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Abstract

Combinatorial geometry and graph theory are both areas in the field of
discrete mathematics. The study of combinatorial aspects of point sets
in the plane and graphs based on them is situated in the intersection of
these areas and also includes aspects of computational geometry and graph
drawing.

We study variations of the classical Erdős-Szekeres problems on convex
k-gons and k-holes. Relaxing the convexity condition, we show structural
results and bounds on the numbers of k-gons and k-holes. Most noteworthy,
for constant k and sufficiently large n, we give a quadratic lower bound for
the number of k-holes and show that this number is maximized by sets in
convex position. For bichromatic point sets, we show that every sufficiently
large such set contains a monochromatic 4-hole.

Continuing with investigations on bichromatic point sets, a famous prob-
lem is Zarankiewicz’s conjecture on the crossing number of the complete
bipartite graph. Studying rectilinear versions of this conjecture, we present
several interesting observations. The main question remains unsettled even
for these variations though. We also consider the existence of different kinds
of compatible colored matchings for given bichromatic graphs of certain
classes and present bounds on their cardinalities.

The study of Delaunay triangulations is a central topic in geometric
graph theory. We investigate the question of finding a set of additional points
W for a given set B with n points such that the Delaunay triangulation of
the joint set B ∪W does not contain any edge spanned by two points of
B. Improving the previously best known bounds, we show that |W | ≤ 3n/2
points are sufficient in general and |W | ≤ 5n/4 points suffice if B is a convex
set. We also present a lower bound of |W | ≥ n− 1.

Investigating pointed pseudo-triangulations, we study the existence of
compatible pointed pseudo-triangulations whose union is a maximal plane
graph. We present a construction for pairs of such pseudo-triangulations
for a given point set. A given pointed pseudo-triangulation in general does
not admit such a compatible pseudo-triangulation. Finally, we generalize
the pointedness property of pointed pseudo-triangulations to other types of
graphs. We consider (1) redrawing the edges of a given plane straight-line
graph such that all vertices become pointed; and (2) embedding a planar
graph such that every vertex has all its incident edges within a small an-
gle. We show that both tasks can be realized using Bézier-curves, biarcs or
polygonal chains of length two as edges.





Kurzfassung

Die Graphentheorie und die kombinatorische Geometrie sind Teilbereiche
der diskreten Mathematik. Die Untersuchung kombinatorischer Aspekte
von Punktmengen und Graphen darauf ist ein wesentlicher, gemeinsamer
Teil dieser beiden Forschungsgebiete und beinhaltet auch Aspekte der rech-
nerischen Geometrie sowie des Graphzeichnens.

Wir untersuchen Varianten des klassischen Erdős-Szekeres-Problems über
(leere) konvexe k-Ecke (Vielecke mit k Punkten) in Punktmengen, bei de-
nen die k-Ecke nicht notwendigerweise konvex sind. Es werden strukturelle
Eigenschaften sowie Schranken für die Anzahl von (leeren) k-Ecken gezeigt.
So wird bewiesen, daß für konstantes k und hinreichend großes n die Anzahl
leerer k-Ecke zumindest quadratisch in n ist und von konvexen Punktmengen
minimiert wird. Weiters wird gezeigt daß jede genügend große zweigefärbte
Punktmenge monochromate leere Vierecke enthält.

Eine weitere klassische Fragestellung auf zweigefärbten Punktmengen ist
die Zarankiewicz-Vermutung zur Kreuzungszahl des vollständigen bipartiten
Graphen. Bei der Betrachtung geradliniger Versionen dieser Vermutung
haben sich einige interessante Beobachtungen ergeben. Die Hauptfragestel-
lung blieb allerdings auch für diese Varianten ungelöst. Des weiteren wird
die Existenz verschiedener Arten von kompatiblen, gefärbten Paarungen
für gegebene bichromate Graphen bestimmter Klassen untersucht, wobei
Schranken für die Kardinalität solcher Paarungen präsentiert werden.

Delaunay-Triangulierungen sind ein wesentliches Thema in der Graphen-
theorie. Wir behandeln eine Fragestellung, bei der für eine gegebene Menge
B mit n Punkten eine zuätzliche Punktmenge W gesucht wird, sodaß die
Delaunay-Triangulierung der Vereinigungsmenge B ∪W keine Kante in B
enthält. Es werden die folgenden, verbesserten Schranken für die notwendige
Anzahl von Punkten in W gezeigt: |W | ≤ 3n/2 im allgemeinen, |W | ≤ 5n/4
für konvexe Mengen B, und |W | ≥ n− 1.

Weiters wird die Existenz von kompatiblen minimalen Pseudotriangu-
lierungen untersucht, deren Vereinigung eine Triangulierung ergibt. Es wird
ein Algorithmus zur Erzeugung von Paaren solcher Pseudotriangulierungen
für eine gegebene Punktmenge präsentiert. Das letzte betrachtete Thema
ist eine Verallgemeinerung des Konzepts der spitzen Winkel in minimalen
Pseudotriangulierungen auf planare Graphen, mit folgenden Aufgabestellun-
gen: (1) Neuzeichnen der Kanten eines ebenen Graphen, sodaß alle Knoten
zu einem spitzen Winkel inzident sind; und (2) Zeichnen eines planaren
Graphen, sodaß die inzidenten Kanten jedes Knotens innerhalb eines sehr
kleinen Winkels liegen. Es wird gezeigt, daß beide Aufgabenstellungen
gelöst werden können, indem man Bézierkurven, Doppelkreisbögen oder
Polygonzüge der Länge zwei als Kanten verwendet.
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Chapter 1

Introduction

The area of Combinatorial Geometry is a field of discrete mathematics which
studies questions on combinatorial properties and relations of discrete geo-
metric objects. While the roots of combinatorial geometry are rather old,
dating back at least to the time of classical mathematicians like Euler and
Kepler, many advances have been made in young history, initiated for exam-
ple by Minkowski, Fejes Toth, Rogers, and Erdős. Nowadays the field has
become a recognized successful research discipline with close relations to
computational geometry, and with many applications. A central structure
in combinatorial geometry are finite sets of points in the plane. Even for this
simple class there are many interesting and challenging research problems.

One example is the famous problem of Paul Erdős on empty convex
k-gons [76]: “Is it true that for any k there is a smallest integer h(k) such that
any set of at least h(k) points contains at least one empty convex k-gon?”
The according problem for convex k-gons (which need not be empty) was
raised by Esther Klein in the 1930’s. As the positive solution of this problem
by George Szekeres and Paul Erdős is said to have advanced the marriage
between Szekeres and Klein, it became famous as the “Happy End Prob-
lem” [98]. While the existence question for convex k-gons is solved since
then, the exact number g(k) of points that are needed to guarantee the
existence of a convex k-gon is still unknown.

Erdős’ empty convex k-gon question turned out to be less happy. While
Klein and Harborth answered it in the affirmative for k ≤ 5, showing
that h(4) = 5 and h(5) = 10, respectively, some years later Horton proved
that there exist arbitrarily large point sets not containing any empty con-
vex 7-gon. It took almost a quarter of a century after Horton’s construc-
tion to solve the existence question for empty convex 6-gons: In 2007/08,
Nicolás [118] and independently Gerken [89] finally proved that h(6) is finite.

1



CHAPTER 1. INTRODUCTION

As an example of empty k-gons in point sets, Figure 1.1 illustrates an empty
convex 5-gon and an empty convex 6-gon in this set of 22 points.

Figure 1.1: A pentahole (empty convex pentagon) and a hexahole in a point
set.

Since the initial problem proposal by Klein, many variations have been
arising which are generally known as Erdős-Szekeres type questions. The
maybe first one was determining the number of k-gons and has already
been considered in the 1970’s by Erdős and Guy [78]. Other examples that
came up later are generalizations to higher dimensions [41, 109] or to not
necessarily convex k-gons [16, 31, 15], and the search for monochromatic
empty k-gons in colored point sets [66, 124, 27].

An area that is strongly related to discrete and combinatorial geometry
is Graph Theory, which studies the properties of graphs and their relations.
The origins of this field date back to the 18th century and started with
a problem known as the “Seven Bridges of Königsberg”. Euler’s negative
solution, showing that it is not possible to make a closed walk through
Königsberg such that each of the seven bridges is used exactly once, is com-
monly seen as the foundation of graph theory. Solutions of graph-theoretic
problems are often based on algorithms, and sometimes also on the extensive
use of computers. On the other hand, graphs turned out to be a great means
for modeling algorithmic problems, yielding the fact that by now graph the-
ory plays an important role in computer science, especially in complexity
theory. For an abstract graph, neither the position of the vertices, nor the
shape of the edges are relevant. Determining these two properties, we obtain
a drawing of the graph.

A classical problem in graph theory is how to draw a graph such that the
number of crossings between its edges is minimized. This question originated
from Paul Turán’s “Brick Factory Problem”, where he asked for the crossing
number of the complete bipartite graph Kn,m. The according question for
the complete graph Kn was posed later and independently by Anthony Hill.
He published a construction where the vertices are arranged on two concen-

2



tric circles and connected as illustrated in Figure 1.2. Hill’s conjecture that
these drawings reach the crossing number of Kn is by now known to be true
for small values of n, but still open in general.

Figure 1.2: Hill’s construction for drawings of Kn.

The according conjecture for Kn,m by Zarankiewicz is older than the
one for Kn and widely known as Zarankiewicz’s conjecture. Like Hill’s con-
jecture, it is still open (by now since more than 60 years), but has been
confirmed for small values of n and m. Figure 1.3 illustrates the principle
of Zarankiewicz’s drawings of Kn,m which attain the conjectured minimum
number of crossings (due to the small number of points, the drawing shown
in the figure is in fact known to be optimal).

Figure 1.3: Zarankiewicz’s construction for drawings of Kn,m.

3



CHAPTER 1. INTRODUCTION

There exist many variants of Turán’s problem which consider other
classes of graphs, drawings on different surfaces, or special kinds of draw-
ings; see for example [46, 125]. Let us mention the rather popular research
on the rectilinear crossing number (of some type of graph). There, the edges
are straight-line segments and thus the number of crossings is determined
solely by the placement of the points. This setting is also strongly related
to the before-mentioned Erdős-Szekeres type questions.

Note that while Zarankiewicz’s conjecture being true would imply that
optimal drawings of Kn,m can be rectilinear, minimizing the number of cross-
ings of Kn is known to be in general not possible with straight-line drawings.

The questions considered in this thesis are situated in the intersection of
the areas of combinatorial geometry and graph theory. The above-mentioned
Erdős-Szekeres type questions and crossing number problems are among the
“royal members” of questions in this area, and form the central topic of this
work.

Meanwhile there exist a numerous amount of textbooks in the fields of
combinatorial and computational geometry and graph theory. As some ref-
erences for graph theory, let us mention the books by Biggs [49], Diestel [67],
and Gross and Yellen [91]. Literature on computational and combinatorial
geomerty are for example the text books by Goodman and O’Rourke [90],
Pach and Agarwal [123], and de Berg et al. [58]. Classical references in this
field are the books by Edelsbrunner [72] and Preparata and Shamos [129],
and a very recent one is by Devadoss and O’Rourke [65]. We also mention
the book on research problems by Brass et al. [53].
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1.1. OUTLINE OF THE THESIS

1.1 Outline of the thesis

In this work, we consider several questions within the area of combinatorial
geometry and graph theory which we have investigated during the last years.
Here we give a short overview of the considered questions and results, and
of how they are organized in the following chapters.

In Chapter 2, we consider variations of the classical Erdős-Szekeres prob-
lems on the existence and number of convex k-gons and k-holes (empty
k-gons) in a set of n points in the plane in general position. Allowing also
non-convex k-gons and k-holes, we show bounds and structural results on
maximizing and minimizing their numbers. Most noteworthy, for constant
k and sufficiently large n, we give a quadratic lower bound for the number of
k-holes, and show that this number is maximized by sets in convex position.
We also provide improved lower bounds for the numbers of convex 5-holes
and 6-holes.

In Chapter 3, we continue with Erdős-Szekeres type questions on col-
ored point sets. In Section 3.1 we answer a question first posed by Hur-
tado [102] and Pach [122] to the positive, by showing that every sufficiently
large bichromatic point set contains a monochromatic 4-hole.

Another classical question on bichromatic point sets is the beforemen-
tioned Zarankiewicz Conjecture about the crossing number of the complete
bipartite graph, a question that is open since at least 1954. Section 3.2 deals
with weaker versions of this conjecture where we (1) restrict the setting to
straight-line drawings and (2) require linear separability of the red and blue
point set. Although we present several interesting observations, the main
question remains unsettled even in these restricted cases.

Switching from complete graphs to the other end of the range, we con-
sider compatible crossing-free geometric graphs on bichromatic point sets.
Two plane graphs on top of the same point set S are called compatible, if
their union is again a plane graph. In Section 3.3, we investigate the question
of finding colored compatible matchings (of several types) for given bichro-
matic graphs. For the classes of spanning trees, spanning cycles, spanning
paths, and perfect matchings we show bounds on the numbers of edges that
can always be obtained by such compatible matchings.

Chapter 4 continues with graphs on top of bichromatic point sets, but in
a different setting which was introduced by Aronov et al. [38]. Given a set
of black points B, |B| = n, our goal in Section 4.1 is to choose a set of white
points W , such that the Delaunay triangulation of the joint set B ∪W does
not contain any black-black edge. We show the following improvements.
|W | ≤ 3n/2 points are always sufficient to block all edges of B. Moreover, if

5



CHAPTER 1. INTRODUCTION

B is convex, then |W | ≤ 5n/4 white points always suffice. We also present
a lower bound of |W | ≥ n− 1.

In Section 4.2, we switch from triangulations to pointed pseudo-triangu-
lations, and to compatibility in the classical sense. Given a pointed pseudo-
triangulation PT , we want to find another pointed pseudo-triangulation PT ′

that is compatible to PT and at the same time as different from PT as pos-
sible, meaning that PT ∪ PT ′ form a maximal plane graph. We show that
this is in general not possible by providing a construction for arbitrarily
large point sets S and pointed pseudo-triangulations PT (S) such that any
pointed pseudo-triangulation PT ′(S) 6= PT (S) is incompatible with PT (S).
On the other hand, for any given set S, we construct pairs of pointed pseudo-
triangulations PT1(S), PT2(S) whose union is a triangulation of S.

In Chapter 5 we generalize the pointedness property of pointed pseudo-
triangulations to other types of graphs. Finding straight-line graphs of cer-
tain types for a given point set S where every point has an incident angle
of at least some value α (independent of S) has been considered in [23].
Relaxing the straight-line condition for the edges and instead allowing sim-
ple curves as edges, we consider (1) redrawing a given plane straight-line
graph such that the vertex positions remain the same and all vertices be-
come pointed; and (2) embedding a given plane straight-line graph such that
for every vertex v, all edges emanate from v in the (nearly) same direction.
We show among others that both questions can be answered to the positive
when using Bézier-curves, biarcs or polygonal chains of length two as edges.

Parts of this thesis have already been presented at conferences [16, 31,
15, 26, 18, 30, 34] and are or will be published in journals [27, 35, 19, 17, 32].
These publications are marked bold in the publication list of the curriculum
vitae (page 191)

Research meetings and financial support

Research on the topic of Chapter 2 was initiated during the Third Workshop
on Discrete Geometry and its Applications in Morelia (Michoacán, Mexico),
August 2010.

Research for Section 3.1 was mainly carried out during the visit of
C. Huemer and F. Hurtado in Graz (Austria) for the defense of C. Hue-
mer, March 2008.

Research on the topic of Section 3.2 was partly carried out during a
research week in Graz (Austria) in October 2007 and two research weeks in
Alcalá de Hernares (Spain) in July 2008 and June 2009.
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1.1. OUTLINE OF THE THESIS

Research on Section 3.3 was initiated by F. Hurtado during the i-Math
Winter School: DocCourse on Discrete and Computational Geometry in
Bellaterra (Barcelona, Spain).

Research on the topic of Section 4.1 commenced during a visit of R. Fa-
bila in Graz (Austria), March 2010.

Research for Section 4.2 was started during the Fifth European Pseudo-
Triangulation Research Week in Ratsch (Austria), October 2008.

Research on the topic of Chapter 5 was initiated during the Fourth Eu-
ropean Pseudo-Triangulation Week in Eindhoven (the Netherlands), 2007.

In addition, there have been further research weeks and research stays
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to thank all the organizers for their hospitality, and all the participants for
the good atmosphere and fruitful discussions.

Research for this thesis has been supported by the Austrian Science Fund
(FWF): S9205-N12, National Research Network ’Industrial Geometry’.
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CHAPTER 1. INTRODUCTION

1.2 Definitions and notations

The following paragraphs contain basic definitions which are used through-
out this thesis. We mostly follow the notation of the textbooks [65] and [129].

Point sets, k-gons, and k-holes

Let S be a set of n (labeled) points in the Euclidean plane. We say that S
is in general position if no three points of S lie on a common line.

The convex hull of a point set S is the intersection of all convex subsets
of the Euclidean plane which contain S. We denote the convex hull of S
with CH(S), with h the number of extreme points of S, that is, the points
of S that are on the boundary of CH(S), and with i = n − h the number
of non-extreme (interior) points of S. We say that a point of S is on the
convex hull of S if it is on the boundary of CH(S).

If all points of S lie on the convex hull of S then we say that S is a
convex set (or, equivalently, that the points of S are in convex position).

A polygon is a closed and connected subset of the Euclidean plane, whose
boundary consists of a finite set of straight-line segments forming a closed
curve; see Figure 1.4. The end points of these segments are called the vertices
of the polygon, and the segments themselves are called edges. The edges are
assumed to be maximal, in the sense that no two consecutive edges along
the boundary of the polygon span an angle of π. Polygons can be seen as
one of the most important non-trivial class of elements for computational
geometry in the plane; see for example Chapter 1 in [65].

(a) (b) (c) (d)

Figure 1.4: (a) a simple polygon; (b) a non-simple polygon; (c) not a poly-
gon; (d) a convex polygon.

A polygon is called simple, if its boundary is non–self-intersecting. The
boundary of a simple polygon partitions the Euclidean plane into the (finite)

8
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interior and the (infinite) exterior of the polygon. A simple polygon with
k vertices is also called k-gon.

A vertex of a k-gon is called convex , if the angle between its two incident
edges that lies in the interior of the k-gon is smaller than π. If this angle
is larger than π, the vertex is called reflex . By definition, an interior angle
of exactly π does not occur. A k-gon is called convex if all its vertices are
convex (and non-convex otherwise). Last but not least, a k-gon which has
exactly three convex vertices (and arbitrary many reflex vertices) is called
a pseudo-triangle; see Figure 1.5.

(a) (b) (c) (d)

Figure 1.5: Several different pseudo-triangles.

When a subset S′ of a point set S is the vertex set of a polygon P , we
say that S contains P or that P is spanned by S′. A k-gon that is spanned
by points of S and does not contain any points of S in its interior, is called
a k-hole (of S); see Figure 1.6. Questions about the existence and number
of k-gons and k-holes in point sets go back to Erdős [76, 78, 80] and have
been considered in many variations; see for example the survey [9].

Figure 1.6: A non-convex 15-gon, a non-convex 15-hole, and a convex 6-hole
in a point set.

Note that the convex hull CH(S) can also be seen as the (area-wise)
largest simple polygon spanned by points of S. Thus, the points of S on

9
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CH(S) are sometimes also referred to as vertices of CH(S), and the segments
between two consecutive vertices are also called edges of CH(S).

Straight-line graphs, compatibility, and crossing-numbers

A geometric graph or straight-line graph G(S) on top of a point set S is
an undirected graph whose vertex set is S and whose edges are straight-
line segments spanned by pairs of points of S. Note that, as S is in general
position, no point of S can lie in the interior of an edge of G(S). A geometric
graph G(S) is called plane or crossing-free if all its edges are non-crossing,
meaning that they do not share a point in the interior of an edge (but might
share a common endpoint).

Note that, with the exception of Chapter 5, all the graphs we will con-
sider in this thesis are straight-line graphs. Thus, for the sake of brevity, we
will sometimes omit the attribute ’straight-line’.

As already mentioned, two plane straight-line graphs G(S) and G′(S)
on top of (the same) point set S are compatible, if their union G(S)∪G′(S)
is again a plane graph; see for example [130, 131]. Accordingly, we call an
edge e ∈ (S × S) compatible (to G(S)) if G(S) ∪ e is again crossing-free.
For recent work on compatible graphs see e.g. [20, 105, 1] and references
therein. An overview of results with different types of graph compatibility
can be found in [100].

(a) (b)

Figure 1.7: Two compatible graphs with the same vertex set.

Let us come back to graphs with crossings. The rectilinear crossing
number of a straight-line graph G(S) is the number of crossings of G(S),
i.e., the number of pairs of edges in G(S) that cross. The rectilinear crossing
number of the point set S itself is denoted with cr(S) and is defined to be the
number of crossings in the complete graph with vertex set S. The minimum
of cr(S) over all point sets S with n points (in the Euclidean plane, in general

10
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position), also called the rectilinear crossing number of the complete graph
Kn, is denoted with cr(n). Similarly, the minimum over all point sets S
with n points (in the Euclidean plane, in general position) of cr(G(S)) can
be denoted with cr(G). Figure 1.8 shows two point sets which have the same
cardinality but different rectilinear crossing numbers. The left set reaches
the minimum cr(6) = 3, while the right set has the maximum of 15 crossings.
Recent results on the rectilinear crossing number can be found for example
in [2, 3, 4, 22, 54]; see also the survey [5] and the webpage [8].

(a) (b)

Figure 1.8: Point sets with the same number of points but different rectilin-
ear crossing numbers.

Several according definitions exist for graphs whose edges need not be
straight-line segments. In that case it has to be made clear whether a pair
of edges is allowed to cross more than once, and, if yes, if such multiple
crossings are all counted separately or just as one; see for example [125] for
results on the various kinds of crossing numbers, and [46] for a recent survey
on the roots of this topic.

Classes of plane straight-line graphs

A triangulation T (S) is a maximal plane straight-line graph with vertex
set S (maximal with respect to the number of edges). This is equivalent
to all interior faces of T (S) being triangles. Figure 1.9 shows an example
triangulation. Triangulations are one of the oldest and most important data
structures in theoretical and applied computational geometry as well as in
related fields, where they are also called meshes; see the textbooks [73, 115].

The face degree d(f) of a face f in a graph G(S) is the number of edges
in G(S) which are incident to f (i.e., on the boundary of f). Similarly, the
vertex degree d(v) of a vertex v ∈ S in a graph G(S) is the number of edges

11
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Figure 1.9: A triangulation.

in G(S) which are incident to v. A vertex without any incident edges is
called isolated

A plane straight-line graph G(S) induces a cyclic order of incident edges
around each vertex v ∈ S. We say that the angle α between two edges that
are incident to v and consecutive in this sorting is incident to v, and vice
versa. If v has vertex degree at most one, we define v to be incident to one
angle (with value 2π). By this, the sum of all incident angles of a vertex
equals 2π for every vertex. A vertex in G(S) is called pointed if it is incident
to an angle greater than π (a reflex angle). We say that a vertex is pointed
to a face of the graph G(S) if its large angle lies in this face. If all vertices
in G(S) are pointed, then G(S) is called pointed as well. A vertex without
an incident angle larger than π is called non-pointed .

A pointed pseudo-triangulation PT (S) is a maximal pointed plane graph,
meaning that PT (S) is a plane graph in which every vertex is pointed, and
that adding any edge to PT (S) either makes a vertex non-pointed or pro-
duces a crossing (or both). All interior faces of a pointed pseudo-triangu-
lation are pseudo-triangles; see again Figure 1.5 for pseudo-triangles and
Figure 1.10 for a pointed pseudo-triangulation.

Figure 1.10: A pointed pseudo-triangulation.

12
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A (general) pseudo-triangulation is a plane graph in which all interior
faces are pseudo-triangles, but not all vertices need to be pointed; see Fig-
ure 1.11. Note that, as triangles are part of the class of pseudo-triangles, tri-
angulations are also part of the class of pseudo-triangulations. With respect
to their number of edges, triangulations are maximal pseudo-triangulations,
while pointed pseudo-triangulations are minimal pseudo-triangulations. Al-
though being a relatively young structure, pseudo-triangulations already
have become an important geometric data structure with rich applications;
see for example [127, 128, 138], and the survey [132].

Figure 1.11: A (non-pointed) pseudo-triangulation with maximum face de-
gree four.

A (simple) path in a graph G(S) is a sequence of pairwise different ver-
tices v1 . . . vk such that G(S) contains all edges vivi+1, for 1 ≤ i < k. The
number of edges in a path is denoted as the lenght of the path. If G(S)
contains a path between u and v for any two vertices u, v ∈ S then G(S) is
called connected . A minimal connected graph T (S) is called spanning tree;
see Figure 1.12.

Figure 1.12: A spanning tree T (S).

In a spanning tree T (S), the vertices with vertex degree 1 are called the
leaves (of T (S)). A spanning tree with |S| = n vertices contains exactly
n−1 edges and has at least two leaves. If a spanning tree has exactly two
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leaves, then all other vertices are incident to exactly two edges, and the tree
is a spanning path. Figure 1.13 shows such a spanning path P (S).

Figure 1.13: A spanning path P (S).

A (simple) cycle in a graph G(S) is a sequence of pairwise different
vertices v1 . . . vk such that G(S) contains all edges vivi+1, for 1 ≤ i < k, as
well as the edge vkv1. If G(S) does not contain any cycle then it is called
cycle-free. In a cycle-free graph, there exists at most one path between any
two vertices u, v ∈ S. Spanning trees can also be seen as maximal cycle-free
graphs.

A connected graph C(S) which consists only of one cycle containing
all vertices of S os called a spanning cycle or a polygonization of S; see
Figure 1.14. In a spanning cycle C(S), every vertex has vertex degree 2.

Figure 1.14: A spanning cylce C(S).

A graph M(S) in which every vertex v ∈ S has vertex degree at most
one is called a matching . If every vertex hat exactly degree one, then the
matching is called perfect Note that a perfect matching PM(S) for a point
set S only exists if the number of points in S is even. Figure 1.15 shows
a perfect matching. The cardinality of a matching M(S) is the number of
edges in M(S). Perfect matchings are matchings of maximal cardinality.
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For sets with an odd number of points, a matching of maximal cardinality
leaves exactly one point of S unmatched.

Figure 1.15: A perfect matching PM(S).

Note that in general, spanning trees, spanning paths, spanning cycles,
and (perfect) matchings need not be plane or straight-line. As throughout
this thesis all considered such graphs are in fact plane straight-line graphs,
we will mostly omit the terms plane and straight-line for these classes of
graphs.

15





Chapter 2

On k-gons and k-holes

The first specific topic we consider in this thesis is a class of variations of
the classical Erdős-Szekeres problems on the existence and number of k-gons
and k-holes in sets of n points in the plane in general position.

Recall that a k-gon in a point set S is a simple polygon spanned by
k points of S, and that a k-hole is an empty k-gon; that is, a k-gon which
does not contain any points of S in its interior.

The classical problems deal exclusively with convex k-gons and k-holes.
There, the main question is to find the minimum number of k-gons / k-holes
any n-point set must contain. More precisely, for a given point set S, let
gk(S) and hk(S) be the number of convex k-gons and k-holes in S, respec-
tively. Then the minimum number of convex k-gons in any n-point set is

gk(n) = min
{S:|S|=n}

(gk(S)),

and the according minimum number of convex k-holes is

hk(n) = min
{S:|S|=n}

(hk(S)).

The other direction, namely the maximum number of convex k-gons or con-
vex k-holes an n-point set might contain, trivially is

(
n
k

)
, obtained by any

n-point set in convex position.

In the work presented in this chapter, we generalize the classical ques-
tions by also allowing non-convex k-gons and k-holes. In this context, we
distinguish between convex, non-convex, and general (convex or non-convex)
k-gons and k-holes.

For k-gons, there is a direct relation between the rectilinear crossing
number and all types of 4-gons. We show that such a relation also exists
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for non-convex 5-gons and present an approach to obtain bounds on the
numbers of the different types of k-gons for fixed k ≥ 5. Also, we show that
for fixed k and sufficiently large n, the number of general k-gons is Θ(nk)
and the number of non-convex k-gons is O(nk).

Switching topic-wise from k-gons to k-holes, and here first to the classical
type of k-holes, convex k-holes, we provide improved lower bounds for the
minimum numbers of convex 5-holes and 6-holes. As already mentioned
before, the question of maximizing is trivially solved by convex sets

For non-convex k-holes, we give asymptotic upper and lower bounds
on their maximum number. The minimum number of non-convex k-holes
trivially is zero, attained again by point sets in convex position.

Last but not least, for general k-holes, we show that for any fixed k
and sufficiently large n, their maximum number is as well achieved by sets
in convex position (where the bound on the minimum necessary set size is
tight for k = 4 and still quite good for k = 5). This fact is rather surprising.
It implies that for this setting, the additional possibilities obtained by the
relaxation from convex to general does not improve the result of the maxi-
mizing question. To the other extreme, we show that for sufficiently large k
(in dependence of n) there exist point sets having far more general k-holes
than convex ones. Also, we give a quadratic lower bound for the number
of general k-holes for any c < 1 and k ≤ c · n, and present a class of point
sets that do not admit more than O(n2(

√
n log n)k−3) general k-holes (for

constant k).

Most results of this chapter have been presented before [16, 31, 15], and
are invited for journal publication in special issues [17, 32].
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2.1 Introduction

In 1931 Esther Klein raised the following question which was (partially)
answered in the classical paper by Erdős and Szekeres [80] in 1935: “Is it true
that for any k there is a smallest integer g(k) such that any set of g(k) points
contains at least one convex k-gon?” In mathematical history, this question
is also known as “Happy End Problem”; see, e.g., [53, 98]. As observed by
Klein, g(4) = 5, and Kalbfleisch et al. [107] solved the more involved case of
g(5) = 9. The case k = 6 was only solved as recently as 2006 by Szekeres
and Peters [139], who showed that g(6) = 17 by an exhaustive computer
search. The well known Erdős–Szekeres Theorem [80] states that g(k) is
finite for any k. The current best bounds are 2k−2 + 1 ≤ g(k) ≤

(
2k−5
k−2

)
+ 1

for k ≥ 5, where the lower bound goes back to Erdős and Szekeres [81] and is
conjectured to be tight. There have been many improvements on the upper
bound, where the currently best bound has been obtained in 2005 by Tóth
and Valtr [140].

Some years later Erdős and Guy [78] proposed a generalization of Klein’s
question. “What is the least number of convex k-gons determined by any set
of n points in the plane?” The trivial solution for the case k = 3 is

(
n
3

)
. But

already for 4-gons this question is highly non-trivial, as it is related to the
search for the rectilinear crossing number [3]. In Section 2.3.1 we consider
this relation in more detail.

In 1978 Erdős [76] raised the following question for convex k-holes:
“What is the smallest integer h(k) such that any set of h(k) points in the
plane contains at least one convex k-hole?” As had been observed by Esther
Klein, every set of 5 points determines a convex 4-hole, and 10 points always
contain a convex 5-hole, a fact proved by Harborth [96]. However, in 1983
Horton showed that there exist arbitrarily large sets of points containing
no convex 7-hole [99]. It took almost a quarter of a century after Hor-
ton’s construction to answer the existence question for 6-holes. In 2007/08
Nicolás [118] and independently Gerken [89] proved that every sufficiently
large point set contains a convex 6-hole Valtr [145] gives a simpler version
of Gerken’s proof, but it requires more points. As for a lower bound, it is
known that at least 30 points are needed; that is, there exists a set of 29
points without empty convex hexagons [121].

Erdős also proposed the following variation of the problem [77]. “What
is the least number hk(n) of convex k-holes determined by any set of n points
in the plane?” We know by Horton’s construction that hk(n) = 0 for k ≥ 7.
Table 2.1 shows the current best lower and upper bounds for k = 3 . . . 6. All
upper bounds in the table are due to Bárány and Valtr [44].

Concerning the lower bounds, Dehnhardt [63] showed in his thesis that
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n2 − 5n− 1 +
⌊
n−4

6

⌋
≤ h3(n) ≤ 1.6196n2 + o(n2)

(
n−3

2

)
+ 6 ≤ h4(n) ≤ 1.9397n2 + o(n2)

3n
4 − o(n) ≤ h5(n) ≤ 1.0207n2 + o(n2)
⌊
n−1
858

⌋
− 2 ≤ h6(n) ≤ 0.2006n2 + o(n2)

Table 2.1: Bounds on the number hk(n) of convex k-holes.

for n ≥ 13, h3(n) ≥ n2 − 5n + 10, h4(n) ≥
(
n−3

2

)
+ 6, and h5(n) ≥ 3

⌊
n
12

⌋
.

As this thesis was published in German and is not easy to access, later on
several weaker bounds have been published. A result of independent interest
is by Pinchasi et al.[126], who showed h4(n) ≥ h3(n)− n2

2 −O(n). By this, an
improvement for the lower bound of h3(n) would also imply a better lower
bound for h4(n). Recently, Garćıa [86] showed a relation between 3-holes
and convex 5-holes, where for n ≥ 70 he also provided the currently best
known lower bound h3(n) ≥ n2 − 5n − 1 +

⌊
n−4

6

⌋
. For h4(n), the above

mentioned lower bound from Dehnhardt [63] is still the best known one.
Lower bounds of h5(n) and h6(n) can be found in Sections 2.5.1 and 2.6.4.
See also [9] for a survey on the history of questions and results about k-gons
and k-holes.

In the following sections, we generalize the above questions by allowing
k-gons and k-holes to be non-convex. Thus whenever we refer to a (general)
k-gon or k-hole, it might be convex or non-convex, and we will explicitly
state it when we restrict investigations to one of these two classes. We
remark that in some related literature, k-holes are assumed to be convex.

Note that for any k ≥ 3, a set of k points in convex position obviously
spans precisely one convex k-hole. In contrast, already a set of four points
might span up to three non-convex 4-holes; see Figure 2.1. In general, a
point set might admit exponentially many different polygonizations (span-
ning cycles) [70, 88, 136]. This implies that the number of k-gons and k-holes
can be larger than

(
n
k

)
, a fact which makes the considered questions more

challenging (and interesting) than they might appear on a first glance.

Figure 2.1: Three different (non-convex) 4-gons spanned by a set of four
points with three extremal points (fixed order type).
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Tables 2.2 and 2.3 summarize the currently best known known bounds
on the numbers of different types of k-gons and k-holes, including the results
obtained during the work for this thesis. Every cell in the table contains
lower and upper bounds, also in explicit form if available, thus indicating
for which values there are still gaps to close.

numbers of k-gons

convex non-convex general

min max min max

k=4
c̄r(n)

Θ(n4)

3
(
n
4

)
−3c̄r(n)

Θ(n4)

(
n
4

)
Θ(n4)

3
(
n
4

)
−2c̄r(n)

Θ(n4)

k=5 Θ(n5) [53]
10

(
n
5

)
−2(n−4)c̄r(n)

Θ(n5) [Sec. 2.3.1]

(
n
5

)
Θ(n5) [Sec. 2.3.1]

Θ(n5) [Sec. 2.3.1]

k≥6 Θ(nk) [53] Θ(nk) [Sec. 2.3.2]

(
n
k

)
Θ(nk) [Sec. 2.3.2]

Θ(nk) [Sec. 2.3.2]

Table 2.2: Asymptotic bounds on the minimum and maximum numbers of
convex, non-convex and general k-gons for sets of n points and constant k.

numbers of k-holes

convex non-convex general

min max min max

k=4

≥ n2

2
−O(n)

≤ 1.9397n2+o(n2)

Θ(n2) [44, 63]

≤ n3

2
−O(n2)

≥ n3

2
−O(n2 logn)

Θ(n3) [Sec. 2.4.2]

≥ 5
2
n2−O(n)

≤ n3

2
+O(n2)

Ω(n2) [Sec. 2.4.3]

O(n3) [Sec. 2.6.3]

(
n
4

)
Θ(n4)

[Sec. 2.4.1]

k=5

≥ 3
4
n− o(n)

≤ 1.0207n2+o(n2)

Ω(n) [Sec. 2.5.1]

O(n2) [44]

≤ n!/(n−4)!

Θ(n4) [Sec. 2.6.2]

≥ 17n2−O(n)

≤O(n
7
2 )

Ω(n2) [Sec. 2.5.2]

O(n
7
2 ) [Sec. 2.6.3]

(
n
5

)
Θ(n5)

[Sec. 2.5.3]

k≥6

k=6:≥ bn−1
858
c − 2

O(n2) [44]

Ω(n) [Sec. 2.6.4]

k≥7: ∅ [99]

≤ n!/(n−k+1)!

Θ(nk−1) [Sec. 2.6.2]

≥ n2−O(n)

≤O(n
k+2
2 )

Ω(n2) [Sec. 2.6.3]

O(n
k+2
2 ) [Sec. 2.6.3]

(
n
k

)
Θ(nk)

[Sec. 2.6.1]

Table 2.3: Asymptotic bounds on the minimum and maximum numbers of
convex, non-convex and general k-holes for sets of n points and constant k.
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In the following we first investigate sets of small cardinality (Section 2.2).
Then we present results on the numbers of the different types of k-gons (Sec-
tion 2.3), including relations between the rectilinear crossing number and
k-gons for (small) constant k. The remaining sections of this chapter are
dedicated to k-holes. Matching with the section sub-numbering, Section 2.4
deals with the smallest case of possibly non-convex k-holes, 4-holes. Accord-
ingly, in Section 2.5 we present results for 5-holes, and finally in Section 2.6
we present several results for the general case of k ≥ 6.
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2.2 Small sets

Even to determine the number of small holes is surprisingly intriguing. To
get a first intuition about the numbers of k-gons and k-holes, we consider
gons and holes of small size in point sets of small size. We start with the
smallest possibly non-convex case, namely k = 4.

2.2.1 4-gons and 4-holes

Table 2.4, which is partly taken from [9], shows the numbers of 4-gons and
4-holes, respectively, for n = 4, . . . , 11. The numbers were obtained by
checking all point sets of the according cardinalities from the order type
data base [33]. Given are the minimum number of convex 4-gons and 4-holes,
the maximum number of non-convex 4-gons and 4-holes, the minimum and
maximum number of (general) 4-gons and 4-holes, as well as the number of
4-tuples.

numbers of 4-gons numbers of 4-holes

convex non-convex general convex non-convex general
n

min max min max min max min max

(
n
5

)

4 0 3 1 3 0 3 1 3 1
5 1 12 5 13 1 8 5 9 5
6 3 36 15 39 3 18 15 22 15
7 9 78 35 87 6 36 35 43 35
8 19 153 70 172 10 64 66 77 70
9 36 270 126 306 15 100 102 126 126

10 62 444 210 506 23 150 147 210 210
11 102 684 330 786 32 216 203 330 330

Table 2.4: Numbers of 4-gons and 4-holes for n = 4, . . . , 11 points.

For counting convex 4-gons and 4-holes it is easy to see that their number
is maximized by sets in convex position and gives

(
n
4

)
. Of course these sets

do not contain any non-convex 4-gon or 4-hole. Also, also the minimum
number of general 4-gons is

(
n
4

)
, obtained by sets in convex position. The

reason for this is that a convex 4-tuple has exactly one polygonization, while
a non-convex 4-tuple has three.

As already mentioned, the minimum number of convex 4-gons is identical
to the rectilinear crossing number [3], a fact which immediately implies
bounds on the numbers of general and non-convex 4-gons. The relation
between the different kinds of 4-gons and the rectilinear crossing number is
also described in Section 2.3.1.
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n = 4 : 0/3/3 n = 5 : 1/8/9 n = 6 : 4/18/22

n = 7 : 7/36/43 n = 8 : 20/57/77

Figure 2.2: Point sets maximizing the number of 4-holes for n = 4, . . . , 8.
Shown are the number of convex, non-convex, and general 4-holes. With
the exception of n = 7 all sets have a unique order type.

For minimizing the number of convex 4-holes, the currently best known
bounds are n2

2 −O(n) ≤ h4(n) ≤ 1.9397n2 + o(n2); see [44, 63]. For n =
4, . . . , 7 it can be seen from Table 2.4 that the minimum number of 4-holes
is
(
n
4

)
. In contrast,

(
n
4

)
is the maximum number of 4-holes for n = 9, . . . , 11,

so the structure of extremal sets seems to switch.

Figure 2.2 shows point sets maximizing the number of 4-holes for n =
4, . . . , 8. The results for n > 8 suggest that sets in convex position might
maximize the number of 4-holes for n ≥ 9. Indeed, this will be the first
result we prove for general 4-holes (Section 2.4.1).

(a) (b)

Figure 2.3: Two unique extremal sets for n = 11 points: (a) maximizes the
number of non-convex 4-holes, and (b) minimizes the number of 4-holes.

Figure 2.3 shows two extremal sets for n = 11 points. Each set repre-
sents the unique order type which reaches the extreme value. The left set
maximizes the number of non-convex 4-holes, namely 216, and consists of a
convex 5-hole inside a convex 6-gon. The total number of 4-holes in this set
is 267; i.e., it contains in addition 51 convex 4-holes. The set on the right
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side minimizes the number of general 4-holes. It contains 51 convex and 152
non-convex 4-holes, thus in total the minimum of 203 4-holes.

2.2.2 5-gons and 5-holes

To get some more impressions, we continue with k = 5. For n ≤ 11, Table 2.5
shows the minimum and maximum numbers of convex, non-convex, and
general 5-gons and 5-holes, and, for comparison, the number of 5-tuples.
Again, the results were obtained using the order type data base [33].

numbers of 5-gons numbers of 5-holes

convex non-convex general convex non-convex general
n

min max min max min max min max

(
n
5

)

5 0 8 1 8 0 8 1 8 1
6 0 48 6 48 0 31 6 31 6
7 0 156 21 157 0 76 21 77 21
8 0 408 56 410 0 157 56 160 56
9 1 900 126 909 0 288 126 292 126

10 2 1776 252 1790 1 492 252 501 252
11 7 3192 462 3228 2 779 462 802 462

Table 2.5: Numbers of 5-gons and 5-holes for n = 5, . . . , 11 points.

As already mentioned in the last section, both the maximum numbers
of convex 5-gons and 5-holes are

(
n
5

)
, obtained by sets in convex position.

Likewise, the minimum numbers of non-convex 5-gons and 5-holes are zero.

From Table 2.5 we also see that the minimum numbers of general both
5-gons and 5-holes is

(
n
5

)
for 5 ≤ n ≤ 11. For 5-gons this is true for any

number of points: Recall that a convex 5-tuple has exactly one polygoniza-
tion, while a non-convex 5-tuple has at least four; see Figures 2.4 and 2.5.
For 5-holes this is not the case. In fact, we will show that for sufficiently
large n, the convex set maximizes the number of 5-holes; see Theorem 2.18
in Section 2.5.3.
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Figure 2.4: The eight different (non-convex) 5-gons spanned by a set of five
points with three extremal points (fixed order type).

Figure 2.5: The four different (non-convex) 5-gons spanned by a set of five
points with four extremal points (fixed order type).

2.3 k-gons

2.3.1 k-gons and the rectilinear crossing number

The rectilinear crossing number cr(S) of a set S of n points in the plane is
the number of proper intersections in the drawing of the complete straight-
line graph on S; see for example [125]. It is easy to see that the number of
convex 4-gons is equal to cr(S) and is thus minimized by sets minimizing
the rectilinear crossing number, a well known, difficult problem in discrete
geometry; see [53] and [78] for details. Tight values for the minimum num-
ber of convex 4-gons are known for n ≤ 27 points; see for example [8].
Asymptotically we have at least c4

(
n
4

)
= Θ(n4) convex 4-gons, where c4 is a

constant in the range 0.379972 ≤ c4 ≤ 0.380488. The currently best bounds
on c4 are by Ábrego, Fernández-Merchant, and Salazar [3]. As any 4 points
in non-convex position span three non-convex 4-gons, altogether we get

• cr(S) convex 4-gons,

• 3
(
n
4

)
−3 cr(S) non-convex 4-gons, and

• 3
(
n
4

)
−2 cr(S) general 4-gons for a set S.
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Thus, sets which minimize the rectilinear crossing number also minimize
the number of convex 4-gons, and maximize both the number of non-convex
4-gons and the number of general 4-gons, and thus we obtain the following
tight bounds:

• cr(n) ≈ 0.38
(
n
4

)
for the minimum number of convex 4-gons,

• 3
(
n
4

)
−3 cr(n) ≈ 1.86

(
n
4

)
for the maximum number of non-convex 4-gons,

and

• 3
(
n
4

)
−2 cr(n) ≈ 2.24

(
n
4

)
for the maximum number of general 4-gons for

a set S.

Surprisingly, a similar relation can be obtained for the number of non-
convex 5-gons. To see this, consider the three combinatorial different pos-
sibilities (order types) of arranging 5 points in the plane, as depicted in
Figure 2.6.

8/1 4/3 1/5

Figure 2.6: The three order types for n = 5. For each set its number
of different 5-gons and the number of crossings for the complete graph is
shown.

Theorem 2.1. Let S be a set of n ≥ 5 points in the plane in general position.
Then S contains 10

(
n
5

)
− 2(n− 4) cr(S) non-convex 5-gons.

Proof. We denote with o3(S), o4(S), and o5(S) the number of 5-tuples of
points with 3, 4, and 5, respectively, points on their convex hull. Summing
over all such sets we get o3(S) + o4(S) + o5(S) =

(
n
5

)
.

Note that every four points spanning a crossing pair of edges in S show
up in (n− 4) 5-tuples of points in S. Using the number of crossings for each
order type from Figure 2.6 we get

cr(S) =
o3(S) + 3o4(S) + 5o5(S)

n− 4
.

Considering the numbers of different 5-gons given in Figure 2.6, we see
that the total number of non-convex 5-gons in S is 8o3(S) + 4o4(S). Using
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S2 : 0/8S1 : 1/8

Figure 2.7: Two point sets for n = 6, both with crossing number eight. One
contains a convex 5-gon, the other one does not.

these three equations, it is straight forward to obtain by standard manipu-
lation the following relation for the number of non-convex 5-gons in S:

8o3(S) + 4o4(S) = 10

(
n

5

)
− 2(n− 4) cr(S).

Taking the constant c4 for the rectilinear crossing number into account,
we see that asymptotically we can have up to

10

(
n

5

)
− 2(n− 4)c4

(
n

4

)
= 10(1− c4)

(
n

5

)
≈ 6.20

(
n

5

)

non-convex 5-gons. This number is obtained for point sets minimizing the
rectilinear crossing number and it is by a factor of approximately 6.20 larger
than the maximum number of convex 5-gons.

For the number of convex 5-gons, no direct relation to the rectilinear
crossing number is possible: There exist two different sets (order types) S1

and S2, both of cardinality 6 with 4 extremal points, with cr(S1) = cr(S2) =
8, where S1 contains one convex 5-gon, while S2 does not contain any convex
5-gon; see Figure 2.7.

Similarly, for k ≥ 6, none of the three types of k-gons (convex, non-
convex, and general) in a point set S can be expressed as a function of
cr(S). Still, we can use the rectilinear crossing number for obtaining bounds
on these numbers. In the following let gtk(S) be the number of k-gons of type
t (convex, non-convex, or general) in a point set S.

Proposition 2.2. Let k ≥ 4, and c1, c2, and x arbitrary constants, and
assume that Inequation (2.1) holds for all sets S with cardinality |S| = k.

c1 ≤ gtk(S) + x · cr(S) ≤ c2 (2.1)
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Then for every point set S with |S| ≥ k, the following bounds hold for the
number gtk(S) of k-gons of type t in S.

gtk(S) ≥ c1 ·
(
n

k

)
− x ·

(
n− 4

k − 4

)
· cr(S) (2.2)

gtk(S) ≤ c2 ·
(
n

k

)
− x ·

(
n− 4

k − 4

)
· cr(S) (2.3)

Proof. Given some point set S with n points, consider all its
(
n
k

)
subsets of

size k {Si ⊆ S : |Si| = k}. Then we have the following equations.

∑

i

cr(Si) =

(
n− 4

k − 4

)
· cr(S) (2.4)

∑

i

gtk(Si) = gtk(S) (2.5)

Using the first inequation in (2.1), Equation (2.5) can be transformed to the
lower bound

gtk(S) =
∑

i

gtk(Si)

≥
∑

i

(c1 − x · cr(Si))

= c1 ·
(
n

k

)
− x ·

∑

i

cr(Si)

which by applying (2.4) in turn gives the desired bound (2.2) Analogously,
we obtain (2.3) if we combine the second inequation in (2.1) with Equa-
tions (2.4) and (2.5).

If in Inequation (2.2) from the above proposition x is negative, then
the rectilinear crossing number of cr(S) adds to the lower bound. Thus
we can replace it by the minimum over all point sets of size n, cr(n), by
this obtaining a lower bound that is independent of S. Accordingly, if x is
positive, we can generalize the Inequation (2.3) to a general upper bound.

Corollary 2.3. Assume that for some constants x ≤ 0 and c1 arbitrary, the
following inequation is fulfilled for all point sets S with cardinality |S| = k.

c1 ≤ gtk(S) + x1 · cr(S)

Then for every point set S with |S| ≥ k the following lower bound holds for
the number gtk(S) of k-gons of type t in S.

gtk(S) ≥ c1 ·
(
n

k

)
− x ·

(
n− 4

k − 4

)
· c4

(
n

4

)
=

(
c1 − x · c4 ·

(
k

4

))(
n

k

)
(2.6)
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Accordingly, assume that for some constants x ≥ 0 and c2 arbitrary, the
following inequation is fulfilled for all point sets S with cardinality |S| = k.

c2 ≥ gtk(S) + x1 · cr(S)

Then for every point set S with |S| ≥ k, the following bound applies to the
number gtk(S) of k-gons of type t in S.

gtk(S) ≤
(
c2 − x · c4 ·

(
k

4

))(
n

k

)
(2.7)

In each of the bounds resulting from Proposition 2.2, either c1 or c2 is
not needed. So of course, for independent optimization of the two bounds,
it might be helpful to consider the pairs (c1, x), and (c2, x) independently,
with possibly different optimal values for x. On the other hand, optimizing
all three values c1, c2 and c3 simultaneously results in bounds that are more
easy to compare.

In the following we optimize in two different ways. On the one hand we
try to minimize the difference between c1 and c2 to obtain most possibly
small ranges for the number of (some type of) k-gons in sets with a certain
crossing number. On the other hand we independently optimize (c1, x) and
(c2, x) in order to obtain general bounds (meaning bounds that are indepen-
dent from the crossing number of a given set) by applying Corollary 2.3.

Note that concerning the general bounds, lower bounds only make sense
for the classical question about convex k-gons, as the numbers of general
and non-convex k-gons are minimized by sets in convex position. Similarly,
general upper bounds for non-convex or (general) k-gons are of interest while
the maximum number of convex k-gons is

(
n
k

)
, again obtained by convex sets.

Recall that the number of k-gons (of whatever type) in a point set S only
depends on the combinatorial properties and thus on the order type OT (S)
of the underlying point set S. Thus, we calculate pairs (gtk(OT ), cr(OT ))
for all possible order types OT of k points, by this obtaining all possible
pairs (gtk(S), cr(S)) that can occur for any point set S with |S| = k. For the
calculation, we use the order type database [33], that contains a complete
list of the order types of up to 11 points. Having this, we can optimize the
values c1, c2, and x that fulfill (2.1), obtaining the according relations (2.2)
and (2.3).

As a first application of this, consider again k = 4. The two different
order types together with their numbers of crossings and 4-gons are shown
in Table 2.6. Following the lines of Proposition 2.2, we obtain the before-
mentioned tight relations for convex 4-gons with c1 = c2 = 0 and x = −1.
For non-convex 4-gons we get c1 = c2 = x = 3, and for general 4-gons
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order type cr convex 4-gons non-convex 4-gons general 4-gons

0 0 3 3

1 1 0 1

Table 2.6: Numbers of 4-gons and crossings for n = 4.

c1 = c2 = 3 and x = 2.

For k = 5, Table 2.7 shows the three different order types together with
their numbers of crossings and 5-gons. As already mentioned before, we
obtain an exact relation for the number of non-convex 5-gons with x = 2
and c1 = c2 = 10.

order type cr convex 5-gons non-convex 5-gons general 5-gons

1 0 8 8

3 0 4 4

5 1 0 1

Table 2.7: Numbers of 5-gons and crossings for n = 5.

For general 5-gons, the optimal difference of c2 and c1 is reached at
x = 1.75, resulting in

ggen5 (S) ≥ 9.25 ·
(
n

5

)
− 1.75 · (n− 4) · cr(S)

ggen5 (S) ≤ 9.75 ·
(
n

5

)
− 1.75 · (n− 4) · cr(S).

Independently optimizing just the second part of Inequation (2.1) gives the
same results. Thus, applying Corollary 2.3, we obtain a general upper bound
of (9.75 − 8.75 · c4)

(
n
5

)
≈ 6.43

(
n
5

)
for the (maximum) number of general 5-

gons in any n-point set. Note that by just assuming assuming the theoretic
possible maximum of eight 5-gons for each 5-tuple, we would only obtain an
upper bound of 8

(
n
5

)
.
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For convex 5-gons, the optimal difference of c2 and c1 is reached at
x = −0.25, resulting in

gconv5 (S) ≥ −0.75 ·
(
n

5

)
+ 0.25 · (n− 4) · cr(S)

gconv5 (S) ≤ −0.25 ·
(
n

5

)
+ 0.25 · (n− 4) · cr(S).

Optimization in order to obtain a general lower bound fails, only producing
a the trivial lower bound of zero.

Similarly, for convex 6-gons, only obtain results for optimizing the dif-
ference between c2 and c1, obtaining

gconv6 (S) ≥ −
(
n

6

)
+ 0.0416̇ · (n− 4)(n− 5) · cr(S)

gconv6 (S) ≤ −0.25 ·
(
n

6

)
+ 0.0416̇ · (n− 4)(n− 5) · cr(S).

For general 6-gons, the minimal difference between c2 and c1 is reached
at x = 21

3 , resulting in

ggen6 (S) ≥ 28
1

3
·
(
n

6

)
− 1

1

6
· (n− 4)(n− 5) · cr(S)

ggen6 (S) ≤ 36 ·
(
n

6

)
− 1

1

6
· (n− 4)(n− 5) · cr(S).

Again, independently optimizing only parameters c2 and x yields the same
values, and applying Corollary 2.3, we can transform the second inequation
to an upper bound of (36−35 · c4)

(
n
6

)
≈ 22.7

(
n
6

)
for the (maximum) number

of general 6-gons in any n-point set. A 6-tuple might span up to 29 general
6-gons, a value that is obtained by one of the sets with minimum crossing
number cr(6) = 3. Thus, the obtained bound again improves over the trivial
bound of 29

(
n
6

)
induced by this extreme case.

The optimal difference between c1 and c2 for non-convex 6-gons is reached
at x = 24

9 , resulting in

gnon−conv6 (S) ≥ 29
4

9
·
(
n

6

)
− 1

2

9
· (n− 4)(n− 5) · cr(S)

gnon−conv6 (S) ≤ 36
6

9
·
(
n

6

)
− 1

2

9
· (n− 4)(n− 5) · cr(S).

In this case, independent optimization for an upper bound produces different
results, namely the same bound as for general 6-gons.
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As one last example we consider the case k = 7. For convex 7-gons,
optimizing the difference between c1 and c2 gives

gconv7 (S) ≥ −1.1923076 ·
(
n

7

)
+ 0.00641025 · (n− 4)(n− 5)(n− 6) · cr(S)

gconv7 (S) ≤ −0.3461538 ·
(
n

7

)
+ 0.00641025 · (n− 4)(n− 5)(n− 6) · cr(S).

Concerning general 7-gons, for both, the difference between c1 and c2,
and the upper general bound for ggen7 (S), the optimum is reached at x = 3.5,
resulting in

ggen7 (S) ≥ 85.5 ·
(
n

7

)
− 7

12
· (n− 4)(n− 5)(n− 6) · cr(S)

ggen7 (S) ≤ 123.5 ·
(
n

7

)
− 7

12
· (n− 4)(n− 5)(n− 6) · cr(S).

and the general upper bound of (123.5 − 3.5 · 35 · c4)
(
n
7

)
≈ 76.95

(
n
7

)
. The

maximum number of 7-gons a 7-tuple can have is 92, again obtained by a
point set with minimum crossing number.

Considering non-convex 7-gons, the optimization yields again better
bounds than for general 7-gons. With x = 3.538461, c1 = 86.230769, and
c2 = 123.846153 we obtain a smaller difference between c1 and c2, and also
a better general upper bound of (123.846153 − x = 3.538461 · 35 · c4)

(
n
7

)
≈

75.64
(
n
7

)
.

From the above calculations it can be seen that for all sets of size k ≤ 7,
the point sets reaching the maximum number of general or non-convex k-
gons are at the same time minimizing the number of crossings. The same
is true for n = 8. But continuing the calculations until k = 9, it turned
out that this is not true in general. The (combinatorially unique) point set
containing the maximum number of 1282 general 9-gons has 38 crossings
and thus does not reach the minimum crossing number cr(9) = 36.

2.3.2 k-gons, polygonizations, and the double chain

Related to the topic of non-convex k-gons in a set S of n points is the number
of planar polygonizations, also called spanning cycles. Spanning cycles can
be considered as k-gons of maximal size (i.e., k = n). Garćıa et al. [88] con-
struct a point set with Ω(4.64n) spanning cycles, the so-called double chain
DC(n), which is currently the best known example; see Figure 2.8. The
upper bound on the number of spanning cycles of any n-point set was im-
proved several times during the last years, most recently to O(70.21n) [136]
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and O(68.664n) [70], neglecting polynomial factors in the asymptotic ex-
pressions. The minimum is obtained by point sets in convex position, which
have exactly one spanning cycle.

n
2 points

n
2 points

Figure 2.8: The so-called double chain DC(n).

For the number of general k-gons this implies a lower bound of
(
n
k

)
,

as well as an upper bound of O
(
68.664k

(
n
k

))
. For constant k, we obtain

Θ(nk). On the other hand, the double chain provides Ω(nk) non-convex
k-gons, where k ≥ 4 is again a constant. To see this, choose one vertex
from the upper chain of DC(n) and k− 1 ≥ 3 vertices from the lower chain
of DC(n), and connect them to a simple, non-convex polygon. This gives

at least n
2

(n/2
k−1

)
= Ω(nk) non-convex k-gons. As the lower bound on the

maximal number of non-convex k-gons asymptotically matches the upper
bound on the maximal number of general k-gons, we obtain the following
result.

Proposition 2.4. Let S be a set of n points in the plane in general position
and k ≥ 3 a constant. Then the maximum number of non-convex k-gons in
S is Θ(nk) and the maximum number of general k-gons in S is also Θ(nk).
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2.4 4-holes

We switch from k-holes to k-gons. We start with results on 4-holes, the
smallest variant of possibly non-convex k-holes, and with the question of
maximizing the number of general 4-holes.

2.4.1 Maximizing the number of (general) 4-holes

Recall that for small n, the convex set minimizes the number of general 4-
holes. For example, four points in convex position span exactly one 4-hole,
while four points which are not in convex position span three non-convex 4-
holes. Accordingly, five points span at least five 4-holes. On the other hand,
the enumerative results for n > 8 from Section 2.2.1 suggest that for large
enough n, sets in convex position might maximize the number of 4-holes,
which in fact is true. The following lemma is one of the main ingredients
for proving this statement.

Lemma 2.5. Let ∆ be a non-empty triangle in S. There are at most three
non-convex 4-holes spanned by the three vertices of ∆ plus a point of S in
the interior of ∆.

Proof. Let p1, p2, and p3 be the vertices of ∆. Observe that any non-convex
4-hole has to use two edges of ∆. Thus there are three choices for the unused
edge of ∆, and for each choice there is at most one way to complete the two
used edges of ∆ to a 4-hole. Assume to the contrary that two different 4-holes
avoid the edge p2p3 and use points q1 and q2, respectively, in the interior.
Then q2 lies outside the two triangles formed by p1q1p2 and p1q1p3. Thus
q2 lies in the triangle formed by p2q1p3; see Figure 2.9. But then q1 must lie
in one of the triangles spanned by p1q2p2 and p1q2p3, a contradiction.

p1

p2 p3

q1

q2

Figure 2.9: q2 lies outside the 4-hole spanned by p1,p2,q1, and p3.
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Note that for k > 4 the number of k-holes determined by the vertices of
its convex hull is in general not constant. For example, a triangle ∆ with
i interior points can define O(i) many 5-holes. For example, the point set
shown in Figure 2.10 contains (3i+2) such 5-holes; see also Figure 2.11.

Figure 2.10: A point set where the extreme triangle spans 3i+2 (non-convex)
5-holes.

Figure 2.11: The eight different types of (non-convex) 5-holes spanned by
the extreme triangle.

Theorem 2.6. For n ≥ 9 the number of 4-holes is maximized by a set of n
points in convex position.

Proof. In the following we assign every non-convex 4-tuple of points to the
three vertices of its convex hull and call this the representing triangle of
the potential non-convex 4-holes. By Lemma 2.5, any non-empty triangle
represents at most three 4-holes, and any convex 4-tuple gives at most one
4-hole.

Let T be the number of non-empty triangles. As any non-empty triangle
induces at least one 4-tuple in non-convex position, we get

(
n

4

)
+ 2T (2.8)

as a first upper bound on the number of 4-holes of a point set.
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Note that a triangle ∆ with k ≥ 1 interior points is counted k+2 times
in (2.8), namely k times in the

(
n
4

)
4-tuples plus the extra 2 as ∆ is non-

empty. Thus for k > 1 we have over-counted the number of non-convex
4-holes assigned to ∆; cf. Lemma 2.5. Moreover, many of the convex 4-gons
might not be empty and thus no 4-holes. Therefore we now analyze how
many of the counted potential 4-holes can be reduced from (2.8). We will
do this by assigning (possibly multiple) markers for over-counted 4-holes to
convex 4-tuples and non-empty triangles.

As above, let ∆ be a triangle with k ≥ 1 interior points, and consider
all 4-tuples consisting of the three vertices of ∆ plus an extra point p. We
distinguish two cases.

First let p be one of the n−k−3 points outside ∆. If the resulting 4-tuple
is convex, we mark this 4-tuple, as it is not empty and thus no 4-hole. If the
4-tuple is non-convex, we mark the triangle which represents the potential
non-convex 4-hole, as at least one of the three possible 4-holes of this 4-tuple
is non-empty.

In the second case we consider the k points inside ∆. As argued above,
∆ was counted k+2 times. But by Lemma 2.5, there are at most three
4-holes using one interior point of ∆ and thus represented by ∆. Therefore
we assign k−1 markers to ∆.

Altogether we have distributed n−4 markers while considering ∆. Re-
peating this for all non-empty triangles, we obtain a total of (n−4) · T
markers.

A non-empty convex 4-tuple might have received up to 4 markers in this
way, one from each of its sub-triangles. That is, we have at most 4 times
as many markers as convex 4-tuples which we can reduce from the upper
bound (2.8).

A non-empty triangle ∆ with k ≥ 1 interior points might have got 4·(k−1)
markers: For its interior points, ∆ received k−1 markers from the second
case, and for each non-empty triangle formed by two vertices of ∆ and one
point inside ∆, we received one marker from the first case. As at least three
of the considered inner triangles are empty (the ones spanned by an edge e
of ∆ and the interior point closest to e), the first case gives at most 3 ·(k−1)
additional markers, resulting in a total of at most 4·(k−1) markers for ∆. As
∆ was counted k+2 times, but represents at most three 4-holes (Lemma 2.5),
we have at most 4 · (k−1) markers for at least (k+2)−3 = k−1 over-counted
objects. Thus, in both cases we over-counted reducible terms at most by
a factor of 4. We therefore can reduce the number of potential 4-holes by one
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quarter of the distributed markers, namely by n−4
4 · T . This leads to the

improved upper bound

(
n

4

)
+ 2T − n− 4

4
· T

for the number of 4-holes. For n ≥ 12 this is at most
(
n
4

)
, the number of

4-holes for a set of points in convex position. Together with the results from
Table 2.4 for n = 9, . . . , 11, this proves the theorem.

2.4.2 Maximizing the number of non-convex 4-holes

In the previous section we have shown that the number of general 4-holes
is maximized for sets in convex position. This obviously also holds for the
number of convex 4-holes.

We now consider maximizing the number of non-convex 4-holes. From
Lemma 2.5 we obtain the following.

Lemma 2.7. The number of non-convex 4-holes of any set of n points is at
most n(n−1)(n−2)

2 = n3

2 −O(n2).

Proof. By Lemma 2.5, any non-empty triangle generates at most three non-
convex 4-holes, and there are at most

(
n
3

)
such triangles in a set of n points.

Theorem 2.8. For every n′ > 0 there exist sets of n points for some n ∈
{n′, . . . , 2n′}, with at least n3

2 −O(n2 log n) non-convex 4-holes.

Proof. We consider the special point sets Xm, m ≥ 1, with |Xm| = n =
2m+1−2 points, introduced in [108]. The point sets are defined recursively
in layers, starting with two points X1 := R1 in the first layer. An additional
layer Ri is added to Xi−1 := R1∪· · ·∪Ri−1 by placing two new points close
to any point in Ri−1 outside the convex hull of Xi−1, such that the following
conditions hold:

1. Xj = R1 ∪ · · · ∪ Rj is in general position,

2. Rj are the extremal points of Xj , and

3. any triangle determined by Rj contains precisely one point of Xj in
its interior.
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See Figure 2.12 for an example and [108] for a detailed description of the
construction. Furthermore, in [108] it is shown that every triangle spanned
by Xm contains at most one interior point of Xm; i.e., every non-empty
triangle of Xm contains exactly one point. Using Lemma 2.5, the number of
non-convex 4-holes of Xm is three times the number of non-empty triangles.

Ap

Bp

p

q

Bq

Aq

Figure 2.12: Example for m = 4 of the special point set defined in [108].

For each point of the set Xm, we count the number of triangles that
contain it. First, fix a point in the first layer R1, say p in Figure 2.12. Any
triangle containing p is formed by one point of Ap, one point of Bp, and one
point of the remaining set Cp = Xm\{Ap ∪ Bp ∪ {p}}. We say that Ap and
Bp are the induced subsets of p, and that Cp is the remainder (of Xm) for p.
As a1 := |Ap| = |Bp| = n−2

4 and c1 := |Cp| = n − 2 · a1 − 1 = n
2 , this gives

a2
1 · c1 triangles containing p, and thus the number of triangles containing a

point of R1 is 2 · a2
1 · c1 = 2 · (n−2

4 )2 · n2 .

Now consider a point q in the second layer R2. Its induced subsets Aq
and Bq have size a2 = n−6

8 , and the remainder Cq has c2 = n−2·a2−1 = 3n+2
4

points. In combination with r2 := |R2| = 4 this gives a total of 4·(n−6
8 )2·3n+2

4
triangles containing a point of R2.

In general, |Ri| = ri = 2i, and the size of the two induced subsets of any
point pi in Ri is

ai =
1

ri+1
(n− |Xi|) =

n− (2i+1 − 2)

2i+1
.

Thus, with the size of the corresponding remainder Cpi of

ci = n− 2 · ai − 1 =
(2i − 1)n+ 2i − 2

2i
,

we get ri · a2
i · ci triangles containing one point of Ri.
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Using that every non-empty triangle of Xm gives three non-convex 4-holes,
and summing up over all layers Ri, we obtain

3 ·
m∑

i=1

ri · a2
i · ci =

3 ·
m∑

i=1

2i
(
n− (2i+1 − 2)

2i+1

)2
(2i − 1)n+ 2i − 2

2i
=

1

2
n3 +

(
39

4
− 3 log2(n+ 2)

)
n2 −O(n log n)

for the total number of non-convex 4-holes of Xm.

2.4.3 Minimizing the number of (general) 4-holes

As already mentioned, we have n2

2 − O(n) ≤ h4(n) ≤ 1.9397n2 + o(n2) for
the minimal number h4(n) of convex 4-holes. For non-convex 4-holes, the
corresponding lower bound trivially is zero.

By checking all point sets of cardinality eight from the order type data
base [33], we obtained the following observation for general 4-holes.

Observation 2.9. Let S be a set of n = 8 points in the plane in general
position, and p1, p2 ∈ S two arbitrary points of S. Then S contains at least
five 4-holes having p1 and p2 among their vertices.

In fact, this bound is best possible in general. On the one hand, consider
any set S with n ≥ 8 points, and any two points p1, p2 ∈ S. Then p1 and
p2 together with the six points of S\{p1, p2} that are closest to the segment
p1p2 form a set S′ of eight points. S′ does interfere with any point from
S′\S. Thus, as by Observation 2.9, S′ contains at least five 4-holes having
p1 and p2 among its vertices, S does as well.

On the other hand, there exist arbitrarily large point sets S such that
there exist points p1, p2 ∈ S which are only contained in at most five 4-holes.
For example, consider the point set shown in Figure 2.13, and consider
4-holes having both p1 and p2 as vertices. Note that such a 4-hole cannot
contain any of the points p7 . . . pn. The reason is that every triangle p1p2pk,
7 ≤ k ≤ n, contains p3, p4, and at least one of p5 and p6, and thus cannot
be completed to a 4-hole. But the set {p1, . . . , p6} contains only five 4-holes
with both p1 and p2 in their vertex set. Thus, we cannot hope for anything
better than the result stated in Observation 2.9.
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p1 p2

p3 p4

p5 p6

p7 pn

Figure 2.13: A point set containing only five 4-holes that have both p1 and
p2 as vertices.

Based on Observation 2.9, we can derive a lower bound for the number
of general 4-holes. Note that there exist sets which contain fewer than
1.94n2 convex 4-holes, while by the below result any set contains at least
2.5n2 −O(n) general 4-holes.

Theorem 2.10. Let S be a set of n ≥ 8 points in the plane in general
position. Then S contains at least 5

2n
2 −O(n) 4-holes.

Proof. We consider the point set S in x-sorted order, S = {p1, . . . , pn}, and
sets Si,j = {pi, . . . , pj} ⊆ S. The number of sets Si,j having at least 8 points
is

n−7∑

i=1

n∑

j=i+7

1 =
n−7∑

i=1

n− i− 6 =
n2

2
− 13

2
n+ 21.

By Observation 2.9, each set Si,j contains at least five 4-holes having
pi and pj among their vertices. Moreover, as pi and pj are the left- and
rightmost points of Si,j , they are also the left- and rightmost points for each
of these 4-holes. This implies that any 4-hole of S counts for at most one
set Si,j , which gives a lower bound of 5

2n
2 −O(n) for the number of 4-holes

in S.
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2.5 5-holes

For the case of 5-holes, we start with a slight improvement to one of the
original questions from Erdős, namely the number of convex 5-holes any
point set must at least have.

2.5.1 Lower bounds for the number of convex 5-holes

Recall that h5(n) = min|S|=n h5(S) is the number of convex 5-holes any point
set of cardinality n has to have. The best upper bound h5(n) ≤ 1.0207n2 +
o(n2) can be found in [44]. Although h5(n) is conjectured to be quadratic
in the size of S [53], to this date not even a super-linear lower bound exists.
For quite some time, the best lower bound was h5(n) ≥ bn−4

6 c, obtained by
Bárány and Károlyi [42]. During the work for this thesis, we subsequently
improved this bound several times. For the sake of completeness, and as
the approaches to the problem use different techniques, in the following we
present the proofs of our last three bounds, namely h5(n) ≥ 3bn−4

8 c [31],
h5(n) ≥

⌈
3
7(n− 11)

⌉
[32], and finally h5(n) ≥ 3

4n+ o(n).

The last bound was partly developed during the birthday conference for
Ferran Hurtado (the XIV Spanish Meeting on Computational Geometry)
in order to convert his present to science. It is based on joint work with
Clemens Huemer et al. and has not been published yet. Note that all these
lower bounds for h5(n) still remain linear in the set size |S| = n.

Theorem 2.11. Let S be a set of n ≥ 12 points in the plane in general
position. Then h5(n) ≥ 3bn−4

8 c

Proof. Dehnhardt [63] showed that every set of 12 points contains at least
three convex 5-holes. To make use out of this observation, we sort the points
of S from left to right, and split them into groups of 8 points (we assume
that no two points of S have the same x-coordinate, as we slightly rotate
S otherwise). To each of these groups we also associate the next (w.r.t.
the sorting) 4 points on its right. In this way we obtain bn−4

8 c groups of
12 points each. Any two of these groups share at most 4 points, and thus
any convex 5-hole can belong to at most one such group. By the result of
Dehnhardt we thus have h5(n) ≥ 3bn−4

8 c.

Theorem 2.12. Any set of n points in the plane in general position contains
at least h5(n) ≥

⌈
3
7(n− 11)

⌉
convex 5-holes.

Proof. Consider an arbitrary set S of n points. Assume that there is an
extreme point p ∈ S which is incident to (at least) one convex 5-hole spanned
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by S. We count these convex 5-holes (solely) for p, remove p from S, and
continue with S1 = S\{p}. Assume further that we can repeat this i ≥ 0
times. This way we count (at least) i different convex 5-holes, and obtain a
point set Si of cardinality |Si| = n− i, for which all extreme points of Si are
not incident to any convex 5-hole.

Now take any extreme point p ∈ Si. Sort all other points of Si radially
around p (such that its neighbors on the convex hull CH(Si) are the first
point p1 and the last point pn−i−1 in the sorting, respectively). Split the
sorted set Si\{p} into consecutive groups Gl, for 1 ≤ l ≤

⌊
n−i−5

7

⌋
, of seven

points each such that the remainder R contains at least four points; see
Figure 2.14. Then every group Gl together with the sorting anchor p and
the first four points of Gl+1 (or R, respectively) gives a set G′l ⊂ Si of 12
points.

R

p

G′
2

G2

Figure 2.14: Splitting Si into groups Gl of seven points each, plus a remain-
der R of at least four points.

We know by Dehnhardt [63] that every set of 12 points, and thus also
every set G′l, contains at least 3 convex 5-holes. As p is not incident to any
convex 5-hole, all convex 5-holes in any set G′l must be incident to at least
one point of its underlying set Gl and can thus be counted (solely) for Gl.
As R must have at least four points, there are exactly

⌊
n−i−1−4

7

⌋
groups

Gl, and at least three times that many convex 5-holes in Si. Adding the
convex 5-holes we counted for points of S\Si, of which there are at least i,
we obtain a lower bound of

i+ 3

⌊
n− i− 5

7

⌋
≥ i+ 3

n− i− 5− 6

7

=
3n+ 4i− 33

7
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for the total number of convex 5-holes in S. This term is minimized for i = 0,
which leads to a lower bound of

⌈
3
7(n− 11)

⌉
for the minimum number h5(n)

of convex 5-holes in any set of n points.

Theorem 2.13. For any integer m ≥ 1, every set of n = 2m · 12 points
in the plane in general position contains at least h5(n) ≥ 3n

4 − o(n) convex
5-holes.

Proof. Consider an arbitrary point set S of cardinality n and a halving line
l of S which splits S into S1 and S2 and does not contain any point of S;
see Figure 2.15.

S1

S2

l

Figure 2.15: A point set S split by a halving line l into to equal sized point
sets S1, S2 ⊂ S.

Let c be the number of convex 5-holes that are crossed by l. Then the
number of convex 5-holes of S is c plus the numbers of convex 5-holes in S1

and S2, respectively. As |S1| = |S2| = n
2 , we obtain (2.9) as a lower bound

for h5(S).

h5(S) ≥ c+ 2 · h5(
n

2
) (2.9)

Next we use the result of Dehnhardt [63], that every set of 12 points
contains at least three convex 5-holes, to construct a different lower bound
for h5(S). To this end we consider a line l′ that intersects l and cuts off a
set S′ ⊆ S, consisting of eight points from S1 and four points from S2; see
Figure 2.16. Further let l′′ be a line which is parallel to l′ and splits S′ ∩ S1
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into two groups of four points, and let S′′ ⊂ S′ be the set which is cut off
by l′′. Note that neither l′ nor l′′ contain any points of S.

S1

S2

l

l′

l′′ S′
S′′

Figure 2.16: Cutting of eight points from S1 and four points from S2.

By Dehnhardt [63] we know that S′ contains at least three convex 5-holes.
We distinguish two cases.

Case 1. Assume that S′ contains at least three convex 5-holes which
are not intersected by l. Then each of these 5-holes contains only points
from S1 and thus at least one point above l′′; see Figure 2.17 left. We count
the three 5-holes for the set S1 and continue on S\S′′.

Case 2. S′ contains at most two convex 5-holes which are not intersected
by l. Then we count all convex 5-holes in S′ that are intersected by l for
the halving line l and continue on S\S′; see Figure 2.17 right.

Note that in both cases we cut off at least four points from S1 and at
most four points from S2. Thus we can repeat this process until we have
processed all n

2 points of S1. Assume that we counted c1 convex 5-holes
for l. Then we have processed Case 2 at most c1 times, and thus Case 1 has
appeared at least 1

4 ·
(
n
2 − 8c1

)
times. Thus the number of convex 5-holes in

S1 (i.e., not intersecting l) we counted is at least

h5(S1) ≥ 3

4

(n
2
− 8c1

)
. (2.10)
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S1

S2

l

l′

l′′

S1

S2

l

l′

l′′

Figure 2.17: Two cases for counting convex 5-holes. Case 1 (left): at least
three 5-holes in S1 ∩ S′; Case 2 (right): at least one 5-hole crossing the
halving line l.

Repeating the same procedure for S2 (considering lines l′ which cut off
eight points from S2 and four points from S1), we also obtain

h5(S2) ≥ 3

4

(n
2
− 8c2

)
, (2.11)

where c2 is the number of convex 5-holes which we counted as intersected
by l. Note that any convex 5-hole intersected by l which we counted during
processing S1 might have occurred again when processing S2. The total
number c of convex 5-holes intersected by l is at least

c ≥ max{c1, c2} ≥
c1 + c2

2
.

Combining this with Inequations (2.10) and (2.11), we obtain

h5(S) ≥ 3n

4
− 6(c1 + c2) +

c1 + c2

2
=

3n

4
− 11 · c1 + c2

2

as a second lower bound for the number of convex 5-holes in S. Combining
this with (2.9), we obtain

h5(S) ≥ max

{(
c1 + c2

2
+ 2 · h5(

n

2
)

)
,

(
3n

4
− 11 · c1 + c2

2

)}
. (2.12)

Note that the first term in Inequation (2.12) is strictly monotonic incresing
in c1+c2

2 , while the second term is strictly monotonic decreasing in c1+c2
2 .
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Thus, the minimum of the lower bound in (2.12) is reached if both bounds
are equal.

c1 + c2

2
+ 2 · h5(

n

2
) =

3n

4
− 11 · c1 + c2

2

12 · c1 + c2

2
=

3n

4
− 2 · h5(

n

2
)

c1 + c2

2
=

n

16
− 1

6
· h5(

n

2
)

Plugging this value for c1+c2
2 into the first first term in Inequation (2.12),

we obtain (2.13) as a lower bound for h5(S) for any S, and thus also as a
lower bound for h5(n).

h5(n) ≥ n

16
− 1

6
· h5(

n

2
) + 2 · h5(

n

2
) =

n

16
+

11

6
· h5(

n

2
) (2.13)

We resolve this recursion by repeatedly re-applying it until we reach the
base case h5(12).

h5(n) ≥ n

16
+

11

6
· h5(

n

2
)

≥ n

16
+

11

6

(
n

2 · 16
+

11

6
· h5(

n

2 · 2)

)

≥ n

16
+

n

16
· 11

12
+

(
11

6

)2

· h5(
n

22
)

≥ n

16
+

n

16
· 11

12
+

n

16
·
(

11

12

)2

+

(
11

6

)3

· h5(
n

23
)

≥ . . .

≥ n

16
·
m−1∑

i=0

(
11

12

)i
+

(
11

6

)m
· h5

( n

2m

)

=
n

16
· 1−

(
11
12

)m

1− 11
12

+

(
11

6

)m
· h5(12)

=
n

16
· 12 ·

(
1−

(
11

12

)m)
+

(
11

6

)m
· h5(12)

=
3n

4
·
(

1−
(

11

12

)m)
+

(
11

6

)m
· h5(12).

As h5(12) ≥ 3, and as as n = 2m ·12 which implies m = log2

(
n
12

)
, continuing

the calculation we get
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h5(n) ≥ 3n

4
·
(

1−
(

11

12

)m)
+

(
11

6

)m
· 3

=
3n

4
− 3n

4
·
(

1

2

)m
·
(

11

6

)m
+

(
11

6

)m
· 3

=
3n

4
− 3n

4
·
(

12

n

)
·
(

11

6

)m
+ 3 ·

(
11

6

)m

=
3n

4
− 6 ·

(
11

6

)m
=

3n

4
− 6 ·

(
11

6

)log2 ( n
12)

=
3n

4
− 6 ·

( n
12

)log2 ( 11
6 )

=
3n

4
−
(

6

12log2 ( 11
6 )

)
· nlog2 ( 11

6 )

Considering the negative part of the last term, we have 11
6 < 2 and thus

log2

(
11
6

)
/ 0.874469117916 < 1, which yields the claimed result:

h5(n) '
3n

4
− 0.683031256499 · n0.874469117916 =

3n

4
− o(n).

In the above proof we used a result by Dehnhardt [63], stating that
every set of 12 points contains at least three convex 5-holes. In fact, Dehn-
hardt only showed h5(12) ≥ 3, and it was unclear whether h5(12) = 3 or
h5(12) = 4. Using the order type database, Aichholzer found point sets
of 12 points that contain only three convex 5-holes, settling this question.
A point set attaining the lower bound h5(12) = 3 is shown in Figure 2.18.
The point set in Figure 2.19 is geometrically quite different but combinato-
rially similar, again with three convex 5-holes.

Figure 2.18: A set of 12 points containing only three convex 5-holes.
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Figure 2.19: A symmetric set of 12 points containing only three convex
5-holes.

Figures 2.20 and 2.21 show point sets of size 13 and 14, respectively,
which also contain few convex 5-holes. But here we do not know whether
or not these are minimizing configurations. Combining the values from
Table 2.5 in Section 2.2.2 with the result for n = 12, the first set size
guaranteeing at least four convex 5-holes is 18. Still, we believe that the
four convex 5-holes for n = 13 as well as the six convex 5-holes for n = 14
might in fact be minimizing.

For n = 15, the best we have been able to find by now are sets containing
nine convex 5-holes. Here we think that there could as well be sets with less
convex 5-holes. For most of the sets with nine convex 5-holes we found, a
good drawing (in the sense of avoiding almost collinear point triples) is not
possible. Figure 2.22 shows one of the best drawings we found with respect
to this criterion.
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Figure 2.20: A set of 13 points containing only four convex 5-holes.

Figure 2.21: A set of 14 points containing only six convex 5-holes.

Figure 2.22: A set of 15 points containing only nine convex 5-holes.
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2.5.2 A lower bound for the number of (general) 5-holes

We obtained the following observation for general 5-holes by checking all
14 309 547 according point sets from the order type data base [33].

Observation 2.14. Let S be a set of n = 10 points in the plane in general
position, and p1, p2 ∈ S two arbitrary points of S. Then S contains at least
34 5-holes having p1 and p2 among their vertices.

Based on this simple observation we derive the following lower bound for
the number of 5-holes.

Theorem 2.15. Let S be a set of n ≥ 10 points in the plane in general
position. Then S contains at least 17n2 −O(n) 5-holes.

Proof. We follow the lines of the proof of Theorem 2.10 in Section 2.4.3.
We consider the point set S in x-sorted order, S = {p1, . . . , pn}, and sets
Si,j = {pi, . . . , pj} ⊆ S. The number of sets Si,j having at least 10 points is

n−9∑

i=1

n∑

j=i+9

1 =
n2

2
−O(n)

For each Si,j consider the eight points of Si,j\{pi, pj} which are closest
to the segment pipj to obtain a set of 10 points, including pi and pj . By
Observation 2.14, each such set contains at least 34 5-holes which have pi and
pj among their vertices. Moreover, as pi and pj are the left- and rightmost
point of Si,j , they are also the left- and rightmost point for each of these
5-holes. This implies that any 5-hole of S can count for at most one set
Si,j , which gives a lower bound of 17n2 −O(n) for the number of 5-holes in
S.

2.5.3 Maximizing the number of (general) 5-holes

The results for small sets shown in Table 2.5 suggest that the number of
(general) 5-holes is minimized by sets in convex position. In this section
we will not only show that this is in fact not the case, but rather prove
the contrary: Similar to the result in Section 2.4.1, sets in convex position
maximize the number of 5-holes for sufficiently large n.

Lemma 2.16. A point set S with triangular convex hull and i interior points
contains at most (4i+5) 5-holes which have the three extreme points among
their vertices.

51



CHAPTER 2. ON K-GONS AND K-HOLES

Proof. Let ∆ be the convex hull of S, a, b, and c the three extreme points of
S (in counterclockwise order), and I = S\{a, b, c} the set of inner points of
S, |I| = i. As all 5-holes we consider have a, b, and c among their vertices,
they contain either one or two edges of ∆.

First, we derive an upper bound for the number of 5-holes that contain
only one edge of ∆. If two points p, q ∈ I form a 5-hole that contains only the
edge ab of ∆, they have to be neighbored in a circular order of I around c;
see Figure 2.23(a).

Let p be before q in the counterclockwise order around c. We say that p
starts a 5-hole (with ab). Note that q is uniquely defined by p and ab, and
that the triangular area bounded by the lines cp, ap, and the edge ab must
not contain any points of I.

p

q
a b

c

(a)

p

q
a b

c

(b)

Figure 2.23: (a) A 5-hole containing only the edge ab of ∆. (b) Shaded areas
have to be empty if p (or q, respectively) starts a 5-hole with each edge of ∆.

Assume that p starts a 5-hole with each edge of ∆, implying that the
according areas for all three edges of ∆ have to be empty; see Figure 2.23(b).
Then any other point q ∈ I can start 5-holes with at most two edges of ∆,
as p lies in one of the three areas that would have to be empty for q; see
again Figure 2.23(b). Using this fact, we conclude that at most one point
of I might start three such 5-holes and all other inner points start at most
two such 5-holes. This gives a total of at most (2i+1) 5-holes that contain
only one edge of ∆.

Second, we consider 5-holes that contain two edges of ∆ where one of
the two vertices of I is reflex and the other is convex. Assume that there
exists such a 5-hole without the edge ab, and with pab as reflex vertex; see
Figure 2.24(a).

Then the non-convex quadrilateral apabbc must not contain any points
of I, which implies that all other such 5-holes without the edge ab have pab
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pab

x

a b

c

(a)

x′

pab

x

a b

c

(b)

Figure 2.24: (a) A 5-hole apabxbc containing two edges of ∆. (b) Only one
point of I can span two 5-holes for ab.

as reflex vertex as well. Let x be the convex vertex in a 5-hole without ab.
We say that x spans the 5-hole (for ab).

Note that a point x might span two 5-holes for ab, namely axpabbc and
apabxbc. But this situation can happen for at most one point x, as all other
points have to lie inside the triangle axb and thus for each of them, x lies
inside exactly one of the two according possible 5-holes; see Figure 2.24(b).

Now assume that for every edge e of ∆, there exist 5-holes skipping
(solely) e. Then for every edge e there is one unique point pe ∈ I that is the
single reflex vertex in all 5-holes for e, and each non-convex quadrilateral
spanned by ∆\{e} and pe is empty; see Figure 2.25.

pbc
pac

pab

a b

c

Figure 2.25: If for each combination of two sides of ∆ there is a 5-hole where
one vertex of I is convex, then the shaded area must be empty.

Assume further that there is a point y, that spans a 5-hole for each edge
e of ∆. Note that if a point x lies below the supporting line of apbc, then
the 5-gon axpabbc contains pbc. Accordingly, if x lies below the supporting
line of bpac, then pac lies inside apabxbc. Thus, no point inside the triangle
formed by the supporting lines of apbc, bpac, and ab can span a 5-hole for
ab because any such 5-gon contains either pbc or pac. As similar statements
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hold for the other edges of ∆ as well, y has to lie outside all these triangles,
and thus inside the triangle formed by the supporting lines of apbc, bpac, and
cpab.

Note that y can span only one 5-hole for each side, as for each reflex
point there is a line l supporting one of the segments cpab, apbc, or bpac such
that y and the reflex point lie on opposite sides of l.

pbc
pac

pab

y

a b

c

(a)

pbc
pac

pab

y

a b

c

(b)

pbc
pac

pab

y

a b

c

(c)

pbc
pac

pab

y

a b

c

(d)

Figure 2.26: Three 5-holes spanned by y, each one leaving out a different
side of ∆.

Figure 2.26 shows the three possible 5-holes spanned by y both separately
and altogether. As by assumption, the whole shaded area in Figure 2.26(d)
does not contain any points of I, all other points must be located in the
non-shaded wedges.

Now, if a point lies in the wedge from y towards pab, then it cannot span
a 5-hole for ac, as y lies inside one candidate and pab lies inside the other.
Accordingly, a point in the wedge from y to pbc cannot span a 5-hole for ab,
and a point in the wedge from y to pac cannot span a 5-hole for bc. Thus,
at most one point might span a 5-hole for e for each edge e of ∆, and we
obtain an upper bound of (2i+4) for the number of such 5-holes: at most
two per point of I, plus one for the special point spanning a 5-hole for each
edge of ∆, plus one additional per edge of ∆.
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Finally, consider 5-holes that contain two edges of ∆, where the two
additional vertices are both reflex, like the one shown in Figure 2.27.

p

q

a b

c

Figure 2.27: Remaining points of I have to be located in the white areas.

There is at most one such 5-hole per non-used side of ∆. Moreover, the
existence of such a 5-hole for an edge e of ∆ implies that there is no 5-hole
for e where one of the vertices of I is convex. Thus, the upper bound for all
5-holes using two edges of ∆ (with and without a point of I being convex) is
still (2i+4), and we obtain an upper bound for the total number of 5-holes
of (4i+5).

Lemma 2.17. Let Γ be a non-empty convex quadrilateral in S. There are
at most four (non-convex) 5-holes spanned by the four vertices of Γ plus a
point of S in the interior of Γ.

Proof. Let p1, . . . , p4 be the vertices of Γ. Observe that any non-convex
5-hole has to use three edges of Γ. Thus there are four choices for the
unused edge of Γ, and for each choice there is at most one way to complete
the three used edges of Γ to a 5-hole. Assume to the contrary that two
different 5-holes avoid the edge p1p2 and use points q1 and q2, respectively,
in the interior. Then q2 lies in the triangle formed by p1p2q1. But then q1

must lie inside the polygon p1q2p2p3p4, a contradiction.

Taking into account the number of points on the convex hull of each
5-tuple, these two lemmas lead to the following theorem.

Theorem 2.18. For n ≥ 86 the number of 5-holes is maximized by a set of
n points in convex position.

Proof. In the following we assign every non-convex 5-tuple to the (three or
four) vertices of its convex hull, and call this convex hull the representing
triangle (or quadrilateral) of the potential non-convex 5-holes.

From Lemma 2.16 we know that a non-empty triangle ∆ with i > 0
interior points represents at most 4i+5 non-convex 5-holes. In addition,
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each of the o = n−3−i points outside ∆ might form a convex quadrilateral
Γ with ∆. According to Lemma 2.17, each such Γ represents at most 4
non-convex 5-holes. Thus, altogether we obtain (2.14) as an upper bound
for the number of non-convex 5-holes which have the vertices of ∆ on their
convex hull.

4o+ 4i+ 5 = 4n− 7 (2.14)

Note that if a (convex) quadrilateral is non-empty, then its vertices form
at least one triangle which is non-empty as well. Thus, summing up (2.14)
over all non-empty triangles, we obtain an upper bound on the number of
non-convex 5-holes.

Considering convex 5-holes, observe that every 5-tuple gives at most one
convex 5-hole. Denote with N the number of 5-tuples that do not form a
convex 5-hole, and with T the number of non-empty triangles. Then we
get (2.15) as a first upper bound on the number of (general) 5-holes of a
point set. (

n

5

)
−N + (4n− 7) · T (2.15)

To obtain an improved upper bound from (2.15), we need to derive a
good lower bound for N . For this, consider again a non-empty triangle ∆.
As ∆ is not empty, each of the

(
n−3

2

)
5-tuples that contain all three vertices

of ∆ is either not convex or not empty. On the other hand, for such a 5-
tuple, all of its

(
5
3

)
contained triangles might be non-empty. Thus, we obtain

T
(
n−3

2

)
/
(

5
3

)
as a lower bound for N , and thus (2.16) as an upper bound for

the number of 5-holes.

(
n

5

)
+

(
4n− 7−

(
n−3

2

)
(

5
3

)
)
· T (2.16)

For n ≥ 86 this is at most
(
n
5

)
, the number of 5-holes for a set of points

in convex position, which proves the theorem.

Note that for the lower bound of the set size n, the truth lies somewhere
between 17 and 84: A least for n ≤ 16, the number of general 5-holes is not
maximized by convex sets.
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2.6 k-holes

2.6.1 Maximizing the number of (general) k-holes

In the last two sections we have shown that the numbers of 4-holes and
5-holes are maximized for point sets in convex position if n is sufficiently
large. After we had been able to show the result for 4-holes, we conjectured
that this might true for any k ≥ 4 [16]. The following theorem settles this
conjecture in the affirmative.

Theorem 2.19. For every k ≥ 4 and n ≥ 2(k − 1)!
(
k
4

)
+k−1, the number

of k-holes is maximized by a set of n points in convex position.

Proof. Every non-convex k-hole has as its vertex set a non-convex k-tuple,
and every non-convex k-tuple has at least one triangle formed by three
extreme points (i.e., points on the convex hull of the k-tuple) that contains
points of the k-tuple in its interior. So consider such a non-empty triangle
∆. We count the number of non-convex k-holes having the three vertices of
∆ as extreme points. Note that any such k-hole can be reduced to a (not
necessarily simple) non-empty (k−1)-gon by removing a reflex vertex from
its boundary.

Denote by K the set of (not necessarily simple) non-empty (k−1)-gons
having the vertices of ∆ on their convex hull. First, |K| can be bounded from
above by the number of (not necessarily simple) possibly empty (k−1)-gons
having the three vertices of ∆ on their boundary, which is

(k − 2)!

2

(
n− 3

k − 4

)
.

Further, every (k−1)-gon in K can be completed to a (simple) non-
convex k-hole in at most k−1 ways by adding a reflex vertex. Thus the
number of non-convex k-holes having all vertices of ∆ on their convex hull
is bounded from above by

(k − 1)
(k − 2)!

2

(
n− 3

k − 4

)
=

(k − 1)!

2

(
n− 3

k − 4

)
.

Considering convex k-holes, observe that every k-tuple gives at most
one convex k-hole. Denote by N the number of k-tuples that do not form
a convex k-hole, and by T the number of non-empty triangles. Then we
get (2.17) as a first upper bound on the number of (general) k-holes of a
point set. (

n

k

)
−N +

(
(k − 1)!

2

(
n− 3

k − 4

))
· T (2.17)
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To obtain an improved upper bound from (2.17), we need to derive a
good lower bound for N . To this end, consider again a non-empty triangle
∆. As ∆ is not empty, none of the

(
n−3
k−3

)
k-tuples that contain all three

vertices of ∆ forms a convex k-hole. On the other hand, for such a k-tuple,
all of its

(
k
3

)
contained triangles might be non-empty. We obtain T ·

(
n−3
k−3

)
/
(
k
3

)

as a lower bound for N , and thus (2.18) as an upper bound for the number
of k-holes. (

n

k

)
+

(
(k − 1)!

2

(
n− 3

k − 4

)
−
(
n−3
k−3

)
(
k
3

)
)
· T (2.18)

For n ≥ 2(k − 1)!
(
k
4

)
+ k − 1 this is at most

(
n
k

)
, the number of k-holes

of a set of n points in convex position, which proves the theorem.

The above theorem states that convexity maximizes the number of k-holes
for k = O( logn

log logn) and sufficiently large n. Moreover, the proof implies that
any non-empty triangle in fact reduces the number of empty k-holes. Thus
it follows that, for k = O( logn

log logn) and n sufficiently large, the maximum
number of convex k-holes is strictly larger than the maximum number of
non-convex k-holes; see also the next section.

At the other extreme, for k≈n the statement does not hold: As already
mentioned in the introduction, a set of k points spans at most one convex
k-gon, but might admit exponentially many different non-convex k-gons.
This leads to the question, for which k the situation changes. The following
theorem provides a linear upper bound.

Theorem 2.20. The number of k-holes in the double chain DC(n) on n
points is at least (n−4

2
n−k

2

)
· n− k + 2

2
· Ω(4.64k).

Proof. As already mentioned in Section 2.3.1, Garćıa et al. [88] showed that
the double chain of n points (n/2 points on each chain) admits Ω(4.64n)
polygonizations. To estimate the number of k-holes of the double chain on
n points, we first use this result for a double chain on k points (k/2 points
on each chain), obtaining Ω(4.64k) different k-polygonizations. Then we
distribute the remaining n− k points among all possible positions, meaning
that for each k-polygonization, we obtain the double chain on n points with
a k-hole drawn, as shown in Figure 2.29.

In their proof, Garćıa et al. count paths that start at the first vertex of
the upper chain and end at the last vertex of the lower chain. Before the
first vertex on the lower chain, they add an additional point q to complete
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these paths to polygonizations. We slightly extend this principle, by also
adding an additional point p on the upper chain after the last vertex; see
Figure 2.28.

p1 p

pk
2−1

qk
2−1

q1
q

C

Figure 2.28: A path C in the double chain, using all but the vertices p and q.

Then we complete each path C to a polygonization in one of the following
ways: Either we add p to C directly next to p k

2
−1 and then complete C

via q, obtaining Pq, or we add q to C directly next to q1, and close the
polygonization via p, obtaining Pp; see again Figure 2.29.

p1 p

pk
2−1

qk
2−1

q1
q

Pp

p1 p

pk
2−1

qk
2−1

q1
q

Pq

Figure 2.29: Two ways to complete a path to a polygonization.

Note that this changes the number of polygonizations only by a con-
stant factor and thus does not influence the asymptotic bound. However,
the interior of Pq is the exterior of its “complemented” polygonization Pp,

59



CHAPTER 2. ON K-GONS AND K-HOLES

meaning that if we place a point somewhere on the double chain and it lies
inside Pq, then it lies outside Pp, and vice versa. It follows that, in one of
the two polygonizations, at least half of the k + 2 positions to insert points
are outside the polygonization. Hence we can distribute the n−k

2 points on

each chain to at least k
2 + 1 possible positions in total. Now, on one of the

two chains we have at least k
4 + 1 positions; see again Figure 2.29. More

precisely, there are k
4 + j + 1 positions on this chain (where 0 ≤ j < k

4 )

and (at least) max{2, k4 − j} positions on the other chain. The lower bound
stems from the fact that the positions before the first and after last vertex
of a chain are always possible. Placing a points on the b positions of one
chain can be seen as placing a balls into b boxes. The number of ways to do
so is

(
a+b−1
a

)
. Using this, we obtain

(n−k
2 + k

4 +j
n−k

2

)
·max

{(n−k
2 +1
n−k

2

)
,

(n−k
2 + k

4−j−1
n−k

2

)}

possibilities to place the remaining points on the two chains. This factor is
minimized for j = k

4 − 2, which yields the claimed lower bound of
(n−4

2
n−k

2

)
· n− k + 2

2
· Ω(4.64k)

for the number of k-holes of DC(n).

2.6.2 An upper bound for the number of non-convex k-holes

The following theorem shows that for sufficiently small k with respect to n,
the maximum number of non-convex k-holes is smaller than the maximum
number of convex k-holes.

Theorem 2.21. For any constant k ≥ 3, the number of non-convex k-holes
in a set of n points is bounded by O(nk−1) and there exist sets with Θ(nk−1)
non-convex k-holes.

Proof. We first show that there are at most O(nk−1) non-convex k-holes by
giving an algorithmic approach to generate all non-convex k-holes. We rep-
resent a non-convex k-hole by the counter-clockwise sequence of its vertices,
where we require that the last vertex is reflex. Note that any non-convex
k-hole has r ≥ 1 such representations, where r is the number of its reflex
vertices. Thus the number of different representations is an upper bound on
the number of non-convex k-holes.

We have n possibilities to choose the first vertex v1, n− 1 for the second
vertex v2, and so on. Several of the sequences obtained might lead to non-
simple polygons, but we are only interested in an upper bound. For the
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second-last vertex vk−1 we have n − k + 2 possibilities, but the last vertex
vk is uniquely defined. As vk is required to be reflex and the polygon has
to be empty, we have to use the inner geodesic connecting vk−1 back to v1.
Only if this geodesic contains exactly one point, namely vk, we do obtain
one non-convex k-hole (again ignoring possible non-simplicity). Thus we
obtain at most n(n − 1)(n − 2) . . . (n − k + 2) = n!/(n−k+1)! = O(nk−1)
non-convex k-holes.

Figure 2.30: A set with Θ(nk−1) non-convex k-holes.

For an example which achieves this bound see Figure 2.30. Each of the
four indicated groups of points contains a linear fraction of the point set;
for example n

4 points. To show that in this example we have Ω(nk−1) non-
convex k-holes it is sufficient to only consider the k-holes with triangular
convex hull of the type indicated in the figure. For each of the three vertices
of the convex hull of the k-hole we have a linear number of possible choices,
and the k − 4 non-reflex inner vertices can also be chosen from a linear
number of vertices. Thus we obtain

Ω

(
n3 ·

(
n

k − 4

))
= Ω(nk−1)

non-convex k-holes.

2.6.3 On the minimum number of (general) k-holes

Every set of k points admits at least one polygonization. Using this obvious
fact, we obtain the following result, which is a more general formulation of
the according statements for 4-holes and 5-holes (but with worse constants).

Theorem 2.22. Let S be a set of n points in the plane in general position.
For every c < 1 and every k ≤ c · n, S contains Ω(n2) k-holes.
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Proof. We follow the lines of the proof of Theorem 2.10 in Section 2.4.3.
Consider the point set S in x-sorted order, S = {p1, . . . , pn}, and sets Si,j =
{pi, . . . , pj} ⊆ S. The number of sets Si,j of cardinality at least k is

n−k+1∑

i=1

n∑

j=i+k−1

1 =
(n− k + 1)(n− k + 2)

2
= O(n2).

For each Si,j use the k − 2 points of Si,j\{pi, pj} which are closest to the
segment pipj to obtain a subset of k points including pi and pj . Each such
set contains at least one k-hole which has pi and pj among its vertices.
Moreover, as pi and pj are the left and rightmost points of Si,j , they are
also the left and rightmost points of this k-hole. This implies that any k-hole
of S can count for at most one set Si,j , which gives a lower bound of Ω(n2)
for the number of k-holes in S.

At the other extreme, we know that the minimum (over all n-point sets of
the) number of (general) k-holes cannot be more than the minimum number
of convex k-holes plus the maximum number of non-convex k-holes. The
minimum number of convex k-holes is O(n2) for k ≤ 6 (and zero for k ≥
7), and the maximum number of non-convex k-holes is O(nk−1). As the
latter dominates the former, this gives an upper bound of O(nk−1) for the
minimum number of general k-holes. But this bound is by far not tight, as
the following theorem shows.

Lemma 2.23. In an integer grid G of size
√
n×√n, every edge is incident

to at most O(
√
n log n) interior-empty triangles (meaning that they do not

contain any point of G in their interior).

Proof. We denote a shortest edge of G (an edge that does not have any
points of G in its interior) as a slot. Further, we denote the slope of a line l
spanned by points of G as the difference (dx, dy) of the coordinates of the
endpoints of a slot on l. Note that a line with slope (0, 1) or (1, 0) contains
exactly

√
n points of G. A line with slope (dx, dy), dx, dy 6= 0, contains at

most min
{⌈√

n
|dx|

⌉
,
⌈√

n
|dy |

⌉}
points of G.

Consider an arbitrary edge pq of G (which possibly contains some points
of G in its interior), and its supporting line l. Let l′ and l′′ be the two lines
parallel to l and spanned by points of G for which no point of G lies between
l and l′, and between l and l′′, respectively; see Figure 2.31.

Both, l′ and l′′, contain at most
√
n points of G, each of which spans

an interior-empty triangle with pq. Further, each of the points on l spans a
degenerate interior-empty triangle with pq. Any other triangle ∆ incident
to pq has its third point r strictly outside the strip bounded by l′ and l′′.
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l

l′

l′′

p

q

Figure 2.31: A slot pq in a 9 × 9 integer grid with the according lines l, l′,
and l′′. Gray triangles are interior-empty and have the third point outside
the strip l′l′′.

A necessary condition for such a triangle ∆ to be interior-empty is that
both, pr and qr, pass through the same slot s on l′ (or l′′). Moreover, at
least one of the supporting lines of pr and qr contains an endpoint of this
slot s. To see this latter property, consider lines lp and lq from p and q to
the according two endpoints of one slot s on l′. Because s is a slot, there are
no points in the interior of the (triangular of half-strip) region bounded by
lp, lq and l′. Thus, any point seen from both p and q through s must lie on
the boundary of this region, more exactly on lp or lq; see again Figure 2.31.

Using this latter property, we can derive an upper bound on the number
of points r that are visible from p and q via the same slot by counting the
number of points on such supporting lines.

Consider first the case that pq is a horizontal edge, i.e., q − p = (dx, 0).
Then the according lines through p (or q) and a point of a slot on l′ (or
l′′) have slopes in {(0, 1), (±1, 1), (±2, 1), . . . , (±√n, 1)}. Assuming that all
these lines really exist for pq in G, we obtain the following upper bound

3
√
n+ 2 ·

√
n∑

i=−√n

⌈√
n

|i|

⌉
= 3

√
n+ 2

√
n+ 4 ·

√
n∑

i=1

⌈√
n

i

⌉

≤ 6
√
n+ 4

√
n loge(n)

= O(
√
n log(n))

(2.19)

for the total number of interior-empty triangles incident to pq (the first 3
√
n

have the third point on one of l, l′, and l′′).

For the general case of pq being an edge with q−p = (dx, dy), its support-

ing line l has slope (d′x, d
′
y) = ( dx

gcd(dx,dy) ,
dy

gcd(dx,dy)). The according slopes
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of the lines through p (or q) and a point of a slot on l′ (or l′′) differ from
each other by a multiple of (d′x, d

′
y). Note that d′x and d′y are integers with

max{d′x, d′y} ≥ 1. Thus, the according number of interior-empty triangles
for a general edge cannot exceed the bound in 2.19 for a horizontal edge,
which completes the proof.

Theorem 2.24. For every constant k ≥ 4 and every n = m2 ≥ k, there exist

sets with n points in general position that admit at most O(n
k+1
2 (log n)k−3)

k-holes.

Proof. The point set S we consider is the squared Horton set of size
√
n×√n;

see [144]. Roughly speaking, S is a grid which is perturbed such that every
set of originally collinear points forms a Horton set. For any two points
p, q ∈ S, the number of empty triangles that contain the edge pq is bound
from above by the number of (possibly degenerate) interior-empty triangles
incident to the according edge in the regular grid. By Lemma 2.23, this
latter number is at most O(

√
n log n).

To estimate the number of k-holes in S, we will use triangulations and
their dual: In the dual graph of a triangulation, every triangle is represented
as a node, and two nodes are connected iff the corresponding triangles share
an edge. For the triangulation of a k-hole, this gives a binary tree which can
be rooted at any triangle that has an edge on the boundary of the k-hole;
see [116]. It is well known that there are Ck−2 = O(4k · k− 3

2 ) such rooted
binary trees [116]. Although exponential in k, this bound is constant with
respect to the size n of S.

Now pick an empty triangle ∆ in S and an arbitrary rooted binary
tree B. Consider all k-holes which contain ∆ and admit a triangulation
that is represented by B rooted at ∆. As the number of empty triangles
incident to an edge in S is O(

√
n log n), each of the n−3 edges in B yields

O(
√
n log n) possibilities to continue a triangulated k-hole, and we obtain an

upper bound of O((
√
n log n)k−3) for the number of triangulations of k-holes

for ∆ that represent B.

Multiplying this by the (constant) number of rooted binary trees of size
k − 2 does not change the asymptotic and thus yields an upper bound of
O((
√
n log n)k−3) for the number of all triangulations of all k-holes contain-

ing ∆. As any k-hole can be triangulated, this is also an upper bound for
the number of k-holes containing ∆.

Finally, there are O(n2) empty triangles in S (see [44]), and thus we

obtain O(n2(
√
n log n)k−3) = O(n

k+1
2 (log n)k−3) as an upper bound for the

number of k-holes in S.
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A notion similar to k-holes is that of islands. An island I is a subset of
S, not containing points of S \ I in its convex hull. A k-island is an island of
k elements. For example, any two points form a 2-island, and any 3 points
spanning an empty triangle are a 3-island of S. In particular, convex k-holes
are also islands while non-convex k-holes need not be islands. In general,
any k-tuple spans at most one island, while it might span many k-holes. In
[82] it was shown that the number of k-islands of S is always Ω(n2) and that
the Horton set of n points contains only O(n2) k-islands (for sufficiently
large n). Compare this with Theorems 2.22 and 2.24.

Note that the Horton set has Ω(n3) 4-holes. A general super-quadratic
lower bound for the number of 4-holes would solve a conjecture of Bárány in
the affirmative, showing that every point set contains an edge that spans a
super-constant number of 3-holes; see e.g. [53], Chapter 8.4, Problem 4. This
would also imply a quadratic lower bound for the number of convex 5-holes.
So far, not even a super-linear bound is known for the latter problem; see
also Section 2.5.1.

2.6.4 An improved lower bound for the number of convex
6-holes

Gerken [89] showed that each set of at least 1717 points in general position
contains a convex 6-hole. This immediately implies that each set of n points
contains a linear number of convex 6-holes, namely at least b n

1717c. In the
following we slightly improve on this bound. We start by showing a result
for monochromatic convex 6-holes in two-colored point sets.

Lemma 2.25. Each set of r red points and b blue points in general position
in the plane with r ≥ 1716

⌈
b
2

⌉
+ 1717 contains a convex red 6-hole.

Proof. Consider a non-crossing perfect matching of the blue points; if b is
odd, then allow one isolated point p. We extend the segments (in both
directions) one by one, until each segment either hits another segment, the
line of a previously extended segment or goes to infinity. If b is odd, we
take an arbitrary segment through p and extend it as well. Altogether, this
results in a decomposition of the plane into

⌈
b
2

⌉
+ 1 convex regions. As the

red points lie inside these regions, it follows by the pigeon-hole principle that
at least one of these regions contains 1717 red points, and thus a red convex
6-hole by [89].

Theorem 2.26. Each set S of n points in general position in the plane
contains at least bn−1

858 c − 2 convex 6-holes.
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Proof. We prove the statement by contradiction. Assume that the point set
S contains strictly less than bn−1

858 c−2 convex 6-holes, and color the points of
S red. Now we eliminate all red convex 6-holes by placing an additional blue
point inside each of them (one for each), such that the resulting two-colored
point set is in general position. By this, at most

b ≤
⌊
n− 1

858

⌋
− 3 (2.20)

blue points are added, resulting in a bichromatic set with b blue and n red
points. We transform the upper bound (2.20) for the number of blue points
to a lower bound for the number n of red points, obtaining

n ≥ 858(b+ 3) + 1 ≥ 1716

⌈
b

2

⌉
+ 1717.

By Lemma 2.25, any such two-colored point set contains a convex red 6-hole,
a contradiction.

2.7 Discussion

We have shown various lower and upper bounds on the numbers of convex,
non-convex, and general k-holes and k-gons in point sets. For some of the
bounds we have classes of point sets reaching these bounds. For example
the maximum number of general k-holes is obtained by point sets in convex
position.

Several questions remain unsettled. For example, some of the presented
bounds are not tight, as can be seen in Tables 2.2 and 2.3. Maybe the
most intriguing open questions in this context are the following two. Is
there a super-linear lower bound for the number of convex 5-holes (cf. Sec-
tion 2.5.1)? And can we show a super-quadratic lower bound for the number
of general k-holes (cf. Theorems 2.10, 2.15, and 2.22) for some constant
k ≥ 4 ?
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Chapter 3

Bichromatic point sets

Continuing with Erdős-Szekeres type questions, we now consider more col-
orful versions. A point set S is called l-chromatic (or l-colored), if S is
partitioned into l subsets, usually described as color classes. A (simple)
polygon spanned by points of an l-chromatic set S is called monochromatic
if all its vertices have the same color, i.e., belong to the same color class.
Accordingly, an edge in a graph with vertex set S is called monochromatic
if both its endpoints have the same color.

Devillers et al. [66] introduced the following questions: Does every suffi-
ciently large l-chromatic point set contain convex monochromatic k-holes?
And if yes, how many? Note that the analogous question for k-gons does
not make sense, because the bounds from the uncolored case can be applied
directly to each color class of S independently. In contrast, the colors are
a strong additional constraint for finding monochromatic holes in S. For
example, every set of at least five points contains a convex 4-hole, while the
existence of convex monochromatic 4-holes in bichromatic point sets is still
an open question, even for arbitrarily large bichromatic point sets.

In the first section of this chapter we consider a relaxed version of
the latter question: We investigate monochromatic 4-holes in bichromatic
point sets, where, analogously to Chapter 2, we allow the holes to be non-
convex. This variation was posed before by Ferran Hurtado [102] and Janos
Pach [122]. We have been able to solve it in the affirmative, showing that
every bichromatic point set with at least 2079 points contains at least one
monochromatic 4-hole (and thus linearly many).

Another classical question on bichromatic point sets that is also strongly
related to Erdős-Szekeres type questions is the problem of computing the
crossing number of the complete bipartite graph, which is also known as
Zarankiewicz’s conjecture [46, 93, 149]. As already mentioned, crossings of
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edges play an important role in the Erdős-Szekeres questions, as for a 4-gon
this reflects exactly the difference between a convex and a non-convex config-
uration; see also Section 2.3.1. Zarankiewicz’s conjecture is the two-colored
version of trying to minimize the number of crossings: Denote with Kn,m the
complete bipartite graph on n red and m blue vertices. Zarankiewicz pub-
lished a proof that the minimal number of crossings cr(n,m) in a drawing
of Kn,m is cr(n,m) = z(n,m), with

z(n,m) :=

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
m

2

⌋⌊
m− 1

2

⌋
.

To show cr(n,m) ≤ z(n,m), Zarankiewicz provided a straight-line draw-
ing of K(n,m) obtaining z(n,m) crossings. Unfortunately, the proof of
cr(n,m) ≥ z(n,m) contained an error and thus the statement changed from
Zarankiewicz’s theorem to Zarankiewicz’s conjecture.

In the second part of this chapter, we work on restricted versions of the
Zarankiewicz Conjecture, where (1) we confine the setting to straight-line
drawings and (2) require linear separability of the red and blue point set
in the drawing. But although we obtained several interesting relations, the
main question remains unsettled even in these weaker cases.

A trivial but immanent fact concerning the research of the crossing num-
ber is that, as soon as the number of edges relative to the number of points
(of each color class) is large enough, crossings in the complete (bipartite)
graph are unavoidable. In the third part of this chapter, we change focus to
the other end of the range and investigate compatible crossing-free graphs
on bichromatic point sets. Abellanas et al. [20] show bounds on how many
edges a compatible matching for an (uncolored) graph of a certain class can
admit at least.

In Section 3.3, we consider the existence of (different kinds of) matchings
for given bichromatic graphs. For several classes of graphs we provide upper
and lower bounds for the numbers of edges that can always be obtained
by such matchings. For example, we show that every bichromatic perfect
matching with n edges admits a bichromatic disjoint compatible matching
with at least dn−1

2 e edges and that there exist bichromatic perfect matchings
for which any such compatible matching has at most 3n

4 edges.

The results of Section 3.1 have been presented before [26, 24] and are
published in [27]. The results of Section 3.2 have been obtained during
several research weeks [21, 12]. Preliminary results can be found in [28,
120]. Research for Section 3.3 was started during the i-Math Winter School:
DocCourse on Discrete and Computational Geometry [103].
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3.1. MONOCHROMATIC 4-HOLES

3.1 Large bichromatic point sets admit monochro-
matic 4-holes

In the last chapter we considered problems on the existence and number of
k-gons and k-holes in point sets. In this section we will focus on a variation
of this topic where the point sets are colored and the k-holes are monochro-
matic.

Recall the following questions raised by Erdős (see Section 2.1 for back-
ground and results): “What is the smallest integer h(k) such that any set of
h(k) points in the plane contains at least one convex k-hole? And what is
the least number hk(n) of convex k-holes determined by any set of n points
in the plane?”

Devillers et al. [66] introduced several variations on these questions for
colored point sets. In particular, he asked for the existence and number of
convex monochromatic k-holes in l-chromatic point sets.

Concerning the case l = 2, in [66] the authors proved that any bi-
chromatic set of n points in the plane determines at least dn4 e − 2 mono-
chromatic empty triangles (3-holes) with pairwise disjoint interiors, which
is tight. Later it was shown in [13] that any bichromatic set of n points con-
tains at least Ω(n5/4) monochromatic 3-holes (no disjointness is required),
which then has been improved to Ω(n4/3) [124]. It is conjectured [13, 14] that
any bichromatic set of n points in R2 in general position spans a quadratic
number of monochromatic 3-holes. For values of k larger than 3, Devillers
et al. show that for k ≥ 5 and any n there are bichromatic sets of n points
where no convex monochromatic k-hole exists (Theorem 3.4 in [66]).

It is natural to wonder whether similar results are possible when there are
more than two colors. In [66] (Theorem 3.3) this question has been settled
by showing that already for three colors there are sets not even spanning
any monochromatic 3-hole.

Hence, the interesting remaining case is the existence of (convex) mono-
chromatic 4-holes in bichromatic point sets. Figure 3.1 shows a set with 18
points which does not contain a convex monochromatic 4-hole, and larger
examples with 20 [52], 30 [85], 32 [92], and most recently 36 [101], points
have been found. However, all these examples do contain non-convex mono-
chromatic 4-holes, while the one in Figure 3.1 does not.

Note that every point set that admits a convex heptahole contains a con-
vex monochromatic 4-hole for any bicoloration, because at least four of the
vertices of the heptahole have the same color. Moreover, it is known that for
n ≥ 64, any bichromatic Horton set contains convex monochromatic 4-holes.
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Figure 3.1: Example without monochromatic 4-holes.

These facts led to Conjecture 3.1 in [66], which states that for sufficiently
large n any bichromatic set contains at least one convex monochromatic
4-hole.

For quite some time, this conjecture was even open for 4-holes which are
not required to be convex, a weaker version that arose later [102, 122], as
no progress for the original question had been obtained.1 As an important
step towards solving the initial problem we show that this relaxed version
of the conjecture is true: if the cardinality of the bichromatic point set S
is sufficiently large, there is always a (possibly non-convex) monochromatic
4-hole spanned by S. To this aim, we first prove several sufficient conditions
and then show that for large point sets at least one of them must hold.

Throughout this section, if S = R∪B is a two-color partition of a point
set, then we also write S = (R,B), where R is the set of red points and B
the set of blue points, respectively, with r = |R|, b = |B|, n = r + b, and
r, b ≥ 0.

Recall that we denote with CH(S) the convex hull of S, with h the
number of points of S on the boundary of CH(S), and with i = n − h the
number of interior points of S. Similarly we define hr = |∂ CH(R) ∩R| and
ir = r−hr for the red set, as well as hb = |∂ CH(B)∩B| and ib = b−hb for
the blue set.

3.1.1 Preliminaries on uncolored point sets

Let us start with a result on triangulations for (uncolored) point sets which
is of interest on its own.

1This weaker form of the 4-hole conjecture was probably first proposed and popularized
for many years by J. Pach.
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Lemma 3.1. Let S be a set of n points in general position in the plane, and
let π be a fixed parity (even or odd). Then there exists a triangulation T (S)
of S such that the parity of the degrees in T (S) of at least 2bn−1

4 c points
from S is π.

Proof. Let us assume that all the points in S have different abscissa, which
is always possible for a suitable choice of the coordinate system. Consider
the points of S being sorted in x-order and group them into sets of five
consecutive points such that two neighboring groups have one point in com-
mon. Each of the bn−1

4 c groups admits a convex 4-hole. Let Q be this set of
4-holes and note that two 4-holes in Q are interior disjoint and share at most
one point of S but no edge. Each of these 4-holes can either be isolated from
the others, not sharing a point with any other 4-hole of Q, or connected to
a chain of 4-holes from Q. Moreover, from the x-sorting of the groups it
follows that chains of 4-holes in Q cannot close a cycle.

Draw the 4-holes of Q and complete them arbitrarily to an initial tri-
angulation T (S) of S by adding edges. For the remainder of the proof the
parity of a point p ∈ S always refers to the parity of the degree of p in the
current triangulation T (S), which we are updating whenever necessary. Our
goal is to show that we can assign two points of S with parity π to each
4-hole in Q. First note that flipping the diagonal inside a convex 4-hole,
i.e., exchanging it with the second diagonal, changes the parity of all four
involved points; hence, if we have t, 0 ≤ t ≤ 4, points of parity π before the
flip, then we get 4− t afterwards.

For isolated 4-holes it is straightforward to obtain at least two points of
parity π. Thus consider a chain of 4-holes in Q. By processing the 4-holes in
the chain from left to right we assign to each 4-hole q two points of parity π
not using the rightmost point of q. We will call this rightmost point the
“connecting” point of the 4-hole. If, after a possible diagonal flip in q, the
number of points with parity π in q is at least three, we choose two non-
connecting points. Otherwise we can always flip the diagonal of q in such a
way that the two points with parity π do not include the connecting point.
As the connecting point is the only element that two 4-holes in the chain
might share, the given order allows us to consider the 4-holes independently,
meaning without having to take care of restrictions imposed by previous
assignments. Therefore we have assigned two different points of parity π
to each 4-hole in Q, and we obtain a total of at least 2bn−1

4 c points with
parity π.

For odd parity the preceding result can be slightly strengthened to a
lower bound of n−1

2 by considering unused interior points and a case analysis
of small sets. As the improvement is marginal, and we believe that a much
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better result is possible, we skip the details and instead formulate the fol-
lowing problem.

Open problem 3.2. What is the maximum value of a constant c such that
for any set S of n points in general position there exists a triangulation T (S)
in which at least cn− o(n) points of S have odd (or even) degree?

Remark. Since the preparation of the final version of the paper [27]
which contains the results of this section, the bound of Lemma 3.1 has
been improved to guarantee 10

⌊
n
13

⌋
− 2 points with odd degree; see [25].

This improvement does not change our principle approach. In the following
sections we will use this new bound in order to provide an up-to-date version
of the results.

We now consider a fixed triangulation T (S) of S and give lower bounds
of how many triangles of T (S) have to be “pierced” (meaning that they
contain an obstacle in their interior) so that T (S) does not contain any
unpierced (i.e., empty) 4-gons. We will see that the number #odd of points
of S with odd degree in T (S) will play a central role.

Lemma 3.3. If for a triangulation T (S) the number of pierced triangles is
less than n+ #odd−4h−6

6 , then there exists an unpierced 4-gon in T (S).

Proof. Any two adjacent triangles form a 4-gon and at least one of these
triangles has to be pierced to prevent unpierced 4-gons. Thus if we consider
for a point p ∈ S all triangles of T (S) incident to p in cyclic order, then
every other of these triangles has to be pierced. So if p is an interior point
of S, then we need to pierce at least d δ(p)2 e incident triangles of p, and if p is

an extremal point of S, then at least d δ(p)2 e − 1, where δ(p) is the degree of
p in T (S). Note that here points with odd parity contribute a bigger share,
as, for example, for inner points, two adjacent triangles have to get pierced.

Using this observation and summing up over all points of S, we over
count each piercing at most three times, once for each corner of a triangle.
So let SE be the set of points with even edge degree in T (S), and let SO be
the set of points with odd edge degree in T (S), respectively. Assuming that
there is no unpierced 4-gon in T (S), we get the following as a lower bound
for the number of piercings:

∑
p∈S

⌈
δ(p)

2

⌉
− h

3
=

∑
p∈SE

δ(p)
2 +

∑
p∈SO

δ(p)+1
2 − h

3
=

∑
p∈S

δ(p)
2 + #odd

2 − h

3

= n+
#odd − 4h− 6

6
.
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The last equality stems from the fact that
∑

p∈S
δ(p)

2 is the number of
edges in T (S), and thus 3n− h− 3 by Euler’s formula.

3.1.2 Bichromatic sets with small convex hulls

Now let S = (R,B) be a bichromatic set. We will triangulate R and use the
results of the previous section to get bounds for piercing the resulting red
quadrilaterals with blue points from B. From Lemma 3.3 we immediately
get the following.

Lemma 3.4. Let S = (R,B) be a bichromatic point set, and let T (R) be a
triangulation of R. With #odd(R) we denote the number of points of R with

odd edge degree in T (R). If b < r +
#odd(R)−4hr−6

6 , then there exists at least
one red 4-hole consisting of two adjacent triangles in T (R).

A consequence of Lemma 3.4 is a relation between the number of points
in R of odd degree in T (R) and the size of the convex hull of R. Namely,
if #odd(R) > 4hr + 6 − 6(r − b), then there exists at least one red 4-hole in
the triangulation T (R). We can now combine this fact with the choice of an
appropriate triangulation T (R), with #odd(R) ≥ 10

⌊
r
13

⌋
−2, whose existence

is proven in Proposition 2 in [25], and we get the following.

Proposition 3.5. Let S = (R,B) be a bichromatic point set. If

hr <
5
⌊
r
13

⌋
− 4

2
+

3

2
(r − b),

then S contains at least one red 4-hole.

Note that for this result the roles of R and B can of course be switched.
Proposition 3.5 also shows that the worst case occurs if R and B have the
same cardinality. In this case, or more generally for r ≥ b, we can simplify
the bound to hr <

5r−8
26 −4. In particular, this proves that if the convex hull

of the larger subset has sub-linear size, we immediately get a monochromatic
4-hole.

3.1.3 Bichromatic sets with large discrepancy

In this section we consider the case that the cardinalities of the red set and
the blue set differ significantly. As a first step we generalize a result of
Sakai and Urrutia [133] on convex monochromatic 4-holes to simple but not
necessarily convex 4-holes.
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Lemma 3.6. If in a bichromatic point set r ≥ 3
2b + 4, then there exists at

least one red 4-hole in R.

Proof. The proof is based on induction over b and is similar to the proof
given in [133].

Induction base. The case b = 0 with r ≥ 4 is trivially true. For b = 1
we have r ≥ 6 as r ∈ N. Fix one extremal point p ∈ R and sort R \ {p}
around p. Connecting the points of R \ {p} in their order around p and
to p results in at least four red triangles. As only one of these triangles
can be pierced by the only blue point, there exist at least two neighboring
unpierced triangles and thus at least one red 4-hole in R.

Induction step b → b + 1. Let b ≥ 2. Consider the supporting line l
through an edge of CH(B). Exactly two points of B lie on l. The remaining
b′ = b − 2 points of B lie on one side of l, say to the right. If more than
three points of R lie to the left of l, then they span at least one red 4-hole
in R. Otherwise we can apply induction on the b′ + r′ points to the right of
l because r′ ≥ r − 3 ≥ 3

2b+ 4− 3 = 3
2 (b′ + 2) + 4− 3 = 3

2b
′ + 4.

Let us recall that for a point set with an even number of extreme points,
a quadrangulation is a maximal planar bipartite graph. If the size of the
convex hull is odd, we allow one triangle. The number of 4-gons in a quad-
rangulation of a point set is given in the next observation in terms of n and
h, a fact that will be used in Lemma 3.8. For more details and a proof see,
e.g., [10].

Observation 3.7. A quadrangulation Q(S) on a point set S with n points
and h extreme points contains n−

⌈
h
2

⌉
− 1 (empty) 4-gons.

Note that Lemma 3.6 can be rephrased in the form that b
r−4 > 2

3 is a
necessary condition for S to not contain any monochromatic 4-holes. In
combination with Observation 3.7 this leads to an interesting iterative rela-
tion between the size of a set S = (R,B) not containing a monochromatic
4-hole and the maximum discrepancy between R and B.

We are now ready to show that for sets with sufficiently large cardinal-
ity the factor of discrepancy has to be arbitrarily small in order to avoid
monochromatic 4-holes.

Lemma 3.8. For k ∈ N, k ≥ 4, let f(k) = 4
3k(2k − 1) and g(k) = k

k+2 .
Every bichromatic set S = (R,B) with |R| = r ≥ f(k), |B| = b ≤ (r−4)g(k)
contains at least one monochromatic 4-hole.
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S

R

Bi
Ri

Figure 3.2: Red and blue layers in the proof of Lemma 3.8.

Proof. The lemma can be rephrased in the form that for S = (R,B)
with |R| = r ≥ f(k) and |B| = b we have

b

r − 4
> g(k) (3.1)

as a necessary condition for S to not contain a monochromatic 4-hole. We
will prove this by induction over k.

Induction base. For the case k = 4 we have f(k) = 112
3 and g(k) = 2

3 .
This is equivalent to Lemma 3.6 with the additional restriction of r ≥ 38.

Induction step k → k + 1. For k ≥ 4 consider a set S = (R,B) with
r ≥ f(k + 1), and assume that S does not contain a monochromatic 4-hole.
Let bi be the cardinality of the set Bi ⊆ B of blue points in the interior
of CH(R), and let ri be the cardinality of the set Ri ⊆ R of red points in
the interior of CH(Bi); see Figure 3.2.

As r ≥ f(k + 1) > f(k), we can apply the induction hypothesis (3.1) to
the set (R,Bi). Note that blue points of B \ Bi would not interfere with
4-holes in (R,Bi), as they are outside CH(R). Thus we get the bound

bi >
k

k + 2
(r − 4) ≥ k

k + 2
(f(k + 1)− 4)

=
k

k + 2

(
4

3
(k + 1)(2k + 1)− 4

)

= · · · =
4

3
k(2k − 1) = f(k).
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Repeating the argument, we can thus apply the induction hypothe-
sis (3.1) to the set (Bi, Ri) and get

ri >
k

k + 2
(bi − 4) . (3.2)

Let α = bi
r−4 and thus bi = α(r − 4). By inserting this relation for bi

into (3.2), the inequation is rewritten as

ri >
k

k + 2
(α(r − 4)− 4) = α

k(r − 4)

k + 2
− 4k

k + 2
. (3.3)

Putting a quadrangulation on R, we use Observation 3.7 to obtain a neces-
sary condition on α(r − 4) for S to not contain a red 4-hole:

α(r − 4) = bi ≥ r −
⌈
r − ir

2

⌉
− 1 ≥ r

2
+
ir
2
− 2 ≥ r

2
+
ri
2
− 2. (3.4)

Inserting the lower bound (3.3) for ri into (3.4), we get

α(r − 4) >
r

2
+

1

2

(
α
k(r − 4)

(k + 2)
− 4k

(k + 2)

)
− 2.

Using that k ≥ 4 and thus r ≥ f(k+ 1) ≥ 60, standard manipulation shows
that this is equivalent to

α >
k + 2

k + 4
− 4k

(k + 4)(r − 4)

as a necessary condition such that S does not contain a red 4-hole. As
r ≥ f(k + 1) ≥ 2(k + 1)(k + 2), this implies that

α >
k + 1

k + 3
(3.5)

has to hold. Relation (3.5) holds for any fixed set S with r ≥ f(k + 1), and
as B ⊇ Bi we have b ≥ bi, which consequently completes the induction step:

b

r − 4
≥ bi
r − 4

= α >
k + 1

k + 3
= g(k + 1). �

3.1.4 Putting things together

As a consequence of Lemma 3.8 we derive a lower bound on the number of
extreme points of the red set, which guarantees the existence of 4-holes.

Lemma 3.9. For k ∈ N, k ≥ 4, let S = (R,B) be a set with at least

r ≥ 4
3(k + 1)(2k + 1) red points. Then hr ≥ r 2(2k+3)

(k+2)(k+3) + 8k
k+3 implies that

S contains a monochromatic 4-hole.
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Proof. Consider a set S = (R,B) with r ≥ 4
3(k+ 1)(2k+ 1). As in the proof

of Lemma 3.8, let bi be the cardinality of the set Bi ⊆ B of blue points in
the interior of CH(R), and let ri be the cardinality of the set Ri ⊆ R of red
points in the interior of CH(Bi); cf. Figure 3.2.

We apply Lemma 3.8 to (R,Bi) and k+ 1. If bi ≤ k+1
k+3 (r − 4), we have a

monochromatic 4-hole and we are done. So assume bi >
k+1
k+3 (r − 4) which,

together with the lower bound on r, implies that bi ≥ 4
3k(2k − 1). We can

thus now apply Lemma 3.8 to (Bi, Ri) (switching colors) and k. This implies
that ri >

k
k+2 (bi − 4), as otherwise we again have a monochromatic 4-hole

and are done.

Combining these two lower bounds for bi and ri, respectively, we obtain

ri >
k

k + 2

(
k + 1

k + 3
(r − 4)− 4

)
= r

k(k + 1)

(k + 2)(k + 3)
− 8

k

k + 3
. (3.6)

As hr = r − ir ≤ r − ri we can plug in relation (3.6) and get

hr < r
2(2k + 3)

(k + 2)(k + 3)
+

8k

k + 3

as a necessary condition such that S does not contain a monochromatic
4-hole, which proves the statement.

By combining the results of Proposition 3.5 and Lemma 3.9 we finally
obtain our main result.

Theorem 3.10. Every bichromatic set S = (R,B) with n ≥ 2079 points
contains a monochromatic 4-hole.

Proof. Without loss of generality, assume that r ≥ b. Moreover, from

Proposition 3.5 we know that hr <
5b r

13c−4

2 + 3
2(r − b) is sufficient to ob-

tain a monochromatic 4-hole. On the other hand, Lemma 3.9 provides
hr ≥ r 2(2k+3)

(k+2)(k+3) + 8k
k+3 for k ≥ 4 and r ≥ 4

3(k + 1)(2k + 1) as a second
sufficient condition. So if

5
⌊
r
13

⌋
− 4

2
≥ r 2(2k + 3)

(k + 2)(k + 3)
+

8k

k + 3
(3.7)

holds, then Theorem 3.10 follows. Using the inequation r ≥ 4
3(k+1)(2k+1)

it follows that inequation (3.7) is fulfilled for k ≥ 19, and thus for any set
with r ≥ 1040. In other words, for any set with n ≥ 2079 points.
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As already mentioned in Section 3.1.1, any set of n points admits a
triangulation in which at least 10

⌊
n
13

⌋
−2 points have odd vertex degree [25],

which is one ingredient for proving the lower bound of 2079 for the required
number of points in Theorem 3.10. Note that even if we were able to find
a triangulation which guarantees all points to have odd degree, the lower
bound on the cardinality of the point set in Theorem 3.10 still would be
1159.

3.1.5 Discussion

We have shown that every sufficiently large bichromatic point set contains
monochromatic 4-holes. In combination with the result in [25] this yields an
upper bound of 2079 points needed to guarantee the existence of monochro-
matic 4-holes. At the other extreme, we know that for n ≤ 18 points there
exist bichromatic point sets without any monochromatic 4-holes. It would
be nice to close this rather large gap between 18 and 2079.

Of course, the most challenging open question is the initial conjecture
for convex monochromatic 4-holes. It seems that the techniques used in our
approach cannot be generalized to the convex case, as convexity invalidates
several of our lemmas and intermediate results.

It would also be interesting to establish a 3D version of these results for
hexahedra consisting of two tetrahedra sharing a face. Let us recall in this
respect that Urrutia [143] proved that in any four-colored point set in R3 in
general position there is at least one empty monochromatic tetrahedron (in
fact, a linear number of them).

Let us finally mention again Open Problem 3.2, which asks what is the
maximum constant c such that for any point set there always exists a trian-
gulation where cn− o(n) points have odd (or even) degree. More generally,
the question might be stated for any predefined parity assignment; see [25]
for more details.
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3.2 Zarankiewicz’s conjecture

Continuing with bichromatic point sets and 4-gons, we now investigate non-
monochromatic 4-tuples of points which have two points of each color. The
question of this section goes back to the Hungarian mathematician Paul
Turán, who had to work in a brick factory during World War II.

Problem 3.11 (The Brick Factory Problem [141]). Assume there are n kilns
and m storage yards in a brick factory. Further, assume that every kiln is
connected to every storage yard by rail. What is the minimum number of
crossings of the rail tracks?

In the following we assume that in a (general) drawing of a graph G, the
vertices are represented as points in the the Euclidean plane, and the edges
are represented as non self-intersecting continuous curves that do not have
any vertices in their interior. Further we assume that any two edges of G
share at most a finite number of points and that they cross at each such
point.

Recall that the rectilinear crossing number cr(G) of a graph G is the
minimum of the number of crossings in any straight-line drawing of G. Ac-
cordingly, the crossing number cr(G) of G is the minimum of the number
of crossings in any (general) drawing of G (more exactly, the sum over all
pairs e, e′ of edges of crossings between e and e′). Trivially, cr(G) ≤ cr(G).

A graph G is called bipartite if its vertex set can be partitioned into two
independent subsets V1 and V2, meaning that neither V1 nor V2 spans any
edge of G The complete bipartite graph Kn,m contains an edge pq for all
pairs of vertices p, q with p ∈ V1 and q ∈ V2.

With these definitions, Turán’s problem can be reformulated as searching
for the crossing number of the complete bipartite graph Kn,m, which we
denote by cr(n,m). Similarly, we denote the rectilinear crossing number
of Kn,m by cr(n,m).

In the 1950’s, K. Zarankiewicz [148, 149] and K. Urbanik [142] indepen-
dently proposed the same solution, both claiming the searched minimum
cr(n,m) to be equal to z(n,m), with

z(n,m) =

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
m

2

⌋⌊
m− 1

2

⌋
.

For a while, this was known as Zarankiewicz’s theorem. But some years
later, Kainen and Ringel found an error in the proof for the lower bound
z(n,m) ≤ cr(n,m) (see Guy [93]), and thus the statement was changed to
Zarankiewicz’s conjecture.
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Conjecture 3.12 (Zarankiewicz’s conjecture). The crossing number of the
complete bipartite graph Kn,m is cr(n,m) = z(n,m).

Although many people have been working on this conjecture, still surpris-
ingly little is known. Kleitman [110] showed that it is true for min{n,m} ≤
6. Woodall [147] proved it for n ≤ 8 and m ≤ 10, and from cr(n,m) =
z(n,m) for some odd n it follows that also cr(n+ 1,m) = z(n+ 1,m).

Concerning lower bounds of cr(n,m), Kleitman’s result for cr(5,m) to-
gether with some simple arguments implies cr(n,m) ≥ 0.8 · z(n,m); see for
example [61]. The latest asymptotic lower bound is by de Klerk et al. [62]
who showed that

lim
n,m→∞

cr(n,m)

z(n,m)
≥ 0.8594,

by this improving the previously best known bound of 0.83 for the same
value [61].

Finally, the upper bound cr(n,m) ≤ z(n,m) is from the original proof
of Zarankiewicz, by a construction containing z(n,m) crossings. The con-
struction is surprisingly simple and yields straight-line drawings like the one
illustrated in Figure 3.3. In this Zarankiewicz cross C(n,m), the n indepen-
dent vertices are placed on the x-axis (half of them on the positive part and
the rest on the negative part), and the m independent vertices are placed
on the y-axis (again half of them on the positive part and the other half on
the negative part).

Figure 3.3: The Zarankiewicz cross C(10, 8).

We know by Fáry [83] that any planar graph G also admits a plane
straight-line drawing in the Euclidean plane. In other words, cr(G) = 0
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implies cr(G) = 0. Bienstock and Dean have shown that the same is true
for any graph with cr(G) ≤ 3 [48]. To the contrary, in the same paper
they prove that there are classes of graphs with cr(G) = 4 but arbitrarily
large rectilinear crossing number, implying that for any cr(G) ≥ 4, the ratio
cr(G)/ cr(G) might be unbounded. For the complete graph Kn, Blažek and
Koman [50] showed that cr(n) ≤ 0.375

(
n
4

)
, while Ábrego et al. [3] proved

cr(n) ≥ 0.379972
(
n
4

)
. Together this implies that for sufficiently large n,

cr(n) is significantly larger than cr(n).

Interestingly, Zarankiewicz’s conjecture – if being true – would imply
that for the complete bipartite graph the rectilinear crossing number would
be equal to the (general) crossing number, obtained by the configuration
from Figure 3.3.

As the original conjecture from Zarankiewicz is by now open since more
than fifty years, it seems natural to restrict considerations to the (hopefully)
simpler case of straight-line drawings.

3.2.1 Combinatorial types of 4-tuples and directed edges

In the following we draw Kn,m with a bichromatic vertex set S = R ∪ B
such that the red set R and the blue set B are the two independent sets of
Kn,m, with |R| = n and |B| = m, respectively. Instead of R∪B we also write
(R,B). For the sake of brevity, we sometimes denote the number of crossings
in a straight-line representation of Kn,m with vertex set (R,B) as number
of crossings of (R,B). For distinguishing between crossing and non-crossing
edges in a straight-line representation of Kn,m, we assume that no point
of S lies on the supporting line of any edge, and thus of any bichromatic
segment spanned by S. Note that it is not necessary that the points of S are
in general position. Especially, we need not care about collinearities among
only red points or only blue points (cf. Figure 3.3).

A pair of possibly crossing edges of Kn,m is spanned by four points of S,
two red and two blue ones. From a combinatorial point of view, there are
exactly four different combinatorial types of such 4-tuples: The points can
form a convex 4-gon with two possibilities of color arrangements, or they
can form a triangle with a red or blue point in the center. Figure 3.4 shows
these 4-tuples.

Note that the first configuration in Figure 3.4 contains a crossing, while
the other three configurations are plane. For simplicity, we use the following
pictograms of these configurations for the numbers of the according 4-tuples
in a point set S, as well as for the according types of configurations.

•
•
•
•

•
•
•
•

•
•• •

•
•• •
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Figure 3.4: The four combinatorially different types of 4-tuples for two blue
and two red points

If it is not clear which point set we are considering, we might also make it
explicit by writing

•
•• •(R,B). Note that ••

•
•(R,B) = cr(R,B).

In order to count 4-tuples, we investigate several types of segments
spanned by points of S. A red edge is a directed segment defined by two red
points of S. Similarly, a blue edge is a directed segment with two blue points
of S as endpoints; see Figure 3.5. Note that, if S is not in general position,
red edges might contain other red points in their interior. Likewise, blue
edges might contain additional blue points. But by assumption, no blue
point can lie on a line spanned by two red points, and vice versa.

Figure 3.5: Monochromatic and bichromatic (black :-) edges in a point set
S = (R,B) with |R| = 15 and |B| = 16.

If a red edge ~pq has exactly j blue points on the right side of (the directed
supporting line of) ~pq then it is called a red j-edge. For example, Figure 3.5
contains a red 0-edge and a red 2-edge. As no blue point can lie on the
supporting line of ~pq, (m−j) blue points lie on the other side of ~pq. Thus,
inverting the direction of a red j-edge results in a red (m− j)-edge. We
denote the number of red j-edges in a point set S by ejr. If for a red j-edge,
j equals bm2 c or dm2 e, then the supporting line of ~pq partitions B into two
subsets of (nearly) the same size. In this case we say that ~pq halves B or
that ~pq spans a halving line of B.

Accordingly, we call a blue edge ~pq with exactly k red points to the
right of (the directed supporting line of) ~pq a blue k-edge, and denote their
number by ekb . A blue k-edge is said to halve the red set if k ∈

{
bn2 c, dn2 e

}
.

Figure 3.5 contains a blue 8-edge which halves the red set of cardinality 15.
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Last but not least, a bichromatic edge is a directed segment ~pq with one
blue and one red endpoint (we do not care whether the segment is directed
from the red to the blue point, or vice versa). If such an edge has exactly k
red and j blue points on the right side, it is called a bichromatic (k, j)-edge.
As no additional point can lie on the supporting line of ~pq, exactly (n−k−1)
red and (m−j−1) blue points lie on the other side. We denote the number
of bichromatic (k, j)-edges by gk,j .

But why do these types of edges help us count configurations of 4-tuples?
Consider for example a red j-edge ~pq. Any choice of two blue points from
one side of ~pq together with ~pq gives either a convex 4-tuple of type ••

•
• ,

or a non-convex 4-tuple of type
•
•• • . As every such 4-tuple can uniquely be

identified with ~pq, summing up over all j-edges for 0 ≤ j ≤ m gives exactly
all 4-tuples of types

•
•• • and ••

•
• .

•
•
•
• +

•
•• • =

m∑

j=0

ejr ·
(
j

2

)

Alternatively, again considering a red j-edge, any choice of one blue point
from the right and one blue point from the left side gives either a convex
4-tuple of type ••

•
• or a non-convex 4-tuple of type

•
•• • . As each such 4-tuple

occurs for exactly one pair of red points, and thus exactly two red edges, we
obtain

2 · ••
•
• + 2 ·

•
•• • =

m∑

j=0

ejr · j · (m− j).

Using the same arguments, summing up over blue k-edges yields bounds
for ••

•
• +

•
•• • and 2 · ••

•
• + 2 ·

•
•• • , respectively.

Considering a bichromatic (k, j)-edge ~pq, we can choose a blue and a red
point from the right side of ~pq. This might yield any of the four possible
configurations of 4-tuples, but when summing up, the situation changes.
The reason is that a tuple of type ••

•
• is encountered by each of the four

bichromatic edges on its convex hull, while all other tuples have only two
such edges and are thus counted only twice. This results in

2 · ••
•
• + 4 · ••

•
• + 2 ·

•
•• • + 2 ·

•
•• • =

m−1∑

j=0

n−1∑

k=0

gk,j · k · j.

The second possibility for counting based on bichromatic edges is choos-
ing a red point from the right side and a blue point from the left side of a
bichromatic edge. This might result in any configuration but ••

•
• . and any

83



CHAPTER 3. BICHROMATIC POINT SETS

possible configuration is again counted twice (once for each interior bichro-
matic edge of the configuration where the other red point lies on the right
side).

2· ••
•
•+2·

•
•• •+2·

•
•• • =

m−1∑

j=0

n−1∑

k=0

gk,j ·k·(m−1−j) =
m−1∑

j=0

n−1∑

k=0

gk,j ·k·(n−1−k).

Table 3.1 summarizes all obtained relations. It provides an easy to read
overview with which multiplicity the different types of configurations are
counted in each relation. Additionally, it contains the sum over all four
types of configurations, which simply gives all possibilities to choose two red
and two blue points from S.

•
•• •

•
•• •

•
•
•
•
•
•
•
•

(I) 1 1 1 1
(
n

2

)
·
(
m

2

)

(II) 1 0 0 1

m∑

j=0

ejr ·
(
j

2

)

(III) 0 1 0 1
n∑

k=0

ekb ·
(
k

2

)

(IV) 0 2 2 0

m∑

j=0

ejr · j · (m− j)

(V) 2 0 2 0
n∑

k=0

ekb · k · (n− k)

(VI) 2 2 4 2

m−1∑

j=0

n−1∑

k=0

gk,j · k · j

(VII) 2 2 0 2

m−1∑

j=0

n−1∑

k=0

gk,j · k · (m− 1− j) =

m−1∑

j=0

n−1∑

k=0

gk,j · (n− 1− k) · j

Table 3.1: Counting configurations of 4-tuples with two red and two blue
points in a bichromatic point set S = (R,B).
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Using Relation (I) from Table 3.1, we can rewrite the number of crossings
cr(R,B) = •

•
•
•(R,B) as

•
•
•
•(R,B) =

(
n

2

)
·
(
m

2

)
−

•
•• •(R,B)−

•
•• •(R,B)− ••

•
•(R,B).

Thus, minimizing the rectilinear crossing number is equivalent to maximiz-
ing the sum

•
•• •(R,B) +

•
•• •(R,B) + •

•
•
•(R,B). (3.8)

From Relation (IV) it follows that
•
•• •(R,B) + •

•
•
•(R,B) is maximized

if all red edges halve the blue set. Similarly, Relation (V) implies that
•
•• •(R,B)+ ••

•
•(R,B) is maximized if all blue edges halve the red set. Thus,

1

2
· (IV) +

1

2
· (V) =

•
•• •(R,B) +

•
•• •(R,B) + 2 · ••

•
•(R,B) (3.9)

is maximized by sets (R,B) where every monochromatic edge halves the set
of the other color. Note that this is for example the case in the Zarankiewicz
cross, and that the sum in (3.9) differs from the according sum for the
Zarankiewicz Conjecture in (3.8) only by the factor 2 for ••

•
•(R,B).

Combining different relations from Table 3.1, it also becomes possible
to calculate the rectilinear crossing number cr(R,B) = •

•
•
•(R,B) in terms

of the numbers of monochromatic and bichromatic edges. For example,
using Relations (II) and (III) for monochromatic edges together with Rela-
tion (VII) for monochromatic edges, we obtain ••

•
•(R,B) = 1

2(VII)− (II)−
(III), and thus

•
•
•
•(R,B) =

1

2

m−1∑

j=0

n−1∑

k=0

gk,j · (n− 1− k) · j −
m∑

j=0

ejr ·
(
j

2

)
−

n∑

k=0

ekb ·
(
k

2

)
.

Similarly, we can choose Relations (VI), (IV), and (V), obtaining

2 · ••
•
•(R,B) =

m−1∑

j=0

n−1∑

k=0

gk,j · k · j −
m∑

j=0

ejr · j · (m− j)−
n∑

k=0

ekb · k · (n− k).

Note that the Zarankiewicz cross maximizes the two negative terms in this
latter equation. If it would at the same time minimize the positive term,
this would proof the rectilinear version of Zarankiewicz’s conjecture. Unfor-
tunately this is not the case.

The following section contains one of the possible reasons why Zaran-
kiewicz’s conjecture is still open, and why minimizing the rectilinear crossing
number of the complete bipartite graph turns out to be not trivial either.
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3.2.2 Point configurations with cr(R,B) = z(n,m)

The Zarankiewicz cross C(n,m) has several special properties. It has the
same structure for both colors, a nice regular symmetric pattern, and strong
geometric and combinatorial properties. For example, as already mentioned
before, all monochromatic edges span halving lines for the point set of the
other color. While at a first glance it seems as if these properties are some-
how needed to obtain a small crossing number, in fact this is not at all the
case.

For example, bending the horizontal arms of the Zarankiewicz cross (i.e.,
slightly rotating them around the origin) as illustrated in Figures 3.6 and 3.7
destroys the halving property of many red edges. Depending on how exactly
the bend is done, ejr might be nonzero for all values 0 ≤ j ≤ m. The number
of ••

•
• -configurations decreases while the number of

•
•• • -configurations is

increased. However, the number of ••
•
• -configurations (and thus the number

of crossings) stays the same.

⌊
n
2

⌋

⌊
m
2

⌋

⌈
n
2

⌉
⌈
m
2

⌉

Figure 3.6: Point configuration of the stretched and bent Zarankiewicz cross:
several red edges do not anymore halve the blue set.

Figure 3.7: A stretched and bent Zarankiewicz cross with 10 red and 8 blue
vertices.
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While the example from Figure 3.7 is still rather close to the original
Zarankiewicz cross, the situation gets more involved in the next example.
Here, we additionally rotated the lower part of the blue set. Figures 3.8
and 3.9 show the principle of the point configuration and the resulting com-
plete bipartite graph. Again, the number of crossings remains unchanged.

⌊
m
2

⌋

⌈
n−2
4

⌉

⌈
m
2

⌉⌈
n−3
4

⌉

⌈
n
4

⌉

⌈
n−1
4

⌉

Figure 3.8: Point configuration for the bent cross with the lower blue part
rotated

Figure 3.9: Complete bipartite graph for the bent cross with the lower blue
part rotated

It turns out that the property of all blue edges halving the red set is not
necessary either. In the configuration shown in Figure 3.10, it can be seen
that the blue points in the lower part might be arranged such that no blue
edge from the above part to the below part remains halving. Moreover, both
red arms are bent once more. Figure 3.11 illustrates the according complete
bipartite graph. Despite all these changes the number of crossings is still
equal to z(n,m).

As a last example of this kind, Figure 3.12 illustrates that the red sets
need not be partitioned equally, and the blue points might as well be all
moved completely to one side. Depending on how the red points are par-
titioned, there might even be blue 0-edges. Altogether this yields a rather
asymmetric configuration which is shown for K10,8 in Figure 3.13. So let us
count crossings. Two blue points from the upper part form a crossing with
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any two red points from the right side as well as any two red points from
the left side. Similarly, two blue points from the lower part form a crossing
with any two red points above the lower blue line as well as any two red
points below this line. As the combination of one blue point from above and
one blue point from below does not induce any crossing, the total number
of crossings is still cr(R,B) = z(n,m).

⌊
m
2

⌋

⌈
n−2
4

⌉

⌈
m
2

⌉⌈
n−3
4

⌉

⌈
n
4

⌉

⌈
n−1
4

⌉

Figure 3.10: Point configuration where the red subsets are bent once more
and the lower blue subset is stretched.

Figure 3.11: Complete bipartite graph for the configuration from Fig-
ure 3.10.

⌊
m
2

⌋

k

⌈
m
2

⌉

k

⌈
n
2

⌉
−k

⌊
n
2

⌋
−k

Figure 3.12: Point configuration where red subsets are changed to be not
half at each side, and the lower blue set is moved to the side.
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Figure 3.13: straight-line K10,8 for the configuration from Figure 3.12.

Let us come back to the first example of this section, the bent Zarankiewicz
cross. Stretching it and further bending the red arms, we still obtain a con-
figuration having cr(R,B) = z(n,m); see Figures 3.14 and 3.15. But this
configuration now has a new special property: The sets R and B are lin-
early separated from each other, meaning that there exists a straight line l
such that R lies completely in one open half plane defined by l and B lies
completely in the other.

⌊
n
2

⌋

⌊
m
2

⌋

⌈
n
2

⌉

⌈
m
2

⌉

Figure 3.14: Point configuration for a variation of the Zarankiewicz cross
where R and B are linearly separated.

Figure 3.15: A linearly separated variation of the Zarankiewicz cross.

The bent Zarankiewicz cross is by far not the only linearly separated
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configuration obtaining crossing number z(n,m). Figure 3.16 shows a more
general configuration with the same property, for which Figure 3.17 illus-
trates a drawing of K10,8.

⌊
m
2

⌋

k

⌈
m
2

⌉

k

⌈
n
2

⌉
−k

⌊
n
2

⌋
−k

Figure 3.16: A more general linearly separated point configuration with
cr(R,B) = z(n,m).

Figure 3.17: A more general linearly separated point configuration with
cr(R,B) = z(n,m).
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Note that the property of linear separability of the two sets R and B
seems to be counter intuitive for crossing-minimizing rectilinear drawings of
Kn,m. In the next section we restrict the considered configurations to such
linearly separated point sets.

3.2.3 Linearly separable point sets

In this section, all considered point sets S = (R,B) have linearly separated
subsets R and B. Whenever we say linearly separated, we mean a separation
of R and B. Despite the fact that there exist such sets for which cr(R,B) =
z(n,m), they still have a property which is of special interest for us. Namely,
they cannot contain any 4-tuple of type ••

•
• . This drastically changes the

system of relations between the numbers of monochromatic and bichromatic
edges on the one hand, and the numbers of different 4-tuples on the other
hand. Table 3.2 contains the relations from Table 3.1 for linearly separated
sets.

•
•• •

•
•• •

•
•
•
•

(I) 1 1 1
(
n

2

)
·
(
m

2

)

(II) 1 0 1

m∑

j=0

ejr ·
(
j

2

)

(III) 0 1 1
n∑

k=0

ekb ·
(
k

2

)

(IV) 0 2 0

m∑

j=0

ejr · j · (m− j)

(V) 2 0 0
n∑

k=0

ekb · k · (n− k)

(VI) 2 2 2

m−1∑

j=0

n−1∑

k=0

gk,j · k · j

(VII) 2 2 2

m−1∑

j=0

n−1∑

k=0

gk,j · k · (m− 1− j)

Table 3.2: Counting configurations of 4-tuples with two red and two blue
points in a linearly separated bichromatic point set S = (R,B).
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While in the general case we needed the numbers of bichromatic edges
to express the number of crossings ••

•
• , this number can now be expressed

purely in terms of red j-edges and blue k-edges in several different ways.

(II) + (III)− (I) = 1 · ••
•
• =

m∑

j=0

ejr ·
(
j

2

)
+

n∑

k=0

ekb ·
(
k

2

)
−
(
n

2

)
·
(
m

2

)

2 · (I)− (IV)− (V) = 2 · ••
•
• =

(
n

2

)
·
(
m

2

)
−

m∑

j=0

ejr · j · (m− j)
(
n

2

)
·
(
m

2

)
−

n∑

k=0

ekb · k · (n− k)

2 · (II)− (V) = 2 · ••
•
• =

m∑

j=0

ejr ·
(
j

2

)
−

n∑

k=0

ekb · k · (n− k)

2 · (III)− (IV) = 2 · ••
•
• =

n∑

k=0

ekb ·
(
k

2

)
−

m∑

j=0

ejr · j · (m− j)

The last two of these equations might be interpreted as to show the asym-
metry of the separated Zarankiewicz cross.

The number of bichromatic (k, j)-edges turn out to not only be unneces-
sary for the calculation, but also trivial, as the considered sums simply give
all types of 4-tuples with the same multiplicity. The reason for this identity
is quite interesting.

Proposition 3.13. For every linearly separated set S = (R,B), and every
(k, j) with 0 ≤ j ≤ m−1 and 0 ≤ k ≤ n−1, there are exactly two (k, j)-edges.

Proof. For the beginning we assume that the points of R are in general
position. Consider an arbitrary value k with 0 ≤ k ≤ n− 1, and a directed
line l which goes through exactly one red point p and has k red points to
its right. We start rotating l clockwise around p. Whenever l hits a second
point of R, we change the anchor of the rotation to the newly hit point; see
Figure 3.18 for an illustration of this process. By this, whenever there is
only one point of R on l, l has exactly k points of R to the right, and after
one full rotation of 2π, we have encountered all possibilities for such lines.
This process is called k-rotation around R [79].

Note that the same principle can be applied if R has collinear points.
The only difference is that when a set of collinear points happens to lie on l,
then the new rotation anchor has to be chosen properly among these points
such that again k points lie to the right of l as soon as the rotation continues.

Now consider what happens with the blue set B during such a rotation
of l around R. Assume that, as illustrated in Figure 3.18, we start with a
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l1

l1,2

l2
l2,3l3

p2

p1

p3

Figure 3.18: 2-rotation around R. For better readability, the lines as well
as the rotation anchors are labeled in order of their appearance during the
rotation.

line l that has all points of B to its left. While l is rotating around R, one
after another of the points of B switches from the left side of l to its right
side. After a rotation of π, all points of B are to the right of l. Thus, we have
encountered exactly one bichromatic (k, j)-edge for each 0 ≤ j ≤ m− 1, all
of them directed from a red to a blue point. When continuing the rotation
until we have completed a full rotation, l passes each point of B once more,
by this encountering a bichromatic edge which is directed from blue to red.
In total we have collected exactly two (k, j)-edges for every combination of
j and k, one starting at a red point and one ending at a red point.

Let us come back to the number of crossings cr(R,B) = •
•
•
•(R,B). As

in the linearly separated case there are no convex 4-tuples of type ••
•
• , the

number of crossings is now equivalent to the number of convex 4-tuples
(with two red and two blue points). Thus, and by Relation (I), minimizing
the rectilinear crossing number is now equivalent to maximizing the sum
•
•• •(R,B) +

•
•• •(R,B) of all non-convex such 4-tuples.

Also, the sum of Relations (IV) and (V) now directly gives
•
•• •(R,B) +

•
•• •(R,B), implying that a linearly separated set where all red edges halve

the blue set and all blue edges halve the red set would minimize cr(n,m).
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Note that the separated Zarankiewicz cross from Figure 3.15 does not
fulfill the requirement of all monochromatic edges halving the set of the
other color. While all of its blue edges halve the red set, all the bn2 cdn2 e red
edges between the left and the right red subsets are 0-edges.

But what about other examples? In the following paragraphs we show
that, at least for n and m even, this approach is doomed to failure, as it is im-
possible to find a linearly separated set where the number of monochromatic
edges that halve the set of the other color is larger than in the separated
Zarankiewicz cross.

An upper bound on the number of monochromatic edges which
halve the set of the other color

LetHR = HR(R) be the straight-line graph with vertex set R which contains
an edge pq for every pair of points p, q ∈ R that spans a halving line for the
blue set B. We denote by hr ≤

(|R|
2

)
the number of edges in HR. Similarly,

let HB = HB(B) be the straight-line graph with vertex set B that has an
edge pq for every pair of points p, q ∈ B spanning a halving line for R, and
hb ≤

(|B|
2

)
the number of edges in HB. Further, denote the total number

edges in HR ∪HB by h = hr + hb.

Lemma 3.14. If |B| is even and C is a connected component of HR, then
all edges of C halve the blue set B “in the same way”, meaning that the
induced partition of B is identical among all edges of C.

Proof. Consider three arbitrary red points p, q, r ∈ C, and the partition of B
into Bl (left), Bc (center), and Br (right) which is caused by the supporting
lines of pq and pr (see Figure 3.19). Both pq and pr are halving B if and
only if Bc = ∅ and |Bl| = |Br|. Starting with an arbitrary edge of C and
repeatedly applying this argument, all edges of C have to split B into the
same two sets Bl and Br.

Lemma 3.15. Let |B| be even, and let C be a connected component of HR

whose edges split B into Bl and Br. Then for every blue edge ~pq with p ∈ Bl
and q ∈ Br, C lies completely on one side of (the supporting line of) ~pq.

Proof. Assume that there exists a blue edge ~pq with p ∈ Bl and q ∈ Br,
for which the supporting line l of ~pq cuts through C. As C is connected, l
also cuts through an edge xy ∈ C. Thus, p and q lie on the same side of
xy, which is a contradiction to the claim that all edges of C split B into Bl
and Br.
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q

p

Bl

Bc
Br

r

Figure 3.19: Two red halving lines pq and pr with their induced partitions
of the blue set B.

Theorem 3.16. If |R| = |B| = n is even, then the number of (directed)
monochromatic edges halving the set of the other color is at most

e
n
2
r + e

n
2
b ≤ 2 ·

(
n

2

)
+ 4 ·

(n
2

2

)
.

Proof. Let C = {Ci = Ci(Ri) : i = 1 . . . k} be the set of connected compo-
nents of HR, with vertex sets Ri,

⋃k
i=1Ri = R, and denote with hri the

number of edges in Ci. Further, let Cmax = Cmax(Rmax) ∈ C be a compo-
nent of HR with |Rmax| ≥ |Ri| ∀ i = 1 . . . k. We distinguish between two
cases with respect to the cardinality of Rmax.

Case 1. |Rmax| ≥ n
2 , meaning that Cmax contains more than half of all

the red points. Consider the partition (Bl, Br) of B that is induced by Cmax.
Then for any blue edge ~pq with p ∈ Bl and q ∈ Br, all points of Rmax lie on
the same side of ~pq, implying that ~pq does not halve R. Thus we obtain an
upper bound on the number of edges in the blue graph HB of

hb ≤
(|Bl|

2

)
+

(|Br|
2

)

As hr ≤
(|R|

2

)
, we obtain the following upper bound for the total number of

edges in HR ∪HB.

h = hr + hb ≤
(|R|

2

)
+

(|Bl|
2

)
+

(|Br|
2

)
=

(
n

2

)
+ 2 ·

(n
2

2

)
.
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Case 2. |Rmax| < n
2 , implying that |Ri| < n

2 for all components Ci(Ri)
of HR. This yields an upper bound on the number edges in HR of

hr =
∑

i=1...k

hri ≤
∑

i=1...k

(|Ri|
2

)
< 2 ·

( |R|
2

2

)
= 2 ·

(n
2

2

)
.

Thus, even under the assumption that the number of edges in HB is
(|B|

2

)
,

the total number of edges in HR ∪HB is still at most

h = hr + hb < 2 ·
(n

2

2

)
+

(
n

2

)
.

As any edge pq in HR∪HB induces exactly two directed monochromatic
edges which halve the set of the other color ( ~pq and ~qp), and as for every
such directed edge its undirected version is contained in HR∪HB, this gives
the desired result.

Before stating a corollary of Theorem 3.16 and Lemma 3.15, let us in-
troduce some more notation. Given a set S = R ∪ B, we call a (directed)
blue edge that is an i-edge for some i ≤ k a blue (≤k)-edge of S. Similarly,
a (directed) blue edge which is an i-edge for some i ≥ k is called blue (≥k)-
edge of S. We denote by e≤kb =

∑k
i=0 e

k
b the number of blue (≤k)-edges of

S, and by e≥kb =
∑|B|

i=k e
k
b be the number of blue (≥k)-edges of S. Of course,

according definitions can be made for red edges.

Corollary 3.17. Let |R| = |B| = n even, and consider again HR, its biggest
connected component Cmax (w.r.t. the number of vertices), and the partition
(Bl, Br) of B that is induced by Cmax. If Cmax contains n − k points, then
every pair of points p ∈ Bl and q ∈ Br spans a blue (≤k)-edge ( ~q, p) and a
blue (≥n−k)-edge ( ~p, q). Thus, we obtain

e≤kb = e≥n−kb ≥ n2

4
.

Note that in the linearly separated Zarankiewicz cross shown in Fig-
ure 3.15, the number of monochromatic edges which halve the set of the
other color is exactly the upper bound from Theorem 3.16. Moreover, all
its non-halving edges are zero-edges, which also immediately follows from
Corollary 3.17 (as HB is equal to the complete graph Kn and thus con-
nected).

Observation 3.18. The proof of Lemma 3.14 is strongly based on the fact
that B has an even number of points. If |B| is odd, then two red halving
edges that share an end point might as well split B into three sets Bl, Bc

96
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and Br, with |Bl| = |Br| and |Bc| = 1 (see again Figure 3.19). Moreover,
for a connected component C of HR, it is possible that at least half of the
edges of C split B differently. Figure 3.20 illustrates an example for this
situation.

Figure 3.20: Different induced partitions of a blue set with odd cardinality
by edges of one connected component of HR.

In the next section we switch back to non-separated drawings. We in-
vestigate the rectilinear crossing number of Kn,m for sets optimizing the
rectilinear crossing number of the complete graph. As we consider point
sets with cardinality |S| = n+m, we denote the complete graph by Kn+m,
and its crossing number by cr(n+m)

3.2.4 Point sets which optimize cr(n + m)

While to our knowledge there are no publications dedicated to the rectilinear
crossing number cr(n,m) of Kn,m [134], quite a lot of results are known for
the rectilinear crossing number cr(n + m) of the complete graph Kn+m;
see the recent survey [5]. For example, for small values of (n+m), point
configurations are known which reach the minimum cr(n+m) [4, 54]. These
sets differ strongly from the ones which are conjectured to optimize cr(n,m).

For these sets and fixed n and m, we calculated bicolorings R ∪ B that
result in minimized crossing numbers cr(R,B). Surprisingly, for some of
the sets we found bicolorings for which the number of crossings is not
more than in the according Zarankiewicz cross, i.e., cr(R,B) = z(n,m).
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Figures 3.21 and 3.22 illustrate the resulting complete bipartite graphs for
optimal colorings of two such sets.

2b

3b

4r

10b

1r

7r

5b
6r

15r

13r
12b

14b

11r

9r

8b

Figure 3.21: A drawing of K8,7 with cr(R,B) = z(8, 7) on a set S with
cr(S) = cr(15).

Table 3.3 shows an overview of the obtained results. Note that for the
listed results, at least one of the sets optimizing cr(n+m) admits a coloring
with that many crossings (and often by far not all of them). For larger
cardinality, there seem to be no more sets optimizing both cr(n + m) and
cr(n,m). This seems reasonable, as Kn,m only contains bichromatic edges,
while Kn+m also contains all the monochromatic edges. Sets that have
only few crossings for Kn+m also somehow have to minimize the number of
crossings in which monochromatic edges are involved, while in Kn,m these
do not appear anyhow.

Open problem 3.19. What are possible structures of “good” point sets,
and what are their essential properties? And what can be good heuristics to
find such sets?

In the following section we discuss a possible approach towards a solution
of this problem.
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Figure 3.22: A drawing of K9,9 with cr(R,B) = z(9, 9) on a set S with
cr(S) = cr(18). Exchanging the colors of vertices 15 and 16 gives the second
coloring with this property for this set.

n + m (n,m) z(n,m) cr(R,B) diff

5 (3,2) 0 0 0

6 (3,3) 1 1 0

7 (4,3) 2 2 0

8 (4,4) 4 4 0

9 (5,4) 8 8 0

10 (5,5) 16 16 0

11 (6,5) 24 24 0

12 (6,6) 36 38 +2

13 (7,6) 54 54 0

14 (7,7) 81 81 0

15 (8,7) 108 108 0

16 (8,8) 144 149 +5

17 (9,8) 192 192 0

n + m (n,m) z(n,m) cr(R,B) diff

18 (9,9) 256 256 0

19 (10,9) 320 322 +2

20 (10,10) 400 411 +11

21 (11,10) 500 507 +7

22 (11,11) 625 629 +4

23 (12,11) 750 760 +10

24 (12,12) 900 922 +22

25 (13,12) 1080 1099 +19

26 (13,13) 1296 1306 +10

27 (14,13) 1512 1532 +20

28 (14,14) 1764 1798 +34

29 (15,14) 2058 2090 +32

30 (15,15) 2401 2423 +21

Table 3.3: Minimal numbers of crossings cr(R,B) for sets minimizing the
rectilinear crossing number and thus having cr(S) = cr(n + m). The last
column contains the difference between z(n,m) and cr(R,B).

99



CHAPTER 3. BICHROMATIC POINT SETS

3.2.5 Crossing degrees

We continue with a different way to count crossings, namely per point. We
denote the number of crossings in which a point p ∈ S is involved, or, more
exactly, the number of crossings in which the edges incident to p are involved
as crossing degree xp(R,B) of p.

Note that by summing up over all crossing degrees of the points of one
color class, every crossing is counted exactly twice:

∑

r∈R
xr =

∑

b∈B
xb = 2 · cr(R,B)

This gives an average crossing degree of 2
n cr(R,B) for the red and 2

m cr(R,B)
for the blue points. If we delete a point p ∈ R, then the number of crossings
in the set is reduced by exactly xp(R,B).

cr(R\{p}, B) = cr(R,B)− xp(R,B).

Of course, an according relation holds for deleting a point p ∈ B. The next
proposition considers the contrary direction, namely adding a point to S.

Proposition 3.20 (Point Duplication). Consider a point p ∈ R with cross-
ing degree xp(R,B), a red point q very close2 to p such that pq is a halving
line of B. Then the number of crossings of the complete bipartite graph with
vertex set S′ = (R ∪ {p}, B) is

cr(R ∪ {p}, B) = cr(R,B) + xp(R,B) +

(⌊m
2

⌋

2

)
+

(⌈m
2

⌉

2

)

Proof. All cr(R,B) crossings induced by S are also induced by S′. Further,
the new point q is involved in all new crossings (the ones induced by S′ but
not by S). We divide these new crossings in two different groups and count
them separately.

The first group are crossings induced by S′ where p is not involved. As
q is very close to p, their number is identical to the number of crossings
induced by S where p is involved and thus xp(R,B).

The second group are crossing that are spanned by p and q (and two
blue points). Any choice of two blue points that are on different sides of pq

forms a non-convex 4-gon of type
•
•• • with p and q and thus no crossing.

2By “very close” we mean that the order type of S\{p} ∪ {q} is identical to the order
type of S
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As p and q are very close together, any choice of two blue points that are
on one side of pq forms a convex 4-gon of type ••

•
• with p and q and thus a

crossing. As pq is a halving line for the blue set, this gives
(bm2 c

2

)
+
(dm2 e

2

)

new crossings.

In order to obtain good sets, one way is to take good sets with (n−1) or
(n+1) red points and either duplicate a point with minimum crossing degree
or delete a point with maximum crossing degree.

Observation 3.21 (Duplicating a red point with minimum crossing degree).
Taking into account that the minimum crossing degree of a red point is at
most the average crossing degree 2

n ·cr(R,B), and duplicating the point p ∈ R
with minimum crossing degree among all points in R, the above equation
gives

cr(R′, B) ≤ n+ 2

n
· cr(R,B) +

(⌊m
2

⌋

2

)
+

(⌈m
2

⌉

2

)
.

Now assume that n is even and cr(R,B) = z(n,m). Then the right-hand
side of this inequation gives z(n+ 1,m), and thus

cr(R′, B) ≤ z(n+ 1,m)

with equality iff the crossing degrees of all red points are identical.

Adding a point to a Zarankiewicz cross such that the result is again a
Zarankiewicz cross is exactly duplicating a point with minimum crossing
degree. The crossing degrees of the Zarankiewicz cross C(n,m) can be ex-
plicitly calculated: Let R−, R+, B− and B+ be the red and blue sets of
the four arms of the cross, with |R−| =

⌊
n
2

⌋
, |R+| =

⌈
n
2

⌉
, |B−| =

⌊
m
2

⌋

and |B+| =
⌈
m
2

⌉
. Then the crossing degree of a vertex p only depends on

the subset to which it belongs. We define xCR−(n,m) := xp(C) for p ∈ R−.
Analogously, we define xCR+(n,m), xCB−(n,m), and xCB+(n,m). These cross-
ing degrees have the following values.

xCR−(n,m) =
(⌊n

2

⌋
− 1
)((⌊m

2

⌋

2

)
+

(⌈m
2

⌉

2

))

xCR+(n,m) =
(⌈n

2

⌉
− 1
)((⌊m

2

⌋

2

)
+

(⌈m
2

⌉

2

))

xCB−(n,m) =
(⌊m

2

⌋
− 1
)((⌊n

2

⌋

2

)
+

(⌈n
2

⌉

2

))

xCB+(n,m) =
(⌈m

2

⌉
− 1
)((⌊n

2

⌋

2

)
+

(⌈n
2

⌉

2

))

Note that if n is even, then in the Zarankiewicz cross all red points have the
same crossing degree xCR±(n,m) := xCR−(n,m) = xCR+(n,m). Likewise, if m
is even, the crossing degree of all blue points is xCB±(n,m).
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The crossing degrees of C(n,m) together with point duplication and
Observation 3.21 lead to some more observations on crossing properties of
optimal sets.

Observation 3.22 (Questioning Zarankiewicz’s conjecture). If there exists
a point set S = (R,B) and a point p ∈ R with xp(R,B) that fulfills one of
the following strict inequalities, then the Zarankiewicz Conjecture is wrong.

(1) xp(R,B) <
(⌊n

2

⌋
− 1
)((⌊m

2

⌋

2

)
+

(⌈m
2

⌉

2

))

(2) xp(R,B) >
(⌈n

2

⌉
− 1
)((⌊m

2

⌋

2

)
+

(⌈m
2

⌉

2

))

Observation 3.23 (Questioning Zarankiewicz’s conjecture for n even).
If there exists a set S = (R,B) with n even and cr(R,B) = z(n,m)

and at least two different crossing degrees among the red points, then the
Zarankiewicz Conjecture is false in general, and already for (n − 1,m) by
deleting a red point p with xp(R,B) > 2

n · cr(R,B).

If there exists a set S = (R,B) with m even and cr(R,B) = z(n,m)
and at least two different crossing degrees among the blue points, then the
Zarankiewicz Conjecture is false in general, and already for (n,m − 1) by
deleting a blue point p with xp(R,B) > 2

m · cr(R,B).

If the Zarankiewicz Conjecture is true, then in every optimal set the
following two conditions must hold:

(1) If n is even then the crossing degree has to be identical for all points
of R:

xp(R,B) =
2

n
· cr(R,B) =

2

n
· z(n,m) ∀p ∈ R.

(2) If m is even then the crossing degree has to be identical for all points
of B:

xp(R,B) =
2

m
· cr(R,B) =

2

m
· z(n,m) ∀p ∈ B.

Corollary 3.24. The first two statements in Observation 3.23 show that
if there exists a counter example to the rectilinear version of Zarankiewicz’s
conjecture for a combination (n,m) with n even (or m even), then there also
exists a counter example for (n− 1,m) (or (n,m− 1)).

Seen the other way round, if we already know that the rectilinear version
of Zarankiewicz’s conjecture is true for (n,m) with n odd (or m odd), then
it also has to be true for (n+ 1,m) (or (n,m+ 1)).
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Reconsider the point set S8,7 shown in Figure 3.21. All red points have
a crossing degree of 27 = xCR±(8, 7). As a consequence, point duplication
can be applied to any of the red points, in each case obtaining a (9,7)-set
with z(9, 7) = 144 crossings. None of the blue points has crossing degree
24 = xCB−(8, 7), so duplicating a blue point can only lead to (8,8)-sets with
more than z(8, 8) = 144 crossings.

1

9

9

7

7

4

4

6

11

411

1

9

9
7

6

7

4

1

2

1

1

2

1

2

1

1

21

1

2

1

2

1

1

1

Figure 3.23: The locations of additional red points. For better visualization
the additional points are drawn in green and in the correct relative direction,
but not at their exact position. The dotted lines indicate the according
halving lines.

Figure 3.23 roughly shows possible locations for additional (duplicated)
red points. Note that in every extension both the duplicated and the ad-
ditional point have (and must have) crossing degree 36 = xCR+(9, 7). The
change of the crossing degrees of the other points strongly varies for dif-
ferent duplication locations. If a resulting (9,7)-set has a red point p with
xp = 27 = xCR−(9, 7) or a blue point q with xq = 32 = xCB−(9, 7), then by
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duplicating the according point one obtains a (10,7)-set with z(10, 7) cross-
ings, or a (9,8)-set with z(9, 8) crossings, respectively. In the examples we
tried, the former occurred while the latter didn’t.

While in S8,7 from Figure 3.21 many points can be duplicated, and some
even simultaneously without obtaining a crossing degree larger than the
according Zarankiewicz number, this is not the case for the example in
Figure 3.22. Here the occurring minimum crossing degree is 52, obtained by
vertex 8. In the alternative coloring (obtained by exchanging the colors of
vertices 15 and 16), the according minimum is higher (54, for vertex 6). In
both configurations, none of the points reaches the value of xCB±(9, 9) = 48
which would be necessary to obtain a set S9,10 with cr(R,B) = z(9, 10).

One could pose the question whether or not duplicating a point with
minimum crossing degree is always an optimal way of extending a point set.
In general the answer is no: Consider once again the (9,9)-point set from
Figure 3.22. With the before-mentioned alternative coloring, it has maximal
crossing degree 62, obtained by vertex 1. Thus, by deleting this vertex we
obtain a non-optimal (9,8)-set with z(9, 8) + 2 crossings. As the minimum
crossing degree for a blue point in this set is 48, the best we can reach by
point duplication is a (9,9)-set with z(9, 9) + 2 crossings. So in this case it
is better to re-add vertex 1 than to duplicate a point.

Open problem 3.25 (Optimal positions for additional points). Is dupli-
cating a point with minimum crossing degree always an optimal way to add
a point to an “optimal” set (if the set has - at most - z(n,m) crossings)?
If no, what are properties of good positions for additional points? And what
might be good heuristics for finding such positions?

Maybe from good positions for points we can get ideas about better ways
of getting a point set that falsifies Zarankiewicz’s conjecture, or get more
insight about why it is true ...
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3.3 Compatible matchings for bichromatic plane
geometric graphs

For the last section of this chapter, we consider again straight-line graphs on
top of bichromatic point sets, but switch from graphs with many crossings
to the other end of the range, namely crossing-free graphs.

We consider bichromatic point sets S = R ∪ B where the red set R
and the blue set B have the same cardinality |R| = |B| = n. Similar to
the setting in Section 3.2, an edge spanned by two points of S is called
bichromatic if it has one red and one blue endpoint. A graph G(S) is called
bichromatic, if all its edges are bichromatic. Accordingly, an edge where
both endpoints have the same color is called monochromatic, and a graph
with only monochromatic edges is called monochromatic as well. Depending
on the color of the endpoints, a monochromatic edge is called red or blue,
respectively. If a graph G(S) has only red (blue) edges, we say that G(S) is
red (blue). In either of these cases, we also call G(S) purely monochromatic.

Recall that two plane graphs with the same vertex set S are compatible
if their union is again a plane graph and that they are disjoint if their
intersection does not contain any edge.

In the following we will consider exclusively plane straight-line graphs.
Thus, the terms plane and straight-line are omitted for the sake of brevity.

As also mentioned in Section 4.2.3, there exist several results on compat-
ible graphs, for bichromatic as well as for uncolored point sets. For example,
Aichholzer et al. [11] showed that any (uncolored) geometric matching with
n edges admits a compatible matching with approximately 4n

5 edges. They
also conjectured that for n even there always exists a compatible perfect
matching, a conjecture which Ishaque et al. [105] recently proved do be true.
In a similar direction (and as an inspiration for the results of this section),
Abellanas et al. [20] showed upper and lower bounds for how many edges a
compatible matching for a graph of a certain class can admit.

In a different work, Abellanas et al. [1] showed how many edges are
needed at least to augment an (uncolored) connected graph to a plane
2-vertex or 2-edge connected graph. According results on bichromatic graphs
have been obtained by Hurtado et al. [104], who also considered the question
of augmenting a (disconnected) bichromatic graph to be connected. Among
others, they provided an efficient algorithm for connecting a bichromatic per-
fect matching to a (valid bichromatic) spanning tree. Later, Hoffmann and
Tóth [97] extended this work, showing how to augment a perfect matching
to a (valid bichromatic) spanning tree with maximum vertex degree three.
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In this section we investigate the following question. Given a bichro-
matic graph G(S), we want to find a matching M(S) (of some type) that is
compatible with G(S). Following the lines of [20], we call such a matching
G(S)-compatible. Similarly, if M(S) is disjoint from G(S), we also say that
it is G(S)-disjoint. We consider four classes of G(S)-compatible matchings:

1. Bichromatic perfect matchings with a maximum number of edges not
in G(S)

2. BichromaticG(S)-disjoint matchings with a maximum number of edges

3. Monochromatic matchings with a maximum number of edges

4. Purely monochromatic matchings with a maximum number of edges

For a G(S)-compatible bichromatic matching M(S), we denote the num-
ber of edges in M(S) that are not in G(S) by d(G(S),M(S)), and the
total number edges in M(S) by e(G(S),M(S)). Further, we denote the
number of edges in a G(S)-compatible monochromatic matching M(S) by
m(G(S),M(S)) = e(G(S),M(S)), the number of red edges in M(S) by
r(G(S),M(S)), and the number of blue edges in M(S) by b(G(S),M(S)).
Similar to the work in [20], we focus on bounds for these numbers for the
worst case examples for several different classes of bichromatic graphs. The
classes of graphs we consider are spanning trees (tree), spanning paths
(path), spanning cycles (cycle), and perfect matchings (match).

3.3.1 Bichromatic matchings

We start with bichromatic (perfect) matchings which are compatible to a
given bichromatic graph. To simplify reading, we mostly omit the attribute
bichromatic in this part.

It is well known that every set S with |R| = |B| admits a bichromatic
perfect matching [113]. On the other hand, there exists a large class of
point sets with |R| = |B|, for which there is exactly one bichromatic perfect
matching. Figure 3.24(a) illustrates such point set together with its unique
perfect matching M(S). Note that for any plane graph G(S) that is ob-
tained by adding edges to M(S), we get d(G(S),M(S)) = 0. Especially,
any perfect matching (and thus also M(S)) can be augmented to a span-
ning tree. Moreover, in this case, M(S) can be extended to a spanning path
as well; see Figure 3.24(b). Due to these observations, and to avoid trivial
bounds, we restrict the considerations in this section to point sets admitting
strictly more than one bichromatic perfect matching.
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(a) (b)

Figure 3.24: A point set S for which there exists exactly one perfect match-
ing. (a) The unique perfect matching M(S) for S. (b) A spanning path
obtained by augmenting M(S).

Let S be the class of point sets admitting at least two different bichro-
matic perfect matchings, and let Sn ⊂ S be the sets with |R| = |B| = n.
For a given class C of graphs, we denote by

eC(n) = min
S∈Sn

min
G(S)∈C

max
M(S)

e(G(S),M(S))

the maximum number such that for every point set S ∈ Sn and every graph
G(S) ∈ C, we can find a bichromatic disjoint compatible matching of (at
least) this cardinality. Accordingly, we denote by

dC(n) = min
S∈Sn

min
G(S)∈C

max
M(S)

d(G(S),M(S))

the maximum number such that for every point set S ∈ Sn and every graph
G(S) ∈ C, there exists a bichromatic compatible perfect matching M(S)
with (at least) this many edges disjoint from G(S).

Note that any compatible perfect matching M(S) for a given graph G(S)
contains a matching M ′(S) that is disjoint from G(S) and has cardinality
e(G(S),M ′(S)) = d(G(S),M(S)). Thus eC(n) ≥ dC(n). The other direction
need not be true, because a G(S)-disjoint matching can not necessarily be
completed to a compatible perfect matching for G(S).

As a first class C of graphs we consider spanning cycles. Obviously, any
spanning cycle C(S) contains a perfect matching as a sub graph, as it can
be interpreted as the union of two disjoint compatible perfect matchings.
Figure 3.25(a) illustrates the two perfect matchings in a spanning cycle (one
is drawn with solid, the other one with dashed edges). Of course, these
matchings do not have any edge disjoint from C(S). To the contrary, the
perfect matching in Figure 3.25(b) has 6 edges that are not in C(S), inducing
a disjoint compatible matching of cardinality 6. Note that the existence of
a spanning cycle already implies that S admits at least two different perfect
matchings and thus is a point set from S.
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(a) (b)

Figure 3.25: C(S)-compatible perfect matchings for a spanning cycle C(S):
(a) The perfect matchings induced by C(S). (b) A C(S)-compatible perfect
matching M(S) with d(C(S),M(S)) = 6.

So what can we say about general bounds for dcycle(n) and ecycle(n)? It
turns out that there exist point sets S and spanning cycles C(S) such that
every bichromatic edge in S that is compatible with C(S) is actually part of
C(S); see for example the spanning cycle shown in Figure 3.26. This implies
that ecycle(n) = 0 and thus also dcycle(n) = 0.

Figure 3.26: A spanning cycle C(S) for which no bichromatic disjoint com-
patible edge exists.

Removing an edge from a spanning cycle, we obtain a spanning path.
This immediately implies that there exist spanning paths that do not admit
more than one bichromatic disjoint compatible edge. Thus, we obtain upper
bounds of dpath(n) ≤ epath(n) ≤ 1 for the class of spanning paths.

As spanning paths are a special case of spanning trees, the upper bounds
for paths also directly apply for trees. Moreover, there exist arbitrarily large
spanning trees (also with |R| = |B|) for which any compatible matching
has only constant size. An example of such a spanning tree is illustrated
in Figure 3.27(a). Furthermore, even if a spanning tree T (S) admits a
compatible perfect matching M(S), it might still not be possible for M(S)
to contain a single edge that is disjoint from T (S). Figure 3.27(b) illustrates
a spanning tree for which this is the case. Altogether we obtain dtree(n) = 0
and etree(n) ≤ 1. Note that both point sets in Figure 3.27 admit many
different perfect matchings.
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(a) (b)

Figure 3.27: (a) A spanning tree where any bichromatic compatible match-
ing has at most 2 edges. (b) A spanning tree T (S) where any bichromatic
compatible perfect matching M(S) has no edge that is disjoint from T (S).

As a last class C of graphs we consider perfect matchings. As already
mentioned, Hoffman and Tóth [97] showed that every bichromatic perfect
matching PM(S) can be augmented to a (valid bichromatic) spanning tree
T (S) with maximal vertex degree three. Figure 3.28 shows such a tree for
the perfect matching from Figure 3.25(b), where the additional tree edges
are drawn dashed.

Figure 3.28: A perfect matching PM(S) augmented to a spanning tree T (S)
with maximum vertex degree three.

Now consider the graph A(S) = T (S)\PM(S) of the augmenting edges.
A(S) contains exactly n− 1 edges (as T (S) has 2n− 1 edges of which n are
in M(S)). Further, as every vertex is incident to exactly one edge of M(S),
the maximum vertex degree in A(S) is at most two. In other words, A(S)
is a collection of paths P and isolated vertices. We know from before that
every path with an even number of vertices contains a perfect matching (of
its vertices). More general, a path P with kP + 1 vertices has kP edges,
of which dkP2 e form a matching. Thus, A(S) contains a matching with∑

P∈PdkP2 e ≥ dn−1
2 e edges, yielding a lower bound of ematch(n) ≥ dn−1

2 e for
the number of edges in a maximum M(S)-disjoint compatible matching for
any perfect matching M(S). Note that by the above arguments this bound
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is best possible, as it might happen that all paths in A(S) have an even
number of edges.

For an upper bound on ematch(n) consider the perfect matching PM(S)
shown in Figure 3.29. Every red vertex that is incident to one of the small
edges inside a triangle does not “see” any blue vertex except for the one it
is matched to. Thus, in any disjoint compatible matching M(S) of PM(S)
all these blue vertices must stay unmatched, implying an upper bound of
ematch(n) ≤ e(PM(S),M(S)) ≤ 3n

4 .

Figure 3.29: A perfect matching PM(S) where any disjoint compatible
matching M(S) has at most e(PM(S),M(S)) ≤ 3n

4 edges.

The upper bound for disjoint matchings (induced by Figure 3.29) directly
implies an according upper bound of dmatch(n) ≤ 3n

4 for perfect matchings
that are compatible to a given perfect matching. But for this case we can
say even more. Consider the perfect matching PM(S) that is illustrated in
Figure 3.30. Every vertex that is incident to one of the short edges can only
be compatibly matched in two ways; either to the other vertex of the edge it
is incident to, or to the accordingly colored vertex of the long edge next to
it. It is not possible to simultaneously match both vertices of a short edge
of PM(S) to the according vertices of the close-by long edge of PM(S),
because these two new edges would cross each other. Thus, any perfect
matching M(S) that is compatible with PM(S) must contain all short edges
of PM(S), inducing an upper bound of dmatch(n) ≤ d(PM(S),M(S)) ≤ n

2 .

Note that this bound does not carry over to disjoint non-perfect match-
ings, because there we are not forced to match all vertices. Thus, for the
graph in Figure 3.30, we can match one vertex of each short edge to the
according vertex of the close-by long edge. Just leaving the second one
unmatched yields a total number of e(PM(S),M(S)) = 3n

4 edges in the
constructed matching M(S). Similarly, the lower bound for ematch(n) can-
not be reused to obtain a lower bound on dmatch(n) for the perfect matching
case. For this case no non-trivial lower bound is known.
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Figure 3.30: A perfect matching PM(S) where any compatible perfect
matching M(S) has at most d(PM(S),M(S)) ≤ n

2 edges that are disjoint
from PM(S).

Open problem 3.26. Let S = R∪B be a bichromatic point set that admits
at least two different bichromatic perfet matchings. Given a bichromatic
perfect matching PM(S), can we always find a compatible perfect matching
M(S) that contains edges which are not in PM(S)? How many disjoint
edges can we guarantee?

Table 3.4 summarizes the obtained results for the numbers of edges eC(n)
and dC(n) that can be reached by a bichromatic G(S)-compatible (G(S)-
disjoint) (perfect) matching, for any bichromatic graph G(S) ∈ C.

dcycle(n) = ecycle(n) = 0
dpath(n) ≤ epath(n) ≤ 1

0 ≤ etree(n) ≤ 1
dtree(n) = 0

dn−1
2 e ≤ ematch(n) ≤ 3n

4
0 ≤ dmatch(n) ≤ n

2

Table 3.4: Obtained results for dC(n) and eC(n).

3.3.2 Monochromatic matchings

We continue with (purely) monochromatic compatible matchings for bichro-
matic graphs. Dumitrescu and Steiger [71] showed that not every bichro-
matic point set admits a monochromatic perfect matching. More precisely,
there exist point sets such that a linear number of the points must stay
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unmatched. This result implies that we cannot hope for a monochromatic
perfect matching that is compatible to a given bichromatic graph.

In the following, we denote by

mC(n) = min
|S|=2n

min
G(S)∈C

max
M(S)

m(G(S),M(S))

the maximum number such that for a given class C and every graphG(S) ∈ C,
we can find a monochromatic compatible matching of (at least) this cardi-
nality. Accordingly, we define

pC(n) = min
|S|=2n

min
G(S)∈C

max
M(S)

{r(G(S),M(S)), b(G(S),M(S))}

to be the maximum number such that for every graph G(S) ∈ C there exists
a purely monochromatic compatible matching M(S) with (at least) this
many edges.

Let us start with some upper bound examples. Figure 3.31 shows a
bichromatic spanning tree T (S). Any monochromatic edge that is compat-
ible with T (S) must be incident to one of the two vertices of high degree
(indicated by the dashed lines in the figure). Thus, any monochromatic
T (S)-compatible matching M(S) can contain at most one red and one blue
edge, implying that mtree(n) ≤ 2 and ptree(n) ≤ 1.

Figure 3.31: A bichromatic spanning tree T (S) withm(T (S),M(S)) = 2 and
r(T (S),M(S)) = b(T (S),M(S)) = 1 for every maximum monochromatic
compatible matching M(S).

While in the bichromatic setting, spanning trees and spanning paths
had essentially the same bounds, this is not true for the monochromatic
case. One important ingredient for the example in Figure 3.31 is that it has
two vertices of high degree, while all other vertices are leaves. The “worst”
examples that we could find for spanning paths and spanning cycles are
illustrated in Figures 3.32 and 3.33 (for spanning paths just ignore one of
the very short edges).
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Figure 3.32: A bichromatic spanning cycle C(S) with m(C(S),M(S)) = 5n
6

for every maximum monochromatic compatible matching M(S).

Consider first Figure 3.32. The blue vertices at the small spikes can only
be matched with the blue vertices between the spikes. The dashed blue
lines indicate possible matching edges. Thus, one third of the blue vertices
have to stay unmatched, implying b(C(S),M(S)) ≤ n

3 , for any monochro-
matic T (S)-compatible matching M(S). As all red vertices can be matched,
we have r(C(S),M(S)) ≤ n

2 and thus m(C(S),M(S)) ≤ 5n
6 . The span-

ning cycle illustrated in Figure 3.33 is slightly worse for the total number of
edges in a monochromatic compatible matching, but forces n−7

6 unmatched
points of each color. Thus, it admits a maximum of r(C(S),M(S)) =
b(C(S),M(S)) ≤ 5n+7

12 edges in any purely monochromatic matching. Alto-
gether we obtain upper bounds of mpath(n),mcycle(n) ≤ 5n

6 for monochro-
matic, and ppath(n), pcycle(n) ≤ 5n+7

12 for purely monochromatic matchings.

Figure 3.33: A bichromatic spanning cycle C(S) with r(C(S),M(S)) =
b(C(S),M(S)) = 5n+7

12 for every maximum purely monochromatic compati-
ble matching M(S).

For the case of monochromatic compatible matchings for a bichromatic
perfect matching we can partly reuse the examples from the bichromatic
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case. Inverting the vertex colors of the short edges in the example shown in
Figure 3.30 yields the perfect matching PM(S) shown in Figure 3.34. As
at least one vertex per short edge stays unmatched in any monochromatic
PM(S)-compatible matching, this yields mmatch(n) ≤ 3n

4 .

Figure 3.34: A bichromatic perfect matching PM(S) where any monochro-
matic compatible matching M(S) has at most m(PM(S),M(S)) ≤ 3n

4
edges.

Note that the perfect matching from Figure 3.34 admits a complete
matching of each color. For an upper bound on the number of edges in a
purely monochromatic matching, we can recycle the idea from Figure 3.29:
If we invert the colors of every second triangle construction and combine
them to a closed cycle, we obtain a perfect matching PM(S) where every
sixth point of each color must remain unmatched in any monochromatic
PM(S)-compatible matching M(S); see Figure 3.35. This gives an upper
bound of pmatch(n) ≤ 5n

12 .

Figure 3.35: Scheme for a bichromatic perfect matching PM(S) where
any purely monochromatic compatible matching M(S) has at most
p(PM(S),M(S)) ≤ 5n

12 edges.

Continuing with the class of perfect matchings we come to lower bounds.
Consider a perfect matching PM(S). Assume w.l.o.g. that PM(S) does not
contain any vertical edge, and that for at least half of the edges, the left
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vertex is red. We augment the matching to a weakly simple polygon in the
following way; see Figure 3.36. First, we add a bounding box around the
PM(S). Next, we extend all edges with a left red vertex to the right until it
hits the bounding box or (an extension of) an edge. Then we extend all other
edges to the right as well, but with a slight turn. The result is a so-called
weakly simple polygon, which can be transformed to a simple polygon by
slightly “inflating” the edges; see Figure 3.37. In the resulting polygon, all
left endpoints of edges and all red right endpoints of edges appear as reflex
vertices. All blue vertices which are right endpoints of matching edges are
“hidden” in the interior of a polygon edge.

Figure 3.36: Transforming a perfect matching to a weakly simple polygon.

(a) (b)

Figure 3.37: (a) “Inflating” the edges. (b) The resulting simple polygon
(convex vertices are colored gray).

Abellanas et al. [1] showed that for every simple polygon P (V ) with
vertex set V and every subset V ′ ⊆ V containing all reflex vertices of P (V ),
there exists a perfect matching of the vertices V ′ where no edge is outside
the boundary of P (V ). Applying this result to the set of reflex vertices
of the constructed polygon, we obtain a matching M(S) with at most n

2
bichromatic edges (one for every blue reflex vertex). Thus M(S) contains at
least n

4 red edges, implying mmatch(n) ≥ pmatch(n) ≥ n
4 . Figure 3.38 shows

a possible resulting matching.

115



CHAPTER 3. BICHROMATIC POINT SETS

Figure 3.38: A resulting compatible matching.

We reuse the principle of the above proof to provide a lower bound for
the size of monochromatic compatible matchings for trees in dependence of
the number of interior vertices (of one color) of the tree. The basic idea
for this bound was developed during a research week which was also the
starting point for the work [20]. Consider a bichromatic tree T (S), let ir
and ib be the numbers of interior red and blue vertices of T (S), respectively,
and assume w.l.o.g. that ir ≥ ib. We generate a simple polygon for T (S)
by adding a bounding box, connecting T (S) to the box and then inflating
the whole construction. Every vertex v of T (S) with vertex degree d(v)
corresponds to d(v) vertices in the polygon P , at most one of them being
reflex. We choose one of these d(v) vertices for each vertex v of T (S), (if v
corresponds to a reflex vertex, we choose that one). Additionally, we choose
a second vertex for each of the ir red interior vertices; see Figure 3.39.

(a) (b)

Figure 3.39: (a) A spanning tree connected to its bounding box. (b) The
resulting simple polygon (the non-selected vertices and the vertices on the
bounding box are drawn gray).

Applying again the result of [1], we obtain a (nearly) perfect matching
with b2n+ir

2 c edges, at least b ir2 c of them with two red endpoints. But now
it might happen that both red vertices corresponding to one red vertex in
S are incident to such a red edge. Moreover, there even might occur cycles
of such red edges, as can be seen in Figure 3.40(a).
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(a) (b)

Figure 3.40: (a) A (nearly) perfect matching of the selected vertex set. (b)
A resulting monochromatic matching of T (S).

If red edges translated to the original point set form a path of length k,
dk2e of them can simultaneously occur in a monochromatic T (S)-compatible

matching. In the case of a cycle of length k, bk2c of these edges can be used.
A monochromatic matching for T (S) is illustrated in Figure 3.40(b). In the
worst case, (nearly) all red edges form 3-cycles, and we obtain only d ir−1

6 e
red edges (and maybe no blue ones) for a monochromatic T (S)-compatible
matching. At least, for ir ≥ 14, this lower bound is above the general upper
bound for trees (which is just 2).

The above result for trees can immediately be used for a lower bound
of mpath ≥ ppath ≥ dn−2

6 e for the number of edges in a maximum (purely)
monochromatic matching that is compatible to a bichromatic spanning path.
Note that a path does not have any vertex v of degree d(v) > 2. Thus, a
cycle of odd length among the red edges (translated back to S) can only
occur if the path ends inside this cycle. Unfortunately, as there might be a
sequence of cycles C1, . . . , Cl such that each Ci+1 contains Ci in its interior,
this observation does not help to improve the bound. Figure 3.41 illustrates
such a sequence of cycles for a path.

Figure 3.41: Multiple red 3-cycles for a path resulting from a matching of
the according inflated polygon.
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Finally, let us apply the above result to bichromatic spanning cycles. For
creating a simple polygon P for a given spanning cycle C(S), we duplicate
an extreme vertex v (w.l.o.g. a blue one), and cut the cycle between v and
its duplicate v′; see Figure 3.42(a).

vv′

(a) (b)

Figure 3.42: (a) A spanning cycle cut and connected to its bounding box.
(b) The resulting simple polygon (the non-selected vertices are drawn grey).

Then we extend one of the incident edge of v until it hits the bound-
ing box, and again inflate the resulting construction, by this hiding v. As
illustrated in Figure 3.42(b), we select the according reflex vertex of P for
each blue vertex of C(S) and both corresponding vertices of P for each red
vertex of C(S). In the same way as above we obtain a total of 3n selected
vertices, and thus at least bn2 c red matching edges. But now the red edges,
when translated back to S, cannot form any odd cycles because the “end”
vertex v′ is extreme and thus cannot lie inside such a cycle. For paths of
red edges as well as for cycles of even length we can use every second edge
for a matching of C(S), implying that mcycle(n) ≥ pcycle(n) ≥ dn−1

4 e.

Table 3.5 summarizes the obtained bounds on the numbers of edges
mC(n) and pC(n) that can be reached by a (purely) monochromatic G(S)-
compatible matching, with G(S) ∈ C and C ∈ {tree, path, cycle,match}.

mtree(n) = 2
ptree(n) = 1

dn−2
6 e ≤ mpath(n) ≤ 5n

6
dn−2

6 e ≤ ppath(n) ≤ 5n+7
12

dn−1
4 e ≤ mcycle(n) ≤ 5n

6
dn−1

4 e ≤ pcycle(n) ≤ 5n+7
12

n
4 ≤ mmatch(n) ≤ 3n

4
n
4 ≤ pmatch(n) ≤ 5n

12

Table 3.5: Obtained results for mC(n) and pC(n).
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Note that all of the lower bounds for monochromatic matchings stem
from observations about purely monochromatic matchings. So let us con-
clude this section with the following question.

Open problem 3.27. Given a class of graphs C ∈ {tree, path, cycle,match}.
Is it true that mC(n) = pC(n), or are these values different for (some of)
the classes?
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Chapter 4

Triangulations, Pointed
Pseudo-Triangulations and
Compatibility

In the first section of this chapter we continue with plane graphs on top of
bichromatic point sets, but in a slightly different setting. While in the last
section of the previous chapter, the task was to choose appropriate edges in
order to obtain compatible graphs, now edges are already predefined by the
Delaunay property.

The Delaunay graph DG(S) [64] of a point set S in the plane is the set
of all edges for which there exists a circle passing through both endpoints
of the edge that does not contain any other point of S. We say that a point
set S is in strong general position, if, in addition to no three points of S
lying on a common line, also no four points of S lie on a common circle.
It can be shown that if S is in strong general position, then DG(S) is in
fact a triangulation, the Delaunay triangulation DT (S); see for example the
textbook [58]. For every triangle pqr of DT (S), its circumcircle does not
contain any point of S\{p, q, r}. The existence of an empty circle for an
edge or a triangle is often referred to as Delaunay property.

A variation of this concept is the so-called constrained Delaunay trian-
gulation (also known as generalized Delaunay triangulation; see [114] and
Chapter 4.4.4. in [40]). Given a plane (uncolored) graph G(S) (on top of a
point set S), the constrained Delaunay triangulation is the compatible com-
pletion of G(S) to a triangulation T (S) such that T (S) is as Delaunay as
possible. More exactly, for every non-predefined edge e in the constrained
Delaunay triangulation, there exists a circle C through the endpoints of
e such that no point inside C is visible from e (the edges of G(S) block
visibility).
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In the first part of this chapter we consider a different variation (related
to witness proximity graphs; see below), which was introduced before by
Aronov et al. [38]. Given a set B of black points, |B| = n, our goal is
to appropriately choose a set of white points W , such that the Delaunay
triangulation of the joint set B ∪W does not contain any black-black edge
(i.e., no edge between two points of B). If this is the case, we say that the
set W blocks the set B.

Aronov et al.[38] proved that it is always possible to block B with (2n−2)
white points and that 4n/3 white points suffice if B is in convex position.
Improving over these bounds, in Section 4.1 we show how to place white
points such that |W | ≤ 3n/2 points are always sufficient to block B. We
also prove that |W | ≤ 5n/4 white points suffice to block B if B is in convex
position. As a lower bound, we show that at least n − 1 white points are
always necessary to block B.

In the second part of this chapter, Section 4.2, we switch from triangula-
tions to pointed pseudo-triangulations, and to compatibility in the classical
sense (see also Section 3.3).

Given some pointed pseudo-triangulation PT (S) on top of a point set S
in general position (no three points on a common line is sufficient here), we
want to find a second pointed pseudo-triangulation PT ′(S) that is compat-
ible to PT (S). At the same time, we want PT ′(S) to be as different from
PT (S) as possible.

Recall that two graphs, and thus also two pointed pseudo-triangulations
PT (S) and PT ′(S) on top of the same point set S are compatible if their
union PT (S)∪PT ′(S) is again a plane graph. If, moreover, PT (S)∪PT ′(S)
is a triangulation (i.e., a maximal plane graph), then we say that PT (S) and
PT ′(S) are maximally disjoint compatible.

We show that for any set S there exist two maximally disjoint compatible
pointed pseudo-triangulations. In contrast, we prove that there are arbitrary
large point sets S and pointed pseudo-triangulations PT (S) such that there
exists no pointed pseudo-triangulation that is compatible to and different
from PT (S).

The results of this chapter have been presented before [18, 30], and the
results from the Section 4.1 are accepted for journal publication in a special
issue [19].
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4.1 Blocking Delaunay triangulations

Proximity graphs were originally defined to capture different notions of prox-
imity in a set of points [106]. A particular proximity graph in a set of points
S is defined by assigning to every pair of points in S a region (or family of
regions). Then, the edge pq is part of the graph if and only if at least one
of the regions corresponding to the pair is empty of points of S. Examples
of such graphs are the Gabriel graph, the relative neighborhood graph, and
the Delaunay triangulation.

Recently, Dulieu [69] and Aronov et al. [38, 39] extended the notion of
proximity graphs with the concept of witness proximity graphs. In this gen-
eralized setting, we have a second point set W . The points of W are the
witnesses which account for the existence of an edge between two points
of S. The authors consider two different possibilities. In the first one, an
edge between two points p, q ∈ S exists if some of the regions corresponding
to the pair p, q do not contain any witness point. In the second version,
an edge between two points of S exists if there exists a region containing
a witness point. In this section we deal with the first version of the wit-
ness Delaunay graph: Given a set B of black points and a set W of white
points (the witnesses), we follow the notation in [38] and consider the graph
DG−(B,W ). In this graph, two points p, q ∈ B are adjacent if there exists
a circle passing through p and q and not containing any point of W .

In the same paper, the following combinatorial problem is proposed: If
B has size n, find the smallest c such that we can always guarantee the
existence of a set W , with size cn, and such that DG−(B,W ) does not
contain any edges. This problem can also be formulated as a very natural
stabbing problem: Given a set B of n points, consider the family C of circles
defined by two points in B. Give a bound for the size of a set of points
stabbing all circles in C.

Let D be the set of Delaunay circles of B, i.e., empty circles passing
through at least two points of B. In [38] it is shown that in order to pierce
all circles in C it is sufficient to pierce all circles in D. For the combinatorial
problem mentioned previously, they show that in order to pierce the set of
Delaunay circles generated by a set of n points, 2n − 2 points are always
sufficient, and n points are sometimes necessary. If points of B are in convex
position, they improve the upper bound to 4n/3. Similar problems have been
studied from an algorithmic point of view in [7].

We focus on this combinatorial problem, with a slightly different lan-
guage that we find more intuitive: For DG−(B,W ) having no edges it is
necessary and sufficient that points in W pierce all circles in D. This in turn
is equivalent to the fact that there is no edge connecting two black points
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in the Delaunay graph of B ∪W . If this is the case, we say that the set W
blocks the set B.

In the following, we assume that the set B ∪ W is in strong general
position. Further, we denote the Delaunay triangulation of a point set S
with DT (S), the Voronoi diagram of S with V (S), and the Voronoi region
of point p ∈ S in V (S) with Vp(S).

4.1.1 An upper bound for general point sets

We start with a constructive approach for blocking general point sets that
utilizes the duality between Delaunay triangulations and Voronoi diagrams.

Theorem 4.1. Let B be a set of n black points in general position. There
always exists a set W of at most 3n/2 white points that blocks B.

Proof. Let I be the biggest independent set in DT (B), and C = B \ I
its complement. Because every triangulation is 4-colorable, we know that
C ≤ 3n/4. We are going to show that B can be blocked by adding two white
points in a close neighborhood of each point in C.

First, for each p ∈ C we choose a point η(p) ∈ C among the neighbors of
p in DT (B). This is always possible, because if pqr is a triangle in DT (B),
then it cannot happen that q and r are both in I.

Then, for each p ∈ C we choose a point xp (not in B) in the interior
of the Voronoi cell Vp(B), and with the following conditions: (i) The ray
xpp intersects the boundary of Vp(B) in the Voronoi edge of V (B) which
separates Vp(B) from Vη(p)(B). Let yp be this point of intersection. (ii) In
the case in which q = η(p) and p = η(q), xp and xq have to be chosen in
such a way that yp 6= yq (see Figure 4.1).

Now we assign a segment ep to each point p ∈ C such that ep is centered
at yp and contained in the edge of V (B) separating the Voronoi regions of p
and η(p). If q = η(p) and p = η(q), we choose the intervals ep and eq small
enough to be disjoint.

Next, we add two white points in Vp(B) in the following way. Consider
the circle that is centered at xp and passes through p, and place the white
points at the intersections of this circle with the line segments defined by xp
and the endpoints of ep. Note that xp does not belong to our set of white
points.

Once we have done this for every point p ∈ C, we claim that in the
Voronoi diagram of the resulting set no pair of black points have adjacent
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p

xp

q

yp

xq

yq
epeq

Figure 4.1: Blocking a black point by placing two white points in its Voronoi
cell.

regions. The only area where p could be closer to some black point than (one
of) the two shielding white points (constructed for it) is inside the wedge
defined by the bisectors of p and these two white points. The apex of the
wedge is xp ∈ Vp(B), and only point q = η(p) has the possibility to be a
Voronoi neighbor for p. But by construction, the intervals ep and eq are
disjoint, so this does not happen.

4.1.2 An upper bound for convex sets

For the special case of point sets in convex position we improve the 4n/3
bound in [38] by translating the problem into a combinatorial setting.

We call a triangle of a triangulation an ear if it contains a vertex (the
tip) which is not incident to inner edges. We call a triangle an inner triangle
if it consists solely of inner edges.

Considering the properties of the Delaunay triangulation, we propose
the following two simple operations to block Delaunay edges. Blocking a
single edge is done by placing a white point arbitrarily close to the center of
the edge. For inner edges this can be done on any of its two sides, and for
edges of the convex hull the white point has to be placed slightly outside the
convex hull. Blocking a vertex p is done by placing two white points outside
the convex hull, one at each incident convex hull edge, and arbitrarily close
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to p (such that the two white points are Delaunay neighbors). In this way
all Delaunay edges incident to p are blocked.

Reconsidering the presented blocking operations we transform the whole
setting into a combinatorial framework. We call blocking a single edge col-
oring an edge with cost 1, and blocking a vertex coloring a vertex with
cost 2, where the latter also colors all incident edges. Thus, our task can be
rephrased as coloring all edges of a given triangulation with minimal cost.
Let C(n) denote the maximum minimal cost over all sets of n points in
convex position. Clearly, an upper bound on the occurring cost is an up-
per bound on the number of white points needed in the geometric setting,
while the inverse statement is not true in general. In fact, we can apply
our combinatorial setting to any triangulation, not only to the Delaunay
triangulation.

Figure 4.2: An (14, 5, 6)-cut and the re-triangulated subset.

An (n, a, k)-cut of a triangulation T of a set of n points is a separation of
the n points into two disjoint groups A and B with |A| = a and |B| = n−a,
plus a coloring of A with cost k such that any edge of T incident to a point
in A is colored, see Figure 4.2.

Lemma 4.2. If for a triangulation T of a convex n-gon, there exists an
(n, a, k)-cut, then the cost of coloring T is at most C(n− a) + k.

Proof. Let A and B be the two sets as defined for the (n, a, k)-cut. We
use the coloring of A given by the cut and remove all colored vertices and
edges. We complete the remaining graph of B to a full triangulation of the
convex set B by (arbitrarily) re-triangulating the holes induced by removing
A (cf. Figure 4.2, right), and color this triangulation of B with cost at most
C(n − a). Combining the two colorings of A and B (where we can ignore
colored edges of B which are not part of T ), we obtain a coloring of T with
cost at most C(n− a) + k.

Theorem 4.3. C(n) ≤ 5n
4 .

Proof. We prove the statement by induction on the number n of vertices.
For the induction base it is straightforward that for n ≤ 3 we have C(n) ≤ n.
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p

q

p′

q′

∆

(a) (b)

Figure 4.3: The two cases for a convex set: removing an ear (left), and
removing an inner triangle with two incident ears (right).

So assume the statement is true for any set of size n′ < n, and consider a
triangulation T of n points. We distinguish two cases.

Case 1. Assume that there exists an ear of T with tip p such that
a neighbor q of p (neighborhood is with respect to the convex hull) has
precisely one incident inner edge, see Figure 4.3(left). We color the two
other neighbors p′ and q′ of p and q, respectively, as well as the edge pq.
With A = {p, q, p′, q′} this induces an (n, 4, 5)-cut of T . By Lemma 4.2 we

have C(n) ≤ 5 + C(n − 4) ≤ 5 + 5(n−4)
4 = 5n

4 , where the last inequality
follows from the induction hypothesis.

Case 2. Otherwise, all neighbors of the tip of an ear are incident to at
least two inner edges. This is equivalent to the fact that all ears are adjacent
to inner triangles. As in any triangulation (of a convex set) the number of
ears is by two larger than the number of inner triangles (this follows from
considering the dual tree), there exists at least one inner triangle ∆ which
is adjacent to two ears. We color the three vertices of ∆, see Figure 4.3(b).
The tips of the two ears incident to ∆ together with the three vertices of ∆
form our set A. As A has cardinality 5, this induces an (n, 5, 6)-cut of T ,
and similar as before we have C(n) ≤ 6 + C(n− 5) < 5n

4 .

Corollary 4.4. Let B be a set of n black points in convex position. There
always exists a set W of at most 5n/4 white points that blocks B.

4.1.3 A lower bound for general point sets

In this section we provide a general lower bound on the number of points
needed to block any given set, again using independent vertices.
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Lemma 4.5. The size of an independent set in the Delaunay triangulation
of a set of n points is at most bn+1

2 c.

Proof. It is known that every Delaunay triangulation contains a perfect
matching of its vertices [68]. Consider such a perfect matching M , and an
independent set I. Then for every edge in M , at most one of its endpoints
can be in I. If n is odd, then the non-matched point can be in I as well.

Note that Lemma 4.5 describes a special property of the Delaunay trian-
gulation, as there exist sets of n points, which can be triangulated in a way
that the triangulation has an independent set of size as much as 2n−2

3 . For
example, take a set of k white points and triangulate it arbitrarily. Place
one black point in the interior of each white triangle. Further, place one
black point outside but close to each convex hull edge. Complete the full set
of n = 3k− 2 points to a triangulation with k white and 2k− 2 independent
black points.

Theorem 4.6. For any set B of n black points, at least n− 1 white points
are necessary to block it

Proof. Assume that the white point set W , |W | = m, blocks B. Then
the joint Delaunay triangulation DT (B ∪ R) does not contain any edge
between two black vertices, which implies that B is an independent set in
DT (B ∪R). Thus, by Lemma 4.5, we have n ≤ bn+m+1

2 c, and consequently
m ≥ n− 1.

4.1.4 Discussion

We have shown that for blocking a set B of n black points, 3n/2 white
points are sufficient for general sets B, and 5n/4 white points are sufficient
if the points of B are in convex position. Note that both proofs for the
upper bounds are constructive, directly providing an algorithm. Moreover,
we know that we need n− 1 white points for blocking any set with n black
points. As already mentioned, in [39] the authors show that there exist
point sets B of n black points which need n white points to be blocked –
Figure 4.4 shows the intuition behind their proof.

So far we have not been able to construct a set that needs more than n
white points to be blocked, and to the best of our knowledge, no example
is known that can in fact be blocked with only n− 1 points. Thus we state
the following conjecture.
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Figure 4.4: Euros proving a lower bound of n: the cycles induced by the coins
are drawn solid. The dashed edges complete the Delaunay triangulation.

Conjecture 4.7. For any set B of n black points in convex position, n
white points are necessary and sufficient to block B.

In fact, from what is currently known, the conjecture might be true even
for general point sets.

Independently, the algorithmic issue of finding a minimal set of blocking
white points arises as a natural question for future work. A related problem
has been studied recently by de Berg et al. [59]: Given a set of black and
white sites, it is NP-hard to compute the minimum number of white points
that have to be removed so that the union of the Voronoi cells of the black
points is a connected region.
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4.2 Compatible pointed pseudo-triangulations

Recall that a pseudo-triangle is a simple polygon which has exactly three
corners (vertices with interior angle smaller than π). A path along the
boundary of a pseudo-triangle that has two of the corners as end points and
does not contain the third one is called a side-chain of this pseudo-triangle.
The non-incident corner is called opposite (to this side-chain). Further re-
call that a pseudo-triangulation is a plane straight-line graph whose edges
partition the convex hull CH(S) into pseudo-triangles. It is called pointed
if all its vertices are pointed. Note that for any pseudo-triangulation, all
extreme vertices of S are pointed towards the outer face.

Pseudo-triangulations have been first introduced by Pocciola and Veg-
ter [128] in a more general framework and by Streinu [137] in the context of
geometric graphs. They are a rather young structure, with interesting prop-
erties and applications. See the recent survey [132] and references therein.

Streinu [138] showed that pointed pseudo-triangulations are minimal
pseudo-triangulations, and at the same time they are maximal pointed plane
straight-line graphs, where minimal and maximal is with respect to the num-
ber of edges. Further, any pointed pseudo-triangulation on top of a point
set S with n points has 2n− 3 edges, independent of the number of interior
points of S.

In this section we consider the simultaneous existence of two (different)
pointed pseudo-triangulations on the same point set. Before we define the
precise questions that we want to investigate, let us state two preliminary
results.

Proposition 4.8. If two pointed pseudo-triangulations PT1(S) = (S,E1)
and PT2(S) = (S,E2) on top of the same point set S with i interior points
are compatible, then they differ by at most i edges: |E1\E2| = |E2\E1| ≤ i.

Proof. The number of edges in any pointed pseudo-triangulation of a point
set S with n points is 2n − 3. As S has i interior and h = n − i extreme
points, the number of edges in any maximal plane graph (triangulation) of S
is 3n− h− 3 = 2n+ i− 3. Thus, considering an arbitrary pointed pseudo-
triangulation PT1(S), the number of edges that can be added to obtain a
maximal plane graph is 2n+ i− 3− 2n+ 3 = i. This implies that any plane
straight-line graph compatible with PT1(S), and thus also any such pointed
pseudo-triangulation, can have at most i edges that are not in PT1(S).

Corollary 4.9. Two pointed pseudo-triangulations on top of the same point
set S (with i interior points) are maximally disjoint compatible if and only
if they differ by exactly i edges.
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4.2.1 Two compatible pointed pseudo-triangulations

We start with the following question. Given a point set S with n points, can
we find two compatible pointed pseudo-triangulations which are maximally
disjoint? As we have just seen, maximally disjoint means that the two
pointed pseudo-triangulations have exactly 2n − 3 − i edges in common,
where i is the number of interior points of S.

Theorem 4.10. For every point set S with n points, i of them interior, there
exist two pointed pseudo-triangulations PT1(S) = (S,E1) and PT2(S) =
(S,E2) such that PT1(S) and PT2(S) are maximally disjoint compatible,
that is, |E1\E2| = |E2\E1| = i.

Proof. We prove the statement by construction of the two pointed pseudo-
triangulations PT1(S) and PT2(S) by iteratively adding edges. We color
edges of PT1(S) blue, those of PT2(S) red, and edges that are in both, PT1(S)
and PT2(S), black; see Figures 4.6(a)-4.8. For the sake of brevity we some-
times refer to edges belonging to PT1(S), PT2(S), or both, by their color.

q

p

r

C

Figure 4.5: Empty pseudo-triangle (shaded) formed by p and the chain C
(dashed).

Assume that S has a triangular convex hull pqr, and i > 0 interior
points1. We start by adding the boundary of the convex hull to both, PT1(S)
and PT2(S). Now choose an extreme point p ∈ S, and consider the boundary
of the convex hull of S\{p}, consisting of the edge qr and a concave chain C
connecting q and r in the interior of CH(S). The chain C together with p
forms a pseudo-triangle with corners pqr that does not contain any point
of S in its interior; see Figure 4.5.

1If S has more than three extreme points, we first triangulate these extreme points
arbitrarily (adding the edges to both, PT1(S) and PT2(S)), and then process each resulting
non-empty triangle independently.
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For our construction, we add black edges from q to all points of C except r
(to both PT1(S) and PT2(S)), red edges from p to all points of C except q
and r (to PT2(S)), and all edges on the chain C (except the one incident
to q) with color blue (to PT1(S)). See Figure 4.6(a) for the set of edges
added in this step.

q

p

r

(a) First step of adding edges.

q

p

r

∆
p

r
∆

(b) Iterative construction step.

Figure 4.6: Constructing two compatible pointed pseudo-triangulations.

The union of PT1(S) and PT2(S) splits CH(S) into a set of triangles.
Each triangle that contains further points of S in its interior has q as one
corner, two of the triangle edges are black, and the third is blue. In each
such triangle, one of the corners adjacent to the blue edge becomes pointed
in the whole graph when removing this blue edge. We mark this corner red
(indicated by a small arc in the figures).

We consider these triangles iteratively, in a similar way as the starting
triangle. Throughout the process we keep the following invariants for each
interior triangle ∆: q is a corner of ∆ and both triangle edges incident to q
are black. One of the other two corners is marked with color c′∆ ∈ {red, blue}
(red after the first step). Let this colored corner be p∆ and the remaining
corner r∆. The triangle edge p∆r∆ has the color c∆ ∈ {red, blue}\{c′∆}
(blue after the first step).

Let S∆ ⊂ S be the set of points inside ∆ plus the corners of ∆. Like in the
first step, we consider the chain C∆ on the convex hull of S∆\{p∆}. We add
black edges from q to all points of C∆ except r∆, edges with color c∆ from p∆

to all points of C∆ except q and r∆, and all edges on the chain C∆ (except the
one incident to q) with color c′∆. Inside every nonempty triangle, we mark
the corner that becomes pointed in PT1(S)∪PT2(S), when removing the c′∆-
colored triangle edge, with color c∆. See Figure 4.6(b) for one iterative step
(inside the shaded triangle) and Figure 4.7 for the completed construction.

The construction results in a red-blue-black colored triangulation of S,
and thus PT1(S) and PT2(S) are compatible.
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q

p

r

Figure 4.7: Completed construction.

Concerning the pointedness of the interior points of S, note that in each
construction step, all points on the chain C∆ (except q and r∆) become
pointed towards p∆ with respect to color c′∆. This pointedness cannot
be destroyed in further recursive steps because there is nothing left to be
processed between C∆ and p∆ (see again Figure 4.6(b)). With respect to
color c∆, each point on C∆ (except q and r∆) is pointed towards one of its
adjacent c′∆-colored edges on C∆. If the according triangle is not empty
then the point is marked with c∆ for the next iteration and thus cannot
get any additional incident c∆-colored edges in the relevant area. Thus all
points of S are pointed in both PT1(S) and PT2(S).

Finally, every interior point of S appears on exactly one chain C∆ as
non-endpoint. For every non-endpoint of a chain C∆, exactly one red, one
blue, and one black edge is added, which, including the initial three black
edges on the convex hull of S, adds up to |E1| = |E2| = 2n−3. Together with
pointedness and planarity, this proves that PT1(S) and PT2(S) are pointed
pseudo-triangulations. Figure 4.8 shows the two resulting maximally disjoint
compatible pointed pseudo-triangulations.

q

p

r q

p

r

Figure 4.8: The resulting two maximally disjoint compatible pointed pseudo-
triangulations.
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4.2.2 Compatible pointed pseudo-triangulations for a given
pointed pseudo-triangulation

We now consider a more restrictive setting. Given a point set S and a
pointed pseudo-triangulation PT (S) = (S,E), can we find a pointed pseudo-
triangulation PT ′(S) = (S,E′), such that PT (S) and PT ′(S) are compatible
and differ by at least k edges for some k ≥ 1?

For point sets in convex position, this question is trivial. The answer
is negative and positive at the same time, depending on the point of view.
Every pointed pseudo-triangulation PT (S) on top of a convex set is a tri-
angulation and thus a maximal plane graph. It is not compatible to any
pointed pseudo-triangulation PT ′(S) 6= PT (S). But we know from Propo-
sition 4.8 that the maximum number of differing edges we can hope for is
the number of interior points, which is zero in this case. Thus, by just tak-
ing PT (S) itself, we have a pointed pseudo-triangulation that is maximally
disjoint compatible with PT (S). In the following we will only consider the
non-trivial case, i.e., point sets S with i > 0 interior points.

Figure 4.9: A point set with a pointed pseudo-triangulation for which there
is no maximally disjoint compatible pointed pseudo-triangulation.

Actually, there are point sets with interior points and pointed pseudo-tri-
angulations such that there doesn’t exist any pointed pseudo-triangulation
which is maximally disjoint compatible with the given one. In the example
in Figure 4.9, the underlying point set of the black pointed pseudo-triangu-
lation has three interior points and three compatible edges (drawn in red).
As all red edges together would make their common point non-pointed, at
most two of them can be part of a pointed pseudo-triangulation. So we’re
left with the question of how many differing edges we can guarantee, for
example depending on the number of interior points of the given set.

Before giving a general answer to this question, let us introduce the
concept of flips [51]. A flip in a pointed pseudo-triangulation PT (S) =
(S,E) is the exchange of an edge e ∈ E by an edge e′ ∈ (S × S)\E such
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that the resulting graph PT ′(S) = (S,E\{e} ∪ {e′}) is again a pointed
pseudo-triangulation. The flip is called compatible flip if e′ is compatible
with PT (S).

In a pointed pseudo-triangulation, every edge e that is not a convex hull
edge is flippable, and there is a unique edge e′ to which e can be flipped [132]
(see Figure 4.10). For finding e′, consider the two pseudo-triangles ∆1 and
∆2 that are incident to e, and the corners c1 of ∆1 and c2 of ∆2 that
are opposite to (the side-chains of) e. The geodesic from c1 to c2 is the
shortest path from c1 to c2 which lies inside and possibly on the boundary
of ∆1 ∪ ∆2\{e}, and does not cross any edge of PT (S) except possibly e.
The only edge of this geodesic which is not in E is the flip-destination of e.
If e′ does not cross e, then the flip is compatible.

1e

e
2

2
e’

1e’

Figure 4.10: Flipping edges in a pointed pseudo-triangulation: Replacing
the dashed black edges by the additional edges on the dashed red geodesics.

Obviously, if there are k “independent” compatible flips in a pointed
pseudo-triangulation PT (S) (compatible flips that can be processed simul-
taneously such that the result is a pointed pseudo-triangulation again), then
PT (S) has a compatible pointed pseudo-triangulation with at least k differ-
ing edges (see again Figure 4.10).

Two questions naturally arise. Given a point set S and a pointed pseudo-
triangulation on top of S, can we always perform a compatible flip? And if
this is true, is the flip graph of pointed pseudo-triangulations (w.r.t. com-
patible flips) connected, that is, can we flip any pointed pseudo-triangulation
to any other by only using compatible flips? Note that connectivity of the
flip graph is known in the unrestricted case [132].

Unfortunately, for compatible flips the answer to both questions is nega-
tive. There exist point sets (with interior points) and pointed pseudo-trian-
gulations for them that do not admit any compatible flip. Thus the according
flip graph is not connected (as it has isolated vertices). Figure 4.11(a) shows
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a small point set and a pointed pseudo-triangulation (black) which does not
admit any compatible flip. The only compatible edge in this example is
drawn in red. As the interior point has two incident edges on each side of
the dotted line, adding the red edge and removing one black edge always
leaves this point non-pointed and thus the resulting graph is not a pointed
pseudo-triangulation.

(a) (b)

Figure 4.11: Point sets and pointed pseudo-triangulations that do not admit
any compatible flip.

Figure 4.11(b) contains a more complex example, showing that the basic
concept of the small example can be used to build point sets with many
interior points and according pointed pseudo-triangulations such that not a
single edge can be compatibly flipped. Again, the black edges form a pointed
pseudo-triangulation. The red edge, as well as all other compatible edges,
cannot be part of any compatible flip.

Actually, the example in Figure 4.11(b) can be modified to contain an
arbitrary number of (at least six) points. In the interior, it contains the
graph from Figure 4.11(a) as a sub graph (the central triangle plus two of
the adjacent triangles plus the pseudo-triangle adjacent to these triangles).
Starting from this sub graph, we can iteratively make the example larger by
adding first the last missing triangle, and then the desired number of pseudo-
triangles (with the only restriction that one layer of pseudo-triangles has to
be completed before the next one is started).

Corollary 4.11. For every n ≥ 6 and i ≤ max{1, n− 6}, there exists a
point set S with n points, i of them interior, such that there exists a pointed
pseudo-triangulation PT (S) that does not admit any compatible flip.
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Proof. Consider a point set S′ and a pointed pseudo-triangulation PT ′(S′)
with i interior and min{6, n− i} extreme points according to the construc-
tion indicated in Figure 4.11(b). The additional extreme points for S can be
added close to (and outside of) some convex hull edges of S′. Triangulating
these parts outside CH(S′) arbitrarily results in a pointed pseudo-triangu-
lation PT (S) with the desired property.

In the graphs from Figure 4.11, every interior vertex p has degree four.
Further, for each p and each compatible edge e = pq, the supporting line of e
partitions the edges incident to p into two groups such that each group con-
tains two edges. This provides the argument for why none of the compatible
edges can be involved in a compatible flip.

Using the contrary argumentation, we can derive sufficient conditions for
compatibly flippable edges.

Proposition 4.12. Given a pointed pseudo-triangulation PT (S) = (S,E)
and a compatible edge e = pq ∈ (S × S)\E that destroys the pointedness
of p but not of q, consider the two non-empty subsets into which the set of
incident edges of p is split by the supporting line of e. If one of these subsets
contains only one edge e′, then e′ can be flipped to e in a compatible way.

Proof. Consider the two pseudo-triangles ∆1 and ∆2 that are incident to e′

and the corners c1 of ∆1 and c2 of ∆2 that are opposite to the side-chains
on which e′ lies. As the edge e does not destroy the pointedness of q, and
as e′ is the only edge incident to p on one side of the supporting line of e, e
lies on the geodesic from c1 to c2 in ∆1 ∪∆2\e′. Thus e′ is flippable to e in
a compatible way.

Corollary 4.13. A necessary condition for a pointed pseudo-triangulation
PT (S) = (S,E) to not admit a compatible flip is that every interior point p
of S has vertex degree d(p) ≥ 4 in PT (S). Every point with vertex degree
d(p) ≤ 3 has at least one incident edge that can be compatibly flipped.

Proof. We have seen in the arguments for Corollary 4.11 that a vertex with
degree four might not admit any compatible flip. In the other direction,
if PT (S) contains vertices with degree less than four, consider such a vertex p
and the pseudo-triangle ∆ in which p is pointed. The geodesic from p to
its opposite corner in ∆ spans a compatible edge e = pq that destroys the
pointedness of p and does not destroy the pointedness of q. The line through
this edge e has at least one side with only one edge e′ incident to p, and
thus e′ can be compatibly flipped to e.
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Let us come back to the question of compatible pointed pseudo-triangu-
lations. Consider again the example in Figure 4.11(a). Any pointed pseudo-
triangulation on top of this point set that contains the red edge must not
contain two of the black edges in order to keep the interior vertex pointed.
Thus it has to also contain another non-black edge. But any non-black edge
on top of S, except for the red one, is incompatible to the black pointed
pseudo-triangulation. Accordingly, in the example in Figure 4.11(b), none
of the compatible edges can be part of a pointed pseudo-triangulation com-
patible to the black one.

Corollary 4.14. For every n ≥ 6 and i ≤ max{1, n− 6}, there exists a
point set S with n points, i of them interior, such that there exists a pointed
pseudo-triangulation PT (S) = (S,E) that is incompatible to any pointed
pseudo-triangulation PT ′(S) = (S,E′) with E′ 6= E.

4.2.3 Discussion

We have shown that for every point set there exist pairs of maximally dis-
joint pointed pseudo-triangulations. On the other hand, there exist point
sets (also with many interior points) and pseudo-triangulations without any
non-identical compatible pointed pseudo-triangulation. We also introduced
the concept of compatible flips in pointed pseudo-triangulations. We have
shown that the flip graph for this constrained version of flips in pseudo-
triangulations can be disconnected by proving that it even might contain
singletons (also for point sets with many interior points).

Concerning compatibility, similar questions have been considered for ex-
ample for spanning trees [87] and geometric matchings [11, 105]

Another related question are flip graphs of pointed pseudo-triangula-
tions with other constraints than compatibility. For example, the flip graph
of (pseudo-)triangulations of convex sets with bounded vertex degree is con-
nected if and only if the degree bound is at least six; see [29] and Chapter 3 of
the thesis [95]. The according question for general point sets is still unknown.
Similarly, the question of flip graph connectivity for pointed pseudo-trian-
gulations with bounded face degree (for the interior faces) is still an open
problem; see again [95], Section 3.5.
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Chapter 5

Pointed Drawings of Planar
Graphs

Triangulations are maximal plane graphs. Consequently, the question of
the previous section would not make sense for triangulations because two
triangulations on top of a given point set have to be identical in order to
be compatible. In contrast to triangulations, the pointedness property of
pointed pseudo-triangulations makes them minimal among all pseudo-trian-
gulations. In this chapter we consider a generalized version of pointedness
for not necessarily straight-line drawings of graphs.

Questions concerning (certain types of) geometric graphs with constraints
on the occurring incident angles have been considered for triangulations [47,
57, 74, 75], spanning cycles [6, 37, 84], spanning paths [43, 84] and other
types of geometric graphs. The question of finding specific straight-line
graphs that have incident angles of at least a certain size at every vertex has
been investigated in [23].

Generalizing this approach further, we relax the straight-line condition
by allowing several different types of simple curves as edges. We consider
the questions of (1) redrawing a given plane straight-line graph such that
the vertex positions remain the same and all vertices become pointed; and
(2) embedding a given plane straight-line graph such that for every vertex v,
all edges emanate from v in the (nearly) same direction. We show that both
questions can be answered to the positive when using Bézier-curves, biarcs,
or polygonal chains of length two as edges. When restricting the edges to
circular arcs this is in general not possible. For the latter setting, we provide
a method for constructing a pointed embedding that is based on the classical
grid embedding algorithm of de Fraysseix, Pach and Pollack [60].
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Due to this different setting (more or less abstract graphs on the one
hand, and drawings with not necessarily straight-line edges on the other
hand), the notation we use here is slightly different from the previous chap-
ters.

The results of this chapter have been presented before [34] and will be
published in [35].

5.1 Introduction

Throughout this chapter, let G = (V,E) be a simple planar graph without
loops, with finite vertex set V and thus a finite set of edges E. We use
the natural understanding of a drawing of a graph. Vertices are represented
as points in the plane and edges as continuous and (at least piecewise)
differentiable curves connecting the points of adjacent vertices. A drawing
is called non-crossing or plane, if the drawn edges do not intersect in their
interior. If we consider only topological properties, that is, the order of
the edges and consequently of the faces, we refer to this as combinatorial
embedding . Given a (combinatorial) embedding of a graph G, the faces of G
are defined as usual. By an (abstract) plane graph, we mean an equivalence
class of plane drawings under homotopic deformations of the plane. For
connected graphs, this amounts to a combinatorial embedding together with
a designation of the outer face.

For a drawing F(G) of G we denote the placement of a vertex v ∈ V
by F(v), and the drawing of an edge e ∈ E by F(e). Note that we consider
embedded edges to be open, i.e., they do not contain their endpoints. For
simplicity, and as there is no risk of confusion, in the figures we will denote
embedded vertices just by v instead of F(v).

The tangent of an edge F(e) at a vertex F(v) is the limit of the tangents
to F(e) when approaching F(v) along F(e). The tangent ray of F(e) at
F(v) is the open ray along the tangent to F(e) at F(v) from F(v) towards
F(e). A drawing gives us a cyclic order of incident edges around each vertex.
The angle between two consecutive edges incident to a vertex F(v) is defined
as the angle between the corresponding tangent rays at F(v) that does not
contain the tangent ray of any other incident edge. We say that this angle
is incident to F(v) (and vice versa). In the case of a degree two vertex there
are two such angles between the two incident edges. If a vertex has degree
at most one, we say that it is incident to one angle (having value 2π).

Similar to Section 1.2, we call a vertex in a drawing F(G) pointed if it is
incident to an angle greater than π (see Figure 5.1). We say that a vertex is
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pointed to a face if its large angle lies in this face. If all vertices in a drawing
are pointed we call the drawing pointed.

v2

v1

Figure 5.1: Drawing with a non-pointed vertex v1 and a pointed vertex v2.

For the special case of straight-line drawings this definition is identical
to the classic definition of pointedness, a term which stems from the field of
pseudo-triangulations. See again Section 1.2 for definition and background
of pseudo-triangulations.

The graphs which can be drawn as pseudo-triangulations are well-char-
acterized: A graph is called generically rigid , if its straight-line realization
on a generic point set induces a rigid framework (edges represent fixed length
rods and vertices represent joints). In two dimensions, there exists an easy
combinatorial characterization of generically rigid graphs that become non-
rigid after removing an arbitrary edge [112]. These graphs are called Laman
graphs. Due to Streinu [138], a graph of a pointed pseudo-triangulation is
a Laman graph. Conversely, as observed by Haas et al. [94], every plane
Laman graph can be realized as a pointed pseudo-triangulation. As a conse-
quence, subsets of plane Laman graphs are exactly the graphs that admit a
pointed non-crossing straight-line drawing. An operation that preserves the
Laman property is the so-called Henneberg operation of type 1: Adding a
new vertex of degree 2 to an existing Laman graph will create another Laman
graph. A simple example of a planar graph that has no pointed straight-line
drawing without crossings is the complete graph with four vertices.

We consider various incarnations of the problem how to draw a plane
graph pointed, using different kinds of edge shapes. With arbitrary smooth
curves or polygonal chains, the task of constructing a pointed drawing of a
given plane graph is trivial. As natural, but still quite simple edge shapes, we
study circular arcs, tangent continuous biarcs, and quadratic Bézier curves.
Let us briefly review the definition and basic properties of these curves. A
tangent continuous biarc consists of two circular arcs that are joined in a way
that they form a C1 continuous curve. A quadratic Bézier curve b spanned
by three points p1, pm and p2 is defined by the equation

b(t) = (1− t)2p1 + 2t(1− t)pm + t2p2, t ∈ [0, 1].
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It lies completely inside the triangle p1pmp2 (which is also called control
polygon of b), has p1 and p2 as endpoints, and is tangent to p1pm at p1 and
to p2pm at p2. The class of quadratic Bézier curves is the same as the class
of parabolic arcs.

We also consider the “extent of pointedness”. For example, can we
guarantee a free angular space around each vertex bigger than a given fixed
angle larger than π? For this stronger pointedness criterion we define the
term ε-pointedness.

Let ε > 0 be a real number. A vertex in the drawing F(G) is called
ε-pointed if it is incident to an angle greater than 2π− ε. We call a drawing
ε-pointed if every vertex is ε-pointed. In other words, all edges incident to
an ε-pointed vertex emanate in a sector of angle ε.

Further, we propose a stronger version of the pointed drawing problem:
Given a plane straight-line drawing Fs(G), can we redraw it as a plane
pointed drawing with a certain family of edge shapes without moving the
vertices? We call a drawing with this property a pointed redrawing. The
motivation of a pointed redrawing is clear: we can benefit from the given
drawing and keep its advantages (e.g., all vertices are placed on an integer
grid or fulfill other optimality criteria).

A more general redrawing problem would start from a plane embedding
with not necessarily straight edges. We have not considered this question.

Results

In Section 5.2, we consider the problem of pointed redrawings. We show that
every plane straight-line drawing Fs(G) can be redrawn pointed and plane
with Bézier curves as well as with tangent continuous biarcs. We show that
this is not always possible with circular arcs as edges.

Section 5.3 then deals with pointed drawings of (abstract) plane graphs.
We prove that every plane graph can be drawn ε-pointed with Bézier curves,
for arbitrary small ε > 0. We show that by using biarcs as edges, every plane
graph can be drawn such that for all vertices v, all incident edges share a
common tangent ray at v. This is maybe one of the most beautiful results
in this chapter from an aesthetic point of view. We further prove that every
plane graph can be drawn pointed and plane with circular arcs as edges. For
pointed drawings with biarcs, Bézier curves, or polygonal chains of length
two, we give a tight bound on the number of edges that have to be drawn
as non-straight curves (Theorem 5.14).

We summarize the results presented in this chapter in Table 5.1. All
obtained drawings can be constructed algorithmically, with the exception
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of the method described in the proof of Theorem 5.6, which needs a disk
packing of the plane graph in a preprocessing step.

edge shape problem instance obtained result

circular arcs pointed drawing possible, Theorem 5.11

pointed redrawing not possible, Theorem 5.4

tangent continuous
biarcs

ε-pointed drawing possible, Theorem 5.6

pointed redrawing possible, Theorem 5.3

quadratic
Bézier curves

ε-pointed drawing possible, Theorem 5.5

pointed redrawing possible, Theorem 5.1

Table 5.1: Overview of obtained results.

Related work and applications

Traditionally, graph drawing is mainly concerned with using the simplest
class of curves for the edges: straight-line segments. According to Fáry’s
theorem [83], every (simple) plane graph has a plane straight-line drawing in
the Euclidean plane. There is a vast literature dealing with the question of
efficiently finding plane straight-line drawings that fulfill certain (optimal-
ity) criteria (see [45, 119] for an overview). Improving work of de Fraysseix,
Pach and Pollack [60], Schnyder [135] proved that every plane graph with
n vertices has a plane straight-line drawing where the vertices lie on a grid
of size (n− 2)× (n− 2). The famous Koebe-Andreev-Thurston circle pack-
ing theorem [36, 111] states that every plane graph can be embedded with
straight-line edges in a way such that its vertices correspond to interior
disjoint disks, which touch if and only if the corresponding vertices are con-
nected with an edge, see also [123, 55]. We will use both the procedure of
de Fraysseix, Pach and Pollack [60] and circle packings as building blocks in
our algorithm.

If we relax the condition that the given plane graph has to be simple,
Fáry’s theorem does not hold, for the simple reason that straight-line draw-
ings are not well defined for loops, and multiple edges between two vertices
are excluded. However, with more complex edge shapes, one can ask for
crossing-free drawing of planar multigraphs with loops. The most natural
approach is to allow circular arcs. Drawing multiple edges as circular arcs
is no problem, as an edge in a straight-line drawing can be perturbed to
any number of close-by circular arcs. Loops, however, require more space.
The only circular arc between a vertex and itself is a full circle through
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this vertex. Thus, the vertex has to be incident to an angle of at least π,
which then is sufficient for any number of nested loops at this vertex. This
means that the simple graph containing only the non-loop edges must be
drawn as a pointed graph. In Section 5.3.2, we show that such a drawing
exists (Theorem 5.11) and as a consequence, we obtain a plane drawing
with circular arcs for every planar multigraph (Corollary 5.12). Moreover,
an O(n)×O(n2) grid is sufficient to embed the vertices of these drawings.

Another potential application for constructing pointed drawings of graphs
comes from drawing vertex labels. If the edges incident to a vertex point in
all directions, it might be hard to place a label close to its vertex. Thus it
is good to have some angular space without incident edges.

These results were presented at the 2007 Canadian Conference on Com-
putational Geometry in Ottawa [34]. One of the results which we announced
in this proceedings version cannot be maintained in full generality, see The-
orem 5.14 below.

5.2 Pointed redrawings

We start with the redrawing problem. Throughout this section we consider
a plane straight-line drawing as input of our problem instance. Let this
drawing be Fs(G).

Theorem 5.1. For every plane straight-line drawing Fs(G) of a simple
planar graph G there exists a pointed plane redrawing Fq(G) with quadratic
Bézier curves as edges: Fq(v) = Fs(v) for all v ∈ V , and for every vertex
v ∈ V , the cyclic order of the edges incident to v in Fs(G) is the same as
in Fq(G).

Proof. Without loss of generality assume that in Fs(G) no two vertices have
identical x-coordinates or y-coordinates. Assume further, that the vertices
are sorted by y-coordinates in increasing order.

We construct Fq(G) by iteratively replacing the straight-line edges of
Fs(G) with quadratic Bézier curves. We first replace the edges incident to
the bottom-most vertex v1, then the edges incident to v2, and so on. During
the construction we maintain the following two invariants:

(1) For every vertex vi, the tangent rays of all already redrawn edges lie
in the open halfplane H−i below the horizontal line through Fq(vi).

(2) The intermediate drawing is plane.
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When replacing the edges incident to a vertex vi, all edges incident to
a vertex vj , with j < i, have already been redrawn by our algorithm (as
all vertices below vi have already been processed). Let Ei = e1, . . . , ek be
the edges which have not been replaced yet, sorted by absolute slope, such
that e1 has the smallest absolute slope. We redraw these edges in increasing
order.

Let e = vivj , j > i be the current edge we want to process (see
Figure 5.2). Due to invariant (1) and the processing order of the edges
incident to vi we can choose a point pm in H−i such that the triangle
t = Fq(vi)pmFq(vj) does not contain any vertex or part of an edge of the
current drawing in its interior. By convention we place pm to the right of
Fq(vi) if e has positive slope, otherwise to the left. We use the triangle t as
a control polygon for a quadratic Bézier curve b with endpoints Fq(vi) and
Fq(vj), which we take as replacement for the straight-line edge Fs(e). Note
that b is tangent to Fq(vi)pm at Fq(vi), and thus invariant (1) still holds for
vi. As b lies completely inside t, and t\{Fq(vj)} lies completely inside H−j ,
invariant (1) for vj and invariant (2) remain fulfilled as well.

H−
i

vi

vj

pm

t

Figure 5.2: Constructing a plane pointed drawing where the edges are
quadratic Bézier curves (intermediate step).

Having redrawn all edges in this way, we obtain a drawing whose point-
edness follows directly from invariant (1), and that is plane follows from
invariant (2).

The easiest way to establish that the cyclic order of edges is unchanged
is to augment the drawing Fs(G) to a triangulation by adding edges and
deleting the corresponding arcs in the final drawing. For a triangulation a
with fixed outer face the order of the edges around a vertex is unique up to
a global reflection [146]. Hence, this order has to be preserved in Fq(G).
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The technique used in the proof of Theorem 5.1 can be modified to show
a similar statement for (tangent continuous) biarcs due to the following
observation.

Lemma 5.2. Consider a triangle spanned by three points p1, pm and p2.
There exists a tangent continuous biarc connecting p1 with p2 that lies inside
the triangle. Furthermore, the biarc is tangent to p1pm at one end and
tangent to p2pm at the other end.

Proof. Assume that the segment p1pm is shorter than p2pm. The first arc
starts in p1 with tangent direction p1pm and touches the line p2pm in some
point p̃. This point on the segment p2pm has the property that the length
of pmp̃ is equal to the length of p1pm (see Figure 5.3). The center of the arc
is found by intersecting the line l1 perpendicular to p1pm through p1 with
the line l2 perpendicular to p2pm through p̃. The second part of the biarc is
given by the straight line segment p̃p2 (a degenerate circular arc).

p1

p2

pm

l1l2

p̃

Figure 5.3: Drawing an edge as a tangent continuous biarc in a triangle.

Theorem 5.3. For every plane straight-line drawing Fs(G) of a plane graph
G there exists a pointed plane redrawing Fb(G) with tangent continuous
biarcs as edges: Fb(v) = Fs(v) for all v ∈ V , and for every vertex v ∈ V ,
the cyclic order of the edges incident to v in Fs(G) is the same as in Fb(G).

Proof. We re-use the construction from the proof of Theorem 5.1. Whenever
we have chosen an appropriate empty triangle for an edge replacement, we
place a tangent continuous biarc in it (as described in Lemma 5.2).

We conclude this section with a negative result on pointed redrawings.

Theorem 5.4. There is a planar graph G = (V,E) with a plane straight-
line drawing Fs(G), for which there are no pointed plane drawings Fc(G)
with circular arcs as edges such that Fc(v) = Fs(v) for all v ∈ V .
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vc

vl vr

vt

α

β

(a) (b)

Figure 5.4: Example of a straight-line drawing that can not be redrawn
pointed with circular arcs.

Proof. Consider the graph G shown in Figure 5.4(a). Vertex vc is placed
at the origin, vertex vt at (0, 2), vertex vl at (−0.2, 1), and vertex vr at
(0.2, 1). The positions of the remaining vertices are obtained by rotating
these vertices by ±120 degrees. Since G is 3-connected and planar, its
combinatorial embedding is fixed for any non-crossing drawing [146]. This
implies that in any such drawing the edge between vc and vt has to pass
through the narrow passage between vl and vr. Since we are restricted to
circular arcs, the arc connecting vt and vc has to lie in the shaded region
depicted in Figure 5.4(b). This region is the intersection of the disk touching
vt, vl, vc with the disk touching vt, vr, vc. The region lies inside a wedge of
angle α = 45.3 degrees. Thus, the tangents of two arcs from vc to the convex
hull are separated by an angle of at most β = 165.3 degrees. But in order
to make the vertex vc pointed, one of these angles would have to be larger
than π.

Larger examples can be constructed easily. As long as a straight-line
drawing similar to Figure 5.4(a) is contained inside another drawing, a
pointed redrawing with circular arcs is impossible. Moreover, with a con-
struction similar to the one shown in Figure 5.4(a), but with many “spokes”
(instead of just three), one can force the largest possible angle free of incident
edges at the central vertex to be arbitrary small.
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5.3 Pointed drawings

5.3.1 Pointed drawings with Bézier curves and biarcs

In the previous section the placement of the points was determined by a
given plane straight-line drawing. If the location of the vertices can be
chosen arbitrarily, we get the following easy consequence of Theorem 5.1.

Theorem 5.5. For any ε > 0 and any plane graph G, there exists a plane
drawing Fq(G) with quadratic Bézier curves where all vertices are ε-pointed.

Proof. Consider an arbitrary straight-line drawing Fs(G). In the proof of
Theorem 5.1 we showed a construction for a pointed drawing F ′q(G), in which
for every vertex v and for every edge e incident to v, the tangent ray of F ′q(e)
at F ′q(v) lies below the horizontal line through F ′q(v). By compressing the
x-axis (i.e., scaling by a factor less than 1), the large angle at every vertex
in the resulting drawing increases towards 2π. This modification produces
no crossings. Moreover, every quadratic Bézier curve is transformed to a
quadratic Bézier curve (with respect to the compressed control polygon).
Thus, sufficiently compressing F ′q(G) results in the desired ε-pointed drawing
Fq(G).

By similar arguments, it is possible to obtain an ε-pointed drawing Fb(G)
with biarcs. In this case the argumentation is more involved, because com-
pressing a biarc in one direction does not result in another biarc. However,
we can modify the proof of Theorem 5.1 in the following way: Recall that we
used as invariant (1) that for every vertex vi, the tangent rays of all already
redrawn edges lie in the open halfplane H−i below the horizontal line through
Fs(vi). To obtain a stronger result, we consider vertical double-wedges cen-
tered at the embedded vertices with wedge angle ε, and redefine the region
H−i to be the wedge below the horizontal line through the embedded vertex.
We compress the x-axis until all edges of the compressed straight-line draw-
ing lie strictly within the double-wedges of their endpoints, and apply the
previous approach with the changed invariant to this compressed drawing.

A disadvantage of this construction is that the biarcs tend to consist of a
circular arc with small radius and a circular arc with infinite radius. Thus,
these drawings are not aesthetically pleasing. For this reason, we present a
completely different approach, which also fulfills an even stronger criterion
of pointedness. This criterion, namely that all arcs incident to a vertex share
a common tangent at this vertex, implies ε-pointedness for any ε > 0.

Theorem 5.6. Every plane graph G = (V,E) has a plane pointed drawing
Fb(G) with tangent-continuous biarcs as edges such that Fb(G) is pointed.
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Moreover, for every vertex v, all edges incident to v share a common tangent
at Fb(v). The directions of these tangents can be independently specified for
each vertex.

We emphasize that the locations of the vertices cannot be specified in
this theorem.

Proof. According to the Koebe-Andreev-Thurston circle packing theorem [36,
111], every plane graph admits a disk packing, where each disk belongs to
a vertex (which is the center of the disk), and two disks touch if and only if
the corresponding vertices share an edge.

We start with such a disk packing of the graph G (see [55, 117, 56] for
algorithmic aspects of such packings). To get our drawing Fb(V ) of the
vertices, we place every vertex vi arbitrarily on the boundary of its disk Di,
avoiding touching points of the disks. The edges incident to vi will emanate
from Fb(vi) perpendicular to Di into the interior of Di. Thus, we can obtain
desired tangent direction for the edges by placing vi on Di appropriately.
We can avoid the coincidence of vi with a touching point by rotating the
whole disk packing. (There are only finitely many rotations that have to be
avoided.)

ti

tj

vj

Cj

Dj

Di

Ci

vi

pij

tij

Figure 5.5: Construction of a tangent-continuous biarc from two touching
disks Di, Dj .

Now consider an edge vivj ∈ E. For the embedded vertex Fb(vi) let
ti be the tangent through Fb(vi) to its disk Di. Furthermore, let pij be
the touching point of the two adjacent disks Di and Dj and let tij be the
tangent to Di and Dj through pij (see Figure 5.5). We draw a circular arc
Ci from Fb(vi) to pij inside Di, the center of Ci being the crossing of ti and
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tij . Similarly, we draw an arc Cj from Fb(vj) to pij inside Dj , with center
tj ∩ tij . Both arcs meet in pij with the same tangent (orthogonal to tij).
Therefore, the concatenation of Ci and Cj gives a tangent-continuous biarc.
We use CiCj as drawing for vivj and apply this construction for all edges
in E.

Di

vi ti

pi,k1

pi,k2

pi,k3

Figure 5.6: The situation at a vertex vi that shows that the biarcs do not
intersect.

It is left to show that the constructed drawing is non-crossing. Two
biarcs could cross only within a disk of the disk packing. Consider all circular
arcs incident to the embedded vertex Fb(vi) as depicted in Figure 5.6. All
corresponding circles have their centers on ti and are passing through Fb(vi),
which lies on ti as well. Thus, any two of these circles intersect only in Fb(vi),
and the constructed drawing is plane.

All biarcs incident to an embedded vertex Fb(vi) have a common tangent
orthogonal to ti. We can determine this tangent by placing the vertex vi on
Ci appropriately, avoiding the finitely many touching points of Di.

The above proof leaves some freedom to place the vertices on the bound-
aries of the corresponding disks. If in the drawing Fs(G) no two disk centers
have the same x-coordinate, we can place each vertex on the bottommost
point of the boundary of its disk. By this, all biarcs have positive curvature
and we have no “S-shaped” biarcs (see Figure 5.7).

Another possibility is to place each vertex vi ∈ V farthest away from
any touching point of its disk Di. In this way we can guarantee the radius
of any circular arc inside Di to be at least Ri · tan π

2ki
, where Ri is the radius

of Di, and ki ≥ 2 is the degree of vi. Unfortunately, in general, we have no
control over the radii Ri in the disk packing.
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Figure 5.7: A pointed drawing with biarcs as edges, constructed from a disk
packing.

5.3.2 Pointed drawings with circular arcs

We assume in this section that no two vertices will get the same y-coordinate
in the drawing. The drawing we describe next uses the following special type
of circular arcs.

Let p1 and p2 be two points, where p2 has the larger y-coordinate. We
call a circular arc between p1 and p2 upper horizontally tangent (short UHT-
arc), if it has a horizontal tangent at p2. We call a drawing of a triangle
upper horizontally tangent (short UHT-triangle) if all of its edges are drawn
as UHT-arcs (see Figure 5.9).

For any two points, the UHT-arc is uniquely defined. Hence, for every
point triple the UHT-triangle is unique. The following lemmata show that
under certain assumptions the UHT-triangles behave nicely.

Lemma 5.7. Consider the UHT-arc µ between p1 and p2. Let h1 be the
horizontal line through p1. Then the angle at p1 between h1 and µ is twice
as large as the angle at p1 between p1p2 and h1.

Proof. The situation stated in the lemma is depicted in Figure 5.8. Let α
be the angle at p1 between h1 and p1p2, and let h2 be the horizontal line
through p2. Then the angle α is the alternate angle to the angle at p2

between h2 and p2p1. Further, let pt be the intersection of the tangents of
µ at p1 and p2. The triangle p1p2pt is isosceles and hence the angle between
p1p2 and p1pt is α as well. Thus, the angle between µ and h1 equals 2α.
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p1

p2pt

h1

h2α

α
α

µ

Figure 5.8: Construction used in the proof of Lemma 5.7.

In the following lemma, we restrict the straight-line edges to have an ab-
solute slope less then or equal to 1. This implies that the angle between the
tangent of an UHT-arc at the lower point and the horizontal line through this
lower point is at most π/2. As a consequence, the UHT-arc is x-monotone
and is contained in the axis-parallel bounding rectangle spanned by its end-
points.

Lemma 5.8. Consider three points p1, p2, p3, sorted by their increasing x-
coordinates. If

(i) the absolute slopes of the line segments p1p2, p2p3 and p1p3 are smaller
than 1, and

(ii) p2 lies below the line through p1 and p3, or p2 has the highest y-
coordinate,

then p1, p2, and p3 span a non-crossing UHT-triangle that is oriented in the
same way as the straight-line triangle p1p2p3. That is, the clockwise order
of the points around the faces is the same.

Proof. Let yi be the y-coordinate of pi, let hi denote the horizontal line
passing through pi, and let aij denote the UHT-arc between pi and pj .

We prove the lemma by case distinction. Without loss of generality we
assume that y1 < y3. Depending on the relative location of y2 we obtain
three cases (see Figure 5.9).

Case 1 (y2 < y1). a13 and a23 cannot intersect since they have a
common tangent at p3 and do not lie on the same circle. The other pairs
of arcs have bounding rectangles with disjoint interior, and hence cannot
intersect.
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p1 p2

p3

p1
p2

p3

(case 1) (case 2)

p1

p2
p3

(case 3)

Figure 5.9: The three cases discussed in the proof of Lemma 5.8.

Case 2 (y1 < y2 < y3). Again, a13 and a23 do not intersect since they
have a common tangent at p3 and do not lie on the same circle. The arcs a12

and a23 have bounding rectangles with disjoint interior, and therefore do not
intersect either. Since p2 lies below the line segment p1p3 (condition (ii)), p2

lies below the arc a13 and p1p3 has larger slope than p1p2. Thus, and due to
Lemma 5.7, the angle between the tangent of a13 and h1 is larger than the
angle between the tangent of a12 and h1, meaning that a12 is incident to p1

“below” a13. As the second endpoint of p2 of a12 lies below a13 as well, an
intersection of a12 and a13 (to the right of p1) would imply a second such
intersection. This is impossible, because the two circles induced by a12 and
a13 would intersect three times.

Case 3 (y3 < y2). The pairs a23/a12, and a23/a13 have bounding
rectangles with disjoint interior and therefore do not intersect. For the
remaining pair of arcs a12 and a13 we apply again Lemma 5.7 and observe
that a12 is incident to p1 “above” a13. As the second endpoint of p2 of a12

lies above a13 as well, it follows that an intersection of a12 and a13 (to the
right of p1) would again imply that the two circles induced by a12 and a13

intersect three times, which is impossible.

Since in all three cases, the above-below order of the (x-monotone) inci-
dent edges at each vertex is preserved, the orientation of the UHT-triangle
is identical to the orientation of the straight-line triangle.

We continue by constructing a straight-line drawing that allows us to
substitute its triangles by UHT-triangles. The basic idea goes back to
de Fraysseix, Pach and Pollack [60].
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Theorem 5.9 ([60]). A plane triangulated graph has a plane straight-line
drawing on a (2n− 4)× (n− 2) grid.

Let us briefly review the incremental construction used in [60], see Fig-
ure 5.10. The vertices are inserted in a special (so-called canonical) order,
such that the next vertex pk+1 that is inserted can be drawn on the outer
face of the graph Gk induced by the first k vertices. Thereby as invariant it
is maintained that the outer boundary of the graph Gk (drawn so far) forms
a chain of pieces of slope ±1, resting on a horizontal basis (Figure 5.10(a)).
The next vertex pk+1 to be drawn is adjacent to a continuous subsequence
of vertices on the outer boundary. To make space for the new edges incident
to pk+1, the boundary of Gk is split into three pieces, which are separated
from each other by shifting them one unit apart (Figure 5.10(b)). The mid-
dle piece contains all neighbors of pk+1 except the first and the last one. In
[60] it is shown that one can split the upper boundary of Gk at an arbitrary
point and shift the pieces apart horizontally, by an arbitrary amount. If an
appropriate part of Gk inside the shaded area is shifted along, no crossings
are created. Any number of these shifting operation can be carried out in
succession. Furthermore, during such a shifting operation, the endpoints of
an edge can only be moved farther apart horizontally.

Gk

pk+1

Gk

Gk

(a)

(b)

(c)

pk+1

pk+1

Figure 5.10: (a–b) The incremental step in the straight-line drawing algo-
rithm of de Fraysseix, Pach and Pollack [60], and (c) the modification that
prevents vertical edges.

154



5.3. POINTED DRAWINGS

We slightly modify this inductive procedure to prove the following the-
orem.

Theorem 5.10. A plane triangulated graph has a plane straight-line draw-
ing on a grid of size (4n − 9) × (2n − 4), with the following additional
properties:

(a) No edge is vertical.

(b) No edge is horizontal.

(c) In each triangular face, the vertex with the middle x-coordinate is ei-
ther the vertex with the highest y-coordinate, or it lies below the oppo-
site edge.

Proof. The newly created triangles in the incremental construction described
above always fulfill property (c), which can be checked directly, and no
horizontal edges are created (property (b)). The only horizontal edge is the
bottom base edge. This horizontal edge can easily be avoided by starting
the construction with a non-horizontal base triangle in the first step.

To prevent vertical edges, one can split the middle part into two pieces
by vertical line through pk+1 and set them apart by two more units (Fig-
ure 5.10(c)). A boundary vertex on the vertical line can be assigned to
either part. (Two units are necessary to ensure that the left and right part
are separated in total by an even offset; this guarantees that the position of
pk+1, which is defined by the requirement that its leftmost and rightmost
incident edges have slope +1 and −1 respectively, gets integer coordinates.)

Adding a vertex preserves the old y-coordinates and the order of the
x-coordinates between adjacent vertices, as well as the cyclic order of the
edges. As a consequence, properties (b) and (c) can be guaranteed to hold for
previously added vertices after shifting. Property (a) is preserved because
shifting decreases the absolute slope of an already inserted edge, and by
the same reasoning, no edge becomes vertical. The dimensions of the grid
increase by 4×2 units for each new vertex. The initial drawing of the graph
G3 with the first three vertices needs a 3× 2 grid.

We continue with the main result of this section.

Theorem 5.11. Every plane graph G has a plane pointed drawing with
circular arcs as edges.

Proof. We assume that the graph G is a triangulation. (Otherwise we add
edges such thatG becomes a triangulation and delete these edges in the end.)
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Given an n-vertex plane triangulated graph, the algorithm of Theorem 5.10
constructs drawings in which for every edge its absolute slope is less than
2n. By scaling the x-axis by a factor of 2n, we obtain a drawing in which all
edges have slopes in the range between−1 and +1. In this scaled drawing, all
triangles fulfill the conditions of Lemma 5.8. We substitute every straight-
line edge by its corresponding UHT-arc. By this substitution, the order of
the edges around a vertex is preserved, and every straight-line triangle is
replaced by its corresponding UHT-triangle. Thus, and due to Lemma 5.8,
the obtained circular drawing is crossing-free (Edges on the upper hull are
non-crossing as they have bounding-rectangles with disjoint interior).

Around every vertex there is a number of edges that emanate in the
horizontal direction, plus a number of additional edges that point upward.
The latter type of edges have distinct tangent directions. Thus one can
slightly bend every edge upward and achieve a pointed drawing with circular
arcs.

Due to Theorem 5.10, pointed drawings constructed as above lie on an
O(n)×O(n2) grid. An example of such a drawing is shown in Figure 5.11.

Figure 5.11: An example of a pointed drawing with circular arcs. The hor-
izontal stretch factor was chosen just sufficiently to ensure that all straight
edges have absolute slope less than 1, instead of 2n.

As a consequence, we obtain the following result about multigraphs with
loops, as mentioned in the introduction:

Corollary 5.12. Every planar multigraph, possibly with loops, admits a
plane drawing with circular arcs, whose vertices lie on an O(n) × O(n2)
grid.

Note that this is no longer true if we insist on a particular combinatorial
embedding. For example, we cannot have three non-nested loops incident
to a vertex.
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5.3.3 Pointed drawings obtained via combinatorial pseudo-
triangulations

A different way to find a pointed drawing uses the framework established
by Haas et al. [94]. Let us recall some terminology first. A combinatorial
pseudo-triangulation is a planar combinatorial embedding of an (abstract)
connected planar graph G with an assignment of the tags big/small to the
angles of G such that the following conditions are fulfilled.

(1) Every interior face has exactly three small angles.

(2) The outer face has only angles labeled big.

(3) Every vertex is incident to at most one angle labeled big. If it is
incident to a big angle, it is called pointed (in the face where is has its
big angle).

(4) A vertex of degree at most 2 is incident to one angle labeled big.

An angle assignment that fulfills these conditions is called cpt-assignment .

By [94, Theorem 6], every combinatorial pseudo-triangulation whose un-
derlying graph is a Laman graph can be embedded as a pseudo-triangulation
such that every angle with tag big is larger than π in the drawing, and ev-
ery angle with tag small is smaller than π in the drawing. Furthermore,
the shape of every face can be specified up to affine transformations [94,
Theorem 11].

Lemma 5.13. Every triangulation with n vertices can be turned into a
combinatorial pointed pseudo-triangulation by subdividing n−3 edges, each
with exactly one additional vertex. Furthermore, the underlying graph is a
Laman graph.

Proof. We construct a cpt-assignment by an iterative procedure that is
guided by the canonical order of the plane graph (see Theorem 5.9). The
assignment ensures that all graphs Gk have a valid cpt-assignment. This
can be easily made true for G3, which is a single triangle. Here, the three
angles at the boundary get the tag big, and the three interior angles get the
tag small. Assume now that we add the vertex vk+1 to Gk to obtain Gk+1.
We therefore connect vk+1 with its neighbors on the boundary of Gk (see
Figure 5.10(a)). All new edges that are not on the boundary of Gk+1 are
subdivided by adding a new vertex on each such edge. The cpt-assignment
is extended such that every exterior angle of Gk+1 gets the tag big, and all
newly added faces have exactly three small angles. Every vertex that van-
ishes from the boundary will now realize its big angle in one of the newly
created faces. The simple scheme how to assign the angles is depicted in
Figure 5.12.
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Gk

vk+1

Figure 5.12: Extending the cpt-assignment during the construction of G by
its canonical order.

From a different perspective we add the vertex vk+1 by linking it to Gk
by two new edges. This operation is a Henneberg-1 step and it preserves
the Laman property of the graph. The vertices that are introduced by
subdividing edges are a result of additional Henneberg-1 steps. Since G3 is
a Laman graph, also Gn = G is a Laman graph.

In every step we add two edges that are not subdivided, and there are
n − 4 steps necessary to go from G3 to Gn. Thus, in total, we add 2n−3
edges that are not subdivided. Since the triangulation G has 3n− 6 edges,
n−3 of them are subdivided.

Theorem 5.14. Every plane graph G with n vertices has a plane pointed
drawing with either quadratic Bézier curves, tangent continuous biarcs, or
2-chains (polygonal chains consisting of two line segments), which uses at
most n−3 non-straight edges.

Proof. We assume that the graph G is a triangulation. (Otherwise we add
edges such thatG becomes a triangulation and delete these edges in the end.)
As a first step, we turn G into a combinatorial pointed pseudo-triangulation
as done in Lemma 5.13. By this we creates four types of bounded faces:

(i) triangles,

(ii) quadrilaterals with a degree-2 vertex with big angle,

(iii) quadrilaterals with a degree-2 vertex with small angle and the big
angle is realized next to it,

(iv) pentagons with two non-adjacent degree-2 vertices, one of them with
a big, one of them with a small angle.
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We apply the algorithm of [94] to realize the combinatorial pseudo-trian-
gulation. In all faces of type (iii) the interior of the triangle spanned by
the degree-2 vertex and its two neighbors is empty, see Figure 5.13(b). The
same is not necessarily true for the faces of type (iv). However, the algorithm
of [94] allows us to specify the face shapes up to affine transformations. By
giving all faces of type (iv) the shape shown in Figure 5.13(a) one assures
that the interior of shaded triangle in Figure 5.13(c) is empty. This property
is preserved under affine transformations.

(a) (b) (c) (d)

Figure 5.13: Affine shapes of faces used for the drawing (a–b) and con-
trol triangles for curve replacement inside these faces (c–d). The degree-2
vertices that came from edge subdivisions are marked as boxes.

What we have obtained so far is a pointed drawing, where at most n−3
edges are drawn as 2-chains, which proves the theorem for the case of polyg-
onal chains.

For the case of Bézier curves or biarcs, we consider for each 2-chain
p1, pm, p2 (with pm being the vertex of degree two) the triangle ∆ = p1pmp2.
∆ lies in a pseudo-triangle in which pm has a small angle. Due to the affine
shape of the faces, ∆ has an empty interior. We use these triangles as control
polygons as shown in Figure 5.13 and replace the 2-chains by Bézier curves
or biarcs (similar to Lemma 5.2).

In general it is not possible to draw a planar graph pointed using a larger
number of (non-crossing) straight-line edges, since every maximal pointed
straight-line graph has at most 2n−3 edges [138], and due to Euler’s formula
a triangulation has 3n− 6 edges. In this sense, Theorem 5.14 is optimal.

We demonstrate the construction used in the proof of Theorem 5.14 by
an example. Let G be the graph depicted in Figure 5.14(a). The big angles
of the cpt-assignment and the subdivisions computed by our method are
shown in Figure 5.14(b). This leads to the pointed pseudo-triangulation in
Figure 5.14(c) and finally to a pointed drawing with only three Bézier curves
as shown in Figure 5.14(d).

In a first version of this work, we made a stronger claim [34, Theorem 7]:
for each inner vertex, the face in which it is pointed can be chosen arbitrarily.
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(a) (b) (c) (d)

Figure 5.14: Construction of a pointed drawing with Bézier curves with help
of a combinatorial pseudo-triangulation as example.

Figure 5.15(a) shows a counterexample where this is not true. It is not
possible to make the three marked angles big with at most n−3 non-straight
edges which are either quadratic Bézier curves or 2-chains. The reason is
that a single quadratic Bézier curve bends by less than π. Therefore, in a
triangle with three vertices that are pointed in the interior face, all three
edges must be curved, see Figure 5.15(b): if we proceed clockwise along the
boundary, the tangent direction turns right by less than π along each edge.
At each vertex, it makes a left turn, by pointedness. With less than three
curved edges, the tangent direction cannot complete a full right turn of 2π.
The same argument works for 2-chains. By a similar argument, a triangle
with two vertices that are pointed in the interior face needs at least two
curved edges.

Applying these facts to our example, we see that all three edges in the
triangle ABC must be curved. With a total of n = 6 vertices, we have thus
exhausted our reservoir of at most n−3 = 3 non-straight edges. But then the
two straight edges A′B and A′C together with the curved edge BC cannot
make pointed interior angles at B and C in the triangle A′BC.

This example does not rule out the possibility that pointedness in the
chosen faces can be achieved with more than n−3 curved edges, or with
biarcs.

A B

C

A′

(a) (b)

Figure 5.15: It is not possible to get the three inner vertices pointed in the
inner triangle using only 3 quadratic Bézier edges.

160



Chapter 6

Conclusion

We considered questions in the intersection of combinatorial geometry and
graph theory. The central theme are combinatorial aspects of point sets in
the plane and graphs based on them, where in some questions the point sets
were bichromatic.

During the work on this thesis, we obtained several interesting results.
Some problems have been completely solved, while others are left partially
open. Moreover, new problems as well as new interpretations of existing
problems evolved. Let us below mention some of the questions that seem to
be interesting and challenging for future research.

A central topic are Erdős-Szekeres type problems on k-gons and k-holes.
In Chapter 2 we presented results on the numbers of not necessarily convex
k-gons and k-holes. For example, we gave a quadratic lower bound and

an upper bound of O(n
k+1
2 (log n)k−3) for the minimum number of general

k-holes, as well as an improved linear lower bound for the number of convex
5-holes. This immediately rises two questions, one of them classical, the
other one new. Is there a super-linear lower bound for the number of convex
5-holes? And what about a super-quadratic lower bound for the number of
general k-holes?

It turned out that the former question is strongly related to the latter one
in the following way: A super-linear lower bound for the number of general
4-holes would solve a conjecture of Bárány in the affirmative, showing that
every point set contains an edge that spans a super-constant number of
3-holes; see e.g. [53], Chapter 8.4, Problem 4. Bárány’s conjecture in turn
is equivalent to a conjecture stating that the number of convex 5-holes in a
point set is always at least quadratic.
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Adding colors to the points, we showed in Section 3.1 that every suffi-
ciently large bichromatic point set contains a monochromatic (not necessar-
ily convex) 4-hole. The maybe most challenging question for this topic is
whether there exists a similar result for convex 4-holes.

Another classical question for bichromatic point sets is Zarankiewicz’s
conjecture on the crossing number of the complete bipartite graph Kn,m.
Section 3.2 addresses restricted versions of this conjecture, where the edges
are straight lines, and, in the underlying point set, the red set is linearly
separable from the blue set. Despite several interesting observations, the fol-
lowing question remains open: Is it true that the rectilinear crossing number
of the complete bipartite graph Kn,m is z(n,m) if the underlying point set
has to be linearly separable?

Compatible matchings for bichromatic graphs are the topic of Section 3.3.
We presented bounds on the number of edges in a compatible matching that
are always attainable for a graph of a given class. All our lower bounds
concerning monochromatic matchings are obtained by constructing purely
monochromatic matchings, i.e., matchings that only use one of the two color
classes. This rises the question whether the attainable number of edges
mC(n) for monochromatic matchings is larger than the according number
pC(n) for purely monochromatic matchings for some class C ∈ {tree, path,
cycle,match}. Concerning bichromatic matchings, it is well known that
every bichromatic set S with |R| = |B| admits a bichromatic perfect match-
ing [113], but also that there exist point sets admitting only one such match-
ing. Thus, assume that S is a point set admitting at least two different per-
fect matchings. The most challenging open question here is the following.
Given a bichromatic perfect matching PM(S), does there always exists a
compatible bichromatic perfect matching PM ′(S) that contains edges which
are not in PM(S)?

Finally, let us state the major open problem from Section 4.1. There, we
showed that for every set B of n points there exists a set W of at most 3n/2
points (5n/4 if B is convex) such that the Delaunay triangulation of B ∪W
does not contain any edge with both end points in B. We also provided a
lower bound of |W | ≥ n−1 for the number of points that is always necessary.
In fact, for all point sets we considered during the work on this topic, we
found a solution with |W | = n. Is true in general that every point set B
needs exactly |W | = n points to be blocked? Or are there sets for which
|W | = n− 1 suffices or |W | ≥ n+ 1 is necessary?
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help of a combinatorial pseudo-triangulation as example. . . . 160

5.15 It is not possible to get the three inner vertices pointed in the
inner triangle using only 3 quadratic Bézier edges. . . . . . . 160
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de Hernares, Spain, June 22–26 2009.

[13] O. Aichholzer, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl,
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M. A. Heredia, C. Huemer, J. Urrutia, P. Valtr, and B. Vogtenhuber.
On k-gons and k-holes in point sets. In Proc. 23th Canadian Con-
ference on Computational Geometry CCCG’11, pages 21–26, Toronto,
Canada, 2011.

[16] O. Aichholzer, R. Fabila-Monroy, H. González-Aguilar, T. Hackl,
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[66] O. Devillers, F. Hurtado, G. Károlyi, and C. Seara. Chromatic variants
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[124] J. Pach and G. Tót. Monochromatic empty triangles in two-colored
point sets. Geometry, Games, Graphs and Education: The Joe Malke-
vitch Festschrift, pages 195–198, 2008.
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