a (10,10) single-walled carbon nanotube with a length of 40 hexagonal
cells under displacement-driven bending load is investigated. The approximation of the exponential
map for the mixed atomistic-continuum model is performed by the direct curvature approach.
The same carbon nanotube is also discussed in Subsection 3.5.3 using molecular statics and,
consequently, the associated results are taken for comparison. In the course of this, it is observed
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that the sharp bending type is subjected to the higher local deformation compared with the ideal
bending type. Additionally, the need for in-layer non-bonded interactions, in order to prevent the
tube from self-intersection, is more important in this mode. For these reasons, the displacement
constraints in the following simulations are applied according to the sharp bending type. Thus,
after the initial relaxation step, on both ends two rows of finite element nodes are constrained. In
particular, these nodes are rotated about an axis through the tube’s middle and perpendicular to
the centerline of the relaxed tube. Consequently, these two rows perform a rigid body rotation
with constant distance from the pivot and the generated cross sections on both ends of the
carbon nanotube remain circular throughout the whole process of loading. The Newton-Raphson
procedure is applied to obtain equilibrium configurations of the loaded tubes and an accompanying
eigenvalue analysis is carried out. A bisection and a branch switching algorithm are used to
detect instability points and to achieve the associated buckled configurations. The relaxed carbon
nanotube represents the reference state for bonded and non-bonded energies. In a first series of
simulations, the influence of the finite element mesh on the buckling behaviour is studied. Secondly,
the stability of the equilibrium path of the displacement-driven simulation is analysed. Thirdly,
the modelling of non-bonded interactions in the mixed atomistic-continuum approach is discussed.

Studies into the influence of the finite element mesh on the buckling behaviour

The aim of this study is to examine the influence of the finite element mesh on the buckling
behaviour of carbon nanotubes. On this account, the continuum model is discretised using
quadrilateral subdivision finite elements and for three different simulations the element size is
varied. The calculations are checked against the results obtained by molecular statics in Subsection
3.5.3, where the corresponding atomistic structure consists of 1620 atoms. The first mesh contains
20x80 quadrilateral subdivision finite elements and 1620 nodes. In the second mesh, 40x40 finite
elements, generated by 1640 nodes, are utilised. Compared to the molecular statics approach, these
two meshes have a similar amount of degrees of freedom. Finally, an even finer mesh, owning 3240
nodes and 40x80 quadrilateral subdivision finite elements is used. In the performed simulations,
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Figure 4.23: Mixed atomistic-continuum model: The total energy - bending angle evolutions for
the (10,10) carbon nanotube under sharp bending. Comparison between simulations
with different discretisations and their check against the results obtained by molecular
statics. The buckled configuration for the mixed atomistic-continuum approach (40x40
quadrilateral finite elements) at the end of deformation in a front and top view with
colour mapping of the local total energy per atom [eV/atom].

the non-bonded interactions are neglected in order to concentrate on the influence of the bonded
interactions. The determined total energy - bending angle evolutions are given in the left side
of Figure 4.23. Thereby, all simulations were performed using a total of 24 load steps. In the
prebuckling regime, the results of the molecular statics approach and all three discretisations of
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the mixed atomistic-continuum model are in remarkable agreement. In particular, as can be seen
from Table 4.3, this is also true for the bending angle at the instability point. Thus, for the

mixed atomistic-continuum model
molecular statics

20x80 � 40x40 � 40x80 �

critical bending angle 11.533◦ 11.694◦ 11.606◦ 11.670◦

relative error - 1.4% 0.6% 1.2%

Table 4.3: Mixed atomistic-continuum model: The critical bending angle for the (10,10) carbon
nanotube under sharp bending. Comparison between different quadrilateral discretisa-
tions and their relative errors with reference to the molecular statics approach.

unbuckled tube, the fineness of the discretisation has only little influence on the global behaviour.
The branch switching into the postbuckling path is indicated in the energy evolutions by a jump
to a lower level. The corresponding buckled configuration shows a single kink in the middle of the
tube. Then, after buckling, the displacement constraints are applied up to a bending angle of 22.0◦.
In the postbuckling regime, the influence of the mesh on the global behaviour is obvious from the
plots. Although, the mesh with 20x80 elements and the mesh with 40x40 elements, have almost
the same number of nodes, the last-mentioned discretisation provides the better agreement to the
molecular statics calculation. Thus, in the mesh with the larger amount of nodes in circumferential
direction the smoothing property of the mixed atomistic-continuum approach has a smaller effect,
and the local deformations at the atomistic level are well approximated. In the last reported
step, the relative errors of the total energy are 11.3% (20x80 quadrilateral elements) and 3.9%
(40x40 quadrilateral elements). An even better correlation is obtained by the finest mesh (40x80
quadrilateral elements) with a relative error of 2.9%. However, the additional slight improvement
with the finest mesh has to be paid by a large increase in computational effort. It can be seen from
this fact that a mesh refinement allows the mixed atomistic-continuum approach to reproduce the
locally intricate deformations of the atomistic structure. The buckled configuration of the sharply
bent carbon nanotube, for the mixed atomistic-continuum approach with 40x40 quadrilateral finite
elements, is illustrated in the right hand side of Figure 4.23 for the last load step. In particular,
a front and top view of the tube depict the single kink in the middle and the colouring represents
the averaged local total energy. This simulation shows that the continuum modelling error and
the discretisation error can be reduced to an adequate level. Nevertheless, it is not meaningful to
use a finite element model that has even more degrees of freedom than the atomistic system.

Studies into the behaviour and the stability of the equilibrium path

In this simulations, the behaviour and the stability of the equilibrium path for the displacement-
driven sharp bending load are analysed. The aim of this study is the clarification and explanation
of the jumps in the total energy evolutions, which arise at the buckling points of carbon nanotubes
under bending load. For this purpose, the discretisation of the tube with 40x40 quadrilateral
finite elements of the foregoing investigations is reused. Moreover, non-bonded interactions are not
modelled within this example. The analysis of the equilibrium path is performed by a numerical
simulation, which contains two bending directions. In doing so, several characteristic variables of
the considered buckling problem were observed and the results are plotted in Figure 4.24. At the
top, the evolution of the total energy with respect to the applied bending angle is visualised and an
enlargement of the region around the critical points is provided. At the bottom, the behaviours of
the norm of the global force vector and the first eigenvalue of the global stiffness matrix as functions
of the bending angle are given. In each of these plots, a curve representing the loading and the
unloading of the tube are presented. At first, the carbon nanotube is loaded by increasing the
bending angle according to the sharp bending mode. Observing the progress of the first eigenvalue
of the global stiffness matrix, this loading path reaches a critical state in point 1 at a bending
angle of 11.606◦. At this point, the corresponding eigenform is superimposed onto the actual state

89



4 Mixed atomistic-continuum model

 

 

bending angle [◦]bending angle [◦]

bending angle [◦] bending angle [◦]

to
ta
l
en
er
g
y
[e
V
/a
to
m
]

to
ta
l
en
er
g
y
[e
V
/a
to
m
]

g
lo
b
al
fo
rc
e
v
ec
to
r
n
o
rm

[e
V
/n
m
]

fi
rs
t
ei
g
en
v
al
u
e
o
f
th
e
g
lo
b
al

st
iff
n
es
s
m
at
ri
x
[e
V
/n
m

2
]

0 2 4 6 8 10 12 14 16 18 20 22

0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22

9 10 11 12
0.0

0.4

0.8

1.2

1.6

2.0

2.4

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
∗10−2

∗10−1

∗10−2

loading path

unloading path

unstable region

1

3

2

4

1

3

2

4

13

2

4

Figure 4.24: Mixed atomistic-continuum model: Studies into the behaviour and the stability of the
equilibrium path of the (10,10) carbon nanotube under sharp bending. The evolutions
of the total energy, the norm of the global force vector and the first eigenvalue of the
global stiffness matrix as functions of the bending angle.

of deformation. Thereby, the bending angle is kept constant and the stable equilibrium state 2 is
obtained. In the passage from 1 to 2, the carbon nanotube buckles and a single kink in its middle
originates. The corresponding configurations of the tube with an additional visualisation of the
middle cross sections are displayed in Figure 4.25. After buckling, the total energy as well as the
global force vector norm reach a smaller level than in the unbuckled state. With reference to Bažant
and Cedolin [8], this phenomenon is called snap down. The buckled carbon nanotube is further
loaded up to a bending angle of 22.0◦. Then, the tube is unloaded by displacement constraints that
represent a decreasing bending angle. In this unloading process, the initial buckled equilibrium
state 2 is passed. Afterwards, the monitoring of the first eigenvalue of the global stiffness matrix
indicates a critical state of the unloading path, which is reached at a bending angle of 9.641◦ in
point 3. The closest stable equilibrium state in the case of a further decrease in bending angle is
located on the initial loading path at point 4. In the transition from 3 to 4, the bulge of the carbon
nanotube vanishes and the total energy jumps to a higher value located at the initial loading path.
In the same fashion, the norm of the global force vector increases to the corresponding value of
the loading path. After this, the unloading path follows the loading path in reverse direction. In
Figure 4.25, the state of deformation associated to the critical point 3 and the unbuckled structure
corresponding to point 4 are provided. The indicated path between the two critical points 1 and 3
represents an unstable region of the displacement-driven simulation and its real behaviour is not
determinable. However, if in the superimposition of the eigenform at the critical point 1 of the
loading path, the bending angle is adjusted to the corresponding value at the critical point 3 of the
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unloading path, this equilibrium state on the postbuckling path can directly be reached. As this
has no influence on the further tracking of the equilibrium path in the postbuckling zone of the bent
carbon nanotubes, at the critical state of deformation, the associated eigenform is superimposed
at a constant bending angle. This procedure is applied in the simulations of carbon nanotubes
under bending load presented in Subsection 3.5.3, Subsection 4.9.3 and Subsection 4.9.4.

Figure 4.25: Mixed atomistic-continuum model: The deformed configurations and the correspond-
ing middle cross sections of the (10,10) carbon nanotube under sharp bending at the
four specific points of the equilibrium path. The deformed tube at the critical point
1 of the loading path (topmost), the buckled state 2 of the loading path (second from
top), the buckled carbon nanotube at the critical point 3 of the unloading path (third
from top) and the unbuckled state 4 of the unloading path (undermost).

Studies into the non-bonded interactions in the mixed atomistic-continuum model

In the following simulations, the modelling of in-layer non-bonded interactions in the mixed
atomistic-continuum model is investigated. Based on the discussions of the preceding simulations,
the tube is once again discretised with 40x40 quadrilateral finite elements. Furthermore, for the
evaluation of non-bonded interactions, two different numbers of non-bonded integration points are
used. In a first calculation, 4 integration points for non-bonded interactions are used whereas
in a second simulation only 1 non-bonded integration point is considered. In order to exclude
non-bonded interactions between atoms up to the 3rd neighbourhood, a lower cut-off radius is
introduced. According to Subsection 2.4.2, the related 1-4 interaction distance is characterised by
A1-4 = 0.38382 nm and, consequently, this value serves as lower cut-off radius. 4.26. Furthermore,
an upper cutting radius of 1.8 nm is implemented so that the total amount of possible non-
bonded interactions is reduced. The results from the mixed atomistic-continuum model are checked
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Figure 4.26: Mixed atomistic-continuum model: The energy evolutions for the (10,10) carbon
nanotube under sharp bending. Comparison between simulations with different
amounts of non-bonded integration points and their check against the results obtained
by molecular statics.

against the molecular statics simulation of the associated atomistic structure. The buckled carbon
nanotube shows a single kink in the middle and the complete energy curves for all simulations
are presented in Figure Thereby, the loading was applied in a total of 24 increments, ending at a
bending angle of 22.0◦. From this it can be seen that the bonded energy shows a similar behaviour
to the results of the preceding studies on the influence of discretisation. In particular, the two
types of modelling non-bonded interactions are almost indistinguishable from each other. The
same matter of fact can be seen with regard to the non-bonded interactions. In addition, with
respect to non-bonded interactions, the comparison against the molecular statics gives a remarkable
agreement over a wide range. At higher bending angles, the curves begin to separate, resulting in
a nearly constant offset in the last part of deformation. This separation is mostly influenced by
the fact that the continuum model is not capable to completely reproduce the local deformations
in the kink of the tube. Nevertheless, the non-bonded energy of the mixed atomistic-continuum
model shows a similar behaviour at higher bending angles compared to the molecular statics
approach. In particular, the minimum and the subsequent increase of the non-bonded energy are
well predicted. This is the region where the opposite wall faces converge to the equilibrium distance
of non-bonded interactions and, thus, prevent the carbon nanotube from self-intersection. For the
last load step at a bending angle of 22.0◦, Table 4.4 reports the relative errors of the individual
energy terms, obtained by the mixed atomistic-continuum model with different amounts of non-
bonded integration points. In Figure 4.27, the solution of the continuum model with 1 non-bonded
integration point is displayed as translucent surface, and the results from molecular statics are
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non-bonded
integration points

4 1

bonded energy 3.5% 3.4%

non-bonded energy 7.5% 7.0%

total energy 3.3% 3.2%

Table 4.4: Mixed atomistic-continuum model: The relative errors of the individual energies at
a bending angle of 22.0◦ for the (10,10) carbon nanotube under sharp bending.
Comparison between simulations with different amounts of non-bonded integration
points and their validation against the molecular statics approach.

Figure 4.27: Mixed atomistic-continuum model: The superimposed deformed configurations of
the molecular statics calculation (line-pattern) and the mixed atomistic-continuum
solution (transparent gray surface) obtained with 40x40 quadrilateral finite elements
and 1 non-bonded integration point. The front and top view of the buckled structure
at a bending angle of 12.0◦ (left) and 22.0◦ (right).

Figure 4.28: Mixed atomistic-continuum model: The buckled configuration for the (10,10) carbon
nanotube under sharp bending load (40x40 quadrilateral finite elements and 1 non-
bonded integration point) at the end of deformation in a front and top view with
colour mapping of the local bonded energy per atom [eV/atom] (left) and the local
non-bonded energy per atom [eV/atom] (right).

overlayed. Thereby, the images on the left side present a front and top view of the buckled
structure at a bending angle of 12.0◦. The pictures on the right side show the deformed tube
for the last load step. At both load levels, the deformed structures are in good agreement. The
evolution of the total energy is mainly determined by the bonded energy combined with a minor
influence of the non-bonded energy. The consideration of in-layer non-bonded interactions leads
to a small reduction of the critical bending angle compared to the simulations without them.
This variation is observed for the mixed atomistic-continuum model and the molecular statics
approach. In the course of this, the relative errors of the predicted critical bending angle are 0.6%
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(4 non-bonded integration points) and 0.7% (1 non-bonded integration point). In Figure 4.28,
the continuum solution at the last load step, obtained with 1 non-bonded integration point, is
illustrated in a front and top view. The colouring on the left side corresponds to a mapping of
the averaged local bonded energy. In contrast, the colour mapping on the right side represents
the averaged local non-bonded energy. The effect of the in-layer non-bonded interactions on the
prevention of self-intersection is evident at the dint in the middle of the tube. The simulations
demonstrate the ability of the mixed atomistic-continuum model to properly model the non-bonded
interactions. Furthermore, the amount of non-bonded integration points has a negligible influence
on the behaviour of the carbon nanotube. This is true for the applied finite element size, where the
dimensions of the finite elements are in the magnitude of the atomic bond lengths. However, based
on the coarseness of the mesh, an appropriate number of non-bonded integration points is essential
in order to accurately resolve the non-bonded interactions. In particular, very large finite elements
could otherwise lead to self-intersection or penetration, due to the lacking of sampling points for
possible non-bonded interactions. With respect to the total energy evolution, the influence of the
non-bonded energy is small in comparison to the contribution from bonded energy. Nevertheless,
the consideration of in-layer non-bonded interactions is important to avoid the carbon nanotube
from self-intersection.

4.9.4 A (10,10) - (15,15) carbon nanotube under sharp bending

In this example, a (10,10) - (15,15) double-walled carbon nanotube with 50 hexagonal cells in its
length under bending load is considered. The results of the mixed atomistic-continuum model
are compared with those obtained from a separate molecular statics simulation. With respect
to the non-bonded properties, the inter-layer interactions are analysed. In the mixed atomistic-
continuum model, the evaluation of non-bonded interactions is carried out with 1 integration point
per element. In order to reduce the large amount of possible non-bonded interactions, an upper
cut-off radius of 0.9 nm is implemented in the simulations. After the relaxation process, the tube
is bent by imposing displacement boundary conditions on both sides of the tube. This is done by
rotating both ends about an axis through the tube’s middle and perpendicular to the centerline of
the relaxed tube. In accordance with previous numerical examples on bent carbon nanotubes, this
mode is denoted as sharp bending. Here, on both ends, two rows of finite element nodes or two rows
of atoms are constrained. These two rows perform a rigid body rotation with constant distance
from the pivot. As a consequence, the end cross sections of the carbon nanotube remain circular
throughout the whole process of loading. Equilibrium configurations are calculated by means of a
Newton-Raphson procedure and the relaxed tube serves as reference state. The onset of buckling
is detected using an accompanying eigenvalue analysis together with a bisection algorithm. The
shape of the buckled carbon nanotube is then achieved by branch switching. For the molecular
statics approach, the full atomistic structure of the carbon nanotube, which is composed of 5050
atoms, is considered. In a first verification step of the mixed atomistic-continuum model, the tube
is discretised by 5000 triangular finite elements (2x50x20 + 2x50x30) using 2550 nodes, and the
simulation is performed for the two different local exponential Cauchy-Born rule approximations.
In addition, for the direct curvature approach, a calculation with a finer mesh, consisting of 10000
triangular elements (2x100x20 + 2x100x30) and 5050 nodes, is performed. Figure 4.29 reports the
evolutions of the energies for these simulations as functions of the bending angle. In the area of
the unbuckled tube, all three continuum simulations agree well for both the bonded and the total
energy. Additionally, the agreement with the independent molecular statics solution is remarkable.
The critical state and the development of the buckled configuration is characterised in any case by
a jump in the curves of the individual energies. The predicted values for the bending angle at the
instability point are reported in Table 4.5 along with the relative errors for the mixed atomistic-
continuum model with reference to the molecular statics approach. The corresponding buckled
configuration exhibits a single kink in the middle of the double-walled carbon nanotube. After
buckling, the bending is continued to an angle of 18.0◦, using a total of 20 load steps. In the
postbuckling regime, the direct curvature model shows a slightly lower bonded and total energy
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Figure 4.29: Mixed atomistic-continuum model: The energy evolutions for the (10,10) - (15,15)
double-walled carbon nanotube under sharp bending. Comparison between the
principal curvatures and direct curvature approach and their check against the results
obtained by molecular statics. Additional investigations into the influence of the finite
element discretisation on the global energy response.

principal curvatures direct curvaturemolecular statics
approach approach

50004 50004 100004
critical bending angle 9.867◦ 10.131◦ 9.914◦ 9.992◦

relative error - 2.7% 0.5% 1.3%

Table 4.5: Mixed atomistic-continuum model: The critical bending angle for the (10,10) - (15,15)
double-walled carbon nanotube under sharp bending. Comparison between the principal
curvatures and direct curvature approach and investigations into the influence of the
different triangular discretisations. Specification of the relative errors of the mixed
atomistic-continuum model with reference to the molecular statics approach.

for the same finite element mesh compared to the principal curvatures approach. In the case
of non-bonded energies, both methods agree well over the entire loading. The transition to the
finer mesh leads to a further decrease in all energies. However, the total energy level, related
to the molecular statics simulation, cannot be reached. For the purpose of verification, in Table
4.6, the relative errors of the total energy for the different simulations performed with the mixed
atomistic-continuum model are reported for the bending angles of 11.0◦ and 18.0◦. From this
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principal curvatures direct curvature
approach approach

50004 50004 100004
11.0◦ 6.4% 5.7% 4.8%

18.0◦ 14.9% 12.9% 11.0%

Table 4.6: Mixed atomistic-continuum model: The relative errors of the total energy at bending
angles of 11.0◦ and 18.0◦ for the (10,10) - (15,15) double-walled carbon nanotube under
sharp bending. Comparison between the different simulations using the mixed atomistic-
continuum model and their validation against the molecular statics approach.

Figure 4.30: Mixed atomistic-continuum model: The buckled configuration at the instability point
for the (10,10) - (15,15) DWCNT under sharp bending load in a front and top view.
The numerical results are given for the direct curvature approach using a discretisation
with 10000 triangular finite elements. At the head, a combined state with translucent
outer wall, and at the bottom, the separated walls with colour mapping of the local
total energy per atom [eV/atom].

it can be seen that the accuracy of the mixed atomistic-continuum model with reference to the
molecular statics approach suffers a decrease at higher bending angles. This can be assigned to the
smoothing property of the continuum approaches. In particular, this influence increases with the
amount of complex local deformations, which arise at higher bending angles. In this regard, the
refined mesh, which has the same amount of degrees of freedom as the atomistic structure, gives a
slight improvement. However, the computational effort increases and a further mesh refinement is
not suggestive because then the benefits of the mixed atomistic-continuum model are not utilised,
and a full atomistic simulation is more favourable. Nonetheless, the mixed atomistic-continuum
model is able to represent the critical bending angle with remarkable accuracy. In particular, this
can be achieved with finite element meshes that contain fewer degrees of freedom than a molecular
statics approach would have to take into account. Figure 4.30 shows the continuum structure of
the double-walled carbon nanotube for the simulation with the fine mesh at the critical point in
the buckled configuration. Within these images, the buckled shape of the tube, with its single kink
in the middle, affecting both layers is illustrated in a front and a top view. In the transparent
illustration on top, it can be seen that the inter-layer non-bonded interactions prevent the two
walls from penetration. The two sets of images at the bottom display the separated inner and
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Figure 4.31: Mixed atomistic-continuum model: The superimposed deformed configurations of
the molecular statics simulation (line-pattern) and the mixed atomistic-continuum
solution (transparent gray surface), obtained by the direct curvature approach using
a discretisation with 10000 triangular finite elements.

outer wall of the carbon nanotube. The colour mapping of the averaged local total energy points
out that the inner wall suffers a higher strain at the buckle compared to the outer layer. In
contrast to that, the sharper kink appears in the outer wall. Similar results for the behaviour of
the energies and the shape of the buckle can be found in Arroyo [2], Arroyo and Belytschko [5] and
Iijima et al. [26]. Additionally, in Figure 4.31, the continuum solution is displayed as translucent
surface and the atomistic result is overlayed. From this is can be seen that the deformed structures
of both methods are in good agreement. However, the kink in both layers is slightly wider and
deeper for the atomistic model. Thus, the local deformations are lower and, consequently, the
total energy of the molecular statics simulation is beneath the total energy of the mixed atomistic-
continuum approaches. Furthermore, it can be seen that, although the magnitude of change in
non-bonded energy is observable smaller compared with the change in bonded energy, the non-
bonded interactions have large influence on the morphology of the buckled configuration. In the
case of disregarded inter-layer non-bonded interactions, the buckle would not develop in both layers
of the tube and penetration would occur.

4.9.5 A (10,10) carbon nanotube under torsional load

In this example, a (10,10) carbon nanotube with 25 hexagonal cells in axial direction under twisting
is observed. The aim of this simulation is to highlight the significance of modelling in-layer non-
bonded interactions. In addition, this example is taken to show the different unstable and buckled
configurations, feasible for this special loading. After the tube has been relaxed, the twisting load
is imposed by rotating both ends in opposite direction about the tube’s central axis while keeping
their axial position fixed. Here, one row of finite element nodes is constrained on each side, resulting
in circular end sections throughout the whole loading. Again, a Newton-Raphson procedure is used
for calculating equilibrium configurations. With regard to the upcoming energy inspections, the
relaxed carbon nanotube defines the reference configuration. Buckling points are further detected
by an accompanying eigenvalue analysis combined with a bisection algorithm. The shift between
unstable and stable buckled paths is done by means of a branch switching approach. For the
numerical investigation, the tube is discretised into 2x25x20 triangular subdivision elements. The
continuum modelling of the in-layer non-bonded interactions is done with 1 integration point
per element. To exclude the non-bonded interaction between pairs of integration points that are
within the bonded distance, a lower cutting radius of 0.3 nm is introduced. This magnitude is
chosen on the basis of the non-bonded interaction distances A1-3 and A1-4 of the undeformed
graphene sheet, which are defined in Subsection 2.4.2. In particular, the implemented radius
excludes all 1-3 non-bonded interactions and, additionally, the three nearest atom interactions
in the 3rd neighbourhood of the graphene sheet. Moreover, an upper cut-off radius of 1.8 nm is
applied. Due to this specific value, possible non-bonded interactions between diametrically opposed
sampling points are considered right from the beginning of the simulation. Figure 4.32 plots the
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Figure 4.32: Mixed atomistic-continuum model: The energy evolutions for the twisted (10,10)
carbon nanotube. Comparison between the principal curvatures and direct curvature
approach and additional studies related to unstable paths and secondary branches.

diagrams for the different energies versus the twisting angle. In doing so, the different stable and
unstable energy paths obtained by the direct curvature approach are plotted. In addition, the
entire stable path for the principal curvatures approach is shown for comparison. The carbon
nanotube under consideration exhibits two structural instabilities. In the following, the results of
the mixed atomistic-continuum simulation by means of the direct curvature approach are discussed
and the associated deformation paths are explained. The first bifurcation point raises at a twisting
angle of 11.094◦ and is denoted by a marker in the energy diagrams. From this point on, two
different paths can be followed. The first one is the unstable path of deformation and is denoted
by dashed lines. By means of branch switching, a second path with lower total energy and a
non-uniform deformation mode is possible. This postbuckling path leaves the nearly quadratic
regime of the bonded energy and leads to a kink in the non-bonded energy. The structure of
this buckled configuration is given in the left snapshot of Figure 4.33. On further twisting, the
opposite walls of the tube draw nearer and finally come up to the equilibrium distance for the van
der Waals interactions. This fact can be seen in the decrease of the non-bonded energy. Without
modelling in-layer non-bonded interactions, self-intersection of the tube’s walls would occur in this
area of deformation. The flattened twisted structure loses its stability at the marked angle of
43.609◦ once more. The continuation of this unstable path is now given by the dashed-dotted
lines. Again, branch switching allows the calculation of the buckled structure, which is illustrated
in the middle image of Figure 4.33. From this point on, the tube starts to fold onto itself and
the non-bonded energy tends to a minimum. On further twisting, the walls of the folded carbon
nanotube ribbon are forced closer together. This is evident in the increase of the non-bonded
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Figure 4.33: Mixed atomistic-continuum model: The buckled configurations of the (10,10) carbon
nanotube under torsional load. The numerical results are given for the direct curvature
approach and the colour mapping depicts the local total energy per atom [eV/atom].
Visualisation of the buckled structures immediately after the first critical point (left),
after branch switching at the second point of instability (middle) and at the end of
loading at a twisting angle of 90.0◦ on each end of the carbon nanotube.

energy and leads to a hardening of the carbon nanotube’s twisting response. The loading is ended
at a twisting angle of 90.0◦ on each end and the corresponding deformed configuration is shown
in the right image of Figure 4.33. The curves explained so far are based on simulations performed
with the direct curvature approach for the approximation of the exponential Cauchy-Born rule.
For comparison, the deformation curves of the carbon nanotube are also determined with the
principal curvatures approximation of the mixed atomistic-continuum model. The critical twisting
angles for this simulation are 11.750◦ (first instability) and 44.650◦ (second instability). Thus, the
principal curvatures and the direct curvature approach predict critical twisting angles which lie
close together. From the simulations it follows that the direct curvature approach leads to slightly
lower bonded and total energies and, therefore, to a softer twisting response of the carbon nanotube.
Furthermore, a remarkable correspondence is seen in the evolution of the non-bonded energy.
Similar twisted carbon nanotubes with comparable deformed configurations were studied by Arroyo
and Belytschko [3] and Sun and Liew [50]. With this example, the handling of multiple bifurcation
points and the following of stable and unstable deformation paths is demonstrated. This structural
stability analysis makes the use of a bisection algorithm in combination with an accompanying
eigenvalue calculation of the global stiffness matrix and an additional branch switching procedure
indispensable. In addition, this example exhibits the importance of modelling in-layer non-bonded
interactions in the case of simulating single-walled carbon nanotubes. In particular, the simulations
demonstrate that the mixed atomistic-continuum model is able to reliably model non-bonded
interactions. This fact is relevant, as the in-layer non-bonded interactions largely influence the
morphology of the buckled configurations and, moreover, prevent the single-walled carbon nanotube
from self-intersection.
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4.10 Summary

A mixed atomistic-continuum model is applied for the buckling analysis of carbon nanotubes. In
this approach, developed by Arroyo [2] and Arroyo and Belytschko [3] on the basis of the quasi-
continuum method as given in Tadmor et al. [52] and Tadmor et al. [53], the discrete atomistic
structure is replaced by a continuum surface without thickness. The associated constitutive model
is directly obtained from the structure of the underlying atomistic system by means of interatomic
potentials. In the course of this, the inner elasticity of the complex honeycomb lattice is considered.
The strain energy density for bonded interactions requires the linkage of the atomistic deformation
to that of the continuum surface by an extended Cauchy-Born rule. For this purpose, Arroyo [2]
and Arroyo and Belytschko [3] proposed the exponential Cauchy-Born rule in combination with
a local approximation scheme that relies on the principal curvatures of the considered continuum
surface. Adapting this suggestion, another approach for the local approximation of the exponential
Cauchy-Born rule is presented on the basis of the normal curvature. In addition, the non-bonded
interactions are separately incorporated into the constitutive model by means of a strain energy
double density. The definition of the total potential supplies the foundation for the specification of
equilibrium configurations. Furthermore, a criterion for the structural stability of configurations
is derived therefrom. In the numerical treatment, the continuum surface is approximated by
subdivision finite elements and equilibrium configurations of the carbon nanotubes are obtained
either by a standard Newton-Raphson procedure or by an arc-length method. For these purposes,
a complete linearisation of the mixed atomistic-continuum model is provided. In particular, the
evaluation of the element force vectors and the element stiffness matrices for bonded and non-
bonded interactions is specified in detail. The detection of instability points is achieved by an
accompanying eigenvalue analysis of the global stiffness matrix in combination with a bisection
algorithm. Moreover, a branch switching algorithm allows the handling of secondary branches.
The mixed atomistic-continuum model is applied in the numerical simulations of various carbon
nanotubes under different loading conditions. Thereby, the principal curvatures approach and the
direct curvature approach, for the approximation of the exponential Cauchy-Born rule, are used
side by side and the obtained results are compared. In addition, molecular statics simulations
of the full atomistic structure are performed. Consequently, the deformed configurations and the
energy evolutions of both models are checked against each other.

The first example considers a force-driven, axially compressed single-walled carbon nanotube.
Firstly, this setup is used to compare the two different local approximations for the exponential
Cauchy-Born rule. Additionally, the simulations with the mixed atomistic-continuum model are
checked against the results obtained by molecular statics. Secondly, the first and second eigenform
for the loaded carbon nanotube are calculated on the basis of the mixed atomistic-continuum
model. Within this example, an arc-length method is used in order to follow secondary branches.

In the second example, a single-walled carbon nanotube under sharp bending constraints is
investigated. First, the influence of the finite element mesh on the buckling behaviour is studied.
Second, the behaviour and the stability of the equilibrium path are analysed. Third, the modelling
of in-layer non-bonded interactions in the mixed atomistic-continuum model is discussed. In the
first and third subtask, the results obtained by the continuum approach are compared with a
molecular statics calculation of the full atomistic model.

A double-walled carbon nanotube under sharp bending constraints is investigated in the third
example. In doing so, the modelling and the influence of inter-layer non-bonded interactions is
studied and their importance for the prevention of penetration is highlighted. Additionally, the
finite element mesh is varied in terms of the element size. Again, a molecular statics simulation is
applied for the purpose of comparison.

The fourth numerical example handles a twisted single-walled carbon nanotube. Thereby, the
importance of modelling in-layer non-bonded interactions within the mixed atomistic-continuum
model is emphasised in order to avoid self-intersection of single-walled carbon nanotubes. Moreover,
different unstable and stable paths of the loaded tube are followed and the handling of multiple
bifurcation points is demonstrated.
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This thesis is concerned with the numerical buckling analysis of carbon nanotubes. Thereby, the
nanostructure is modelled by two different approaches. Firstly, the discrete system of atoms is
directly considered and molecular statics is used. Secondly, the multi-particle structure is replaced
by a continuum surface and the mixed atomistic-continuum model is applied. Both approaches are
integrated into a stand-alone computational framework that is based on the formalism of the finite
element method. For this purpose, the governing equations of molecular statics are formulated
in a partitioned form using finite element equivalents. The continuous description of the mixed
atomistic-continuum model is discretised and handled on the basis of finite elements. Consequently,
it is made possible that both approaches share the main features of the framework. In this regard,
solution procedures for non-linear systems of equations and algorithms related to the structural
stability analysis can be emphasised. Applying the implemented computational framework, the
buckling of various carbon nanotubes in different loading scenarios is studied. In the course of
this, simulations using the molecular statics approach and the mixed atomistic-continuum model
are performed. The following conclusions can be drawn from these numerical investigations:

• Molecular statics approach

The integration of molecular statics into the computational framework using the finite element
formalism provides an efficient method for the intended structural stability analysis of carbon
nanotubes. In the observed examples, in particular, the importance of modelling non-bonded
interactions and their influence on the buckling behaviour are emphasised. With regard to
the in-layer non-bonded interactions, the numerical simulations reveal that their inclusion
is important to avoid the nanotubes from self-intersection. Thus, it is natural to employ
this type of non-bonded interactions in the analysis of carbon nanotubes. Furthermore, it
is observed that the consideration of 1–4 non-bonded interactions influences the buckling
behaviour by introducing additional repulsive forces between the atoms of the structure.
On the basis of this observation, it is suggested for one to neglect these 1–4 non-bonded
interactions in the buckling analysis of carbon nanotubes. Concerning the inter-layer non-
bonded interactions, the related numerical investigations demonstrate their crucial impact
on the buckled configurations. In particular, they prevent the individual walls of carbon
nanotubes from penetration. For this reason, in the simulation of multi-walled carbon
nanotubes, it is highly recommended to incorporate inter-layer non-bonded interactions in
addition to in-layer non-bonded interactions.

• Mixed atomistic-continuum model

The mixed atomistic-continuum model provides an alternative to the full atomistic simulation
of nanostructures. In particular, the numerical realisation using the finite element method
allows an efficient analysis of carbon nanotubes. In the computational examples, the
mixed atomistic-continuum model is checked against the molecular statics approach. This
verification depicts a remarkable agreement of both methods in the case of unbuckled carbon
nanotubes and moderate local deformations. In particular, the critical configurations with
respect to structural stability are accurately predicted. In the buckled configurations, the
occurrence of large local deformations reveals deviations from the molecular statics reference
solution. This can be partially assigned to the smoothing property of the mixed atomistic-
continuum model, treating the discrete arrangement of atoms as a continuum surface. In this
regard, the different approximations of the exponential Cauchy-Born rule are additionally
investigated. It can be seen from this that the direct curvature approach leads to a slightly
softer response when compared to the principal curvature approach. The energy evolutions
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obtained by the first-mentioned approach are therefore closer to the full atomistic simulation
of molecular statics. Moreover, the accuracy of the mixed atomistic-continuum model is
mainly controlled by the finite element discretisation. On this account, numerical simulations
with different meshes are performed and it turns out that under moderate local deformations
the influence of the discretisation is minimal. However, the emerging of severe deformations
requires a sufficiently fine mesh in order to properly reproduce complex local features of
buckled carbon nanotubes. In addition, the effect of the applied finite element type is
examined. From this it follows that for the same amount of nodes the quadrilateral finite
element gives a slightly softer response than the triangular finite element. With respect to
modelling non-bonded interactions, the numerical investigations demonstrate a remarkable
agreement of the mixed atomistic-continuum model with the molecular statics approach.
Consequently, the continuum surfaces, representing the walls of the carbon nanotube, are
prevented from self-intersection and penetration.

A molecular statics approach and a mixed atomistic-continuum model are applied in order to study
the buckling behaviour of carbon nanotubes. On this account, various loading cases are considered
and a collection of numerical examples is presented. These simulations provide the critical points
of structural stability and the associated buckled configurations of the carbon nanotubes.
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A Supplementary notes on the mixed
atomistic-continuum model

This Appendix provides supplementary notes concerning the variation and the further linearisation
of the mixed atomistic-continuum model. In addition, finite elements, which are suitable for a
discretisation of the mixed atomistic-continuum model, are presented.

A.1 Derivatives of the strain energy density with respect to
inner displacements and strain measures

In this Appendix, explicit expressions for the first-order and second-order derivatives of the strain
energy density for bonded interactions with respect to the inner displacements and the strain
measures are given. These derivatives are necessary for the inner relaxation and the description of
the global equilibrium for the mixed atomistic-continuum model. According to Subsection 4.5.2,
the strain energy density W for the bonded interactions is a function of the bond lengths and the
valence angles within the representative cell. With reference to Subsection 4.5.1, these lengths and
angles are linked to the inner displacements η via the lattice structure of graphene. In addition,
as a result of the local approximations for the exponential Cauchy-Born rule given in Subsection
4.4.4, the bond lengths and the valence angles depend on the local strain measures of the deformed
surface. For the principal curvatures approach, the measures are C and K whereas for the direct
curvature approach the deformation is characterised by g and k. In order to achieve a compact
notation, the three bond lengths and the three valence angles of the representative cell are gathered
in an array p, where po is its o-th component (o = 1, . . . , 6).

p = [a1, a2, a3, θ1, θ2, θ3] (A.1)

The various derivatives with respect to the inner displacements η and the different strain measures
(C, K, g, k) are symbolised by ( ) and [ ]. This allows to represent the first-order and second-order
derivatives of W by using the chain rule as:
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(A.3)

A.1.1 First-order and second-order derivatives of the strain energy density
with respect to bond lengths and valence angles

With reference to Subsection 4.5.2, the strain energy density W for the bonded interactions, as a
function of the bond lengths and the valence angles within the representative cell, is given by the
sum over the three bonds i, where {i, j, k} is an even permutation of {1, 2, 3}.

W =
1

S0

3∑

i=1

[VR (ai)−Bi (aj , ak, θk, θj)VA (ai)] (A.4)
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The many-body coupling terms are used in a shortened notation, where the dependences on the
bond lengths and valence angles are omitted.

B1 = B1 (a2, a3, θ3, θ2) (A.5)

B2 = B2 (a3, a1, θ1, θ3) (A.6)

B3 = B3 (a1, a2, θ2, θ1) (A.7)

Then, the first-order derivatives with respect to the bond lengths and valence angles are:

∂W

∂a1
=

1

S0

[
V ′R(a1)−B1V

′
A(a1)− ∂B2

∂a1
VA(a2)− ∂B3

∂a1
VA(a3)

]
(A.8)

∂W

∂a2
=

1

S0

[
V ′R(a2)− ∂B1

∂a2
VA(a1)−B2V

′
A(a2)− ∂B3

∂a2
VA(a3)

]
(A.9)

∂W

∂a3
=

1

S0

[
V ′R(a3)− ∂B1

∂a3
VA(a1)− ∂B2

∂a3
VA(a2)−B3V

′
A(a3)

]
(A.10)

∂W

∂θ1
=

1

S0

[
−∂B2

∂θ1
VA(a2)− ∂B3

∂θ1
VA(a3)

]
(A.11)

∂W

∂θ2
=

1

S0

[
−∂B1

∂θ2
VA(a1)− ∂B3

∂θ2
VA(a3)

]
(A.12)

∂W

∂θ3
=

1

S0

[
−∂B1

∂θ3
VA(a1)− ∂B2

∂θ3
VA(a2)

]
(A.13)

In addition, the second-order derivatives with respect to the bond lengths and valence angles are:

∂2W

∂a1∂a1
=

1

S0

[
V ′′R (a1)−B1V

′′
A (a1)− ∂2B2

∂a1∂a1
VA(a2)− ∂2B3

∂a1∂a1
VA(a3)

]
(A.14)

∂2W

∂a1∂a2
=

1

S0

[
−∂B1

∂a2
V ′A(a1)− ∂B2

∂a1
V ′A(a2)− ∂2B3

∂a1∂a2
VA(a3)

]
(A.15)

∂2W

∂a1∂a3
=

1

S0

[
−∂B1

∂a3
V ′A(a1)− ∂2B2

∂a1∂a3
VA(a2)− ∂B3

∂a1
V ′A(a3)

]
(A.16)

∂2W

∂a1∂θ1
=

1

S0

[
− ∂2B2

∂a1∂θ1
VA(a2)− ∂2B3

∂a1∂θ1
VA(a3)

]
(A.17)

∂2W

∂a1∂θ2
=

1

S0

[
−∂B1

∂θ2
V ′A(a1)− ∂2B3

∂a1∂θ2
VA(a3)

]
(A.18)

∂2W

∂a1∂θ3
=

1

S0

[
−∂B1

∂θ3
V ′A(a1)− ∂2B2

∂a1∂θ3
VA(a2)

]
(A.19)

∂2W

∂a2∂a1
=

1

S0

[
−∂B1

∂a2
V ′A(a1)− ∂B2

∂a1
V ′A(a2)− ∂2B3

∂a2∂a1
VA(a3)

]
(A.20)

∂2W

∂a2∂a2
=

1

S0

[
V ′′R (a2)− ∂2B1

∂a2∂a2
VA(a1)−B2V

′′
A (a2)− ∂2B3

∂a2∂a2
VA(a3)

]
(A.21)

∂2W

∂a2∂a3
=

1

S0

[
− ∂2B1

∂a2∂a3
VA(a1)− ∂B2

∂a3
V ′A(a2)− ∂B3

∂a2
V ′A(a3)

]
(A.22)

∂2W

∂a2∂θ1
=

1

S0

[
−∂B2

∂θ1
V ′A(a2)− ∂2B3

∂a2∂θ1
VA(a3)

]
(A.23)

∂2W

∂a2∂θ2
=

1

S0

[
− ∂2B1

∂a2∂θ2
VA(a1)− ∂2B3

∂a2∂θ2
VA(a3)

]
(A.24)

∂2W

∂a2∂θ3
=

1

S0

[
− ∂2B1

∂a2∂θ3
VA(a1)− ∂B2

∂θ3
V ′A(a2)

]
(A.25)
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∂2W

∂a3∂a1
=

1

S0

[
−∂B1

∂a3
V ′A(a1)− ∂2B2

∂a3∂a1
VA(a2)− ∂B3

∂a1
V ′A(a3)

]
(A.26)

∂2W

∂a3∂a2
=

1

S0

[
− ∂2B1

∂a3∂a2
VA(a1)− ∂B2

∂a3
V ′A(a2)− ∂B3

∂a2
V ′A(a3)

]
(A.27)

∂2W

∂a3∂a3
=

1

S0

[
V ′′R (a3)− ∂2B1

∂a3∂a3
VA(a1)− ∂2B2

∂a3∂a3
VA(a2)−B3V

′′
A (a3)

]
(A.28)

∂2W

∂a3∂θ1
=

1

S0

[
− ∂2B2

∂a3∂θ1
VA(a2)− ∂B3

∂θ1
V ′A(a3)

]
(A.29)

∂2W

∂a3∂θ2
=

1

S0

[
− ∂2B1

∂a3∂θ2
VA(a1)− ∂B3

∂θ2
V ′A(a3)

]
(A.30)

∂2W

∂a3∂θ3
=

1

S0

[
− ∂2B1

∂a3∂θ3
VA(a1)− ∂2B2

∂a3∂θ3
VA(a2)

]
(A.31)

∂2W

∂θ1∂a1
=

1

S0

[
− ∂2B2

∂θ1∂a1
VA(a2)− ∂2B3

∂θ1∂a1
VA(a3)

]
(A.32)

∂2W

∂θ1∂a2
=

1

S0

[
−∂B2

∂θ1
V ′A(a2)− ∂2B3

∂θ1∂a2
VA(a3)

]
(A.33)

∂2W

∂θ1∂a3
=

1

S0

[
− ∂2B2

∂θ1∂a3
VA(a2)− ∂B3

∂θ1
V ′A(a3)

]
(A.34)

∂2W

∂θ1∂θ1
=

1

S0

[
− ∂2B2

∂θ1∂θ1
VA(a2)− ∂2B3

∂θ1∂θ1
VA(a3)

]
(A.35)

∂2W

∂θ1∂θ2
=

1

S0

[
− ∂2B3

∂θ1∂θ2
VA(a3)

]
(A.36)

∂2W

∂θ1∂θ3
=

1

S0

[
− ∂2B2

∂θ1∂θ3
VA(a2)

]
(A.37)

∂2W

∂θ2∂a1
=

1

S0

[
−∂B1

∂θ2
V ′A(a1)− ∂2B3

∂θ2∂a1
VA(a3)

]
(A.38)

∂2W

∂θ2∂a2
=

1

S0

[
− ∂2B1

∂θ2∂a2
VA(a1)− ∂2B3

∂θ2∂a2
VA(a3)

]
(A.39)

∂2W

∂θ2∂a3
=

1

S0

[
− ∂2B1

∂θ2∂a3
VA(a1)− ∂B3

∂θ2
V ′A(a3)

]
(A.40)

∂2W

∂θ2∂θ1
=

1

S0

[
− ∂2B3

∂θ2∂θ1
VA(a3)

]
(A.41)

∂2W

∂θ2∂θ2
=

1

S0

[
− ∂2B1

∂θ2∂θ2
VA(a1)− ∂2B3

∂θ2∂θ2
VA(a3)

]
(A.42)

∂2W

∂θ2∂θ3
=

1

S0

[
− ∂2B1

∂θ2∂θ3
VA(a1)

]
(A.43)
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∂2W

∂θ3∂a1
=

1

S0

[
−∂B1

∂θ3
V ′A(a1)− ∂2B2

∂θ3∂a1
VA(a2)

]
(A.44)

∂2W

∂θ3∂a2
=

1

S0

[
− ∂2B1

∂θ3∂a2
VA(a1)− ∂B2

∂θ3
V ′A(a2)

]
(A.45)

∂2W

∂θ3∂a3
=

1

S0

[
− ∂2B1

∂θ3∂a3
VA(a1)− ∂2B2

∂θ3∂a3
VA(a2)

]
(A.46)

∂2W

∂θ3∂θ1
=

1

S0

[
− ∂2B2

∂θ3∂θ1
VA(a2)

]
(A.47)

∂2W

∂θ3∂θ2
=

1

S0

[
− ∂2B1

∂θ3∂θ2
VA(a1)

]
(A.48)

∂2W

∂θ3∂θ3
=

1

S0

[
− ∂2B1

∂θ3∂θ3
VA(a1)− ∂2B2

∂θ3∂θ3
VA(a2)

]
(A.49)

The evaluation of the expressions given above, requires the first-order and second-order derivatives
of the sub-functions that specify the bond-wise energy with respect to the bond lengths and valence
angles. For this purpose, Subsection 2.3.1 can be reused, which specifies the essential derivatives
in a generally applicable notation.

A.1.2 First-order and second-order derivatives of bond lengths and valence
angles with respect to inner displacements and strain measures

The first-order and second-order derivatives of the bond lengths ai and the valence angles θi
(i = 1, 2, 3) with respect to the inner displacements and the strain measures depend on the
chosen approximation for the exponential Cauchy-Born rule. Therefore, these two approaches
are discussed consecutively in the following segments. Within both derivations, the function

S (x) =
sin (x)

x
(A.50)

is necessary. In addition its first-order and second-order derivatives, which are given by

S ′ (x) =
cos (x)

x
− sin (x)

x2
=

cos (x)− S (x)

x
(A.51)

S ′′ (x) = −cos (x)− S (x)

x2
− sin (x) + S ′ (x)

x
= − sin (x) + 2S ′ (x)

x
(A.52)

are relevant. As pointed out by Arroyo [2], in the numerical evaluation, these functions have to be
used carefully if x tends to zero. Such a point is obtained if one of the principal curvatures or the
currently considered normal curvature is zero. In order to avoid this problem, these functions are
replaced by a truncated Taylor series expansion.

Approximation of the exponential Cauchy-Born rule: principal curvatures approach

With reference to Equation (4.54) of Subsection 4.4.4, the components of the approximated

deformed bond vector a in the local orthonormal base system D̃ = {vI ,vII ,n} are given as:

[ai]D̃ =




S
(
kIw

I
i

)
wIi

S
(
kIIw

II
i

)
wII

kIw
I
i

2 S2
(
kIw

I
i

2

)
wIi +

kIIw
II
i

2 S2
(
kIIw

II
i

2

)
wIIi


 (A.53)
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The length of the deformed lattice vector ai is expressed by using its components in the local
orthonormal base system.

ai =
[
(ai)

c
(ai)

c]1/2
(A.54)

The deformed valence angle θi between two deformed lattice vectors aj and ak follows from the
scalar product between these vectors and their corresponding lengths.

cos (θi) =
(aj)

c
(ak)

c

ajak
(A.55)

θi = arccos

[
(aj)

c
(ak)

c

ajak

]
(A.56)

Within all these expressions, ( )
c

denotes the c -th component of the observed vector in the local

orthonormal basis D̃ of the Eulerian configuration and a summation on this index c is implied.
Beyond that, {i, j, k} is an even permutation of {1, 2, 3}.

Based on Equation (A.54), the first-order and second-order derivatives of the bond length ai with
respect to the inner displacements η, the right Cauchy-Green deformation tensor C and the pull-
back of the spatial curvature tensor, namely K, are ascertainable. In the course of this, these
quantities are symbolised by ( ) and [ ].

∂ai
∂ ( )

=
1

ai

∂ (ai)
c

∂ ( )
(ai)

c
(A.57)

∂2ai
∂ ( ) ∂ [ ]

=
1

ai

[
− ∂ai
∂ ( )

⊗ ∂ai
∂ [ ]

+
∂2 (ai)

c

∂ ( ) ∂ [ ]
(ai)

c
+
∂ (ai)

c

∂ ( )
⊗ ∂ (ai)

c

∂ [ ]

]
(A.58)

Applying the same notation as above and using Equation (A.55), the required derivatives of the
deformed valence angle θi are obtained as:

∂θi
∂ ( )

= − 1

sin (θi) ajak

[
∂ (aj)

c

∂ ( )
(ak)

c
+ (aj)

c ∂ (ak)
c

∂ ( )
− cos (θi)

(
∂aj
∂ ( )

ak + aj
∂ak
∂ ( )

)]

(A.59)

∂2θi
∂ ( ) ∂ [ ]

= −cos (θi)

sin (θi)

∂θi
∂ ( )

⊗ ∂θi
∂ [ ]

− 1

ajak

[(
∂aj
∂ ( )

ak + aj
∂ak
∂ ( )

)
⊗ ∂θi
∂ [ ]

+
∂θi
∂ ( )

⊗
(
∂aj
∂ [ ]

ak + aj
∂ak
∂ [ ]

)]

− 1

sin (θi) ajak

[
∂2 (aj)

c

∂ ( ) ∂ [ ]
(ak)

c
+ (aj)

c ∂
2 (ak)

c

∂ ( ) ∂ [ ]

]

− 1

sin (θi) ajak

[
∂ (aj)

c

∂ ( )
⊗ ∂ (ak)

c

∂ [ ]
+
∂ (ak)

c

∂ ( )
⊗ ∂ (aj)

c

∂ [ ]

]

+
cos (θi)

sin (θi) ajak

[
∂2aj

∂ ( ) ∂ [ ]
ak + aj

∂2ak
∂ ( ) ∂ [ ]

+
∂aj
∂ ( )

⊗ ∂ak
∂ [ ]

+
∂ak
∂ ( )

⊗ ∂aj
∂ [ ]

]

(A.60)

These expressions need the first-order and second-order derivatives of the deformed lattice vector
components (ai)

c
with respect to either C,K or η, whereby, once again, these measures are

indicated by ( ) and [ ]. The first two components are associated to the principal directions vn with
n = I, II. These show a similar structure so that their derivatives can be given in one expression.
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For this task, the abbreviations SI = S
(
kIw

I
)

and SII = S
(
kIIw

II
)

are introduced.

(ai)
n

= wni Sn (A.61)

∂ (ai)
n

∂ ( )
=

∂wni
∂ ( )
Sn + wni S ′n

(
∂kn
∂ ( )

wni + kn
∂wni
∂ ( )

)
(A.62)

∂2 (ai)
n

∂ ( ) ∂ [ ]
=

∂2wni
∂ ( ) ∂ [ ]

Sn +
∂wni
∂ ( )

⊗ S ′n
(
∂kn
∂ [ ]

wni + kn
∂wni
∂ [ ]

)
+ S ′n

(
∂kn
∂ ( )

wni + kn
∂wni
∂ ( )

)
⊗ ∂wni
∂ [ ]

+wni S ′′n
(
∂kn
∂ ( )

wni + kn
∂wni
∂ ( )

)
⊗
(
∂kn
∂ [ ]

wni + kn
∂wni
∂ [ ]

)

+wni S ′n
(

∂2kn
∂ ( ) ∂ [ ]

wni +
∂kn
∂ ( )

⊗ ∂wni
∂ [ ]

+
∂wni
∂ ( )

⊗ ∂kn
∂ [ ]

+ kn
∂2wni
∂ ( ) ∂ [ ]

)
(A.63)
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For the derivatives of the third component, related to the unit normal n, the two abbreviations

SI/2 = S
(
kIw

I

2

)
and SII/2 = S

(
kIIw

II

2

)
are introduced.

(ai)
III

=
kI
(
wIi
)2

2
S2
I/2 +

kII
(
wIIi
)2

2
S2
II/2 (A.64)

∂ (ai)
III

∂ ( )
=

(
∂kI
∂ ( )

wIi
2

+ kI
∂wIi
∂ ( )

)
wIi S2

I/2 +
kI
(
wIi
)2

2
SI/2S ′I/2

(
∂kI
∂ ( )

wIi + kI
∂wIi
∂ ( )

)

+

(
∂kII
∂ ( )

wIIi
2

+ kII
∂wIIi
∂ ( )

)
wIIi S2

II/2 +
kII
(
wIIi
)2

2
SII/2S ′II/2

(
∂kII
∂ ( )

wIIi + kII
∂wIIi
∂ ( )

)

(A.65)

∂2 (ai)
III

∂ ( ) ∂ [ ]
= wIi S2

I/2

(
∂2kI

∂ ( ) ∂ [ ]

wIi
2

+
∂kI
∂ ( )

⊗ ∂wIi
∂ [ ]

+
∂wIi
∂ ( )

⊗ ∂kI
∂ [ ]

+ kI
∂2wIi

∂ ( ) ∂ [ ]

)

+kIS2
I/2

∂wIi
∂ ( )

⊗ ∂wIi
∂ [ ]

+wIiD12S ′I/2
[(

∂kI
∂ ( )

wIi
2

+ kI
∂wIi
∂ ( )

)
⊗
(
∂kI
∂ [ ]

wIi + kI
∂wIi
∂ [ ]

)]

+wIiD12S ′I/2
[(

∂kI
∂ ( )

wIi + kI
∂wIi
∂ ( )

)
⊗
(
∂kI
∂ [ ]

wIi
2

+ kI
∂wIi
∂ [ ]

)]

+
kI
(
wIi
)2

4

(
S ′I/2S ′I/2 + SI/2S ′′I/2

)( ∂kI
∂ ( )

wIi + kI
∂wIi
∂ ( )

)
⊗
(
∂kI
∂ [ ]

wIi + kI
∂wIi
∂ [ ]

)

+
kI
(
wIi
)2

2
SI/2S ′I/2

(
∂2kI

∂ ( ) ∂ [ ]
wIi +

∂kI
∂ ( )

⊗ ∂wIi
∂ [ ]

+
∂wIi
∂ ( )

⊗ ∂kI
∂ [ ]

+ kI
∂2wIi

∂ ( ) ∂ [ ]

)

+wIIi S2
II/2

(
∂2kII
∂ ( ) ∂ [ ]

wIIi
2

+
∂kII
∂ ( )

⊗ ∂wIIi
∂ [ ]

+
∂wIIi
∂ ( )

⊗ ∂kII
∂ [ ]

+ kII
∂2wIIi
∂ ( ) ∂ [ ]

)

+kIIS2
II/2

∂wIIi
∂ ( )

⊗ ∂wIIi
∂ [ ]

+wIIi D22S ′II/2
[(

∂kII
∂ ( )

wIIi
2

+ kII
∂wIIi
∂ ( )

)
⊗
(
∂kII
∂ [ ]

wIIi + kII
∂wIIi
∂ [ ]

)]

+wIIi D22S ′II/2
[(

∂kII
∂ ( )

wIIi + kII
∂wIIi
∂ ( )

)
⊗
(
∂kII
∂ [ ]

wIIi
2

+ kII
∂wIIi
∂ [ ]

)]

+
kII
(
wIIi
)2

4

(
S ′II/2S ′II/2

)(∂kII
∂ ( )

wIIi + kII
∂wIIi
∂ ( )

)
⊗
(
∂kII
∂ [ ]

wIIi + kII
∂wIIi
∂ [ ]

)

+
kII
(
wIIi
)2

4

(
SII/2S ′′II/2

)(∂kII
∂ ( )

wIIi + kII
∂wIIi
∂ ( )

)
⊗
(
∂kII
∂ [ ]

wIIi + kII
∂wIIi
∂ [ ]

)

+
kII
(
wIIi
)2

2
SII/2S ′II/2

(
∂2kII
∂ ( ) ∂ [ ]

wIIi + kII
∂2wIIi
∂ ( ) ∂ [ ]

)

+
kII
(
wIIi
)2

2
SII/2S ′II/2

(
∂kII
∂ ( )

⊗ ∂wIIi
∂ [ ]

+
∂wIIi
∂ ( )

⊗ ∂kII
∂ [ ]

)

(A.66)

Next, the first-order and second-order derivatives of the tangent deformed lattice vector components
with respect to the inner displacements and the strain measures are calculated. Within the
following expressions, index notation is used and the conventions given in Subsection 4.3.2 are
applied. Therefore, the components of the independent quantities are represented in the standard
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bases of the undeformed configuration, resulting in:

η = ηAEA (A.67)

C = CABEA ⊗EB (A.68)

K = KABEA ⊗EB (A.69)

The components wni of the tangent deformed lattice vector, related to the two principal directions
vn (n = I, II), are evaluated according to Equation (4.50) and Equation (4.51). The dependence
on the inner displacements is obtained by using Equation (4.64).

wni = CAB (Ai)
A

(Vn)
B

(A.70)

wni = CAB (Ai0 + η)
A

(Vn)
B

(A.71)

The first-order derivatives of wni are:

∂wni
∂ηC

= CCB (Vn)
B

(A.72)

∂wni
∂CCD

=
1

2

(
δCAδ

D
B + δDA δ

C
B

)
(Ai)

A
(Vn)

B
+ CAB (Ai)

A ∂ (Vn)
B

∂CCD
(A.73)

∂wni
∂κCD

= CAB (Ai)
A ∂ (Vn)

B

∂κCD
(A.74)

Now, the second-order derivatives of wni follow as:

∂2wni
∂ηC∂ηE

= 0 (A.75)

∂2wni
∂ηC∂CEF

=
1

2

(
δEC δ

F
B + δFCδ

E
B

)
(Vn)

B
+ CCB

∂ (Vn)
B

∂CEF
(A.76)

∂2wni
∂ηC∂κEF

= CCB
∂ (Vn)

B

∂κEF
(A.77)

∂2wni
∂CCD∂ηE

=
1

2

(
δCEδ

D
B + δDE δ

C
B

)
(Vn)

B
+ CEB

∂ (Vn)
B

∂CCD
(A.78)

∂2wni
∂CCD∂CEF

=
1

2

(
δCAδ

D
B + δDDδ

C
C

)
(Ai)

A ∂ (Vn)
B

∂CEF
+

1

2

(
δEAδ

F
B + δFAδ

E
B

)
(Ai)

A ∂ (Vn)
B

∂CCD

+CAB (Ai)
A ∂2 (Vn)

B

∂CCD∂CEF
(A.79)

∂2wni
∂CCD∂κEF

=
1

2

(
δCAδ

D
B + δDA δ

C
B

)
(Ai)

A ∂ (Vn)
B

∂κEF
+ CAB (Ai)

A ∂2 (Vn)
B

∂CCD∂κEF
(A.80)

∂2wni
∂κCD∂ηE

= CEB
∂ (Vn)

B

∂κCD
(A.81)

∂2wni
∂κCD∂CEF

=
1

2

(
δEAδ

F
B + δFAδ

E
B

)
(Ai)

A ∂ (Vn)
B

∂κCD
+ CAB (Ai)

A ∂2 (Vn)
B

∂κCD∂CEF
(A.82)

∂2wni
∂κCD∂κEF

= CAB (Ai)
A ∂2 (Vn)

B

∂κCD∂κEF
(A.83)
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Referring to Arroyo [2] and Arroyo and Belytschko [5], the first-order derivatives of the principal
curvatures kn (n = I, II and kI 6= kII) of the deformed surface with respect to K and C read:

∂kn
∂κCD

= (Vn)
C

(Vn)
D

(A.84)

∂kn
∂CCD

= −kn
∂kn
∂κCD

(A.85)

On this basis, the second-order derivatives can be calculated as:

∂2kn
∂κCD∂κEF

=
∂ (Vn)

C

∂κEF
(Vn)

D
+ (Vn)

C ∂ (Vn)
D

∂κEF
(A.86)

∂2kn
∂κCD∂CEF

=
∂ (Vn)

C

∂CEF
(Vn)

D
+ (Vn)

C ∂ (Vn)
D

∂CEF
(A.87)

∂2kn
∂CCD∂κEF

= − ∂kn
∂κCD

∂kn
∂κEF

− kn
∂2kn

∂κCD∂κEF
(A.88)

∂2kn
∂CCD∂CEF

= kn

(
∂kn
∂κCD

∂kn
∂κEF

− ∂2kn
∂κCD∂CEF

)
(A.89)

Again, with reference to Arroyo [2] and Arroyo and Belytschko [5], the first-order derivatives of
the principal directions Vn (n = I, II and kI 6= kII) of the deformed surface with respect to K and
C, whereby {n,m} is a permutation of {I, II}, are given as:

∂ (Vn)
A

∂κCD
=

1

2 (kn − km)
(Vm)

A
[
(Vn)

C
(Vm)

D
+ (Vm)

C
(Vn)

D
]

(A.90)

∂ (Vn)
A

∂CCD
= −1

2
(Vn)

A
(Vn)

C
(Vn)

D − kn
∂ (Vn)

A

∂κCD
(A.91)
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Further calculations provide the second-order derivatives of the principal directions as:

∂2 (Vn)
A

∂κCD∂κEF
= − 1

4 (kn − km)
2 (Vm)

A
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
] [

(Vm)
E

(Vn)
F

+ (Vn)
E

(Vm)
F
]

+
1

2 (kn − km)
2 (Vm)

A
[
(Vm)

E
(Vm)

F − (Vn)
E

(Vn)
F
] [

(Vm)
C

(Vn)
D

+ (Vn)
C

(Vm)
D
]

+
1

2 (kn − km)
2 (Vm)

A
[
(Vm)

C
(Vm)

D − (Vn)
C

(Vn)
D
] [

(Vm)
E

(Vn)
F

+ (Vn)
E

(Vm)
F
]

(A.92)

∂2 (Vn)
A

∂κCD∂CEF
=

km

4 (kn − km)
2 (Vn)

A
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
] [

(Vm)
E

(Vn)
F

+ (Vn)
E

(Vm)
F
]

− kn

2 (kn − km)
2 (Vm)

A
(Vm)

C
(Vm)

D
[
(Vm)

E
(Vn)

F
+ (Vn)

E
(Vm)

F
]

− kn

2 (kn − km)
2 (Vm)

A
(Vm)

E
(Vm)

F
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
]

+
kn + km

4 (kn − km)
2 (Vm)

A
(Vn)

E
(Vn)

F
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
]

+
km

2 (kn − km)
2 (Vm)

A
(Vn)

C
(Vn)

D
[
(Vm)

E
(Vn)

F
+ (Vn)

E
(Vm)

F
]

(A.93)

∂2 (Vn)
A

∂CCD∂κEF
=

km

4 (kn − km)
2 (Vn)

A
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
] [

(Vm)
E

(Vn)
F

+ (Vn)
E

(Vm)
F
]

− kn

2 (kn − km)
2 (Vm)

A
(Vm)

C
(Vm)

D
[
(Vm)

E
(Vn)

F
+ (Vn)

E
(Vm)

F
]

− kn

2 (kn − km)
2 (Vm)

A
(Vm)

E
(Vm)

F
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
]

+
kn + km

4 (kn − km)
2 (Vm)

A
(Vn)

C
(Vn)

D
[
(Vm)

E
(Vn)

F
+ (Vn)

E
(Vm)

F
]

+
km

2 (kn − km)
2 (Vm)

A
(Vn)

E
(Vn)

F
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
]

(A.94)

∂2 (Vn)
A

∂CCD∂CEF
=

3

4
(Vn)

A
(Vn)

C
(Vn)

D
(Vn)

E
(Vn)

F

k2
n − 2knkm

4 (kn − km)
2 (Vn)

A
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
] [

(Vm)
E

(Vn)
F

+ (Vn)
E

(Vm)
F
]

k2
n − 3knkm

4 (kn − km)
2 (Vm)

A
(Vn)

C
(Vn)

D
[
(Vm)

E
(Vn)

F
+ (Vn)

E
(Vm)

F
]

k2
n − 3knkm

4 (kn − km)
2 (Vm)

A
(Vn)

E
(Vn)

F
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
]

k2
n

2 (kn − km)
2 (Vm)

A
(Vm)

C
(Vm)

D
[
(Vm)

E
(Vn)

F
+ (Vn)

E
(Vm)

F
]

k2
n

2 (kn − km)
2 (Vm)

A
(Vm)

E
(Vm)

F
[
(Vm)

C
(Vn)

D
+ (Vn)

C
(Vm)

D
]

(A.95)

The expressions given above allow the evaluation of all first-order and second-order derivatives of
ai and θi (i = 1, 2, 3) with respect to η, C and K.
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Approximation of the exponential Cauchy-Born rule: direct curvature approach

The approximation of the exponential Cauchy-Born rule via the direct curvature approach leads
to the deformed bond vector a according to Equation (4.60). With reference to Equation (4.57),
the tangent deformed bond vector wi is further writeable as a linear combination with respect to
the covariant base vectors gα. This allows to state the components of the deformed bond vector a

in the convected basis C̃ = {g1,g2,n}.

[ai]C̃ =




w1
i S (kiwi)

w2
i S (kiwi)

ki(wi)
2

2 S2
(
kiwi

2

)


 (A.96)

As the basis C̃ is not orthonormal, the covariant components of the metric tensor are involved in
the calculation of quantities that are based on the scalar product of vectors. Considering this fact,
the length of the deformed bond vector ai is given as:

ai =
[
(ai)

α
gαβ (ai)

β
+ (ai)

3
(ai)

3
]1/2

(A.97)

For a simpler notation, an extended metric tensor

gab =



g11 g12 0

g21 g22 0

0 0 1


 (A.98)

is introduced, allowing to write the bond length ai in a compact form.

ai =
[
(ai)

a
gab (ai)

b
]1/2

(A.99)

Consequently, (ai)
a

denotes the a -th component of the observed vector in the convected basis

C̃ = {g1,g2,n} and summation on this index and the index b in the range from 1 to 3 is implied.
Moreover, as a reminder, (ai)

α
specifies the α -th component of the observed vector in the convected

basis of the tangent space C = {g1,g2} and summation on this index and the index β, running
from 1 to 2, is implied.

Using the scalar product, the deformed valence angle θi between two deformed lattice vectors aj
and ak with {i, j, k} being an even permutation of {1, 2, 3} is calculated as:

cos (θi) =
1

ajak

[
(aj)

α
gαβ (ak)

β
+ (aj)

3
(ak)

3
]

=
(aj)

a
gab (ak)

b

ajak
(A.100)

θi = arccos

[
(aj)

a
gab (ak)

b

ajak

]
(A.101)

In the calculation of the first-order and second-order derivatives of the bond length and the valence
angles with respect to the inner displacements η, the spatial metric tensor g and the spatial
curvature tensor k these measures are symbolised by ( ) and [ ]. The related first-order and second-
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order derivatives of the bond length ai follow from Equation (A.99) as:

∂ai
∂ ( )

=
1

2ai

[
∂ (ai)

a

∂ ( )
gab (ai)

b
+ (ai)

a
gab

∂ (ai)
b

∂ ( )

]
+

1

2ai

[
(ai)

α ∂gαβ
∂ ( )

(ai)
β

]
(A.102)

∂2ai
∂ ( ) ∂ [ ]

= − 1

ai

∂ai
∂ ( )

⊗ ∂ai
∂ [ ]

+
gab
2ai

[
∂2 (ai)

a

∂ ( ) ∂ [ ]
(ai)

b
+ (ai)

a ∂
2 (ai)

b

∂ ( ) ∂ [ ]
+
∂ (ai)

a

∂ ( )
⊗ ∂ (ai)

b

∂ [ ]
+
∂ (ai)

b

∂ ( )
⊗ ∂ (ai)

a

∂ [ ]

]

+
1

2ai

[
∂ (ai)

α

∂ ( )
⊗ ∂gαβ

∂ [ ]
(ai)

β
+
∂gαβ
∂ ( )

⊗ ∂ (ai)
α

∂ [ ]
(ai)

β

]

+
1

2ai

[
(ai)

α ∂ (ai)
β

∂ ( )
⊗ ∂gαβ

∂ [ ]
+ (ai)

α ∂gαβ
∂ ( )

⊗ ∂ (ai)
β

∂ [ ]

]
(A.103)

The corresponding derivatives for the valence angle θi, resulting from Equation (A.100), are:

∂θi
∂ ( )

= − 1

sin (θi)

∂ cos (θi)

∂ ( )
(A.104)

∂2θi
∂ ( ) ∂ [ ]

= − 1

sin (θi)

[
cos (θi)

∂θi
∂ ( )

⊗ ∂θi
∂ [ ]

+
∂2 cos (θi)

∂ ( ) ∂ [ ]

]
(A.105)

Furthermore, the necessary derivatives of the cosine of the valence angle are given by:

∂ cos (θi)

∂ ( )
= −cos (θi)

ajak

[
∂aj
∂ ( )

ak + aj
∂ak
∂ ( )

]

+
1

ajak

[
gab

(
∂ (aj)

a

∂ ( )
(ak)

b
+ (aj)

a ∂ (ak)
b

∂ ( )

)
+ (aj)

α ∂gαβ
∂ ( )

(ak)
β

]
(A.106)

∂2 cos (θi)

∂ ( ) ∂ [ ]
=

sin (θi)

ajak

[
∂θi
∂ ( )

⊗
(
∂aj
∂ [ ]

ak + aj
∂ak
∂ [ ]

)
+

(
∂aj
∂ ( )

ak + aj
∂ak
∂ ( )

)
⊗ ∂θi
∂ [ ]

]

−cos θi
ajak

[
∂2aj

∂ ( ) ∂ [ ]
ak +

∂aj
∂ ( )

⊗ ∂ak
∂ [ ]

+
∂ak
∂ ( )

⊗ ∂aj
∂ [ ]

+ aj
∂2ak

∂ ( ) ∂ [ ]

]

+
gab
ajak

[
∂2 (aj)

a

∂ ( ) ∂ [ ]
(ak)

b
+
∂ (aj)

a

∂ ( )
⊗ ∂ (ak)

b

∂ [ ]
+
∂ (ak)

b

∂ ( )
⊗ ∂ (aj)

a

∂ [ ]
+ (aj)

a ∂
2 (ak)

b

∂ ( ) ∂ [ ]

]

+
1

ajak

[
∂ (aj)

α

∂ ( )
⊗ ∂gαβ

∂ [ ]
(ak)

β
+
∂gαβ
∂ ( )

⊗ ∂ (aj)
α

∂ [ ]
(ak)

β

]

+
1

ajak

[
(aj)

α ∂ (ak)
β

∂ ( )
⊗ ∂gαβ

∂ [ ]
+ (aj)

α ∂gαβ
∂ ( )

⊗ ∂ (ak)
β

∂ [ ]

]
(A.107)

The evaluation of the expressions given above requires the first-order and second-order derivatives of
the deformed bond vector components (ai)

a
with respect to the inner displacements and the strain

measures. These independent quantities are symbolised either by ( ) or [ ]. The first and the second
component are related to the covariant base vectors and, therefore, they can be handled together.
Introducing the abbreviation Si = S (kiwi), the components themselves and their derivatives are
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given as:

(ai)
α

= wαi Si (A.108)

∂ (ai)
α

∂ ( )
=

∂wαi
∂ ( )
Si + wαi S ′i

(
∂ki
∂ ( )

wi + ki
∂wi
∂ ( )

)
(A.109)

∂2 (ai)
α

∂ ( ) ∂ [ ]
=

∂2wαi
∂ ( ) ∂ [ ]

Si +
∂wαi
∂ ( )

⊗ S ′i
(
∂ki
∂ [ ]

wi + ki
∂wi
∂ [ ]

)
+ S ′i

(
∂ki
∂ ( )

wi + ki
∂wi
∂ ( )

)
⊗ ∂wαi
∂ [ ]

+wαi S ′′i
(
∂ki
∂ ( )

wi + ki
∂wi
∂ ( )

)
⊗
(
∂ki
∂ [ ]

wi + ki
∂wi
∂ [ ]

)

+wαi S ′i
(

∂2ki
∂ ( ) ∂ [ ]

wi +
∂ki
∂ ( )

⊗ ∂wi
∂ [ ]

+
∂wi
∂ ( )

⊗ ∂ki
∂ [ ]

+ ki
∂2wi

∂ ( ) ∂ [ ]

)
(A.110)

The necessary derivatives of the third component, which is coupled to the unit normal, use the
short form Si/2 = S

(
kiwi

2

)
, and are specified as:

(ai)
3

=
ki (wi)

2

2
S2
i/2 (A.111)

∂ (ai)
3

∂ ( )
=

(
∂ki
∂ ( )

wi
2

+ ki
∂wi
∂ ( )

)
wiS2

i/2 +
ki (wi)

2

2
Si/2S ′i/2

(
∂ki
∂ ( )

wi + ki
∂wi
∂ ( )

)
(A.112)

∂2 (ai)
3

∂ ( ) ∂ [ ]
= wiS2

i/2

[
∂2ki

∂ ( ) ∂ [ ]

wi
2

+
∂ki
∂ ( )

⊗ ∂wi
∂ [ ]

+
∂wi
∂ ( )

⊗ ∂ki
∂ [ ]

+ ki
∂2wi

∂ ( ) ∂ [ ]

]
+ kiS2

i/2

∂wi
∂ ( )

⊗ ∂wi
∂ [ ]

+wiSi/2S ′i/2
[(

∂ki
∂ ( )

wi
2

+ ki
∂wi
∂ ( )

)
⊗
(
∂ki
∂ [ ]

wi + ki
∂wi
∂ [ ]

)]

+wiSi/2S ′i/2
[(

∂ki
∂ ( )

wi + ki
∂wi
∂ ( )

)
⊗
(
∂ki
∂ [ ]

wi
2

+ ki
∂wi
∂ [ ]

)]

+
ki (wi)

2

4

(
S ′i/2S ′i/2 + Si/2S ′′i/2

)( ∂ki
∂ ( )

wi + ki
∂wi
∂ ( )

)
⊗
(
∂ki
∂ [ ]

wi + ki
∂wi
∂ [ ]

)

+
ki (wi)

2

2
Si/2S ′i/2

(
∂2ki

∂ ( ) ∂ [ ]
wi +

∂ki
∂ ( )

⊗ ∂wi
∂ [ ]

+
∂wi
∂ ( )

⊗ ∂ki
∂ [ ]

+ ki
∂2wi

∂ ( ) ∂ [ ]

)
(A.113)

The length wi of the tangent deformed bond vector is analysed in the following. Using Equation
(4.58), this length is given as:

wi =
(
wαi gαβw

β
i

)1/2

(A.114)

Then, the first-order and second-order derivatives are:

∂wi
∂ ( )

=
1

2wi

[
∂wαi
∂ ( )

gαβw
β
i + wαi

∂gαβ
∂ ( )

wβi + wαi gαβ
∂wβi
∂ ( )

]
(A.115)

∂2wi
∂( )∂[ ]

=− 1

wi

∂wi
∂ ( )

⊗ ∂wi
∂ [ ]

+
1

2wi

[
gαβ

∂wβi
∂ ( )

⊗ ∂wαi
∂ [ ]

+ gαβ
∂wαi
∂ ( )

⊗ ∂wβi
∂ [ ]

]

+
1

2wi

[
∂wαi
∂ ( )

⊗ ∂gαβ
∂ [ ]

wβi +
∂gαβ
∂ ( )

⊗ ∂wαi
∂ [ ]

wβi + wαi
∂gαβ
∂ ( )

⊗ ∂wβi
∂ [ ]

+ wαi
∂wβi
∂ ( )

⊗ ∂gαβ
∂ [ ]

]

(A.116)

The normal curvatures ki of the deformed surface, corresponding to the various tangent deformed
bond vectors, is obtained using Equation (4.59).

ki =
wαi kαβw

β
i

wαi gαβw
β
i

=
wαi kαβw

β
i

(wi)
2 (A.117)
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Based on this expression, the first-order and second-order derivatives are:

∂ki
∂ ( )

=
1

(wi)
2

[
∂wαi
∂ ( )

kαβw
β
i + wαi

∂kαβ
∂ ( )

wβi + wαi kαβ
∂wβi
∂ ( )

]
− 2

ki
wi

∂wi
∂ ( )

(A.118)

∂2ki
∂( )∂[ ]

=− 2

wi

[
∂ki
∂ ( )

⊗ ∂wi
∂ [ ]

+
∂wi
∂ ( )

⊗ ∂ki
∂ [ ]

]
− 2

ki
wi

∂2wi
∂( )∂[ ]

− 2
ki

(wi)
2

∂wi
∂ ( )

⊗ ∂wi
∂ [ ]

+
1

(wi)
2

[
∂wαi
∂ ( )

⊗ ∂kαβ
∂ [ ]

wβi +
∂kαβ
∂ ( )

⊗ ∂wαi
∂ [ ]

wβi + wαi
∂kαβ
∂ ( )

⊗ ∂wβi
∂ [ ]

+ wαi
∂wβi
∂ ( )

⊗ ∂kαβ
∂ [ ]

]

+
1

(wi)
2

[
kαβ

∂wβi
∂ ( )

⊗ ∂wαi
∂ [ ]

+ kαβ
∂wαi
∂ ( )

⊗ ∂wβi
∂ [ ]

]
(A.119)

Finally, the various derivatives of wαi and gαβ as well as kαβ with respect to the inner displacements
and the strain measures are essential.

Taking into account Equation (4.57) in combination with Equation (4.64), the components of the
tangent deformed bond vector in the convected basis of the tangent space C are given as:

wαi =
(
AA0i + ηA

)
GαA (A.120)

Therefrom, the only nonzero derivative is that with respect to the inner displacements.

∂wαi
∂η

= GαAEA = Gα (A.121)

The derivatives of the covariant components of the spatial metric tensor and the spatial curvature
tensor are only nonzero if they are derived by the corresponding specifying tensor.

∂gαβ
∂g

= gα ⊗ gβ (A.122)

∂kαβ
∂k

= gα ⊗ gβ (A.123)

With the help of the formulae given on top of that, all first-order and second-order derivatives of
ai and θi (i = 1, 2, 3) with respect to η, g and k can be calculated.
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A.2 First-order and second-order derivatives of the strain energy
double density with respect to the distance between two
distinct points of the continuum

This Appendix provides the first-order and second-order derivatives of the strain energy double
density for modelling non-bonded interactions with respect to the distance between two distinct
points of the continuum. These derivatives are essential for the specification of the global
equilibrium for the mixed atomistic-continuum model. With reference to Subsection 4.5.4, the
strain energy double density Wnb depends on the distance d between two distinct points of the
continuum surface, which in turn is a function of the spatial position vectors of the involved points.
The strain energy double density for an individual non-bonded interaction is given as:

Wnb = Vnb (d )
2

S0

2

S0
(A.124)

Thereof, the first-order and second-order derivatives with respect to the scalar distance d of two
points on the deformed surface can be calculated in a straightforward manner.

∂Wnb

∂d
= V ′nb (d )

2

S0

2

S0
(A.125)

∂2Wnb

∂d∂d
= V ′′nb (d )

2

S0

2

S0
(A.126)

The first-order and second-order derivatives of the interatomic pair-potential Vnb for the non-
bonded interactions are defined in Subsection 2.4.1 and, consequently, these terms can be applied
for the evaluation of the expressions given above.

A.3 Variations of the strain measures and their increments

In this Appendix, the variations of the strain measures as well as their increments are specified for
the continuous setting. Moreover, the related terms for the discrete setting are provided. These
quantities are required for the specification of the global equilibrium that is defined in Section 4.6
for the continuous setting and in Subsection 4.8.2 for the discrete setting.

A.3.1 Continuous setting

The specification of the global equilibrium in Section 4.6 requires the variations of the appropriate
strain measures as well as their increments. In addition, the Newton-Raphson procedure is in need
of the increments of the variated strain measures as well. These important quantities are supplied
within this section. Because the undeformed configuration is fixed, the virtual displacements solely
influence the deformed configuration. As a consequence, the variations of the strain measures have
to be expressed by the variations δx of the deformed configuration only. The same statement
holds for the displacement increments so that the increments of the deformed configuration ∆x
are considered, exclusively. To call up, for the principal curvatures approach the strain measures
are C and K whereas for the direct curvature approach the strain measures are g and k. Using
the fact that C is obtained as the pull-back of g and alike that the pull-back of k delivers K, the
derivation is started with the covariant base vectors. Recalling Equation (4.14), the variations of
the convected basis vectors gα read:

δgα =
∂δx

∂ξα
α = 1, 2 (A.127)
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The increments of the covariant base vectors are calculated similar to their variations and are,
thus, given by:

∆gα =
∂∆x

∂ξα
α = 1, 2 (A.128)

Combined with Equation (4.20), the variation of the covariant components gαβ = gα · gβ of the
spatial metric tensor follows as:

δgαβ = δgα · gβ + gα · δgβ (A.129)

Then, the variations of the right Cauchy-Green deformation tensor components CAB , given
according to Equation (4.25), are obtained as:

δCAB = δgαβ
∂ξα

∂XA

∂ξβ

∂XB
(A.130)

In the same fashion, the increments of the covariant components of the spatial metric tensor are:

∆gαβ = ∆gα · gβ + gα ·∆gβ (A.131)

Subsequently, the increments of the right Cauchy-Green deformation tensor components read:

∆CAB = ∆gαβ
∂ξα

∂XA

∂ξβ

∂XB
(A.132)

The variation of the spatial curvature tensor, specifically of its covariant components kαβ = n·gα,β ,
requires the variations of the unit normal n and of the derived covariant base vectors gα,β . The
variation of the unit normal reads:

δn =
1

‖g1 × g2‖
[δg1 × g2 + g1 × δg2 − δ‖g1 × g2‖n] (A.133)

where

δ‖g1 × g2‖ = n · [δg1 × g2 + g1 × δg2] (A.134)

The variations of the derived covariant base vectors gα,β are given by:

δgα,β =
∂2δx

∂ξα∂ξβ
(A.135)

Applying these expressions, the variations of the covariant components of the spatial curvature
tensor follow as:

δkαβ = δn · gα,β + n · δgα,β (A.136)

Then, the variations of the pull-back of the spatial curvature tensor components, denoted as KAB ,
and given in Equation (4.26), are obtained as:

δKAB = δkαβ
∂ξα

∂XA

∂ξβ

∂XB
(A.137)

Once more, an identical process delivers the appropriate increments

∆kαβ = ∆n · gα,β + n ·∆gα,β with ∆gα,β =
∂2∆x

∂ξα∂ξβ
(A.138)
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of the spatial curvature tensor and, subsequently, the increments

∆KAB = ∆kαβ
∂ξα

∂XA

∂ξβ

∂XB
(A.139)

of its related pull-back. Herein, the increments of the unit normal are given by

∆n =
1

‖g1 × g2‖
[∆g1 × g2 + g1 ×∆g2 −∆‖g1 × g2‖n] (A.140)

where

∆‖g1 × g2‖ = n · [∆g1 × g2 + g1 ×∆g2] (A.141)

In the next steps, the increments of the variated strain measures are calculated. Based on Equation
(A.129), the increments of the variated covariant metric tensor components are:

∆δgαβ = δgα ·∆gβ + ∆gα · δgβ (A.142)

This allows to state the increments of the variated right Cauchy-Green deformation tensor
components as:

∆δCAB = ∆δgαβ
∂ξα

∂XA

∂ξβ

∂XB
(A.143)

The increments of the variated spatial curvature tensor components result from Equation (A.136).

∆δkαβ = ∆δn · gα,β + δn ·∆gα,β + ∆n · δgα,β (A.144)

The further pull-back delivers the increments of the variation in the undeformed configuration as:

∆δKAB = ∆δkαβ
∂ξα

∂XA

∂ξβ

∂XB
(A.145)

To complete this derivation, the increments of the variated unit normal are:

∆δn =
1

‖g1 × g2‖
[δg1 ×∆g2 + ∆g1 × δg2]

− 1

‖g1 × g2‖
[δ‖g1 × g2‖∆n + ∆‖g1 × g2‖δn + ∆δ‖g1 × g2‖n] (A.146)

where

∆δ‖g1 × g2‖ = ∆n · [δg1 × g2 + g1 × δg2] + n · [δg1 ×∆g2 + ∆g1 × δg2] (A.147)

To sum up, this part of the Appendix provides the necessary variations of the strain measures and
their increments for the continuous setting. These quantities are important for the definition of the
global equilibrium. The related terms for the discrete setup after discretisation via finite elements
are given in the upcoming segment.

A.3.2 Discrete setting

The preparation of the element force vector and the element stiffness matrix due to bonded
interactions in Subsection 4.8.2 requires the first-order and second-order derivatives of the strain
measures with respect to the actual displacement vector components. These quantities are the
analogies of the variations and increments as well as the incremental variations of the strain
measures in the continuous setting as given in Subappendix A.3.1 immediately before that. In
the specification of the essential derivatives, index notation is used and the conventions given in
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Subsection 4.3.2 are used. According to Equation (4.113), the discrete form of the covariant base
vectors on the deformed surface are given in component representation as:

(gα)
c

= (NK),α (xK)
c

(A.148)

In the course of this, summation on the local node index K is carried out. Then, the requested
derivatives of the covariant base vectors with respect to the actual displacement vector components
(xI)

a
and (xJ)

b
follow directly as:

∂(gα)
c

∂(xI)
a = (NI),α δ

c
a (A.149)

∂2(gα)
c

∂(xI)
a
∂(xJ)

b
= 0 (A.150)

Using these terms and, additionally, recalling Equation (4.20) the derivatives of the covariant
spatial metric tensor components gαβ = gα · gβ = (gα)

c
(gβ)

c
are given by:

∂gαβ
∂(xI)

a = (NI),α (gβ)
a

+ (gα)
a

(NI),β (A.151)

∂2gαβ

∂(xI)
a
∂(xJ)

b
=
[
(NI),α (NJ),β + (NJ),α (NI),β

]
δab (A.152)

Then, the corresponding derivatives of the right Cauchy-Green deformation tensor components
CAB , which is specified in Equation (4.25), are obtained via pull-back of the related spatial metric
tensor terms. For this reason, the inverse of the discrete initial Jacobian tensor is necessary, which
is obtained either from Equation (4.114) or directly from the component representation given in
Equation (4.115).

∂CAB
∂(xI)

a =
∂gαβ
∂(xI)

a

(
J−1

)α
A

(
J−1

)β
B

(A.153)

∂2CAB

∂(xI)
a
∂(xJ)

b
=

∂2gαβ

∂(xI)
a
∂(xJ)

b

(
J−1

)α
A

(
J−1

)β
B

(A.154)

For the curvature properties, the discrete form of the covariant base vector derivatives, given in
Equation (4.117), is represented in components as:

(gα,β)
c

= (NK),αβ (xK)
c

(A.155)

with the local node number K acting as summation index. Then, the corresponding first-order
and second-order derivatives with respect to the actual displacement vector components (xI)

a
and

(xJ)
b

are:

∂(gα,β)
c

∂(xI)
a = (NI),αβ δ

c
a (A.156)

∂2(gα,β)
c

∂(xI)
a
∂(xJ)

b
= 0 (A.157)

The covariant spatial curvature tensor components kαβ = n · gα,β = (n)
c

(gα,β)
c

are defined with
respect to Equation (4.21). Based on this definition, the essential derivatives are characterised by:

∂kαβ
∂(xI)

a =
∂(n)

c

∂(xI)
a (gα,β)

c
+ (n)

a
(NI),αβ (A.158)

∂2kαβ

∂(xI)
a
∂(xJ)

b
=

∂2(n)
c

∂(xI)
a
∂(xJ)

b
(gα,β)

c
+

∂(n)
b

∂(xI)
a (NJ),αβ +

∂(n)
a

∂(xJ)
b

(NI),αβ (A.159)
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For their evaluation, the derivatives of the unit normal are needed. Following Equation (4.15), and
considering the permutation tensor εcde, the components of the unit normal vector are defined as:

(n)
c

=
εcde (g1)

d
(g2)

e

‖g1 × g2‖
(A.160)

On the basis of this notation, the first-order and second-order derivatives of the unit normal vector
components with respect to the actual displacement vector components (xI)

a
and (xJ)

b
are:

∂(n)
c

∂(xI)
a =

1

‖g1 × g2‖

[
εcde

(
(NI),1 δ

d
a (g2)

e
+ (g1)

d
(NI),2 δ

e
a

)
− (n)

c ∂‖g1 × g2‖
∂(xI)

a

]
(A.161)

∂2(n)
c

∂(xI)
a
∂(xJ)

b
=

1

‖g1 × g2‖
[
εcde

(
(NI),1 δ

d
a (NJ),2 δ

e
b + (NJ),1 δ

d
b (NI),2 δ

e
a

)

− ∂(n)
c

∂(xI)
a
∂|g1 × g2|
∂(xJ)

b
− ∂‖g1 × g2‖

∂(xI)
a

∂(n)
c

∂(xJ)
b
− (n)

c ∂
2‖g1 × g2‖

∂(xI)
a
∂(xJ)

b

]

(A.162)

These expressions need the inner product norm of the cross product g1×g2, which can be calculated
with the help of the permutation tensor as:

‖g1 × g2‖ =
[
εcde (g1)

d
(g2)

e
εcfg (g1)

f
(g2)

g
]1/2

(A.163)

Therefrom, the first-order and second-order derivatives with respect to the actual displacement
vector components (xI)

a
and (xJ)

b
follow as:

∂‖g1 × g2‖
∂(xI)

a = εcde (n)
c
[
(NI),1 δ

d
a (g2)

e
+ (g1)

d
(NI),2 δ

e
a

]
(A.164)

∂2‖g1 × g‖

∂(xI)
a
∂(xJ)

b
= εcde

[
(NI),1 δ

d
a (g2)

e
+ (g1)

d
(NI),2 δ

e
a

] ∂(n)
c

∂(xJ)
b

+ εcde (n)
c
[
(NI),1 δ

d
a (NJ),2 δ

e
b + (NJ),1 δ

d
b (NI),2 δ

e
a

]
(A.165)

Herein, the definition of the unit normal vector components is reused to simplify the expressions.
Therewith, the derivatives of the unit normal are fully specified and, furthermore, the derivatives
of the covariant spatial curvature tensor are ascertainable. Subsequently, the related derivatives of
the pull-back of the spatial curvature tensor are given in index notation as:

∂KAB
∂(xI)

a =
∂kαβ
∂(xI)

a

(
J−1

)α
A

(
J−1

)β
B

(A.166)

∂2KAB
∂(xI)

a
∂(xJ)

b
=

∂2kαβ

∂(xI)
a
∂(xJ)

b

(
J−1

)α
A

(
J−1

)β
B

(A.167)

Again, the inverse of the discrete initial Jacobian tensor is necessary for the pull-back operation.
This tensor is given explicitly in Equation (4.114) and in its component representation in Equation
(4.115). With that, all first-order and second-order derivatives of the strain measures with respect
to the components of the actual displacement vector are declared. This enables the evaluation of
the element force vector and the element stiffness matrix resulting from bonded interactions. After
this, the global properties are well defined and the finite element equations can be set up.
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A.4 Shape functions for subdivision finite elements

In this Appendix, explicit expressions for the finite element shape functions are specified. These
shape functions are essential for the treatment of the mixed atomistic-continuum model in a discrete
setting by means of the finite element method. For this purpose, the parametrisation of regular
subdivision surfaces on the basis of triangular and quadrilateral patches is discussed. Thereof, the
triangular and quadrilateral finite elements and the associated shape functions are defined.

A.4.1 Triangular subdivision finite element

For a regular triangular patch as illustrated in Figure A.1, the subdivision scheme of Loop [33] leads
to quartic box-splines for the central triangle, which is denoted as the finite element. This allows

1

2

3

4

5

6

7

8

9

10

11

12

v ≡ ξ1

w ≡ ξ2

Figure A.1: The regular triangular patch with the parametrised central triangular finite element
and the twelve defining nodes in their local numbering.

to define the triangular surface within the central face in terms of shape functions, which makes
this type of element applicable for the finite element method. Resulting from the structure of the
triangular finite element patch, there are 12 shape functions, one for each node. With reference
to Stam [47], the shape functions are given in barycentric coordinates u, v, w. These coordinates
have to fulfil 0 ≤ u, v, w ≤ 1 and u+ v + w = 1 so that they remain within the central 4-7-8 unit
triangle. Then, the polynomial shape functions of maximum order four are given as:

N1 =
1

12

(
u4 + 2u3 v

)

N2 =
1

12

(
u4 + 2u3 w

)

N3 =
1

12

(
u4 + 2u3 w + 6u3 v + 6u2 v w + 12u2 v2 + 6u v2 w + 6u v3 + 2 v3 w + v4

)

N4 =
1

12

(
6u4 + 24u3 w + 24u2 w2 + 8uw3 + w4 + 24u3 v + 60u2 v w + 36u v w2

+6 v w3 + 24u2 v2 + 36u v2 w + 12 v2 w2 + 8u v3 + 6 v3 w + v4
)

N5 =
1

12

(
u4 + 6u3 w + 12u2 w2 + 6uw3 + w4 + 2u3 v + 6u2 v w + 6u v w2 + 2 v w3

)

N6 =
1

12

(
2u v3 + v4

)

N7 =
1

12

(
u4 + 6u3 w + 12u2 w2 + 6uw3 + w4 + 8u3 v + 36u2 v w + 36u v w2

+8 v w3 + 24u2 v2 + 60u v2 w + 24 v2 w2 + 24u v3 + 24 v3 w + 6 v4
)
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N8 =
1

12

(
u4 + 8u3 w + 24u2 w2 + 24uw3 + 6w4 + 6u3 v + 36u2 v w + 60u v w2

+24 v w3 + 12u2 v2 + 36u v2 w + 24 v2 w2 + 6u v3 + 8 v3 w + v4
)

N9 =
1

12

(
2uw3 + w4

)

N10 =
1

12

(
2 v3 w + v4

)

N11 =
1

12

(
2uw3 + w4 + 6u v w2 + 6 v w3 + 6u v2 w + 12 v2 w2 + 2u v3 + 6 v3 w + v4

)

N12 =
1

12

(
w4 + 2 v w3

)
(A.168)

For the finite element method, the barycentric coordinates (v, w) are further renamed as local
curvilinear coordinates (ξ1, ξ2). This allows to state the shape function corresponding to the local
node I and evaluated at the referential coordinates (ξ1, ξ2) in a compact form as NI

(
ξ1, ξ2

)
.

Finally, this is the notation that makes the triangular patch suitable for the finite element method.

A.4.2 Quadrilateral subdivision finite element

In the case of a regular quadrilateral patch, as illustrated in Figure A.2, so-called tensor product
B-spline surfaces are the result of a proper subdivision process. When using the scheme of Catmull
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9
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10

13
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11

14

ξ1

ξ2

1

12

15 16

Figure A.2: The regular quadrilateral patch with the parametrised central quadrilateral finite
element and the sixteen defining nodes in their local numbering.

and Clark [13], the process of subdivision is based on quadrilaterals. According to Stam [48], the
parametrisation of the subdivision surface leads to a bi-cubic B-spline surface for the central quad.
Similar to the triangular patch, the central quad is now denoted as finite element. The bi-cubic
B-spline surface shape functions are constructed from cubic B-spline curves via tensor products.
In a first step, the corresponding cubic B-spline basis functions for a curve with four control nodes
are given by:

Ñ1 =
1

6

(
1− 3 ξ + 3 ξ2 − ξ3

)

Ñ2 =
1

6

(
4− 6 ξ2 + 3 ξ3

)

Ñ3 =
1

6

(
1 + 3 ξ + 3 ξ2 − 3 ξ3

)

Ñ4 =
1

6
ξ3 (A.169)
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This parametrisation is valid for the part of the curve between the two interior nodes 2 and 3
with 0 ≤ ξ ≤ 1. On the basis of this one dimensional description, the bi-cubic B-spline surface for
the central quad in Figure A.2 can be set up. In doing so, the two local curvilinear coordinates
(ξ1, ξ2) with the constraints 0 ≤ ξ1, ξ2 ≤ 1 are introduced so that the central 6-7-10-11 quad is not
trespassed. Now, in each of these directions, the above stated cubic B-spline basis functions are
employed. For the regular patch, this is possible because there are four nodes in each direction.
As a consequence, in total sixteen nodes define the quadrilateral finite element patch. For each of
these nodes, a related shape function is uniquely defined by the product of two appropriate one
dimensional cubic B-spline basis functions given in Equation (A.169). Performing this task, the
demanded sixteen shape functions, considering the numbering of the nodes given in Figure A.2,
are obtained as:

NJ+4(K−1) = ÑJ
(
ξ1
)
ÑK

(
ξ2
)

with J,K = 1, . . . , 4 (A.170)

The index J + 4 (K − 1) = 1, . . . , 16 runs over all nodes in the patch and is therefore directly
assignable to a local node indexation with I. With this notation, the expression NI

(
ξ1, ξ2

)

denotes the shape function corresponding to the local node I, which is evaluated at the referential
coordinates (ξ1, ξ2). The existence of this local parametrisation for the central quadrilateral enables
its possibility to serve as finite element.
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