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There is a theory which states that if ever anyone discovers exactly

what the Universe is for and why it is here, it will instantly disappear

and be replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.
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Abstract

Angular helium atom scattering measurements reveal small variations of the background
intensity in between the elastic scattering positions. The observed discrete features are
remnants of the attractive interaction between the helium particle and the sample sur-
face. These selective adsorption features have been analyzed for angular spectra on
the Bi(111) and Sb(111) surfaces to determine analytical expressions for the interaction
potential shape. The exact positions of the interaction potentials bound state energies
were used to selectively enhance the inelastic signal in the high-energy phonon creation
side of HAS-time-of-�ight measurements. This way, the surface and subsurface optical
phonon modes on the Bi(111) surface were clearly distinguished from the background
noise. To furthermore include the potential shapes into the corrugation analysis, a
close-coupling code was implemented and applied to the angular scattering spectra of
Sb(111). E�ective corrugation heights between 9.5 % and 12.4 % of the lattice constant,
dependent on the interaction potential used, have been determined. It was additionally
found that the plain corrugated Morse interaction potential can neither describe the sec-
ond order scattering interactions in ΓM-, nor any scattering in ΓK-direction, while the
hybrid Morse potential succeeds at these cases, too. Because of the importance of the
potential shape, a comparative study of di�erent interaction potentials in close-coupling
calculations on the Sb(111) surface has been conducted. Within this study, a di�erent
approach for determining the potential parameters from the measured bound state en-
ergies has been applied and the whole spectrum of interaction potentials used gave rise
to corrugation heights between 13.65 % and 19.05 % of the lattice constant dependent
on the potential in use. In general, hybrid-Morse interaction potentials yielded the best
results, while the plain corrugated Morse potential still fails. To additionally eradicate
the quietly accepted Debye-Waller model for describing the thermal intensity attenua-
tion, the close-coupling formalism was extended to include phononic movement of the
surface atomic positions. The obtained code was applied to angular scattering spectra
of the Bi(111) surface. It was found that the measured scattering intensities can be
described using much lower corrugation heights if phononic interaction is included. The
corrugation heights obtained using either approximative methods or the quantum me-
chanically exact inelastic close-coupling formalism are ≈ 10 % and 6.32 %, respectively.
A more striking �nding is furthermore that in the inelastic formalism the problems en-
countered with plain corrugated Morse potentials vanish, and the intensity prediction
�ts the measured values exceedingly well.
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Kurzfassung

Winkelaufgelöste Helium-Streuspektren zeigen kleine Intensitätsvariationen im Hinter-
grundsignal zwischen den elastischen Streupositionen. Diese Signale werden durch das
attraktive Interaktionspotential zwischen dem Heliumkern und der Probe verursacht.
Diese selektiven Adsorptionssignale wurden aus angularen Spektren von Sb(111) und
Bi(111) extrahiert und dazu benutzt, analytische Ausdrücke für die Form der jeweiligen
Interaktionspotentiale zu ermitteln. Das Wissen um die genauen Energien der gebunde-
nen Zustände konnte zur selektiven Verstärkung des inelastischen Signals höherenergetis-
cher Phononenerzeugung in Streuungs-Flugzeitmessungen genutzt werden. Auf diesem
Weg konnten die Ober�ächenvibrationen - und auch darunter liegende Moden im Bere-
ich optischer Phononenenergien eindeutig aus dem ansonsten stark verrauschten Hinter-
grund hervorgehoben und gemessen werden. Um diese weichen Potentiale weiters in die
Berechnung der Ober�ächenwelligkeit mitein�ieÿen lassen zu können, wurde ein soge-
nannter close-coupling Code implementiert und auf die Sb(111) Messungen angewandt.
Abhängig vom verwendeten Interaktionspotential wurden Welligkeitshöhen von 9.5 %
bis 12.5 % der Gitterkonstante ermittelt. Es wurde weiters festgestellt, dass das Corru-
gated Morse potential nicht in der Lage zu sein scheint, Streuintensitäten zweiter Ord-
nung in ΓM- sowie irgendeine Streuintensität in ΓK-Richtung zu reproduzieren, während
das modi�zierte hybrid Morse potential diese Probleme nicht aufzeigt. Angeregt durch
diese Hinweise auf die Wichtigkeit der benutzten Potentialform wurde eine vergleichende
Studie der vorhergesagten Streuintensitäten aus dem close-coupling Formalismus auf der
Sb(111) Ober�äche bei verschiedenen Interaktionspotentialen durchgeführt. Während
dieser Studie wurde ein alternativer Algorithmus verwendet, um die Fitparameter für die
Interaktionspotentiale zu ermitteln. Das gesamte Spektrum der betrachteten Interak-
tionspotentiale führte zu Welligkeitshöhen zwischen 13.65 % und 19.05 % der Gitterkon-
stante. Generell erzielten die hybrid-Morse Interaktionspotentiale die besten Ergebnisse,
während das einfache corrugated Morse potential die selben Probleme wie zuvor aufwies.
Um des Weiteren den stillschweigend akzepierten Debye-Waller Faktor, welcher den In-
tensitätsverlust der Streupeaks durch thermische Ober�ächenschwingungen erklären soll,
zu umgehen, wurde der close-coupling Formalismus auf phononische Vibration der Git-
teratome erweitert. Das so erhaltene Programm wurde auf die angularen Streuspektren
der Bi(111) Ober�äche angewendet. Durch diese Vorgehensweise konnten die erhalte-
nen Streuspektren mit viel kleineren Werten der Ober�ächenwelligkeit erklärt werden.
Verglichen mit den approximativen Methoden konnte die angenommene Höhe der Ober-
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�ächenwelligkeit von ≈ 10 % auf 6.32 % abgesenkt werden. Ein weiterer Vorteil der
inelastischen Betrachtung ist, dass unter Inklusion der inelastischen E�ekte die zuvor er-
wähnten Probleme des einfachen Morsepotentials die Streuintensitäten höherer Ordnung
zu beschreiben, verschwinden und auch diese höheren Ordnungen sehr gut beschrieben
werden.
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1 Introduction

With the advent of two-dimensional materials and the development of materials with
special surface restricted properties such as the class of topological insulators, the quality
of analysis of surface speci�c measurements is facing more and more extreme demands.
Obviously, it is bene�cial if the measurement method used is surface speci�c from the
beginning, so bulk values will not mix into the desired measurements. It is this surface
sensitivity at which helium atom scattering (HAS) excels. While the probe particles of
other scattering methods as neutron or electron scattering penetrate the surface at least
a few layers even at low energies, low-energetic helium atoms are already repelled from
the electron density 2-3 Å above the �rst atomic layer. The features recorded from HAS
are thus completely dependent on the electron density variations above the surface and
do in general not depend on bulk properties. A surface sensitivity like this is otherwise
only achieved with the most sophisticated Atomic-Force-Microscopy (AFM) methods.
AFM on the other hand can not easily supply information on the phononic dispersion
of the underlying material. Measurement techniques capable of this di�cult analysis
are usually slightly destructive at least - depending on the kinetic energies used in the
measurements. The most commonly utilized probe particle for investigating phononic
dispersions are neutrons. While possessing an equally usable probability for interacting
with single-phonon processes, neutrons generally have a very low probability to interact
with matter, resulting in extreme penetration depths. It is therefore exceedingly hard
to deduct surface speci�c properties from neutron scattering experiments. The extreme
surface sensitivity, paired with the gentle surface treatment and the possibility to probe
not only surface structure and dynamics, but also the interaction with the probe particle
itself renders HAS an indispensable tool for any serious material property analysis.
It is hard to overestimate the importance of surface properties. All physical interactions
between materials, all chemical processes using a catalysator take place at materials
surfaces. The exact structure as well as the interaction between the surface and the
interacting particles take important roles in these procedures. It is the exact struc-
tural corrugation and electronic con�guration of the platinum surface that forces the
adsorbed carbon-monoxide to remain in an upright position for example, enabling so
many catalytic processes. Astonishingly, not much is known about the exact structural
parameters of material surfaces, especially for the semimetal surfaces that have been
under investigation in this thesis. The determination of surface properties is without
doubt a complex problem. While theorists struggle with broken periodicities and large
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1 Introduction

vacuum layers in their simulations, experimentalists struggle with preparation and con-
tamination.
Besides posing a certain challenge to experimental surface scientists, the surfaces of the
semimetals bismuth (Bi) and antimony (Sb) have received renewed interest over the
last couple of years. One of the most di�cult problems was the determination of the
Bi(111) acoustic phonon dispersion with the Bi(111)-Rayleigh branch peaking at an en-
ergy of only 3.5 meV. Naturally, the corresponding measurements contained multiple
overlapping features which rendered the analysis a nontrivial task. The distinction of
the measured phonon peaks as well as the identi�cation of features attributed to other
e�ects than phononic movement introduced the necessity of more re�ned analysis tools.
Up to then the interaction between the probe particle and the surface was assumed
to be of a hard-wall type and related approximative methods for describing the mea-
sured elastic scattering peaks delivered satisfying results. This hard-wall type however
could not account for a lot of the measured features in the angular as well as in the
time-of-�ight measurements. The soft interaction potential between the particle and the
surface harbors certain bound state energies which are responsible for so-called selective

adsorption resonances (see section 3.8). If the resonance conditions are met, a certain
position in the angular or the time-of-�ight measurements can be selectively enhanced
to accurately pinpoint the phononic interaction energy or related e�ects. Chapter 5
presents a publication where this e�ect was utilized to selectively enhance the optical
phonon modes on the Bi(111) surface. The very same resonant e�ects however can alter
the measured elastic intensities and thus lead to an erroneous estimation of the surface
corrugation (see section 3.9). To include the newly found interaction potentials into the
corrugation calculations, the quantum mechanically exact close-coupling formalism was
introduced (see section 3.9.4) and utilized to analyze not only the surface corrugation
of Sb (see chapter 6), but also to further re�ne our understanding of the interaction
potential shape between the related scattering objects (see chapter 7). The very same
formalism can be alterated to furthermore include inelastic contributions present due
to the thermal vibrations of the lattice ions. This so-called inelastic close-coupling for-
malism was introduced to describe the surface corrugation of Bi(111), since due to its
comparatively low surface Debye temperature of 84 K the usually applied Debye-Waller
(DW) attenuation (see section 3.9.5) does not yield comparable results, ignoring the fact
that this theory was developed for x-ray scattering on ionic bulk crystals which may not
be applicable to HAS on semimetal surfaces. The inelastic close-coupling analysis how-
ever succeeds in describing the scattering spectrum on the surface (see chapter 8) and
�nally resolves the mystery why semimetallic surfaces like Sb(111) and Bi(111) seem to
be highly corrugated while possessing conducting surface states.
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1.1 Organization of this Thesis

1.1 Organization of this Thesis

This work is designed as a cumulative thesis, i.e. the main scienti�c results are presented
in their original form as articles - published or under review - in peer-reviewed journals
(chapters 5, 7 and 8). Each chapter corresponding to such a publication is introduced
with a short description and listing of the contributions of the several authors. To
protect the reader from jumping head-�rst into the subject of particle-surface interaction
analysis and our respective measurements, chapters 2-4 try to provide a summary of
the experimental and theoretical background. Subsequently, chapter 9 gives a short
summary of the novel �ndings of this work.
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2 Experimental Setup

All measurements contained in this work have been recorded on the helium atom scat-
tering apparatus H.Å.N.S (Helium Atom Nondestructive Scattering) originally designed
and built at the FU Berlin. After transfer to Graz, where the machine was remounted,
characterization measurements were performed on the well-known surface of LiF3,88.
After several adaptions and enhancements68, a �rst complete analysis of the static and
dynamic behavior of the Bi(111) surface was performed55,71,88,90,91. Further investiga-
tions revealed the static and basic dynamic properties of Sb(111)53,68�70,92. The follow-
ing pages summarize the most important parameters of the apparatus. A much more
detailed description including construction details, beam geometry and vacuum archi-
tecture is documented in the PhD thesis of Anton Tamtögl88.

2.1 Beam Production - The Source Arm

The two chambers of the source arm contain all the necessary equipment to produce and
control a nearly monoenergetic atomic beam. The gas is supplied in a reservoir kept
at constant temperature and pressure (T0, P0) and expanded through a narrow nozzle
of diameter d (typically 10 µm) into the surrounding vacuum chamber which is held at
a low pressure of pa 6 10−6 mbar. Due to the high pressure di�erence between the
in- and the outside of the nozzle, the gas enters the chamber at a higher pressure than
the ambient pressure pa. This 'underexpanded' gas expands and consequently acceler-
ates further into the vacuum chamber reaching high velocities. Since this expansion can
be considered as very fast, the process may be assumed to be adiabatic, giving rise to
transformation of thermal to translational particle energy72,79.
The central part of the expanded beam is selected by a 'skimmer', a conical-shaped
aperture between the �rst and the second chamber. This central part is mainly charac-
terized by a very narrow velocity distribution width of usually ∆v‖/v‖ ' 1%, with the
beam reaching a �nal particle velocity of

v‖ =

√
5 · kB · T0

mHe

, (2.1)

with kB being Boltzmann's constant and mHe the atomic mass of helium. From this
velocity, the relevant parameters for atomic scattering processes can easily be derived.
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2 Experimental Setup

Figure 2.1: 3D representation of the used HAS apparatus. Image taken from A.
Tamtögl88
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2.2 Manipulation and Interaction - The Main Chamber

Especially, the beam energy,

Ei =
5

2
kBT0 (2.2)

and the related absolute value of the particle wavevector ki,

k2
i =

2mHe

~2
Ei (2.3)

are of special importance for the analysis of measurement data88. An important aspect
of these equations is that the beam energy and thus the wavevector can be easily tuned
by changing the temperature of the nozzle reservoir T0. The present apparatus can be
adjusted to stable nozzle temperatures between 60 K and 165 K, resulting in scattering
energies between 13 meV and 35 meV.
After passing the skimmer, the beam enters the second chamber of the source arm,
containing the rotating chopper disc. In order to perform Time-of-Flight (TOF) mea-
surements, the particles arriving at the detector must be identi�ed and distinguished.
If a continuous beam is scattered from the sample, the intensity measured by the de-
tector will be temporally uniform. To be able to distinguish the particles velocities, the
incoming particle beam is 'chopped' into discrete packets by passing the beam through
the thin slits on a rotating chopper disc. While reducing the problem of energy-sensitive
measurements to the time-resolved detection of the produced packets (using a 'single-slit
chopper'), this method usually reduces the total intensity of the incoming beam to about
1% of its original value, resulting in unbearably long measurement times. By using a
'pseudo-random chopper', the decline in beam intensity can be limited to about 50%.
In this method, the chopper disc contains not only one or two single slits along the
whole rim of the disc, but is patterned by a complete sequence of alternating broad or
thin passages. The resulting signal at the detector is far more complicated, but can be
described by a convolution of a single-slit signal with the known sequence of the chopper
disc. Obviously, while granting the ability to perform the measurements faster by a
factor of up to 50, the obtained datasets are more complicated to analyze68.

2.2 Manipulation and Interaction - The Main

Chamber

After passing through the chopper chamber, the beam is directed through an additional
aperture into the main chamber (MC). Here the sample is positioned into the beamline
via a seven-axis manipulator. Apart from adjusting the sample to the desired scattering
position, the manipulator is also used to transfer the crystal under investigation to the
target positions of the other analysis and preparation methods. The main chamber is
generally kept at UHV conditions (varying in pressures between 10−10 and 10−11 mbar)
to prevent the surface from getting dirty as long as possible. The residual gases within
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the MC can be measured using a quadrupole mass spectrometer. For cleaning purposes,
the MC is equipped with an Ar+-ion gun for sputtering. After each sputtering cycle,
the surface can be annealed using a button heater attached directly to the backside of
the sample as well as a Thermocoax heating wire to heat the manipulator itself. The
heating wire is wrapped around a liquid nitrogen reservoir which when in use, enables
the surface to be cooled down to 100 K. To check the surface cleanliness as well as to
align the crystal rotation, a combined LEED (Low-energy electron di�raction) and AES
(Auger electron spectrograph) using a retarded �eld detector built into the LEED screen
are in use.
Furthermore, the MC is supplied with a controllable source of molecular hydrogen for
potential applications on metal surfaces. This source will be replaced with a combined
monoatomic & molecular hydrogen source. This way, the range of materials where a
hydrogen layer can be applied to is extended to semimetals and covalent crystals.

2.3 Separation and Detection - The Detector Arm

The detector arm setup is �anged to the main chamber at a total angle of 91.5◦ from the
source arm. In this setup, the position of both arms is �xed, providing a so-called 'moving
threshold' scattering geometry. The detector arm mainly consists of a di�erentially
pumped separation stage, a straight distance the helium atoms have to traverse to arrive
at the quadrupol mass spectrometer for detection. After inelastic interaction with the
surface, some of the helium atoms gained or lost energy, resulting in a di�erent total
speed in comparison to the elastically scattered beam. The separation distance enables
these energetic di�erences to spread the di�erent helium atoms spatially. Due to this
separation, the atoms arrive at the detector at di�erent times and can be distinguished.
The detector itself is mounted at a total angle of 90◦ with respect to the beam direction
and at a total distance of 1.114 m from the sample surface. Helium atoms are ionized
using a cross-beam ion source along a total ionization length of about 1 cm. While a short
ionization length is bene�cial for the energy resolution, it severely limits the measured
intensity. The ionization length thus has to be chosen as a compromise between those
two essential parameters.
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3 Theoretical Background

3.1 Surface Description

Crystal structures as well as the structures of their respective surfaces have been fun-
damental knowledge for performing crystallographic experiments, so any attempt to be
more precise in describing the fundamentals than the respective textbooks50 would be
futile. The following section summarizes the concepts needed for understanding surface
scattering brie�y, for a more thorough report on the concepts, the interested reader is
refered to Ch. Kittel's Introduction to Solid State Physics 50.
A so-called primitive crystal is de�ned as a three dimensional periodic arrangement of
atoms. A result of this basic periodicity is that two atoms at the positions r and r′ are
basically indistinguishable if r′ can be described as

r′ = r + k · a1 + l · a2 + m · a3 (3.1)

where (k, l,m) are integers and (a1, a2, a3) the three unit cell vectors. The perfect crystal
surface is de�ned as a two-dimensional cut through this perfect crystal. The speci�c
direction the crystal is cut, produces a speci�c surface structure. The produced two-
dimensional surface structure is usually periodic too, so the atomic positions can be
described as a linear combination of surface unit cell vectors,

R′ = R + n ·A1 + o ·A2 (3.2)

with (n, o) integers and (A1,A2) the surface unit cell vectors of the two dimensional
structure. Note that surface-speci�c quantities are usually depicted using capital let-
ters, while lower-case names are kept for three-dimensional vectors.
The surface under investigation is usually speci�ed using its shortest normal reciprocal
lattice vector.

3.2 Reciprocal Lattice Di�raction

Out of mathematical necessity in scattering investigations, crystals are furthermore de-
�ned by their unit cell vectors in reciprocal space. These vectors are called reciprocal
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unit cell vectors and can be calculated for any two-dimensional periodic structure using
the following equations:

(B1, 0) = b1 = 2π
A2 × n

A1 · (A2 × n)
(3.3)

(B2, 0) = b2 = 2π
n×A1

A1 · (A2 × n)
(3.4)

with n being a normalized normal vector pointing outward the surface. This transfor-
mation leads to a periodic reciprocal lattice, where two of the reciprocal lattice points G

are connected via
Gp,q = G0,0 + p ·B1 + q ·B2. (3.5)

The three-dimensional indices of the shortest reciprocal lattice vector perpendicular to
the original surface are called the surfaces Miller indices and are used to uniquely de�ne
the observed surface.

3.2.1 Di�raction from periodic surfaces

Di�raction occurs whenever a wave encounters a periodic structure with a lattice peri-
odicity of comparable size as its own wavelength. The re�ected (or transmitted) pattern
is no longer homogeneous, but conglomerates at several speci�c angles. These scattering
angles can be described by the Laue-condition, which states that the surface-parallel
component of the incoming- and the outgoing beam only di�er by a reciprocal lattice
vector, while the total energy of the wave stays the same.

Ki − Kf = Gp,q (3.6)

Ef = Ei (3.7)

Naturally, since every particle may be described as a traveling wave with a wavelength
given by the de Broglie wavelength

p = ~ · k, (3.8)

this di�raction criterion is also valid for all moving particles.

3.3 Lattice Vibrations

The straightforward model for the dynamics inside a crystal is to picture the atoms as
being connected by Hookean springs. As simple as this model may be, a lot of basic
physics can be derived by it.
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usus-1 us+1

Figure 3.1: One dimensional monoatomic chain of atoms connected by Hookean springs.

3.3.1 The one-dimensional monoatomic chain

The simplest conceivable model of a dynamic crystal is the one dimensional Hookean
chain, �gure 3.1. We assume a linear chain of equal masses m at the lattice points con-
nected by Hookean springs with a force constant of k and periodic boundary conditions.
The lattice constant, meaning the equilibrium distance between particle us and us+1 is
a. The force on particle s due to the displacements us of the particles s± 1 leads to the
di�erential equation

m
d2us
dt2

= k (us+1 + us−1 − 2us) (3.9)

which can easily be solved by assuming a periodic time dependence us(t) = e−iωt and a
travelling wave displacement us±1 = u · ei(s±1)qa which leads to the dispersion relation
for the angular frequency

ω(q) =

√
4k

m

∣∣∣sin qa
2

∣∣∣ (3.10)

This dispersion initially starts linear at a momentum of 0, the so-called �Γ-point� and
gradually �attens out to a slope of zero at the zone boundary at q = π

a
. To describe

phononic movements, Debye modeled the phonon dispersion as a straight line originating
at the Γ-point and ending at the zone boundary at the Debye-frequency ωD and a phonon
density of states

D(ω) =
3ω2

ω3
D

. (3.11)

Using this Debye model, the Debye-Temperature ΘD can be de�ned. At the Debye-

Temperature ΘD = ~ωD

kB
, all the possible phonon states in the Debye-dispersion are

populated. This Debye-Temperature is a speci�c property of the material and generally
lower in heavier materials.

3.3.2 The one-dimensional diatomic chain

The character of the phononic dispersion fundamentally changes when there are two
distinguishable atoms u and v with the masses m1 and m2 in the unit cell, �gure 3.2. In
the one dimensional picture, every atom is surrounded by two atoms of the other kind
at a respective distance of a/2, resulting in a system of coupled di�erential equations

m1
d2us
dt2

= k (vs + vs−1 − 2us) (3.12)
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usus-1 us+1

vs-1 vs

Figure 3.2: One dimensional diatomic chain of atoms connected by Hookean springs.

m2
d2vs
dt2

= k (us+1 + us − 2vs) (3.13)

which leads to a somewhat more complicated dispersion

ω2
± = k

( 1

m1

+
1

m2

)
±

√(
1

m1

+
1

m2

)2

− 4

m1m2

sin2
(qa

2

) . (3.14)

The dispersion given by equation 3.14 is now divided into two branches, as can be clearly
seen in �gure 3.3(a). The lower branch, the acoustic phonon branch resembles the mode
obtained by calculating the dispersion of the monoatomic chain and exhibits clearly the
initial Debye-behavior. The second mode, the optical phonon branch is separated from
the acoustical mode by a bandgap. The magnitude of this gap is dependent on the
mass-di�erence between the two distinguishable atoms. If the atoms possess the same
mass, the bandgap vanishes - however, since the di�ering mass was the only di�erence
between the two atoms in our model, the atoms are then indistinguishable and the
corresponding lattice constant is reduced from a to a/2. This results in the shift of the
e�ective zone boundary from π/a to 2π/a. This way, as depicted in �gure 3.3(b) and
(c), the optical branch vanishes and is therefor a speci�c e�ect of distinguishable atoms
inside a crystallographic unit cell.

3.3.3 The two-dimensional close-packed lattice

To extend the previous models to a complete approximative model for two- and three
dimensional crystals, a slightly more sophisticated approach is imperative. We assume
a crystal containing N crystal cells, each containing r ions with their respective masses
Mα. The equilibrium position of each ion in this crystal lattice can thus be described as

Rn,α = Rn + Rα (3.15)

with n and α running from 1 to N and 1 to r, respectively. The distance of each ion with
respect to its equilibrium position is denoted as sn,α(t), its sub-component, the distance
from the equilibrium position in k-direction, as sn,α,k(t), with k running through the
observed number of dimensions K. As usual in classical mechanics, the �rst things
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Figure 3.3: Schematic representation of the appearance of the optical phonon band.
(a) The unit cell contains two distinguishable lattice atoms. The unit cells
size is a - thus the reciprocal zone boundary lies at π

a
. (b) Assume the

two atoms in the large unit cell are equal in mass and force constants, but
the observed unit cell is still a long. The bandgap vanishes and the former
optical band can be observed as an uninterrupted continuation of the acoustic
branch of the neighboring reciprocal lattice zone. (c) If the two particles are
indistinguishable, the unit cell size is e�ectively a

2
, the resulting reciprocal

zone boundary shifts out to 2π
a
- since there is only one nucleus left in the

unit cell, only the acoustic branch remains.

to derive are the terms for the kinetic and the potential energy of the system. The
straightforward term for the kinetic energy is

T (t) =

N,r,K∑
n,α,k

Mα

2

(
dsn,α,k
dt

)2

. (3.16)

The potential term however is best reached through Taylor expansion up to the third
term

W (t) = W0(Rn,α) +
∑
n,α,k

(
dW (x)

dsn,α,k

)
x=Rn,α

sn,α,k + . . . (3.17)

. . . +
1

2

∑
n,α,k,
n′,α′,k′

(
∂2W (x)

∂sn,α,k ∂sn′,α′,k′

)
x=Rn,α

sn,α,k sn′,α′,k′ + h.o. (3.18)

The �rst term, W0(Rn,α), corresponds to a static, unchanging crystal potential and is

thus of no importance in this problem. The second term,
∑
n,α,k

(
dW (x)
dsn,α,k

)
x=Rn,α

represents

a force onto the lattice ions in their equilibrium positions, which by de�nition of the word
equilibrium, is also zero. This leaves us with the third term, for which we introduce a
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new variable

Φn′,α′,k′

n,α,k =
1

2

∑
n,α,k,
n′,α′,k′

(
∂2W (x)

∂sn,α,k ∂sn′,α′,k′

)
. (3.19)

This matrix contains at each position (n, α, k, n′, α′, k′) the force acting on particle (n, α)

in k-direction, when particle (n′, α′) is moved a unit length in k′-direction. Naturally,
this matrix must be symmetric Φn′,α′,k′

n,α,k = Φn,α,k
n′,α′,k′ . Assuming this is a conservative

system, the equations of motion can be found using d
dt

[T (t) + W (t)] = 0. This way,
one reaches

Mαs̈n,α,k = −
∑
n,α,k,
n′,α′,k′

Φn′,α′,k′

n,α,k sn′,α′,k′ . (3.20)

To solve this system of di�erential equations, a set of assumptions is necessary. At �rst,
we assume periodic solutions

sn,α,k =
1√
Mα

un,α,ke
−iωt, (3.21)

furthermore, the periodicity of the crystal has so far not been taken into account. The
force matrix Φn′,α′,k′

n,α,k can easily re�ect the translational symmetry of the crystal cells
if not the speci�c numbers n and n′, but only their total distance (n − n′) enters the
equations. Finally, the Ansatz for the translational movement should be of a Bloch-type

un,α,k = cα,ke
iqRn . (3.22)

Considering all these simpli�cations, the �nal system of equations that has to be solved
is

ω2cα,k =
∑
α′,k′

Dα′,k′

α,k (q)cα′,k′ , (3.23)

with Dα′,k′

α,k (q) being the dynamic matrix

Dα′,k′

α,k (q) ≡
∑
n

Φα′,k′

α,k (n)
√
Mα,Mα′

e−iqRn . (3.24)

The size of this dynamic matrix is kr× kr - in the three-dimensional case this gives rise
to 3 acoustic and 3(r − 1) optical phonon modes.

The simplest model to calculate the surface-speci�c phonon modes of pnictogen (111)
surfaces (as described in Section 4) is to model a two-dimensional structure with the same
geometry as the top layer of the observed material as seen in �gure 3.4. In the model
developed for the Bi(111) surface90 only the interactions between nearest- and next-
nearest neighbors have been taken into account. Figure 3.5 depicts a typical solution of
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Figure 3.4: Two dimensional spring-model of the hexagonal Bi(111) and Sb(111) surface
used for the subsequent phonon calculation. The black and the red springs
model di�erent force constants corresponding to nearest- and next-nearest
neighbor interaction.
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Figure 3.5: Two-dimensional simulation of the acoustic surface phonon dispersion on
Bi(111) using the simple force-constant model.90 The slope of this simulation
has been used to con�rm the bismuth surface phonon group velocity91. The
axis in ΓK-direction does not extend to the zone boundary since in this region
no measurement points were available.

a two-dimensional force constant model applied to the HAS-TOF measurements on the
Bi(111) surface90,91. In a simple two-dimensional model there should be two acoustic
modes in each high symmetry direction. However, as can be seen in �gure 3.4, the two
possible in-plane shear-horizontal movements of the lattice ions are equivalent due to
the mirror-symmetry of the �rst layer along both high symmetry directions.

3.3.4 Phonon instabilities due to electronic interactions

The simple models introduced up to now assume the forces between the crystal ions to
be describable by a simple potential �eld. In reality those forces are communicated via
the lattice electrons. The limited quantum mechanical states for electrons in the crystal
as well as their special dynamics may in�uence the phononic lattice dynamics deeply.

1D-Metals - the Peierls transition

The simplest but most dramatic example of electronic interactions in�uencing the overall
structure and thus the vibrational modes is the Peierls transition (PT). The simplest
case of a PT occurs in a one-dimensional chain of atoms with the electronic states �lled
up to the critical wavevector kF, ideally situated exactly in the middle between the Γ

point and the zone boundary. In this case, a minimal vibrational distortion of the lattice

16



3.3 Lattice Vibrations

ε

0

E
le

c
tr

o
n
 E

n
e
rg

y
 /

 a
.u

.

Electron Wavevector / a.u.

2a
π

2a
π

b
π=

a 2a = b

kF= kF=

(a) (b)

Figure 3.6: Illustration of the e�ect leading to a Peierls transition. In a one dimensional
metal whose electron band is exactly half �lled up to the Fermi energy εF (a),
a periodic distortion leading to a periodicity change to a unit cell twice the
size (b) lowers the total energy of the electronic system (�lled electron band
in blue, the gray area is the energy gained). If this gained energy exceeds
the energy needed for the plastic deformation, the distorted state is stable
and the material is an insulator.

leads to a di�erent e�ective lattice constant and therefore an additional band-bending
in both the electronic and the phononic dispersion relations. In the described case,
a lattice distortion leading to a doubling of the e�ective lattice constant would result
in the opening of an additional gap at kF, see �gure 3.6. The arising electronic band
bending lowers the total electronic energy while the �nal electronic state transits from a
conductor to an insulator. If the freed electronic energy is larger than the needed elastic
energy for the lattice distortion, this special state is stable and the material will shift to
this state at the slightest vibronic excitation.

Kohn anomalies

In 1959, W. Kohn51 introduced a concept of phonon softening due to interactions with
metallic electronic states. In principle, the theory assumes a circular cut through the
Fermi surface with radius kF, however this assumption only helps in simplifying the
encountered equations. The basic statement is that as long as the phonon momentum is
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Figure 3.7: Illustration of the e�ect leading to a Kohn anomaly. (a) Circular cut through
the Fermi surface. Phononic movements can be screened by virtual excita-
tions from one side to the other - as long as the respective wavevector does
not exceed the diameter of the electron pocket 2kF . (b) Consequence of
the abrupt loss of screening is a renormalization of the phonon energies to
develop a sharp dip in the dispersion.

smaller than 2kF, the phonons are screened by virtual excitations of the electrons along
this circular cut. As soon as the phonon momentum exceeds 2kF, the electronic system
is no longer able to screen the phononic movement, resulting in an abrupt change of the
restoring forces between the lattice ions (see �gure 3.7). Note that in this model there
is no direct energy transfer between the phonons and the electrons present.

Electron-Hole Excitations

Equivalent to the Kohn anomaly for adiabatic interaction, the phonon-electron interac-
tion may as well be non-adiabatic. In this case, the phonon is destroyed to produce an
equivalent electron-hole pair. Due to the striking di�erence in group velocities in the
electron and the phonon dispersions, electronic intra-band transitions with phonon-like
momentum by far excel the phonon's supplied energy. Inter-band electronic transitions
however may coincide with both momentum and energy of a phonon and produce mea-
surable phonon softening cones. A prominent example for such an e�ect is observable
by HAS on the W(110) and the Mo(110)45 surface, when a certain amount of hydrogen
is chemisorbed. This chemical alteration of the electronic states at the surface enables
the electronic transition to be shifted to the appropriate energy/momentum values for
a phononic interaction and is present as sharp dips in the recorded phonon dispersion
modes.
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3.4 Particle-Surface Interaction Potentials

3.4 Particle-Surface Interaction Potentials

The theoretical core of our measurements is certainly the interaction between the probe
particle and the surface under investigation. Interaction potentials do not need to be
simple, but in any sensible measurement approach, the interaction should at least be
manageable. This chapter not only lists the interaction models used for HAS, but also
mentions the other possible interaction phenomena that could arise when scattering
di�erent particles.

3.4.1 Attractive particle interaction

Single particles can attract each other by several causes of di�ering importance in sur-
face science. The basic forces can easily be divided into Coulomb interaction, covalent
bonding, dipole interactions (including the hydrogen bond) between intrinsic dipoles and
London dispersion forces between induced dipoles. There naturally are several more pos-
sibilities for attractive interaction ranging from gravitation to entropic forces. The main
objective of this short summary however is to mention the most important attractive
interaction procedures for surface interactions measurable in a usual UHV chamber.

Coulomb interaction

Coulomb interaction depicts the electrostatic attraction (or repulsion) between charged
ions. Electrostatic interactions are usually large in energy and mainly encountered in
ionic crystals as the main bonding characteristic. In most cases, the electronegativity
of one particle is much higher than the one of the second particle, as for example in
alkali- and halogen interactions, one electron changes place. Both particles bene�t from
being closer to (if not reaching) a closed electron shell. The resulting electrostatic charge
however induces a strong, non-directional and long-ranged force on other charged
particles known as the Coulomb interaction. The total Potential between two charged
particles due to Coulomb interaction can be determined by

UE =
1

4πε0

q1 · q2

r
(3.25)

with ε0 the electric permittivity of free space, qi the respective charges and r the distance
between the charges.

Covalent bonding

A main principle of molecular bonding relies on the energetic bene�ts of closed electron
shells. While in ionic crystals an electron is completely exchanged, covalent bonding
relies on the overlap of electron clouds which can be pictured as two atoms sharing one
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electron to each close their respective shells. From these properties, forces involved in
covalent bonding can easily be classi�ed as strong, directional and short-ranged.

Dipole-Dipole interaction

Similar to ionic interactions, molecules forming a permanent electric dipole may arrange
and attract each other depending on their respective dipole moments. The most famous
example is water - due to the angular arrangement of the hydrogen at two sides of the
oxygen, the total weight of all the negative charges and the positive charges do not
occupy the same spot, forming an intrinsic dipole moment. Dipole-dipole interactions
may change the behavior of the material signi�cantly - in the case of water the special
geometry of this dipole leads to the anomaly of water, the lower bulk density of the
solid phase compared to the liquid phase. Dipole-dipole interactions are strong, non-
directional and mid-ranged.

Dispersion forces

Generally known as London dispersion forces, two uncharged particles without an intrin-
sic electric dipole moment may in�uence each other to attractive interaction. London
dispersion forces can be derived by second-order perturbation theory from the Coulomb
forces between electrically neutral particles. Virtual excitations of electrons form virtual
electric dipoles inducing the formation of electric dipoles due to a charge-carrier shift in
the other particle. This procedure of mutual virtual dipole ampli�cation �nally leads to
a weak, non-directional and short-ranged attractive interaction, usually dependent
on the size and polarizability of the involved particle and follows a short range potential
like

ULF ≈ −
A

r6
. (3.26)

3.4.2 Repulsive particle interaction

The most striking repulsive interaction encountered in basic scattering physics is repul-
sion due to the Pauli exclusion principle. It states that two identical fermions can not
be in the same quantum mechanical state at the same time. Hence, when two particles
approach each other, the advancing electron orbital overlap would at some point force
two electrons into the same state. Before this happens, a very strong repulsive force
inhibits the further overlap. The exact shape of the resulting repulsive potential is un-
known but the extremely steep behavior is usually modeled by an exponential or a very
high arithmetic exponent.

In helium atom scattering, the probe particle is a single atom of the noble gas helium
(He). Being a noble gas, its electron orbital is completely �lled so the chemical reactivity
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Figure 3.8: Comparative plot of the two most basic interaction shapes. The Lennard-
Jones potential has been shifted so the minima coincide. The Lennard-Jones
potential describes the attractive interaction shape correctly.

is practically zero. Being a single atom alone, He does not possess an intrinsic dipole
moment. Hence, for simple scattering purposes the London dispersion force and the
Pauli repulsion will su�ce in describing the interaction potential.

3.4.3 Particle-Particle interaction potentials

Naturally, the interaction between two particles contains both modes, the attractive
long-range part and the short range repulsive interaction. There are several ways to
model and combine the two interactions - the two most common being the Lennard-
Jones and the Morse potential.

Lennard-Jones Potentials

The Lennard-Jones potential uses a sum of arithmetic exponents to model the total
interaction potential.

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(3.27)

with ε the depth of the potential well and σ the �nite distance for which the potential
between the particle vanishes. The position of the potential minimum is at rm = 21/6σ.
The Lennard-Jones potential is popular for keeping a simple-straightforward form, the
attractive London dispersion force behavior is described correctly, while the repulsive
r−12 term is steep enough to account for a realistic Pauli repulsion. The Lennard-Jones
potential is depicted as the red line in �gure 3.8.
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Morse Potentials

The 1D Morse interaction potential is formed by a sum of suitable exponential functions.

VM−1D(r) = ε
(
e−2κr − 2e−κr

)
(3.28)

The choice of exponentials makes the Morse potential convenient for theoretical usage
since simple derivatives or integrals may be calculated analytically and entered into the
simulations again as simple functions of the potential itself. Furthermore the exponen-
tials are quite advantageous when dealing with surface periodicities as can be seen in
the Appendix section of Chapter 7. The exponential treatment of the repulsive part
describes the sudden Pauli repulsion very well while the only but major downside is the
description of the attractive interaction. The attractive exponential decays compara-
tively fast and is not perfectly suited to describe long-range attractive interaction such
as in the London dispersion forces. The Morse potential is depicted as the black line in
�gure 3.8.

Hard Wall Model

Completely ignoring the attractive interaction or the �nite ascension of the repulsive
slope, the Hard Wall Model assumes the potential to be zero at all distances larger
than the classical turning point, at which it instantaneously jumps to in�nity. While
completely suitable for high-energy collisions, this assumed potential shape naturally
neglects all e�ects originating from the potential well. Nevertheless, the Hard Wall

Model is commonly used in 3D surface potentials (Hard Corrugated Wall Model, HCW)
for obtaining the surface corrugation height from approximative methods26,28,41.

Potential Well Model

The Potential Well Model adopts the basic ideas from the Hard Wall Model, the potential
jumps to in�nity at the classical turning point and the potential is zero most of the rest
of the distance. Shortly before the repulsive jump, however, the Potential Well Model

assumes a rectangular potential well. The Potential Well Model is used when the exact
shape of the potential is not of interest, while e�ects from the attractive interaction
should still be considered. A common example is the inclusion of the Beeby Correction

(see 3.9.6) in elastic scattering analysis.

3.4.4 Particle-Surface interaction potentials

The potential supplied by a surface is generally more complex than the potential of a
single particle. For a complete understanding of the interaction process, the complete
three dimensional architecture of the potential would be needed. For the basic analysis
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y
z dV

d

Figure 3.9: Schematic representation of the integrated structure to derive the 9-3 poten-
tial from the Lennard-Jones potential.

of scattering processes including elastic interaction and thus resonant e�ects (see 3.8),
the surfaced-averaged interaction potential, only dependent on the total particle-surface
distance, is needed. More complex analysis tools such as the Close-Coupling approach
(see 3.9.4) require a full description of the interaction.

The 9-3 Potential

The most straightforward way to describe the surface averaged interaction between a
probe particle and a surface is to just assume a particle-particle interaction potential
and consider this interaction for each lattice atom of the whole crystal. The summation
over each lattice site is in general too complicated and substituted by an integration over
a homogeneous crystal-mass. If for example the Lennard-Jones potential is considered
(see 3.4.3, �gure 3.8), the �nal interaction potential can be calculated as follows84

V (d) = 4ε

2π∫
0

∞∫
0

∞∫
0

R · dR dφ dz

[
σ12

(R2 + (d+ z)2)6
− σ6

(R2 + (d+ z)2)3

]
(3.29)

using cylindrical coordinates with the particle at a height d above the surface along the
polar axis. The depth of the volume element below the surface is depicted by z (see
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�gure 3.9).

V (d) = 8πε

∞∫
0

∞∫
0

dR dz

[
R · σ12

(R2 + (d+ z)2)6
− R · σ6

(R2 + (d+ z)2)3

]
(3.30)

after integration over R,

V (d) = 8πε

∞∫
0

dz

[
− σ12

10 · (R2 + (d+ z)2)5
+

σ6

4 · (R2 + (d+ z)2)2

]∞
0

(3.31)

V (d) = 8πε

∞∫
0

dz

[
σ12

10 · (d+ z)10
− σ6

4 · (d+ z)4

]
(3.32)

By now, the integral over the surface layer is complete. The integrand in equation
3.32 thus also represents the correct surface averaged interaction potential for a two-
dimensional material as graphene or silicene. Performing the last integral,

V (d) = 8πε

[
− σ12

90 · (d+ z)9
+

σ6

12 · (d+ z)3

]∞
0

(3.33)

V (d) = 8πεσ3

[
1

90

(σ
d

)9

− 1

12

(σ
d

)3
]
, (3.34)

or, after simpli�cation

V9−3(d) =
2

3
πεσ3

[
2

15

(σ
d

)9

−
(σ
d

)3
]
. (3.35)

Equation 3.35 now models the steep repulsive slope quite well while reproducing the
expected attractive behavior of the surface London dispersion forces.

Corrugated Morse Potential

If three dimensional potential architectures are needed, a commonly used specimen is
the Corrugated Morse Potential

VCMP (R, z) = D

[
1

ν0

e−2κ[z−ξ(R)] − 2e−κz
]
, (3.36)

with ξ(R) the corrugation function and ν0 the surface average of the exponential of the
corrugation function

ν0 =
1

Σ

∫
Σ

e2κξ(R)dR. (3.37)
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3.5 Helium Atom Scattering

The two-dimensional periodicity of the corrugation function contains the periodicity of
the crystal under investigation as well as the general structure of the height distribution
in a surface unit cell. The Corrugated Morse Potential is a popular choice because the
exponentials involved account for easy di�erentiability - for a lot of important numerical
cases sub-problems can be solved analytically (see Appendix of Chapter 7). The second
advantage is that the surface averaged interaction potential of the Corrugated Morse

Potential reduces to the standard Morse interaction potential, equation 3.28.

3.5 Helium Atom Scattering

Molecular scattering techniques, as for example helium, hydrogen or deuterium scat-
tering methods complement the spectrum of conventional scattering methods. While
Neutron scattering more or less uninhibitedly penetrates the bulk - and electron as well
as X-ray scattering data always include at least a small amount of bulk contributions,
molecular scattering adds the possibility to probe solely surface speci�c properties. Di-
atomic molecule scattering provides an additional channel for gathering information
about surface dynamics in analyzing the change in rotation/vibration of the molecule.
Since this technique is however not applied in the local machine, these methods are not
described in this work. Monoatomic species, namely the noble gas atoms provide the
advantageous peculiarity of being practically non-reactive, thus combined with the small
particle energies given in atomic scattering (10− 200 meV) the method can be thought
of as completely nondestructive to the surface or surface structures. Due to the com-
paratively high mass of atoms or molecules their de Broglie wavelength is short enough
for crystallographic analysis even at low incident energies. Helium, being the lightest
noble gas is usually chosen in all applications where next to the structural properties of
the surface the vibronic properties are of interest. Due to the lower mass, helium atoms
have a larger cross section for single-phonon interactions - giving rise to clearly resolved
phonon energies in simple time-of-�ight (TOF) measurements. The following chapters
give a short overview of the basic measurement techniques and the e�ects observed.

3.6 Surface Structure Analysis from Elastic HAS

As previously explained in Section 3.2.1, waves or particles with an appropriate wave-
length can be elastically di�racted from periodically structured surfaces. In addition to
the de�nite change in parallel momentum (equation 3.6) and the conservation of particle
energy (equation 3.7) in elastic di�raction, the �xed-angle geometry of the machine adds
more restrictions to the measurability of elastic di�raction peaks. The total angle θSD
enclosed by the source- and the detection arm is �xed, thus for every measured particle
the scattering process from ki to kf , depicting incident- and �nal wavevector, must ful�ll
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ki kf ki

kf

θi θf
θf

θi

Figure 3.10: Illustration of the mutual dependence of θi and θf in a constant-angle scat-
tering apparatus. If the angle of incidence is changed, the measurable outgo-
ing angle is changed also, the total sum of both angles must be θi+θf = θSD

the �xed-angle-condition
θSD = θi + θf , (3.38)

with θi and θf being the incident- and �nal scattering angle, measured from the surface
normal (see �gure 3.10). Due to this geometry, the wavevectors' respective components
parallel to the surface can be easily calculated by

|Ki| = |ki| · sin(θi)

|Kf | = |kf | · sin(θf ). (3.39)

Using equations 3.38 and 3.39 with equations 3.6 and 3.7, the scattering condition in
�xed angle machines can be deduced:

θi =
θSD
2
− arcsin

[
|Gh,k|

2|ki|cos( θSD2 )

]
(3.40)

Hence, the reciprocal lattice vector of the nearest in-plane reciprocal lattice point can
be calculated from the measured di�raction angle if the incident temperature-dependent
wavevector of the probe particle is known. Measuring the reciprocal lattice vectors of
the high-symmetry directions as well as the respective polar angle in between them,
the reciprocal lattice structure of the surface and thus the real space structure can be
determined.

3.7 Surface Phonon Analysis from Inelastic HAS

In inelastic scattering processes, the probe particle, in addition to the surface di�raction,
undergoes an additional interaction such as the interaction with a quasiparticle like i.e.
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Figure 3.11: Explanatory set of TOF measurement with the corresponding scancurve.
(a) Idealized simulation of a TOF measurement. Phonon creation and an-
nihilation side are speci�ed by red and blue color respectively. Besides the
di�use elastic peak at ∆E = 0 two phonon interaction peaks are observed.
(b) Corresponding scancurve of the idealized measurement depicted in (a).
The complete scancurve was backfolded into the �rst positive-energy rele-
vant region of the reciprocal space. Phonon creation and annihilation sides
are labeled using red and blue color. The two peaks observable in (a) corre-
spond to the two cuts of the scancurve with the underlying acoustic phonon
mode in (b).

phonons or plasmons. As this quasiparticle usually carries momentum as well as energy,
the scattering conditions are altered to

Ef = Ei ± ~ω
Kf = Ki ± Q(ω). (3.41)

Using these additional scattering requirements in combination with the �xed-angle ge-
ometry, a special dependence of the interaction energy and the exchanged momentum is
obtained:

∆E

Ei
+ 1 =

sin2(θi)

sin2(θSD − θi)

(
1 +

∆K

Ki

)2

(3.42)

The curve de�ned by equation 3.42 is called scancurve. Interpretation of the TOF
signal using this scancurve is depicted in �gure 3.11. If at a certain incident angle θi
a particle is detected with a certain runtime di�erence from the specular contribution
corresponding to an energy di�erence ∆E, the related momentum of the interacting
quasiparticle is given by ∆K. The local machine measures the time-delay between the
specular contribution and the inelastically scattered helium atom. The transformation
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to an energy spectrum is straightforward

Ef =
m

2

(
L

t

)2

, (3.43)

with L the traveled distance and t the measured time. Since the He atoms travel some
distance from the chopper disc to the sample before the interaction and the energy
exchange occurs, the corresponding formula is somewhat more complicated and has
been featured in earlier literature88. The resulting signal is transfered to the energy
scale but must still be rescaled due to the non-linearity of the energy scale∣∣∣∣ dt

d∆E

∣∣∣∣ =
t3

m · L
. (3.44)

Due to this transformation, the particles taking very long to reach the detector (the
particles which created quasiparticles on the surface) are weighted signi�cantly larger
and produce an extreme rise in intensity of the energy spectrum in the region where
the energy of the detected particle approaches zero. Since this rescaling a�ects all
the intensity measured in the TOF, signi�cant care has to be taken to minimize the
stochastic background noise. Its ampli�cation renders the analysis of low-energy signals
in the TOF impossible. A further important improvement on the TOF-data analysis
can be made by introducing a variable binning method �rst suggested by Bracco14. For
this purpose the signal is not averaged with a simple moving frame as usual, but the
width of this frame is gradually widened as it approaches the ∆E = 0 side. In the case
of the present measurements the width was calculated so that the calculated averages
are at equidistant energetic positions.

3.8 Resonant Behavior in HAS Measurements

Well resolved angular spectra bear a multitude of additional useful information if the
origin of some of the involved e�ects is known. Figure 3.12 is a magni�ed version of an
angular spectrum on Sb(111). Clearly, between the observed di�raction peaks additional
features appear. These variations in the background intensity can usually be assigned
to Selective Adsorption Resonances or Kinematical Focussing e�ects.

3.8.1 Selective Adsorption Resonances

Any realistic model of an attractive interaction between the surface and a probe atom
will result in the appearance of possible eigenstates of the interaction potential. Atoms
trapped in these bound states will stay at the surface, vibrating inside the interaction po-
tential. While the direct scattering into a bound state is unlikely but still possible, usual
HAS measurements are not able to identify a signal related to this phenomenon. The
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Figure 3.12: Magni�ed angular spectrum of Sb(111)-ΓM. In between the elastic scatter-
ing positions, small variations in the background intensity can be identi�ed
as resonant or kinematical e�ects.

usual e�ect of these bound states is the appearance of Selective Adsorption Resonances

(SAR). The elementary mechanics are simple, due to the existence of bound states in
the z-dependent surface averaged interaction potential, the scattered helium atom can
leave the scattering process either inside the continuous spectrum Ez ≈ k2

z > 0, or in-
side one of the �nite bound states Ez ≈ k2

z < 0. During the scattering process, energy
and momentum must be conserved. With the possibility of negative, bound values in
z-direction, the equation for energy conservation is altered to

k2
i = (Ki + G‖)

2 + G2
⊥ −

2m

~2
|εn|, (3.45)

with G‖ and G⊥ being the components of the interacting reciprocal lattice vector par-
allel and perpendicular to the incident scattering direction respectively and |εn| are the
absolute values of the bound state energy. Thus, the helium atom enters a bound state

by increasing its surface-parallel energy by di�raction up to the point where its surface
perpendicular energy coincides with a bound state energy. Naturally, the He atom can
leave the surface by the reverse process. From the viewpoint of the observer outside a
directly scattered atom and an atom scattered through a transient bound state are in-
distinguishable, di�ering only in their quantum-mechanical phase. This phase-di�erence
leads to an enhancement or a depression of the observed signal.
The explained process however would only lead to variations in the di�raction heights,
since only purely elastic e�ects were taken into consideration. The signal in between the
di�raction peaks in �gure 3.12 however must have interacted with some quasiparticle or
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ki kf

(a) (b)

ki kf

Q R.T.

Figure 3.13: Schematic representation of the inelastic and the resonant inelastic scat-
tering process. (a) Standard inelastic scattering. The transition from ki
to kf produces an additional surface phonon Q. (b) The incident condi-
tions allow the scattering particle to undergo a resonant transition (R.T.)
into the bound state. After some traveling time, the particle can scatter
out of the bound state. In certain cases, the resulting outgoing state is
indistinguishable from the standard inelastic scattered particle.

a surface impurity to arrive at its position. To account for inelastic resonant entry or
exit, the equation for energy conservation can be adapted again,

k2
i = (Ki + G‖ + Q‖)

2 + G2
⊥ + Q2

⊥ ± E(Q) − 2m

~2
|εn|, (3.46)

with Q‖ and Q⊥ the parallel and perpendicular projections of the interacting phonon
momentum onto the incident scattering direction and E(Q) the corresponding phonon
energy. As any reader might imagine, the prediction of inelastic entry positions is com-
plicated and requires detailed knowledge of not only the surface structure but also the
inelastic crystal properties. However, if an elastic entry into the bound state is assumed,
an inelastic exit could account for the position in between the di�raction peaks and
the process would still be indistinguishable from a standard inelastic scattering process,
as is depicted in �gure 3.13. The elastic entry, as can be derived from equation 3.45,
only depends on the total beam momentum ki and its projection onto the surface Ki

as experimental parameters. Due to the knowledge of the angle the resonance occurs
at, as well as the beam momentum from the nozzle temperature, the �nite possibilities
of reciprocal lattice vectors enable the determination of the bound state energies of the
surface averaged interaction potential.
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Figure 3.14: The Kinematical Focussing e�ect and its origins. (b) The scancurve shifts
its position dependent on the angle of incidence of the incoming parti-
cles. Approaching the tangency condition, the energetic overlap between
the phonon branch and the scancurve rises gradually, resulting in a gradual
enhancement of the background signal in (a). At the tangency position, the
intensity peaks and drops abruptly afterwards. (a) Magni�ed section of the
angular spectrum also shown in 3.12. The selected peak can be identi�ed
to be of KF origin.

3.8.2 Kinematical Focussing

Signi�cant features in between di�raction peaks may also originate from Kinematical

Focusing (KF) e�ects. KF e�ects occur, when the slope of the scan curve (equation
3.42) is tangent to a phonon mode, producing a van Hove singularity in the atomic
re�ectivity7,61. The feature shape is very distinct in rising gradually to a maximum
and dropping instantaneously afterwards, producing a wedge-like shape. The shape can
be explained by probing increasingly more phonons as the scancurve approaches the
tangency condition and losing interactability directly afterwards (see �gure 3.14).
In machines where time-resolved measurements are hard to perform, the KF e�ect

can be utilized to track down the position of the phonon dispersion from the angular
spectra9,66. In order to do this, the machine should however be able to change incident-
and �nal scattering angle independently to account for more adjustable KF positions.

3.9 Methods of Describing the Helium-Surface

Interaction

Deducing the exact three-dimensional He-surface interaction potential from measure-
ments is, as can be expected from an experiment probing so many di�erent surface
speci�c e�ects, a complicated business. In order to explain the measured e�ects, sev-
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Figure 3.15: Calculated Bi(111) corrugation using the iterative formula derived from the
Rayleigh approximation. The caps on the atom positions are given a �nite
value since the method diverges at their positions. A valid calculation of
the peak-to-peak corrugation height is thus not possible using this method.

eral models have been developed. These models can be used to determine surface- and
surface-interaction speci�c properties from the measurements.

3.9.1 Rayleigh Approximation

In the Rayleigh Approximation, the total wavefunction of the interacting particle beam
is described as a set of plane waves for the incoming- as well as for the outgoing waves.

Ψ(R, z) = exp (i[K ·R + kizz]) +
∑
G

AGexp (i[(K + G) ·R + kGzz]) (3.47)

The helium-surface interaction in this case is assumed to be of a hard-corrugated-wall
character, and the corrugation at all places where G ·R is small, can be derived using
a recursive formula

ξn(R) =
1

|ki| cos θi
· arccos

[
− 1√

P0 + 1

∑
G′

√
PG′

cos θi
cos(θSD − θi)

· · · (3.48)

· · · cos(G′ ·R + |ki| · cos(θSD − θi) · ξn−1(R))
]
,

with the PG being the measured scattering intensities from the reciprocal lattice vector
G′. A derivation of this recursion formula is given in52. This recursive equation can be
quite useful if the corrugation far away from the lattice sites is of special interest. At the
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lattice site position, the resulting corrugation intensity diverges. Usually, the lattice sites
are capped by a �nite value so the structure in between can still be seen. The structure
of Bi(111) was derived using this method and the result is depicted in �gure 3.15. As can
be seen, the lattice periodicity reproduces nicely by the capped (brown-white) peaks. In
between those peaks the measurements, however, lead to elevated channels in between
the lattice sites, possibly following a covalent-like surface bond52. Due to the divergence
at the lattice sites, this method can not be used to derive valid peak-to-peak corrugation
values.

3.9.2 GR Method

To obtain valid results from the Rayleigh approximation N. García31,32 proposed to
multiply equation 3.47 with exp(ikiz · ξ(R)) to arrive at the matrix equation∑

G

AGMGR = −1, (3.49)

with
MGR = ei[(kGz−kiz)ξ(R)+G·R]. (3.50)

For an equal number ofG andR values the linear system of equations possesses a unique
solution AG, as long as |MGR| 6= 0. This is usually achieved through choosing only R

values within the �rst unit cell31. The vector AG is related to the measured intensities
PG via

PG =
|kGz|
|kiz|

AGA
∗
G. (3.51)

The GR-method provides convergent solutions if the relative corrugation β0 = ξp−p
a

stays
below 18%28.

3.9.3 Eikonal Approximation

Another method for using the Rayleigh approximation is achieved by multiplying equa-
tion 3.47 on both sides with exp(−i[G′ ·R + kG′z · ξ(R)]) and integrating over the unit
cell (uc) ∑

G

MGG′ = A0
G′

MGG′ =
1

S

∫
uc

ei[(G−G′)R+(kG′z−kiz)ξ(R)]dR (3.52)

A0
G′ = − 1

S

∫
uc

e−i[G′R+(kG′z−kiz)ξ(R)]dR
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If the relative corrugation β0 < 10%, the o�-diagonal elements ofMGG′ can be neglected
and only the Integral for A0

G′ needs to be evaluated. For certain geometries this can
even be achieved analytically.

3.9.4 Close-Coupling

Unlike the previously described interaction simulation methods, the Close-Coupling
(CC) relies on a three-dimensional soft corrugated potential to calculate the scattered in-
tensities. In contrast to the hard corrugated wall model the realistic interaction potential
includes an attractive part giving rise to bound states of the helium-surface interaction
potential. As described in section 3.8 these bound states can lead to sudden unexpected
and dramatic changes in the measured intensity and must be included in any realistic
description of scattering experiments. Out of simplicity, all equations in this chapter
assume ~2/2m = 1.
Starting with the time-independent Schrödinger equation,[

−∇2 + V (r) − k2
i

]
Ψ(r) = 0, (3.53)

the wavefunction can be Fourier expanded in terms of reciprocal lattice vectors

Ψ(r) =
∑
G

ΨG(z)ei(Ki+G)·R (3.54)

as well as the total interaction potential

V (r) =
∑
G

VG(z)eiG·R, (3.55)

with the expansion terms

VG(z) =
1

S

∫
uc

V (r)e−iG·R, (3.56)

where S represents the surface area of the unit cell. A common choice for the three
dimensional interaction potential between the impinging helium atom and the surface is
the Corrugated Morse Potential (CMP), equation 3.36. Due to its simple exponential
structure a lot of calculations can be done analytically and the calculational e�ort can
be reduced. The expansion terms VG(z) can be written as

VG(z) = D
VG
V0

e−2χz (3.57)

with VG the so-called coupling factors, which can be calculated by

VG =
1

S

∫
uc

e−iG·Re2χξ(R)dR. (3.58)
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Especially this simple relationship makes the CMP an attractive candidate for close-
coupling simulations. While the real coupling integral equation 3.58 is independent of
z, the simple z-dependence of equation 3.57 allows the calculation of the real relevant
Fourier terms to be done economically by multiplying the constant coupling factors only
by an exponential. Furthermore, for most structures equation 3.58 can be evaluated
analytically, as was shown in several publications53,74 - the paper on Sb(111) being
presented in Chapter 7 for the hexagonal structure of the pnictogen-(111) surfaces.
Aside from the CMP, the Fourier transformed potential and the wavefunction equation
3.54 and 3.55 are inserted into the Schrödinger equation which is multiplied on both
sides by exp(−i(Ki + G) ·R) and integrated over the unit cell area to arrive at the set
of coupled equations[

d2

dz2
+ k2

G,z − V0(z)

]
ΨG(z) =

∑
G′ 6=G

VG−G′(z)ΨG′(z) (3.59)

for the perpendicular waves with k2
G,z the z-component of the particle's kinetic energy

after surface interaction
k2
G,z = k2

i − (Ki + G)2 (3.60)

and V0(z) the surface-averaged particle-surface interaction potential. Interpretation of
equation 3.59 can be quite tricky but can be simpli�ed by revoking the very last step of
the conversion to arrive at

k2
G,zΨG(z) = − d2

dz2
ΨG(z) +

∑
G′

VG−G′(z)ΨG′(z). (3.61)

Equation 3.61 clearly shows that the Schrödinger equation for each involved wavefunction
ΨG(z) includes a potential term dependent on all other wavefunction intensities and their
respective Fourier terms (couplings) at this z -position. This way, if all the intensity of
the system is initially in one term (as can be assumed for the incident beam), the
respective size of the Fourier terms VG−G′(z) decides which parts of the wavefunction
will experience a signi�cant change in their potentials and thus a change in their own
intensity.
The system can in principle be solved easily but the boundary values of the involved
wavefunctions must be known. Based on the low incident energies of the incident beam,
no helium atom can penetrate the surface so the wavefunction has to vanish for z → −∞.
Likewise, wavefunctions where the normal energy k2

G,z is smaller than 0 can not possess
real intensities at z → +∞ and will decay exponentially. Wavefunctions with k2

G,z > 0

on the other hand should be describable by a plane wave as soon as the asymptotic
potential can be assumed as constant.

ΨG(z → −∞) = 0 (3.62)
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ΨG(z →∞) =

{
k
−1/2
G,z e−ikG,zzδG,0 + k

−1/2
G,z SGeikG,zz, if k2

G,z > 0

κ
−1/2
G,z SGe−κG,zz, if k2

G,z < 0
(3.63)

with κG,z =
√
−k2

G,z. The measured scattering intensities are related to the amplitude
of the wavefunctions via

IG = |SG|2. (3.64)

Equation 3.63 furthermore includes the incident wave with an amplitude of 1 for the
channel G = 0.
Systems of coupled equations can be solved in several ways, the present code however is
using a method introduced by L. Fox29. At �rst, the close-coupling equations 3.59 have
to be remodeled to

d2

dz2
ΨG(z) =

∑
G′

[
−δG,G′k2

G′,z + VG−G′(z)
]

ΨG′(z) (3.65)

so they can be written as
d2

dz2
F = W(z)F(z) (3.66)

with F(z) = ΨG(z) and the propagator matrix

WG,G′ = −δG,G′k2
G′,z + VG−G′(z). (3.67)

Analogous to Numerov's method, this equation can be discretized via[
I − 1

12
h2Wi+1

]
Fi+1 +

[
I − 1

12
h2Wi−1

]
Fi−1 −

[
I +

10

12
h2Wi

]
Fi = 0 (3.68)

with h the step size between the discrete distance points zi and zi±1. The Fox-Goodwin
algorithm now introduces a propagator -matrix R that changes the wavefunction to its
progressive value

Fi−1 = Ri−1Fi (3.69)

Fi = RiFi+1

From those equations, the propagator matrix can be determined to be

Ri =

[[
2I +

10

12
h2Wi

]
−
[
I − 1

12
h2Wi−1

]
Ri−1

]−1

·
[
I − 1

12
h2Wi+1

]
. (3.70)

Starting with all amplitudes being zero, repeated use of the propagator successively
calculates the wavefunctions. As soon as the potentials reach the asymptotic region, the
calculated wavefunctions can be extracted. Generally, the wavefunction-vector F can
be written as

FN =

(
Sin

0

)
+

(
Cos 0

0 Exp

)
·
(
K
E

)
(3.71)
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with K the amplitudes of the observable, open, channels (k2
G,z > 0) and E the amplitudes

of the non-observable, closed, channels (k2
G,z < 0). The Sin represents the impinging

plane wave with normalized intensity. The attentive reader will wonder why all the
open channels have an impinging wave attached, when the intention is to calculate the
scattering from one channel into all the others. The formalism introduced here does
not distinguish between di�erent channels and calculates the scattering intensities from
every channel into every other channel simultaneously. At the end of the calculation
only the scattering probabilities are extracted that originate from an impinging wave at
G = 0. The matrices Sin, Cos and Exp are �lled according to the following rules

[Sin]G,G′ =
1√
|kG,z|

sin(|kG′z|z)δG,G′

[Cos]G,G′ =
1√
|kG,z|

cos(|kG′z|z)δG,G′ (3.72)

[Exp]G,G′ =
1√
|kG,z|

exp(−|kG′z|z)δG,G′ .

To arrive at a useable expression to determine K, equation 3.71 has to be combined with
equation 3.69(
SinN−1

0

)
+

(
CosN−1 0

0 ExpN−1

)
·
(
K
E

)
= RN−1·

[(
SinN

0

)
+

(
CosN 0

0 ExpN

)
·
(
K
E

)]
.

(3.73)
The exponential intensities of the forbidden wavefunctions E are of no interest and can,
due to the numerical treatment, even diverge. From the wavefunction intensities K we
arrive at the reaction matrix SG,G′

SG,G′ = (1− iK)−1(1 + iK). (3.74)

Since only the G = 0 is initially populated, only one line in SG,G′ is of physical meaning
to us

SG′ = S0,G′ (3.75)

Channel convergence and kinematical analysis

The close coupling algorithm derived in this chapter is in principle exact as long as
only elastic scattering interactions are involved. However, for the solution to be exact
an in�nite number of reciprocal lattice vectors has to be taken into account. Usable
software can only consider a �nite number of reciprocal lattice vectors - thus the major
question is which vectors are most important and how many vectors are really needed.
The di�erent possibilities for scattering di�er mostly in their respective normal energies.
These di�erent possibilities are called di�raction channels. These di�raction channels,
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Figure 3.16: Schematic representation of the three di�erent scattering channels in CC
calculations. The dash-dotted line represents the total perpendicular energy
of the particle after the scattering event, k2

Gz. The asymptotic energy (Ki+

G)2 is only marked for channel (c) and labeled as A.E.. Channel (a) is
generally refered to as open, while channels (b) and (c) are in principle
closed.

due to their respective normal energies equation 3.60 encounter di�erent, shifted central
interaction potentials

V0(z) + (Ki + G)2 (3.76)

where the term (Ki + G)2 is usually denoted as the asymptotic energy of the channel
(see �gure 3.16). Due to the relative positions of these potentials with respect to their
normal channel energies, three di�erent cases can be distinguished:

� (Ki + G)2 < k2
Gz,

potential (a) in �gure 3.16. The channel is called open. In principle a continuum of
scattering channels is allowed in this regime which will carry scattering intensity.
The states are denoted as |Ki + G,k2

Gz〉. Since there is only a �nite number
of reciprocal lattice vectors leading to open channels, all open channels can and
should be included in the calculation.

� (Ki + G)2 −D < k2
Gz < (Ki + G)2,

potential (b) in �gure 3.16. Generally, these channels are called closed since the
respective normal energy k2

Gz does not allow the scattered particle to leave the
surface and carry scattering intensity. However, close to the surface, the normal
energy may coincide with a bound state of the interaction potential, rendering real
intensity in this wavefunction possible. Due to the discrete character of bound state
energies the allowed scattering states are also discrete and labeled by |Ki + G, ν〉,
with ν being the integer number of the respective bound state. Possible resonant
channels should be included in the calculation.
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� k2
Gz < (Ki + G)2 −D,

potential (c) in �gure 3.16. The channel is closed and so far o� the normal energy
that no resonant interactions are possible. Wavefunctions belonging to closed chan-
nels energetically close to open channels however may �uctuate in the scattering
process and thus alter the experienced interaction potential of other channels (see
equation 3.59). The amount of closed channels in the calculation can be severely
limited and must be determined by a convergency test.

Furthermore, the integration region, namely starting and end value of the integration
range can be limited. The integration should start inside the forbidden region of the
interaction potential, where all wavefunction contributions can safely be assumed as
unpopulated and should end in a region where the interaction potential is unchanging
enough so the shape of the wavefunctions can be assumed to behave like the border
values require (equation 3.63). Another convergence parameter is the number of z -steps
that are performed. The developed code automatically calculates the wavelength of the
highest-energy channel, thus the shortest wavelength encountered in the calculation.
The parameter set in the function determines how many steps should be performed
within this shortest length. Usually, a value around 100 is su�cient. These parameters
should be optimized in order to produce a su�ciently exact solution, but also minimize
the calculation time. Simulations that should be compared with experimental results
usually are su�ciently converged if the solution is exact up to 1% of the absolute value.
The calculation time scales linearly with the range parameters (zmax − zmin, nstep) but
scales proportional to N3 with N the number of included channels63.

3.9.5 Debye-Waller Factor

Common theoretical treatments of the scattering processes presented so far assume the
surface to be at complete rest and the crystal periodicity to be perfect. Introducing a
�nite surface temperature however alters the prerequisites of a realistic surface model.
Due to thermal movements the crystal surface can neither be assumed as at rest or as
perfectly periodic. Those thermal e�ects attenuate the observed peak intensity of the
elastic scattering peaks and are usually described by

I(TS) = I0 · e−2W (TS) (3.77)

with the Debye-Waller factor W (TS) in the exponent de�ned as

2W (Ts) =
〈
(u ·∆k)2

〉
TS
, (3.78)

u being the displacement vector of the lattice atom out of its equilibrium position and
∆k the total change in momentum of the scattered particle. Regarding only the specular
contribution, the surface parallel momentum does not change. This approximation yields

2W (Ts) =
〈
u2
z

〉
· (∆kz)2, (3.79)
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with 〈u2
z〉 the average squared atomic displacement perpendicular to the surface. As-

suming the vibrational behavior to be like a harmonic oscillator, it can be described
as 〈

u2
z

〉
=

3kBT

Mω2
(3.80)

with M the e�ective mass of the surface atoms. For the vibrational frequency ω, the
Debye frequency can be used

ωD =
kBΘD

~
(3.81)

with ΘD the Debye temperature. Combining all these statements, the Debye-Waller
(DW) factor can be expressed as

W (TS) =
3~2TS

2MkBΘ2
D

∆k2
z . (3.82)

3.9.6 Beeby Correction

In basic elastic scattering analysis, the Hard Corrugated Wall model (see Section 3.4.3),
is usually used. Here, the scattering process is only in�uenced by the plain structural
properties of the surface layer, not taking into account the attractive interaction due
to dispersion forces. In a more realistic approach, the helium atoms are accelerated
by the attractive interaction towards the surface and thus the change in perpendicular
momentum during the scattering process is higher than assumed by a hard corrugated
wall. This can easily be included into the Debye-Waller attenuation factor, equation
3.82 by assuming

∆kz = 2ki

√
cos2(θi) +

D

Ei
(3.83)

for the specular position θi = θf , with D the potential well depth and Ei =
~2k2i
2m

the
incident particle energy. Thus, including the Beeby correction, equation 3.82 reads as

W (TS) =
12m [Ei cos2(θi) +D]

MkBΘ2
D

TS. (3.84)

3.9.7 Inelastic Close-Coupling

The simple exponential expression for the thermal attenuation introduced for the Debye-
Waller factor in equation 3.77 can pose a severe problem for surfaces with a compara-
tively small surface Debye temperature, since in this case the DW-Factor equation 3.84
produces a very steep decline of the expected intensity with the surface temperature.
Furthermore, the Debye-Waller factor may only be validly used for the attenuation of the
specular intensity, though the behavior of the scattering peaks has also been described
using an additional hypothetical Debye temperature71.
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Introducing inelastic scattering possibilities into an exact method such as the close cou-
pling formalism opens the possibility to study the temperature-dependent attenuation
with a solid theoretical base. In this case, the crystal is described by the rigid equilibrium
grid that was already introduced in the elastic case and periodic deviations u(R, t) of
the atoms from their equilibrium positions. Knowing the deviations are time-dependent,
the time-dependent Schrödinger equation is used

i~
∂Ψ(r, t)

∂t
=
[
−∇2 + V (r, t)

]
Ψ(r, t). (3.85)

The somewhat complicated dependence of the overall potential V (r, t) from the atomic
positions can be approximated by a Taylor expansion up to �rst order, assuming the
periodic atomic deviations are small

V (r, t) ' V (r) + u(R, t) · ∇V (r) (3.86)

with V (r) the static potential of the rigid equilibrium grid which can be, equivalent to
the elastic case, developed into a Fourier series

V (r) =
∑
G

VG(z)eiG·R. (3.87)

The deviation from the equilibrium position u(R, t) is described by a term from the
layer description of lattice dynamics73

u(R, t) =
∑
Q,ν

A(Q, ν, T )eiQ·R cos [ων(Q)t] . (3.88)

As has been done in the elastic case, the total wavefunction Ψ(r, t) is also developed in
terms of reciprocal lattice vectors and periodic time

Ψ(r, t) = e−ik2
i t/~

∑
G,Q,ν,nQ,ν

ΨG+Q,nQ,ν
(z) · ei(Ki+G+Q)·ReinQ,νων(Q)t, (3.89)

and can be introduced into the time-dependent Schrödinger equation 3.85. Here, only
one possible phonon energy is included. To calculate the total intensity when interacting
with all possible phonon energies, an integral of the single calculated intensities has to
be performed. After multiplying both sides by exp(−i(Ki+G) ·R) and exp(−inωt) and
integrating over time and the unit cell area, one obtains the system of coupled di�erential
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equations [
d2

dz2
+ k2

G,n,z − V0(z)

]
ΨG,n(z) =

∑
G 6=G′

VG−G′(z)ΨG′,n(z)

+
1

2
A ·
∑
G′

[FG−G′(z) + FG−G′(z)] [ΨG′,n+1(z) + ΨG′,n−1(z)] ,[
d2

dz2
+ k2

G,n+1,z − V0(z)

]
ΨG,n+1(z) =

∑
G 6=G′

VG−G′(z)ΨG′,n(z)

+
1

2
A ·
∑
G′

[FG−G′(z) + FG−G′(z)] [ΨG′,n+2(z) + ΨG′,n(z)] , (3.90)

with
kG,n,z = k2

i − (Ki + G)2 − n~ω (3.91)

the surface perpendicular energy after the scattering process and

FG−G′(z) =
[
i(G−G′)VG−G′(z), V ′G−G′(z)

]
(3.92)

the parallel and perpendicular contributions of the gradient of the interaction potential.
Following the same nomenclature as in the elastic case, a scattering channel is de�ned
by its asymptotic energy

(Ki + G)2 + n~ω, (3.93)

and the open and closed channels are denoted as |Ki + G, n, ν〉 and
∣∣Ki + G, n,k2

G,n,z

〉
,

following the rules in section 3.9.4. The additional parameter n accounts for the respec-
tive number of phonon interactions. The possible number of total interactions de�nes
how many additional inelastic channels accompany the elastic channels on both sides.
Those regions of inelastic possibilities are called Floquet blocks and their total number
is an additional �tting parameter in inelastic close-coupling (iCC) calculations.
Next to the elastic coupling parameters developed for the elastic close coupling, also
interaction of elastic channels with inelastic ones has to be taken into account for a full
inelastic treatment. The scalar function

A(T ) · FG−G′(z) (3.94)

represents this inelastic interblock coupling. Usual inelastic coupling calculations are
performed in the Debye model, including solely the linear Rayleigh dispersion. This
Rayleigh branch is usually of a nearly shear-vertical character, yielding little to no hor-
izontal displacement. Due to this fact, the �rst term in equation 3.92 can be assumed
as zero and the total interaction to be assumed is

A(T ) · FG−G′(z) ' A(T ) · V ′G−G′(z), (3.95)
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with V ′G−G′(z) the spacial derivative of the coupling function (i.e. equation 3.57). In
the corrugated Morse case, this function is especially simple and can be evaluated ana-
lytically. The thermal displacement amplitude A(T ) presents another �tting parameter
but has been derived for various copper surfaces as73

A(T ) =
1

aQc

√
384~2πT

MkBΘ2
D

, (3.96)

with Qc the Gaussian cut-o� factor of the harmonic movement. The thus obtained sys-
tem of equations can be solved in exactly the same way as in the elastic case described
in section 3.9.4.
It is worthy to note that phonon modes included in this way still do not possess mo-
mentum, in a dispersion relation the phonon modes would all be present at the Γ-point.
Inclusion of the phonon momentum presents a nontrivial challenge, since this momentum
transport will certainly in�uence the coupling that has to be introduced. Furthermore
this approach so far only includes the possibility of one single phonon mode. To extend
the calculation to the in�uence of all the modes within one phonon (Rayleigh-) branch,
the calculated intensities have to be integrated over all phonons80

〈IG+Q〉 =

ωD∫
0

IG+Q,nQ,ν
ρ(ων(Q))dων(Q) (3.97)

with ρ(ων(Q)) being the phonon spectral density usually given in the Debye model via

ρ(ω) =
2ω2

ω3
D

, (3.98)

with ωD being the Debye frequency of the underlying crystal.
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4 Pnictogen Surfaces

Pnictogens, better known from semiconductor physics as Group-V elements, are the
elements listed in the �fteenth column of the periodic table of elements. The pnictogen
materials possess electrical properties on a very wide scale, from nitrogen (N) being
a gaseous nonmetal over the two metalloids arsenic (As) and antimony (Sb) to the
heaviest element denoted as stable, the semimetal bismuth (Bi). As typical for elements
sharing the same column in the periodic table, the pnictogens exhibit similar chemical
behavior with each having three unpaired electrons in the p-shell. Resulting from this
similar behavior, also the crystal structure of the heavier pnictogens is very similar.
Starting with gray arsenic, the heavier Group-V elements crystallize in a rhombohedral
A7 structure with two atoms per unit cell. This structure can typically be described
as an arrangement of puckered bilayers of atoms perpendicular to the [111] direction,
as depicted in �gure 4.2(a). Due to a very weak bonding in between those bilayer
structures, the natural cleavage plane of the pnictogen crystals is perpendicular to the
[111] direction. A top-down view on the resulting surface is given in �gure 4.2(b).
While the overall crystal surface is threefold symmetric, the uppermost layer is of a
hexagonal shape and thus sixfold symmetric. It has been found that due to the low
incident energy of the impinging helium atoms, the surface may be regarded as sixfold
symmetric in helium atom scattering experiments89,90. This sixfold symmetric structure
can mathematically be described by

ξ(x, y) = ξ0 ·
(

cos

[
2π

a

(
x− y√

3

)]
+ cos

[
2π

a

(
x+

y√
3

)])
+ξ0 ·cos

[
2π

a
· 2y√

3

]
. (4.1)

4.1 Properties of Bi(111)

Being the heaviest material regarded as stable, the extraordinarily high mass of bis-
muth of 208.98 a.u. gives rise to several atypical properties that might be useful
in the new-developing �elds of superconductivity, topological materials or spintron-
ics39,43,76,93,94,98,100,102. The most challenging aspect of this high mass for theorists is
the extremely high spin-orbit coupling it provokes and its implications on the electronic
properties of the surface.
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Figure 4.1: Section of the periodic table of elements. The group V-elements, gener-
ally denoted as pnictogens contain the investigated elements bismuth and
antimony
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Figure 4.2: Surface structure of the heavy pnictogens.
(a) Side-view of the (111)-surface. The crystal is built up by puckered bilay-
ers weakly bound to each other.
(b) Top-down view of the (111) surface. The upper layer possesses a sixfold
symmetry while the whole structure is only three-fold symmetric. Figure (a)
corresponds to the cut marked by the purple dashed line. (c) Reciprocal-
space structure of the pnictogen(111) surface corresponding to the real-space
picture in (b). For the sixfold structure there are two high-symmetry direc-
tions ΓM and ΓK.
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4.2 Properties of Sb(111)

4.1.1 Bi(111) surface structure

The surface structure of bismuth is of the hexagonal character described above and
corresponds to �gure 4.2(b) with a lattice constant of a = 4.538 Å. The intra-bilayer
distance b as well as the inter-bilayer distance c were determined to be 1.59 Å and
2.35 Å respectively, by Mönig et. al.75.

4.1.2 Bi(111) electronic surface properties

While being a poor conductor in the bulk, the symmetry break introduced by the surface
provokes the electron bands on the Bi(111) surface to cut the Fermi level, introducing
localized conducting surface states. A specialty arising from the large spin-orbit coupling
in Bi(111) is that the surface states are spin-polarized, resulting in the fact that opposite
electron states (with respect to the Γ-point) possess opposing spin directions, see �gure
4.339.

4.1.3 Bi(111) vibrational surface properties

The extremely high nuclear mass of bismuth not only a�ected theoretic calculations on
the phononic dispersion of Bi(111), also the measurement of the surface phonons can be
seen as a nontrivial task since due to the high mass the respective phonon energies are
extremely low (see equation 3.10). The peak energy of roughly 3 meV of the acoustic
Rayleigh branch borders the resolution of the available HAS apparatus (see Section 2).
The surface acoustic lattice dynamics of Bi(111) were �rst described by Tamtögl et.
al.89,90 and further extended to the optical phonon dispersion by Kraus et. al.55. The
latter article is featured in this thesis in Chapter 5.

4.2 Properties of Sb(111)

Antimony is the lighter brother of bismuth with an atomic mass of 'only' 121.76 a.u..
While in comparison it is nearly half the weight of bismuth, antimony still displays e�ects
inherited from the large spin-orbit interaction. Antimony was found to be a topological
semimetal on its own, explaining the good surface conductivity in comparison to the
relatively poor conducting bulk.

4.2.1 Sb(111) surface structure

As in bismuth, the surface structure of antimony is equivalent to the one shown in �gure
4.2 with the lattice parameters a, b and c measured by James, Tunstall and Ogg46,77 as
a = 4.3084 Å, b = 1.50 Å and c = 2.24 Å.
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Γ
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Figure 4.3: Shape of the central Fermi cut on the Bi(111) surface39. Close around the Γ-
point, spin-helical electron states should forbid direct intraband-transitions49

4.2.2 Sb(111) electronic surface properties

The conducting surface bands in Sb(111) resemble the electronic structure encountered
in Bi(111) (�gure 4.3). Also the central cut through the Fermi surface is hexagonal, but
the radius is slightly larger than in the case of Bi(111).
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5 Resonance-enhanced inelastic

He-atom scattering from

sub-surface optical phonons of

Bi(111)
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5 Resonance-enhanced inelastic He-atom scattering from Bi(111)

Abstract

Helium-atom scattering angular distributions from Bi(111) show a number of selective-
adsorption resonance features corresponding to three bound states of the He atom in
the surface-averaged Bi(111) potential. They are well represented by a 3-9 potential
with a potential depth of 8.3 meV. The bound-state resonance enhancement of inelastic
scattering is shown to provide the mechanism for the observation of subsurface optical
phonons and for their comparatively large intensity.

5.1 Introduction

It has been recently shown that inelastic helium-atom scattering (iHAS) from metal
surfaces can detect subsurface phonons localized several layers beneath the surface, the
depth being determined by the range of the electron-phonon (e-p) interaction8,82. This
e�ect is particularly pronounced in ultra-thin metallic �lms where the e-p interaction
receives the largest contribution from quantum-well (QW) electronic bands and QW-
con�ned phonons.
A recent study by iHAS of the surface phonon dispersion curves in Bi(111)71,89,90 revealed
unexpected large intensities from the optical branches of shear vertical (SV) polarization
con�ned in the �rst bilayer (SV1 branch) as well as in the second bilayer (SV3 branch).

This can be better appreciated from a direct comparison of two iHAS spectra from
the (111) surface of bismuth89,90 and, e.g., six monolayers of lead on a Cu(111) sub-
strate16 measured under comparable kinematic conditions (Fig. 5.1). The optical sur-
face phonons of Bi(111), which are separated from the acoustic band by a gap ranging
from 7.5 to 9.0 meV89,90, are considerably sti�er than the corresponding modes in the
Pb(111) �lm (ε1, ε2) and would therefore be expected to have a weaker iHAS intensity.
On the contrary, the iHAS intensity of the optical breathing mode (OBM) in the �rst
bilayer (SV1) of Bi(111) is the largest of the spectrum (Fig. 5.1(a)), unlike that for
the OBM (ε1) in the �rst bilayer of Pb(111) which is weaker than the acoustic mode
intensities (α1, α2) (Fig. 5.1(b)). On the other hand, the OBM in the second bilayer
of Bi(111) (SV3) is much weaker than SV1, whereas in Pb(111) both the surface mode
ε1 and the subsurface mode ε2 (localized at the Pb/Cu interface!) have comparable
iHAS intensities, but are considerably weaker than the iHAS intensity from the acoustic
branches α1 and α2.
One should now consider that for a conducting surface iHAS intensities are proportional
to the square of phonon-induced surface charge density oscillations (SCDOs) and there-
fore to the corresponding mode-selected e-p coupling strengths82. A calculation based
on density-functional perturbation theory (DFPT) for Bi(111)89,90 has shown that the
SCDO induced by the breathing mode of the second bilayer (SV3) is about four times

50



5.1 Introduction

smaller than that for the �rst bilayer breathing mode (SV1) which means a factor 16
smaller iHAS intensity.
This is consistent with the fact that the surface conductivity of the Bi(111) surface is

substantially restricted to the �rst bilayer, and accounts for the ratio SV3/SV1 of the
optical mode intensities as reported in Fig. 5.1(a). In our previous study89,90 we found,
however, that under certain kinematic conditions iHAS intensities from the optical SV3
modes were often comparable to those of SV1 optical modes, which allowed to determine
both branches with su�cient con�dence. In a further analysis, reported in this work,
we singled out a mechanism for the enhancement of iHAS intensities from subsurface
optical modes which is speci�c to semimetal surfaces.
Despite the fact that semimetal surfaces are normally conducting and therefore posess
free surface electrons, they are found to be strongly corrugated, unlike the low-index
surfaces of ordinary metals which are perfectly �at. This is due to the concentration
of surface electrons and holes at the Fermi energy into comparatively narrow pockets
around the symmetry points of the surface Brillouin zone (SBZ)39. The surface corruga-
tion, besides providing the intensities of elastic di�raction peaks and information on the
surface geometry and the associated surface electron density, also allows for the selective
adsorption of incident He atoms into surface bound states via the exchange of a recipro-
cal surface lattice vector. The interference between the direct and bound-state-mediated
scattering channels yields a modulation of the elastic intensities and, more importantly
in the present work, a modulation of the iHAS amplitudes (inelastic bound-state reso-
nance). Actually a strong resonance enhancement can be obtained through a suitable
tuning of the He beam incident angle and energy. This e�ect has been exploited in the
past to detect high-energy optical surface phonons in insulators15,27.
In this paper we show that the comparatively strong iHAS amplitudes from the sub-

surface optical mode SV3 of Bi(111) are essentially due to a resonance enhancement
involving the strongest bound-state resonance, (1, 0)2 with the n = 2 bound state and
reciprocal lattice vector G = (1, 0). The possibility of tuning the curve representing
the (1, 0)2 inelastic resonance condition in the energy-momentum space so as to make
it nearly tangent to the optical SV3 dispersion curve allows to measure it over a large
portion of the SBZ. In this special kinematic situation, recently investigated and known
as sur�ng 10, the atom enters the bound-state channel inelastically by creating an opti-
cal SV3 phonon and rides for a while the running charge-density wave associated with
the SV3 mode, since both the trapped atom and the SV3 phonon travel at the same
group velocity along the surface. This exotic form of atomic polaron allows for a strong
coupling to the otherwise weak subsurface phonons.
The comparatively large di�raction amplitudes observed in both symmetry directions of
Bi(111) reveal a fairly strong corrugation of the surface electron density, which re�ects
however the peculiar surface band structure better than the actual crystallography of the
Bi atoms in the �rst bilayer. This is recognized from the equal depth of the two hollow
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Figure 5.1: Inelastic He atom scattering (iHAS) spectra from the (111) surface of (a)
bismuth89,90 and (b) six monolayers of lead on a Cu(111) substrate16 mea-
sured under comparable kinematic conditions. The optical surface phonons
of Bi(111) are separated from the acoustic band by a gap (7.5 to 9.0 meV)89,90

and are sti�er than the corresponding modes of the Pb(111) �lm (ε1, ε2).
While in Bi(111) the iHAS intensity of the optical breathing mode (OBM)
in the �rst bilayer (SV1) is much larger than that of the OBM in the sec-
ond bilayer (SV3), in Pb(111) both surface (ε1) and subsurface (ε2 at the
Pb/Cu interface) modes have comparable iHAS intensities, but are consider-
ably weaker than the iHAS intensity from the acoustic branches α1 and α2.
The grey line in (a) shows the actually measured signal while the black line
is the result of averaging the original signal to constant energy bins.
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5.2 The Bi(111) Surface Structure

sites of the surface unit cell, which would be inequivalent from the crystallographic point
of view89,90. The bound-state energies derived from the selective adsorption angles have
been obtained with su�cient precision to allow for a reliable prediction of the inelastic
resonance conditions for the lowest bound states and the smallest G-vectors.
Bismuth, besides being a semimetal, exhibits important di�erences in the electronic
structure of the surface with respect to that of the bulk1,6,37. While only high-pressure
phases of bismuth are known to become superconducting101, superconductivity has
been reported in Bi clusters, nanowires and bi-crystals, as well as in polycrystalline
forms4,93,98,100. Moreover spin-orbit coupling in bismuth, besides being more e�ective
than in lead thus making it interesting for future applications in spintronics39, provides
an appreciable contribution to the electron-phonon coupling20,44. All that considered,
a detailed understanding of He bound-state energies and resonances appears to be a
necessary step for a complete HAS spectroscopy of surface phonons in Bi(111).

5.2 The Bi(111) Surface Structure

The (111) surface is the most important one of rhombohedral bismuth, since it is its
natural cleavage plane, thus cheap and easily available. The top layer of Bi(111) dis-
plays a hexagonal structure with an atomic spacing of a = 4.54 Å, Fig. 5.2.
The electronic properties of the Bi(111) surface have been thoroughly investigated2,37,39.
The most interesting results, reported by Ast et. al.1, concern the electron and hole
pockets of surface states around certain points of the SBZ. Especially the electron pock-
ets at the six M̄-points are expected to contribute to the surface corrugation of the
electron density. It should be remembered that the presence of Fermi surface electronic
states in all directions yields a �at surface density, as observed, e.g., in Cu(111). Recently
Mayrhofer et. al.71 have indeed reported, by means of HAS measurements, an unexpect-
edly large electron density corrugation of the Bi(111) surface, in good agreement with
ab-initio calculations.

5.3 The Atom-Surface Interaction Potential

The potential between a He atom and a solid surface essentially consists of a short-range
repulsive part originating from the Pauli repulsion between the helium closed shell and
the electrons of the surface, and of a longer range attractive part due to dispersion
(van der Waals) forces. A good description of the atom-surface potential including only
dipole-dipole dispersion forces in the attractive part is the 3-9 potential22

V (z) =

√
27

2
D

[(σ
z

)9

−
(σ
z

)3
]

(5.1)
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5 Resonance-enhanced inelastic He-atom scattering from Bi(111)

Figure 5.2: Structure of the Bi(111) top surface layer with the two distinguishable di-
rections marked. The lattice spacing parameter is a = 4.54 Å39.

where D denotes the well depth, σ the distance at which the potential vanishes and
z = 31/6σ is the position of the potential minimum. The 3-9 potential, Eq.5.1, is read-
ily obtained by summing over the entire semi-in�nite lattice of the individual He-solid
atomic 12-6 (Lennard-Jones) potentials22. The eigenvalue spectrum of this potential for
the motion component normal to the surface can be calculated using the distorted wave
Born approximation22, and is found to be

En = −D
[
1 − π~

3.07

n + 1
2

σ
√

2mD

]6

(5.2)

with m the He atom mass and En the n-th bound-state energy. As seen in the next
section, this expression for the bound states works well also in the analysis of the bound-
state resonances of a semimetal surface such as Bi(111).

5.4 Selective Adsorption Resonances

The kinematics of a selective adsorption resonance, where a He atom enters elastically
a bound state of energy − |En| before being scattered inelastically into the �nal state,
is de�ned by the simultaneous conservation of energy and parallel momentum. The two
conservation laws yield the selective-adsorption condition, expressed by the equation41

ki
2 =

(
kisinθi +G‖

)2
+G2

⊥ −
2m

~2
|En| (5.3)

where ki is the atom incident wavevector, θi the incident angle and G = (G‖, G⊥) the
surface reciprocal lattice vector mediating the adsorption process. Here G is split into
the components G‖ and G⊥ parallel and normal to the incidence plane, respectively.
The resonance condition, Eq.5.3, can be matched either by varying the incident angle

θi at �xed incident momentum ki or by varying the incident momentum at �xed incident
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5.4 Selective Adsorption Resonances

Figure 5.3: Geometrical representation of the resonance condition in equation 5.3 in the
reciprocal space (for a cubic lattice). The resultant vectorKi + G that leads
to a resonant transition lies on a circle with the radius r2

res = ki
2 + 2m

~2 |En|.

angle. (Fig.5.3)
The intensity of a bound-state resonance supported by the exchange of a reciprocal
lattice vector G is proportional to the squared G-th Fourier component of the surface
potential at the scattering turning point. Thus bound-state resonances are only observed
on a corrugated surface, as it is the case for Bi(111).

For all the observable resonance features in-between elastic peaks a phonon must be
involved. In this process, two di�ering channels can be distinguished, namely 'incident-
state' or '�nal-state' resonances, depending on when the helium atom is in resonance
with the involved bound state level. In the �rst case the helium atom enters the bound
state elastically, while leaving the surface interacting with a phonon. This process yields
observable changes in the elastic spectrum in-between the elastic scattering peaks as
observed in the elastic spectra in Bi(111). In the case of '�nal-state' inelastic resonances,
the helium atom enters the bound state channel using the interaction with a phonon.
When this helium atom leaves the surface elastically, its energy di�ers from the beam
by the energy of the involved phonon - producing an observable feature in time-of-�ight
(TOF) measurements18. The resonance condition for the latter can be expressed by

ki
2 − 2m

~
ωQv =

(
kisinθi +G‖ + Q

)2
+G2

⊥ −
2m

~2
|En| (5.4)

with Q and ~ωQv the wavevector and the energy of the involved phonon.
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5 Resonance-enhanced inelastic He-atom scattering from Bi(111)

5.4.1 Bound-state energies and He-Bi(111) potential

In the absence of corrugation the total energy of an atom trapped into the n-th bound
state would be that of an atom freely moving along the surface with momentum ~K
shifted by the bound-state energy − |En|, i.e.

Ekin(K, n) =
~2K2

2m
− |En| (5.5)

Corrugation introduces periodic components in the surface potential. The atom wave-
functions are Bloch states, with the appearance of gaps in the bound-state dispersion
relations and mass renormalization − the latter e�ects being more pronounced for more
deeply bound states, i.e., for atoms moving closer to the surface19.
In general these e�ects are su�ciently small and hard to detect with the present data
and the available angular and energy resolution. Thus no mass renormalization is ap-
plied in the following analysis, and only the G = 0 component of the surface potential
(the laterally-averaged potential) is extracted from the �tting of bound state energies40.
The present measurements were performed on a HAS apparatus with a 91.5◦ source-

target-detector geometry. The apparatus has been described in greater detail in a pre-
vious paper91. The time-dependent measurements in the �gures 5.1, 5.7 and 5.8 are
plotted in two seperate lines. In order to compensate for the non-linearity of the energy
scale the intensity of the measured spectrum must be multiplied by the corresponding
Jacobian determinant. However, this scaling also increases the height of experimental
noise on the creation side, making it di�cult to distinguish peaks from noise in the
creation region with large energy loss. Therefore, the energy axis of the signal was di-
vided in equally sized energy bins. All the data points falling into one bin have been
averaged in order to smooth the signal, resulting in the black line. The Bi(111) sin-
gle crystal used in this study was a disc with a diameter of 15 mm which has been
cleaned by Ar+ sputtering (1.5 kV, 2 µA) and annealed in three intervals at 423 K for
six hours each prior to the measurements. The sample temperature was measured using
a chromel-alumel thermocouple. First indications for surface resonance features were
observed in HAS angular distributions on Bi(111) whereas the angle of incidence θi was
changed at constant incident beam energy Ei of 15.1 meV. This allows to extract, in
a single angular distribution, information on both the surface structure (via di�raction
amplitudes) and bound-state energies (via selective adsorption features, which can be
either peaks or dips, depending on the phase shift between direct and resonant channels).

Figure 5.4a displays the enlarged signal of an angular distribution from Bi(111) as a
function of the incident angle θi along a ΓK direction, for the crystal held at room tem-
perature. The features observed at θi = 32◦, 37◦, 42◦ and 51◦ in the regions between the
specular (0,0) and the �rst di�raction peaks (1,1) and (-1,-1) at θi = 45.75◦, 68.75◦ and 24.75◦

respectively, are attributed to selective adsorption. The analysis based on Eq. 5.3 allows
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Figure 5.4: (a): Angular distribution of He atom scattering intensity (left-hand ordinate
scale) from Bi(111) along a ΓK surface direction for a 91.5◦ scattering geom-
etry at a beam energy of 15.1 meV. Besides the specular (0,0) and the two
closest di�raction peaks (1,1) and (-1,-1), the angular distribution shows ad-
ditional features corresponding to selective adsorption processes. The bound
state energies which would give a feature in the angular distribution are
plotted (broken lines) as functions of the incident angle for the two smallest
G-vectors indexed by (1,1) and (1,0), respectively allowing for in-plane and
out-of-plane resonances (corresponding energy scale on the right-hand side).
The vertical arrows associate the resonant features with the energies of three
bound states. (b): Same as (a) for the ΓM direction.

57



5 Resonance-enhanced inelastic He-atom scattering from Bi(111)

to assign these four resonances to bound states. This is easily done by superimposing
to the angular distribution of Fig. 5.4a the curves representing the bound state energy
given by Eq. 5.3 as a function of θi for di�erent G-vectors, the actual values of the latter
(in Å−1) being known from the positions of the di�raction peaks. The two broken lines
plotted in Fig. 5.4a correspond to the smallest G-vectors indexed by (1,1) and (1,0).
The three resonances below the specular peak are clearly associated with the (1,1) chan-
nel (in-plane resonances) and three bound states, whereas the large resonance at 51◦ can
be associated with the (1,0) channel (out-of-plane resonance) and the same bound state
as the 32◦ resonance. The (1,0)-channel features associated with the other two deeper
bound states are expected at 58◦ and 66◦, and observed to correspond to a broad bump
and a small peak, respectively, both hardly detectable above the background noise (no
extra position mark in Fig. 5.4). The binding energies derived from these resonances
are:

E0 = (6.18 ± 0.55) meV

E1 = (3.49 ± 0.28) meV (5.6)

E2 = (1.42 ± 0.30) meV

Once these energy values are derived from the most prominent resonances, other
weaker features can eventually be assigned to other combinations (G)n, as for example
(1, 1)2 and (1, 0)1 along the ΓM direction (Fig. 5.4b).
In this measurement only one strong resonance feature appears right next to the spec-

ular peak. This peak can be identi�ed as the (1, 0)2 resonance.

With the experimentally determined bound-state energies the interaction potential
parameters can be derived by a least-squares �t of the eigenvalue spectrum of a 3-9
potential (Eq. 5.2). The resulting parameters are:

D = (8.32± 0.73) meV (5.7)

σ = (0.297± 0.012) nm

Figure 5.5 displays the 3-9-potential according to the best �t parameters, together with
its three bound states and the respective con�dence intervals. The calculated potential
well depthD is consistent with known values for noble metal vicinal (corrugated) surfaces
such as Cu(117) (D = 7.41 meV)57 and Ag(111) (D = 9.3 meV)42.

5.4.2 Resonance E�ects in the Specular Intensity

After the determination of the bound-state energies, it is interesting to analyze the res-
onant features which are expected to occur in the specular intensity when measured as
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Figure 5.5: Best �t 3-9-potential (Eq. 5.1) for the He-Bi(111) atom-surface interaction
with D = 8.32 meV and σ = 0.297 nm. The red (full) lines indicate
the experimentally determined bound state energies and their uncertainties
(dash-dotted), the blue lines (dashed) correspond to the analytical bound
state values from Eq. 5.2 (color online)

Table 5.1: Expected source temperatures TN and corresponding incident energy Ei at
which bound-state resonances are expected to produce a dip in the specular
peak intensity with the sample rotated to the ΓM direction. Resonances are
labelled by (G)n.

Resonance TN [K] Ei[meV]

(0, 2)0 33 7.7
(1, 1)0 70 15.7
(0, 2)1 83 18.5
(0, 2)2 114 24.6
(1, 1)1 127 28.2
(1, 1)2 163 35.3
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(1,1)0

(0,2)1

(0,2)2

Figure 5.6: Peak height of the specularly re�ected helium beam vs. the nozzle temper-
ature in the ΓM scattering plane. The dips at 76 K, 86 K and the broad
feature at 116 K can be explained with the aid of bound state resonances.

a function of the incident momentum. By solving Eq. 5.3 with respect to ki for the
specular θi and for given G and |εn|, one obtains the values of ki at which resonances
are expected to occur. In principle this experiment can be made at any given incident
θi, but �xing the incident angle at the specular peak provides the best signal-to- noise
ratio.
The peak height of the specular peak was recorded while the nozzle temperature was
varied between 60 K and 200 K (4.5 < ki < 9 Å−1) (Fig. 5.6). Since the intensity of

the incident helium beam depends on the nozzle temperature as T
− 1

2
N when resonance

e�ects are not considered72 and the sample is held at a constant temperature, the spec-
ular intensity should show a similar behavior. On the contrary, besides the expected
continuous decrease of the intensity, some clear and intense dips at 76, 86 and a broad
feature at 116 K are recognizable in the experimental specular intensity plotted in Fig.
5.6. According to the predictions of Table 5.1, the observed dips can be associated to
the (1, 1)0, the (0, 2)1 and the (0, 2)2 resonances.

5.5 Resonance-enhanced inelastic scattering

Once the bound state energies have been determined with su�cient precision the po-
sitions of inelastic resonances for each bound state and each G-vector involved can be
calculated from Eq. 5.4 on the energy-transfer scale for each TOF spectrum, the phonon
energy ~ωQν and wave-vectorQ being related by the energy and parallel momentum con-
servation laws (scan curves). Fig. 5.7 shows an example of a TOF spectrum represented
on the energy transfer scale taken along the ΓK direction for θi = 44.75◦, a scattering
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Figure 5.7: Time-of-�ight (TOF) measurement of the Bi(111) surface in ΓK direction for
θi = 44.75◦ and an incident energy of 17.79 meV. Both resonant enhance-
ments associated with the strong (1, 0)2 resonance of the one-phonon peak
associated with the SV3 optical mode at about −13 meV and of the multi-
phonon background in the one-phonon gap at about −8 meV are distinctly
observed.

angle of 91.5◦, an incident energy of 17.79 meV and a surface temperature of 104 K.
Besides the di�used elastic peak at ∆E = 0, the positions of the expected inelastic
resonances are indicated on both the positive and negative energy transfer sides. The
region where the phonon gap is expected (7.5 to 9.0 meV89,90) is actually �lled by a
multiphonon background, as expected for the surface temperature of this experiment.
This background is however strongly enhanced around 8 meV by a peak which can be
assigned to the strong (1, 0)2 inelastic resonance whereupon the small di�erence between
the peak and resonance positions with an adjacent dip pointing to a possible Fano-like
character of this resonance. The e�ect of the other resonances are more di�cult to assess
as they fall into regions where important and comparatively sharp one-phonon features
are expected. This can only be done through a sequence of small changes of either the
incident angle or energy so as to detect a rapid intensity increase (or decrease) of a given
phonon peak. Nevertheless the sharp peak at ≈ 13 meV, corresponding to an optical
SV3 mode, is to be considered as resonance enhanced, since no such intensity would be
expected for a second bilayer (third layer) optical mode.

An analysis of the resonance enhancement e�ect based on a sequence of slightly dif-
ferent incident angles and a �xed incident energy is shown in Fig. 5.8 for the optical
phonon region. Ten spectra for θi varying from 51.35◦ to 55.85◦ along the ΓM direction
are shown in Fig. 5.8(a) with indication of the main surface phonon peaks and of the
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Figure 5.8: Resonant enhancement of the optical SV3 and L1 modes. (a): Ten slices from
the time-of-�ight measurements indicated by the dotted scan curves in (b).
Diamond, circle, star and inverted triangles indicate the measured positions
of possible phonons. The black triangle indicates the position of the (1, 0)2

�nal-state inelastic resonance. The downward triangle modes correspond to
the �at optical L3 branch at 11.3 meV90. (b) Measured phonon positions
with the respective scan curves and the position of the (1, 0)2 resonance for
the given experimental conditions. (c) Total intensities of all the measured
points that were considered to correspond to the SV3 or the L1 mode, plotted
as functions of the corresponding parallel wavevectors. The largest (1, 0)2

resonance enhancements are marked by arrows.
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5.6 Conclusion

position of the (1, 0)2 resonance for the n = 2 bound state and G = (1, 0). The
resonance condition, Eq. 5.4, is represented by a broken line in Fig. 5.8(b), superim-
posed to the set of scan curves for the ten incident angles. Note that the curves have all
been folded into the �rst SBZ, so that the signi�cant intersections are only those where
the resonance and scan curves have concordant slopes. The positions of the phonons
labelled in Fig. 5.8(a) are indicated on the corresponding scan curves with the same
symbols. The comparison with the dispersion curves of the SV1, SV3 and L1 branches
calculated with DFPT without spin-orbit coupling (SOC)89,90 shows that the theoret-
ical branches should be somewhat softer at small wave-vectors for a better agreement
with experiment. This softening is expected when SOC is included; actually a larger
softening is found for DFPT calculations with SOC included20,44 for free-standing slabs
up to 5 bilayers thick. It is however di�cult to infer from ultrathin free-standing slab
calculations the precise phonon energies for the semi-in�nite crystal. Considering the
non-trivial aspects of ab-initio calculations for the 6sp metals and the neglecting of van
der Waals interaction, both the above calculations are to be considered in satisfactory
agreement with experiment, while con�rming the softening e�ect of SOC.
By considering now the resonance condition curve, it appears that the experimental
points which fall atop or close to it have the largest intensity as appears from the plots
of Fig. 5.8(c). In practice the theoretical SV3 branch, once it is slightly softened so
as to best �t the corresponding set of experimental points, would run very close to the
resonance curve along a good portion of the SBZ and would therefore bene�t from the
resonance enhancement. As anticipated in the introduction, the situation of tangency
between a phonon dispersion curve and a resonance curve corresponds to the sur�ng
condition, in which the atom trapped in the bound states and the phonon created in
the phonon-assisted selective adsorption process run together with the same group ve-
locity10, which ensures a strong enhancement of the iHAS intensity.
In principle, the sur�ng conditions can be met by tuning the energy and angle of the
incident He beam, provided one has a preliminary qualitative knowledge on the expected
position of the phonon dispersion curves.

5.6 Conclusion

The growing interest in the surface properties of semimetals, especially those which
exhibit a topological insulator behavior, and the recent demonstration that inelastic
He atom scattering from conducting surfaces can provide direct information on mode-
selected electron-phonon coupling have motivated the present investigation on the He-
Bi(111) interaction potential by means of helium atom scattering. The surface cor-
rugation of the Bi(111) surface, not expected for metal surfaces but well justi�ed for
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5 Resonance-enhanced inelastic He-atom scattering from Bi(111)

semimetals due to the existence of surface electron pocket states at the Fermi level,
allowed for the observation of bound state resonances and the corresponding surface
potential pro�le. Three bound state levels have been identi�ed with binding energies of
6.18, 3.49 and 1.42 meV. For a corrugated surface the knowledge of bound state energies
is a necessary ingredient for a detailed study of the surface phonon dispersion curves and
the corresponding electron-phonon coupling strengths (mode-lambdas). On one side the
inelastic HAS amplitudes providing the mode-lambdas should not be altered by unde-
sired bound-state resonances. On the other side bound-state resonances can be tuned in
order to enhance the inelastic HAS intensities from the optical surface modes, which are
normally weak. The optical surface phonon modes in a related topological insulator like
Bi2Se3 have been recently investigated by HAS and shown to have conspicuous anoma-
lies attributed to the electron-phonon interaction with the Dirac-cone fermions103,104. A
quantitative interpretation of these data requires however a careful assessment of the
He-surface potential along the lines indicated in the present HAS study of the Bi(111)
surface.
The pro�le of the atom-surface potential in the direction normal to the surface as deter-
mined from the energies of bound states, and speci�cally the potential depth D, together
with the knowledge of the surface corrugation provide a complete picture of the inter-
action potential40, which is a useful information in a variety of other applications. We
note, for example, that corrugated conducting surfaces like those of semimetals allow for
the selective adsorption, either elastic or inelastic, also of chemical species more inter-
esting than the inert He atoms. In general, the selective adsorption of gas species into a
surface bound state can provide a precursor state for surface reactions and may have a
paramount importance in the characterization of heterogeneous catalysis.
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6 The Helium-Surface Interaction

Potential of Sb(111) from

Scattering Experiments and

Close-Coupling Calculations

The present chapter serves as a summary of a publication by M. Mayrhofer-Reinhartshuber,
Patrick Kraus, Anton Tamtögl, Salvador Miret-Artés and Wolfgang E. Ernst in Physical

Review B under the same title69. The summary of this publication is included in this
thesis since it represents the �rst application of the CC-formalism on the present struc-
tures. It therefore contains several �gures and tables previously published in69.
During the course of this work selective adsorption resonance feature positions in an-
gular He-Sb(111) di�raction spectra are analyzed to obtain �tted potential parameters
for the surface averaged interaction potential. The same procedure has been applied in
investigations of the He-Bi(111) interaction featured in this thesis in Chapter 5. The
angular spectrum used is depicted in Figure 6.1. The analysis of these resonance po-
sitions and the subsequent �t to a 9-3 potential (see equation. 3.35) yields the bound
state energy values listed in Table 6.1. The found bound state energies were furthermore
used to determine �t parameters for a surface averaged corrugated Morse (CMP) and
a hybrid Morse potential (HMP) (see equations 3.36, 7.10, 7.12) Those parameters are

Table 6.1: Bound-state energies experimentally determined from HAS measurements and
analytically calculated for the �tted 9-3 He-Sb(111) interaction potential with
D = (4.41± 0.09) meV and σ = (6.3± 0.3) Å.

Bound Experiment 9-3 Potential
State Energy (meV) Energy (meV)
E0 −3.7± 0.2 −3.7± 0.1

E1 −2.6± 0.2 −2.6± 0.2

E2 −1.86± 0.02 −1.8± 0.2

E3 −1.17± 0.02 −1.2± 0.1

E4 −0.70± 0.02 −0.8± 0.1
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Figure 6.1: (a): Angular distribution of the HAS intensity (left-hand ordinate scale)
from Sb(111) along the ΓK surface direction at a beam energy of 15 meV.
In addition to the specular peak (45.75◦) and the two closest Bragg peaks,
further features corresponding to selective adsorption processes are identi�-
able. The �ve bound-state energies, that were found with our measurements,
are depicted as horizontal lines (right-hand ordinate scale). The two dashed
lines correspond to the resonance conditions for two G vectors [(1,0), (1,1)]
in our experimental geometry and are labeled accordingly. Two additional
peaks are attributed to kinematic focusing (KF) e�ects69

(b): Same as (a) for an angular scan along the ΓM direction with resonance
conditions for three G vectors [(1,0), (0,1), (1,1)].
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Table 6.2: Fitted potential parameters (well depth D, sti�ness parameter χ, and in�ec-
tion point zp) for the Morse- as well as the Hybrid (Morse/9-3) He-Sb(111)
interaction potential.

Type D (meV) χ (Å−1) zp (Å)
CMP 4.196 0.380 −
HMP 4.252 0.395 3.0

Table 6.3: Bound-state energies experimentally determined from HAS measurements and
calculated analytically for the CMP and numerically for the HMP.

Bound Experiment CMP HMP
State Energy (meV) Energy (meV) Energy (meV)
E0 −3.7 −3.7 −3.7

E1 −2.6 −2.7 −2.7

E2 −1.86 −1.82 −1.82

E3 −1.17 −1.13 −1.17

E4 −0.70 −0.60 −0.72

σE − 0.03 0.02

listed in table 6.2, the corresponding calculated bound state energies in table 6.3, while
the listed σ-value states the mean quadratic deviation of the calculated bound state
energies from the measured values as de�ned by

σE =
1

N

√√√√ N∑
i=1

∣∣εexp
i − ε

pot
i

∣∣2, (6.1)

with εexp
i and εpot

i being the experimental and the calculated bound state energies re-
spectively, and N the number of bound states included.
The corresponding σE value for the �tted 9-3 potential is 0.024, so perfectly in-between

the CMP and the HMP. While these two potentials thus provide no bene�t compared to
the 9-3-potential, the close-coupling formalism has been derived for the CMP and con-
sequences of a severe alteration of the central interaction potential shape were unknown
and �rst investigated in subsequent publications53 that are included in this thesis in
chapter 7. The thus obtained interaction potentials were utilized in �tting the surface
corrugation height ξ0 (see equation 4.1) for two di�erent incident beam energies using
the close-coupling formalism. The coupling function used was derived and published in
the publication featured in chapter 7 to be

υh,k =

√
3

2

a2

π

1

2

∞∑
i=−∞

Ii(α)[Ii+h(α)Ii−k(α) + Ii−h(α)Ii+k(α)]. (6.2)
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Figure 6.2: (a): Angular distributions of HAS intensity along the ΓM and ΓK surface
directions at a beam energy of 15.3 meV. The peak areas (black crosses),
determined from measurements (black line) are in good agreement with the
best-�t results from CC calculations including the HMP [(green) circles].
Best-�t di�raction probabilities calculated with the CMP [(red) squares]
show a larger deviation from the measured values. Especially when mod-
eling the di�raction in ΓK, the HMP is superior to the CMP.
(b): Same as (a) with a beam energy of 21.9 meV. Again, the CC results
for the HMP are, in contrast to the CMP, in very good agreement with the
measured values.
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Table 6.4: Results of the CC calculations for the CMP and HMP at di�erent incident
energies Ei. Peak-to-peak values ξpp are given for the obtained corrugation
function, equation (4.1), as well as the e�ective corrugation function, (6.3),
relative to the lattice constant a. The R-value quani�es the deviation of the
calculated intensities from the experimental ones and is de�ned by equation
7.29 in section 7.

Type Ei (meV) ξpp (Å) R (%) ξpp/a (%) ξEi,pp/a (%)
CMP 15.3 0.59 6.1 13.7 9.5
CMP 21.9 0.63 7.2 14.6 9.8
HMP 15.3 0.76 4.5 17.7 12.4
HMP 21.9 0.74 3.8 17.1 11.5

Due to the �xed-angle geometry, the measured intensities correspond to di�erent inci-
dent angles. These angular variations cause each helium atom to encounter a di�erent
potential when traveling through the three-dimensional electronic density. When de�n-
ing the classical turning points as the e�ective corrugation function 74, it can be derived
via

ξEi
(R) =

1

χ
ln

−D
Ei

+

√√√√D2

E2
i

+
D

Ei

(
1 +

∑
G6=0

νG
ν0

eiG·R

) . (6.3)

The resulting peak-to-peak corrugation values as well as the e�ective corrugation values
are listed in Table 6.4. The corresponding predicted scattering intensities are depicted in
Figure 6.2. Despite slight asymmetries in the lower-energy calculation, both interaction
potentials seem to reproduce the observed �rst-order di�raction peaks in ΓM direction.
The corresponding second order intensities as well as the scattering intensities in ΓK

direction however, are not described by the CMP. Since the only mentionable change
in the potential shape is the modi�ed attractive behavior, the researchers conclude that
those intensities are especially sensitive to the attractive particle-surface interaction.
The HMP in both cases describes the observed scattering intensities well. The iden-
ti�ed corrugation parameters were furthermore used to locate resonance e�ects in the
temperature-dependent specular HAS intensity. Using the �tted values, a simulated
spectrum was calculated and convoluted with a Gaussian distribution to account for
the energetic width of the incident beam. Both signals can be viewed in Figure 6.3(b).
Using the calculated signal and furthermore including the helium beam temperature
dependence due to the nozzle mechanism, terrace resonant scattering and a Debye-
Waller-attenuation with a surface Debye temperature of 155 K, the green line in Figure
6.3(a) was determined which is in good agreement with the black-dashed experimental
result.
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Figure 6.3: (a): Drift spectrum of the specular (0,0) peak with the sample orientated
in the ΓM-direction. The measured intensity [dashed (black) line] is plotted
versus the incident energy Ei of the He beam. The simulated intensity [solid
(green) line] is in good agreement with the experiment.
(b): Results from CC calculations [dashed (black) line] were convoluted with
a Gaussian peak to account for the energy spread ∆E of the He beam. The
signal obtained [solid (red) line] was used as the SAR contribution for the
calculated intensity in (a).
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7 A Comparative Study of the

He-Sb(111) Interaction Potential

from Close-Coupling Calculations

and Helium Atom Scattering

Experiments

The following corresponds to a publication by
Patrick Kraus, Michael Mayrhofer-Reinhartshuber, Christian Gösweiner, Florian Apol-
loner, Salvador Miret-Artés and Wolfgang E. Ernst submitted to Surface Science 53.

The author of this thesis was responsible for

� performing HAS measurements

� re�ned SAR and bound-state analysis

� implementation of the �t algorithms for the potential analysis listed in tables 7.1
and 7.2

� remodeling and rewriting of S. Miret-Artés' original CC code

� derivation of the analytical coupling parameters

� analyzing CC calculations

� implementation of the basic HAS analysis algorithms used for �gures 7.2 and 7.4,

The contributions of the co-authors are listed below:

� M. Mayrhofer-Reinhartshuber: surface preparation, HAS measurements, author-
ship of section 7.2
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� Ch. Gösweiner: performing CC calculations on the calculated potentials using the
supplied code, preparation of �gure 7.3.

� F. Apolloner: kinematical analysis of the supplied measurements

� S. Miret-Artés: original CC code, assisted authorship on sections 7.3 and 7.5

� W.E. Ernst: supervision (experiment, theory, publication), laboratory, funding
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7.1 Introduction

Abstract

The exact elastic close-coupling formalism is used to compare the performance of several
interaction potentials suggested in literature for describing the measured elastic di�rac-
tion peak intensities in helium scattering experiments. The coupling parameters have
been analytically calculated for the corrugated Morse potential on a hexagonal surface
structure and adapted for usage with similar interaction potentials. The potentials used
have been �tted to previously known bound state energies complemented by two ad-
ditional levels which are found by improving energy resolution. It is established that
the shifted Morse potential reproduces the experimental He-Sb(111) bound state more
closely than the other considered potential shapes. The performance of several interac-
tion potentials in describing the elastic scattering intensities is presented and discussed.
Morse and Morse-related potentials provide the best compromise for the description of
elastic scattering intensities. The di�erent e�ects of the potential shape were determined
by comparing the calculated scattering intensities.

7.1 Introduction

Recently, the surfaces of the semimetal antimony (Sb) have raised much interest. Aside
from being one of the two major ingredients in the newly found class of materials of
topological insulators43,102, antimony has been observed to exhibit a large electronic
surface corrugation despite the existence of free surface electronic charge carriers70.
Since the electronic and spintronic properties of Sb(111) nano�lms have shown to be
easily tunable12,13 their surfaces prove to be excellent playgrounds for examining related
e�ects. Helium Atom Scattering (HAS) experiments are perfectly suited for investigating
surface properties. The low-energy helium atoms are already repelled from the electron
density above the �rst layer, so HAS measurements are especially sensitive to strictly
surface speci�c properties. The interaction potential between the helium atom and
the surface plays a major role in the analysis of HAS experiments and several surface
e�ects. Resonance features can also alter the measured scattering intensities40 and be
used to selectively enhance the signal for low-intensity phonon modes in inelastic HAS
measurements, as recently reported for Bi(111)55.
Typically, the interaction potential is assumed to have corrugated Morse shape30 since

it fundamentally simpli�es the processing of data as well as �tting procedures. However,
a Morse potential does not describe the correct long-range interaction behavior since it
assumes the attractive part to be of an exponential shape, while theory suggests it should
be proportional to 1/z3, with z being the distance to the surface normal. This basic
discrepancy leads to the repeatedly observed inability of the corrugated Morse potential
to describe second order ΓM or �rst order ΓK scattering on hexagonal surfaces53,69. To
describe the complete interaction correctly, a broader scope on the overall potential shape
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Figure 7.1: (a) Structure of the Sb(111) surface in side and top view with lattice con-
stants as determined by Bengió et al.11. (b) The �rst Brillouin zone of the
topmost layer with the two high symmetry directions.

must be given. To keep the number of potential parameters manageable and the variety
of potential shapes as high as possible, a collection of previously suggested analytical
potentials was applied and compared with our elastic scattering data. From the observed
selective adsorption resonances, a �tting procedure of the bound states supported by
the suggested potentials has been carried out. Once the potential parameters were
settled for each model, close-coupling calculations63,64,80 were performed to obtain the
corresponding scattering intensities to be compared with the observed ones. In order to
take into account the inelastic features of the scattering due to the surface temperature,
a Debye-Waller attenuation factor is applied for the calculation of theoretical values.
The main free parameters in the scattering intensities are the corrugation amplitude of
the surface and the sti�ness of the repulsive potential. We �nd that among the di�erent
sets of parameters assigned to each interaction potential analyzed and issued from the
two di�erent �tting procedures, those coming from Morse-like potentials provide us with
a reliable and plausible description of the helium-surface scattering.

7.2 Antimony Surface Structure

Bulk antimony crystallizes in the rhombohedral A7 (space group R3m) crystal struc-
ture5,81. Every atom in this structure is surrounded by three nearest and three next
nearest neighbors. The main characteristic of this for pnictogens typical structure is
the occurrence of puckered bilayers of atoms perpendicular to the 〈111〉-direction of the
crystal. The bonding between the atoms within such a bilayer is of a covalent type,
whereas the inter-layer bonding is weaker and of van der Waals character. Therefore,
the (111) surface of Sb is easily obtained by cleaving the crystal between these bilayers.
As can be seen in �gure 7.1, the atoms in the topmost layer of this surface are ar-

ranged in a hexagonal structure with a distance of a = (4.3084± 0.0002) Å between the
atoms11,85. In recent studies using STM85 and photoelectron di�raction11, no signi�cant
relaxations with respect to the bulk structure were found. An analysis of the step height
and terrace distribution with HAS revealed a quite �at shape of the clean Sb(111) sur-

74



7.3 The Close-Coupling Method

face70. If the atoms from the second atomic layer are included, the sixfold symmetry
of the �rst layer is reduced to a threefold symmetry. Nevertheless, within the present
study, the Sb(111) surface is considered as sixfold symmetric, since the energy of the He
beam during the experiments of this study was small enough to neglect the in�uences
from lower layers with clear conscience89,90. Thus, with ΓM and ΓK there exist two high
symmetry directions for this lattice type. Angular resolved photoemission spectroscopy
was used to determine the electronic structure of Sb(111)38,86. Whereas bulk Sb has
semimetallic character, the Fermi surface for Sb(111) shows metallic properties. At the
center of the Brillouin zone an electron pocket with a hexagonal-like shape was found.
This electron pocket is surrounded by six hole pockets with ellipsoidal shape87.

7.3 The Close-Coupling Method

The Close-Coupling (CC) formalism can be used as an exact method for calculating the
quantum di�raction intensities in atom-surface scattering problems. All formulas in this
section are given in natural units ~2

2m
= 1. The impinging particle is assumed to be struc-

tureless and nonpenetrating, the surface to be statically corrugated and periodic. The
time-independent Schrödinger equation for purely elastic scattering of such a particle
with a wavevector of ki is [

−∇2 + V (r)− k2
i

]
Ψ(r) = 0. (7.1)

We follow the standard notation where lower case letters are used for 3D vectors and
capital letters for 2D (parallel to the surface) vectors. The z direction is perpendicular to
the surface plane. Since the wavefunction and the interaction potential can be assumed
to be periodic, both can be Fourier expanded. Following the integration procedure
outlined in the review by Sanz et. al80 one �nally reaches a set of coupled equations
which reads as [

d2

dz2
+ k2

G,z − V00(z)

]
ΨG(z) =

∑
G6=G′

VG−G′(z)ΨG′(z) (7.2)

with V00(z) the surface-averaged interaction potential and k2
G,z being the z-component

of the scattered particles' kinetic energy. This energy can be calculated easily by con-
servation of energy

k2
G,z = k2

i − (Ki + G)2 . (7.3)

Actually, for every G, an e�ective potential V00(z)+(Ki+G)2 is included in Eq.(7.2),
the second term being the so-called asymptotic energy (AE). This AE depends on the
reciprocal lattice vector involved in this speci�c scattering process as well as on the
incident scattering conditions (energy as well as polar and azimuthal angles). While
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7 Comparative Study of the He-Sb(111) Interaction

studying scattering processes with the CC-formalism, the term channel usually denotes
such an e�ective potential and is thus labeled with the respective G(h, k)-vector. Two
types of channels have to be distinguished. Channels with a positive normal kinetic
energy (k2

G,z > 0) are called open, while channels with a negative normal kinetic en-
ergy (k2

G,z < 0) are called closed. While only open scattering channels can be accessed
directly, the closed channels are of essential importance in achieving numerical conver-
gence.
The coupling parameters issued from the CC-equations are easily obtained when con-

sidering a corrugated Morse potential (CMP)30, leading very often to simple analytical
expressions. The CMP model can be written as

V (R, z) = D

[
1

ν0,0

e−2κ[z−ξ(R)] − 2e−κz
]

(7.4)

where κ is the sti�ness parameter, D the depth of the attractive well, ξ(R) is the so-
called corrugation function and ν0,0 being the surface average of the exponential of the
corrugation function coming from

νG(z) =
1

Σ

∫
Σ

e−iG·Re2κξ(R)dR (7.5)

with Σ being the area of the �rst unit cell. From the Fourier transform of the interaction
potential, one determines the zero-term of the Fourier series to be the regular Morse
potential

V00(z) = D
[
e−2κz − 2e−κz

]
(7.6)

while the other terms, the coupling terms VG−G′(z), are expressed as

VG−G′(z) = D
νh,k
ν0,0

e−2κz (7.7)

It is clear that by increasing the corrugation amplitude of the surface, the coupling
factors VG−G′(z) in Eq.(7.7) will be larger and more channels have to be included to reach
numerical convergence. In this model, the corrugation amplitudes are energy dependent
since when the incident energy is increased, the penetration of the scattering particle
into the surface is higher and higher. The computation time is known to be scaled with
N3, N being the number of total scattering channels considered63. The wavefunctions
ΨG is integrated by considering the simple boundary conditions of vanishing it far in the
forbidden region behind the repulsive slope and to remain mostly unchanging sinusoidal
shape in the region where the attractive slope approaches zero80. The integration is
performed using a Fox-Goodwin integrator as has been used in earlier close-coupling
treatments29,74, going from −7 Å to 25 Å with a step size corresponding to 100 steps per
minimum wavelength considered, and resulting in 3285 steps. The number of channels
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7.4 He-surface interaction potentials

considered was chosen to ful�ll the condition νh,k/ν0,0 > 1 · 10−7. In total, ≈ 100 open
scattering channels and ≈ 150 closed ones were �nally used. In our case, the surface
corrugation function adapted to the geometry of the corresponding surface unit cell can
be considered to be a summation of cosine functions from a Fourier expansion such as

ξ(x, y) = ξ0

(
cos

[
2π

a

(
x− y√

3

)]
(7.8)

+ cos

[
2π

a

(
x+

y√
3

)])
+ ξ0 cos

[
2π

a

2y√
3

]
+ h.o.,

where ξ0 is the corrugation amplitude and higher-order terms are omitted. After some
straightforward manipulations (see Appendix), the coupling terms are reduced to a sim-
ple analytic expression to be

νh,k =

√
3

2

a2

π

1

2

∞∑
i=−∞

Ii(α) [Ii+h(α)Ii−k(α) + Ii−h(α)Ii+k(α)] , (7.9)

with Ii(α) the modi�ed Bessel functions and α = 2κξ0.

The code developed for this research is published under the BSD 3-Clause license and
available under http://iep.tugraz.at/closecoupling

7.4 He-surface interaction potentials

To accurately describe scattering experiments, a three-dimensional interaction potential
between the surface and the probe particle is needed. In spite of the fact that the true
interaction potential is unknown, certain interaction models capture the main physical
properties which justi�es their applicability in theoretical studies. One of the main
requirements is periodicity so it may be written in terms of a Fourier series. The problem
can then be translated to the corresponding Fourier coe�cients. An example has been
discussed in the previous section. In principle, the �rst Fourier coe�cient leading to
the lateral surface averaged potential, V00(z) can now be discussed separately from the
rest of the coupling terms. In this section, we are going to analyze several zero order
coe�cients in order to extract new information of the total interaction potential from
the experimental results.
In the following paragraphs several model potentials are discussed based on the sum-

mary reported by Hoinkes40. For �tting purposes, most of the ones presented here are
chosen to have analytical energy levels. Thus, the corresponding energy eigenvalues εj
(j = 0, 1, 2, ...), εj < 0 are listed if they exist. Eigenenergies without an existing ana-
lytical expression were calculated numerically following a Numerov scheme. Except for
individual parameters for particular potentials, the following notation is used through-
out all listed potentials: D denotes the well depth of the potential, the position of the
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minimum, if di�erent from zero, is given by ze and the reciprocal range parameter by
κ. The particle mass m refers to the helium atom mass. The ze parameter is generally
chosen such as to position the potential's minimum to z = 0. Naturally, these values
may di�er depending on the type of the used potential. The shift to zero is necessary
since the coupling parameters in Equation 7.7 are calculated for the corrugated Morse
potential. Any shift between the surface averaged potential and its Fourier components
would lead to a severe alteration of the potential character.
The usage of potential shapes originating from summation over two-body potentials

can be regarded as inaccurate for surfaces with mobile charge carriers such as semimetals
at �nite temperatures. However, the deviations produced by these e�ects mostly a�ect
the attractive interaction since the repulsive Pauli interaction mainly originates from
the core electrons. Due to the di�culties encountered when including van der Waals
interactions into DFPT calculations, reasonable alterations of practical interaction po-
tentials such as the Morse potential still seem a viable alternative to a full pertubative
approach.

Morse Potential (MP)24,58

V M
00 (z) = D

[
e−2κz − 2e−κz

]
. (7.10)

εj = −
[√

D − ~κ√
2m

(
j +

1

2

)]2

(7.11)

Hybrid Morse Potential (HMP)80

V HM
00 (z) = V M

00 (z) for z < zp (7.12)

V HM
00 (z) = −C3z

−3 for z ≥ zp

where C3 is chosen for continuity at the in�ection point zp. This potential improves the
Morse potential since it displays the right asymptotic behavior.

Shifted Morse Potential (SMP)23

V SM
00 (z) = D

[
e−2κz − 2e−κz −∆

]
(7.13)

with ∆ the shift parameter and a total well-depth of D(1 + ∆).

εj = −D(1 + ∆) + ~κ
√

2D

m

(
j +

1

2

)
−
(
~2κ2

2m

)(
j +

1

2

)2

(7.14)
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Shifted Morse Hybrid Potential (SMHP)23

V SMH
00 (z) = V SM

00 (z) for z < zp (7.15)

V SMH
00 (z) = −C3z

−3 for z ≥ zp

where C3 is chosen for continuity at the in�ection point zp.

(9-3) Potential22

V 9−3
00 (z) =

√
27

2
D

[(
σ

(z − ze)

)9

−
(

σ

(z − ze)

)3
]

(7.16)

εj ' −D

[
1−

π~
(
j + 1

2

)
3.07σ

√
2mD

]6

(7.17)

(12-3) Potential95

V 12−3
00 (z) =

D

3

[(
σ

(z − ze)

)12

− 4

(
σ

(z − ze)

)3
]

(7.18)

Exponential-3 Potential (Exp3)21

V exp−3
00 (z) =

κz0

κz0 − 3
D

[
3

κz0

e−κ(z−z0+ze) −
(

z0

z + ze

)3
]

(7.19)

Variable Exponent Potential (Var-Ex)67

V VE
00 (z) = D

[(
1 +

κz

p

)−2p

− 2

(
1 +

κz

p

)−p]
(7.20)

with the variable exponent p as a �t parameter.

εj = −D
[
(1− δ

A2
)−

1
s −

j + 1
2

As

]s
(7.21)

with δ = 1+1/p
32p

, A =
√

2mD
2~κ and 1

s
= 1

2
− 1

4p
· (3 + 1

p
).
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Typically, between three or four parameters are used in the �tting procedure to the
seven experimental bound states assigned and characterized for this system. For sim-
plicity in the CC calculations, we are going to assume that the same coupling terms
are valid for all the potentials listed above. Strictly speaking, and in spite of being
used previously in the literature, this procedure shows some inconsistencies, which are
not expected to be dramatic for the following reason. The coupling terms are mainly
describing the repulsive part originating from the repulsion of the He atom electrons
and the electron density of the surface. The simplest model is a repulsive exponential
function of the corrugation function which also has to be a periodic function. The CMP
for example evaluates the coupling terms in exactly this way. Thus, for potentials de-
scribing the repulsive behavior as an exponential, the inconsistency is really a minor
one.

7.5 Inelastic resonances. Fitting procedure

The next step in our �tting procedure is to see how the experimental bound energies are
extracted. In atom-surface scattering, these values come from a careful analysis of the
so-called selective adsorption resonances (SARs). An SAR feature is observed when the
probe particle is scattered into a bound state of the particle-surface potential. When
due to a subsequent scattering process this particle leaves the surface, only a phasefactor
distinguishes it from an otherwise non-resonantly scattered particle. Since the wavefunc-
tions are otherwise indistinguishable, they interfere and produce pronounced peaks and
dips in the measured intensity. An SAR can be viewed as a temporary elastic or inelastic
trapping of the impinging particle along a transient bound state of the particle-surface
interaction potential. The initial scattering conditions of energy and angles determine
essentially where and how the SAR feature is detected. While purely elastic interaction
results in variations of the elastic scattering peak heights, inelastic contributions may
vary the background intensity in between those peaks70. Additionally, inelastic SAR
features can show up as variations in the time-of-�ight (TOF) intensity leading to, in
some cases deliberately, enhanced phonon modes55. For a detailed description of SAR
features see Ref.40,55,70,80. Within the last few years, SARs have been used to determine
the bound state energies of the He-Bi(111)55 as well as the He-Sb(111)70 surface-averaged
interaction potential. In a previous work, angular HAS measurements have been used to
determine the lowest �ve bound state energies (BSE) of the He-Sb(111) surface-averaged
interaction potential69. A more careful analysis of recent angular scans and time-of-�ight
(TOF) measurements consistently revealed additional features which led to the �nding
of two additional BSEs. Figure 7.2 displays exemplary angular spectra. The careful
evaluation leads to a substantial improvement of the energetic uncertainty of all the
observed levels.
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7.5 Inelastic resonances. Fitting procedure

In angular scattering spectra or angular distributions as presented in �gure 7.2, the
observed resonance positions can be related to the respective bound state energy via the
simple energy conservation rule

ki = (ki · sin(θi) + G‖)
2 + G2

⊥ − |εn|, (7.22)

with θi the angle of the incoming He beam with respect to the surface normal andG‖ and
G⊥ the projections of the interacting reciprocal lattice vector parallel and perpendicular
to the respective plane of incidence. By choosing scattering conditions such that the
slope of the ε = f(θi, φi) function with respect to θi is small, high accuracy can be
achieved in measuring the bound state energies.
The observed features, as depicted in Figure 7.2, have been �tted using a simple Gaus-

sian function, since the original Lorentzian shape of the resonance feature is distorted
during the measurement by the apparative broadening of the beam. The measured fea-
tures are furthermore the convolution of the resonance feature with the energetic pro�le
of the He beam as well as with the apparative broadening. Since the latter is unfortu-
nately unknown for this apparatus, only the former is considered. The energetic width
of the He beam has been mentioned in previous publications91 as ∆E/E ≈ 2%. As can
be easily determined by analytical convolution of two Gaussian functions f and g, the
width of the convoluted signal can be calculated as

σf⊗g =
√
σ2
f + σ2

g , (7.23)

or- in the other direction, the width of the resonance feature σr can be deconvoluted
from the signal width σs via the energetic width of the incoming He beam σB:

σr =
√
σ2
s − σ2

B (7.24)

The values for the widths of the Gaussians produced by this method are listed in the sec-
ond column of Tab. 7.1. The angular position of the resonance e�ects in measurements
at �nite temperatures experiences a slight shift compared to the straightforward elastic
calculation. This e�ect occurs due to the fundamental di�erence between scattering from
an idealized surface averaged interaction potential (equation 7.22) and scattering on a
dynamic periodic surface, where inelastic interactions may shift the otherwise elastic
interaction channels80.
Due to the additional information, the �tted potential parameters given in previous
work69 have been revised. The considered interaction potentials did not seem to be able
to describe the energetic separations in between the bound states satisfactorily. Fur-
thermore, the �tting of the potential parameters relied on a relative distance between
the calculated and the measured bound state energy values that did not depend on the
relative uncertainty of the measured values. Extending our considerations onto a wider
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Figure 7.2: Selection of two measurements with visible SAR line shapes from all bound
state levels. (a) Slice of an angular spectrum in ΓK direction. Bound state
interactions with (1, 1)0 to (1, 1)4 lead to a signi�cant increase in the back-
ground intensity between the specular and the �rst order di�raction peak. (b)
Slice of an angular spectrum in ΓM direction. Bound state interactions with
(0, 1)4 to (0, 1)6 are clearly resolved around the �rst order di�raction peak.
The large angle between the scan direction and the interacting G-vector
leads to a large angular spread despite a small energetic distance between
the levels. The predicted resonance positions indicated by the black lines
were calculated using only the surface averaged interaction potential and
serve only as an indication of the approximate resonance position. Hence,
coupling to additional elastic and inelastic channels will shift the observed
resonance position80.
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7.6 Close coupling results

variety of interaction potentials, which are listed in Section 7.4, allows a more detailed
view on the applicability for each interaction potential. Table 7.1 lists the �tted bound
state energy values for each considered potential as well as the measured BSEs already
known69 complemented with the two newly found values. The last line in Table 7.1
denotes the quality of the �tted energy values in comparison to the measured ones and
is de�ned by

σE =
1

7

6∑
n=0

e1−p(E,En,σn). (7.25)

with p(E,En, σn) the commonly known Gaussian distribution with maximum value 1,

p(E,En, σn) = e
− (E−En)2

2σ2n . (7.26)

Here, E, En and σn signify the calculated and the measured bound state energy value and
the corresponding width, respectively. Using the expression in Eq. 7.25 the deviation of
the calculated energy values from the measured values is weighed by the experimental
uncertainty for each level separately. The so obtained value σE represents the qual-
ity of the respective potential to reproduce the measured values. Smaller values of σE
correspond to better agreement, with σE = 1 indicating perfect correspondence. The
parameter �t was performed using a least-squares algorithm changing the potential pa-
rameters and minimizing the quality parameter σE. Finally, table 7.2 lists the obtained
parameters for each potential. The bound states of potentials were calculated using the
analytical expression where available. Figure 7.3 furthermore depicts the �tted shapes
of the interaction potentials.
According to Table I, with the exceptions of the 9-3 and 12-3 potentials, which do

not seem to reproduce the measured values, the rest of the model potentials provide
quite reasonable values of bound states. Moreover, the shifted-Morse potential performs
better than the other Morse-like potentials. These potentials were subsequently used in
an extensive close-coupling analysis of the Sb(111) surface.

7.6 Close coupling results

As mentioned in Section 7.3, the coupling parameters in Eq.(7.9) have been derived for
a corrugated Morse potential. However, the only potential dependent parameter enter-
ing the equation is the potential sti�ness κ. Since the coupling parameters are mainly
dominated by the repulsive interaction with the surface34,48,74, the repulsive part of each
suggested interaction potential was �tted with a simple Morse function to obtain an
equivalent sti�ness parameter κr. The so obtained respective κr value is listed in the
last column of Table 7.2. This parameter, while being of no special interest to the po-
tential itself, provides the CC calculation with coupling factors that would be produced
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7 Comparative Study of the He-Sb(111) Interaction

Figure 7.3: Plot of the interaction potential shapes resulting from the �tting procedure
described in section 7.5 and listed in table 7.2. The upper panel depicts
the Morse-like interaction potentials, while the lower panel contains the fun-
damentally di�erent shapes compared to the Morse potential. Both panels
contain the plain Morse interaction potential (solid black line) for compari-
son.
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7.6 Close coupling results

by a Morse potential with an equal repulsive slope. The potential shape itself enters the
CC calculation as V00(z) in Eq.(7.2). This way the scattering intensities using interac-
tion potentials di�erent from the Morse potential may be approximated and evaluated.
Naturally, the closer the original shape of the observed potential is to a simple Morse
behavior, the more accurate this procedure will reproduce the scattering intensities in
close-coupling calculations. As can be deducted from the Table 7.2 alone, the scattering
behavior calculated for the (9-3) and (12-3) potentials should di�er signi�cantly from
the others since their calculated κr value di�ers signi�cantly from both the original κ
parameter of the Morse potential and the other �tted κr values.
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7.6 Close coupling results

Table 7.2: Fitted potential parameters for the potentials listed in Section 7.4.

Potential D / meV κ / Å−1
zp / Å ∆ σ / Å z0 / Å p κr / Å

−1

MP eq.(7.10) 4.275 0.389 - - - - - -
HMP eq.(7.12) 4.263 0.404 2.899 - - - - -
SMP eq.(7.13) 4.336 0.418 - 0.066 - - - 0.409
SMHP eq.(7.15) 4.358 0.367 6.625 0.061 - - - 0.367
(9-3) eq.(7.16) 4.454 - - - 5.941 - - 0.624
(12-3) eq.(7.18) 5.225 - - - 6.065 - - 0.848
Exp3 eq.(7.19) 4.445 1.376 - - - 7.168 - 0.539
Var-Ex eq.(7.20) 4.313 0.438 - - - - 4.495 0.493

Table 7.3: Best peak-to-peak corrugation values ξ0 with respect to the interatomic dis-
tance found for each potential for a scattering energy of Ei = 21.9 meV

using a modi�ed elastic CC-calculation.

Potential ξpp / % R / %
MP eq.(7.10) 13.65 5.23
HMP eq.(7.12) 14.69 7.27
SMP eq.(7.13) 14.69 6.45
SMHP eq.(7.15) 15.15 4.86
(9-3) eq.(7.16) 16.79 2.24
(12-3) eq.(7.18) 18.45 10.9
Exp3 eq.(7.19) 16.35 4.74
Var-Ex eq.(7.20) 19.05 7.84
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7 Comparative Study of the He-Sb(111) Interaction

To account for inelastic e�ects at a surface temperature of TS = 298 K, the calculated
intensities were attenuated using

IcalcG (TS) = e−2W (TS)P calc
G , (7.27)

where 2W denotes the corresponding Debye-Waller factor,

2W =
3~2TS(kiz + kfz)

2

MkBΘ2
D

. (7.28)

Here, M denotes the mass of the surface atom, ~ the reduced Planck constant, kB
the Boltzmann constant, kiz and kfz surface perpendicular components of the incident
and �nal (outgoing) wavevectors and ΘD = 155 K is the surface Debye Temperature
determined by Tamtögl et. al.92.
Table 7.3 lists the best peak-to-peak corrugation values found for the several potential

types as % of the interatomic distance. The R value for each corrugation is de�ned as a
mean-square deviation from the measured intensities

R =
1

N

√∑
G

(P exp
G − IcalcG )2. (7.29)

Figure 7.4 presents calculated elastic scattering intensities for selected interaction
potentials in comparison to the integrated experimental peak areas. The associated
deviations for all the potentials are also listed in Table 7.3.
As already observed in earlier CC-studies, the plain Morse potential (red circles) fails

in describing the �rst-order ΓK as well as the second order ΓM peaks69. This fact seems
to be to some degree dependent on the incorrect exponential shape of the attractive part
of the interaction, since all the other potentials at least expect some intensity at those
positions. Another mentionable point is the very small but nearly uniform distribution
of scattering intensities in the ΓM direction for the 12-3 potential. While describing
the character of the attractive slope correctly, the repulsive interaction is assumed much
steeper (see Tab. 7.2), producing numerically higher coupling constants between the
channels (see Eq. 7.9). This necessarily leads to a more uniform distribution of scattering
intensities among the considered scattering channels. Only the SHMP seems to combine
the accurate description of the repulsive interaction with the correct character of the
attractive slope, thus producing dominant ΓM �rst-order peaks, while also generating
comparable ΓM second-order and ΓK �rst-order peaks.
The applied interaction model does not consider the penetration depth di�erences for

helium atoms impinging at di�erent incident angles or incident energies. A previous
analysis of the Sb(111) corrugation69 concluded that higher incident beam energies lead
to higher measured e�ective corrugations since the helium atom can penetrate deeper
into the surface electron density, where the high electron density around the lattice
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Figure 7.4: Comparison between measured and calculated scattering intensities using
various interaction potentials at a surface temperature of 300 K. Blue crosses
signify integrated measured peak areas, red circles, green diamonds, magenta
downward triangles and cyan upward triangles signify the Morse, Shifted Hy-
brid Morse, 9-3 and 12-3 potentials, respectively. The potentials were chosen
for reasons explained in section 7.6 and were normalized to the respective
specular contributions. The calculated intensities have been attenuated using
a Debye-Waller Factor and a surface Debye Temperature of ΘD = 155 K.
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7 Comparative Study of the He-Sb(111) Interaction

atoms is more dominant. Including higher corrugations enlarges the number of neces-
sary scattering channels to reach convergence. For the analysis of the e�ect of varying
interaction potentials, only one incident energy was chosen since the additional e�ect of
di�erent beam energies has been determined before and was beyond the scope of this
work.

7.7 Conclusion

The comparison between calculated and measured di�raction intensities reveals a wide
range of possible peak-to-peak corrugation heights, dependent on the interaction po-
tential used. The intensities calculated with the Morse-like potentials display a mostly
constant performance and converge at corrugation heights of 14-17%. This corresponds
very well with the earlier obtained values of 14% and 17% for the Morse and the Hybrid
Morse potential69. Regarding �gure 7.3 and table 7.3 a general correspondence between
unusually high corrugation values and high repulsive slopes of the interaction potential is
found. This correlation might originate from the slope-dependent range of the coupling
terms Eq. 7.7. As discussed in earlier publications on the subject34,48,74, the dependence
of the di�raction intensities is dominated by the potential sti�ness parameter. Steeper
repulsive potentials can be correlated with faster decreasing elastic coupling terms. The
spacial range where scattering interaction might occur is therefor shortened and the cal-
culation needs higher corrugations to explain the respectively high intensity transition
to the scattering channels.
More details about the 'best' interaction potential can only be uniquely determined from
a �t involving a larger parameter space for the involved potential shape, omitting the
limitation of using analytical interaction potential functions. Extending the view onto
interaction potentials determined from density-functional theory, as has been done by
Martínez-Casado for the He-MgO(100) interaction potential62,65, bears the potential of
reaching a full description of the scattering process and thus a complete understanding
of the dynamic scattering interaction. Nevertheless, we believe that our result of the
Shifted-Hybrid-Morse-potential being the best compromise will help in the corrugation
analysis of future scattering experiments. Given the fact that interaction potentials
lacking the correct long-range interaction shape are not able to describe higher-order
scattering intensities at all should emphasize the importance of the attractive interac-
tion between the scattered particle and the substrate. Regarding the challenges theorists
are facing in describing the van der Waals interaction correctly in density-functional the-
ory calculations, CC calculations of experimental scattering spectra provide a sensitive
tool for determining the quality of the attractive interaction range.
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7.7 Conclusion

Appendix: Calculation of the coupling parameters

From Eqs. (7.5) and (7.8), the νn,m coe�cients read as follows

νn,m =
1

A
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2
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2

dx
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(7.30)
with ω0 = 2π

a
, α = 2κξ0 andG = n·G1+m·G2. The value A is the area of the surface

the integration is performed on, in this case the surface unit cell. This area is the same
for all the integrals calculated and cancels in Eq.(7.7). Thus it will be ignored for the
rest of the calculation. The primitive reciprocal lattice vectors G1 and G2 are chosen
to enclose an angle of 60◦ symmetric with respect to the x-axis. Next, the dependencies
are split
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and expand the trigonometric-exponentials into a sum of modi�ed Bessel functions

νn,m =
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(7.32)

For the next step, this equation can be further separated into
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(7.33)

For the integral in y one easily obtains
√

3

2

a

π

1

4
[δ (l,−2k − (m− n)) + δ (l, 2k − (m− n)) + δ (l, 2k + (m− n)) + δ (l,−2k + (m− n))] ,

(7.34)
which leads us to a new term for the total equation

νn,m =

√
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(7.35)
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After substituting h = 2π
a
x and expanding the exponential into trigonometric functions,

the function can be split into four additive terms∫ π

−π
dh cos ((n+m)h) I2k±(m−n) (2α cos(h)) (7.36)

−
∫ π

−π
dh i · sin ((n+m)h) I2k±(m−n) (2α cos(h)) (7.37)

The sine integrals cancel out due to asymmetry, the cosine integrals by symmetry can
be reduced to

4

∫ π
2

0

dh cos ((n+m)h) I2k±(m−n) (2α cos(h)) . (7.38)

For this integral a solution can be found in Reference35, integral Nr. 6.681-11. The
solution is

νn,m =

√
3

2

a2

π

1

2

∞∑
k=−∞

Ik(α) (Ik+n(α)Ik−m(α) + Ik−n(α)Ik+m(α)) . (7.39)
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8 The surface structure of Bi(111)
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Abstract

Elastic and inelastic Close-Coupling (CC) calculations were used to �t the interaction
potential's corrugation height to reproduce angular helium atom scattering spectra of
the Bi(111) surface. Earlier investigations of the scattering intensities on Bi(111) re-
lied on two di�erent surface Debye temperatures to explain the varying temperature
dependence of the attenuation in specular or elastic scattering contributions. Based on
a re�ned Morse interaction potential and the assumption of only one valid surface Debye
temperature, two di�erent approaches are used for the simulation of the surface tem-
perature dependent system. On the one hand, an elastic CC (eCC) calculation is used
and the calculated intensities are attenuated by a single Debye-Waller(DW)-factor, on
the other hand the eCC code is modi�ed to include inelastic contributions (iCC) which
should make the inclusion of a DW-factor unnecessary. The thus obtained corrugation
values for Bi(111) correspond more closely with the semimetallic behavior of the surface
and cast doubt on the traditional use of the DW approximation for materials with a low
surface Debye-Temperature.

8.1 Introduction

The electronic density structure of a surface determines its chemical behavior. While on
surfaces like platinum, which is widely used as a catalyst, the e�ects of crystal face, sur-
face steps and kinks are well-known, more complicated electronic surface structures still
lack a detailed treatment. Recently the (111) surfaces of the semimetals bismuth (Bi)
and antimony (Sb) have raised a lot of interest. Not only do they represent the two main
ingredients of topological insulators43,102, but they also both present a fairly strong elec-
tronic surface density corrugation despite exhibiting conducting surface states69,71. The
temperature dependence of these peculiar electronic structures may change the binding
character of adsorbed species remarkably83, thus it is essential to determine a complete
picture of an electronic surface structure before conducting adsorbate experiments on
them. Helium atom scattering (HAS) experiments provide a low-energetic, completely
nondestructive means of investigation to measure the pure surface properties of mate-
rials. The inert neutral helium atoms are already repelled from the electronic density
corrugation above the surface, probing only surface e�ects. Close-Coupling (CC) cal-
culations80 provide a signi�cant improvement over simple approximate methods. While
the essential accurate knowledge of the interaction potential requires numerous mea-
surements and a careful analysis, the e�ort may be worthwhile because the quantum
mechanical treatment of the scattering procedure provides by far better insights into the
scattering processes. Earlier CC investigations included the Debye-Waller (DW) factor
to account for the thermal attenuation of scattering intensities. Heavy materials like
bismuth however exhibit very low surface Debye temperatures, indicating an extremely
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Figure 8.1: (a) Top-view of the Bi(111) surface as determined by Mönig et al.75. (b) Side
view of the (111) surface along the dashed magenta line in (a). (c) The �rst
Brillouin zone of the topmost layer with the two high symmetry directions.

fast decay of scattering intensities with the surface temperature. Elastic scattering in-
tensities on Bi are even observed at room temperature, which suggested that the initial
electronic density corrugation is extremely large when derived by approximate meth-
ods71. Questions arise whether this strong electronic surface corrugation is a result of
the approximate treatment of thermal attenuation. The inclusion of inelastic channels
into the CC calculation73 provides a natural inclusion of the attenuating e�ects into the
plain CC calculation. Since the decay of elastic scattering intensities is now allowed to
stray from the simple exponential factor presented by the DW-factor, the true surface
electronic density corrugation can be estimated with much higher accuracy.

8.2 Bismuth Surface Structure and dynamics

Bulk bismuth (Bi), like all of the heavier pnictogens, crystallizes in the rhombohedral A7
structure with two atoms per unit cell (space group R3m). A typical structural property
of this crystal structure is the existence of puckered bilayers of atoms perpendicular to
the [111] direction, as is illustrated in Fig.8.1(b).
The bonding of the atoms within these bilayers is of a strong covalent type, while the

inter-bilayer bonding is closer to a van der Waals-type. This is re�ected in the relative
distances between the layers, as labeled in Fig. 8.1(b). Due to this strong contrast in
binding energies, bismuth crystals preferably cleave perpendicular to the [111] direction.
The topmost layer of a so prepared crystal reveals a sixfold symmetry, as illustrated in
Fig.8.1(a). Despite the crystals' threefold symmetry, the Bi(111) surface can be treated
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as being sixfold symmetric in low-energy HAS experiments89,90. The lattice constant of
this hexagonal-like surface structure has been determined to be a = 4.538 Å by LEED
and HAS measurements71,75. This hexagonal surface structure leads to two distinguish-
able high symmetry directions in reciprocal space that are commonly denoted as ΓM

and ΓK, as illustrated in Fig.8.1(c). The reciprocal directions in Fig.8.1(c) correspond
with the real-space directions in Fig.8.1(a).
The surface Debye temperature of Bi(111) has been determined to be ΘD = 71(+7/−
5) K using LEED- and ΘD = (84 ± 8) K using the specular beam in HAS experi-
ments71,75. The surface Debye temperature determined from the attenuation of the �rst
order scattering peaks was Θ′D = (75 ± 8) K. The appearance of two di�erent values
for the surface Debye temperature for specular and scattered contributions occurs since
the theoretical basis for the Debye-Waller factor relies on scattering processes without
momentum transfer (see Section 8.4). Especially the specular HAS value reproduces the
theoretical approximation of van Delft96 that estimates the surface Debye temperature
to be lower than the bulk value, which is 120 K33,78, by a multiplicative factor of 1/

√
2.

8.3 Experimental Setup

All measurements mentioned and used in this work have been carried out on a helium
atom scattering apparatus with a �xed source-target-detector angle of 91.5◦ that has
been described in a previous publication91. The helium-atom beam is produced via
supersonic expansion of He-gas through a cooled nozzle at 50 bar which is followed by
a skimmer creating a spatially and energetically narrow beam (∆E/E ≈ 2%). The Bi-
sample is positioned on a 7-axis manipulator in the main chamber at a base pressure
of 10−11 mbar. The sample can be cooled using LN2 or heated using a button heater
while the temperature is measured by a type K thermocouple. The scattered He-atoms
are then detected by a quadrupole mass spectrometer followed by a multi channel an-
alyzer. Angular elastic scans can be carried out by rotating the manipulator leading
to di�raction spectra (0.1◦ resolution). Time of �ight measurements allow to record
inelastic scattering spectra and are realized using a pseudo random chopper disc and
subsequent deconvolution of the measured signal. The disc-shaped Bi(111) single crys-
tal sample with a diameter of 15 mm and a thickness of 2 mm has been cleaned using
several cycles of Ar+ sputtering and followed annealing at 150 ◦C. Surface cleanliness and
contamination were checked via Auger electron spectroscopy (AES) and the intensity
of the di�use elastic peak, its orientation has been aligned using a low-energy electron
di�raction (LEED) system. Experiments can be carried out within a beam energy range
of 15 meV to 25 meV with the sample cooled (113 K) or at room-temperature in the two
main symmetry directions of the crystal surface.
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8.4 Debye-Waller Attenuation

8.4 Debye-Waller Attenuation

As observed in earlier measurements71, di�raction peak intensities are surface temper-
ature dependent. This thermal attenuation can be described via the so-called Debye-
Waller (DW) factor56. It is a result of the zero-point motion and the thermal vibrations
of the surface atoms, which cause inelastic scattering of the impinging atoms. The DW
factor relates the intensity I(TS) of di�raction peaks at temperature TS to the intensity
I0 at zero surface temperature by

I(Ts) = I0e−2W (TS) (8.1)

where exp(−2W (TS)) is the Debye-Waller factor. Although the theoretical basis for
the DW factor has been developed for neutron and X-ray di�raction28, a reasonable
approximation for surfaces can be given by

2W (TS) '
〈
u2
z

〉
(∆kz)

2 (8.2)

assuming zero parallel momentum transfer to the surface and �nal angles near the spec-
ular angle. 〈u2

z〉 describes the average displacement of the atom perpendicular to the
surface and ∆kz is the momentum transfer perpendicular to the surface during the scat-
tering event. Assuming a harmonic oscillator within the Debye model W (TS) becomes

W (TS) =
3 (~2∆k2

z)TS
2MkBΘ2

D

(8.3)

with M being the mass of the surface atom, kB the Boltzmann constant and ΘD the
surface Debye temperature28,60.
The applicability of the conventional DW-factor which was introduced for X-ray

di�raction in atom-surface scattering models36,47 has been discussed extensively in the-
ory as well as in experiments. Di�erent models have been discussed by A. C. Levi59, who
for example predicts an increase of di�raction intensities for soft potentials. Deviations
from the predicted temperature dependencies of DW-factors especially at high surface
temperatures have been experimentally observed on the He-Cu(001) system. These de-
viations have been analyzed with special focus on the role of the interaction potentials
and scattering from surface defects99. Multiphonon and resonance e�ects concerning
the dependency of the initial particle energy on the DW-factor for a coupled channel
approach which can not be described by the Born approximation are described in a
comparatively new publication of W. Brenig17. Multiphonon e�ects in the evolution of
the DW-factor have already been observed on popular scattering targets like LiF97 and
still lack a proper treatment in the standard DW-model.
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8 Surface Structure of Bi(111) using inelastic Close Coupling

8.5 Inelastic Close-Coupling

The close-coupling (CC) formalism provides a method for calculating the intensities of
scattering experiments exactly (up to numerical convergency) in the elastic and inelastic
regimes80. The helium atom is considered to be a structureless and non-penetrating
particle, while the surface corrugation contains a static and a dynamical time dependent
contribution.
The time-dependent Schrödinger equation for a structureless particle is written as

i~
∂Ψ(r, t)

∂t
=
[
−∇2 + V (r, t)

]
Ψ(r, t), (8.4)

where squared wave vector quantities are given in energy units with ~2/2m = 1, m
being the mass of the incident particle. The standard notation is also used here where
capital letters are for vectors parallel to the surface (2D) and small letters for vectors
in 3D. The gas�surface interaction, V , turns out to be dependent on time through the
instantaneous position of the surface atoms, R+u(R, t), with u(R, t) being the deviation
or displacement from the equilibrium position. If this displacement is considered to
behave as a Gaussian function within the unit cell, it can be written as73

u(x, t) = uz,0 exp(−x2/σ2
c ) cosωt, (8.5)

u(y, t) = uz,0 exp(−y2/σ2
c ) cosωt,

with uz,0 the initial amplitude, ω the frequency of the active phonon mode and σc the
parameter to describe the width of the Gaussian function.
As long as the relative displacements u are small compared to the lattice constant,

the interaction potential can be Taylor expanded up to �rst order (within the so-called
single-phonon approximation) as25

V (r, t) ' V (r) + u(R, t) · ∇V (r). (8.6)

From the layer description of lattice dynamics it is well�known that the u�displacement
can be, in general, written as

u(R, t) =
∑
Q,ν

A(Q, ν, T ) eiQ·R cos [ων(Q)t] , (8.7)

where the amplitude A includes the phonon polarization vector and the dependence on
the surface temperature and ων(Q) is the frequency of the mode with quantum numbers
(Q, ν). For most practical purposes, only displacements of atoms on one layer (or two
at most) signi�cantly contribute to the interaction potential. In the Taylor expansion
given by Eq. 8.6, the zero order or static part of the interaction, V (r), is evaluated at
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8.5 Inelastic Close-Coupling

zero displacements. Considering the periodicity of the lattice surface, this function can
then be expanded into a Fourier series

V (r) =
∑
G

VG(z)eiG·R (8.8)

with G being the reciprocal lattice vector.
On the other hand, the wave function, Ψ(r, t), has to take into account the double

periodicity given by the Hamiltonian in space and time. Thus, according to the Bloch
theorem, Ψ(r, t) can be expanded as

Ψ(r, t) = e−ik2
i t/~

∑
G,Q,ν,nQ,ν

ΨG+Q,nQ,ν
(z)

·ei(Ki+G+Q)·R einQ,νων(Q)t, (8.9)

where nQ,ν stands for the number of phonons of the mode (Q, ν). In this work, we are
going to consider the inelastic e�ects on the elastic intensities. Thus, the Bragg law (for
Q = 0) is written as

∆K = Kf −Ki = G. (8.10)

Moreover, we also assume that only one mode is active in the scattering process. Thus,
we can drop the subindex (Q, ν) in nQ,ν for the number of phonons, writing only n.
Similarly, for the frequency of the active mode we can write simply ω. After substi-
tuting Eqs. (8.6), (8.8) and (8.9) into Eq. (8.4), multiplying the resulting expression by
exp[−i(Ki + G) ·R] and exp[−inωt], and then integrating over both time and the area
of a single unit cell, one obtains73 the following set of coupled di�erential equations for
the di�racted waves[

d2

dz2
+ k2

G,n,z − V0(z)

]
ΨG,n(z) =

∑
G′ 6=G

VG−G′(z) ΨG′,n(z)

+A ·
∑
G′ 6=G

FG−G′(z) [ΨG,n+1(z) + ΨG,n−1(z)] , (8.11)

and [
d2

dz2
+ k2

G,n+1,z − V0(z)

]
ΨG,n+1(z) =

∑
G′ 6=G

VG−G′(z) ΨG′,n(z)

+A ·
∑
G′ 6=G

FG−G′(z) [ΨG,n+2(z) + ΨG,n(z)] , (8.12)

where
k2
G,n,z = k2

i − (Ki + G)2 − n~ω (8.13)

is the z�component of the kinetic energy for the G�di�racted wave, and

FG−G′(z) ≡ [i(G−G′)VG−G′(z), V ′G−G′(z)] (8.14)
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8 Surface Structure of Bi(111) using inelastic Close Coupling

is the contribution of the gradient of the interaction potential or vector force �eld (V ′

represents the �rst derivative with respect to z); the �rst component represents the (x,y)
components of the force and the second one its z component. Within this scheme, each
channel is then represented by an e�ective potential formed by V0(z) plus the asymptotic
energy, given by

(Ki + G)2 + n~ω (8.15)

Such a channel is called an inelastic di�raction channel, and each inelastic event �
annihilation or creation� is represented by one of these channels with (n-1) or (n+1).
Similarly, the wave functions associated to the discrete spectrum (bound states labelled
by v) are denoted by |Ki+G, n, v〉 and those associated to the continuum one (di�racted
beams) by |Ki+G, n,k2

G,n,z〉. In the literature it is said that the channels are dressed by
the phonon �eld. The number of channels dressed by a given number of phonons form a
block, called a Floquet block. Thus, if only single�phonon scattering is considered, three
Floquet blocks must be at least included in the calculation: the blocks dressed by minus
and plus one phonon of the active mode, and the block dressed by zero phonons (the
latter corresponding to the pure elastic contribution). The number of di�raction channels
within a given block is formed at least for those used to obtain numerical convergence in
an elastic CC calculation. Multiphonon contributions of the same active mode are taken
into account by including more Floquet blocks - those dressed by two, three, or more
phonons by following the staircase structure of Eqs. (8.11) and (8.12) through n ± 1.
Furthermore, two coupling terms of very di�erent nature are now present: VG−G′(z) is
responsible for the intrablock coupling, and the scalar function

A(T ) · FG−G′(z) (8.16)

for the interblock one. The latter is responsible for the thermal attenuation of the
di�raction intensities (see Eqs. (8.11) and (8.12)) described many times from a phe-
nomenological viewpoint by a DW factor.
In previous publications on the phonon dispersion of the Bi(111) surface89,90, the

lowest-lying, isolated Rayleigh mode was identi�ed as the shear-vertical mode corre-
sponding to the sole phonon dispersion line in the Debye model. According to the
shear-vertical polarization of the suggested mode, the horizontal displacement of the
lattice atoms can be neglected, simplifying the force term Eq. 8.14 to the horizontal
term

FG−G′(z) ' V ′G−G′(z), (8.17)

and consequently the inelastic coupling term to

A(T ) · FG−G′(z) ' A(T ) · V ′G−G′(z). (8.18)
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The average thermal displacement Az(T ) is related to the e�ective mean square dis-
placement and has been estimated73 to be

A(T ) =
1

aQc

√
384~2πT

MkBΘ2
D

, (8.19)

with T the actual surface temperature, ΘD the surface Debye temperature, M the mass
of a surface particle, a the lattice constant and Qc is a �tting parameter for the Gaussian
cut-o� factor given byQc = 2/σc with σc being the width parameter introduced in Eq.8.5.
On the other hand, when solving the inelastic CC equations, frequency dependent

di�racted intensities are obtained and these have to be averaged by assuming a density of
phonons in order to compare with the experimental ones. The corresponding integration
over phonon frequencies is naturally weighted by the Debye spectral density given by

ρ(ω) =
2ω2

ω3
D

. (8.20)

with ωD the Debye frequency. In this respect, the �nal intensities are caused by the
virtual phonon events only, no real phonon events are taken into account since the
corresponding momenta are not involved in Bragg's law. The term 'virtual events'
denotes that when the photon is created in the dynamics, it has to be annihilated in
order to have a net energy balance equal to zero. The origin of the attenuation in the
iCC formalism is precisely due to the virtual phonon events since they are responsible
for the appearance of the new inelastic channels.
For antimony, the elastic coupling parameters for a lattice with the same surface

structure has been calculated in a previous publication53 for a corrugation represented
as a sum of cosine functions from a Fourier expansion up to the second term, such as

ξ(x, y) = ξ0

(
cos

[
2π

a

(
x− y√

3

)]
(8.21)

+ cos

[
2π

a

(
x+

y√
3

)])
+ ξ0 cos

[
2π

a

2y√
3

]
+ h.o.,

with ξ0 the corrugation amplitude. By assuming a corrugated Morse potential leading
to

VG−G′(z) = D
νh,k
ν0,0

e−2κz (8.22)

where D is the well depth of the Morse potential, the G(n,m)-speci�c coupling constants
νn,m are given by

νn,m =

√
3

2

a2

π

1

2

∞∑
k=−∞

Ik(α) (Ik+n(α)Ik−m(α)+

+Ik−n(α)Ik+m(α)) , (8.23)

where Ik are the modi�ed Bessel functions of �rst kind and α = 2κξ0.
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Figure 8.2: Time-of-Flight spectrum of Bi(111) in ΓM direction at an incident angle
of 54.9◦ and an incident energy of 17.5 meV. The suggested bound state
energy level coincides with an observed increase in intensity around an energy
transfer of +3 meV.

8.6 Results and Discussion

8.6.1 Inelastic TOF and Interaction Potential

Previous investigations of the He-Bi(111) interaction potential55 revealed three well de-
�ned bound state energies and the associated 9-3 interaction potential shape. However,
preceding studies of close-coupling routines using various potential shapes on Sb(111)53

suggest that Morse- or Morse-like potential shapes perform better in representing the
bound state energies as well as in the elastic close-coupling simulation of semimetal sur-
faces. Given only three low-lying bound state energies, the long-range interaction shape
would not be represented in the �tting procedure.
To propose a more accurate Morse-like interaction potential, indications of inelastic

resonance e�ects in time-of-�ight (TOF) spectra were analyzed to identify an additional
bound state level at smaller bound state energies. Figure 8.2 illustrates one of the spectra
with an isolated feature originating from the fourth identi�ed bound state as listed in
Table 8.1.
The last line of Table 8.1 lists the obtained bound state energy levels for the �tted

central part of the corrugated Morse potential.

V M
00 (z) = D

[
e−2κz − 2e−κz

]
(8.24)

with a potential depth D of (7.898 ± 0.126) meV and a potential sti�ness κ of (0.884±
0.024) Å−1. With the highest identi�ed bound state level much closer to the thresh-
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8.6 Results and Discussion

Table 8.1: Measured and �tted bound state energy levels for the He-Bi(111) interaction
potential. The �rst three measured values were taken from55.

Level no. / # 0 1 2 3
Measured / meV 6.18 3.49 1.42 0.327
Morse-�t / meV 6.20 3.43 1.47 0.327

old, the attractive part of the �tted potential may be considered to describe the real
interaction accurately.

8.6.2 eCC and iCC Analysis of Bi(111)

Previous investigations71 treated the electron density corrugation of the Bi(111) from
the Helium Atom Scattering (HAS) data using the GR method and the Eikonal ap-
proximation, including the Beeby correction. Thermal attenuation e�ects were included
using the Debye-Waller factor as described in Section 8.4 with two di�erent surface De-
bye temperatures to account for the di�erent attenuation characteristics obtained in the
measurements. The surface Debye temperature being an intrinsic surface property given
by the maximum energy of the phonons in the Debye model, it seems unsatisfactory to
include a second temperature in order to account for the di�erent attenuation of the
scattering channels. Thus, all the intensities in the eCC+DW model were achieved us-
ing only one surface Debye temperature. Since approximate methods are widely used
in surface science, the majority of corrugation e�ects measured still lack a quantum
mechanically exact treatment such as a close-coupling approach.
To �nd appropriate values for the surface corrugation and the surface Debye temper-

ature (two parameters for the eCC calculation) as well as the Gaussian cut-o� factor
QC in the iCC case (three parameters for the iCC calculation), two sets of optimization
routines were used. In the �rst case the electron density corrugation was �tted from four
complete angular scans in ΓM and ΓK at 113 K as well as at 300 K surface temperature
using an eCC algorithm attenuated with a simple DW factor. Correspondingly, the cor-
rugation height as well as the Debye temperature had to be optimized simultaneously.
In the second case, an iCC algorithm was used, expanding the parameter space by one
dimension through adding the Gaussian cut-o� factor QC . In both cases, the overall
deviation of the measured intensities from the calculated intensities

σ =
1

N

√√√√ N∑
n=1

(Icalcn − Iexpn )2 (8.25)

with N being the total number of scattering intensities considered (in this case 12) was
minimized. The optimization algorithm terminated after a relative accuracy of 0.1 % in
all of the considered parameters.
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Figure 8.3: Measured and calculated scattering peak intensities in both distinguishable
lattice directions at two surface temperatures and a beam energy of 16 meV.
Black dots signify measured peak areas, red stars calculated peak intensities
using elastic close-coupling with a Debye-Waller attenuation, blue down-
ward triangles calculated peak intensities using the inelastic close-coupling
approach. (a) Angular scans in ΓM and ΓK direction at a surface temper-
ature of 113 K. (b) Angular scans in ΓM and ΓK direction at a surface
temperature of 300 K.
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Table 8.2: Comparison of earlier relative peak-to-peak corrugation values to corrugation
values calculated by eCC and iCC. All values are given in % of the lattice
constant a

GR Method71 9.7 - 10.1
Eikonal Approx.71 10.6 - 11.2
eCC + DW 8.13
iCC 6.32

Figure 8.3 displays the best-�tting results in both cases of elastic and inelastic close
coupling calculations. To obtain comparable values, the experimental scattering peak
areas were normalized to the specular peak area of the 113 K measurement for each
direction separately. The elastic CC-calculation with the Debye-Waller attenuation (red
stars) represents the measurements more closely only at lower surface temperatures in
ΓM-direction (a), but seems unable to reproduce the data in the case of the sample
being at room temperature (b). The inelastic calculation (blue downward triangles) on
the other hand seems to underestimate the scattering intensity in the low temperature
measurements, while producing plausible scattering intensities at room temperature.
The elastic calculation is furthermore not capable of predicting the �rst order scattering
intensities in ΓK direction, an issue that also occurred in earlier scattering simulations
on the Sb(111) surface when using the plain Morse potential53,69.
These values were obtained for the corrugation values listed in Table 8.2.

The obtained corrugation values are signi�cantly lower than the ones obtained by ap-
proximate methods71. While the elastic approach with the simple numeric attenuation
factor already settles at a peak to peak corrugation of 8.13 % of the lattice constant,
the inelastic close-coupling calculation returns a value of 6.32 %, with a Gaussian cut-o�
factor of 0.869 Å−1 and a Debye-Temperature of 84.26 K, which coincides well with the
value obtained by Mayrhofer et al.71. The inelastic calculations were carried out using
150 scattering channels in 3 Floquet blocks from −7 Å to 16 Å with 100 steps within
the shortest calculated wavelength. The phononic energy integration was performed via
a simple weighted Legendre quadrature from zero energy to the Debye frequency with
10 evaluated roots.
While the small Debye Temperature of Bi(111) in�uences both the Debye-Waller factor
and the inelastic coupling constant (see Section 8.5, Eq. 8.19), the iCC approach is
the only one that would allow a deviation of the temperature dependence of the elas-
tic scattering peaks from the exponential characteristic. Thus, while the Debye-Waller
factor explains the temperature dependence of the specular peak better than the iCC
calculation, the latter is not bound to attenuate the scattered peaks at the same rate,
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producing intensity predictions far from zero also when the surface temperature is much
higher than the surface Debye temperature.
However, the present model only accounts for interactions without any parallel mo-
mentum transfer (see Section 8.5) and assumes all phonons to be polarized completely
parallel to the surface normal with a uniform polarization amplitude, which is clearly
not the case in any realistic crystal. Earlier ab-initio calculations90 for example re-
veal a mixed polarization of the Rayleigh branch, which shifts from shear vertical to
longitudinal polarization when reaching higher phonon momentum.
We are aware that the dynamical corrugation given by Eq.8.5 for x and y assumes a

di�erent geometry of the unit cell than encountered in the case of Bi(111). This is the
�rst attempt to apply this theory to a real 2D surface. Obviously, the iCC framework
has to be better adapted to the actual geometry of the surface unit cell under considera-
tion and, in our opinion, the main discrepancies between the experimental and inelastic
results should be attributed to this important point. At higher surface temperatures,
where the corresponding dynamical corrugation is higher, the general shape of the dy-
namical displacement function does not seem to play an important role and the overall
agreement with the experimental results is better. An extension of the coupling calcu-
lations including a complete treatment of the overall force (Eq. 8.14) and the correct
geometry on the scattered helium atom in surface parallel directions could account for
the di�erent polarization directions and improve the quality of the calculated scattering
intensities signi�cantly. The overall ability of the iCC calculations to model the measured
scattering features could be vastly improved if the in this case previously determined in-
teraction potential parameters would enter the �tting procedure directly instead of being
pre-determined solely from bound state feature �tting. However, expanding the included
parameter space to �ve dimensions (corrugation height, Debye temperature, Gaussian
cut-o�, potential depth, potential sti�ness) would raise the number of necessary function
evaluations enormously, resulting in unfeasible calculation times. Furthermore, including
a more realistic interaction potential shape, probably determined by ab-initio approaches
would render the iCC method a remarkable tool for simulating the e�ects of inelastic
scattering contributions in temperature dependent measurements.
Using the inelastic close-coupling approach to simulate the scattering from surfaces with
�nite temperatures clearly renders the inclusion of an additional surface Debye temper-
ature futile and furthermore resolves the ΓK prediction problems encountered in eCC
calculations with the plain corrugated Morse potential53,69. By not being bound to an
exponential attenuation characteristic, the method is more adaptive and thus better
suited to describe the temperature dependent behavior of surfaces with a comparatively
low surface Debye temperature.
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9 Summary

The present work presents the development of the exact treatment of the surface-probe
particle interaction for the pnictogen surfaces Bi(111) and Sb(111) as well as the bene�ts
such a description poses compared to earlier approximative methods.

9.1 He-surface interaction potential

Intensity variations in between elastic helium scattering features on Bi(111) and Sb(111)
lead to the measurement of a set of bound state energies for the interaction potentials
of both surfaces with the helium atoms. These bound state energies represent a subset
of the eigenenergies of the bound He-surface system. The surface-averaged interaction
potential for both systems was derived in accordance to those eigenvalues. Using the
known positions of these resonance possibilities, experiments on Bi(111) were conducted
to selectively enhance the sub-surface optical phonon modes which would otherwise be
concealed by the Jacobi-ampli�ed background noise on the phonon creation side of TOF
measurements. The depths of both potentials can be used for the Beeby correction in
Debye-Waller analysis, if such an approach is necessary. In the subsequent research
presented in chapter 7 several di�erent interaction shapes were included in the analysis
within the limits of the experimental uncertainty of the bound state analysis. In order
to accomplish this, the commonly used least-squares �t was exchanged with a weighting
function taking the probability distribution of the measured values into account. The
performed �ts for the He-Sb(111) interaction potential reveal that most interaction po-
tential shapes are at least equivalent when solely observing the bound state energies, as
can be viewed in table 7.1. Only the additive-potencies potentials, namely the 9-3 and
the 12-3 potentials seem to fail in this kind of description.

9.2 Scattering description using the CC-formalism

The newly found knowledge about the potential shape renders a quantum mechani-
cally exact treatment of the scattering process possible. During the course of this work
the one-dimensional elastic close-coupling Fortran code supplied by Prof. Miret-Artés
was adapted to a full two-dimensional inelastic code written in Python and supplied
with the analytical expressions to make calculations on a hexagonal surface grid viable.
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Table 9.1: Comparison of derived corrugation heights from earlier approximative meth-
ods and close-coupling analysis with respect to the corresponding lattice con-
stants. All listed close-coupling corrugations were calculated using the �tted
Morse potential.

Approx. Methods eCC iCC
Bi(111) 10 - 11 %71 8.13% 6.32%
Sb(111) 13 %70 13-14% -

The implications of elastic as well as inelastic close-coupling treatment of the scatter-
ing analysis are dramatic. Earlier works69�71 described the surface corrugation of the
semimetals antimony and bismuth and drew the seemingly contradictory conclusion that
despite the presence of conducting surface states on both materials, the surface corru-
gation is extraordinary high with values ranging from 12-13% for antimony and around
10% for bismuth. While a �rst analysis using the close-coupling formalism on Sb(111)
resulted in a corrugation value of even 17%, a subsequent analysis using a wide range
of possible interaction potential shapes revealed a whole spectrum of possible corru-
gation heights ranging from 13.5-19.1% depending on the potential used. The usually
well-�tting Morse potential completely fails in describing second-order ΓM or �rst-order
ΓK scattering intensities. While this was usually attributed to the incorrectly described
attractive interaction alone, further investigations on Bi(111)54 using a version of the
close-coupling formalism including inelastic interactions produced predicted intensities
in these positions, indicating the possibility for a helium atom to reach an elastic scatter-
ing channel through scattering into an inelastic channel �rst. Considering this process
the calculated corrugation of the He-Bi(111) interaction potential can be reduced to
6.32 % when including inelastic interaction only for the Rayleigh branch and ignoring
the phonon momentum.
Table 9.1 lists the obtained corrugation values for the Morse potentials in comparison

with the approximative methods conducted by earlier group members.
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