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Abstract

Ongoing developments in the automotive industry have led to highly
complex electronic systems and resulting communication requirements.
Approaches like AUTOSAR were introduced to meet this challenge and
assure reliable electronic solutions in a cost-sensitive environment. This
is done through modularization of software components accompanied
by top-down design flows. From the perspective of automotive system
architects, new degrees of freedom in the design of electronic features
and communication are now available.

As a first step, this thesis investigates the potentials of optimization
derived from these new design paradigms. A new problem formulation
is then developed, modeling optimization potentials as compositions of
combinatorial problems. Starting from this foundation, stochastic search
methods are refined to assist in architectural decisions for complex
networked systems. Furthermore, the thesis explores goals of optimiza-
tion in aspects such as system complexity, communication effort and
monetary costs.

Intensive research in application-specific improvements was conducted
in order to ensure a reliable and effective optimization behavior. The
resulting techniques feature novel guided mutation operators to enhance
the convergence of the studied heuristics. Improvements are further
achieved regarding the many-objective optimization performance of
evolutionary algorithms. Scientific studies in experimental as well as in
industrial environments confirm the proposed advancements.

The thesis is completed by the implementation of a modular optimization
framework for industrial case studies and experimentation purposes. Fi-
nally, an in-depth discussion is provided regarding modeling techniques
applied in this work and in comparable automotive literature.
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1 Introduction

I want to begin this thesis by giving the reader an overview of automotive
communication networks, focusing on their history, classifications and
currently used techniques.

This topic is followed by automotive design methods, first focusing
on most recent developments in automotive engineering. As electronic
functionalities in the car are increasing, new design paradigms have to
be introduced for EE-architectures. Therefore, particular focus is given
in this chapter to AUTOSAR as a means of tackling current challenges
in the automotive design flow.

These new design methodologies offer previously unavailable degrees
of freedom for system architectures. Consequently, a novel optimization
potential is found in the design of in-vehicle networks. This optimization
potential is the main motivation for this thesis and will be discussed as
the concluding part of the automotive theme complex.

To explore the mentioned optimization potential, this work utilizes
evolutionary computation. In the final section of the introduction, I will
give a brief historical overview and familiarize the reader with the most
common aspects and features of this technique. The chapter also covers
combinatorial optimization as a prime application, providing a brief
discussion on decision problem complexity and well-known examples.

1.1 Automotive Communication Networks

First, automotive communication networks are explained. I will start by
giving a brief history of electronic components in the car. Then I will
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1 Introduction

explain the need for communication between such components and the
resulting requirements for automotive communication systems. Conse-
quently, selected bus systems and their applications will be described in
more detail. I will conclude the first section by looking at less common
bus systems, their distinctions and typical applications.

1.1.1 History

Electronics have been a fundamental part of cars since the beginning
of commercial vehicles. First applications were as simple as headlights
and starter motors. The first electronic fuel injection system, formerly
called ”‘Brain Box”’, was introduced in the late 1950s1 but suffered from
inferior reliability of electronic components at that time. However, as
transistors and capacitors became more reliable, the electronic injection
made a comeback from the the german company Robert Bosch Gmbh.
Called the Bosch D-Jetronic, it had the first series production in the
Volkswagen VW 1600 LE/TLE. This was the first control system in a car
realized by an Electronic Control Unit (ECU) in contrast to mechanical
solutions. More applications for electronics followed due to more reliable
hardware components and increased computing power in embedded
systems. Today, the Electric/Electronic (E/E) domain is one of the most
important sources of revenue for vehicle producers.

With the increasing applicability of electronic functions in the domains
of engine management and comfort, the number of such ECUs for appli-
cations such as cruise control or anti-lock braking grew steadily. In order
to operate, measurements and signals had to be exchanged between
those ECUs using analog transmission, i.e. voltage levels on discrete
wires. It was just a matter of time until the increasing communication de-
mands justified an automotive bus system for digital signal transmission
to reduce the wiring effort. The first series production of the Controller
Area Network (CAN) [1], a standard automotive bus system still used
today, was in 1991 and connected 5 ECUs.

1E.g. US Patent No. 2980090, ”‘Fuel injection system”’, filed april 1957
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1.1 Automotive Communication Networks

Since then, the extent of electronic functions in cars has been increasing
at a rapid rate. Likewise, communication demands have been growing
drastically and soon were not be able to be served by one CAN bus.
The first heterogeneous bus system topology emerged, connecting all
components required for engine and transmission management on a
distinct bus system while all comfort related functions communicated
on a separate, slower bus. This separation between the so called power
train and body bus system is still used today although extended by
several other communication domains for infotainment or safety-related
features. Additionally, cost effective bus systems are used for local
applications where bandwidth is of no major concern. All these networks
are connected by gateways to allow cross-domain communication and
to provide a single point of entry for diagnostic capabilities.

1.1.2 Classification

Automotive bus systems are classified by their speed and typical appli-
cation. A frequently used classification system was introduced by SAE
[2] and defines 3 types of bus systems. With the increasing bandwidth
demand of X by wire and infotainment applications, two further classes
were added. An overview of this classification system can be seen in
Table 1.1.

Table 1.1: Classifications of automotive bus systems

Class Bitrate / sec Typical Application Typical Bus System
A <25 kBit Sensor/Button Inter-

face
LIN

B 25 - 125 kBit Body Electronics,
Comfort

Low Speed CAN

C 125 - 1000 kBit Powertrain High Speed CAN
D 1 - 10 MBit X By Wire, Active

Safety
FlexRay

Infotainment >10 MBit Video Streaming,
Internet Connectivity

MOST, Ethernet
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1 Introduction

1.1.3 Requirements

In contrast to other domains, automotive applications impose unique
requirements on communication systems. Communication reliability
and determinism arise from safety related applications within the car
to support the driver and assure functionality of real-time dependent
features. The ubiquitous cost pressure in the automotive industry also
affects the design of efficient network topologies and choice of cheap
and lightweight cables.

Reliability

Automotive bus systems are designed to work under harsh environmen-
tal conditions regarding temperature, vibration and humidity. Further-
more, they should be robust against electromagnetic interference and
not cause disturbances based on their own radiated emissions. To detect
transmission errors, most communication systems employ CRC checks
and robust encoding of raw data. Another way to significantly increase
transmission reliability is to transmit data by current modulation instead
of voltage levels. However, corresponding hardware interfaces are costly
and the power consumption of such bus systems is usually higher.

Determinism

Real-time control systems in cars are often distributed over several
sensors, ECUs and actuators. To ensure a proper execution of such
systems, stringent timing requirements from signal source to sink have
to be guaranteed. Therefore, several automotive systems (e.g. TTCAN,
FlexRay) employ time triggered communication modes, where a distinct
and recurring time slot is assigned for each signal. However, this is not
the case for the standard CAN bus although the worst case transmission
time of this popular bus system is very well studied [3].

4



1.1 Automotive Communication Networks

Costs

Due to the highly competitive market and large production volumes,
engineers are eager to employ the cheapest possible solutions wherever
possible. In terms of bus systems, typical cost factors are complexity of
the communication controller, the type of cable used as well as required
CPU processing power and oscillator quality for proper communication.
This also resulted in a hierarchical communication structure of low-
cost class A and B bus systems interconnected by a faster backbone
network.

1.1.4 Common Bus Systems

This section introduces the most common bus systems found in vehicles
today.

Controller Area Network

The CAN bus is the standard vehicular bus system with many other
applications (for example in industrial automation or aerospace). After
the first series application in 1991 [4], the bus was standardized in ISO
11898 and SAE J2284. Since 2008, CAN is the only interface allowed for
diagnosis and emission testing using the on-board diagnostics (OBD)
standard for newly introduced cars [5].

The physical layer is represented by two distinct specifications. Low
Speed CAN (ISO 11898-3) is used for Class B applications with bit rates
< 125 kbit/sec. For Class C applications and higher transmission rates,
High Speed CAN (ISO 11898-2) is typically used at 250 or 500 kbit/sec.
Both specifications transmit via unshielded twisted pair (UTP) cables
where High Speed CAN requires 120 Ω termination resistors to reduce
signal reflection.

The multi-master design implements a ’Carrier Sense, Multiple Access
with Collision Resolution’ (CSMA/CR) transmission scheme where bit-
wise arbitration resolves collisions on the physical medium. Further
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1 Introduction

features include bitstuffing to force signal transitions after five consec-
utive bits. This allows network participants to remain synchronized
using the bus communication as reference and utilize cheaper clock
generators.

Other developments in CAN technology include TT-CAN, a time trig-
gered and deterministic extension (ISO 11898-4). Further, the increased
bandwidth requirements have lead to the introduction of the Flexible
Data-Rate (FD-CAN) protocol. Here, the bit times of payload data are
drastically decreased to transmit more information in a standard CAN
frame. The major advantage of FD-CAN is that it can be included in
existing CAN networks without disturbing standard communication
[6].

Local Interconnect Network

The Local Interconnect Network (LIN) [7] was developed for cost sensi-
tive networks with low bandwidth requirements. Typical applications
for LIN include localized networks, for example the connectivity within
a driver’s door.

Bit transfer rates are usually standardized at 9.6 or 19.2 kBit/sec, which
results in the Class A categorization of the bus. The similarity to well-
known UART bit rates is intentional in order to re-use common and
very cheap clock generators. In fact, the common bit rate amongst
other similarities to UART allowed chip designers to integrate LIN into
existing serial communication modules in a very cost efficient way.

Each network consists of one dedicated master, usually with gateway
functionality to a higher level CAN network. A transmission is initiated
by this master while each slave node matches its internal clock using
a sequence of synchronization bytes. Therefore, the reference clock of
slave nodes does not require high precision and can be realized using
cheap RC oscillators.

All these features allowed the design of an extremely cost efficient
network, resulting in a firm positioning on the market next to the
established CAN bus.

6



1.1 Automotive Communication Networks

FlexRay

The development of FlexRay [8] began in 1999 with the goal of a de-
terministic and robust bus system for high bandwidth requirements.
Those requirements resulted from new applications in the area of vehicle
dynamics such as adaptive dampening systems for each wheel. The
main driver behind the technology was BMW, which also developed the
preceding Byteflight bus system and produced the first series vehicle
utilizing FlexRay in 2006.

The physical layer uses one unshielded twisted pair of cables (Channel
A) with an optional second pair (Channel B) for fault tolerance or
bandwidth enhancement. The maximum data transfer speed is specified
at 10 Mbit/sec for each channel using differential voltage levels for
transmission.

FlexRay uses a mixed synchronous and asynchronous TDMA scheme
in a multi-master architecture. This allows transmission of periodic
signals with stringent real-time requirements and hard deadlines in the
synchronous or static segment of a communication cycle. On the other
hand, event triggered signals can be placed efficiently in the dynamic
segment.

Although the system clock is always synchronizing between network
participants, the extremely high data rate requires precise reference
clocks with very low drift for each node. Therefore, the resulting hard-
ware costs are high compared to CAN networks. As a consequence,
FlexRay is currently only utilized in premium segment cars.

MOST

The Media Oriented Systems Transport (MOST) [9] bus was developed
for high-bandwidth infotainment applications in vehicles. Supervised by
the MOST Cooperation, a consortium of vehicle manufactures and sup-
plier companies, the bus system quickly became the standard interface
for multimedia and navigation purposes in the car.
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MOST implements a synchronous ring topology with data rates specified
at 25, 50 and 150 Mbit/sec. In contrast to all other automotive network
technologies, MOST primarily uses optical fiber as the transmission
medium. While this medium is immune to electromagnetic interfer-
ence, wiring costs are considerably higher compared to standard copper
technologies. However, MOST50 also specifies an electric physical layer
using unshielded twisted pair cables.

The MOST Cooperation provides all standards and network services
for all OSI layers. Therefore, MOST had very quick market penetration
compared to other bus systems and is used in nearly all prominent car
brands.

Ethernet

Being the standard communication technology for personal computers
for decades, Ethernet was not considered as an automotive bus system
for a long time. The first use case for Ethernet-based communication
emerged due to the vast amount of ECU-software in premium cars. In
2008, the process of programming all ECUs with the newest firmware
version was accelerated considerably by BMW, using Ethernet-capable
embedded systems. However, the network was only intended for usage
in a production facility or repair shop. Robust data transmission in driv-
ing conditions could not be provided with standard Ethernet technology
due to EMC reasons.

A new approach is now conducted by the OPEN Alliance SIG (One-Pair
Ether-Net, Special Interest Group)2, a consortium of car manufacturers
and automotive suppliers. The technology BroadR-Reach [10] is based
on a 100 Mbit/sec, full duplex physical layer via unshielded twisted
pair wires. This standard was invented with respect to automotive
requirements concerning EMC and transmission reliability. Software
protocols are being implemented to support the capability of real-time
communication. Due to the high bandwidth and low costs, Ethernet

2http://www.opensig.org/
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1.1 Automotive Communication Networks

is now a serious competitor to the established FlexRay and MOST
technologies for future in-car communication.

1.1.5 Other Bus Systems

This section gives a short overview of automotive bus systems for specific
purposes. Currently, these networks are not considered for optimization
as they are usually part of functional packages that communicate over
separate connections.

PSI5

The Peripheral Sensor Interface 5 (PSI5) [11] is used for communica-
tion with intelligent automotive sensors. It supports synchronous and
asynchronous communication modes in a point to point topology. A
bus topology with one master and multiple slaves is only possible in
a synchronous configuration. Sensor data is transmitted using current
modulation over power supply lines at a usual speed of 125 and up to
189 kbit/sec. This modulation technique leads to a very robust commu-
nication and high immunity to interfering electromagnetic fields, which
is why PSI5 is an interface typically used for airbag crash sensors. The
robustness comes of course at the price of increased power consumption
and complex bus coupling hardware.

SENT

Another commonly used sensor interface is the Single Edge Nibble
Transmission (SENT) protocol, standardized as SAE J2716 [12]. In con-
trast to PSI5, it specifies a unidirectional pulse width modulation over a
discrete wire. Due to the pulse width modulation, the effective data rate
depends on the data values to be transmitted and can go as low as 30
kbit/sec. In each message frame, a synchronization impulse followed by
two 12-bit measurement values is transmitted. The receiver measures the
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length of each synchronization impulse and the following data pulses,
which allows the utilization of very cheap RC oscillators at the sensor.

DSI

The Distributed Systems Interface (DSI) [13] specifies a synchronous
communication technique for up to 15 sensor nodes. Command data
is transferred from the master by modulating the voltage of the power
supply line. Sensors can respond by modulating their current consump-
tion using one of three defined levels. The communication offers transfer
speeds between 125 and 200 kbit/sec, comparable to PSI5.

1.2 Automotive System Design

Literature states that a modern premium class car contains between 70
and 100 ECUs [14, 15], realizing a manifold of electronic functions. These
ECUs are connected by a variety of different bus systems to transport
and exchange data. Another trend is that a lot of these features and
functionalities are no longer reserved for luxury vehicles. Currently,
customers of medium class cars are also demanding features related to
safety and driver assistance. This market demand leads to a challenging
size and complexity of in-vehicle networks in cost sensitive markets.
Therefore, new design methods for efficient realization have to be ap-
plied while focusing on the stringent reliability requirements of the
automotive industry.

1.2.1 State of the Art

The design of a new vehicle’s electric and electronic architecture begins
by defining the functional and nonfunctional requirements and features.
This is done by the vehicle manufacturer (OEM) and is usually based on
previous car series and current market demands.

10



1.2 Automotive System Design

These requirements are divided into subsystems and components. Speci-
fications for each functionality are then defined or adapted from similar
car models. Tier-one suppliers are assigned to deliver the most compo-
nents. Only some leading edge technologies are developed exclusively
by the OEM to distinguish the own product from competitors on a
technical level. However, the main roles of the OEM are the specifica-
tion of the product, integration of each component and verification of
interoperability at a system level before the start of production (SoP).

Using the current approach, subsystems are often defined as all func-
tions that are executed on one specific ECU. Due to this partitioning,
the supplier delivers a subsystem as a set of sensors, actuators and dedi-
cated ECU. The automotive operating system and software components
executed on this ECU reflect the know-how of the supplier and are often
delivered as closed source or “black box” [16]. This also implies that the
OEM is not able to accommodate additional functionality on such ECUs
without support from the supplier.

This design approach led to the development of highly specialized and
reliable control systems as for example engine control or ’Electronic
Stability Programs’ (ESP). On the other hand, the electronic architecture
is also very inflexible because the required effort to adapt one ECU to
accommodate additional functions is significant. Therefore, it is often
cheaper to realize new functions as separate ECUs. This is one of the
reasons for the large amount of ECUs installed in cars today.

Another reason lies in the heterogeneity of car variants and features that
are configurable by the customer. For example, if the customer orders
a car without the feature ’Park Distance Control’ (PDC), the costs of
production can be reduced by omitting the park distance sensors and
ECU. This is only possible when the electronic architecture of the car
includes one ECU solely dedicated to the feature PDC.

As the amount of ECUs grows, the communication requirements be-
tween them also increase. Therefore, new bus systems had to be added
to the existing communication topology while ensuring cross-network
communication using a central gateway connected to all bus systems.
Next to the established - usually CAN based - buses dedicated to power
train and comfort functions, new communication networks appeared
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in modern cars. One prominent representative is the MOST bus for
the infotainment domain. Also, several networks based on LIN were
introduced and usually integrated as subsystems of the body/comfort
CAN bus.

Concluding, the introduction of new electronic features led to an or-
ganic growth of new ECUs and bus systems. To ensure cross-network
communication, all bus systems are interconnected by a central gateway.
Due to different suppliers and closed source software, the global com-
munication architecture of a modern car is very inflexible. For example,
changes in an existing CAN communication matrix would have to be
communicated to all suppliers of related network participants. Further,
the re-usage of existing software solutions in different projects often
requires manual adaptations of the software.

1.2.2 Challenges

Considering the previously described trends, several challenges to the
automotive design methods, component suppliers and OEMs can be
identified. As this is just a short overview of some aspects, the interested
reader is referred to [17] and [18] for a more detailed analysis.

Reliability

New electronic features rely on sophisticated software algorithms. A
fully equipped premium car can include up to 100 million lines of
code [19] and software errors in safety-related components are a serious
issue for OEMs. Therefore, measures to ensure robust generation and
execution of software have to be taken. This also includes software
testing procedures and coding quality standards.

12



1.2 Automotive System Design

Common Software Standards

Automotive software features compete on a functionality level that is
experienced by the customer. This includes, for example, the visual rep-
resentation of user interfaces or the response quality of stability control
systems. The underlying operating systems and interfaces for flashing,
configuring and diagnosis are not prone to competition and the relevant
requirements are similar for most car manufacturers. Therefore, sev-
eral initiatives to standardize such interfaces are successfully employed
throughout the automotive software domain.

Cost Pressure

The shift of feature availability from premium segment to the whole
portfolio of a car manufacturer also impacts on the cost pressure of
new developments. The production volumes of medium class cars are
much higher compared to the premium class. Therefore, every saving in
unit production costs results in a higher revenue for the suppliers and
OEMs.

Complexity

The vast amount of functions, different configurations and cross-function
communication leads to very high system complexity. Consequently, a
lot of OEMs have adopted model driven paradigms in their architecture
process to handle the manifold of requirements and design challenges
[20, 21, 22].

1.2.3 AUTOSAR

The most prominent initiative for handling the challenges mentioned
in this context is the ”AUTomotive Open System ARchitecture” (AU-
TOSAR) [23]. It is a software architecture standard supported by the
majority of global car manufacturers, suppliers and tool developers [24].
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The goals are to provide a uniform development process for automotive
systems and defined interfaces between a layered software architecture.
AUTOSAR provides the standards and corresponding meta-models for
model driven development. The actual implementation of operating
systems and functional software is left to the automotive companies.
Therefore, the AUTOSAR principle is also to “Cooperate on standards,
compete on implementation” [23].

Development Process

The AUTOSAR development process is influenced by Model Driven
Architecture (MDA) and meets the requirements for the design of highly
complex systems. Further, it reflects the challenges of outsourcing the
development of interconnected components to various suppliers.

The E/E architecture is defined by a standardized system configuration,
consisting of functional software descriptions, hardware resources and
system constraints. From this system configuration, several ECU-specific
descriptions can be extracted. Such an extract contains all the information
required to develop the hardware and firmware of one ECU. It can be
seen as an XML-based interface between the OEM as system developer
and tier-one suppliers.

Based on this interface, the ECU supplier is then tasked with the de-
velopment of hardware components and embedded software realized
by several layers of abstraction. A hardware abstraction layer (MCAL)
represents the bottom of the AUTOSAR software stack and is usually
provided by the chip vendor. The actual operating system and basic
software modules for tasks such as communication or memory services
are generated by according development tools. This is also the case
for the Runtime Environment (RTE) which represents the AUTOSAR
middle-ware.

Functional Software Components (SWCs) can be developed or generated
independently of the hardware and basic software development. They
represent the high-level features and actual functionality or application
of the developed ECU. The interfaces defined in AUTOSAR allow the
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Figure 1.1: AUTOSAR development methodology [23]

execution of such software components without detailed knowledge of
the underlying hardware layers. Furthermore, this development process
allows a distinction between the development of functional applications
and underlying embedded software and hardware. A chart of the whole
development methodology is depicted in Figure 1.1 while the layered
architecture of ECU software can be seen in Figure 1.2.

Modularization and Virtual Functional Bus

An important feature of AUTOSAR is the modular design of software
components. Due to the model driven approach, functional components
and their interconnections can be designed on a logical level. This
allows a top-down development for system architecture; starting from
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Figure 1.2: AUTOSAR ECU software architecture [23]

requirements and features, over realization by software components, to
actual deployment on hardware units.

Automotive features often require communication between software
components throughout the car. During the system configuration pro-
cess, such communication requirements are modeled and specified.
From the perspective of an application developer, all communication
with other SWCs is handled by the Virtual Functional Bus (VFB). This
abstract interface defines the exchange of messages with other applica-
tions. At this level of abstraction, it is irrelevant if the communicating
software components are executed on the same ECU or connected via
bus systems and gateways.
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Figure 1.3: AUTOSAR basic approach [23]

The benefits of modular software components and an abstract com-
munication model are manifold. Firstly, software components can be
deployed and executed on various ECUs without altering the application
source code. This leads to higher flexibility for the system architecture.
Secondly, functional applications can be re-used on other hardware plat-
forms and other vehicle series. Therefore, the testing effort is reduced
and more robust software can be delivered at lower development costs.
Thirdly, applications from various suppliers can be integrated on the
same ECU. This revolutionizes the current development process where
the combination of ECU and embedded firmware is usually provided by
the same supplier. An overview of this approach is given in Figure 1.3.
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1.3 Motivation

Due to the changes in automotive design methods, new paradigms and
circumstances influence the automotive EE architecture. This affects all
hierarchy levels, from ECU software development to network topology
design.

1.3.1 New Design Paradigms

Automotive network topologies and distributed functions have been
established historically. The partition of networks and assignment of
functions to ECUs was based on best practices. Changes to this com-
position were difficult to impose as suppliers also had their portfolio
optimized for these architectures.

This is not the case anymore as initiatives like AUTOSAR impacted
several elements of the design of electronic architectures:

• Functional software is not necessarily bound to be executed on a
specific ECU
• The design of a logical system-wide architecture between software

components is possible
• Mapping functional software onto different ECUs influences net-

work communication requirements
• Suppliers can focus on their core competences, e.g. hardware, basic

or functional software
• Code-generation from behavioral modeling languages is feasible

1.3.2 Potential for Optimization

The new design paradigms that have been described lead away from
classical architecture approaches. As pointed out in [17]: “A systematic
top down design was never used. If we would not go in evolutionary
steps but re-design the hardware/software systems in cars from scratch
today, we would certainly come up with a quite different solution.” This
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aspect promises new optimization potential for the system architecture.
Some optimization goals that can be formulated in this area are:

• Omitting ECUs by moving all previously mapped functional soft-
ware to other ECUs
• Reducing weight and length of the cable harness by optimal place-

ment of gateways and topology layout
• Decreasing inter-ECU communication by mapping closely related

software components onto the same ECU
• Automatically exploring design alternatives based on quality met-

rics
• Assisting design engineers by suggesting possible system architec-

tures

In this thesis, the design of automotive network architectures in the
electric/electronic domain is interpreted as a combinatorial optimization
problem. I want to provide a reliable resolution to this problem in order
to support automotive engineers in their architecture design process.
Due to the complexity of distributed electronic features and their het-
erogeneous communication requirements, I want to use evolutionary
computation as an optimization technique.

1.4 Evolutionary Computation

There are several motivations to why the scientific community is in-
terested in evolution and ways of simulating evolutionary processes.
The most important reason for this work is the optimizing behavior of
evolution for complex problems. Other motivations are the development
of machine intelligence, robust adaptation or as a tool to gain more
knowledge of natural evolution processes.

In connection with this thesis, we want to view Evolutionary Computa-
tion (EC) as a subset of stochastic optimization methods. The main usage
is for complex optimization problems where deterministic methods are
not feasible due to one or several of the following reasons:
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• The dimensionality of the search space is too high to be covered in
reasonable time
• Non-linearities in objective functions prevent the calculation of

derivatives and therefore the application of derivative-based deter-
ministic optimization techniques
• The optimization problem contains several local optima (multi-

modal)
• Objectives are distorted by random noise

1.4.1 Basic Terminology

Evolutionary computation methods are inspired by the concept of Neo-
Darwinism, which is a modern interpretation of Charles Darwin’s work
on natural selection [25], extended by principles of genetics to model
mutation and inheritance. According to this concept, the development
of life can be deduced from the processes of reproduction, mutation,
competition and selection. In nature, the evolution of species is a flexible
and creative task with a high degree of parallelism. As engineers, we
want to make use of those characteristics to solve complex problems as
“Darwinian evolution is intrinsically a robust search and optimization
mechanism” [26].

Optimization

In our field, optimization is the search for the best solution to an op-
timization problem from a set of available solution candidates. The
optimization problem maps an outcome for each possible solution can-
didate, which can be seen as a number of decisions. Each decision that
has to be made for a problem represents one dimension in the solution
space. Consequently, a problem that requires n independent decisions
to be made leads to solutions consisting of n decision variables. The set
of all solution candidates is then a n-dimensional search space.

From a mathematical point of view, an optimization problem is defined
as the minimization of an objective function or cost function f : Rn → R
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in the following form: min( f (x)) with x ∈ Rn being a n-dimensional
decision vector or solution within the search space Rn.

Most publications throughout literature deal with minimization prob-
lems (e.g. minimum cost or weight). However, without loss of generality,
an objective function given as maximization problem (e.g. maximise
facility productivity) can be transformed into a minimization problem
by stating fmin(x) = − fmax(x).

Depending on the problem, decision variables can be subject to equality
and inequality constraints, which limit the search space to a feasible
region A:

A = {x ∈ Rn | ci(x) ≥ 0 ∀ i ∈ {1, . . . , p} ∧
ci(x) = 0 ∀ i ∈ {p + 1, . . . , q}}

(1.1)

The goal of the optimization is to find the global optimum f ∗ with
solution vector x∗ such that:

∀x ∈ A : f ∗ = f (x∗) ≤ f (x) (1.2)

For some problems one might not only be interested in the global opti-
mal solution but also in other satisfactory solutions. Such multimodal
problems include a set of local optima f ′ in an ε-neighborhood Nε

around x′:

f (x′) ≤ f (x) ∀x ∈ Nε(x′) (1.3)
Nε(x′) = {x ∈ A | 0 < ‖x− x′‖ < ε} (1.4)

Further, some optimization problems might have more than one and
most likely contradicting optimization goals and therefore more than one
fitness function. This leads us to the field of Multi Objective Evolutionary
Algorithms (MOEA, subsection 1.4.6).
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Evolutionary Methods

In order to mimic an evolutionary process on a computer and apply it to
an optimization problem, several abstraction steps have to be taken.

First, the optimization problem has to be formulated in a way that it
may be processed by a computer. This involves the representation of
a solution candidate x in a computable format. Such a representation
might be a set of variables that directly encode decisions for the opti-
mization problem (phenotype). However, some evolutionary algorithms
like genetic algorithms use binary representations as simplified search
space for inheritable information. This simplification (genotype) cannot
be directly applied to the fitness function as it only represents a building
plan for the actual decision variables. A genotype-phenotype decoding
or mapping is then performed to evaluate the quality of the proposed
solution.

Following genetic terminology, the entity of all decision variables of one
solution is called an individual or chromosome. A set of individuals
is then known as a population. Further, each decision variable in a
chromosome is called a gene and the actual value of this variable is an
allele. Usually, the chromosome initialization is done with random values
but problem-specific knowledge might also be utilized if available.

To realize competition within a population and ultimately reach an
optimization goal, a quality function has to be defined. Based on this
function, fitness values can be assigned to competing solutions and a
selection mechanism will choose promising individuals for reproduction
and mutation (survival of the fittest).

These basic steps of a generic evolutionary algorithm are stated in algo-
rithm 1, with nomenclature taken from [27, 28]. It is an iterative process
where an offspring population is generated from parent individuals
using crossover and random mutation. The most fit individuals are then
selected to form the next parent population. One iteration of this process
is called a generation.
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Algorithm 1 Basic Evolutionary Algorithm
1: t := 0;
2: Generate initial population P(t)
3: Evaluate fitness for each individual in P(t)
4: repeat
5: Create offspring population P′(t) from P(t) using variation opera-

tors
6: Evaluate fitness for P′(t)
7: Select individuals for next generation P(t + 1)
8: t := t+1;
9: until Stop condition is met

1.4.2 History

First efforts to utilize evolutionary theories for optimization problems
can be dated back to 1957 [29] with other influencing works a few years
later [30], [31]. A more detailed review of the early approaches can be
found in [32]. However, the publications received little attention as the
success of the proposed methods was greatly dependent on available
computer platforms and calculating power. It took another 15 years of
computer development for three new approaches to emerge:

• Evolution Strategies (ES) by Rechenberg [33] and Schwefel [34] in
Berlin, Germany
• Genetic Algorithms (GA) by Holland [35] and Goldberg [36] in

Ann Arbor, Michigan
• Evolutionary Programming (EP) by Fogel [37, 38] in San Diego,

California

While all 3 paradigms try to emulate natural evolution in some way,
they differ in the usage of crossover and mutation operators as well as
encoding of solutions.
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Evolution Strategies

One of the first prominent applications of evolution strategies was the
design of a two-phase nozzle [39] with the result depicted in Figure 1.4
and described in [40]:

The perhaps optimal, at least unexpectedly good and so far best-
known shape of the nozzle was counterintuitively strange, and
it took a while, until the one-component two-phase supersonic
flow phenomena far from thermodynamic equilibrium, involved in
achieving such good result, were understood.

Figure 1.4: Starting solution and final nozzle shape optimized by evolutionary
strategies3

Evolution strategies use a vector of n real-valued genes as representation
to optimize fitness functions of the form:

f : Rn → R (1.5)

The primary operation is mutation, which is realized by adding a ran-
dom value to each entry of the vector. This value has a Gaussian distribu-
tion with mean value of zero and variable standard deviation σ, which
is an indicator for the mutation strength. In its basic form, evolutionary
strategies create only one offspring from one parent using mutation,
which is known as the (1+1)-ES. If the created child has a superior fitness
value over the parent, it will replace it and act as a new parent in the
next generation (truncation).

3Source: http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/
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When keeping track of the recent successful and unsuccessful mutations,
one can use their relation to each other as a guiding function to adjust
the mutation strength. This was observed very early on [41] and became
known as the “One-fifth success rule” [42]. It states that the success rate
of an ES should be around 1/5. If the success rate is higher then the
search is too local and therefore σ should be increased. On the other
hand, if the success rate is lower than 1/5 then the mutation strength
should be decreased as better solutions are more likely to be found near
the current best. This self-adaptive behavior is a very powerful strength
of ES.

Another important aspect of ES is the selection strategy and population
size. As stated before, the basic (1+1)-ES creates one offspring from one
parent and selects the best of those two solutions. The first algorithm
to introduce a population was the “(µ+1)- or steady-state ES”[40]. Here,
one offspring is usually created from one of µ parents. All parents
are equally likely to be chosen for reproduction while other strategies
might prefer individuals with a high level of fitness. Finally, the least fit
solution from all parents and offspring is removed from the population
and the next generation starts again with µ parents.

The next logical step was the creation of more than one offspring per
generation which leads us to the (µ+λ)-ES, where λ offspring are cre-
ated from µ parents. Again, the best individuals from all parents and
offspring solutions are selected for the next generation. This is also
known as an elitist technique when superior parents can outlast the
offspring. In contrast to this, the (µ,λ)-ES only selects µ parents from
the produced offspring; even if some parents might have a better fitness
value. According to [40] and [43], the comma selection is the preferred
method for unbounded search spaces while the elitist selection variant
should be used for discrete optimization problems with limited search
space. Further, elitist selection tends to converge into local optima which
makes the comma selection better suited for multimodal optimization
and changing environments or quality functions.

Another motivation for multimembered ES was the improvement of self-
adaptation. Instead of one global mutation strength σ, each individual
in the population inherited a distinct step width σi for each gene from
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its parent solutions using recombination. In other words, the ES adapted
the mutation strength for each variable or dimension in the search
space separately. Further techniques like the (µ/ρ+λ)-ES define a mating
pool where ρ parents are selected for reproduction. Since then, a lot
of research has been done on optimal values for ρ, µ and λ as well as
different selection schemes [44, 45].

Genetic Algorithms

In contrast to evolution strategies, genetic algorithms were designed to
use a genotypic binary representation instead of real-value variables.
This representation is usually a bit string with defined length l and the
according optimization problem is in the form of:

f : {0, 1}l → R (1.6)

The genotype form is especially suitable for combinatorial problems
consisting of discrete on/off decisions. For continuous parameter opti-
mization with decision vectors x ∈ Rn, such an approach is not feasible.
Therefore, it is common to split the bit string into n segments and decode
each segment with an according integer representation [27]. This is a
very basic and common genotype-phenotype mapping. All variation
operations in genetic algorithms are performed on the genotype while
fitness evaluations are calculated using the decoded phenotype. Further,
GAs always use a population of several chromosomes compared to the
early two-membered approaches in ES.

The reason for the string representation lies in the schemata theorem
[46]. This theorem states that subsets of successful bit combinations have
a higher probability of surviving through recombination and mutation
for several generations. In other words, “Highly fit, short-defining-length
schemata (we call them building blocks) are propagated generation to
generation by giving exponentially increasing samples to the observed
best;”[36].
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The selection of reproduction candidates is done with respect to the
fitness of the corresponding phenotypes which is also known as roulette
wheel selection. Consider a genotype-phenotype mapping function h :
{0, 1}l → Rn and a resulting fitness value fi = f (xi) = f (h(gi)) where
xi is the real-valued phenotype and gi the according binary genotype of
one individual. Each individual in the population P with the size of s
can be selected for reproduction with the probability:

pi =
fi

s
∑

j=1
f j

(1.7)

Caution must be taken when working with high fitness values and small
relative differences within the population. The roulette wheel selection
would choose between the individuals with nearly equal probability [26].
Scaling functions or ranking of individual fitness values can be applied
to solve such problems.

The main variation operator in genetic algorithms is crossover. This is in
contrast to evolution strategies where mutation is the main operation.
The first implementation was the single point crossover, where the bit
string of two parent chromosomes g1 and g2 is cut off at the same
random location x with g1, g2 ∈ {0, 1}l and 0 ≤ x ≤ l. Two offspring
chromosomes are created by merging the first part of g1 with the last
part of g2 and vice versa (see section 1.4.4). Other crossover techniques
are two-point crossover where the bit string is cut into three parts and
uniform crossover [47] where each bit is chosen randomly from one of
the parent chromosomes.

Evolutionary Programming

The goal of evolutionary programming was to develop artificial intel-
ligence using simulated evolution. Intelligence is defined here as “(1)
to predict one’s environment, coupled with (2) a translation of the pre-
dictions into a suitable response in light of the given goal” [48]. In the
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first applications, finite state machines were evolved to predict the next
symbol from a sequence based on previous symbols.

Evolutionary programming differs from genetic algorithms in aspects of
encoding and reproduction. Typically, the encoding is always directly
related to the optimization problem (e.g. finite state machines). This
differs from standard GAs, where a genotype-phenotype mapping is
performed to link a binary representation to the real-valued problem
description. Further, the mutation operator works similarly to ES, with
Gaussian distributed changes for each decision variable.

Despite their individual development, the differences between EP and
ES are not so obvious. For instance, the mutation operator is the same
for both techniques. However, EP prefers a stochastic selection for new
populations compared to the strongly deterministic and elitist method
used in evolution strategies. The stochastic selection used to form a
new population from current parents and offspring is realized by a
tournament function. In the simplest case, 2 solutions from the union
of parent and offspring sets are picked at random. Their fitness values
are compared and the better solution is copied into the next generation.
Further, EP considers solutions as species and therefore typically does
not implement a recombination or crossover operator. On the other hand,
ES treats solutions as a population of individuals where specific traits of
several parents can be found in offspring individuals.

Further Development

According to [49], the three techniques were applied separately to each
other until the 1990s, which is surprising given the obvious similar-
ities and roots in Darwinian evolution. In 1993, the first journal on
Evolutionary Computation [50] was published, stating that the arrival
of the digital computer finally made the applicability of evolutionary
algorithms feasible. Also the term Evolutionary Computation became a
collective title for all previously mentioned techniques.
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Today, the distinctions between those three techniques are very blurry
or non-existent. Modern, hybrid algorithms often use different charac-
teristics from all approaches.

1.4.3 Encodings

Evolutionary Algorithms can use a variety of encodings to represent
the optimization decisions in a computable form. Usually, the engineer
prefers an encoding scheme that reflects the most important properties of
the problem to be solved. The most common schemes are listed below:

Binary

A string of binary values is the preferred method for genetic algorithms.
It is also used for combinatorial optimization problems, that require a
sequence of discrete on/off decisions. An example for such problems
according to the typology of [51] would be the Single Knapsack Problem
(see section 1.4.8).

Integer

Using a set of integer values is the preferred method for problems
where the solution reflects discrete, countable decisions. An example
would be the Cutting-Stock Problem [52]. Very often, such integer values
are encoded into binary strings when using genetic algorithms. This
genotype-phenotype mapping can use standard binary coded decimals
(BCD) or Gray code. The advantages of Gray code are more homogenous
changes when applying mutation operators and transitions. For example
the transition between the values 7 and 8 (0111BCD → 1000BCD equals
0100Gray → 1100Gray) can be done using only one bit flip. This feature is
also known as reduced Hamming cliff.
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Continuous

Continuous encodings are the standard representation in evolution
strategies. They are used for any kind of problem consisting of real-
value objective functions. When applying evolutionary algorithms, it is
virtually mandatory to restrict the search space from Rn to a smaller
region by defining upper and lower bounds for each decision variable.

Permutation

Permutations are primarily used for combinatorial optimization. De-
pending on the problem, we distinguish two kinds of permutation.

Permutations without Repetition use a fixed set of values for which the
order of those values represents the decision. A popular example is the
Traveling Salesman Problem (TSP, section 1.4.8) where a number of cities
have to be visited in the shortest possible way without visiting any city
twice. Given n cities, the possible solution space equals n!. In the special
case where only k out of n cities have to be visited, the resulting solution
space reduces to n!

(n−k)! .

Permutations with Repetition are used, for example, in the task assignment
problem. A number of n tasks have to be executed by k processor cores.
The permutation variable is a vector of the length n and each entry
equals a processor assignment {1 . . . k}. The solution space is nk.

1.4.4 Operators

As stated in the beginning, Neo-Darwinism relies on the processes of
reproduction, mutation, competition and selection. In evolutionary algo-
rithms, these processes are implemented by specific operators: crossover,
mutation and selection. Competition can be seen as the fight over re-
sources represented by limited population sizes. It is performed either
intrinsically through the selection operator or as part of the population
handling mechanism in the evolutionary algorithm. The implementation
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of mutation and crossover is highly dependent on the chosen repre-
sentation while selection operators reflect the overall strategy of the
evolutionary algorithm used. A lot of research has been done into each
of these operators and this work can only scratch the surface by pointing
out the most used implementations. More detailed information can be
found for example in [53].

Crossover

The goal of the crossover operator is to produce offspring individuals
reflecting some qualities of their parents to achieve overall higher fitness
ratings. The most basic implementation is the single point crossover,
depicted in Figure 1.5. This operator works for all decision variables

0 1 0 1 1 0 0 1 1 0

0 0 1 0 1 1 1 0 1 1

Parent 1:

Parent 2:

0 1 0 1 1 0 1 0 1 1

0 0 1 0 1 1 0 1 1 0

Offspring 1:

Offspring 2:

Random Crossover Point

Figure 1.5: Single point crossover

based on strings of values. However, when using permutation as repre-
sentation technique, repair heuristics have to be applied to ensure valid
offspring permutations. The most prominent example is the Partial-
Mapped Crossover (PMX) [54].

Mutation

This operator alters individuals by randomly perturbing their decision
variables. Due to this randomly induced new information, the operator
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can explore areas that would not be reached using only crossover opera-
tors. Again, the simplest method can be found for binary representations,
where one or more randomly chosen bits in the string are inverted. For
permutation encodings, swapping two bit positions offers a very fast
and simple method for mutation. Adding (0,σ)-Gaussian distributed
random values to real-valued decision variables is the standard mutation
method for evolution strategies. Mutation strength can be controlled by
adapting σ.

Selection

This operator determines which individuals from a current population
are allowed to reproduce and form the next generation in an evolution-
ary algorithm. To induce competition, the selection is usually determined
by fitness values of current solutions. This can be done deterministically,
allowing only the best individuals to form the new generation as in Evo-
lution Strategies. However, in multimodal or otherwise rugged objective
functions, a deterministic selection procedure might lead to premature
convergence on a local optimum. Therefore, probabilistic selection oper-
ators might reject a superior individual over another solution to extend
the search out of such local optimal regions. The most common and
simplest methods are roulette wheel and tournament selection.

1.4.5 Exploration vs. Exploitation

Optimization Algorithms in complex fitness landscapes need to find a
balance between exploiting a good, local area and exploring the rest of
the objective space in order to find even better solutions. In Evolution-
ary Computation, every operator can influence this behavior. Usually,
mutation is used for exploration purposes while crossover improves
individuals within a set of local solutions. As stated in [55], “Mutation
serves to create random diversity in the population, while crossover
serves as an accelerator that promotes emergent behavior from com-
ponents”. One has to note however, that both operators are strongly
dependent on their implementation, used representation and effective
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utilization. Therefore, it is also possible, for example, to examine local
optima using only slight mutations of individuals represented in Gray
encoding.

For selection operators, the feature describing explorative or exploitative
behavior is known as selective pressure or selection intensity. Selective
pressure[56, 57] examines the takeover time, meaning the number of
repeated applications of the selection operator required, until the best
solution of an initial population would occupy every slot in this popula-
tion. A short takeover time equals a high selective pressure and would
lead to faster convergence. Vice versa, a long takeover time corresponds
to an explorative behavior. Another idea is to measure the average fitness
of a population before and after selection as done in [58]. This fitness dif-
ferential is then divided by the mean variance of the population fitness
to obtain a dimension-less selection intensity measure.

1.4.6 Multiobjective Optimization

In a lot of real-world optimization problems, conflicting goals need
to be satisfied. Such goals could be, for example, quality vs. cost for
a product or transmission reliability vs. speed for a communication
network. Countless other examples could be found but they all share the
same attribute of a negative correlation between objective functions. This
means, that increasing the quality of one objective leads to a degradation
of one or more objectives. Given these characteristics, we can conclude
that multiobjective optimization problems do not contain a single ideal
solution. We can however provide a set of possible good solutions, from
which a decision maker can pick the most suitable one.

A very good and in-depth introduction to this topic can be found in [59]
while the following section only introduces the basic notations which
are necessary for this thesis.
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Pareto Dominance

The goal of multiobjective optimization is to find a set of solutions that
are superior with respect to the underlying objective functions. This
attribute, better known as Pareto optimality, implies that each solution
in the optimized set outperforms or dominates all other solutions in a
unique way. Mathematically, the definition of Pareto dominance is as
follows:

Given an optimization problem with k minimization objectives:

f(x) = [ f1(x), f2(x), . . . , fk(x)]T (1.8)

a solution xa is said to dominate another solution xb when xa is at least
equally good as xb in all objectives and better in at least one objective:

∀i ∈ {1, . . . , k} : fi(xa) ≤ fi(xb) and
∃i ∈ {1, . . . , k} : fi(xa) < fi(xb)

denoted4as : xa ≺ xb

(1.9)

Example

We assume a 2-objective optimization problem with five possible solu-
tions {xa, . . . , xe} and their corresponding fitness values {a, . . . , e} =
f(xa, . . . , xe) given in Table 1.2. Plotting those solutions leads to the 2-

a b c d e
f1 2 2 1 4 5
f2 2 3 4 3 1

Table 1.2: Resulting fitness values for the example multiobjective problem

dimensional representation in objective space as shown in Figure 1.6.

4The symbols ≺≺ and � are also common to indicate strong and weak Pareto
dominance, e.g. used in [60]
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Using the definition of Pareto dominance, it can be seen that solutions
b and d are clearly inferior to solution a. Further, solutions c and e are
not better or worse than a. We therefore say, that solutions a, c and e are
Pareto optimal, meaning that there is no known solution in the feasible
decision space which dominates them. The union of all nondominated
solutions in decision space is then called the Pareto optimal set P∗ and
the representation in objective space is known as the Pareto front PF∗. In
our example, the Pareto set consists of the decision variables xa, xc and xe
with the corresponding Pareto front a, c and e in objective space. The
grayed area in Figure 1.6 indicates the part of objective space dominated
by our three Pareto optimal solutions.

P∗ ={x ∈ A|¬∃x′ ∈ A with f(x′) ≺ f(x)}
PF∗ ={f(x)|x ∈ P∗}

(1.10)

Figure 1.6: Plot of Pareto optimal solutions and dominated objective space

Performance Metrics

The goal of multiobjective optimization algorithms is to find a set of
solutions PFknown, which approximates the - usually unknown - Pareto
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optimal front PFtrue of the problem. In comparison to single objective
optimization, the performance of multiobjective optimization algorithms
can be measured according to several characteristics:

• Efficiency in terms of computational effort required by the algo-
rithm for each generation. Complex fitness assignment and ranking
techniques can significantly slow an algorithm down, especially
for higher-dimensional optimization problems
• Efficiency in terms of required function evaluations
• Scalability of the algorithm onto larger decision spaces and objec-

tive dimensions
• Convergence of the resulting population towards PFtrue

• Divergence as a measure of how well the resulting populations
are distributed among the front and how well the corner areas of
PFtrue are explored

Several performance metrics have been proposed to measure these char-
acteristics and are used to compare different algorithms. Some of them
require knowledge of PFtrue, which is generally only known for bench-
mark problems. If performance metrics for real-world applications are
required, one method is to do several independent runs of an algorithm
and use the resulting global Pareto front of all runs as a substitute.
Another method is to search the whole decision space although this
becomes infeasible for large optimization problems.

In this work, I want to point out three metrics for multiobjective opti-
mization algorithms: Hypervolume [61], (Inverse) Generational Distance
[62] and ε-Indicator [61].

The Hypervolume [61] is probably the best-known performance indica-
tor for multiobjective optimization. It represents the volume of objective
space dominated by a Pareto front with respect to some arbitrary ref-
erence point. Choosing this reference point is a critical decision when
implementing the Hypervolume indicator [63]. Methods of choice are
the worst objective point of a solution set, the nadir point [64] or the
extreme objective values of PFtrue. The disadvantage of this indicator
is a high computational complexity when calculating the hypervolume
for many dimensions. However, there are efficient Monte-Carlo based
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sampling methods to estimate the Hypervolume for many-objective
optimization [65].

Let us assume a k-dimensional objective space Z ∈ Rk
+ and a reference

point r ∈ Rk
+ which is dominated by all solutions of PFknown. In an

adaptation from [66], the hypervolume indicator for a Pareto front A
is defined as an attainment function αA(z) and an integral over the
objective space bounded by r:

αA(z) :=

{
1 if ∃a ∈ A : a ≺ z
0 else

IH(A, r) :=
∫ r1,...,rk

0,...,0
αA(z)dz

(1.11)

An example plot of the Hypervolume indicator for 2-dimensional objec-
tive spaces can be seen in Figure 1.7, where the Pareto front A consists
of 4 objective vectors and the reference point is chosen at [5.5, 4.5]. The
gray area represents the Hypervolume between each point in A and the
reference point.

Figure 1.7: Example hypervolume for 2-dimensional objective space

Another metric often used is the Generational Distance indicator [62].
This indicator measures the average distance from a Pareto front A to
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PFtrue in objective space. The definition is adapted from [62]:

GD =
1
|A| ×

√√√√ |A|∑
i=1

d2
i (1.12)

|A| represents the number of objective vectors in the known Pareto front
A and di is the euclidean distance from point ai ∈ A to the nearest
point in PFtrue. A GD of zero means that each point in A lies exactly
on a point in PFtrue. While this metric reflects the convergence behavior
of an evolutionary algorithm very well, one obvious drawback is that
it provides no information about the distribution of A on PFtrue. As
an example, the Pareto front in Figure 1.8 would result in a Genera-
tional Distance value of zero although large portions of PFtrue were left
unexplored. To overcome this drawback, the metric was extended to

f1

f2

0 1 2 3 4 5 6
0

1

2

3

4

5

PFtrue

PFknown

Figure 1.8: Example for poor divergence of PFknown

the Inverse Generational Distance (IGD) [67], measuring the distance
between each point in PFtrue and the nearest solution in PFknown. Hence,
n = |PFtrue| and di is the euclidean distance between a point pi inPFtrue

and the nearest point in PFknown.

IGD =
1
n
×
√

n

∑
i=1

d2
i (1.13)
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The third metric I want to discuss is the additive ε-Indicator [61]. It
defines a distance in objective space that lies between two approximation
sets or one approximation set and PFtrue. The definition of the ε-indicator
relies on the notation of ε-dominance [68] that goes as follows:

Consider a k-dimensional, strictly positive objective space Z ∈ Rk
+. A

point z1 ∈ Rk
+ is said to ε-dominate another point z2 iff each of the

objective values in z1 dominate the corresponding objective values in z2
plus ε ≥ 0. In case of a minimization problem we denote5:

z1 ≺ε z2 := zi
1 ≺ (zi

2 + ε) , ∀i ∈ {1, . . . , k} (1.14)

The ε-Indicator Iε(A, B) is then the smallest ε, that has to be added to a
Pareto front B, in order for A to dominate all solutions in B. The smaller
the value of the ε-indicator, the closer the distance between the two
approximation sets.

Iε(A, B) := min
ε∈R+

{∀b ∈ B ∃a ∈ A : a ≺ε b} (1.15)

In this work, we only use the additive ε-indicator. However, there also
exists a multiplicative implementation where ε-dominance is defined as
in Equation 1.14 but with . . . zi

1 ≺ (zi
2 × ε) . . . .

Algorithms

Multiobjective optimization has been an active field of research over
the last two decades. Since the first algorithms were proposed in the
mid-1980s [69], a vast amount of conferences and journals have emerged.
Moreover, countless multiobjective algorithms have been published6 and
tested on benchmark problems.

5The definition in [61] uses other relation operators for pareto dominance. However,
this work uses a notation consistent with [60]

6See a distribution of publications per year at http://delta.cs.cinvestav.mx/
~ccoello/EMOO/EMOOstatistics.html
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As stated before, the main goal of multiobjective algorithms is to find a
good approximation PFknown of the true Pareto front PFtrue for a mul-
tiobjective problem. Proposed algorithms mainly differ in their usage
of variation operators, their representation technique and, most impor-
tantly, in their selection strategy for reproduction. Most algorithms use
dominance-based selection, ranking individuals which dominate most
other individuals in objective space. These techniques are most often
accompanied by some kind of density estimation such as niching, to
spread the resulting points evenly on the Pareto front.

One famous representative is the ’Nondominated Sorting Genetic Al-
gorithm II’ (NSGA-II) [70]. For each individual in a current population,
the algorithm defines a rank based on the the level of nonN-domination.
Niching is implemented by adding a crowding distance for each indi-
vidual. Parent solutions for the next generation are then selected by
domination rank and crowding distance to ensure convergence toward
PFtrue while exploring the fitness landscape. According to [60], this is
currently the most used MOEA in comparisons.

Another very prominent dominance-based MOEA is the ’Strength Pareto
Evolutionary Algorithm 2’ (SPEA2) [71]. In contrast to NSGA-II, it uses
an external archive to store nondominated individuals during search.
The fitness assignment for reproduction considers the number of domi-
nated solutions as well as the number of solutions that dominate any
individual. It achieves diversity using an advanced density estimation
technique and archive truncation.

While those dominance-based algorithms perform very well for 2- and
3-objective problems, increasing the number of objectives leads to signif-
icant deterioration [72, 73]. The main reason for this is that the number
of nondominated solutions, even in random samples, increases with the
number of dimensions. Therefore, selection pressure towards PFtrue de-
creases. In scientific literature, a problem is considered ’many-objective’
if it features 4 to 20 objectives [74]. Several techniques have been pro-
posed to improve the scalability of MOEAs onto many-objective prob-
lems. One proposal is to use indicator based evolutionary algorithms
(IBEA) [75] and calculate the contribution of each solution to a qual-
ity indicator such as Hypervolume for example [76]. Individuals, that

40



1.4 Evolutionary Computation

contribute a larger volume are preferred in the selection for the next
generation.

Another approach that performs exceptionally well for many-objective
optimization is the multiobjective evolutionary algorithm based on de-
composition, MOEA/D [77]. It transforms a multiobjective problem
into a set of single objective sub-problems using weighted aggregation
of objective functions. Each sub-problem is handled as an individual
and can share information with neighboring sub-problems. The weight
vectors can be set a-priori or adjusted during the optimization using an
adaptive strategy [78].

1.4.7 Problem Complexity

The computational complexity of a decision problem is defined by
complexity classes. This classification depends on how fast a problem
can be solved on a Turing machine as a function of the input size n.
Decision problems that can be solved using a deterministic algorithm
within an polynomial time O(nk), are considered as tractable. If the
run time is limited by a exponential function O(kn), it is considered
as intractable and can only be solved for small instances of n in a
reasonable computation time. An example for such run times can be
seen in Table 1.3.

polynomial, tractable exponential, intractable

n O(n) O(n log(n2)) O(n3) O(2n) O(nn) O(n!)

10 10 20 1000 1024 3.6× 106 1010

120 120 499 1.4× 106 1.3× 1036 ∼ 10198 ∼ 10249

150 150 653 3.4× 106 1.4× 1045 ∼ 10262 ??

1000 1000 6× 103 109 ∼ 10301 ?? ??

5000 5000 3.7× 104 1.3× 1011 ?? ?? ??

Table 1.3: Example run times for polynomial and exponential complexity
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Complexity classes are only specified for decision problems having a
result ∈ {0, 1} or {Yes/No}. It is however easy to model an optimization
problem as a decision problem by asking whether or not a possible
solution s is the best solution for a given problem.

Class P

A decision problem belongs to the class P if and only if there exists an
algorithm for a deterministic Turing machine that can solve the problem
within a polynomial run time. The class name P denotes ”‘deterministic
polynomial-time”’ and a deterministic touring machine is identified by
always producing the same output given a particular input sequence.

Class NP

The ”‘nondeterministic, polynomial-time”’ class consists of decision
problems which can be solved on a nondeterministic touring machine
in polynomial time. Such a machine is only a theoretical construct and
can be thought of as an all knowing oracle that guides the algorithm
towards the correct solution. The verification of a solution can however
be computed on a deterministic Turing machine in polynomial time.

Classes NP-complete and NP-hard

Decision problems can be transformed into other decision problems of
equal or higher complexity. For example, the traveling salesman problem
(section 1.4.8) can be stated as a quadratic assignment problem by using
two assumptions:

1. Cities are represented by locations.
2. The flow between two consecutive facilities fi and fi+1 is one and

zero to all other facilities.

42



1.4 Evolutionary Computation

This transformation is called polynomial reduction. A problem C is said
to be NP-complete (NPC) if it is in NP and reducible to any other prob-
lem L ∈ NP. Since NP only contains decision problems, a optimization
problem cannot be NP-complete.

A problem H is said to be NP-hard if at least one problem exists in NP
that can be reduced to H. Finding a polynomial algorithm to solve H
would also imply that each problem in L ∈ NP that can be be reduced
to H is also solvable by this algorithm in polynomial time.

A Millennium Problem

It is easy to prove that each problem in P is also in class NP such that
P ⊆ NP. However, it is still unknown whether P is only a subset of NP
or P = NP. This is one of the seven unsolved millennium problems
stated, for example, in [79]. Consequences of an answer to this question
would be the following:

• If P = NP then problems in NP would also be solvable in polyno-
mial time by a deterministic Turing machine.
• As many applications e.g. in cryptography rely on the high com-

plexity of mathematical problems, P = NP would mean that many
modern encryption methods are at least in theory breakable within
polynomial complexity.
• However, P = NP does not state anything about the computational

complexity of NP-hard problems
• If P 6= NP, NP-hard problems would not be solvable in polynomial

time by a deterministic Turing machine.

1.4.8 Standard Combinatorial Problems

This section introduces some well-known combinatorial optimization
problems. Due to their usually discrete encoding, high complexity and
rugged fitness landscapes, they represent a classic application for evolu-
tionary algorithms.
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Traveling Salesman Problem

Due to the simple and intuitive description, the traveling salesman
problem (TSP) is maybe the best known optimization problem. It is
defined by a set of locations (cities) and the distance between each pair
of them. The problem is to find the shortest possible path between each
location. The path optimization problem (Find the shortest route) is
NP-hard while the corresponding decision problem (Is a given route the
shortest one?) is NP-complete.

Several variants of the TSP exist with problem-specific constraints:

The standard TSP represents cities as coordinates in a 2- or 3-dimensional
space and assumes euclidean distances between them. The most impor-
tant implication of this model is, that the shortest route cannot visit a
city twice due to the triangular inequality.

The symmetric TSP models distances as undirected cost functions. In
contrast to that, an asymmetric TSP considers different costs for the
route i and j compared to the route j to i. This can be used to model
one-way streets and effectively doubles the search space.

Several agents are cooperating in the multiple traveling salesman prob-
lem (mTSP) [80], where each city has to be visited once by one of m
individuals.

The time dependent variant (TDTSP) [81] considers different costs for
each route depending on the respective position on the tour. A further
increase in complexity is represented by the dynamic TSP [82] where
even cities can appear and disappear dependent on the current time.
These are one of the hardest to solve generalizations of the TSP.

Knapsack / Bin-Packing Problem

Packing problems model the filling process of containers of given sizes
with items of given volume and value. Goals could be to minimize the
amount of containers needed or to maximize the packed value for a
given number of containers. In the special case of only one container, the
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problem is known as a knapsack problem. Applications range from clas-
sical packing problems over task scheduling in multiprocessor systems
to mapping functions onto blocks in ’Field Programmable Gate Array’
(FPGA) design.

Without significant constraints, packing problems are known to be NP-
hard. A methodical typology of cutting and packing problems has been
proposed in [83] and further refined in [51].

Quadratic Assignment Problem

The quadratic assignment problem (QAP) was first introduced in 1957
[84] and represents a facility location optimization. Given a set of n
facilities and n locations, the problem is defined by two matrices A and
B of size n× n. The entry ai,j represents the spacial distance between
location i and j while bi,j is a measure for the required product flow
between the facilities i and j. The goal is to find a mapping of facilities
onto locations, usually encoded as bijective permutation π : n → n in
such a way as to minimize the cost function:

f =
n

∑
i=1

n

∑
j=1

ai,j × bπ(i),π(j) (1.16)

The search space is defined by all possible permutations of {1...n}, which
equals n! combinations. The QAP has been proven to be NP-hard in [85]
and due to the exponential search space increase, instances with more
than 30 locations and facilities are considered as hard to solve, even with
modern computer architectures [86].
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2 Automotive Network
Optimization

This chapter explores the use case of automotive network optimization
which led to the development of jNetOpt. Building on the motivation
from the previous chapter, I want to analyze general requirements for
the successful application of optimization methods in an automotive
setting. This will be followed by a formal problem definition based on
well-known combinatorial problems. Given those environmental aspects,
a top-down description and corresponding rationale of the automotive
network optimization tool jNetOpt will be presented. Finally, I will
compare this approach to other related optimization techniques found
in relevant literature.

2.1 Requirements Analysis

Before designing jNetOpt, several requirements were defined to assure
the acceptance of the optimization process in an automotive design
environment. These requirements can be subdivided into three topics
regarding process integration, versatility and robustness of the optimiza-
tion tool.

2.1.1 Process Integration

Each automotive manufacturer and supplier company follows a pre-
ferred development process and supporting software toolchain. Network
design and optimization represents one step within this global electronic
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architecture process. Therefore, jNetOpt has to be seen as one component
of this toolchain. Consequently, it is imperative to provide generic inter-
faces that allow a seamless integration of jNetOpt into an established
development platform (Figure 2.1).

Figure 2.1: Integration of network optimization in E/E architecture development pro-
cess

For this thesis, the development tool PREEVision [87] was chosen as a
reference platform. It is a piece of software used for the model based
development of automotive E/E architectures. Further, it supports the
integration of custom modules due to the open-source Eclipse [88]
platform and Java as the common programming language.

Integrating our optimization process into this environment requires
defined interfaces. The artifact InputObjects contains all the information
necessary for the design and optimization of an in-vehicle network. We
define those objects as follows:
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• A list of AUTOSAR-based atomic software components which have
to be deployed onto hardware nodes within the car
• The corresponding communication requirements between those

software components
• A set of available hardware platforms for code-execution
• A list of usable bus systems

Based on these objects, jNetOpt can explore and optimize application
mapping and network topology variants. We expect at least one but
usually several proposed architectures as a result of this exploration.
As some quality preferences cannot be modeled with reasonable effort,
it is the responsibility of the E/E design engineers to further evaluate
those solutions. A final network topology can then be chosen from the
suggested variants and the standard E/E architecture process continues
with the optimized network.

2.1.2 Versatility

Each OEM has different preferences when it comes to the level of detail
in E/E modeling. In some cases, this is also true for different product
lines within the OEM’s portfolio. A highly detailed model requires a
lot of effort but enables a clean top-down development. On the other
hand, modeling just the essential aspects and developing everything
else in a bottom-up approach might lead to a faster time to market. A
balance has to be found for each car model that depends on, among other
things, target price and production volume. Therefore, the optimization
framework needs to be adaptable towards different levels of detailism.

In the present form, this adaption is realized by the definition of op-
timization goals. The better a project is modeled in the development
process, the more information can be used to state quality functions. This
reflects the detailism of the underlying E/E model. Therefore, it is also
necessary to define optimization goals based on the current project and
the optimization framework needs to have a clean separation between
objective evaluation and optimization.
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2.1.3 Robustness

The optimization framework is intended to be used by automotive
engineers. Detailed knowledge of optimization processes based on evo-
lutionary computation is not expected. Therefore, all parameters related
to the optimization behavior need to be encapsulated. Self-adaption of
optimization parameters within reasonable bounds is required to ensure
a robust optimization for varying problem instances. As the optimization
objectives are also prone to adaptation, the framework has to be able to
handle problem instances of variable dimensionality.

2.2 Problem Definition

In this section I will propose a general definition of the network archi-
tecture problem based on combinatorial problems. This formalization
will point out potential synergy effects, where algebraic techniques and
structures can be applied to automotive design space exploration. Along
with several other authors, I also propose to break the process down
into a mapping and topology optimization phase.

2.2.1 Mapping Optimization

The goal of this phase is to find a feasible mapping for all functional
components on a set of distributed hardware units. In the first place, we
consider a set of N ECUs and a given distance matrix D of the dimension
[N × N]R+ where dij corresponds to the spacial distance between ECU
i and j. Further, we consider a set of C software components and a
bandwidth requirement matrix B = [C × C]R+ where bij refers to an
abstract communication requirement between software components
i and j. Note that entries in the main diagonal of both matrices are
zero and they are symmetrical because dij = dji ∀(i, j) ∈ N and bij =
bji ∀(i, j) ∈ C. In other words, the model is simplified by stating that the
direction of communication is not relevant for the network architecture.
Finally, we will model installation costs when mapping a software
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component onto an ECU in a matrix E = [C, N]R+ . Here, it is also
possible to define mapping constraints by setting installation costs to
eij = ∞ for infeasible mappings.

Our goal is to find a mapping function m : C → N. This function is
not injective as several software components can be mapped onto the
same hardware node. It is also not surjective as some nodes might not
be utilized at all.

In order to minimize the communication effort within the car, we define
a quadratic assignment problem (QAP) [89]:

min
m:C→N

C

∑
i=1

(
C

∑
j=i

bij × dm(i)m(j)) + ei m(i) (2.1)

Let us further consider a vector for required computational resources
RR = [C× 1]R+ for each software component and two vectors for pro-
vided computational resources RP = [N × 1]R+ and monetary prices
PECU = [N × 1]R+ for each ECU. According to the typology in [51], we
define a “Multiple Bin-Size Bin Packing Problem” where the bins are
provided resources on ECUs and the items to be packed are required
computational resources of software components. In order to minimize
the set of ECUs used A ⊆ N and therefore maximize the utilization, we
define the problem as follows:

min
m:C→N

∑
i∈A

pECU
i

where A = {i ∈ N ∧ (∃j ∈ C | m(j) = i)}
subject to rP

i ≥ ∑
j∈C|m(j)=i

rR
j , ∀i ∈ N

(2.2)

2.2.2 Topology Optimization

After obtaining feasible mapping solutions, we redefine N as the set of
all currently used ECUs and D as the distance matrix for every ECU in

51



2 Automotive Network Optimization

N. Further, B shall represent the communication requirements between
all software components mapped onto those ECUs. Unused ECUs are
omitted from further optimization efforts. The topology optimization
can now be defined as a bi-objective partitioning problem given the
graph G = (N, D):

Find a topology T = [N × k]B that partitions G into up to k clusters or
sub-networks G′ = (N′, D′) where tij = 1 if and only if ECU i is part
of cluster j. Only ECUs capable of acting as gateways NGW ⊆ N can be
connected to two or more clusters.

The first objective is to minimize the cumulative cable length of each
cluster by calculating the minimum spanning trees:

min
T

k

∑
i=1

MST(G′i)

with G′i = (N′i , D′i)
where N′i = {j ∈ N | tji = 1}

subject to
k

∑
i=1

tji

{
≥ 1 ∀j ∈ NGW

= 1 ∀j ∈ {N \ NGW}

(2.3)

This equation forces the topology T : G → {G′1 . . . G′k} to consist of
local sub-networks G′ where N′i equals the set of all nodes connected to
sub-network i. The constraint ensures that all ECUs are connected to at
least one network.

Secondly, we want to minimize the cross-cluster communication which
equals all signals which have to be transmitted through a gateway.
In order to do this, we first define all ECUs directly connected to an
arbitrary ECU i ∈ N as:

Nc(i) = {a ∈ N |(tib = 1) ∧
(tab = 1) ∧
(1 ≤ b ≤ k) }

(2.4)
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Note that Nc(i) can span over multiple sub-networks if node i acts as
a gateway. The minimization goal of cross-cluster communication can
now be written as:

min
T

N

∑
i=1

N

∑
j=i

bij |Nc(i) 6= Nc(j)

subject to Nc(i) ∩ Nc(j) 6= 0 ∀(i, j) ∈ N | bij 6= 0

(2.5)

The constraint in Equation 2.5 guarantees that an overlap between two
clusters exists if a communication requirement between connected ECUs
also exists. This assures that both clusters are connected by a gateway
and each communication requirement can be fulfilled.

Both objectives would lead to the result of one global network. When
looking at Equation 2.3, the minimum spanning tree of G is always
shorter than the sum of connected sub-graphs G′:

MST(G) ≤
k

∑
i=1

MST(G′i) (2.6)

The only exception would be if G consists of a sub-network which is (a)
locally separate and (b) has no communication requirements from/to the
rest of the car. However, such a distinct sub-network is highly unlikely
in a modern and interconnected vehicle. In Equation 2.5 it is obvious
that a network consisting of only one large cluster does not require any
gateways and therefore also no cross-cluster communication.

However, realizing the network topology as one large network would
require a very fast and expensive bus system like FlexRay or Ethernet. It
is obvious that such a network is overdimensioned for most applications
within the car. Consequently, we need to model bus utilization and costs
as additional optimization goals to ensure more realistic results.

Let us assume that a specific bus technology (CAN, FlexRay, Ethernet,...)
is assigned to each cluster in T : G → {G′1 . . . G′k}. Similar to the mapping
optimization phase, we define a [k× 1] vector BWT, containing the tar-
geted communication bandwidth for each cluster based on the assigned
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network technology. Further, connecting an ECU to a bus is modeled by
a bus coupler with the associated price in the [k× 1]-dimensional vector
P. The according minimization goals for bus utilization and costs of bus
systems can now be stated as:

min
T

k

∑
i=1

αi
|BWT

i − BWR
i |

BWT
i

∣∣∣∣BWR
i 6= 0 (2.7)

Where BWT
i equals the targeted bandwidth consumption for the sub-

network i and BWR
i the accumulated communication requirements for

the cluster. The arbitrary αi can be used to prioritize the utilization of a
specific bus system. The actual costs of connecting ECUs to bus systems
are finally defined by:

min
T
‖T × P‖ (2.8)

2.2.3 Discussion

The proposed general problem formulation contains a quadratic as-
signment problem, a bin-packing problem and a graph partitioning
problem with four goals. All these problems are known to be NP-hard
[90]. Equations 2.1 and 2.2 might have dissimilar minima due to a high
relocation effort of components and the layout of available computa-
tional resources. Further, it is clear that equations 2.3 and 2.5 prefer one
high-speed bus system while equations 2.7 and 2.8 are leading towards
a fine-grained topology of many low-cost networks. Therefore, we can
expect a Pareto-set of solutions for each phase.

2.3 Challenges

The general formulation assumes abstract input parameters which are
hard to determine in an ongoing design process. However, the quality of
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optimized solutions depends greatly on exact models and predictions.
In this chapter, I want to point out some of those parameters and why it
is challenging to find appropriate models for them.

2.3.1 Communication Requirements

Current automotive design processes create a database and schedule
of all signals and related timing constraints for each bus system. These
schedules are partly distributed to suppliers for integrating their compo-
nents into the global communication table. Therefore, alterations of bus
topologies or message schedules require a huge amount of communica-
tion between all involved parties, which makes them very cost intensive.
Furthermore, CAN, being the de-facto standard bus system in vehicles,
is by definition incapable of real-time communication except for the
highest priority frame. While estimations of worst-case transmission
times can be modeled very exactly for cyclic messages [91, 3], event
triggered message bursts are still hard to model and can lead to missed
deadlines for signals with lower priority. Therefore, a lot of effort is put
into timing verification for current bus networks, which would need to
be repeated for topology optimizations. The challenges here are:

• To provide all relevant timing information at an appropriate level
of detail at the point of design
• Estimate effective bus utilization for event and time triggered

communications
• Find a flexible design process to allow topology changes without

inducing extensive costs for timing verification

2.3.2 Computation Resources

Automotive software is usually optimized for a specific processing plat-
form to reduce code size, required CPU time and therefore cost per
produced unit [18]. With the possibility of relocating software compo-
nents onto different ECUs, abstract resource metrics for heterogeneous
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platforms need to be developed. While memory requirements for dif-
ferent CPU architectures vary only slightly, timing verification is a very
complex task. To efficiently apply design space exploration techniques,
an estimation of the amount of software that can be executed on a
specific ECU has to be done. AUTOSAR does not yet provide such ab-
straction levels and relies on consistent timing analysis and verification
[92]. However, a detailed model of task execution is usually not available
during the phase of network architecture. Approximating it for each pos-
sible variant would be too time consuming to efficiently explore design
alternatives using evolutionary algorithms. Therefore, an appropriate
level of abstraction needs to be defined for this task, considering single-
and also multi-core processors.

2.3.3 Wiring Harness

Very few design optimizations consider construction details and con-
straints with regards to the wiring harness. However, the resulting wire
lengths are greatly dependent on the layout of cable tunnels and avail-
able drills in the bulkhead between engine and passenger compartment.
In [93], I use the Manhattan distance as simplification, determining cable
lengths as the sum of their coordinate distances in a 3-dimensional Carte-
sian coordinate system. The author of [94] goes even further and models
wiring as a stub from a component to the nearest common cable ducts
which feature a H-form due to production requirements. Additional
EMC-related constraints are forthcoming due to high voltage wiring
in electric and hybrid vehicles. For exact estimations of resulting cable
lengths and weight, these aspects have to be considered during topology
optimization.

2.3.4 Reliability

The proposed formalization does not consider communication reliability
as an objective as in some previously analyzed publications [95, 96].
We assume that the reliability of automotive networks mainly depends
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on the quality of the hardware used (physical layer, connectors, EMC
measures,...). Further, functional safety requirements are directly de-
rived from respective standards (e.g. ISO 26262). Both need to satisfy
a minimum standard aspired by the OEM, which reflects the quality
image of the brand. Therefore, the realization of reliability can be seen
as a limiting constraint when choosing hardware components, or as
a logical input parameter for system architecture. From our point of
view, this is not an objective of mapping and topology optimization
and relevant safety-critical deployments can be realized by according
mapping constraints.

2.4 Our Approach

After analyzing requirements and the formal optimization environment,
I now want to introduce the main contribution of this thesis, the op-
timization framework jNetOpt. I will start by giving a rationale as to
why evolutionary computation was chosen as a means of optimizing
automotive networks. This is followed by a more detailed discussion of
important features unique to this work.

2.4.1 Rationale

Search Space

As stated in the previous discussion, the formal problem consists of
several NP-hard optimization problems. The search space is primar-
ily defined by two decision variables representing the optimization
phases:

• The mapping function m : C → N which maps software compo-
nents onto ECUs.
• The topology assignment T : G → {G′1 . . . G′k} which clusters the

logical architecture into sub-networks.
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Depending on the preferred modeling effort, let us assume there are
between 100 and several thousand defined software components and 50
to 100 ECUs in a modern vehicle.

For the mapping optimization phase, we can approximate the lower
bound of the search space as a Permutation with repetition by mapping
100 software components onto 50 ECUs. According to section 1.4.3,
this equals 10050 possible permutations without considering mapping
constraints.

The topology assignment can be interpreted as k-way graph partitioning
problem [97], assigning N ECUs to k clusters. Considering a topology of
5 bus networks and omitting gateway capabilities, the search space can
be approximated as kN or 550 for our example.

The combination of those two phases leads again to an additional in-
crease of the search dimensions. In conclusion, it is safe to say that the
search space of the mentioned problems is too large to be efficiently
solved by exact optimization methods. This is one reason for the appli-
cation of stochastic methods.

Constraints

The previous discussion does not include constraining aspects for opti-
mization decisions. While they have the beneficial behavior of reducing
the search space, constraints also disrupt homogenous areas and induce
non-linearities and sharp edges in the search landscape. This can even
lead to several disjunct areas of feasible solutions, which cannot be
explored using standard deterministic methods.

However, given the right encoding and constraint handling method,
evolutionary algorithms are known to perform well on such constrained
problems [98]. Their stochastic nature can find disjunct areas not reach-
able by deterministic methods. This is another argument for the utiliza-
tion of evolutionary computation.
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Multiobjective and Multimodal Aspects

The formal problem definition consists of a total of 6 minimization
goals which result in a 6-dimensional objective space. It has also been
shown in the previous section, that most objectives have contradicting
goals. Therefore, we can assume a Pareto front of feasible solutions as
optimization result. Population-based algorithms are a popular approach
to handle such problems with scalable effort.

Further, we can expect several local optima for each dimension in ob-
jective space. Again, evolutionary multiobjective optimization has been
proven to work well for such problems, especially without a prior knowl-
edge of the Pareto front (e.g. [99]). This is the third reason and concludes
our rationale for the use of evolutionary computation.

2.4.2 Problem-Specific Encoding

In contrast to existing approaches, we want to employ sophisticated
decision encodings based on the actual problems. This means to choose
the encoding in such a way that problem-specific knowledge can be
utilized during optimization. The advantages of this encoding can be
the avoidance of constraint violations or inducing preferences during
stochastic processes. A disadvantage is of course the limited applicability
of existing mutation and crossover operators, which rely on standard
genotypic representations.

2.4.3 Feasibility Preservation

Our optimization problem is represented by a highly constrained search
space. The performance of evolutionary computation can therefore suffer
under a high amount of infeasible solutions being generated during the
search process.

Typical remedies are the introduction of penalty functions to reflect
constraint violations and to avoid discarding infeasible individuals.
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Another approach is the introduction of repair algorithms to find feasible
alternatives within a small neighborhood in the search space. While such
and other methods are proven to perform well, the idea of avoiding
infeasible solutions by design is pursued in this work. I have presented
and published these ideas in more detail in [100].

2.4.4 Advanced Operators

Due to the custom encoding techniques, we were able to develop guid-
ance mechanisms for mutation operators. This feature lead to improve-
ments in the convergence behavior of our optimization. The impact of
guided mutation operators was further studied in [93, 101].

The basic idea is to avoid the degradation of fitness during the mutation
of an individual. This is done by splitting the mutation operation into
two steps. First, the random mutation is performed as usual. Then,
a refining step is conducted, aiming to overlay the stochastic process
towards an improvement of a specific fitness quality. This can also be
done in multiobjective optimization using one mutation operator for
each objective dimension.

Care must be taken not to exaggerate the usage of such guidance func-
tions because the explorative behavior of optimization algorithms can
deteriorate. Other studies regarding guided evolutionary operators can
be found e.g. in [102, 103, 104].

2.4.5 Enhancements for Multiobjective Optimization

Our framework consists of two phases of optimization. The resulting
set of solutions from the mapping optimization phase represents the
initial population of the topology counterpart. This structure inspired the
generalization of the approach towards many-objective optimization. In
[105], I presented a methodology to improve the optimization behavior
of well-known MOEAs for a large number of objectives.
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This was done by decomposing a many-objective problem into 2- or
3-dimensional sub-problems, where common MOEAs are known to
perform well. Optimizing the decomposed problems using a fracture
of the overall computation budget allowed the algorithm to explore the
search space more efficiently. After this exploration phase, all results
were accumulated and represented the initial population of the many-
objective optimization algorithm.

2.5 Other Approaches

When analyzing different optimization approaches, it is useful to classify
them by their goals. We distinguish between techniques for:

1. mapping functional software on a fixed network of hardware nodes
(mapping optimization)

2. finding optimal bus topologies for a fixed set of communication
requirements (topology optimization)

3. optimizing both tasks either consecutively or in parallel (mapping
and topology optimization)

In the following sections we will analyze selected methods using this
form of classification. Concluding, we will provide a short summary of
the number of optimization objectives, used heuristics and modeling
approaches in tables 2.1, 2.2 and 2.3 respectively.

2.5.1 Mapping Optimization

Due to the advance of AUTOSAR, the process of mapping or deploying
functional components onto a distributed network of hardware nodes
is an emerging issue for automotive designers. Whilst this task is very
well known in computer science, the stringent real-time requirements
and various embedded hardware platforms within the car usually result
in a very constrained optimization problem.
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In [94], the author describes the artifacts to be mapped as “an aggre-
gation of software and hardware components”[94]. This view assumes,
that hardware components like sensors or actuators can also be mapped
onto a set of possible ECUs. The author models abstract resources like
RAM/ROM, CPU time, I/O Pins or available space on a printed cir-
cuit board, which are provided by an ECU and consumed by mapped
components. Further, objective functions for aspects such as weight and
cost of the wiring harness, estimated bus load and energy consumption
are also defined. The bus load estimation assumes prior knowledge of
all transmitted signals including their length, update rate and dead-
line. It calculates transmission time and prioritization for each signal
depending on the bus used and optimal frame utilization. Further, a
supplier complexity objective attempts to model the integration costs of
components on a specific ECU. The author developed an evolutionary
algorithm (EA) and an ant colony algorithm (ACO) and extended the
process by including variant optimization.

In comparison to that, the authors of [106] model the problem as bi-
objective, with communication overhead and data transmission reliability
as quality metrics. Accordingly, they assume more detailed knowledge of
network bandwidth and channel reliability as input parameters. Further,
their definition of a component is restricted only to software with fixed
hardware topology and locations of sensors and actuators. In order to
avoid the congregation of all software components onto one ECU, a con-
straining memory model is defined. Further implemented constraints are
the stringent localization of software components to a specific hardware
node and the co-localization of 2 software components to different hosts.
The rationale for these constraints are safety-related functions which are
designed to continue operating even if one ECU fails. Similar to [94], the
authors also implemented an ACO and compared the performance to a
multi-objective genetic algorithm (MOGA).
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Table 2.1: Summary of mapping optimizations
Ref. Obj. Heuristic Models
[94] 5 EA, ACO Cost, weight, bus load, en-

ergy consumption, supplier
complexity, ECU resources

[106] 2 MOGA, ACO Memory, bandwidth, com-
munication reliability

2.5.2 Topology Optimization

It is common practice for new car developments to re-use earlier network
topologies from previous car series and adapt to new communication de-
mands when needed. This practice lead to the previously mentioned bus
systems dedicated to power train, comfort functions and entertainment,
which are well-established but also very inflexible.

The authors of [107] model the topology optimization as a graph parti-
tioning problem. Input parameters like cycle time and size of messages
are automatically imported from an automotive architecture tool. Fur-
ther, this approach models costs for each bus system and participant
as well as additional gateway costs and communication overheads. The
sum of all these costs is the single objective function in this optimization.
The graph partitioning problem is built with ECUs as nodes and com-
munication requirements as edges. First, it is hierarchically clustered
according to several “nearness functions”[107]. Each cluster represents a
bus system yet the bandwidth utilization of each network might not be
optimal. Therefore, the authors define a bin-packing problem to reach
better bus utilizations. As the number of bus systems in a car is relatively
low, this can be done with an exact dynamic programming approach.
The presented work is the only deterministic optimization approach
without any stochastic extension in this survey. It does not consider
spacial distances between ECUs and resulting wiring costs.

On the contrary, the author of [108] provides a very detailed model
of spacial distances based on a cubical grid throughout the car. It is
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used to determine wiring costs for an Ethernet-based backbone network,
connecting heterogeneous sub-networks. Due to the fixed topology of
Ethernet, further objectives are the number of ports and energy con-
sumption of network switches. Optimal utilization of bus systems is not
a concern in this work as the focus lies on efficiently interconnecting
local networks using the high bandwidth Ethernet backbone. The opti-
mization is done using a genetic algorithm (GA) in combination with
local repair strategies.

Table 2.2: Summary of topology optimizations
Ref. Obj. Heuristic Models

[107] 1 HC + DP Bus-, participant- and
gateway-costs, nearness
functions

[108] 3 GA, local repair 3-D clustering, wiring
costs, port costs, energy
consumption

2.5.3 Mapping and Topology Optimization

The next logical step is to combine both optimization tasks in one
framework.

The optimization approach in [109] models components as functional
software or sensor-/actuator hardware. For each ECU, a set of possible
mounting spaces is assumed while resources such as memory or CPU
speed are chosen according to the mapped components. Therefore, ECU
resources are not considered as constraints to the optimization. The
representation of a possible network is hierarchically structured, where
the higher level represents the assignment of ECUs to bus systems and
the lower level the clustering of components to ECUs. The approach uses
an EA to optimize those two levels as well as the placement of ECUs
in the car. Assisting deterministic functions are used to select proper
bus types, wiring topologies and the placement of gateways. To enhance
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the performance of the EA, problem-specific operators are used for the
variation of solutions. The objectives of optimization are a cost model of
the ECUs/cables used and a metric for ECU complexity, corresponding
to the number of components assigned to each ECU. Due to the structure
of this approach, the tasks of mapping and topology optimization are
done simultaneously.

In contrast to that, the design approach in [110] uses one EA loop for
component mapping and a nested EA loop for topology optimization.
For both algorithms, the very well known SPEA2 was implemented and
assisted by custom repair algorithms. Input parameters are retrieved
from a customized FIBEX format, extended by a detailed model of com-
munication signal properties. The author has identified five optimization
objectives: cost efficiency, reliability, variant management efficiency, testa-
bility and extendability. Each objective is defined by an according metric
or model. In this work as well as in [109], gateways are treated as dis-
tinct hardware units, able to connect two bus systems but not capable of
hosting functional components. Hardware resources such as available
memory or CPU time are not considered in this approach. However, a
detailed verification of schedulability and response time is performed
for each signal and bus system.

Table 2.3: Summary of topology and routing optimizations
Ref. Obj. Heuristic Models

[109] 2 EA ECU costs, mounting
spaces

[110] 5 EA + nested EA Costs, reliability, variant ef-
ficiency, testability, extend-
ability

[111] 1+1 Repeated match-
ing + SA

ECU costs, task installation
cost, wiring stubs

Similarly to [109], the authors of [111] also define three problems for
the network design procedure: component mapping, ECU positioning
and network assignment. The first two tasks are implemented as single
objective optimizations and done consecutively. A cost model for ECUs
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and mapping components onto a specific node is assumed. Further,
computing resources are given for each ECU and handled as constraints
during the optimization. For the ECU positioning problem, a set of
possible installation locations is modeled for each hardware node. The
authors assume a common cable path in the car where the main bus
lines reside. To connect ECUs, stub lines or alterations to this common
cable path have to be added to the wiring harness. When optimizing
ECU placement, the cost of extra wiring can be reduced. Finally, a
network assignment task is conducted which verifies that all communi-
cation signals can be scheduled and routed over the actual bus topology.
This is done by the well-known model used in [91] and assumes prior
knowledge of all messages, cycle times and priorities. Surprisingly, the
optimization of gateways is not mentioned in this work but modeled
as a direct connection between two bus systems without any additional
costs. The authors developed a repeated matching method assisted by
simulated annealing (SA) to optimize the three problems.
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This chapter introduces the implementation of jNetOpt. I will start with
an overview of the principle design patterns and anticipated workflows
of the software. This is followed by a more detailed description of
implemented classes and their usage.

JNetOpt is fully developed in Java under Java Runtime Environment 1.7.
I decided to use two software products as the development toolchain:

• Sparx Enterprise Architect [112] for architecture modeling based
on the ’Unified Modeling Language’ (UML).
• Eclipse [88] as Java editor and environment for execution, debug-

ging and unit tests

When using model driven architecture as a design approach, the devel-
oper is confronted with a manifold of different domain perspectives.
Due to limited resources, I decided to use only a subset of the avail-
able models. Further, I allowed some simplifications while modeling
interactions between elements and model transformations.

Despite those necessary simplifications, the model driven architecture
allowed a very flexible top-down design throughout the development
process. In my opinion, this selective usage of parts of the UML specifi-
cation was very important to achieving a well-structured final software
while keeping design effort within reasonable limits.

3.1 Software Architecture

In the previous chapter, I argued as to why jNetOpt should be easily
integrable in an automotive development toolchain. On the other hand,

67



3 jNetOpt

the software has an experimental character and is also used for scientific
studies. Both use cases utilize the same optimization algorithms but in
different applications. Therefore, I have chosen to apply the ’Model -
View - Controller’ (MVC)[113] design pattern as the main guideline for
the software architecture.

Figure 3.1: The Model-View-Controller design pattern applied in jNetOpt

The focus of this design pattern is a strict encapsulation of the business
logic, the ’Model’. Several execution and visualization variants can be
developed for specific use cases and interact with the same model. In this
work, I developed an experimental environment for scientific studies
and a GUI-based environment with a focus on automotive network
optimization as seen in Figure 3.1.

The ’Model’ component consists of all objects related to optimization. It
is based on the Java-based metaheuristic algorithms framework, called
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jMetal [114]. Several extensions have been implemented to improve the
performance of automotive-related network optimizations.

The optimization can be configured using two different ’Controller’
objects. One is based on the Experiment class in jMetal and uses generic
test networks to evaluate optimization performance under different
algorithm settings. The other one focuses on the automotive use case and
provides a GUI-based representation as well as interfaces for industrial
applications.

The ’View’ objects are realized by statistical evaluation of optimization
performance or as a graphical representation of the resulting networks.

3.1.1 General Workflows

For each use case, a different optimization workflow is provided. As auto-
motive engineer, input objects can be imported via the SimpleExecutionGUI
class. Optimization parameters such as number of total evaluations and
used operators can be set here. The result of one optimization can then
be examined in the NetworkVisualizationFrame or passed on to the
automotive architecture toolchain.

The second workflow concerns performance evaluations using different
algorithms, operators and settings. Here, the focus is laid on statistical
analysis of several independent optimization runs.

Figure 3.2 depicts the general optimization workflow for both use cases.
It further shows some relevant classes which will be discussed in the
following sections.

jNetOpt supports the optimization of software mapping and network
topology as discussed in section 2.2. This is realized using two kinds of
optimization approaches:

1. A one-phase approach which optimizes either one of the optimiza-
tion tasks or a combination of both in one iteration.

2. The separation of both tasks into two distinct optimization itera-
tions, here labeled as a two-phase approach.
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Figure 3.2: The proposed workflows of jNetOpt

Overviews of the one-phase and two-phase optimization approaches
that have been referred to are provided in Figure 3.3 and Figure 3.4
respectively. These models also trace the optimization tasks through
several MDA-abstraction levels and to the underlying combinatorial
problems defined in section 2.2.

The one-phase approach is especially suitable for topology optimization
of a network with fixed software mapping. It further allows easy bench-
marking of algorithms which is very important for performance studies.
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Figure 3.3: Overview of the one-phase optimization approach

However, the performance of the combined approach is naturally inferior
to comparable two-phase optimizations.

The two-phase optimization utilizes the same algorithms available to the
one-phase counterpart. The difference is that this approach populates the
second algorithm with mapping results from the first optimization.
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Figure 3.4: Overview of the two-phase optimization approach

3.2 Input Objects

Based on the discussion in subsection 2.1.1, the optimization framework
requires input data from the automotive architecture process. This data
describes the network to be optimized as well as constraining boundaries.
jNetOpt uses hierarchical structures to store this data in several classes:

• The NodeDB is a database containing all possible ECUs within the
car. Each ECU is represented by an instance of jNetOpt’s Node

class.
• All bus systems available for optimization are stored in the BusDB

class.
• The logical communication architecture between functions is repre-

sented by the FunctionalDescription class. It consists of several
AtomicSoftwareComponents which reflect the AUTOSAR modeling
approach. Communication requirements (signals) to other software
components are mapped as ports in the class CommPort. To support
multicast communication, an instance of CommPort can also have
more than one receiver.

All these elements are summarized in the class InputNetwork. This class
and all related classes are serializeable using standard Java methods.
This is an easy way to store and recall network configurations or provide

72



3.2 Input Objects

an interface to other Java-based tools. A class diagram of all relations as
well as some example test network instances is shown in Figure 3.5.

Figure 3.5: Class diagram of InputNetwork and example test networks

3.2.1 Proof of Concept

During the development of jNetOpt, a ’Proof of Concept’ of the interface
between the optimization framework and PREEVision as an automotive
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architecture tool was required. This PoC was realized by extracting
all communication requirements from an actual automotive project as
comma separated values (.csv) file. The layout for each modeled signal
was as follows:

SendingECUName;NameOfSWC;NameOfSignal;SignalBandwidth;

ReceivingSWC1;ReceivingSWC2;....;ReceivingSWCn

jNetOpt provides a file parser to create a functional description out of
this data. The PoC was done using a network with fixed mappings of
SWCs onto ECUs. However, extending this process to allow the import
of a set of feasible sending ECUs for each software component is a
straightforward task.

3.3 Encodings

The jNetOpt representation of a complete network consists of four
elements.

1. A global instance of InputNetwork containing all software compo-
nents, logical communication requirements and ECUs

2. The mapping of software components onto ECUs represented by
the variable ApplicationMatrix

3. Connections of ECUs to bus systems stored in the variable BusMatrix
4. In case of multiple possible routes for each signal, routing paths

are stored in an instance of CommunicationMatrix

The instance of InputNetwork is considered as a static input parameter.
The other three objects are problem specific encodings and unique for
each candidate solution. Therefore, they represent the optimization
variables and are subject to variation using mutation and crossover
operators during optimization.
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Figure 3.6: An example of mapping of software components onto ECUs

3.3.1 ApplicationMatrix

The class ApplicationMatrix stores the mapping of functional and gate-
way software components onto ECUs. By accessing the FunctionalDescription
and NodeDB, the class can also provide methods to evaluate memory uti-
lization of nodes and functional distances between mapped SWCs. The
encoding is implemented as an array with the length of numberOfSWCs.
Each entry represents the currently mapped ECU of a software compo-
nent. An example using seven software components and five ECUs is
shown in Figure 3.6.

3.3.2 BusMatrix

The BusMatrix encodes connectivity between bus systems and ECUs
which equals the topology of a candidate network. This is done in a
binary matrix encompassing all available ECUs and bus networks. A
logical ’1’ means that the corresponding ECU is connected to the bus
system as demonstrated in Figure 3.7.
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Figure 3.7: An example of connections of ECUs and bus networks

3.3.3 CommunicationMatrix

This variable maps the routing of signals if more than one connection
from source to destination is possible. This is the case when two ECUs
are connected by more than one bus system or gateway. In this case, the
bus utilization of one solution depends on the selected routes. Further,
this class monitors the utilization of bus connections for each node.
Signal transmissions via gateways are stored as instances of the class
SignalRoute.

3.4 Operators

The optimization algorithms use several kinds of operators to manipulate
candidate solutions. I want to classify three groups:

• The variation operators crossover and mutation for software map-
ping and topology alterations
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• Selection operators to pick candidate solutions for the next genera-
tion of the evolutionary algorithm
• Network-specific operators for routing signal paths over the net-

work and cleaning up unused connections

Due to the problem-specific encoding used in this work, custom oper-
ators for crossover and mutation had to be developed. Although, the
selection operators only use fitness values of evaluated solutions. There-
fore, the proposed mechanisms for the respective algorithms could be
applied here. The network-specific signal routing is required to finalize
and validate a new candidate solution. In order to provide a better
overview, all operators are introduced by their respective usage in the
optimization process.

3.4.1 Operators for Mapping Optimization

All variations for mapping optimization are performed on the instance
of ApplicationMatrix as seen in Figure 3.8. This is also the only variable
required to evaluate a solution in terms of mapping quality.

jNetOpt provides a mating operator based on the one-point crossover,
which can be applied on two parent solutions to create two offspring
solutions. Provided there are two feasible mappings as parents, the
offspring solutions will also map every software component onto a
feasible node. However, the crossover operation can lead to an over-
utilization if too many software components are mapped onto the same
node.

Apart from the standard random mapping mutation operator, jNetOpt
also provides two guided counterparts. The class FuncMappingMutator

alters software mappings with a bias towards a better functional distance.
In a similar way, the MemoryMappingMutator focuses on improving the
memory utilization of nodes. All mutation operators provide a unified
interface and are interchangeable throughout the optimization process.

77



3 jNetOpt

Figure 3.8: Operators relevant to mapping optimization

3.4.2 Operators for Topology Optimization

The topology optimization performs variations on the BusMatrix through
crossover and mutation. Then, a routing algorithm is applied to ensure
that every signal can be transmitted over the candidate network.

The crossover operation is implemented in a two-point fashion using two
solutions called parents A and B. Two bus systems, i.e. two ’rows’ in the
BusMatrix, are then chosen randomly. The offspring solution A is created
by cloning all variables of parent A and replacing all entries between
those two randomly chosen rows in the BusMatrix with corresponding
information from parent B. Offspring B is created in the same fashion
using the mirrored combination of parents.

The resulting offspring solutions then undergo the process of mutation.
Similar to the mapping optimization, the user can again choose between
random mutation and a guided counterpart. Random Mutation is im-
plemented as an probabilistic bit flip operation on the BusMatrix. In the
GuidedBusMutator class, connections between bus systems and nodes
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depend to some degree on the actual bus utilization. This means that
there is a slightly higher chance of disconnecting a node from an already
highly utilized bus system and connect it to a better suited network.
Further, a RandomGatewayMutator class was implemented to alter the
deployment of gateway functionalities within the network.

Based on the new topology, feasible routing paths for each signal are
determined and stored in the CommunicationMatrix. In case no feasible
route can be found or available bus systems are already fully utilized, the
router can also add new connections to the BusMatrix. As a consequence,
the sequence in which signals are picked and routed affects the resulting
communication paths. In this work, we distinguish three cases:

• Signals are routed in the descending order of their required com-
munication bandwidth. This procedure is realized in the ’Largest
Load First’ - LLFRouter class. The behavior is deterministic, which
means that given an identical InputNetwork and BusMatrix, this
router will always produce the same CommunicationMatrix.
• As an extension, the routing sequence itself can be seen as an en-

coded variable and undergoes optimization through evolutionary
methods. This is done in the DefineSequenceRouter in collabo-
ration with a RoutingSequenceMutator. Again, the behavior is
deterministic given identical topologies and routing sequences.
• In contrast to the above cases, a ’Random Sequence Router’ RSRouter

class provides the non-deterministic counterpart to the other rout-
ing operators. Applying this operator onto the same candidate
solution might not always produce the same resulting network
utilization.

After all signals are routed, some connections in the BusMatrix might
not be required at all. Therefore, the candidate solution is trimmed of
all unnecessary connections using the Reducer class. An overview of all
mentioned classes is given in Figure 3.9.
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Figure 3.9: Operators relevant to topology optimization

3.5 Objectives

The evaluation of candidate solutions is done using quality metrics
or objective functions. jNetOpt provides a set of predefined objective
functions for network optimization. It is quite obvious that the quality
of optimized solutions depends on the underlying automotive model
and practicability of chosen objective functions. Further, the degree of
detail in the model that is assumed in this work might not reflect all
aspects of a real-world architecture. Therefore, it is strongly suggested
that for industrial applications objective functions are adapted based on
the actual degree of detail used in the automotive network model.

In the jMetal software architecture, such functions are implemented in
the Problem class. Based on this architecture, jNetOpt provides a special-
ization of this class, called NetworkProblem. This class of problem implies
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that the candidate solutions are of the type NetworkSolutionType and
therefore contain all necessary objects to evaluate a network.

For our purposes, jNetOpt provides three specialized implementations
of the class NetworkProblem:

• A MappingProblem, which only evaluates the deployment of soft-
ware components in terms of functional distance and utilization
of ECUs. This problem is used for the mapping phase of the two-
phase optimization approach. The relevant objectives are node
utilization and functional distance, further explained in [93]
• A corresponding TopologyProblem to evaluate the utilization of

bus systems and monetary costs of wires and bus couplers. The
three objectives refer to the second part of the two-phase approach.
A more detailed description is again found in the corresponding
publication [101].
• Complementary, a combination of both problems to optimize a

network using the one-phase optimization approach. In order
to keep the overall dimensionality of the objective space within
reasonable limits, the cost objectives for wires and bus couplers
are combined in this implementation. Therefore, this problem has
four objectives.

3.6 Algorithms

In accordance with the one- and two-phase optimization approaches de-
scribed in subsection 3.1.1, jNetOpt provides three different algorithms
for network optimization. For all experiments, we used the well known
SPEA2 multiobjective algorithm as a basic framework. The fitness assign-
ment and environmental selection required by this metaheuristic were
inherited from the jMetal implementation. Further, each algorithm was
designed to work with interchangeable operators for crossover, mutation
and routing to allow a further range of experimental opportunities.
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Figure 3.10: Provided implementations of the NetworkProblem class

3.6.1 OnePhaseSPEA2

This is the first implementation of a network optimization heuristic. In
contrast to later approaches, this algorithm optimizes application map-
ping and network topology at the same time. It does this by randomly
selecting one of three variation paths for each offspring created as shown
in Figure 3.11. The flow labels 1/3, 2/3 and 1/2 refer to the probability
of choosing the respective variation path. For the sake of clarity, the
variation process is only depicted for one offspring from the crossover
process.

The paths of variation focus on distinct targets. One path optimizes the
mapping of software components onto ECUs by evolutionary variation
of the ApplicationMatrix. If a new solution outperforms others in
mapping-related objectives, it will be passed on to the next generation.

82



3.6 Algorithms

Figure 3.11: Flow diagram of the OnePhaseSPEA2 heuristic

Another path keeps the current mapping and alters the bus topology.
Again, distinct quality metrics will reveal an improved solution. The
third path does not alter mapping or topology variables. It only applies
a new signal routing on an existing network. Depending on the router
used, this can also include a variation of the routing sequence.

3.6.2 MappingSPEA2

This algorithm is designed to optimize only the software mapping of
a network. Bus variations as well as evaluations regarding topology
qualities are completely omitted as seen in Figure 3.12. Therefore, the
algorithm is also suitable for investigating the effects of guided mapping
mutation operators in detail.
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Figure 3.12: Flow diagram of the MappingSPEA2 heuristic

The result of this algorithm is a set of Pareto-optimal mapping solutions.
In contrast to all other algorithms, those solutions do not represent a
fully functional network and a second phase of topology optimization is
required.

3.6.3 TopologySPEA2

This algorithm can be utilized for two use cases. First, as a standalone
topology optimization for a network of fixed software mappings. The
second case is as subsequent optimization on a set of possible mapping
solutions. Accordingly, the initial set of solutions is composed of one or
many possible software deployments.
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Care must be taken when choosing parent solutions for the crossover
operator. A crossover of different mapping solutions could lead to in-
feasible offspring individuals. Consequently, the implemented operator
checks for equality before performing the mating operation.

Figure 3.13: Flow diagram of the TopologySPEA2 Heuristic

Similarly to the OnePhaseSPEA2, the algorithm performs a mutation
operation on the BusMatrix with the probability of 1/2. Then, all signals
are routed on the resulting bus topology. Mutation and routing operators
are again interchangeable for experimental purposes.

3.7 Graphical User Interface

While the Experiment class in jMetal provides all features for scientific
studies, a graphical user interface for demonstration and automotive test
purposes was also a requirement. According to the MVC design pattern,
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two Java-based frames were developed for controlling optimization
parameters and visualization of resulting networks.

3.7.1 Controller

Figure 3.14: Graphical user interface for execution of the optimization

Figure 3.14 shows the execution environment of jNetOpt. Input networks
are generated or loaded from external files using the NetworkParser

class. General settings of population sizes and number of total evalua-
tions are assumed equal for all algorithms. After these global settings,
the user can choose between a one-phase and two-phase optimization
approach and the relevant algorithms and problem instances. Optional
parameters such as the kind of mutation and routing operators are also
customizable.
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jNetOpt provides continuous logging capabilities during optimizations.
This information as well as all optimization results are optionally stored
in a separate file after all algorithms are finished.

3.7.2 View

After a successful optimization, the resulting network solutions can be
displayed as shown in Figure 3.15. In the top left list, one solution out of
the Pareto-optimal set of solutions can be chosen for further evaluation.
Below, rudimentary Pareto-diagrams can be displayed. More detailed
information for a selected solution as well as a graphical visualization is
shown on the right hand side.

Additional information can be extracted in two ways. The instances of
ApplicationMapping and CommunicationMatrix can be displayed on a
console environment in Eclipse. Also, each ECU in the graphical network
representation shows additional information about mapped software
components when moving the mouse pointer over the respective ECU.
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Figure 3.15: Graphical user interface of an example network visualization
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4 Experiments and Results

During the development of this thesis, several studies have been per-
formed to support the scientific aspects and design considerations. The
main topics were improvements of the optimization performance due to
guided mutation operators as pointed out in [93, 101]. Further, the sepa-
ration of the presented optimization problem into two phases proved
to be very effective. This work-flow was transformed into a generalized
form and further studied in [105]. In this chapter, I will give a summary
of the experiments performed and the resulting insights.

Evolutionary computation is a stochastic procedure. Therefore, each
optimization run will provide a slightly different result. As a conse-
quence, comparisons between different algorithms and operator setups
require several independent runs for each setup and according statistical
evaluation. It is common practice to publish such evaluations as ’box
plots’ in order to show the distribution of quality indicators over a set of
independently executed experiments.

4.1 Guided Mapping Mutation

The idea of guided mutation was introduced in subsection 2.4.4. The first
realization was the development of two advanced mutation operators
for mapping optimization as shown in subsection 3.4.1. They represent
a counterpart to the standard stochastic mutation operator.

In order to evaluate the performance of these operators, five different
setups were chosen. The first three setups solely utilize one mutation
operator during optimization. They are used to verify the functionality
of the guided operators in comparison to a random mutation. The
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4 Experiments and Results

fourth setup utilizes both guided operators during optimization. For
each evolutionary iteration, i.e. each variation of a candidate solution,
one guided mutation operator is chosen randomly. The operator setup
5 utilizes all three operators in the same fashion. A summary of these
setups is given in Table 4.1.

Table 4.1: Usage of mutation operators in different operator setups [93]

Operator Setup

1 2 3 4 5

Functional Distance Mutation x x x

Node Utilization Mutation x x x

Random Mutation x x

For each setup, the mapping optimization algorithm MappingSPEA2 (sub-
section 3.6.2) was executed for 100 independent runs. The test network
consists of 40 ECUs and 60 software components with varying memory
and communication requirements. Each optimization run was stopped
after 20.000 evaluations. After each run, the objectives functional distance
and node utilization (see MappingProblem, section 3.5) were evaluated.
A subsequent topology and routing optimization was not conducted as
it has no effects on the mapping optimization goals.

For a better visual representation, representative Pareto fronts of each
operator setup are depicted in Figure 4.1. It can be seen that the exclu-
sive usage of either guided mutation operator already outperforms the
random reference. However, the resulting fronts also converge towards
their respective optimization objective and do not cover the whole search
space efficiently. Interchanging the operators, as done in setups 4 and 5,
leads to the overall best results.

Finally, the quality indicators Hypervolume and Epsilon were calculated
for each result. Figure 4.2 shows box plots for these indicators. Setups 2
and 3 are clearly inferior in terms of covered Hypervolume which is not
surprising after reviewing the representative Pareto fronts in Figure 4.1.
But only the ε-Indicator reveals the better distributed solutions of the
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4.1 Guided Mapping Mutation

Figure 4.1: Exemplary Pareto fronts for each mapping optimization setup [93]

combined setups 4 and 5 in comparison to the exclusively used guided
operator in setup 1.

(a) Hypervolume (b) Epsilon

Figure 4.2: Distribution of quality indicators for mapping optimization [93]

Concluding, the experiments have shown that the guidance developed
for mapping mutation operators clearly outperforms random mutation
in every aspect. However, they tend to show a local behavior towards
their respective optimization goals. This can be prevented by interchang-
ing the guided operators as done in setup 4. The difference to setup 5,
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which also utilizes the random mutation operator next to both guided
variants, is not statistically significant. It might be suitable to utilize
random mutation in order to ensure a better explorative behavior of the
algorithm. This is of special importance for constrained and multimodal
optimization problems.

4.2 Guided Topology Mutation and Routing

For the topology optimization phase, jNetOpt provides two mutation
operators and three kinds of routing algorithms as described in subsec-
tion 3.4.2. Next to the random mutation operator, a guided variant is
influenced by the current bus utilization for each bus system individ-
ually. Routing operators are distinguished by the sequence in which
they process the signals to be routed. jNetOpt provides mechanics for a
randomized sequence, routing the signals with the largest bus load first
(LLF) and a defined sequence of signals. This defined sequence is again
subject to mutation during optimization.

Again, the advanced guided mutation process of the BusMatrix is com-
pared to standard randomized mutation. Further, the different routing
algorithms are applied in combination with each mutation strategy. This
leads to 6 different operator setups summarized in Table 4.2. Preliminary
studies have shown that interchanging operators, as done in the previous
experiment, does not yield any improvements which is why this feature
was omitted here.

Table 4.2: Operator setups for topology optimization experiments

Operator Setup

1 2 3 4 5 6

Mutation Operator Random Guided

Router Random LLF Def. Seq. Random LLF Def. Seq

The test network consists of 40 ECUs and 200 signals that need to be
transmitted over up to 8 available bus systems. Each operator setup
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was tested by executing the TopologySPEA2 (subsection 3.6.3) algorithm
for 100 independent runs. Each optimization run was terminated after
20.000 evaluations. For this phase, the mapping of software compo-
nents onto ECUs was set as static. Consequently, the objectives from
TopologyProblem were utilized to calculate quality indicators for each
run.

As in the last experiment, the box plots of Hypervolume and Spread [70]
indicators are plotted in Figure 4.3. The hypervolume indicator clearly
shows that setups 3 and 6, which utilize the defined sequence router,
provide the best performance. This is also confirmed when evaluating the
spread indicator. Overall, only a slight improvement of guided mutation
(setups 4, 5 and 6) can be seen, particularly for the LLFRouter. This
behavior is again indicated when looking at the Inverse Generational
Distance indicator in Figure 4.4.

(a) Hypervolume (b) Spread

Figure 4.3: Distribution of quality indicators for topology optimization

Summarizing, it can be stated that the combination of mutation and
routing strategies has a large influence on the optimization result. The
improvement of guided mutation has the greatest impact when using
the purely deterministic LLFRouter. When adding non-deterministic
elements into the routing process, as seen in the random sequence
router, the guided mutation effect diminishes. However, the best results
where achieved with the defined sequence router. Therefore it can be
deduced that it is beneficial to treat the actual signal routing sequence
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Figure 4.4: IDG indicator for topology optimization

as evolutionary variable and let it evolve in combination with other
topology information stored in the BusMatrix.

4.3 Many-Objective Optimization

The 2-phase optimization approach in jNetOpt features a novelty in
evolutionary computation as the resulting set of solutions from the
mapping optimization represents the initial population of the topology
optimization. Based on this deconstruction, an increased optimization
performance was observed. However, the application of this technique
is limited to the very specific structure of the optimization problem
presented in this thesis.

As stated in subsection 1.4.6, the performance of multiobjective opti-
mization algorithms decreases with the number of objectives. Therefore,
it is desirable to apply the technique used onto other many-objective
applications. In order to utilize the positive effects of problem decom-
position and sequential usage of MOEAs for general optimization, two
questions arise:

• How can the deconstruction technique be applied to uncorrelated
multiobjective problems?
• How are different kinds of evolutionary algorithms affected?
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To generalize this approach, let us assume a k-dimensional, many-
objective optimization problem f(x) separated into a set of 2- or 3-
dimensional sub-problems:

f(x) = [ f1(x), . . . , fk(x)]T

f(x) = {fs1(x), . . . , fsn(x)}
2× n ≤ k ≤ 3× n

(4.1)

As a subsequent step, I propose the optimization of the sub-problems
using ’exploring’ MOEAs. The resulting solutions, representing good ap-
proximations in some areas of the global PFtrue, are then consolidated to
the initial population of the many-objective ’master’ algorithm. This tech-
nique can be applied to any kind of traditional evolutionary algorithm.
For this experiment, four representative MOEAs were chosen:

• NSGAII [70] and SPEA2 [71] representing Pareto-dominance based
EAs
• The hypervolume-indicator based IBEA [76]
• MOEA/D as a state of the art MOEA used in multiobjective opti-

mization [77]

The cooperation between exploring and master algorithms can be im-
plemented in two ways. In both approaches, the optimization of the
first sub-problem is done using a randomly initialized starting popu-
lation. In the ’sequential’ approach, the resulting set of solutions from
the first optimization is used as an initial population for the following
sub-problem. In contrast to that, the ’parallel’ approach begins each
exploring optimization with a randomly initialized population.

After all sub-problems have been optimized, the ’master’ algorithm
is initiated with resulting solutions from each exploring algorithm. In
order to easily distinguish between those two approaches, the prefixes
’S’ and ’P’ have been added to the algorithm under test to indicate the
sequential and parallel method respectively. Further, the flow diagram
for both approaches for an example 4-dimensional problem are depicted
in Figure 4.5.
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Figure 4.5: Workflows for enhanced many-objective optimization [105]

As a benchmark problem, the multiobjective Quadratic Assignment
Problem [115] was chosen. Three instances consisting of 4, 6 and 12
objectives were created using the problem generator from [116]. All
relevant parameters and dimensions of the respective sub-problems are
summarized in Table 4.3.

Table 4.3: Parameters for mQAP benchmark problems [105]

Name 20-4fl-uni 10-6fl-uni 15-12fl-uni
Facilities 20 10 15

Objectives 4 6 12
Subproblems 2 × 2 Obj. 2 × 3 Obj. 4 × 3 Obj.

maxFlow 100
Correlation 0

Seed 23453464

For each evolutionary algorithm under test, the performance of sequen-
tial and parallel approaches was compared to the unaltered variant as
reference. To allow fair comparison, two total evaluation budgets (small
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and large) were chosen for each setup. The corresponding allocation of
evaluations between master and explorer algorithms as well as according
population sizes are given in Table 4.4.

Table 4.4: Population sizes and evaluation budgets of sequential and parallel methods
compared to unaltered reference algorithms [105]

SMOEA/PMOEA Reference

20
-4

fl-
un

i

Population
Size

Explorer: 100
400

Master: 400

Evaluation
Budget

Small
Explorer: 2× 2500

15000
Master: 10000

Large
Explorer: 2× 3000

30000
Master: 24000

10
-6

fl-
un

i

Population
Size

Explorer: 120
500

Master: 500

Evaluation
Budget

Small
Explorer: 2× 2500

15000
Master: 10000

Large
Explorer: 2× 10000

75000
Master: 55000

15
-1

2fl
-u

ni

Population
Size

Explorer: 120
1200

Master: 1200

Evaluation
Budget

Small
Explorer: 4× 5000

120000
Master: 100000

Large
Explorer: 4× 15000

300000
Master: 240000

The quality indicators Hypervolume and Epsilon were calculated for
each result of the 4- and 6-dimensional problem instances. The corre-
sponding box plots for 100 independent runs are depicted in Figure 4.6
and Figure 4.7.

When looking at the 4-objective problem, the improvements for SPEA
and NSGAII are evident in all cases. The highest increase in performance
is achieved when applying the sequential method, labeled SSPEA2
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and SNSGAII respectively. Also, IBEA does profit from the method
when only using a small evaluation budget. However, this advantage
diminishes when a higher number of total evaluations is allowed. The
MOEA/D algorithm does not significantly benefit from any kind of
sequential usage in this study.
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Figure 4.6: Resulting quality indicators for the 4-objective problem [105]

When applying the proposed methods onto the 6-dimensional prob-
lem instance, the results vary. The Pareto-based SPEA2 and especially
NSGAII algorithms still benefit from the sequential approach. But as
the number of objectives increases, their overall performance is clearly
inferior to the modern MOEA/D and IBEA heuristics. However, as
pointed out in the corresponding research paper [105], the evaluations of
the exploring algorithms are much faster due to the lower-dimensional
sub-problems. Therefore, the execution time of sequential and parallel
optimization methods is reduced by 10 to 20% compared to the unaltered
algorithms.

The computational complexity of the 12-dimensional problem instance
required some changes to the experiment setup. First, the execution time
of SPEA2 and the hypervolume-based IBEA were too high to finish the
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Figure 4.7: Resulting quality indicators for the 6-objective problem [105]

experiment in a reasonable time. Therefore, the comparison was only
made between NSGAII and MOEA/D with a reduced number of only 30
independent runs. Further, the calculation of the hypervolume indicator
for all resulting Pareto fronts was also impracticable. The much faster to
calculate Inverted Generation Distance was used as a surrogate.

The results are shown in Figure 4.8. The expected superior performance
of MOEA/D over NSGAII is obvious. Nevertheless, NSGAII does still
benefit from the sequential application of exploring algorithms. The IGD
indicator also reveals a performance increase for sequential and parallel
approaches in combination with MOEA/D. This increase, combined
with a faster execution time of up to 25%, underlines the performance
and applicability of the proposed method for this problem instance.
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Figure 4.8: Resulting quality indicators for the 12-objective problem [105]

4.4 Discussion

In this chapter, the key advantages of jNetOpt have been studied.

First, the effects of mutation operators guided by objective functions
have been demonstrated on the mapping optimization algorithm. Us-
ing a guided mutation operator for each objective results in a higher
convergence towards the respective optimization goal. The negative
effect of premature convergence and poor coverage of the whole Pareto
front can be averted by interchanging the mutation operators during
optimization.

Secondly, the effects of different routing strategies and guided mutation
has been evaluated during topology optimization. Here, the optimiza-
tion structure consists of evolutionary alterations of the bus topology
followed by a routing mechanism for each signal. The key finding is that
guided mutation is best suited when the following routing sequence is
deterministic. Another result is that the best overall routing performance
has been achieved using the defined sequence router. Therefore, it is
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advisable to view the actual routing sequence as part of the evolutionary
variables.

The final improvement was observed when using the two-phase opti-
mization approach in comparison to the inferior one-phase algorithm.
Based on this insight, a general form of this deconstruction has been pro-
posed: Partitioning a many-objective optimization problem into 2- or 3-
dimensional sub-problems. Apply efficient algorithms to optimize those
sub-problems in exploratory phases and merge the resulting solutions
as the initial population of the many-objective master algorithm. Exper-
iments have shown that this method is very suitable for Pareto-based
MOEAs. At higher objective dimensions, the exploratory phased also
improve the performance of the very modern MOEA/D algorithm.
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5 Conclusion

In this thesis, I presented a framework for the optimal architecture of
automotive networks. The main focus is laid upon two tasks:

• The deployment of functional software components onto ECUs.
• Optimal layout of network topologies and gateways.

The motivation for the first task arises mainly from the exponential in-
crease of software functionalities in modern cars. New design paradigms
have to be found to ensure reliable operation especially for safety-related
components in a networked environment. Further, the market demand
for novel electronic features is no longer limited to the premium segment
of vehicles. This induces a massive cost pressure for OEMs and tier-one
suppliers.

One major driving force in this area is the AUTOSAR initiative, pro-
viding new standards in automotive software architecture. Important
aspects of this architecture are the re-usability of software and decou-
pling of functional components from the underlying embedded operat-
ing system and hardware layers. This leads to new degrees of freedom
for system architects as they can now choose the executing hardware
unit for software components more independently. A new potential for
optimization is discovered here in terms of communication requirements
and utilization of ECUs.

The second task deals with topology optimization using state of the
art network technologies. Due to the introduction of hybrid and purely
electric vehicle concepts, the suitability of traditional network designs is
questionable. Further, higher communication bandwidths for applica-
tions like multimedia streaming or driving assistance require communi-
cation over new network technologies such as automotive Ethernet.
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5 Conclusion

For both tasks, an interpretation based on combinatorial problems is
stated. This interpretation is one of several reasons to choose evolution-
ary computation as a suitable heuristic and optimization approach.

In contrast to existing works, this thesis discusses several methods to
improve the optimization process. First, the two tasks were realized in
the framework as two distinct optimization phases. For both phases,
a common representation scheme was developed to efficiently encode
network solutions and given constraints. Additionally, advanced genetic
operators have been introduced for each phase, utilizing the application-
specific encoding to improve the optimization performance.

A concluding step is the generalization of the two-phase approach to
enhance many-objective optimization. This resulted in a hierarchical
optimization approach consisting of several lower-dimensional MOEAs
to explore the search space in certain regions. The results of those ex-
ploring phases represent the initial solution of the master optimization
algorithm. Performance improvements in the field of computationally
intensive many-objective optimization have been shown for four rep-
resentative evolutionary algorithms in terms of convergence and run
time. This technique can be applied to any kind of population-based
metaheuristic.

The software architecture has been constructed using modular design
patterns. This allows an efficient implementation of further extensions
for the network model and interfaces to various automotive tool-chains.
Therefore, the integration of a network optimization step into an existing
automotive design process is feasible. This was also shown in a ’Proof
of Concept’ using the architecture tool PREEVision.

Another important aspect is the clear partitioning between optimization
logic and quality metrics from the automotive industry. Studies and
feedback from the automotive industry have shown that the effort put
into model driven development of EE architectures varies between OEMs,
system suppliers and also different vehicle platforms. Therefore, the
implementation of quality metrics is encapsulated to allow application-
specific levels of detail.
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Finally, the quality of optimization always depends on the quality of the
underlying model. Today, AUTOSAR has reached a level of maturity
and acceptance that allows the efficient model driven development of
software-based features in modern cars. This encourages the application
of optimization in the automotive industry as a solution to the imminent
cost pressure and reliability requirements.
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