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Abstract

In this thesis we discuss the derivation and analysis of boundary element methods
for the simulation of eddy current problems. The eddy current problem leads to a
transmission problem, for which we derive different formulations based on Maxwell’s
equations. The electric field and the magnetic field intensity are both governed by a
second order partial differential equation: the electromagnetic wave equation. In this
thesis we derive boundary integral equations which describe solutions of the electro-
magnetic wave equation. We observe that the standard boundary integral operators
tend to be instable when considering small wave numbers. We deduce an alternative
boundary integral equation and prove its stability, if the wave number tends to zero.
For the eddy current transmission problem with piecewise constant material param-
eters, we derive two different boundary integral formulations, which are based on
the principle of symmetric coupling. In the first formulation the unknowns are given
by traces of the electric field, in the second formulation the unknowns are given by
traces of the magnetic field intensity. Moreover we present a non-symmetric indi-
rect formulation based on the magnetic field intensity. For the discretization of the
boundary integral formulations we introduce suitable boundary element spaces for
the test and ansatz functions. Based on the Galerkin method, we deduce the discrete
versions of the derived boundary integral formulations. We illustrate them by some
numerical examples.
As an application we consider Magnetic Induction Tomography. The corresponding
forward problem leads to an eddy current problem. For this specific eddy current
problem, we derive a reduced formulation and investigate the error between the full
eddy current model and the reduced formulation. We further introduce a bound-
ary element method for the reduced model and present some numerical examples.
Finally, we deal with the inverse problem of Magnetic Induction Tomography. We
formulate the inverse problem as a shape reconstruction problem. We define the
shape functional for the reduced formulation and compute its shape derivative.



Zusammenfassung

Diese Arbeit beschäftigt sich mit der Herleitung und Analysis von Randelementme-
thoden zur Simulation eines Wirbelstromproblems. Das Wirbelstromproblem wird
als Transmissionsproblem modelliert, für welches wir verschiedene Formulierungen
ausgehend von den Maxwellschen Gleichungen herleiten. Die elektrische und magne-
tische Feldstärke erfüllen hierbei eine partielle Differentialgleichung zweiter Ordnung:
die elektromagnetische Wellengleichung. Lösungen der elektromagnetischen Wellen-
gleichung können durch Randintegralgleichungen beschrieben werden. Hierbei be-
obachten wir, dass die Standard-Randintegraloperatoren für die elektromagnetische
Wellengleichung instabil sind, wenn man kleine Wellenzahlen betrachtet. Wir geben
eine alternative Randintegralgleichung an und beweisen, dass diese stabil ist, wenn
man die Wellenzahl gegen Null gehen lässt.
Für das Wirbelstrom-Transmissionsproblem mit stückweise konstanten Materialpa-
rametern leiten wir zwei verschiedene Randintegralformulierungen her, die auf dem
Prinzip der symmetrischen Kopplung beruhen. In der ersten Formulierung sind die
Unbekannten durch Spuren der elektrischen Feldstärke am Rand gegeben, in der zwei-
ten Formulierung sind die Unbekannten durch Spuren der magnetischen Feldstärke
gegeben. Weiters wird eine nicht symmetrische, indirekte Formulierung basierend auf
der magnetischen Feldstärke vorgestellt. Für die Diskretisierung der Randintegral-
formulierungen werden für Ansatz- und Testfunktionen entsprechende Randelemen-
träume eingeführt. Basierend auf der Galerkin Methode werden für die eingeführten
Randintegralformulierungen entsprechende diskrete Formulierungen angegeben und
durch numerische Beispiele illustriert.
Als Anwendung eines Wirbelstromproblems untersuchen wir die Magnetische Induk-
tions Tomographie. Das zugehörige Vorwärtsproblem führt auf ein Wirbelstrompro-
blem. Wir leiten für dieses spezielle Problem eine reduzierte Formulierung her und
untersuchen den Fehler zur Lösung der vollständigen Wirbelstromformulierung. Für
die reduzierte Formulierung wird eine Randelementmethode hergeleitet und nume-
rische Beispiele dazu gezeigt. Zum Schluss beschäftigen wir uns mit dem inversen
Problem der Magnetischen Induktions Tomographie. Wir formulieren das Inverse
Problem als Formoptimierungsproblem, geben das zugehörige Formfunktional für
die reduzierte Formulierung an und berechnen dessen Formableitung.
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1 INTRODUCTION

1.1 Motivation

A conducting object under the influence of a time varying magnetic field produces
electric currents. This fact was observed by Francois Arago (1786-1853) in an experi-
ment, where he discovered that a magnetized needle is driven by a moving conducting
body. The first who found an explanation for this effect was Michael Faraday (1791-
1867), who studied time varying currents and magnetic fields. A similar experiment
was carried out by Jean Bernard Léon Foucault (1819-1868), where a copper plate
was rotated between two magnetic poles. He observed that the magnetic poles slow
down the movement of the plate, like an ’invisible break’. He deduced that due to the
rotation currents are generated in the conducting plate and that the work which is
lost due to the slowdown of the plate transforms to heat inside the conducting body. 1

Nowadays the effects observed by Arago and Foucault are well understood and we
are able to describe them by well elaborated mathematical models. The basis for
these mathematical models are Maxwell’s equations, which are a set of equations,
which describe the origin and interaction of electric and magnetic fields. Numerical
methods for Maxwell’s equations, which have been developed in the past and present
century, make it possible to simulate electrodynamic processes. This enables us to
predict the behavior of electric and magnetic fields in a certain setting, this is im-
portant for many engineering applications.

For the numerical simulation we have various methods at hand, among the most
popular are the finite element method, the finite difference method and the bound-
ary element method. The goal of this thesis is to describe and analyze boundary
element methods for the simulation of eddy current problems.

1Foucault, Léon. Notice sur les travaux, XVII. De la chaleur produite par l’action de l’aimant sur
le corps en mouvement, 1863. The digitalized document is available at http://num-scd-ulp.u-
strasbg.fr:8080/498/.
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2 1 Introduction

1.2 State of the Art

Boundary integral equation methods are well established as a tool for simulations in
electromagnetic engineering. For problems in electrostatics or magnetostatics, where
the governing equation reduces to a potential equation, results about the analysis of
boundary integral equations and boundary element methods are well known.

A first important result concerning the representation of electric and magnetic fields
by boundary potentials in the time harmonic case was derived by Stratton and
Chu [67]. For scattering or eddy current problems important results concerning the
analysis of boundary integral equations go back to J.C. Nédélec [52]. The analysis of
boundary integral equations is based on the definition of appropriate trace spaces on
the boundary. For domains with a smooth boundary results about the appropriate
trace spaces are known for quite long time, for Lipschitz domains the analysis of the
trace spaces has been done quite recently [12, 13, 15].

The simulation of the eddy current problem, i.e. we have given a conducting body
which is exposed to a time harmonic magnetic field, leads to a transmission problem
in the whole space R

3. When using boundary integral equations one can reduce the
transmission problem to a problem on the boundary of the conducting domain pro-
vided the conductivity and permeability is constant inside the conducting domain.
In the engineering literature we can find numerous examples for the use of boundary
integral equation methods to solve the eddy current problem (see e.g. [38,39,74]). A
boundary integral formulation for the eddy current transmission problem based on
the principle of symmetric coupling can be found in [32].

When dealing with practical applications it is important to be able to treat structures
consisting of different materials. In this thesis boundary integral equation formula-
tions are given, with which we are able to cover problems, where different materials
are involved. A theoretic treatment of this case in a slightly different setting can also
be found in [9].

The behaviour of mathematical methods for numerical simulations usually depends
on the parameter range we are using, e.g. if we are dealing with low or high fre-
quency problems. The parameters are also determined by the type of application we
are dealing with, i.e. for the simulation of power transformers the parameter range
is different as when we are considering the simulation of eddy currents in biological
tissues. For small parameters, i.e. conductivity or frequency, the standard boundary
element formulations tend to be instable. For example when the frequency goes to
zero, the electric and the magnetic field decouple. This can cause problems in the
numerical simulation using standard boundary integral equation approaches, which
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is a well known fact in the engineering literature [5,16,42,45,69,73]. We are going to
present a formulation, which is stable when the wave number κ is small and which
is also valid for the case κ = 0.

1.3 Outline of the Thesis

This thesis is organized as follows: In the second chapter we give an introduction
to the modeling of electromagnetic processes using Maxwell’s equations. We derive
the eddy current model from Maxwell’s equations. We will also look at the model
application of Magnetic Induction Tomography (MIT). We derive and analyze two
different mathematical models for the forward problem of Magnetic Induction To-
mography, a reduced model and the full eddy current model.

In the third chapter of the thesis basic results from functional analysis will be given,
which will be needed later on for the analysis of boundary integral equations. We
will also introduce Sobolev spaces in the domain and on the boundary.

In the fourth chapter we turn to boundary integral equations. First we introduce the
representation formula for the solution of a scalar equation of the type

−∆u(x) + κ2u(x) = 0,

and give the basic results on boundary integral operators and equations. These results
are all standard and well known [59, 66], thus we will only give a brief summary.
After this we will come to the main part of the third chapter, which will be devoted
to boundary integral equations for the electromagnetic wave equation, which is an
equation of the type

curl curlU(x) + κ2U(x) = 0.

We will derive a representation formula for solutions of the electromagnetic wave
equation. This representation formula states that the solution in a bounded or an
unbounded domain can be represented by certain surface potentials of boundary
traces of the function. This representation formula is also known as Stratton-Chu
formula. Starting from the representation formula we derive boundary integral equa-
tions for the electromagnetic wave equation. We will refer to the results in [52]. We
summarize the basic results about Steklov-Poincaré operators for the electromagnetic
wave equation.

The fifth chapter is devoted to boundary element formulations for eddy current trans-
mission problems. We consider the eddy current problem in the following setting:
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We have a conducting domain, consisting of different materials and we have a pri-
mary magnetic field, e.g. generated by a coil outside of the conducting domain. We
derive different boundary integral formulations, which are based on different physical
quantities.

To be able to perform simulations, we need to discretize the boundary integral equa-
tions, this topic will be covered in the sixth chapter. We introduce boundary element
spaces, which are used to represent the traces of the electric and magnetic field on a
boundary element mesh. We derive the linear systems resulting from the discretiza-
tion of the boundary integral formulations derived in the previous two chapters. We
illustrate all boundary element formulations by numerical results. We give iteration
numbers and convergence results. For the eddy current problem we verify the meth-
ods by using a benchmark problem.

The last section deals with the inverse problem of Magnetic Induction Tomography.
We are going to consider Magnetic Induction Tomography using a shape reconstruc-
tion approach. To describe the deformation of the shape we are going to use the
velocity method, in this setting we then compute the shape derivatives for a reduced
model.



2 BOUNDARY VALUE AND TRANSMISSION

PROBLEMS IN ELECTROMAGNETISM

Electromagnetic phenomena are described by Maxwell’s equations in a very general
way. To be able to carry out a numerical simulation of electromagnetic fields one
usually derives a simplified model from the general set of Maxwell’s equations, which
is suited for a specific type of problem or for a particular application. In this section
we derive such simplified models starting from the full set of Maxwell’s equations.
We will consider the following setting: We have a given time-harmonic primary
magnetic field and a conducting body. The primary magnetic field induces eddy
currents inside the conducting body, the eddy currents themselves again produce
a secondary magnetic field. The aim is to compute the eddy currents inside the
conducting domain and the secondary magnetic field outside the domain.
There are several technical applications which make use of this phenomenon. Eddy
current imaging for crack detection is commonly used. In this section we will present
a biomedical application, which is Magnetic Induction Tomography (see [28, 60]).

2.1 Maxwell’s Equations

Maxwell’s equations describe the interaction and mutual dependence of the following
physical quantities:

• E(t, x) . . . electric field (V/m)

• D(t, x) . . . displacement field (C/m2)

• H(t, x) . . . magnetic field intensity (A/m)

• B(t, x) . . . magnetic field or magnetic induction (T )

• j(t, x) . . . electric current (A/m2)

• ρ(t, x) . . . electric charge (C/m3)

The Gauss law states that the sources of electric (displacement) fields are charges,
i.e.

divD(t, x) = ρ(t, x). (2.1)

5



6 2 Boundary Value and Transmission Problems in Electromagnetism

In nature, no isolated magnetic charges have been discovered, this fact is expressed
mathematically as

divB(t, x) = 0, (2.2)

which is also called the magnetic Gauss law. A consequence of this is that all magnetic
field lines are closed.
Faraday discovered that a time varying magnetic field produces an electric current,
this is known as Faraday’s law of electromagnetic induction,

curlE(t, x) = − ∂

∂t
B(t, x). (2.3)

Finally, Ampere’s law states that

curlH(t, x) = j(t, x) +
∂

∂t
D(t, x). (2.4)

In this thesis we will deal with time-harmonic and stationary fields, this means that
we assume that all the excitation fields are either time-harmonic or stationary. So
we assume that the time-dependent part of a state variable can be expressed by
sinusoidal functions

F(t, x) = ℜ(F(x)eiωt), F = E,H,D,B, j, ρ.

By inserting this representation into the time dependent Maxwell’s equations (2.1)-
(2.4) we obtain the following set of equations:

curlE(x) = −iωB(x), (2.5)

curlH(x) = j(x) + iωD(x), (2.6)

divD(x) = ρ(x), (2.7)

divB(x) = 0. (2.8)

In addition we have the continuity equation

div j(x) = −iωρ(x),
which follows from the Maxwell’s equations in the case ω 6= 0. Furthermore, we
assume the constitutive relations

D(x) = ε(x)E(x), j(x) = σ(x)E(x), B(x) = µ(x)H(x). (2.9)

In particular we presume that all materials are isotropic and linear. ε(F/m) is called
the permittivity, σ(S/m) is the conductivity and µ(H/m) describes the permeabil-
ity. When considering time-harmonic problems the conductivity of the considered
material can dependen on the frequency ω. The permittivity of vacuum is

ε0 = 8.85418 . . . · 10−12 As

V m
,
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and the permeability of vacuum is given by

µ0 = 4π · 10−7H

m
.

Moreover, we introduce the (given) ’impressed’ current ji. In what follows we will
assume that there are no charges. By using these material laws we can reformulate
the set of Maxwell’s equations as a system of partial differential equations with two
unknowns, these are the electric field E and the magnetic field intensity H:

curlE(x) = −iωµ(x)H(x), (2.10)

curlH(x) = ji(x) + (σ(x) + iωε(x))E(x), (2.11)

div(ε(x)E(x)) = ρ(x), (2.12)

div(µ(x)B(x)) = 0. (2.13)

In (2.11) the linear combination of the conductivity and permittivity appears, we
introduce

κ(x) := σ(x) + iωε(x)

and call κ(x) complex conductivity.
The system (2.10)-(2.13) is a system of first oder differential equations with the two
unknowns E and H. By inserting (2.10) into (2.11) we obtain a second order partial
differential equation for the electric field E,

curl
[
µ(x)−1curlE(x)

]
+ iω(σ(x) + iωε(x))E(x) = 0, (2.14)

div(ε(x)E(x)) = 0. (2.15)

Similar, as for the electric field, we can obtain a second order partial differential
equation for the magnetic field intensity H by inserting (2.11) into (2.10), i.e.

curl [κ(x)−1curlH(x)] + iωµ(x)H(x) = curl [κ(x)−1j(x)], (2.16)

div(µ(x)H(x)) = 0. (2.17)

This shows that both formulations lead to a system of second order partial differential
equations of the same type, however, we see that the roles of µ(x) and κ(x) are
interchanged and in the H-field formulation we have a possibly nonzero right hand
side. Thus, in a certain setting the two formulations can have different mathematical
properties. In this thesis we are going to deal with both formulations and analyze
their characteristics. Furthermore, we see that, if we solve a formulation for E or
H we can get the other unknown by inserting into (2.10) or (2.6), provided ω is not
zero. If ω is zero, which means that we are in the static case, we have

curlE(x) = 0, (2.18)

curlH(x) = ji(x) + σ(x)E(x), (2.19)

div(ε(x)E(x)) = ρ(x), (2.20)

div(µ(x)B(x)) = 0. (2.21)
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We observe that in the static case the electric and the magnetic field decouple when
the conductivity is zero.

2.2 The Eddy Current Model

We are now looking at a more specific setting: Let us decompose the full space R3

into a bounded conducting domain Ω, and a non-conducting unbounded air domain
Ωc = R3 \ Ω. For the air domain we have ε(x) = ε0, σ(x) = 0 and µ(x) = µ0 for
x ∈ Ωc. Furthermore, we assume that the impressed current ji(x) has only support
in the non-conducting domain Ωc, and we assume that there are no charges, i.e.
ρ(x) ≡ 0. The eddy current model is obtained from (2.5)-(2.8) by neglecting the
displacement currents iωD in the exterior domain and by setting divE(x) = 0 in Ωc.
Physically speaking, this means that the propagation of electromagnetic waves in the
exterior domain, and thus the contribution to the energy of the electromagnetic field,
is neglected. Inserting this information into the E-field formulation (2.14)-(2.15), we
get the following set of equations:

curl
[
µ(x)−1curlE(x)

]
+ iω(σ(x) + iωε(x))E(x) = 0, x ∈ Ω, (2.22)

curl
[
µ−1
0 curlE(x)

]
= −iωji(x), x ∈ Ωc, (2.23)

divE(x) = 0, x ∈ Ωc. (2.24)

Remark 2.1. If we assume, that the electric current j is solenoidal, i.e. div j = 0
and if ω is not zero, then the Gauss law

div(ε(x)E(x)) = 0, x ∈ Ω

becomes redundant in the conducting domain Ω, since it follows from (2.22).

For the H-field formulation (2.16)-(2.17) the eddy current model leads to

curl [κ(x)−1curlH(x)] + iωµ(x)H(x) = curl [κ(x)−1j(x)], x ∈ Ω, (2.25)

curlH(x) = ji(x), x ∈ Ωc, (2.26)

div(µ0H(x)) = 0, x ∈ Ωc. (2.27)

Remark 2.2. Similar as in the E-field-formulation, the magnetic Gauss law becomes
redundant in the conducting domain, since it follows from (2.25).
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Typical criteria, which are used to check wether the eddy current model is justified,
are the conditions

Lω
√
µε << 1, ω

ε

σ
<< 1 (2.28)

where L is the diameter of Ω. In the exterior domain, E and H propagate as un-
damped waves with the wave number ω

√
ε0µ0. Hence, the first condition requires

that the size of the conductor is small compared to the wave length. An alternative
condition is that the size of the conductor is large compared with the skin depth δ
which is defined as

δ =
1√
ωσµ

.

A mathematical study of the modeling error for the eddy current model can be found
in [4].

2.2.1 Transmission and Radiation Conditions

On the boundary Γ = ∂Ω of the conducting domain the continuity of the tangential
traces of the fields E and H is required, i.e.

[n(x)× (E(x)× n(x))] = 0, [n(x)× (H(x)× n(x))] = 0, x ∈ Γ, (2.29)

where [.] denotes the jump of a function. Furthermore we have

[D(x) · n(x)] = 0, [j(x) · n(x)] = 0, [B(x) · n(x)] = 0, x ∈ Γ. (2.30)

Since Ωc is an unbounded domain we have to impose radiation conditions

|E(x)| = O
(

1

|x|

)
as |x| → ∞, (2.31)

|H(x)| = O
(

1

|x|

)
as |x| → ∞. (2.32)

In [4] it has been shown that if E and H are solutions of the eddy current model and
satisfy the radiation conditions (2.31) and (2.32) then it holds

|E(x)| = O
(

1

|x|2
)
, |H(x)| = O

(
1

|x|2
)

as |x| → ∞.
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Figure 2.1: Magnetic Induction Tomography setting.

2.3 The Forward Problem of Magnetic Induction

Tomography

Problems with low frequencies and small conductivities typically arise in medical
applications. An exemplary application, which we are going to analyze is the Mag-
netic Induction Tomography (MIT), which is a noninvasive and contactless imaging
method (see [34,47,48]). It is based on the fact that a time harmonic current induces
eddy currents inside a conducting domain. The imaging method works as follows:
excitation coils generate a time harmonic magnetic field. This field induces eddy
currents which generate a magnetic field and which perturbs the primary magnetic
field. Around the body an array of receiver coils is placed (see Figure 2.1), in which
the perturbed magnetic field is measured. Out of this information one can gain
knowledge about the conductivity distribution inside the body by solving an inverse
problem. The solution of the inverse problem usually requires the evaluation of the
forward map.
In this section we will discuss two different models for the forward problem of Mag-
netic Induction Tomography, the eddy current model and a reduced model. The
reduced model is based on a quasi-static approximation and reduces the eddy cur-
rent model to a potential equation. The reduced model is employed when dealing
with low frequencies and conductivities as it is the case in Magnetic Induction Tomog-
raphy. Moreover, we will provide error estimates for the error between the reduced
and the eddy current model.

For the solution of the forward problem we split the magnetic and the electric
fields into a ’primary’ field and a ’secondary’ field:

E(x) = Es(x) + Ep(x), H(x) = Hs(x) +Hp(x).

The primary electric and magnetic fields are the fields of a coil in free space without
the presence of a conducting object. The primary electric field Ep and the primary
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magnetic field Hp can be retrieved by solving

−∆Ep(x) = −iωµ0ji(x), x ∈ R
3, −∆Hp(x) = curl ji(x), x ∈ R

3.

Hence we can represent the primary fields by the Newton potentials

Ep(x) = −iωµ0

4π

∫

R3

ji(y)

|x− y|dsy, Hp(x) =
1

4π
curl x

∫

R3

ji(y)

|x− y|dsy, x ∈ R
3. (2.33)

For certain types of coil geometries, i.e. for the support of ji, those integrals can
be evaluated analytically. If no analytical formula exists the primary field can be
computed by solving a related boundary value problem.

2.3.1 The Eddy Current Model

In Magnetic Induction Tomography one usually deals with low frequencies and very
low conductivities, for human tissue the conductivity is usually in the range of
0.1 . . . 10S/m. So the conditions for the applicability of the eddy current model
(2.28) are satisfied. We will now formulate the eddy current model for the MIT
setting.

E-field formulation

Applying the eddy current model to the setting described in the previous section,
this gives

curl

[
1

µ(x)
curlEs(x)

]
+ iωκ(x)Es(x) = −iωκ(x)Ep(x), x ∈ Ω, (2.34)

curl

[
1

µ0
curlEs(x)

]
= 0, x ∈ Ωc, (2.35)

divEs(x) = 0, x ∈ Ωc. (2.36)

In addition we have to impose transmission conditions:

n(x)× (Eext
s (x)× n(x))− n(x)× (Eint(x)× n(x))

= −n(x)× (Ep(x)× n(x)), x ∈ Γ, (2.37)

n(x)× (Hext
s (x)× n(x))− n(x)× (Hint(x)× n(x))

= −n(x)× (Hp(x)× n(x)), x ∈ Γ. (2.38)
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Since in the eddy current model we neglect the displacement currents in the exterior
domain we have the boundary condition:

κ(x)E(x) · n(x) = 0, x ∈ Γ. (2.39)

We define a space in which we seek the solution of the above transmission problem.
We denote by Ncc the number of connected components of the boundary Γ = ∂Ω.
Γ̃i, i = 1, . . . , Ncc then name the connected components of Γ. We seek the solution
in the space

V =




U ∈ H(curl;R3) : divU(x) = 0, x ∈ Ωc,

∫

Γ̃i

U · ndsx = 0, i = 1, . . . Ncc




.

Theorem 2.3. For ω > 0 and ℜ(κ(x)) > 0 for all x ∈ Ω the variational problem to
find

∫

R3

1

µ(x)
curlEs(x) · curlF(x)dx+ iω

∫

Ω

κ(x)Es(x) · F(x)dx

= −iω
∫

Ω

κ(x)Ep(x) · F(x)dx

for all F ∈ V has a unique solution.

A proof can be found in [4, 9].

H-field formulation

We will now derive a formulation for the H-field in the eddy current setting. For
this we assume that the conducting object Ω is simply connected. Neglecting the
displacement currents in the exterior domain in (2.6) leads to

curlHs(x) = 0, x ∈ Ωc.

Hence we obtain that Hs(x) = −∇φ(x), x ∈ Ωc, which means that in the exterior
domain we look for a gradient field, i.e. we have to solve the transmission problem

curl [κ(x)−1curlHs(x)] + iωµ(x)Hs(x) = −iωµ(x)Hp(x), x ∈ Ω, (2.40)

−∆φ(x) = 0, x ∈ Ωc, (2.41)
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with the transmission conditions

n(x)×(∇φ(x)×n(x))−n(x)×(H(x)×n(x)) = −n(x)×(Hp(x)×n(x)), x ∈ Γ,
(2.42)

∂

∂n(x)
φ(x)−H(x) · n(x) = −Hp(x) · n(x), x ∈ Γ. (2.43)

For φ we impose the radiation conditions

φ(x) = O
(

1

|x|

)
, |∇φ(x)| = O

(
1

|x|2
)
.

A-φ formulation

In the so-called A-φ-formulation (see [7]) the electric field E is decomposed into a
gradient field and a vector potential field. In the case of low frequency applications
the gradient field part dominates and as we let ω tend to zero the vector potential
vanishes. In the next section we are going to derive a reduced model, which is based
on the A-φ-formulation.
Since B is divergence–free, we can represent the magnetic flux density B as the curl
of a magnetic vector potential A,

B(x) = µ0H(x) = curlA(x) for x ∈ R
3.

From

curlE(x) = −iωµ0H(x) = −iωcurlA(x)

we conclude the existence of a scalar potential φ satisfying

E(x) + iωA(x) = −∇φ(x) for x ∈ R
3, (2.44)

where φ is uniquely determined by the Coulomb gauge

divA(x) = 0 for x ∈ R
3. (2.45)

By using the decomposition (2.44) we can write the primary field Ep as

Ep(x) = −iωAp(x) for x ∈ R
3,

while for the secondary field Es we obtain

Es(x) = −iωAs(x)−∇φ(x) for x ∈ R
3.
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Now we can rewrite the transmission problem (2.34)-(2.36) in terms of the A–φ–
formulation:

curl
1

µ0
curlAs(x) + κ(x)[iωAs(x) +∇φ(x)] = −iωκ(x)Ap(x), x ∈ Ω, (2.46)

curl
1

µ0

curlAs(x) = 0, x ∈ Ωc, (2.47)

∇ ·As(x) = 0, x ∈ R
3. (2.48)

When applying the divergence operator to equation (2.46), this gives

−∇ · [κ(x)(iωAs(x) +∇φ(x))] = iω∇ · [κ(x)Ap(x)] for x ∈ Ω. (2.49)

In addition, we rewrite the transmission boundary condition (2.37) in terms of A

and φ and obtain

κ(x) (iωAs(x) +∇φ(x)) · n(x) = −iωκ(x)Ap(x) · n(x) for x ∈ Γ. (2.50)

2.3.2 The Reduced Model

The solution of the forward problem using the eddy current model as described in
the previous section is computationally rather expensive. Since in most solution
algorithms for the inverse problem the forward problem has to be solved quite often,
we are interested in a simplified model which also allows a more efficient solution of
the forward problem, see also [25].
In the parameter range of Magnetic Induction Tomography numerical examples [22]
indicate that As is very small compared to ∇φ. Therefore we neglect As in (2.49)
and (2.50), i.e. we conclude the Neumann boundary value problem

−∇ · [κ(x)∇φ̃(x)] = iω∇ · [κ(x)Ap(x)] for x ∈ Ω, (2.51)

κ(x)
∂φ̃(x)

∂n(x)
= −iωκ(x)Ap(x) · n(x) for x ∈ Γ, (2.52)

where φ̃ now denotes the scalar potential in the reduced model. Since φ̃ is not
uniquely determined by the Neumann boundary value problem (2.51) and (2.52), we
introduce the scaling condition

∫

Γ

φ̃(x)dsx = 0. (2.53)

Moreover, by neglecting As in (2.46) we obtain

curl

[
1

µ0
curl Ãs(x)

]
= −κ(x)[iωAp(x) +∇φ̃(x)], x ∈ R

3,

∇ · Ãs(x) = 0 for x ∈ R
3.
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Using the vector identity curl curl = −∆+∇ div we get

−∆Ãs(x) = −µ0κ(x)[iωAp(x) +∇φ̃(x)] for x ∈ R
3.

Hence we conclude

Ãs(x) = −µ0

4π

∫

Ω

κ(y)
iωAp(y) +∇φ̃(y)

|x− y| dy for x ∈ R
3. (2.54)

The electric field can finally be obtained by

Ẽs(x) = −iωÃs(x)−∇φ̃(x) for x ∈ R
3. (2.55)

This means that the solution of the full eddy current model reduces to the solution
of a Neumann boundary value problem for the Laplace equation, and the evaluation
of a Newton potential. Both models are summarized in Table 2.1.

It remains to estimate the error when considering the reduced model instead of the
eddy current model. In particular we have to consider the differences φ − φ̃ and
As − Ãs, respectively. For this, we first introduce the Newton potential operator

(N0u)(x) =
1

4π

∫

Ω

u(y)

|x− y|dy for x ∈ Ω.

In the case of a vector–valued function u we consider the Newton potential N0u

component–wise.

Lemma 2.4. Assume Ω ⊂ Br(0). The Newton potential operator N0 : L2(Ω) →
L2(Ω) is bounded satisfying

‖N0‖ := sup
06=u∈L2(Ω)

‖N0u‖L2(Ω)

‖u‖L2(Ω)

≤ r2√
3
.

Proof. By using the Hölder inequality we have

‖N0u‖2L2(Ω) =

∫

Ω

∣∣∣∣∣∣
1

4π

∫

Ω

u(y)

|x− y|dy

∣∣∣∣∣∣

2

dx ≤ 1

(4π)2
‖u‖2L2(Ω)

∫

Ω

∫

Ω

1

|x− y|2dydx.

The assertion then follows from Schmidt’s inequality, i.e.

∫

Ω

1

|x− y|2dy ≤
∫

Br(0)

1

|x− y|2dy ≤ 4πr for x ∈ R
3.
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Reduced model

Ap(x) =
µ0

4π

∫

R3

ji(y)

|x− y|dsy for x ∈ R
3,

−∇ · [κ(x)∇φ̃(x)] = iω∇ · [κ(x)Ap(x)] for x ∈ Ω,

κ(x)
∂φ̃(x)

∂n(x)
= −iωκ(x)Ap(x) · n(x) for x ∈ Γ,

∫

Γ

φ̃(x)dsx = 0,

Ãs(x) = −µ0

4π

∫

Ω

κ(y)
iωAp(y) +∇φ̃(y)

|x− y| dy for x ∈ R
3,

Ẽs(x) = −iωÃs(x)−∇φ̃(x) for x ∈ R
3.

Eddy current model

Ep(x) = −iω
µ0

4π

∫

R3

ji(y)

|x− y|dy for x ∈ R
3,

curl
1

µ0
curlEs(x) + iωκ(x)Es(x) = −iωκ(x)Ep(x) for x ∈ Ω,

curl
1

µ0
curlEs(x) = 0 for x ∈ Ωc,

∇ · Es(x) = 0 for x ∈ Ωc

Table 2.1: Comparison of the reduced model and the eddy current model.

In particular we have

∫

Ω

∫

Ω

1

|x− y|2dydx ≤
∫

Ω

4πrdx ≤
∫

Br(0)

4πrdx = (4π)2
r4

3
,

which concludes the proof.

Let As be the solution of the eddy current model (2.46)–(2.48), in particular by using
(2.48) we can rewrite (2.46) as

−∆As(x) = −µ0κ(x)[iωAs(x) + iωAp(x) +∇φ(x)] for x ∈ R
3. (2.56)
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Hence we can write As as Newton potential

As(x) = −µ0N0(κ(iωAs + iωAp +∇φ))(x). (2.57)

Correspondingly, we have

Ãs(x) = −µ0N0(κ(iωAp +∇φ̃))(x) (2.58)

where ∇φ̃ is chosen such that

divÃs(x) = 0 for x ∈ R
3. (2.59)

We therefore conclude

As − Ãs = −µ0N0(κ(iωAs +∇φδ)), φδ := φ− φ̃. (2.60)

Theorem 2.5. Let us define

κmin :=
√

inf
x∈Ω

ℜ(κ(x))2 + inf
x∈Ω

ℑ(κ(x))2, (2.61)

κmax := sup
x∈Ω

|κ(x)|, (2.62)

q := µ0ωκmax

(
1 +

κmax

κmin

)
r2√
3
. (2.63)

Let φ, φ̃ ∈ H1(Ω) be the weak solutions of the Neumann type boundary value problems
(2.49)–(2.50) and (2.51)–(2.52), respectively. Then there holds the error estimate

‖∇φδ‖L2(Ω) ≤
κmax

κmin
ω‖As‖L2(Ω). (2.64)

If we assume q < 1, then there holds

‖As‖L2(Ω) ≤
q

1− q
‖Ap‖L2(Ω), (2.65)

and

‖As − Ãs‖L2(Ω) ≤
q2

1− q
‖Ap‖L2(Ω). (2.66)

Proof. From (2.49) and (2.51) we first conclude that φδ := φ− φ̃ is a solution of the
partial differential equation

−∇ · [κ(x)∇φδ(x)] = iω∇ · [κ(x)As(x)] for x ∈ Ω

with the Neumann boundary condition

κ(x)

[
∂φδ(x)

∂n(x)
+ iωAs(x) · n(x)

]
= 0 for x ∈ Γ.
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Hence, for ψ ∈ H1(Ω) the weak formulation of the above Neumann boundary value
problem reads
∫

Ω

κ(x)∇φδ(x) · ∇ψ(x)dx = iω

∫

Ω

∇ · [κ(x)As(x)]ψ(x)dx+

∫

Γ

κ(x)
∂φδ(x)

∂n(x)
ψ(x)dsx

=

∫

Γ

κ(x)

[
iωAs(x) · n(x) +

∂φδ(x)

∂n(x)

]
ψ(x)dsx − iω

∫

Ω

κ(x)As(x) · ∇ψ(x)dx

= −iω
∫

Ω

κ(x)As(x) · ∇ψ(x)dx.

For ψ = φδ we therefore have
∫

Ω

κ(x)|∇φδ(x)|2dx = −iω
∫

Ω

κ(x)As(x) · ∇φδ(x)dx,

from which (2.64) follows, i.e.

‖∇φδ‖L2(Ω) ≤
κmax

κmin
ω‖As‖L2(Ω).

Moreover, with (2.57) and by using Lemma 2.4 we further have

‖As‖L2(Ω) = µ0‖N0(κ(iωAs + iωAp +∇φ))‖L2(Ω)

≤ µ0κmax
r2√
3
‖iωAs + iωAp +∇φ‖L2(Ω)

≤ µ0κmax
r2√
3

[
ω
(
‖As‖L2(Ω) + ‖Ap‖L2(Ω)

)
+ ‖∇φ‖L2(Ω)

]
. (2.67)

The variational formulation of the Robin type boundary value problem (2.49) and
(2.50) reads, for ψ ∈ H1(Ω),

∫

Ω

κ(x)∇φ(x) · ∇ψ(x)dx

= iω

∫

Ω

∇ · [κ(x)(Ap(x) +As(x))]ψ(x)dx+

∫

Γ

κ(x)
∂φ(x)

∂n(x)
ψ(x)dsx

=

∫

Γ

κ(x)

[
iω(Ap(x) +As(x)) · n(x) +

∂φ(x)

∂n(x)

]
ψ(x)dsx

− iω

∫

Ω

κ(x)(Ap(x) +As(x)) · ∇ψ(x)dx

= −iω
∫

Ω

κ(x)(Ap(x) +As(x))] · ∇ψ(x)dx.
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For ψ = φ we therefore have
∫

Ω

κ(x)|∇φ(x)|2dx = −iω
∫

Ω

κ(x)(Ap(x) +As(x)) · ∇φ(x)dx,

from which the estimate

‖∇φ‖L2(Ω) ≤
κmax

κmin

ω‖Ap +As‖L2(Ω)

follows. From (2.67) we therefore conclude

‖As‖L2(Ω) ≤ µ0κmax
r2√
3
ω

(
1 +

κmax

κmin

)(
‖As‖L2(Ω) + ‖Ap‖L2(Ω)

)
,

which immediately results in the estimate (2.65) when we assume q < 1.

Finally, by using (2.60) and Lemma 2.4 we have

‖As − Ãs‖L2(Ω) = µ0‖N0(κ(iωAs +∇φδ))‖L2(Ω)

≤ µ0
r2√
3
‖κ(iωAs +∇φδ)‖L2(Ω)

≤ µ0κmax
r2√
3

(
ω‖As‖L2(Ω) + ‖∇φδ‖L2(Ω)

)

≤ µ0κmax
r2√
3
ω

(
1 +

κmax

κmin

)
‖As‖L2(Ω) = q‖As‖L2(Ω)

due to (2.64). Now, (2.66) follows from (2.65).

Remark 2.1. As an example we may consider a test problem with the following
parameters:

0.1 ≤ κ(x) ≤ 1 for x ∈ Ω, Ω ⊂ B0.1(0), ω = 105.

In this case, we have

q = 7.98 · 10−3,
q2

1− q
= 6.42 · 10−5.

Note that ‖Ap‖L2(Ω) = 3.609 · 10−6, which was obtained by using some finite element
discretization.

Corollary 2.6. In addition we have an estimate for the error in an arbitrary point
x ∈ R3, i.e.

|As(x)− Ãs(x)| ≤
q2

1− q
‖Ap‖L2(Br(0)). (2.68)
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Proof. By using (2.60) we have, for x ∈ Ω,

|As(x)− Ãs(x)| =
µ0

4π

∣∣∣∣∣∣

∫

Ω

κ(y)
iωAs(y) +∇φδ(y)

|x− y| dy

∣∣∣∣∣∣

≤ µ0

4π
‖κ(iωAs +∇φδ)‖L2(Ω)



∫

Ω

1

|x− y|2dy




1/2

≤ µ0

4π
κmax

√
4πr

(
ω‖As‖L2(Ω) + ‖∇φδ‖L2(Ω)

)

≤ µ0

4π
κmax

√
4πrω

(
1 +

κmax

κmin

)
‖As‖L2(Ω) =

√
12πr

4πr2
q‖As‖L2(Ω).

2.3.3 The Static Case

In the following chapters we want to look at the eddy current problem for low fre-
quencies, therefore we need to understand what happens in the static case, i.e. in
the case ω = 0.
The primary electric field is proportional to the frequency ω, therefore as we let
ω tend to zero, the primary electric field Ep tends to zero as well. Inserting this
information in Faraday’s and Gauss law this leads to

curlEs(x) = 0, x ∈ R
3,

div(ε(x)Es(x)) = 0, x ∈ R
3.

From this we immediately see that Es(x) ≡ 0. In the magnetostatic case the magnetic
field intensity is described by.

curlHs(x) = 0, x ∈ R
3,

div(µ(x)H(x)) = 0, x ∈ R
3.

From the first equation we deduce Hs(x) = ∇φ(x). So we are left with solving the
problem

− div(µ(x)∇φ(x)) = div(µ(x)Hp(x)).

Note that if µ(x) is constant in the whole space R3 we get Hs(x) ≡ 0. We see that
as long as ω is greater than zero, the condition divB = 0 is incorporated in the
equation, but if ω = 0 we have to pose this as an additional constraint.



3 MATHEMETICAL PRELIMINARIES

In the first section of this chapter we will briefly give fundamental results from
functional analysis, which are essential tools for most of the proofs of the upcoming
sections. One important result, which will be used very often is the famous Lax-
Milgram lemma, the other result is Brezzi’s theorem (see [10]). The second section
deals with Sobolev spaces, which are the basis for the mathematical analysis of
boundary value and transmission problems. First we introduce Sobolev spaces for
scalar problems, after that we state the basic results about trace operators and the
corresponding Sobolev spaces on the boundary for Maxwell’s equations. An extensive
and careful summary on Sobolev spaces for smooth domains as well as Lipschitz
domains can be found in [2,37,46]. For the introduction of the Maxwell trace spaces
on Lipschitz domains we take the paper [15] as a basis.

3.1 Functional Analytic Basics

Definition 3.1. Let X be a Hilbert space. A bounded linear form a(., .) : X×X → C

is called X-elliptic if

|a(u, u)| ≥ c1‖u‖2X , ∀ u ∈ X (3.1)

holds.

Theorem 3.2 (Lax-Milgram). Let X be a Hilbert space and X ′ denote its dual space.
Let a(., .) : X ×X → C be a bounded bi-linear form. If a(., .) is X-elliptic, then the
variational problem to find u ∈ X such that

a(u, v) = f(v) ∀v ∈ X,

has a unique solution in X and we have

‖u‖X ≤ c‖f‖X′.

Remark 3.3. The Lax-Milgram lemma also holds if we use the ellipticity definition

ℜ(a(u, u)) ≥ c‖u‖2X, ∀u ∈ X.

This is a stronger requirement then using (3.1).

21
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When considering saddle point problems, the following theorem provides a very useful
tool to prove unique solvability. A proof for this theorem can be found in [10] for
the case that a(., .) and b(., .) are real valued bi-linear forms. However, by using the
Lax-Milgram lemma for complex-valued bi-linear forms the proof easily carries over
to the complex-valued case, which is considered here.

Theorem 3.4 (Brezzi). Let X and Q be Hilbert spaces and a : X × X → C and
b : X ×Q→ C be bounded bilinear forms. Let

X0 = {u ∈ X : b(u, q) = 0 ∀q ∈ Q}

denote the kernel of b(., .). If we assume that a(., .) is elliptic on X0, i.e.

|a(u, u)| ≥ c‖u‖2X, ∀u ∈ X0,

and b(., .) satisfies the LBB (Ladyshenskaya-Babuška-Brezzi) condition

sup
u∈X

|b(u, q)|
‖u‖X

≥ c‖q‖Q, ∀q ∈ Q,

then the variational problem to find (u, p) ∈ X ×Q

a(u, v) + b(v, p) = f(v), ∀v ∈ X,

b(u, q) = g(q), ∀q ∈ Q

has a unique solution and we have the estimate

‖u‖X + ‖p‖Q ≤ c(‖f‖X′ + ‖g‖Q′)

with a constant c > 0.

3.2 Sobolev Spaces for Scalar Problems

The mathematical analysis of boundary value problems requires the introduction of
appropriate function spaces. In this section we introduce the Sobolev spaces we need
when we deal with scalar problems of the type

−∆u + κ2u = 0.

There are mainly two methods for introducing Sobolev spaces, one is based on the
Fourier transform while the other one is established by the concept of weak deriva-
tives. For some cases both concepts result in Sobolev spaces which coincide. Here we
will focus on introducing Sobolev spaces by means of the Fourier transform, however
we will also give a few important results which establish the connection between the
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two kinds of Sobolev spaces.
For the introduction of Sobolev spaces we have to specify the class of domains we
will look at. In what follows we will assume that Ω is a Lipschitz domain, this means
that Ω has to meet the following requirements ([46]):

Definition 3.5. An open set Ω ⊂ Rd is called Lipschitz hypograph if there exists a
Lipschitz function ζ : Rd−1 → R such that

Ω = {(x1, . . . , xd) ∈ R
d : xd < ζ(x′) for all x′ = (x1, . . . , xd−1) ∈ R

d−1}.
An open set Ω ⊂ Rd is called Lipschitz domain if its boundary is compact and there
exist finite families {Wj} and {Ωj} such that

1. {Wj} is a finite open cover of Γ.

2. Every Ωj can be transformed to a Lipschitz hypograph by a rigid body motion
(i.e. rotation and translation).

3. We have Wj ∩ Ω =Wj ∩ Ωj for every j.

Remark 3.6. A more restrictive definition is the Lipschitz polyhedron: We call a
Lipschitz domain Ω Lipschitz polyhedron if it is simply connected and it is bounded
by a finite number of polygons Γi, i = 1, . . . , NΓ.

We will now define the function space Hs(Ω) by using Fourier transforms and the
Bessel potential operator, we will proceed as in [46].

Definition 3.7. For any s ∈ R we define the space

Hs(Rd) =



u ∈ S∗(Rd) :

∫

Rd

(1 + |ξ|)s|û(ξ)|2dξ <∞



 ,

where S(Rd) is the Schwartz space of rapidly decreasing functions, and S∗(Rd) is the
space of all linear functionals on S(Rd). S∗(Rd) is also called the Schwartz space of
temperate distributions. Now we can define Hs(Ω) as

Hs(Ω) := {u ∈ [C∞
comp(R

d)]∗ : u = ũ|Ω, ũ ∈ Hs(Rd)},
with the norm

‖u‖Hs(Ω) := inf
ũ∈Hs(Rd),ũ|Ω=u

‖ũ‖Hs(Rd).

The dual spaces are denoted by

H̃s(Ω) := [H−s(Ω)]′, H̃−s(Ω) = [Hs(Ω)]′

for s > 0.
As already stated there is another way for introducing Sobolev spaces, which is based
on the concept of weak derivatives:
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Definition 3.8. A function g = ∂αu is called weak derivative of u ∈ Lloc
1 (Γ), if

(g, φ)Ω = (−1)|α| (u, ∂αφ)Ω

is satisfied for all φ ∈ C∞
0 (Ω) with the multi-index α = (α1, . . . , αd). For k ∈ N the

Sobolev space W k
2 (Ω) is defined as

W k
2 (Ω) = {u ∈ L2(Ω) : ∂

αu ∈ L2(Ω), |α| ≤ k} .
Remark 3.9. Let Ω be a Lipschitz domain, then due to [46] we have that

Hs(Ω) =W s
2 (Ω).

holds for all s ≥ 0.

We have now introduced Sobolev spaces in the domain Ω, as a next step we define
Sobolev spaces on the boundary of a Lipschitz domain:
Let Ω be a Lipschitz hypograph, then we can define the space

Hs(Γ) = {u ∈ L2(Γ) : uζ(x
′) = u(x′, ζ(x′)) ∈ Hs(Rd−1)} (3.2)

for s ∈ [0, 1]. If Ω can be obtained by applying the rigid body motion κ to a Lipschitz
hypograph Ω̃, i.e. Ω = κ(Ω̃), we define

uζ(x
′) = u(κ−1(x′, ζ(x′))).

If Ω is a Lipschitz domain we choose a partition of unity φj ∈ C∞
comp(Wj) with

∑

j

φj(x) ≡ 1, ∀ x ∈ Γ,

and we define the Hs(Γ) Norm by

‖u‖2Hs(Γ) =
∑

j

‖φju‖2Hs(Γj)

with Γj = ∂Ωj . For s ∈ [0, 1] we define

Hs(Γ) = C(Γ)‖.‖Hs(Γ)
. (3.3)

For negative indices −s < 0 the space H−s(Γ) is defined as the dual space of Hs(Γ),
which is equipped with the norm

‖u‖H−s(Γ) := sup
v∈Hs(Γ)

〈u, v〉Γ
‖v‖Hs(Γ)

.

Important results, which are needed for the solution of boundary value problems for
partial differential operators of the type −∆+ κ2, are given by the following Green’s
formulae:
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Theorem 3.10 (Green). For a given bounded Lipschitz domain Ω we have the fol-
lowing formulae for partial integration:
1. Green Formula

−〈∆u, v〉Ω = 〈∇u,∇v〉Ω − 〈γint1 u, γint0 v〉Γ (3.4)

2. Green Formula

−〈∆u, v〉Ω + 〈u,∆v〉Ω = 〈γint1 v, γint0 u〉Γ − 〈γint1 u, γint0 v〉Γ (3.5)

Green’s first and second formula establish a connection between the Dirichlet trace
operator

γint0 u(x) = lim
Ω∋x̃→x∈Γ

u(x), γext0 u(x) = lim
Ωc∋x̃→x∈Γ

u(x)

and the Neumann trace operator

γint1 u(x) = lim
Ω∋x̃→x∈Γ

∇x̃u(x̃) · n(x), γext1 u(x) = lim
Ωc∋x̃→x∈Γ

∇x̃u(x̃) · n(x).

3.3 Trace Operators and Function Spaces for Maxwell

Problems

In this section we give the definition of Sobolev spaces for the domain and the bound-
ary, which are needed for the analysis of boundary value and transmission problems
related to Maxwell’s equations and we define the important trace operators.

Notation 3.1. In this chapter we deal with vector-valued functions, the Sobolev
spaces which were introduced in the previous section can also be applied to vector
valued functions. We denote Sobolev spaces for vector valued functions by bold let-
ters, so let X be any of the Sobolev spaces, which were already defined, then we can
define vector-valued equivalent as

X := [X ]3 = {U = (U1, U2, U3) : Ui ∈ X, i = 1, 2, 3}.

The energy space for the fields E and H in a bounded Lipschitz domain Ω is defined
by

H(curl; Ω) = {U ∈ L2(Ω) : curlU ∈ L2(Ω)}.

Remark 3.11. Functions in H(curl; Ω) have the following property: If we consider
a H(curl; Ω)-function in a domain Ω and we cut the domain Ω into two parts, the
tangential component of this function is continuous along the cutting surface.
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The electric and magnetic Gauss’ law motivate to choose the magnetic field B and
the displacement field D as elements of the space

H(div; Ω) = {U ∈ L2(Ω) : divU ∈ L2(Ω)}.

Remark 3.12. Functions in H(div; Ω) have the following property: If we consider a
H(div; Ω)-function in a domain Ω and cut the domain Ω into two parts, the normal
component of this function is continuous along the cutting surface.

Remark 3.13. The spaces H1(Ω),H(curl; Ω),H(div; Ω) and L2(Ω) are connected
via the de-Rham sequence, which states that

H1(Ω)
∇→ H(curl; Ω)

curl→ H(div; Ω)
div→ L2(Ω).

Moreover if Ω is a simple connected domain, then the de-Rham sequence is exact,
i.e. the range of an operator in the sequence is the kernel of the next operator in the
sequence (a proof can be found in [63]). A consequence of the exact sequence is that
for
U ∈ H(curl; Ω)

curlU = 0 ⇒ U = ∇φ, with φ ∈ H1(Ω),

and for U ∈ H(div; Ω)

divU = 0 ⇒ U = curlV, with V ∈ H(curl; Ω),

provided Ω is a simple connected domain.

For unbounded domains we define the space

Hloc(curl ; Ω) = {U ∈ L2
loc(Ω) : curlU ∈ L2

loc(Ω)}.

In what follows we will introduce the trace spaces for H(curl; Ω) on the boundary,
when Ω is a Lipschitz domain. For Lipschitz polyhedra those spaces have been
introduced and analyzed in [12, 13], for Lipschitz domains this was done in [15], we
take this paper as a basis for the introduction of those spaces.

Definition 3.14. We define the tangential trace by

γtU(x) = n(x)× (U(x)|Γ × n(x)), x ∈ Γ (3.6)

the twisted tangential trace by

γ×U(x) = U(x)|Γ × n(x), x ∈ Γ (3.7)

and the Neumann trace by

γNU(x) = (curlU(x))|Γ × n(x), x ∈ Γ. (3.8)
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The tangential trace γt and the twisted tangential trace are connected to each other
by the operator Ru = u× n,i.e.

γtU = −Rγ×U, γ×U = RγtU. (3.9)

Let us first consider domains Ω with a smooth boundary. The trace operators γt,γ×
obviously map functions in the domain to tangential functions on the boundary,
therefore we define the space

H
1/2
t (Γ) =

{
u ∈ H1/2(Γ) : U(x) · n(x) = 0, x ∈ Γ

}

and its dual space

H
−1/2
t (Γ) =

[
H

1/2
t (Γ)

]′

with the pivot space

L2
t (Γ) =

{
U ∈ L2(Γ) : U · n = 0

}
.

For smooth boundaries Γ we get that the mappings

γt, γ× : H1(Ω) → H
1/2
t (Γ)

are continuous. The partial integration formula

〈curlU,V〉Ω − 〈U, curlV〉Ω = 〈γtU,V〉
yields the extension to a continuous mapping on the space H(curl; Ω), i.e.

γt,γ× : H(curl; Ω) → H
−1/2
t (Γ).

As a next step we define derivatives on the surface for domains with a smooth bound-
ary:

Definition 3.15. Let Γ be smooth and u ∈ C1(Γ), then there exists an extension U∗

into the domain with

u = U∗|Γ.
By the aid of this extension we define the surface gradient as

∇Γu = γt(∇U∗) (3.10)

and the vectorial surface curl as

curlΓu = γ×(∇U∗). (3.11)

In addition we define the surface gradient and the scalar surface rotation as the
adjoint operators

〈divΓ U, u〉Γ = −〈U,∇Γu〉Γ, (3.12)

〈curlΓU, u〉Γ = 〈U, curlΓu〉Γ. (3.13)
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Remark 3.16. For smooth boundaries Γ and functions u ∈ C
1(Γ) the surface diver-

gence divΓ and the scalar surface curl curlΓ can also be computed by

divΓ u = (divU∗)|Γ,
curlΓu = (curlU∗ · n)|Γ,

where U∗ denotes the extension of u into the domain Ω.

The definitions of the surface derivatives pave the way to the definition of the Sobolev
spaces for smooth boundaries Γ,

H
−1/2
‖ (divΓ,Γ) = {u ∈ H

−1/2
t (Γ) : divΓ u ∈ H−1/2(Γ)}, (3.14)

H
−1/2
⊥ (curlΓ,Γ) = {u ∈ H

−1/2
t (Γ) : curlΓu ∈ H−1/2(Γ)}. (3.15)

These spaces have been introduced for smooth boundaries and studied in [3]. In the
case of Lipschitz domains the problem arises that the normal vector is a discontinu-
ous function. Hence the normal vector n on Lipschitz domains is only an element of
L∞(Γ), so that for U ∈ H−1/2(Γ) the scalar product U · n is not defined.
Furthermore we need to extend the definitions of ∇Γ, curlΓ to Lipschitz domains.
This can be done by using the formalism as introduced in the definition of the Lip-
schitz domain (we refer to Definition 3.1 in [15]). From now on we will assume that
Γ is the boundary of a Lipschitz domain Ω.

Definition 3.17. We set

Vt = γt(H
1/2(Γ)), V× = γ×(H

1/2(Γ)), (3.16)

with the norms

‖λ‖Vt = inf
u∈H1/2(Γ)

{
‖u‖H1/2(Γ) : γtu = λ

}
, (3.17)

‖λ‖V× = inf
u∈H1/2(Γ)

{
‖u‖H1/2(Γ) : γ×u = λ

}
. (3.18)

Note that in the case that Γ is smooth we have Vt = V× = H
1/2
t (Γ), but in the case

that Γ has an edge those spaces can be different, this effect is illustrated in Figure
3.1.

Remark 3.18. For Lipschitz polyhedra the spaces Vt and V× are also denoted by

H
1/2
‖ (Γ) and H

1/2
⊥ (Γ).

The mappings γt : H
1(Ω) → Vt and γ× : H1(Ω) → V× are surjective and therefore

we get that the mappings

γt : H(curl; Ω) → V ′
t , γ× : H(curl; Ω) → V ′

×

are continuous. These preparatory definitions now pave the way to the definition of
the spaces H

−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ) for boundaries of Lipschitz domains:
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H
1/2
‖ (Γ) H

1/2
⊥ (Γ)

Figure 3.1: Continuity along edges for functions in the spaces H
1/2
‖ (Γ) and H

1/2
⊥ (Γ).

Definition 3.19. For a Lipschitz domain Ω with boundary Γ we define the trace
spaces

H
−1/2
‖ (divΓ,Γ) = {u ∈ V ′

× : divΓ u ∈ H−1/2(Γ)}, (3.19)

H
−1/2
⊥ (curlΓ,Γ) = {u ∈ V ′

t : curlΓu ∈ H−1/2(Γ)}. (3.20)

Remark 3.20. In the case that Ω is a Lipschitz polyhedron we know that the surface
Γ is bounded by a bounded number of Lipschitz polygons Γk, k = 1, . . . , NΓ. For
this case there exists a more precise characterization of the spaces (3.19) and (3.20)
(see [12,13]), which is based on the functionals

N
‖
lk(u) =

∫

Γl

∫

Γk

|u(x) · tlk(x)− u(y) · tlk(y)|
|x− y|3 dsxdsy,

N⊥
lk(u) =

∫

Γl

∫

Γk

|u(x) · (tlk(x)× n(x))− u(y) · (tlk(y)× n(y))|
|x− y|3 dsxdsy,

where tlk is the unit vector along the edge elk = Γl∩Γk. By the help of these functionals
the following trace spaces are defined by

H
1/2
‖ (Γ) = {u ∈ H

1/2
t,pw(Γ) : N

‖
lk(u) <∞, for all edges elk},

H
1/2
⊥ (Γ) = {u ∈ H

1/2
t,pw(Γ) : N

⊥
lk(u) <∞, for all edges elk},

where H
1/2
t,pw(Γ) is the space of functions u ∈ L

2
t (Γ) for which we have

u|Γi
∈ H

1/2(Γi) for i = 1, . . . , NΓ.

Due to [15] we have the following theorem:
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Theorem 3.21. The mappings

γt : H(curl; Ω) → H
−1/2
⊥ (curlΓ,Γ)

and

γ× : H(curl; Ω) → H
−1/2
‖ (divΓ,Γ)

are linear and continuous.

Corollary 3.22. For the Neumann trace γN it immediately follows that

γN : H(curl2; Ω) → H
−1/2
‖ (divΓ,Γ)

with the space

H(curl2; Ω) = {U ∈ H(curl; Ω) : curl curlU ∈ L2(Ω)}.

Furthermore we see that there exists an isometry, which maps between the two spaces
H

−1/2
⊥ (curlΓ,Γ) and H

−1/2
‖ (divΓ,Γ):

Lemma 3.23. The mapping

R : H
−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ)

is bijective and isometric.

In addition the following duality property holds:

[H
−1/2
‖ (divΓ,Γ)]

′ = H
−1/2
⊥ (curlΓ,Γ), [H

−1/2
⊥ (curlΓ,Γ)]

′ = H
−1/2
‖ (divΓ,Γ). (3.21)

Definition 3.24. The trace operator γn : C∞
comp(Ω) → L2(Γ) is defined by

γnU(x) = U(x)|Γ · n(x), x ∈ Γ.

The application of Gauss’s theorem leads to the following result:

Proposition 3.25. The mapping

γn : H(div; Ω) → H−1/2(Γ)

is continuous.

An essential tool for the solution of boundary value problems related to the partial
differential operator curl curl are given the following partial integration formulae:
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Theorem 3.26 (Partial Integration). Let Ω be a bounded Lipschitz domain, then
there hold the partial integration formulae:
1. Green Formula:

〈curl curlU,V〉Ω = 〈curlU, curlV〉Ω − 〈γNU,γtV〉Γ (3.22)

2. Green Formula:

〈curl curlU,V〉Ω − 〈U, curl curlV〉Ω = 〈γNV,γtU〉Γ − 〈γNU,γtV〉Γ (3.23)

The spaces H
−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ) can be characterized by the following

famous decomposition:

Lemma 3.27 (Hodge Decomposition). We have the decomposition

H
−1/2
‖ (divΓ,Γ) = ∇ΓH(Γ)⊕ curlΓH

1/2(Γ) (3.24)

H
−1/2
⊥ (curlΓ,Γ) = curlΓH(Γ)⊕∇ΓH

1/2(Γ) (3.25)

with the space

H(Γ) = {v ∈ H1(Γ)/C : ∆Γv ∈ H−1/2(Γ)/C}, ψ ∈ H1/2(Γ) \ C

For a proof we refer once more to [15] in the case of a Lipschitz domain and to [13]
in the case of a Lipschitz polyhedra.
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4 BOUNDARY INTEGRAL EQUATIONS FOR THE

ELECTROMAGNETIC WAVE EQUATION

This chapter is devoted to the derivation of boundary integral formulations for
Maxwell’s equations. More precisely we deal with a partial differential equation
of the type

curl curlU(x) + κ2U(x) = 0, (4.1)

which we call electromagnetic wave equation. As we have seen in Chapter 2, in the
time-harmonic case the electric field E and the magnetic field intensity H are gov-
erned by the electromagnetic wave equation (4.1).
Although the partial differential operator corresponding to (4.1) is not strongly el-
liptic, i.e. the principal symbol of L = curl curl + κ2 is not invertible, we can find
a fundamental solution for the operator L and derive a representation formula for a
solution of (4.1). This famous formula is called Stratton-Chu representation formula
(see [67]). A mathematical analysis of the Stratton-Chu formula and the resulting
boundary integral operators has been done in [17, 52] for smooth domains and can
be found in [33] for the case of Lipschitz domains.
At the beginning of this chapter we will give the basic results for boundary integral
equations for scalar problems as some of the results will be needed later. This paves
the way to the derivation of the Stratton-Chu representation formula. Based on the
representation formula we take a closer look at the corresponding boundary integral
operators. For special parameters considered here we can prove ellipticity results for
some boundary integral operators. In the last section we will look at the behaviour of
the boundary integral operators, when considering small κ. For this case we present
a new formulation for solving a boundary value problem for (4.1). We prove that the
formulation is stable as κ→ 0.

4.1 Boundary Integral Equations for Scalar Problems

When considering stationary problems the electric or magnetic field can be repre-
sented by a scalar potential. This means that the electric field E and the magnetic
field intensity H can be written as the gradient of a function, which is governed by
the potential equation. Also in the quasi-static approximation of the MIT-problem
(see Section 2.3.2) a potential equation has to be solved. This motivates why we

33
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have to deal with boundary value problems with a partial differential equation of the
type

−∆u(x) + κ2u(x) = 0, x ∈ Ω, κ ∈ C, (4.2)

which includes the scalar potential equation for the case κ = 0. We will now introduce
a representation formula for solutions of (4.2) and give a short recap of the important
results related to boundary integral operators.

4.1.1 Boundary Value Problems

Let us consider the partial differential equation (4.2) in a bounded domain Ω ⊂ R3,
the corresponding variational form is defined by

aκ(u, v) :=

∫

Ω

∇u(x) · ∇v(x)dx+ κ2
∫

Ω

u(x)v(x)dx. (4.3)

Theorem 4.1. For κ ∈ C with ℜ(κ) 6= 0 the bi-linear form a(u, v) is H1(Ω)-elliptic,
i.e. there exists a constant c1 > 0 such that

|aκ(u, u)| ≥ c1‖u‖2H1(Ω), ∀u ∈ H1(Ω) (4.4)

holds.

Proof. We set κ = κR + iκI with κR, κI ∈ R, then we have

|aκ(u, u)| =
∣∣∣‖∇u‖2L2(Ω) + κ2‖u‖2L2(Ω)

∣∣∣

=

[(
‖∇u‖2

L2(Ω) + (κ2R − κ2I)‖u‖2L2(Ω)

)2
+
(
2κRκI‖u‖2L2(Ω)

)2
]1/2

.

We prove the statement by distinction of different cases:

1. If κI = 0 the ellipticity follows immediately with c1 = min(1, |κ|2), since we
have

|aκ(u, u)| = ‖∇u‖2
L2(Ω) + κ2R‖u‖2L2(Ω) ≥ min(1, |κ|2)‖u‖2H1(Ω).

2. In the case κR = κI we have |κ|2 = 2κRκI , with which we obtain

|aκ(u, u)| =
[(

‖∇u‖2
L2(Ω)

)2
+
(
|κ|2‖u‖2L2(Ω)

)2
]1/2

≥
[
1

2

(
‖∇u‖2

L2(Ω) + |κ|2‖u‖2L2(Ω)

)2]1/2

≥ 1√
2
min(1, |κ|2)‖u‖2H1(Ω),

hence we have c1 =
min(1,|κ|2)√

2
.
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3. For the case κ2R > κ2I > 0 we get

|aκ(u, u)| =
[(

‖∇u‖2
L2(Ω) + (κ2R − κ2I)‖u‖2L2(Ω)

)2
+
(
2κRκI‖u‖2L2(Ω)

)2
]1/2

≥
[(

‖∇u‖2
L2(Ω)

)2
+
(
2κRκI‖u‖2L2(Ω)

)2
]1/2

≥ 1√
2
min(1, 2|κRκI |)‖u‖2H1(Ω),

and hence the ellipticity constant is given by c1 =
min(1,2|κRκI |)√

2
.

4. In the case 0 < κ2R < κ2I we first assume that ‖∇u‖2
L2(Ω) ≥ 2(κ2I − κ2R)‖u‖2L2(Ω),

this gives the ellipticity estimate

|aκ(u, u)| ≥
[(

1

2
‖∇u‖2

L2(Ω)

)2

+
(
2κRκI‖u‖2L2(Ω)

)2
]1/2

≥ 1√
2

(
1

2
‖∇u‖2

L2(Ω) + 2|κRκI |‖u‖2L2(Ω)

)
≥ min(1, 4|κRκI |)

2
√
2

‖u‖2H1(Ω).

Now we assume ‖∇u‖2
L2(Ω) < 2(κ2I − κ2R)‖u‖2L2(Ω), this leads us to the estimate

|aκ(u, u)| ≥ 2|κRκI |‖u‖2L2(Ω) > |κRκI |‖u‖2L2(Ω) +
|κRκI |

2(κ2I − κ2R)
‖∇u‖2

L2(Ω)

≥ min

(
|κRκI |,

|κRκI |
2(κ2I − κ2R)

)
‖u‖2H1(Ω).

For the case κ = 0 we only have ellipticity in the semi-norm:

a0(u, u) ≥ |u|2H1(Ω), ∀u ∈ H1(Ω).

Combining this result with Theorem 4.1 yields the unique solvability of the following
Dirichlet boundary value problem:

Theorem 4.2. For a bounded Lipschitz domain Ω and κ ∈ C with ℜ(κ) 6= 0 or κ = 0
and given Dirichlet data g ∈ H1/2(Γ), the boundary value problem

−∆u(x) + κ2u(x) = 0, x ∈ Ω, γint0 u(x) = g(x), x ∈ Γ, (4.5)

has a unique solution u ∈ H1(Ω).
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For the case ℜ(κ) 6= 0 the result follows immediately from the Lax-Milgram lemma,
the proof for the case κ = 0 can be found for example in [66].

Remark 4.3. In the case ℜ(κ) = 0, which means κ2 < 0 the equation (4.2) coincides
with the Helmholtz equation. The boundary value problem (4.5) is then not uniquely
solvable for a countable set of wave numbers κ, which correspond to the eigenvalues of
the homogeneous Dirichlet eigenvalue problem for the Laplace equation. If the wave
number does not correspond to one of those eigenvalues, we can prove the unique
solvability of the Dirichlet boundary value problem (see [17,24]).

When dealing with transmission problems we also have to consider boundary value
problems in unbounded domains, i.e. the exterior boundary value problem for the
Laplace equation in the unbounded exterior domain Ωc:

−∆u(x) = 0, x ∈ Ωc, γext0 u(x) = g(x), x ∈ Γ. (4.6)

To ensure the unique solvability of the boundary value problem (4.6) we have to
impose the radiation condition

|u(x)| = O
(

1

|x|

)
, as |x| → 0, (4.7)

which also guarantees that we obtain a physical meaningful solution. The following
proposition and its proof can be found in [46]:

Proposition 4.4. The boundary value problem (4.6) together with the radiation con-
dition (4.7) has a unqiue solution.

4.1.2 Representation Formula

Definition 4.5. For u ∈ H−1/2(Γ) the scalar single layer potential is defined by the
surface integral

Ψκ
SL(u)(x) =

∫

Γ

U∗
κ(x, y)u(y)dsy, x ∈ R

3 \ Γ, (4.8)

and for v ∈ H1/2(Γ) the scalar double layer potential is defined by

Ψκ
DL(v)(x) =

∫

Γ

∂

∂n(y)
U∗
κ(x, y)v(y)dsy, x ∈ R

3 \ Γ, (4.9)

with the fundamental solution

U∗
κ(x, y) =

1

4π

e−κ|x−y|

|x− y| , for x 6= y, (4.10)

and for κ ∈ C.
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By means of the above defined potentials we can find a representation formula for
solutions of the partial differential equation (4.2) in the bounded domain Ω and in
the unbounded domain Ωc. The details of the derivation can be found in [59, 66].

Theorem 4.6 (Representation Formula). Let u ∈ H1(Ω) be a solution of (4.2), then
it has the representation

u(x) = Ψκ
SL(γ

int
1 u)(x)−Ψκ

DL(γ
int
0 u)(x), x ∈ Ω. (4.11)

If u ∈ H1
loc(Ω

c) is a solution of (4.2), which satisfies the radiation condition (4.7) in
the unbounded exterior domain Ωc, then it can be represented by the formula

u(x) = −Ψκ
SL(γ

ext
1 u)(x) + Ψκ

DL(γ
ext
0 u)(x), x ∈ Ωc. (4.12)

4.1.3 Boundary Integral Equations

To obtain boundary integral equations the traces of the potential operators arising in
the representation formula have to be studied carefully. For smooth and for Lipschitz
domains this has been done in [19, 37, 46, 59, 66].

Theorem 4.7. By applying the trace operators γ0 and γ1 to the single layer potential
(4.8) and to the double layer potential (4.9) we obtain linear and continuous boundary
integral operators, which have the following mapping properties:

γint0 Ψκ
SL = Vκ : H−1/2(Γ) → H1/2(Γ), (4.13)

γint1 Ψκ
SL =

1

2
I +K ′

κ : H−1/2(Γ) → H−1/2(Γ), (4.14)

γint0 Ψκ
DL = −1

2
I +Kκ : H1/2(Γ) → H1/2(Γ), (4.15)

γint1 Ψκ
DL = −Dκ : H1/2(Γ) → H−1/2(Γ). (4.16)

Furthermore we have the following jump properties:

[γ0Ψ
κ
SLw] = 0, [γ1Ψ

κ
SLw] = −w, for w ∈ H−1/2(Γ) (4.17)

and

[γ0Ψ
κ
DLv] = v, [γ1Ψ

κ
DLv] = 0, for v ∈ H1/2(Γ). (4.18)

Applying the interior traces to the representation formula (4.11) leads to the following
system of boundary integral equations for the bounded domain Ω

(
γint0 u
γint1 u

)
=

(
1
2
I −K V
D 1

2
I +K ′

)(
γint0 u
γint1 u

)
.
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For the exterior domain Ωc we get the system of boundary integral equations

(
γext0 u
γext1 u

)
=

(
1
2
I +K −V
−D 1

2
I −K ′

)(
γext0 u
γext1 u

)

by applying the exterior trace operators to (4.12).

Theorem 4.8. For κ ∈ C with ℜ(κ) > 0 the operators Vκ : H−1/2(Γ) → H1/2(Γ)
and Dκ : H1/2(Γ) → H−1/2(Γ) are elliptic

〈Vκw,w〉Γ ≥ cV1 ‖w‖2H−1/2(Γ), ∀w ∈ H−1/2(Γ),

〈Dκv, v〉Γ ≥ cD1 ‖v‖2H1/2(Γ), ∀v ∈ H1/2(Γ).

For κ = 0 we have the ellipticity estimates

〈V0w,w〉Γ ≥ cV1 ‖w‖2H−1/2(Γ), ∀w ∈ H−1/2(Γ),

〈D0v, v〉Γ ≥ cD1 ‖v‖2H1/2(Γ), ∀v ∈ H1/2
∗ (Γ),

with the space H
1/2
∗ (Γ) = {v ∈ H1/2(Γ) : 〈v, 1〉Γ = 0}.

The proof can be found in [46, 66].

Remark 4.9. The hypersingular operator of the Laplace equation D0 is not elliptic
on the full space H1/2(Γ), therefore we introduce the stabilization

〈D̃0u, v〉Γ = 〈D0u, v〉Γ + α〈u, 1〉Γ〈v, 1〉Γ, (4.19)

with some positive constant α ∈ R+. The operator D̃0 is then elliptic on the whole
space H1/2(Γ):

〈D̃0u, u〉Γ ≥ c̃D1 ‖u‖2H1/2(Γ), ∀u ∈ H1/2(Γ).

The operator, which maps the Dirichlet trace of a function, which is governed by (4.2)
in the interior domain Ω, to its Neumann trace, is called interior Steklov-Poincaré
operator:

S int
κ γint0 u = γint1 u, S int

κ : H1/2(Γ) → H−1/2(Γ).

For the case κ ∈ C with ℜ(κ) > 0 or κ = 0, the Dirichlet boundary value problem
has a unique solution, thus the operator S int

κ is well defined. Note that for κ ∈ C

with ℜ(κ) = 0 the operator S int
κ may not be well defined, a detailed study of this

case can be found in [72].
The properties of the Steklov-Poincaré operator are well known, see e.g. [19,37,46,66].
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Out of the Calderon identities for the interior domain we can find a symmetric repre-
sentation of the Steklov-Poincaré operator by using boundary integral operators:

γint1 u = S int
κ γint0 u =

[
Dκ + (

1

2
I +K ′

κ)V
−1
κ (

1

2
I +Kκ)

]
γint0 u. (4.20)

In a similar way we can derive a Steklov-Poincaré operator for the exterior traces:

γext1 u = −Sext
κ γext0 u = −

[
Dκ + (

1

2
I −K ′

κ)V
−1
κ (

1

2
I −Kκ)

]
γext0 u. (4.21)

In the case κ = 0 we use the stabilized hypersingular operator D̃0 for the represen-
tation of the Steklov-Poincaré operators S int

0 and Sext
0 :

S int
0 = D̃0 + (

1

2
I +K ′

0)V
−1
0 (

1

2
I +K0), Sext

0 = D̃0 + (
1

2
I −K ′

0)V
−1
0 (

1

2
I −K0).

A simple consequence of Theorem 4.8 is the following result:

Corollary 4.10. For κ ∈ C with ℜ(κ) > 0 and κ = 0 the operators S int
κ ,Sext

κ are
H1/2(Γ)-elliptic with the ellipticity constant cD1 :

〈S int
κ v, v〉Γ ≥ cD1 ‖v‖2H1/2(Γ), ∀v ∈ H1/2(Γ),

〈Sext
κ v, v〉Γ ≥ cD1 ‖v‖2H1/2(Γ), ∀v ∈ H1/2(Γ).

4.2 Boundary Value Problems for the Electromagnetic Wave

Equation

We will now consider the electromagnetic wave equation, i.e. a partial differential
equation of the type (4.1) in a bounded domain Ω. For the electrogmagnetic wave
equation we define the variational form

aκ(U,V) :=

∫

Ω

curlU(x) · curlV(x)dx+ κ2
∫

Ω

U(x) ·V(x)dx. (4.22)

Theorem 4.11. For κ ∈ C with ℜ(κ) 6= 0 the bi-linear form aκ(., .) is H(curl; Ω)-
elliptic, i.e. there exists a constant C1 > 0 such that

|aκ(U,U)| ≥ C1‖U‖2
H(curl;Ω) (4.23)

holds for all U ∈ H(curl; Ω).
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The proof is analogous to the proof for Theorem 4.1. By using the Lax-Milgram
lemma we get the following result:

Theorem 4.12. For κ ∈ C with ℜ(κ) 6= 0 and for F ∈ H
−1/2
⊥ (curlΓ,Γ) the boundary

value problem

curl curlU(x) + κ2U(x) = 0, x ∈ Ω, γ int
t U(x) = F(x), x ∈ Γ (4.24)

has a unique solution in H(curl; Ω).

In contrast to the scalar equation (4.2) the boundary value problem (4.24) is not
uniquely solvable for the case κ = 0. In fact, we easily see that any gradient function
∇φ satisfies (4.1) for the case κ = 0. Hence we have to impose the additional
condition divU = 0.

Theorem 4.13. For F ∈ H
−1/2
⊥ (curlΓ,Γ) the boundary value problem

curl curlU(x) = 0, divU(x) = 0, x ∈ Ω, γ int
t U(x) = F(x), x ∈ Γ (4.25)

has a unique solution in H(curl; Ω).

When considering the exterior boundary value problem for κ = 0 we have to impose
an additional radiation condition:

Theorem 4.14. For F ∈ H
−1/2
⊥ (curlΓ,Γ) the boundary value problem

curl curlU(x) = 0, divU(x) = 0, x ∈ Ωc, γ int
t U(x) = F(x), x ∈ Γ (4.26)

with the radiation condition

U(x) = O
(

1

|x|

)
, as |x| → ∞ (4.27)

has a unique solution in H(curl; Ωc).

The statement follows from Brezzi’s Theorem (Theorem 3.4).

4.3 The Stratton-Chu Representation Formula

In this section we are going to derive a representation formula for solutions of the
electromagnetic wave equation, i.e. an equation of the type (4.1). This represen-
tation formula was derived by Stratton and Chu [67], we can also find a derivation
in [52]. For the derivation of the Stratton-Chu representation formula here we take
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the derivation in [52] as a basis. We are going to derive an extended version of the
Stratton-Chu representation formula, which includes an additional equation, which
is usually omitted in the other derivations. This extended representation formula
turns out to be also valid for the case κ = 0. The derivation is based on the de-
composition of a solution of the electromagnetic wave equation into a gradient field
and a vector valued remainder, which is fixed by some gauging condition. With this
decomposition we can transform the electromagnetic wave equation into a system of
partial differential equations. For this system we can find a fundamental solution,
which is based on the fundamental solution (4.10) for the scalar equation (4.2).
As in the scalar case we define a single and a double layer potential, which are now
applied to vector valued functions in contrast to the scalar case.

Definition 4.15. For u ∈ H
−1/2
‖ (divΓ,Γ) the vectorial single layer potential is defined

by the surface integral

Ψκ
SL(u)(x) =

∫

Γ

U∗
κ(x, y)u(y)dsy, x ∈ R

3 \ Γ, (4.28)

and for v ∈ H
−1/2
⊥ (curlΓ,Γ) the Maxwell double layer potential is defined by

Ψκ
DL(v)(x) = curl x

∫

Γ

U∗
κ(x, y)Rv(y)dsy, x ∈ R

3 \ Γ (4.29)

with the fundamental solution U∗
κ(x, y) as defined in (4.10).

We are now going to prove two auxiliary results, which we will need for the derivation
of the Stratton-Chu representation formula. The first result proves an alternative
representation of the Maxwell double layer potential:

Lemma 4.16. For any vector a ∈ R3 and for a function v ∈ H
−1/2
⊥ (curlΓ,Γ) it holds

∫

Γ

γN,y(U
∗
κ(x, y)a) · v(y)dsy = −a ·Ψκ

DL(v)(x), x /∈ Γ.

Proof. The result can easily be obtained by using some basic results from vector
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calculus:

∫

Γ

γN,y(U
∗
κ(x, y)a) · v(y)dsy =

∫

Γ

(n(y)× (curl y(U
∗
κ(x, y)a)) · v(y)dsy

= −
∫

Γ

(curl y(U
∗
κ(x, y)a) · (Rv(y))dsy

= −
∫

Γ

(∇yU
∗
κ(x, y)× a) · (Rv(y))dsy

=

∫

Γ

(a×∇yU
∗
κ(x, y)) · (Rv(y))dsy

= −a ·
∫

Γ

∇xU
∗
κ(x, y)× (Rv(y))dsy

= −a ·


curl x

∫

Γ

U∗
κ(x, y)Rv(y)dsy


 .

The second result contains an interesting fact, which establishes a connection between
the vector valued Maxwell double layer potential (4.29) and the scalar double layer
potential (4.9). It states that the Maxwell double layer potential applied to the
surface gradient of a scalar function can be rewritten by using the vector valued
single layer potential (4.28) plus the gradient of the scalar double layer potential:

Lemma 4.17. For any φ ∈ H1/2(Γ) we have the relation

Ψκ
DL(∇Γφ)(x) = −κ2Ψκ

SL(nφ)(x)−∇Ψκ
DL(φ)(x), x /∈ Γ. (4.30)

Proof. Due to Chapter 3 we have the relation curlΓφ = R∇Γφ. Inserting this infor-
mation into the definition of the Maxwell double layer potential (4.16) we obtain

Ψκ
DL(∇Γφ)(x) = curl x

∫

Γ

U∗
κ(x, y)curlΓφ(y)dsy.
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Using the symmetry of the fundamental solution gives ∇xU
∗
κ(x, y) = −∇yU

∗
κ(x, y)

and hence

ei · (Ψκ
DL(∇Γφ)(x)) = ei · curl x

∫

Γ

U∗
κ(x, y)curlΓφ(y)dsy

= −ei ·
∫

Γ

∇yU
∗
κ(x, y)× curlΓφ(y)dsy.

The identity (4.30) then can easily be retrieved by using

curl curl = −∆+∇ div

and the fact that U∗
κ(x, y) is a solution of −∆u+ κ2u = 0 for x 6= y:

ei · (Ψκ
DL(∇Γφ)(x)) =

∫

Γ

(∇yU
∗
κ(x, y)× ei) · curlΓφ(y)dsy

=

∫

Γ

(curl y(U
∗
κ(x, y)ei)) · curlΓφ(y)dsy

=

∫

Γ

curlΓ(curl y(U
∗
κ(x, y)ei))φ(y)dsy

=

∫

Γ

n(y) · (curl ycurl y(U∗
κ(x, y)ei))φ(y)dsy

=

∫

Γ

n(y) · (−∆(U∗
κ(x, y)ei) +∇y divy(U

∗
κ(x, y)ei))φ(y)dsy

=

∫

Γ

n(y) ·
[
−κ2(U∗

κ(x, y)ei) +∇y
∂

∂yi
U∗
κ(x, y)

]
φ(y)dsy

= −κ2
∫

Γ

U∗
κ(x, y)φ(y)ni(y) + n(y) ·

[
∇y

∂

∂yi
U∗
κ(x, y)

]
φ(y)dsy

= −κ2
∫

Γ

U∗
κ(x, y)φ(y)ni(y)dsy −

∂

∂xi

∫

Γ

∂

∂n(y)
U∗
κ(x, y)φ(y)dsy.

With these auxiliary results we are now ready to formulate and prove the Stratton-
Chu representation formula. For the proof we pursue the same ansatz as in [52].
There the field is decomposed into a gradient field and a vector potential, which is
defined by the Lorentz gauge.
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Theorem 4.18 (Stratton-Chu representation formula). Let U ∈ H(curl; Ω) be a
function which satisfies

curl curlU(x) + κ2U(x) = 0, x ∈ Ω (4.31)

for some κ ∈ C. Then U can be represented by the formula

U(x) = Ψκ
SL(γ

int
N U)(x) +Ψκ

DL(γ
int
t U)(x) +∇Ψκ

SL(γ
int
n U)(x), x ∈ Ω. (4.32)

In addition we have the relation

0 = Ψκ
SL(divΓ γ

int
N U)(x) + κ2Ψκ

SL(γ
int
n U)(x), x ∈ Ω, (4.33)

which establishes a connection between the traces γ int
N U and γintn U.

Proof. We assume that the function U ∈ H(curl; Ω) satisfies (4.31) and introduce
the decomposition

U(x) = κ2A(x) +∇φ(x), x ∈ Ω

in combination with the gauging condition

divA(x) + φ(x) = 0, x ∈ Ω

with A ∈ H(curl; Ω) and φ ∈ H1(Ω). We insert this decomposition into (4.31), and
together with the gauging condition we get the new system of equations

L
(
A

φ

)
=

(
curl curl + κ2 ∇

div I

)(
A

φ

)
=

(
0
0

)
. (4.34)

Applying Green’s second formula to the operator gives

〈
L
(
A

φ

)
,

(
V

ψ

)〉

Ω

=

〈(
A

φ

)
,L∗

(
V

ψ

)〉

Ω

− T

((
A

φ

)
,

(
V

ψ

))
,

with the adjoint operator

L∗
(
V

ψ

)
=

(
curl curl + κ2 −∇

− div I

)(
V

ψ

)
(4.35)

and the boundary trace operator

T (

(
A

φ

)
,

(
V

ψ

)
) = −〈γtA,γNV〉Γ + 〈γNA,γtV〉Γ − 〈φ, γnV 〉Γ − 〈γnA, ψ〉Γ. (4.36)
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By making use of the fact that U∗
κ(x, y) is a fundamental solution of (4.2) we get the

fundamental solution corresponding to the operator (4.34), which given by the four
by four matrix

U∗
κ(x, y) =

(
U∗
κ(x, y)I3 ∇U∗

κ(x, y)

∇U∗
κ(x, y)

⊤ κ2U∗
κ(x, y)

)
. (4.37)

Note that this fundamental solution is also valid for the case κ = 0. By inserting the
fundamental solution and by using Lemma 4.16 we get the representations

Ai(x) = ei · (Ψκ
DLγtA)(x) + ei ·Ψκ

SL(γNA)(x)

−Ψκ
SL(φni)(x) +

∂

∂xi
Ψκ

SL(γnA)(x), x ∈ Ω (4.38)

and

φ(x) =

∫

Γ

∇ΓU
∗
κ(x, y)γNA(y)dsy −Ψκ

DL(φ)(x)− κ2Ψκ
SL(γnA)(x). (4.39)

As a next step we add the representation formula for A and φ to obtain a represen-
tation for U and use Lemma 4.17. This leads us to the Stratton-Chu representation
formula

U(x) = κ2A(x) + φ(x) = Ψκ
SL(γNU)(x) +Ψκ

DL(γtU)(x) +∇Ψκ
SL(γnU)(x), x ∈ Ω.

Applying the divergence operator to (4.31) and inserting the gauging condition we
conclude that φ satisfies

−∆φ(x) + κ2φ(x) = 0, x ∈ Ω

and due to Section 4.1 it has the representation

φ(x) = Ψκ
SL(γ1φ)(x)−Ψκ

DL(γ0φ)(x), x ∈ Ω.

Inserting this into (4.39) gives the relation

Ψκ
SL(divΓ γNU)(x) + κ2Ψκ

SL(γnU(x)) = 0, x ∈ Ω,

which finishes the proof.

Remark 4.19. The relation

0 = Ψκ
SL(divΓ γ

int
N U)(x) + κ2Ψκ

SL(γ
int
n U)(x), x ∈ Ω, (4.40)

is equivalent to divU(x) = 0 for x ∈ Ω, which is automatically satisfied for a solution
of the electromagnetic wave equation (4.1).
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Remark 4.20. For a function U ∈ H(curl; Ω), which satisfies the electromagnetic
wave equation (4.31) we have the relation

divΓ γ
int
N U(x) = −κ2γintn U(x), x ∈ Γ, (4.41)

which is a consequence of the application of the Stokes formula for the surface (see
[9]). If we assume that κ 6= 0 we can replace the trace γnU in the representation
formula by γNU, i.e.

U(x) = (Ψκ
SL −

1

κ2
∇Γ ◦Ψκ

SL ◦ divΓ)γ int
N U(x) +Ψκ

DL(γ
int
t U)(x). (4.42)

Since 1
κ2 → ∞ as κ → 0 we see that this formulation might cause problems, when κ

is small.

For the solution of the exterior boundary value problem with κ = 0 we have a similar
result, we refer to [52] for a proof:

Theorem 4.21. For a function U ∈ H(curl; Ωc), which satisfies

curl curlU(x) = 0, divU(x) = 0, x ∈ Ωc (4.43)

and the radiation condition

U(x) = O
(

1

|x|

)
, as |x| → ∞,

we have the representation

U(x) = −Ψ0
SL(γ

ext
N U)(x)−Ψ0

DL(γ
ext
t U)(x)−∇Ψ0

SL(γ
ext
n U)(x), x ∈ Ωc. (4.44)

Remark 4.22. For the exterior trace γext
N U of a function U, which satisfies (4.43)

we get analogue to (4.41)

divΓ γ
ext
N U(x) = 0, x ∈ Γ. (4.45)

4.4 Boundary Integral Operators

For the derivation of boundary integral equations for the electromagnetic wave equa-
tion the trace operators γt,γN and γn are applied to the Stratton-Chu formula. The
following results have been derived in [52] for domains with a smooth boundary Γ,
for polyhedra we refer to [33] for the upcoming results.



4.4 Boundary Integral Operators 47

Theorem 4.23. The operators

γ int
t Ψκ

SL = Aκ : H
−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ),

γ int
N Ψκ

SL = (
1

2
I +Bκ) : H

−1/2
‖ (divΓ,Γ) → H

−1/2
‖ (divΓ,Γ),

γ int
t Ψκ

DL = (
1

2
I + Cκ) : H

−1/2
⊥ (curlΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ),

γ int
N Ψκ

DL = Nκ : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
‖ (divΓ,Γ)

define continuous linear mappings. Furthermore we have the jump properties

γ int
t Ψκ

SL − γext
t Ψκ

SL = 0, γ int
N Ψκ

SL − γ int
N Ψκ

SL = I,

γ int
t Ψκ

DL − γext
t Ψκ

DL = I, γ int
N Ψκ

DL − γ int
N Ψκ

DL = 0,

and the relation
〈Cκu,µ〉Γ = −〈u, Bκµ〉Γ (4.46)

for all u ∈ H
−1/2
⊥ (curlΓ,Γ) and µ ∈ H

−1/2
‖ (divΓ,Γ).

Definition 4.24. If we apply the trace operator γt to the representation formula
(4.42) we obtain the following operator for κ 6= 0

Sκ := Aκ −
1

κ2
∇Γ ◦ Vκ ◦ divΓ . (4.47)

We call Sκ Maxwell single layer potential.

Corollary 4.25. The operator Sκ : H
−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ) defines a con-

tinuous linear mapping.

In [52] an alternative representation for the Maxwell hypersingular operator Nκ was
derived by using integration by parts. In fact we see that the operator Nκ exhibits a
similar structure as Sκ:

Remark 4.26. For Nκ with κ ∈ C we have the representation

〈Nκu,v〉Γ = κ2〈AκRu,Rv〉Γ + 〈VκcurlΓu, curlΓv〉Γ, u,v ∈ H
−1/2
⊥ (curlΓ,Γ).

(4.48)

We can also write

〈Nκu,v〉Γ = κ2〈SκRu,Rv〉Γ. (4.49)

when κ 6= 0. We observe that although the operator Nκ seems to have strong similar-
ities to Sκ, the behaviour for κ → 0 is very different. We also see that the operator
N0 is well defined for κ = 0 in contrast to Sκ.
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In the case of κ ∈ C with ℜ(κ) > 0 we have the following ellipticity results for the
Maxwell single layer potential Sκ and for the Maxwell hypersingular operator Nκ:

Theorem 4.27. For κ ∈ C with ℜ(κ) > 0 there exist positive constants cS1 > 0 and
cN1 > 0 such that

|〈Sκλ,λ〉Γ| ≥ cS1‖λ‖2H−1/2
‖

(divΓ,Γ)
, ∀λ ∈ H

−1/2
‖ (divΓ,Γ), (4.50)

|〈Nκu,u〉Γ| ≥ cN1 ‖u‖2H−1/2
⊥ (curlΓ,Γ)

, ∀u ∈ H
−1/2
⊥ (curlΓ,Γ). (4.51)

For the special case κ = κR + iκI with κR = κI we have cS1 = c1
min(1,|κ|)

2
and cN1 =

c2
min(1,|κ|)

2
, where c1 and c2 do not depend on κ. This means for this case we see the

explicit dependence on κ in the ellipticity constants cS1 and cN1 .

For the operator Aκ we do not have the ellipticity on the full space H
−1/2
‖ (divΓ,Γ),

though the operator Aκ is elliptic on a subspace of H
−1/2
‖ (divΓ,Γ):

Theorem 4.28. For κ with ℜ(κ) > 0 and for κ = 0 the operator Aκ is

H
−1/2
‖ (divΓ 0,Γ)-elliptic, i.e. there exists a constant cA1 such that

|〈Aκλ,λ〉Γ| ≥ cA1 ‖λ‖2H−1/2
‖

(divΓ,Γ)
, ∀λ ∈ H

−1/2
‖ (divΓ 0,Γ). (4.52)

For the proof of Theorem 4.27 and 4.28 we refer to [9] for the case κ = κR + κI with
κR = κI . For the other cases the proof works in an analogous way due to Theorem
4.11. The proof for the ellipticity of Sκ can also be found in [14]. The ellipticity for
Nκ immediately follows from the ellipticity of Sκ by using the relation (4.49).
A simple consequence of Lemma 4.17 is the following relation:

Lemma 4.29. For φ ∈ H1/2(Γ) we have the relation

γ int
t Ψ0

DL(∇Γφ) = (
1

2
I + C0)∇Γφ = ∇Γ(

1

2
I −K0)φ.

Lemma 4.30. For any λ ∈ H
−1/2
‖ (divΓ,Γ) and u ∈ H

−1/2
⊥ (curlΓ,Γ) we have

ℑ(〈Sκλ,λ〉Γ) ≥ 0, ℑ(〈Nκu,u〉Γ) ≤ 0,

ℑ(〈S−1
κ λ,λ〉Γ) ≤ 0, ℑ(〈N−1

κ u,u〉Γ) ≥ 0.

A proof of Lemma 4.30 can be found in [71].
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4.5 Boundary Integral Equations

Having derived boundary integral operators we are now ready to formulate bound-
ary integral equations for the electromagnetic wave equation. Applying the trace
operators γ int

t and γ int
N to the Stratton-Chu representation formula (4.32) yield the

following boundary integral equations for the case κ 6= 0:

γ int
t E(x) = Sκ(γ

int
N E)(x) + (

1

2
I + Cκ)γ

int
t E(x), x ∈ Γ, (4.53)

γ int
N E(x) = (

1

2
I +Bκ)γ

int
N (x) +Nκ(γ

int
t E)(x), x ∈ Γ. (4.54)

For the exterior domain we obtain

γext
t E(x) = −Sκγ

ext
N E(x) + (

1

2
I − Cκ)(γ

ext
t E)(x), x ∈ Γ, (4.55)

γext
N E(x) = (

1

2
I −Bκ)(γ

ext
N E)(x)−Nκγ

ext
t E(x), x ∈ Γ (4.56)

by applying the traces γext
t and γext

N to the representation formula for the exterior
domain.

4.5.1 Steklov-Poincaré Operator

For the solution of transmission problems we need to define an operator, which maps
the tangential trace of a function to its Neumann trace, we call this operator analogue
to the scalar case Steklov-Poincaré operator: For κ ∈ C with ℜ(κ) > 0 we define for
the interior traces

S int
κ γ int

t E(x) = γ int
N E(x), S int

κ : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
‖ (divΓ,Γ). (4.57)

For such κ ∈ C with ℜ(κ) > 0 we know that the boundary value problem (4.24) has
a unique solution and therefore the Steklov-Poincaré operator is well defined. By the
aid of the boundary integral equations (4.53)-(4.54) the Dirichlet-to-Neumann map
can be realized as

S int
κ = [Sκ]

−1(
1

2
I − Cκ), (4.58)

or in the symmetric version as

S int
κ = Nκ + (

1

2
I +Bκ)[Sκ]

−1(
1

2
I − Cκ). (4.59)
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Proposition 4.31. For κ ∈ C with ℜ(κ) > 0 the Steklov-Poincaré operator is elliptic

|〈S int
κ u,u〉Γ| ≥ c‖u‖2

H
−1/2
⊥ (curlΓ,Γ)

, ∀u ∈ H
−1/2
⊥ (curlΓ,Γ).

Proof. Since we have ℜ(〈S−1
κ λ,λ〉Γ) ≥ 0 and ℑ(〈S−1

κ λ,λ〉Γ) ≥ 0 it immediately

follows for all u ∈ H
−1/2
⊥ (curlΓ,Γ) that

|〈S int
κ u,u〉Γ| = |〈Nκu,u〉Γ + 〈S−1

κ (
1

2
I − Cκ)u, (

1

2
I − Cκ)u〉Γ|

≥ |〈Nκu,u〉Γ| ≥ cN1 ‖u‖2H−1/2
⊥ (curlΓ,Γ)

.

Let us now consider the Steklov-Poincaré operator for the exterior domain for the
case κ = 0. Due to Theorem 4.14 the Steklov-Poincaré operator

Sext
0 γext

t U(x) = γext
N U(x),

which maps the tangential trace of a solution of the boundary value problem (4.26)-
(4.27) to its Neumann trace, is well defined. Out of the relation (4.45) we get the
mapping property

Sext
0 γext

t E = γext
N E, Sext

0 : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
‖ (divΓ 0,Γ). (4.60)

Let us now look at the boundary integral equations for the case κ = 0, out of the
Stratton-Chu representation formula (4.44) we get the following system of boundary
integral equations

A0γ
ext
N E(x) + (

1

2
I + C0)γ

ext
t E(x) +∇ΓV0(γ

ext
n E)(x) = 0, x ∈ Γ, (4.61)

(
1

2
I +B0)γ

ext
N E(x) +N0(γtE)(x) = 0, x ∈ Γ. (4.62)

If we test the third summand in the left hand side of the boundary integral equation
(4.61) with a test function µ from the space H

−1/2
‖ (divΓ 0,Γ), we observe we observe

that it vanishes:

〈∇ΓV0γ
ext
n E,µ〉Γ = −〈V0γextn E, divΓ µ〉Γ = 0.

Furthermore we know that A0 is elliptic on the space H
−1/2
‖ (divΓ 0,Γ), therefore the

variational problem:
Find γext

N E ∈ H
−1/2
‖ (divΓ 0,Γ) such that

〈A0γ
ext
N E,µ〉Γ = −〈(1

2
I + C0)γ

ext
t E,µ〉Γ, ∀µ ∈ H

−1/2
‖ (divΓ 0,Γ), (4.63)
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has a unique solution. Thus we can define the Steklov-Poincaré operator for the case
κ = 0, which maps γext

t E to the solution γext
N E of the variational problem (4.63).

Note that the operator Sext
0 is not invertible, since for the solution E(x) = ∇φ we

have

Sext
0 ∇Γφ(x) = 0,

which is due to γext
N (∇φ) = 0.

4.6 Stabilization for small κ

In this section we investigate the behaviour of boundary integral equations when
considering small κ. First we analyze the so-called Dirichlet boundary value problem
where we prescribe the tangential trace on the boundary. We will introduce a bound-
ary integral formulation which is stable for small κ. The formulation, which we are
going to present, is also considered in [70] for the scattering case. A similar approach
was introduced in [68] for the scattering of composite objects. We will show that
this approach can also be applied to the Neumann boundary value problem where
we prescribe the Neumann trace.

4.6.1 Prescribing the tangential trace

In this section we will deal with the solution of the following boundary value prob-
lem

curl curlE(x) + κ2E(x) = 0, x ∈ Ω, γ int
t E(x) = F(x), x ∈ Γ. (4.64)

One possibility to solve this boundary value problem would be to determine the
unknown boundary data γ int

N E by solving the boundary integral equation

Sκ(γ
int
N E)(x) = (

1

2
I − Cκ)F(x), x ∈ Γ.

However, as already stated, the operator Sκ is not defined for κ = 0, therefore we
want to derive a boundary integral formulation which is also valid for κ = 0. We will
now keep the trace γintn E and apply the tangential trace operator to the ’extended’
representation formula (5.16). This results in the following system on Γ

Aκ(γ
int
N E) +∇ΓVκ(γ

int
n E) = (

1

2
I − Cκ)F,

Vκ(divΓ γ
int
N E) + κ2Vκ(γ

int
n E) = 0,
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or in equivalent form
(

Aκ ∇ΓVκ
Vκ divΓ κ2Vκ

)(
γNE

γnE

)
=

(
(1
2
I − Cκ)F

0

)
. (4.65)

For the unique solvability of (4.65) we will make use of the following result.

Lemma 4.32. For κ = 0 or κ ∈ C with ℜ(κ) > 0 there exists a constant cS > 0
such that

sup
06=λ∈H−1/2

‖
(divΓ,Γ)

〈Vκ divΓλ, φ〉Γ
‖λ‖

H
−1/2
‖

(divΓ,Γ)

≥ cS‖φ‖H−1/2(Γ) (4.66)

holds for all φ ∈ H
−1/2
∗∗ (Γ) = {u ∈ H−1/2(Γ) : 〈u, Vκ1〉Γ = 0}.

Proof. Due to [11] there exists a constant c > 0 such that

‖∇Γφ‖H−1/2
⊥ (curlΓ,Γ)

≥ c‖φ‖H1/2(Γ)

holds for all φ ∈ H
1/2
∗∗ (Γ) = {u ∈ H1/2(Γ) : 〈u, 1〉Γ = 0}. By using a duality

argument we get

‖∇Γφ‖
H

−1/2
⊥ (curlΓ,Γ)

= sup
06=λ∈H−1/2

‖
(divΓ,Γ)

〈∇Γφ,λ〉Γ
‖λ‖

H
−1/2
‖

(divΓ,Γ)

= sup
06=λ∈H−1/2

‖
(divΓ,Γ)

〈φ, divΓ λ〉Γ
‖λ‖

H
−1/2
‖

(divΓ,Γ)

This yields the inf-sup condition

sup
06=λ∈H−1/2

‖
(divΓ,Γ)

〈φ, divΓ λ〉Γ
‖λ‖

H
−1/2
‖

(divΓ,Γ)

≥ c‖φ‖H1/2(Γ)

for all φ ∈ H
1/2
∗∗ (Γ). By setting ψ = V −1

κ φ and using the ellipticity of Vκ we get the
estimate

‖φ‖H1/2(Γ) = ‖Vκψ‖H1/2(Γ) = sup
06=p∈H−1/2(Γ)

〈Vκψ, p〉Γ
‖p‖H−1/2(Γ)

≥ 〈Vκψ, ψ〉Γ
‖ψ‖H−1/2(Γ)

≥ cV1 ‖ψ‖H−1/2(Γ)

which finishes the proof.

Theorem 4.33. For κ = 0 there exists a unique solution of the variational problem:

Find (λ, φ) ∈ H
−1/2
‖ (divΓ,Γ)×H

−1/2
∗∗ (Γ) such that

〈A0λ,µ〉Γ + 〈∇V0φ,µ〉Γ = 〈F,µ〉Γ (4.67)

〈ψ, V0 divΓ λ〉Γ = 0 (4.68)

holds for all (µ, ψ) ∈ H
−1/2
‖ (divΓ,Γ)×H

−1/2
∗∗ (Γ).
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Proof. The above varational form can be written in the scheme

a(λ,µ) + b(µ, φ) = f(µ), (4.69)

b(λ, ψ) = 0 (4.70)

with a(λ,µ) = 〈A0λ,µ〉Γ and b(µ, φ) = 〈∇ΓV0φ,µ〉Γ. The space

V0 = {µ ∈ H
−1/2
‖ (divΓ,Γ) : b(µ, φ) = 0 ∀φ ∈ H−1/2(Γ)}

can be identified with the space H
−1/2
‖ (divΓ 0,Γ) since we have

b(µ, φ) = 〈φ, V0 divΓ µ〉Γ

and V0 is elliptic. The inf-sup condition from Lemma 4.32 together with the ellipticity

〈A0λ,λ〉Γ ≥ c‖λ‖2
H

−1/2
‖

(divΓ,Γ)
, ∀λ ∈ H

−1/2
‖ (divΓ 0,Γ), (4.71)

give us the unique solvability of the variational problem by applying Theorem 3.4.

Theorem 4.34. For κ ∈ C with ℜ(κ) > 0 there exists a unique solution of the
variational problem:

Find (λ, φ) ∈ H
−1/2
‖ (divΓ,Γ)×H−1/2(Γ) such that

〈Aκλ,µ〉Γ + 〈∇Vκφ,µ〉Γ = 〈F,µ〉Γ, (4.72)

〈ψ, Vκ divΓ λ〉Γ + κ2〈ψ, Vκφ〉Γ = 0 (4.73)

holds for all (µ, ψ) ∈ H
−1/2
‖ (divΓ,Γ)×H−1/2(Γ).

Proof. In the case κ ∈ C with ℜ(κ) > 0 the operator Vκ : H−1/2(Γ) → H1/2(Γ) defines
a bijective mapping, and therefore we can conclude from (4.73) that divΓλ = −κ2φ
holds. Inserting this into (4.72) results in the variational problem

〈Aκλ,µ〉Γ−
1

κ2
〈∇ΓVκ divΓ λ,µ〉Γ = 〈(1

2
I−Cκ)F,µ〉Γ ∀µ ∈ H

−1/2
‖ (divΓ,Γ). (4.74)

From the ellipticity of the operator

Sκ = Aκ −
1

κ2
∇Γ ◦ Vκ ◦ divΓ : H

−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ)

we can finally deduce the unique solvability of the variational problem (4.72)-(4.73).



54 4 Boundary Integral Equations for the Electromagnetic Wave Equation

4.6.2 Prescribing the Neumann trace

In this section we will show that the above stabilized boundary integral equation can
also be used when considering the Neumann boundary value problem

curl curlE(x) + κ2E(x) = 0, x ∈ Ω, γ int
N E(x) = F(x), x ∈ Γ.

If we insert the given boundary data into the second boundary integral equation
(4.54) we are left with solving

(Nκu)(x) = (
1

2
I − Bκ)F(x), x ∈ Γ. (4.75)

Let us first look at the low frequency behaviour of Nκ: If we let κ tend to zero we
get

〈N0u,v〉Γ = 〈V0curlΓu, curlΓv〉Γ, ∀v ∈ H
−1/2
⊥ (curlΓ,Γ). (4.76)

In contrast to the Maxwell single layer potential Sκ the Maxwell hypersingular op-
erator Nκ is defined for κ = 0, however the resulting operator is not invertible. In
fact, every function u = ∇Γφ lies in the kernel of N0. This results in the fact that
Nκ is also ill-conditioned if we let κ tend to zero. We will show how we can use the
stabilized ansatz from the previous section for the hypersingular operator Nκ.
Due to Remark 4.26 we have 〈Nκu,v〉Γ = κ2〈SκRu,Rv〉Γ, which motivates the
choice

λ(x) = κ2Rγ int
t E(x), x ∈ Γ. (4.77)

Hence the boundary integral equation (4.75) can be rewritten as the variational
problem:
Find λ ∈ H

−1/2
‖ (divΓ,Γ) such that

〈Sκλ,µ〉Γ = 〈(1
2
I − Bκ)F,Rµ〉Γ

holds for all µ ∈ H
−1/2
‖ (divΓ,Γ).

For the operator Sκ we can now apply the stablization as considered in the previous
section and obtain the following variational problem:
Find (λ, φ) ∈ H

−1/2
‖ (divΓ,Γ)×H−1/2(Γ) such that

〈Aκλ,µ〉Γ + 〈∇ΓVκφ,µ〉Γ = 〈(1
2
I − Bκ)F,Rµ〉Γ,

〈Vκ divΓλ, ψ〉Γ + κ2〈Vκφ, ψ〉Γ = 0

holds for all (µ, ψ) ∈ H
−1/2
‖ (divΓ,Γ)×H−1/2(Γ).
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Thus we have found a boundary integral formulation for the Neumann boundary
value problem, which is stable for κ → 0. The tangential trace of E can finally be
obtained by computing

γ int
t E = − 1

κ2
Rλ, on Γ.
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5 BOUNDARY INTEGRAL EQUATIONS FOR MAXWELL

TRANSMISSION PROBLEMS

In this chapter we focus on the solution of transmission problems arising from ap-
plications in electromagnetic engineering by using boundary element methods. The
model application under consideration can be described by the following setting:
We have a given bounded conducting object, outside of this object we place a coil
in which a time-harmonic current is induced. The time harmonic current in the
coil generates a time harmonic magnetic field Bp, which induces eddy currents in-
side the conducting object. We will assume that the conducting object has linear
and isotropic material properties and piecewise constant material parameters, i.e.
σ, ε and µ are piecewise constant. An application for such a setting is the forward
problem of Magnetic Induction Tomography as described in Section 2.3. Another
application arises from the simulation of transformers in industrial applications. For
such problems the boundary element method is very suitable since we can describe
the solution of a transmission problem in the whole space R3 by boundary potentials
which are defined only on the boundary of the conducting domain.
For this type of problems boundary integral formulations have been derived using
a collocation method for an indirect ansatz in [61], a boundary integral formulation
using the Galerkin method can be found in [32] based on the idea of symmetric cou-
pling [18]. In both papers, only domains with constant material parameters were
considered. Here we will also consider structures with piecewise constant conductivi-
ties, permittivities and permeabilities. A boundary integral formulation for problems
with piecewise constant material properties has also been considered in [9] in a slightly
different setting. Another possibility to solve this problem would be a FEM-BEM
coupling, as it has been done in [31].
In the first part of this chapter we are going to introduce a formulation for the trans-
mission problem based on the electric field E. In the next section we will consider the
H-field formulation, where we derive a boundary element formulation for the eddy
current transmission problem which is formulated in terms of the magnetic field in-
tensity H. For a conducting object, which has constant material properties, both
formulations, which are based on a direct ansatz were also derived in [32]. Here we
extend those formulations to domains with piecewise constant coefficients. For the
H-field we are going to introduce a new formulation for the transmission problem
which is based on an indirect approach. For the collocation method this has been
done in [61], here we are going to derive a formulation for the Galerkin method.
In the last section we will derive a boundary integral formulation for the reduced

57
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model.

5.1 The Stratton-Chu Representation Formula for the

Electric Field E and the Magnetic Field Intensity H

In Section 2 we showed that if there are no impressed currents, i.e. ji = 0, the electric
field E and the magnetic field intensity H are both governed by the second order
partial differential equations

curl curlE(x) + iωµ(σ + iωε)E(x) = 0, x ∈ R
3,

curl curlH(x) + iωµ(σ + iωε)H(x) = 0, x ∈ R
3,

which correspond to the electromagnetic wave equation. We now set

κ :=
√
iωµ(σ + iωε),

and assume that the material parameters σ, ε and µ are either constant or piecewise
constant. Hence in a domain Ω with constant κ the fields E and H can be represented
by the Stratton-Chu representation formula (4.32). By using Maxwell’s equations
(2.3) and (2.4) we have the relations

curlE(x) = −iωµH(x), curlH(x) = iωε̃E(x), (5.1)

where we have set ε̃ := σ
iω

+ ε. This gives the following relations for the traces

−iωµγ×H = γNE, iωε̃γ×E = γNH, on Γ = ∂Ω.

By using these relations we can find the following representation formula for the
electric field E and the magnetic field intensity H

E(x) = −iωµΨκ
SL(γ

int
× H)(x)−Ψκ

DL(Rγint
× E)(x) +∇Ψκ

SL(γ
int
n E)(x), x ∈ Ω, (5.2)

H(x) = iωε̃Ψκ
SL(γ

int
× E)(x)−Ψκ

DL(Rγ int
× H)(x) +∇Ψκ

SL(γ
int
n H)(x), x ∈ Ω. (5.3)

We observe that here the relevant traces are now γ int
× E, γ int

× H, γintn E and γintn H instead
of γ int

t E,γint
N E, γintn E or γ int

t H,γ int
N H and γintn H. In addition to the representation

formulae (5.2) and (5.3) we have the relations

divΓ(γ
int
× E) = −iωµγintn H, divΓ(γ

int
× H) = iωε̃γintn E, on Γ. (5.4)

In terms of the E-H formulation we can also find an equivalent to the Steklov-
Poincaré operator, i.e.

Rγint
× H = Tκ(γ

int
× E), (5.5)
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which maps the twisted tangential trace of the electric field to the twisted tangential
trace of the magnetic field intensity. For this boundary integral operator we can find
the following representation:

Tκ = −iωε̃Sκ +
1

iωµ
(
1

2
I + Cκ)RS

−1
κ (

1

2
I − Cκ)R. (5.6)

Note that in our case, where κ =
√
iωµ(σ + iωε) we have ℜ(κ) > 0 when σ 6= 0.

Thus the ellipticity results for the operators Sκ and Nκ from the previous chapter
hold. Consequently the operators Sκ and Nκ are invertible.
In our setting we have κ = 0 in the exterior domain Ωc, hence we have the following
representation for the secondary electric field Es and for the magnetic field intensity
Hs:

E(x) = iωµΨ0
SL(γ

ext
× Hs)(x) +Ψκ

DL(Rγext
× Es)(x) +∇Ψ0

SL(γ
ext
n Es)(x), x ∈ Ωc, (5.7)

H(x) = −Ψ0
DL(Rγext

× Hs)(x)−∇Ψ0
SL(γ

ext
n Hs)(x), x ∈ Ωc, (5.8)

with the additional relations

divΓ(γ
ext
× Es)(x) = −iωµγextn Hs(x), divΓ(γ

ext
× Hs)(x) = 0, x ∈ Γ. (5.9)

5.2 The Eddy Current Model

From now on we assume that we have given a non-overlapping domain decomposition
of the conducting domain Ω, see Figure 5.1:

Definition 5.1. We call {Ω1,Ω2, . . . ,ΩM} a non-overlapping domain decomposition
of the domain Ω if

Ω =
M⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Γi = ∂Ωi (5.10)

holds. The coupling boundaries are denoted by Γij = Γi∩Γj, the skeleton Γs is defined
by

Γs =
⋃

i,j

Γij ∪ Γ. (5.11)

We assume that the material parameters are piecewise constant with respect to this
domain decomposition, i.e.

µ(x) = µi, ε(x) = εi, σ(x) = σi, κ(x) = κi =
√
iωµi(σi + iωεi), x ∈ Ωi.
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Ω1

Ω2

Ω3

Ω4

Γ

Γ12

Γ24

Γ23

Γ34

Figure 5.1: Example for a domain decomposition.

5.2.1 A direct boundary integral formulation based on the E-field

In what follows we will derive a boundary integral formulation for the eddy current
problem introduced in Section 2.3 and which is formulated in terms of the electric
field E. For this formulation we follow the approach in [32], and for the domain
decomposition method we follow the ideas in [9].
Let us assume that we have given a conducting domain Ω with the domain decom-
position as given in Definition 5.1. To make the eddy current formulation suitable
for a boundary element formulation, we introduce the following splitting in the non-
conducting domain:

E(x) = Es(x) + Ep(x), x ∈ Ωc, (5.12)

where Ep is the primary electric field as defined in (2.33). Then we conclude the
following transmission problem:

curl curlE(x) + κ2iE(x) = 0, x ∈ Ωi, (5.13)

curl curlEs(x) = 0, x ∈ Ωc, (5.14)

divEs(x) = 0, x ∈ Ωc, (5.15)

with κi =
√
iωµi(σi + iωεi). Moreover, we assume that Es satisfies suitable radiation

conditions. From the Stratton-Chu representation formula we get

E(x) = Ψκ
SL(γ

i
NE)(x) +Ψκ

DL(γ
i
NE)(x) +∇Ψκ

SL(γ
i
nE)(x), x ∈ Ωi, (5.16)

Es(x) = −Ψ0
SL(γ

ext
N Es)(x)−Ψ0

DL(γ
ext
t Es)(x)−∇Ψ0

SL(γ
ext
n Es)(x), x ∈ Ωc. (5.17)

The unknowns in this formulation are the tangential and the Neumann and normal
traces of the electric fields E and Es.

Remark 5.2. The eddy current model can also be formulated in terms of the magnetic
field intensity H, the traces of H and E are linked via

γ int
× H = − 1

iωµ
γ int
N E, γ int

N H = (σ + iωε)γint
× E, γext

× H = − 1

iωµ
γext
N E.
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Note that in the eddy current model the exterior traces γext
t E and γext

N H are not
connected any more!

The Steklov-Poincaré operator as introduced in Section 4.5.1 maps the tangential
trace to the Neumann trace γi

NE of the local electric field E in Ωi:

γi
NE = Si

κγ
i
tE =

[
N i

κ +

(
1

2
I +Bi

κ

)
(Si

k)
−1

(
1

2
I − C i

κ

)]
γi
tE, (5.18)

where the boundary integral operators N i
κ, C

i
κ, S

i
κ, B

i
κ are defined on the boundary Γi

with the parameter κi. For ease in the notation we skip the index i in κi and write
N i

κ, C
i
κ, S

i
κ, B

i
κ instead of N i

κi
, C i

κi
, Si

κi
, Bi

κi
. The transmission conditions read

γ i
tE− γ

j
tE = 0,

1

µi
γi
NE+

1

µj
γ
j
NE = 0 on Γij (5.19)

in the interior domain. On the transmission boundary between the air-domain and
the conducting domain we have the transmission conditions

γi
tE+ γext

t Es = γtEp,
1

µi
γi
NE+

1

µ0
γext
N Es =

1

µ0
γNEp on Γi ∩ Γ, (5.20)

which motivate the choice of u = γtE ∈ H
−1/2
⊥ (curlΓs ,Γs) as a global unknown on

the skeleton Γs. This gives rise to the variational problem

M∑

i=1

1

µi
〈Si

κu|Γi
,v|Γi

〉Γi
+

1

µ0
〈γext

N Es,v|Γ〉Γ =
1

µ0
〈γNEp,v|Γ〉Γ, (5.21)

for all test functions v ∈ H
−1/2
⊥ (curlΓs ,Γs). As a next step we introduce the local

functions λi ∈ H
−1/2
‖ (divΓi

,Γi) and set

λi :=
1

µi
(Si

κ)
−1

(
1

2
I − C i

κ

)
u|Γi

for i = 1, . . . ,M.

Using the representation (5.18) of the Steklov-Poincaré operator Si
κ we obtain the

following variational equation

M∑

i=1

1

µi

〈N i
κu|Γi

,v|Γi
〉Γi

+
M∑

i=1

1

µi

〈(1
2
I +Bi

κ)λi,v|Γi
〉Γi

+
1

µ0

〈γext
N Es,v|Γ〉Γ

=
1

µ0

〈γNEp,v|Γ〉Γ,
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for all test functions v ∈ H
−1/2
⊥ (curlΓs ,Γs). For the exterior Neumann trace γext

N Es

we have derived the following boundary integral equation in (4.62):

γext
N Es = (

1

2
I − B0)γ

ext
N Es −N0γ

ext
N Es.

We set

λ0 := − 1

µ0

γext
N Es +

1

µ0

γNEp

and Γ0 := Γ and we use the transmission condition (5.20) to conclude the variational
equation

M∑

i=0

1

µi
〈N i

κu|Γi
,v|Γi

〉Γi
+

M∑

i=1

〈Bi
κλi,v|Γi

〉Γi

=
1

µ0
〈N0γ

ext
t Ep,v|Γ〉Γ +

1

µ0
〈(1
2
I +B0)γ

ext
N Ep,v|Γ〉Γ,

for all v ∈ H
−1/2
⊥ (curlΓs,Γs). The exterior traces γext

t Es and γext
N Es satisfy the

boundary integral equation derived in (4.61):

A0γ
ext
N Es(x) + (

1

2
I + C0)γ

ext
t Es(x) +∇ΓV0γ

ext
n Es(x) = 0, x ∈ Γ. (5.22)

Due to Remark 4.45 we have that the function γext
N Es is an element of the space

H
−1/2
‖ (divΓ 0,Γ), therefore we have γext

N Es ∈ H
−1/2
‖ (divΓ 0,Γ). Thus, if we test equa-

tion (5.22) with a test function in the space H
−1/2
‖ (divΓ 0,Γ), the term ∇ΓV0γ

ext
n Es(x)

vanishes. Hence we get

〈A0γ
ext
N Es,µ0〉Γ + 〈(1

2
I + C0)γ

ext
t Es,µ0〉Γ = 0. (5.23)

As a next step we insert γext
N Es = −µ0λ0 + γNEp in (5.23). Since we know that the

primary field Ep satisfies

curl curlEp(x) = 0, x ∈ Ω,

we also conclude that divΓ Ep = 0, from which we can deduce that λ0 is also an

element of the space H
−1/2
‖ (divΓ 0,Γ). This leads us to the following variational

equation to find λ0 ∈ H
−1/2
‖ (divΓ 0,Γ)

µ0〈A0λ0,µ0〉Γ + 〈(1
2
I + C0)u|Γ,µ0〉Γ = 〈(1

2
I + C0)γtEp,µ0〉Γ + 〈A0γNEp,µ0〉Γ

(5.24)
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for all test functions µ0 ∈ H
−1/2
‖ (divΓ 0,Γ). For λi we have the variational equa-

tions

µi〈Si
κλi,µi〉+ 〈(−1

2
I + C i

κ)u|Γi
,µi〉 = 0, ∀µi ∈ H

−1/2
‖ (divΓ,Γ), (5.25)

for i = 1, . . . ,M . Due to the transmission condition (5.20) we have that divΓλi(x) =
0 for x ∈ Γi ∩ Γ, hence we define the space

H
−1/2
‖ (divΓi∩Γ 0,Γi) := {µ ∈ H

−1/2
‖ (divΓi

,Γi), divΓ∩Γi
µ = 0},

in which we seek the unknowns {λ0,λ1, . . . ,λM}. Adding (5.24) and (5.25) up and
using the transmission conditions the variational problem (5.21) becomes:

Find λi ∈ H
−1/2
‖ (divΓi∩Γ0,Γi) for i = 0, . . . ,M and u ∈ H

−1/2
⊥ (curlΓs,Γs) such that

M∑

i=0

(
1

µi
〈N i

κu|Γi
,v|Γi

〉Γi
+ 〈Bi

κλi,v|Γi
〉Γi

)
= f(v|Γ), (5.26)

M∑

i=0

(
〈C i

κu|Γi
,µi〉Γi

+ µi〈Si
κλi,µi〉Γi

)
= g(µ0) (5.27)

holds for all µi ∈ H
−1/2
‖ (divΓi∩Γ 0,Γi), i = 0, . . . ,M and v ∈ H

−1/2
⊥ (curlΓs,Γs). For

ease in the notation we have set S0
0 := A0. The right hand side is given by

f(v|Γ) =
1

µ0

〈(1
2
I +B0)γNEp,v|Γ〉Γ +

1

µ0

〈N0γtEp,v|Γ〉Γ, (5.28)

g(µ0) = 〈A0γNEp,µ0〉Γ + 〈(1
2
I + C0)γtEp,µ0〉Γ. (5.29)

Theorem 5.3. The associated bi-linear form

a(u,λ0, . . . ,λM ;v,µ0, . . . ,µM) :=
M∑

i=0

(
1

µi
〈N i

κu|Γi
,v|Γi

〉Γi
+ 〈Bi

κλi,v|Γi
〉Γi

)

+
M∑

i=0

(
〈µi, C

i
κu|Γi

〉Γi
+ µi〈µi, S

i
κλi〉Γi

)

is H
−1/2
‖ (divΓi∩Γ 0,Γi)×H

−1/2
⊥ (curlΓs ,Γs)-elliptic.

Proof. Using Theorem 4.27 and Lemma 4.30 we easily obtain

|a(u,λ0, . . . ,λM ;u,λ0, . . . ,λM)| =
∣∣∣∣∣

M∑

i=0

(
1

µi

〈N i
κu|Γi

,u|Γi
〉Γi

+ µi〈λi, S
i
κλi〉Γi

)∣∣∣∣∣

≥ c1‖u‖2
H

−1/2
⊥ (curlΓs ,Γs)

+ c2

M∑

i=0

‖λi‖2
H

−1/2
‖

(divΓi
,Γi)

for all u ∈ H
−1/2
⊥ (curlΓs ,Γs) and λi ∈ H

−1/2
‖ (divΓi

,Γi), i = 1, . . . ,M .
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Remark 5.4. If we assume that κ(x) = κ for x ∈ Ω, i.e. κ is constant in Ω, then
we get that λ1 = λ0 =: 1

µ0
λ. Inserting this information into the above variational

problem results in the variational problem which was derived in [32]:

Find (λ,u) ∈ H
−1/2
‖ (divΓ 0,Γ)×H

−1/2
⊥ (curlΓ,Γ) such that

〈( 1
µr
Nκ +N0)u,v〉Γ + 〈(Bκ +B0)λ,v〉Γ = f(v), (5.30)

〈(Cκ + C0)u,µ〉Γ + 〈(µrSκ + S0)λ,µ〉Γ = g(µ), (5.31)

holds for all (µ,v) ∈ H
−1/2
‖ (divΓ 0,Γ)×H

−1/2
⊥ (curlΓ,Γ). The right hand side is given

by

f(v) = 〈(1
2
I +B0)γNEp,v〉Γ + 〈N0γtEp,v〉Γ,

g(µ) = 〈S0γNEp,µ〉Γ + 〈(1
2
I + C0)γtEp,µ〉Γ

and we have set µr =
µ
µ0

.

Remark 5.5. Note that so far this method is also valid for mulitple connected do-
mains Ω. The difficulty when dealing with non-simple connected domains lies in the
discretization of the space H

−1/2
‖ (divΓ 0,Γ).

Approximation of the space H
−1/2
‖ (divΓi∩Γ 0,Γi)

For the implementation of the above presented method we have to deal with the ques-
tion how to incorporate the space H

−1/2
‖ (divΓi∩Γ 0,Γi). Here we present two methods

for an approximation of this space. One method makes use of the representation of
functions λ with divΓ λ = 0 as surface curl of H1/2(Γ) functions, i.e. λ = curlΓφ
with φ ∈ H1/2(Γ). The other enforces the condition divΓ λ = 0 on Γ ∩ Γi by using a
Lagrange multiplier. For simplicity we will now assume that the material parameters,
i.e. σ, ε, µ are constant in Ω.

Method 1:

In Method 1 we will make use of an explicit representation of the space
H

−1/2
‖ (divΓ 0,Γ) in the case of simply connected domains. For simplicity we will now

assume that κ is constant in Ω. For such type of problems we can use the formulation
(5.30)-(5.31). Furthermore we assume that we consider a simple connected domain,
then we can make use of the fact that divΓ λ = 0 implies λ = curlΓφ, which is a
result of the Hodge decomposition of the space H

−1/2
‖ (divΓ,Γ) (see e.g. [15]). This
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leads to the variational formulation:
Find (u, φ) ∈ H

−1/2
⊥ (curlΓ,Γ)×H1/2(Γ) such that

〈( 1
µ
Nκ +

1

µ0
N0)u,v〉Γ + 〈(Bκ +B0)curlΓφ,v〉Γ = f(v),

〈(Cκ + C0)u, curlΓψ〉Γ + 〈(µAκ + µ0A0)curlΓφ, curlΓψ〉Γ = g(curlΓψ)

holds for all (v, ψ) ∈ H
−1/2
⊥ (curlΓ,Γ)×H1/2(Γ).

A treatment of this approach when dealing with mulitple connected domains can
be found in [32]. As it has been also pointed out in [9], this approach has to be
modified if divΓ λ = 0 is required on a part of the boundary, i.e. when we have given
a conducting domain with piecewise constant κ.

Method 2:

For the second method we enforce the condition divΓ λ = 0 on Γ∩Γi by introducing
a Lagrange mulitplier φi on every subboundary Γi. This leads to the following vari-
ational problem, which has a block skew symmetric structure:
Find u ∈ H

−1/2
⊥ (curlΓs ,Γs),λi,∈ H

−1/2
‖ (divΓi

,Γi) and φi ∈ H−1/2(Γi ∩ Γ) for
i = 1, . . .M such that

M∑

i=0

(
1

µi
〈N i

κu|Γi
,v|Γi

〉Γi
+ 〈Bi

κλi,v|Γi
〉Γi

)
= f(v|Γ), (5.32)

M∑

i=0

(
〈C i

κu|Γi
,µi〉Γi

+ µi〈Si
κλi,µi〉Γi

+ 〈∇ΓV
i
κφi,µi〉Γ∩Γi

)
= g(µ0), (5.33)

M∑

i=0

(
〈V i

κ divΓ λi, ψi〉Γ∩Γi
+ 〈1, φi〉Γ∩Γi

〈1, ψi〉Γ∩Γi

)
= 0 (5.34)

holds for all v ∈ H
−1/2
⊥ (curlΓs,Γs), µi ∈ H

−1/2
‖ (divΓi

,Γi), ψi ∈ H−1/2(Γi ∩ Γ) for

i = 1, . . . ,M . Here the stabilization
∑M

i=0〈1, φ〉Γ〈1, ψ〉Γ was added.
The unqiue solvability of this formulation was shown in [9]. This approach is also
valid in the case of multiple connceted domains, when adding the stabilization

Ncc∑

i=1

〈1, φ〉Γ̃i
〈1, ψ〉Γ̃i

,

where Ncc denotes the number of connected components.

Remark 5.6. The advantage of Method 1 is that the resulting discrete system is
smaller than the one in the second approach, moreover it holds

〈A0curlΓφ, curlΓψ〉Γ = 〈D0φ, ψ〉Γ, (5.35)
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so in the second diagonal block of the system we have an operator, which corresponds
to the hypersingular operator of the Laplace operator, for which suitable precondi-
tioners already exist. Furthermore the system matrix of Method 1 is as examples in
the next Section show, better conditioned. So using Method 1 is advisable if problems
with a domain with constant material parameters are considered.

Determining the voltage in a coil

In applications the voltage in a coil, which is located in the non-conducting domain,
needs to be evaluated, i.e. the expression

v = −iω
∫

C

B · n(x)dsx

has to be computed. Out of the solution of the variational problem (5.26)-(5.27)
we obtain the interior traces γi

tE and γi
NE. By using the transmission condition

(5.20) we can compute the traces γext
t Es and γext

N Es. We will now show how we can
compute the voltage v by using the traces γext

t Es and γext
N Es.

We apply Stokes theorem and insert the representation formula for Es in the non-
conducting domain Ωc (5.17):

v =

∫

∂C

Es(x) · τds = −
∫

∂C

Ψ0
SL(γ

ext
N Es)(x) · τds−

∫

∂C

Ψ0
DL(γ

ext
t Es)(x) · τds

= −
∫

∂C

∫

Γ

U∗
0 (x, y)γ

ext
N Es(y)dsy · τds−

∫

∂C

curl x

∫

Γ

U∗
0 (x, y)γ

ext
t Es(y)dsy · τds.

Note that the gradient part ∇Ψ0
SL(γ

ext
n Es) in the representation formula (5.17) drops

out when integrating over a closed line. By recalling the formula for the computation
of the primary fields from Section 2.3:

Ep(x) = −iωµ0

∫

∂C

U∗
0 (x, y)τdsy, Hp(x) = curl x

∫

∂C

U∗
0 (x, y)τdsy

and by interchanging the order of integration we get the following formula for the
computation of the voltage v in the coil C

v = −
∫

Γ

γext
N Es(y) ·

∫

∂C

U∗(x, y)τdsdsy −
∫

Γ

γext
t Es(y) · curl x

∫

∂C

U∗(x, y)τdsdsy

=
1

iωµ0

∫

Γ

γext
N Es(y) · Ep(y)dsy −

∫

Γ

γext
t Es(y) ·Hp(y)dsy

=
1

iωµ0

(〈γext
N Es,γtEp〉Γ + 〈γext

t Es,γNEp〉)Γ.
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Thus the voltage v in a coil C can be evaluated by computing an inner product of
the traces γext

t E and γext
N E with the primary field of the coil C.

Remark 5.7. The magnetic field B in the exterior domain can also be evaluated by
using the traces γext

t Es and γext
N Es:

B(x) = µ0H(x) =
1

iω
Ψ0

DL(Rγext
N Es)(x) +

1

iω
∇Ψ0

SL(curlΓγ
ext
t Es)(x), x ∈ Ωc.

(5.36)
This formula can be obtained by combining (5.8) with (5.1).

5.2.2 A direct boundary integral formulation based on the H-field

In this section we consider a formulation for the solution of the eddy current problem,
in which the unknowns are expressed using the magnetic field intensity H. We extend
the approach, which has been proposed in [31] to problems with piecewise constant
material properties. In contrast to [31] we will only consider simply connected do-
mains here. The H-field formulation differs from the E-formulation in such a way
that in the exterior domain the H-field can be written as a gradient field, hence we
only have to solve a potential equation in the exterior domain.
Let us assume that we have given a non-overlapping domain decomposition as in
Definition 5.1, then in the interior domains the H-field is governed by

curl curlH(x) + κ2iH(x) = 0, x ∈ Ωi, i = 1, . . . ,M. (5.37)

In the exterior domain we introduce the decomposition

H(x) = Hs(x) +Hp(x), x ∈ Ωc, (5.38)

with the primary magnetic field intensity Hp as defined in (2.33). With this decom-
position we get curlHs(x) = 0 and thus Hs can be written as the gradient of a scalar
function, which satisfies the potential equation due to Gauss law (2.2):

Hs(x) = ∇φ(x), ∆φ(x) = 0, x ∈ Ωc. (5.39)

In the interior domains the magnetic field intensity H can be described by the
Stratton-Chu representation formula (4.32) as derived in the previous chapter:

H(x) = Ψκ
SL(γ

i
NH)(x) +Ψκ

DL(γ
i
NH)(x) +∇Ψκ

SL(γ
i
nH)(x), x ∈ Ωi,

For the exterior domain we have

∇φ(x) = −∇Ψ0
SL(γ

ext
1 φ)(x) +∇Ψ0

DL(γ
ext
0 φ)(x), x ∈ Ωc.
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For the interior domain the following transmission conditions hold:

γ i
tH− γ

j
tH = 0,

1

ε̃i
γi
NH+

1

ε̃j
γ
j
NH = 0 on Γij , (5.40)

and for the transmission boundary between the conducting and the non-conducting
domain we have

γi
tH+∇Γφ = γtHp, µiγ

i
nH+ µ0γ

int
1 φ = µ0γnHp on Γi ∪ Γ. (5.41)

In Section 4.5.1 we have introduced the Steklov-Poincaré operator, which maps the
tangential trace of the magnetic field intensity to its Neumann trace:

γi
NH = Si

κγ
i
tH =

[
N i

κ + (
1

2
I +Bi

κ)(S
i
κ)

−1(
1

2
I − C i

κ)

]
γ i
tH, on Γi. (5.42)

By summing up over all boundaries Γi and inserting the transmission conditions for
the interior tangential traces (5.40) we get

M∑

i=1

1

ε̃i
Si
κγ

i
tH =

M∑

i=1

1

ε̃i
γi
NH|Γi

=
M∑

i=1

1

ε̃i
γi
NH|Γ∩Γi

.

Due to (5.40) we can choose the tangential trace u = γtH ∈ H
−1/2
⊥ (curlΓs ,Γs) as

global unknown defined on the skeleton Γs, this gives the following integral equa-
tion:

M∑

i=1

1

ε̃i
Si
κu|Γi

=

M∑

i=1

1

ε̃i
γi
NH|Γ∩Γi

. (5.43)

To be able to incorporate the transmission conditions (5.41) we introduce the space

V0 = {(v, ψ) ∈ H
−1/2
⊥ (curlΓs,Γs)×H1/2(Γ) : v|Γ = ∇Γψ}.

Testing (5.43) with functions in the space V0 gives

M∑

i=1

1

ε̃i
〈Si

κu|Γi
,v|Γi

〉Γi
=

M∑

i=1

1

ε̃i
〈γi

NH|Γ∩Γi
,∇Γψ|Γ∩Γi

〉Γ∩Γi

= −
M∑

i=1

1

ε̃i
〈divΓ γi

NH|Γ∩Γi
, ψ|Γ∩Γi

〉Γ∩Γi

=
M∑

i=1

κ2i
ε̃i
〈γinH|Γ∩Γi

, ψ|Γ∩Γi
〉Γ∩Γi

= −ω2

M∑

i=1

µi〈γinH|Γ∩Γi
, ψ|Γ∩Γi

〉,
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where we have used the identity divΓ γ
i
tH = −κ2i γinH. By inserting the transmission

condition (5.41) we obtain the following variational equation

M∑

i=1

1

ε̃i
〈Si

κi
u|Γi

,v|Γi
〉Γi

= ω2µ0〈γext1 φ, ψ〉Γ − ω2µ0〈γnHp, ψ〉Γ

for a pair of test functions (v, ψ) ∈ V0. Using the Steklov-Poincaré operator for the
scalar Laplace equation (4.21) we can write

M∑

i=1

1

ε̃i
〈Si

κi
u|Γi

,v|Γi
〉 − ω2µ0〈Sext

0 φ, ψ〉Γ = −ω2µ0〈γnHp, ψ〉Γ

for (v, ψ) ∈ V0. By introducing the new auxiliary unknowns

λi =
1

ε̃i
(Si

κ)
−1(

1

2
I − C i

κ)u|Γi
for i = 1, . . . ,M (5.44)

and

t = −ω2µ0V
−1
0 (

1

2
I −K0)φ (5.45)

we get the variational equation

M∑

i=1

1

ε̃i
〈N i

κũ|Γi
,v|Γi

〉Γi
+ω2µ0〈D0φ, ψ〉Γ+

M∑

i=1

〈(1
2
I+Bi

κ)λi,v|Γi
〉Γi

−〈(1
2
I−K ′

0)t, ψ〉Γ

= −ω2µ0〈γnHp, ψ〉Γ +
M∑

i=1

1

ε̃i
〈N i

κγtHp,v|Γi
〉Γi
,

for (v, ψ) ∈ V0. We have set ũ(x) = u(x)−γtHp(x) for x ∈ Ω. Due to the transmis-
sion conditions (5.41) we have then (ũ, φ) ∈ V0. Adding this with the equations for
the unknowns λi and t we obtain the variational problem:
Find ((ũ, φ),λi, t) ∈ V0 ×H

−1/2
‖ (divΓ,Γ)×H−1/2(Γ) such that

n((ũ, φ), (v, ψ)) +
M∑

i=1

〈(1
2
I +Bi

κ)λi,v|Γi
〉Γi

− 〈(1
2
I −K ′

0)t, ψ〉Γ = f(v), (5.46)

M∑

i=1

〈(−1

2
I + C i

κ)u|Γi
,µi〉Γi

+

M∑

i=1

〈ε̃iSi
κλi,µi〉Γi

=

M∑

i=1

g(µi), (5.47)

〈(1
2
I −K0)φ, p〉Γ +

1

ω2µ0

〈V0t, p〉Γ = 0 (5.48)
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is satisfied for all ((v, ψ),µi, p) ∈ V0×H
−1/2
‖ (divΓ,Γ)×H−1/2(Γ). The bi-linear form

n((ũ, φ), (v, ψ)) is given by

n((ũ, φ), (v, ψ)) =

M∑

i=1

1

ε̃i
〈N i

κũ|Γi
,v|Γi

〉Γi
+ ω2µ0〈D0φ, ψ〉Γ (5.49)

and the right hand side is defined by

f(v) = −ω2µ0〈γnHp, ψ〉Γ +
M∑

i=1

1

ε̃i
〈N i

κγtHp,v|Γi
〉Γi
,

g(µi) = 〈(−1

2
I + C i

κ)γtHp,µi〉Γi
.

Proposition 5.8. The variational problem (5.46)-(5.48) admits a unique solution

in the space V0 ×H
−1/2
‖ (divΓ,Γ)×H−1/2(Γ).

The proof of Proposition 5.8 follows from the block-skew symmetric structure of the
variational problem (5.46)-(5.48) and from the ellipticity of the operators Nκ, D0, Sκ

and V0. Let us now consider the simple case that κ is constant in Ω, this means
that we have only one transmission boundary Γ between the conducting and the
non-conducting domains. We can replace ũ by ∇Γφ and skip the space V0. This
setting leads us to the following variational problem, which was also derived in [31]:

Find (φ,λ, t) ∈ H1/2(Γ)×H
−1/2
‖ (divΓ,Γ)×H−1/2(Γ) such that

n(φ, ψ) + 〈(1
2
I +Bκ)λ,∇Γψ〉Γ − 〈(1

2
I −K ′

0)t, ψ〉Γ = f(ψ), (5.50)

〈(−1

2
I + Cκ)∇Γφ,µ〉Γ + ε̃〈Sκλ,µ〉Γ = g(µ), (5.51)

〈(1
2
I −K0)φ, p〉Γ +

1

ω2µ0
〈V0t, p〉Γ = 0 (5.52)

is satisfied for all (ψ,µ, p) ∈ H1/2(Γ)×H
−1/2
‖ (divΓ,Γ)×H−1/2(Γ) with

n(φ, ψ) =
1

ε̃
〈Nκ∇Γφ,∇Γψ〉Γ +

1

ω2µ0
〈D0φ, ψ〉Γ,

and the right hand side

f(ψ) =
1

ε̃
〈NκγtHp,∇Γψ〉Γ − ω2µ0〈γnHp, ψ〉Γ, g(µ) = 〈(−1

2
I + Cκ)γtHp,µ〉Γ.
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5.2.3 An indirect boundary integral formulation based on the H-field

For the case that κ is constant in the conducting domain Ω we are going to present
an indirect boundary integral method for the H-φ formulation. Such an approach
has also been considered in [61] for a collocation boundary element method. We will
introduce an indirect formulation, which is also suited for the Galerkin method. The
advantage of the indirect approach compared to the direct approach in Section 5.2.2,
is that it leads to a smaller system of boundary integral equations, also less boundary
integral operators are involved, which means that in a boundary element method less
matrices have to be set up.
We consider the same setting as in the previous section, this means that in the
conducting domain Ω the magnetic field intensity is governed by the electromagnetic
wave equation

curl curlH(x) + κ2H(x) = 0, x ∈ Ω. (5.53)

In the exterior domain Ωc we have curlHs(x) = 0 and thus

Hs(x) = ∇Φ(x), ∆Φ(x) = 0, x ∈ Ωc. (5.54)

For the interior domain we make a single layer potential ansatz

H(x) = Ψκ
SL(λ)−

1

κ2
∇Ψκ

SL(divΓ(λ)), x ∈ Ω,

and for the exterior domain we set

Φ(x) = −Ψ0
DL(φ), x ∈ Ωc,

from which we obtain

∇Φ(x) = −∇Ψ0
DL(φ)(x) = Ψ0

DL(∇Γφ)(x), x ∈ Ωc

by using Lemma 4.17. By applying the interior tangential and normal trace to H we
get

γ int
t H(x) = Sκ(λ)(x),

γintn H(x) = n(x) · Aκ(λ)(x)−
1

κ2
(
1

2
I +K ′

κ)(divΓ λ)(x), x ∈ Γ,

and applying the exterior tangential and normal trace to ∇φ gives

γext
t Hs(x) = (−1

2
I + C0)∇Γφ(x), γextn Hs = (D0φ)(x), x ∈ Γ.

Inserting the transmission conditions (5.41),

γ int
t H(x) = ∇ΓΦ(x) + γtHp(x), µγintn H(x) = µ0γ

ext
1 Φ(x) + µ0γnHp(x), x ∈ Γ
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gives the following variational problem:

Find (λ, φ) ∈ H
−1/2
‖ (divΓ,Γ)×H1/2(Γ) such that

〈Sκλ,µ〉Γ + 〈(−1

2
I + C0)∇Γφ,µ〉Γ = 〈γtHp,µ〉Γ,

µ〈n ·Aκ(λ), ψ〉Γ −
1

κ2
〈(1
2
I +K ′

κ)(divΓ λ), ψ〉Γ − µ0〈D0φ, ψ〉Γ = µ0〈γnHp, ψ〉Γ

holds for all (µ, ψ) ∈ H
−1/2
‖ (divΓ,Γ)×H1/2(Γ).

We are now going to rewrite the above variational problem, for this we need the
following lemma:

Lemma 5.9. For every λ ∈ H
−1/2
‖ (divΓ,Γ) and for κ 6= 0 we have the identity

γintn

[
Ψκ

SL(λ)−
1

κ2
∇Ψκ

SL(divΓ(λ))

]
= n(x) · Aκ(λ)(x)−

1

κ2
(
1

2
I +K ′

κ) divΓ λ(x)

=
1

κ2
divΓ(

1

2
I +Bκ)λ(x), x ∈ Γ.

Proof. Applying the exterior Dirichlet trace γext
t to identity (4.17) in Lemma (4.17)

and testing it with a function λ ∈ H
−1/2
‖ (divΓ,Γ) we obtain the follwing relation

1

κ2
〈(−1

2
I + Cκ)∇Γψ,λ〉Γ = −〈Aκ(nψ),λ〉Γ −

1

κ2
〈∇Γ(

1

2
I +Kκ)ψ,λ〉Γ,

which holds for any ψ ∈ H1/2(Γ). Using Theorem 4.23 we conclude that

1

κ2
〈ψ, divΓ(

1

2
I +Bκ)λ〉Γ = 〈ψ, n · Aκλ〉Γ −

1

κ2
〈ψ, (1

2
I +K ′

κ) divΓ λ〉Γ

holds for all ψ ∈ H1/2(Γ), which finishes the proof.

With this auxiliary result we can now rewrite the variational problem as:
Find (λ, σ) ∈ H

−1/2
‖ (divΓ,Γ)×H1/2(Γ) such that

〈Sκλ,µ〉Γ + 〈(−1

2
I + C0)∇Γφ,µ〉Γ = 〈γtHp,µ〉Γ, (5.55)

−〈λ, (−1

2
I + Cκ)∇Γψ〉Γ +

κ2

µr
〈D0φ, ψ〉Γ =

κ2

µr
〈γnHp, ψ〉Γ (5.56)

holds for all (µ, ψ) ∈ H
−1/2
‖ (divΓ,Γ)×H1/2(Γ).
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Remark 5.10. In contrast to the direct boundary integral formulations (5.30)-(5.31)
and (5.50)-(5.52) this formulation is non symmetric. Moreover the variational prob-
lem (5.55)-(5.56) does not directly give rise to an elliptic bilinear form. To be able
to make a statement about the solvability of the variatonal problem (5.55)-(5.56) we
introduce the splitting

〈j, (−1

2
I + Cκ)∇Γψ〉Γ = 〈j, (−1

2
I + C0)∇Γψ〉Γ + 〈j, (Cκ − C0)∇Γψ〉Γ.

Since Cκ−C0 : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ) is a compact operator (see [71]), we

get that the corresponding operator of the variational problem is a Fredholm operator
of index zero. This means that if we are able to prove the injectivity of the variational
problem, the unique solvability of the variational problem (5.55)-(5.56) follows.

5.3 The Reduced Model

In this section we derive a boundary element formulation for the reduced model,
which was derived in Section 2.3.2. As already shown, the reduced model requires
only the solution of a Neumann type boundary value problem for the Laplace equa-
tion

−∇ · [κ(x)∇φ̃(x)] = iω∇ · [κ(x)Ap(x)] for x ∈ Ω,

κ(x)
∂φ̃(x)

∂n(x)
= −iωκ(x)Ap(x) · n(x) for x ∈ Γ.

In addition we choose the scaling condition
∫

Γ

φ̃(x)dsx = 0.

The variational formulation of this Neumann boundary value problem is to find
φ̃ ∈ H1(Ω) such that
∫

Ω

κ(x)∇φ̃(x)·∇ψ(x)dx+
∫

Γ

φ̃(x)dsx

∫

Γ

ψ(x)dsx = iω

∫

Ω

κ(x)Ap(x)·∇ψ(x) dx (5.57)

for all ψ ∈ H1(Ω). For a piecewise constant conductivity κ(x) we consider the non-
overlapping domain decomposition (5.10) and (5.11). Instead of the global Neumann
boundary value problem (2.51) and (2.52) we now consider the local boundary value
problems

−κi∆φ̃ = 0 for x ∈ Ωi, (5.58)

κi
∂φ̃(x)

∂ni(x)
= −iωκiAp(x) · ni(x) for x ∈ Γi ∩ Γ. (5.59)
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together with the transmission boundary conditions, see (2.39),

κi
∂φ̃(x)

∂ni(x)
+ κj

∂φ̃(x)

∂nj(x)
= −iωκiAp(x) · ni(x)− iωκjAp(x) · nj(x) for x ∈ Γi ∩ Γj .

Thus we can rewrite the variational formulation (5.57) as

p∑

i=1

∫

Γi

κi
∂φ̃(x)

∂ni(x)
ψ(x)dsx +

∫

Γ

φ̃(x)dsx

∫

Γ

ψ(x)dsx

= −
p∑

i=1

iω

∫

Γi

κi[Ap(x) · ni(x)]ψ(x)dsx.

For the solution of the local partial differential equation in (5.58) we use the local
Dirichlet to Neumann map

∂φ̃(x)

∂n(x)
= (Si

0φ̃)(x) for x ∈ Γi = ∂Ωi,

where Si
0 : H1/2(Γi) → H−1/2(Γi) is the associated Steklov–Poincaré operator [65].

Let H1/2(ΓS) := H1(Ω)|ΓS
be the skeleton trace space of H1(Ω). We then have to

solve a variational problem to find φ̃ ∈ H1/2(ΓS) such that

p∑

i=1

κi

∫

Γi

(Si
0φ̃)(x)ψ(x)dsx +

∫

Γ

φ̃(x)dsx

∫

Γ

ψ(x)dsx

= −
p∑

i=1

iω

∫

Γi

κi[Ap(x) · ni(x)]ψ(x)dsx (5.60)

is satisfied for all ψ ∈ H1/2(Γ). Since the bilinear form in the variational formu-
lation (5.60) is bounded and H1/2(ΓS)–elliptic, see, e.g. [36], unique solvability of
the variational formulation (5.60) follows. To describe the application of the local
Steklov–Poincaré operators which are involved in the variational formulation (5.60)
we use the symmetric boundary integral operator representation as derived in Section
4.1.3

(S0φ̃|Γi
)(x) =

[
D0 + (

1

2
I +K ′

0)V
−1
0 (

1

2
I +K0)

]
φ̃|Γi

(x) for x ∈ Γ. (5.61)
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5.3.1 Determining the voltage in a coil

The quantity, which is measured in Magnetic Induction Tomography is the voltage
in the receiver coil C, i.e.,

v := −iω
∫

C

Bs(x) · n(x)dsx.

Hence we need to evaluate

Bs(x) = ∇×As(x) =
µ0

4π

∫

Ω

κ(y)∇x
1

|x− y| × [iωAp(y) +∇yφ(y)]dy for x ∈ C.

(5.62)

By using integration by parts, and by using the symmetry of the fundamental solu-
tion

∇x
1

|x− y| = −∇y
1

|x− y| ,

the volume integral in (5.62) can be reformulated as

Bs(x) =
µ0

4π

N∑

i=1

κi


iω

∫

Ωi

∇x
1

|x− y| ×Ap(y)dy −
∫

Ωi

∇y
1

|x− y| × ∇yφ(y))dy




=
µ0

4π

N∑

i=1

κi



iω
∫

Ωi

∇x
1

|x− y| ×Ap(y)dy −
∫

Γi

∇yφ(y)× n(y)

|x− y| dsy



 .

For the solution of this problem by using the boundary integral formulation as de-
rived above, this representation of Bs is very suitable since we only have to evaluate
the surface curl of the scalar potential φ on the boundary Γ. If we would use the rep-
resentation (5.62) we would have to evaluate the gradient of φ inside the domain, e.g.
on a finite element volume mesh, which would be computationally more expensive.
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6 BOUNDARY ELEMENT METHODS

In this section we deal with the discretization of the boundary integral equations
discussed in Sections 4 and 5. We introduce boundary elements spaces for the dis-
cretization of the boundary spaces H

−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ). The deriva-

tion of those spaces is based on the existing results on finite elements for the space
H(curl; Ω). The classical discrete trial and test spaces for H(curl; Ω) have been
introduced by Jean-Claude Nédélec (cf. [50, 51]). Applying the trace operators to
these basis functions give us the lowest order boundary element basis functions. In
the engineering community those basis functions are also called Rao-Wilton-Glisson
basis functions (see [57]).
Based on the introduced boundary element spaces we are going to formulate boundary
element methods for the solution of boundary value problems for the electromagnetic
wave equation. We are going to consider the case when κ is small and introduce a
boundary element formulation for the approach as given in Section 4.6.1. We are
going to illustrate the effect that this approach is stable when κ tends to zero in
numerical examples.
For a numerical solution of the eddy current problem we are going to deal with the
discretization of the boundary integral formulations as derived in Section 5. We de-
duce the discrete variatonal problems for the E-field and H-field formulations and we
compare the different approaches. At the end of this section we derive a boundary
element method for the reduced model.

6.1 Discrete Trial and Test Spaces

In this section we are going to introduce discrete trial and test spaces on the boundary
Γ. For this we assume that we have a given shape regular and conforming triangular
boundary element mesh Γh = {τi}Ni=1, which satisfies

Γ =

N⋃

i=1

τi.

The area of a boundary element τi is denoted by

∆i =

∫

τi

dsx

77
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and the local mesh width by

hi =
√

∆i.

The nodes of the boundary element mesh Γh are denoted by {x1, x2, . . . , xNn}.

6.1.1 Basis Functions

On the boundary element mesh Γh we introduce the discrete basis function spaces

S0
h(Γ) = span {φ0

1, φ
0
2, . . . , φ

0
N} ⊂ H−1/2(Γ),

S1
h(Γ) = span {φ1

1, φ
1
2, . . . , φ

1
Nn} ⊂ H1/2(Γ),

where S0
h(Γ) denotes the space of piecewise constant basis functions

φ0
i (x) =

{
1, x ∈ τi,
0, else,

which are associated to the elements of the boundary mesh Γh. The space S1
h(Γ)

denotes the space of piecewise nodal basis functions

φ1
i (x) =





1, x = xi,
0, x = xj , j 6= i,

linear, else.

The basis functions φ1
i are associated to the nodes of the boundary element mesh. The

discrete spaces S0
h(Γ) and S1

h(Γ) satisfy the following approximation properties:

Theorem 6.1. Let Γ be sufficiently smooth and u be in Hs(Γ) for some s ∈ [σ, 2]
with σ ∈ [0, 1]. Then we have the approximation property

inf
vh∈S1

h(Γ)
‖u− vh‖Hσ(Γ) ≤ chs−σ|u|Hs(Γ).

Theorem 6.2. Let u be in Hs(Γ) for some s ∈ [σ, 1] with σ ∈ [−1, 0]. Then we have
the approximation property

inf
vh∈S0

h(Γ)
‖u− vh‖Hσ(Γ) ≤ chs−σ|u|Hs(Γ).

These results and the corresponding proofs can be found in [66].
As a next step we introduce a boundary element discretization for the spaces
H

−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ), which are the trace spaces of the space H(curl; Ω).

The basis functions for the space H(curl; Ω) are associated to the edges of a finite
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element mesh. Let us consider the edge, which is spanned by the nodes xi and xj .
The lowest order Nédélec basis function associated with the edge {xi, xj} is defined
by

Uij(x) = φ1
i (x)∇φ1

j − φ1
i (x)∇φ1

i ,

where φ1
i denotes the nodal finite element basis function for the node xi. The lowest

order basis function for the space H
−1/2
⊥ (curlΓ,Γ) on the triangle τl with the nodes

{xi, xj , xk} associated to the edge {xi, xj} can be obtained by applying the trace
operator γt to the lowest order Nedelec basis function Uij. This gives us the lowest
order basis function

uij(x) = γtUij(x) = φ1
i (x)∇Γφ

1
j − φ1

j(x)∇Γφ
1
i , x ∈ τl.

By inserting the definition of the nodal basis function φ1
i (x) we get the representa-

tion

uij(x) = n(x)× x− xk
∆l

, x ∈ τl,

where n denotes the normal vector corresponding to the boundary element {xi, xj, xk}.
The lowest order basis functions for the space H

−1/2
‖ (divΓ,Γ) can be obtained by ap-

plying the operator R to the function uij(x),

λij(x) = γ×Uij(x) = (φ1
i (x)∇Γφ

1
j − φ1

j(x)∇Γφ
1
i )× n(x), x ∈ τl.

Hence we obtain the representation

λij(x) =
x− xk
∆l

, x ∈ τl

for the lowest order basis functions for the space H
−1/2
‖ (divΓ,Γ). We observe that

each basis function is now associated with an edge in the boundary element mesh,
thus we introduce the set of basis functions for a boundary element mesh Γh:

Fh(Γ) = span {λ1,λ2, . . . ,λNe} ⊂ H
−1/2
‖ (divΓ,Γ),

Eh(Γ) = span {u1,u2, . . . ,uNe} ⊂ H
−1/2
⊥ (curlΓ,Γ),

where N e denotes the number of edges in the boundary element mesh. The spaces
Fh(Γ) and Eh(Γ) satisfy the following approximation properties:

Theorem 6.3 (Approximation Property). For any functions λ,u ∈ H
s
t (Γ) with

divΓ λ ∈ Hs(Γ) and curlΓu ∈ Hs(Γ) for some 0 ≤ s ≤ 1, there holds the approxima-
tion property

inf
λh∈Fh(Γ)

‖λ− λh‖H−1/2
‖

(divΓ,Γ)
≤ chmin( 3

2
−ε,s+ 1

2
−ε,1+s∗,s+s∗)

(
‖λ‖H

s(Γ) + ‖ divΓλ‖Hs(Γ)

)

inf
uh∈Eh(Γ)

‖u− uh‖
H

−1/2
‖

(divΓ,Γ)
≤ chmin( 3

2
−ε,s+ 1

2
−ε,1+s∗,s+s∗)

(
‖u‖H

s(Γ) + ‖curlΓu‖Hs(Γ)

)

for any ε > 0. The constant s∗ depends on the regularity of the domain.
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Eh(Γ) ⊂ H
−1/2
⊥ (curlΓ,Γ) Fh(Γ) ⊂ H

−1/2
‖ (divΓ,Γ)

Figure 6.1: Sketch of lowest order basis functions for H
−1/2
⊥ (curlΓ,Γ) and

H
−1/2
‖ (divΓ,Γ)

Now we are able to discretize the boundary integral formulations as derived in Chap-
ter 4 and 5. We will start with the analysis of a simple boundary value problem,
where we prescribe the tangential trace.

6.2 Boundary Element Methods for the Electromagnetic

Wave Equation

We consider the boundary value problem

curl curlE(x) + κ2E(x) = 0, x ∈ Ω, γ int
t E(x) = F(x), x ∈ Γ. (6.1)

For this type of boundary value problems we derived in Section 4.5 the boundary
integral equation

Sκγ
int
N E(x) = (

1

2
I − Cκ)F(x), x ∈ Γ.

In what follows we assume that we have given a representation of the prescribed
tangential trace F by the basis functions in Fh(Γ):

F(x) ≈ Fh(x) =

Ne∑

i=1

Fiui(x).

Then we can formulate the discrete variational problem:
Find λh ∈ Fh(Γ) such that

〈Sκλh,µh〉Γ = 〈(1
2
Mh − Cκ,h)Fh,µh〉Γ (6.2)
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holds for all µh ∈ Fh(Γ). The discrete variational problem can be reformulated as a
linear system of equations

Sκ,hλ = (
1

2
Mh − Cκ)F, (6.3)

with the matrices

Sκ,h[i, j] = 〈Sκλj ,λi〉Γ = 〈Aκλj ,λi〉Γ +
1

κ2
〈Vκ divΓ λj , divΓ λi〉Γ, i, j = 1, . . . , N e

and

Cκ,h[i, j] = 〈Cκuj ,λi〉Γ, Mh[i, j] = 〈uj,λi〉Γ, i, j = 1, . . . , N e.

For κ ∈ C with ℜ(κ) > 0 we know that Sκ is H
−1/2
‖ (divΓ,Γ)-elliptic, thus we imme-

diately conclude the unique solvability of the discrete variational problem and the
quasi optimal estimate

‖λ− λh‖H−1/2
‖

(divΓ,Γ)
≤ inf

µh∈Fh(Γ)
‖λ− µh‖H−1/2

‖
(divΓ,Γ)

by using Cea’s lemma. Together with the approximation property given in Theorem
6.3 we get an error estimate in dependence on the mesh width h.
In what follows we present some numerical examples: In the Tables 6.1 and 6.2 we
give the number of GMRES-iterations and the error in the boundary data and the
relative error in the point evaluation for some x∗ ∈ Ω:

error1 = ‖λ− λh‖L2(Γ)/‖λ‖L2(Γ), error2 = |E(x∗)− Eh(x
∗)|/|E(x∗)|. (6.4)

As a reference solution we choose the function

E(x) = ∇U∗
κ(x, xs)× x. (6.5)

As a solver for the linear system we use the GMRES method [58], all linear systems
are solved with the relative precision 10−8. In Table 6.1 we have computed the
approximate solution to the boundary value problem (4.64) by solving the discrete
variational problem (6.3) for Ω = B1(0) and κ = 1 + i. In Table 6.2 we find the
results for Ω = (0, 0.5)3 and κ = 1 + i with the reference solution (6.5).

6.2.1 A stabilization for the single layer potential for small κ

We are now going to consider the case when κ is small. Such problems have been as
well considered in [5,16,42,45,69,73], where the low frequency stabilization is based
on a decomposition of the space Fh(Γ) into two parts, where one part consists of
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edges It error1 eoc error2 eoc

120 29 1.215e-1 - 1.916e-2 -
480 65 6.284e-2 1.0 4.468e-3 2.1

1920 116 3.174e-2 1.0 1.085e-3 2.0

Table 6.1: Results for the domain Ω = B1(0) with κ = 1 + i, the evaluation point
was chosen as x∗ = (0.2, 0.2, 0.2)⊤. The reference solution is given by (6.5)
with the source point xs = (1.3, 1.0, 1.1)⊤.

edges It error1 eoc error2 eoc

36 11 7.623e-02 - 4.324e-03 -
114 51 3.328e-02 1.2 1.342e-03 1.7
576 115 1.617e-02 1.0 2.958e-04 2.2

2304 216 7.986e-03 1.0 7.277e-05 2.0
9216 394 4.029e-03 1.0 1.845e-05 2.0

Table 6.2: Results for the domain Ω = (0, 0.5)3 with κ = 1+ i, the evaluation point
was chosen as x∗ = (0.2, 0.2, 0.2)⊤. The reference solution is given by (6.5)
with the source point xs = (1.3, 1.0, 1.1)⊤.

solenoidal functions. These solenoidal functions are also referred to as ’loop-currents’,
the decomposition is therefore considered as ’loop-star’ or ’loop-tree’ decomposition.
Let us now take a closer look at the behaviour of the single layer matrix Sκ,h when
considering small κ. The single layer matrix is composed by two matrices,

Sκ,h = Aκ,h +
1

κ2
Wκ,h,

where

Aκ,h[i, j] = 〈Aκλj,λi〉Γ, Wκ,h[i, j] = 〈Vκ divΓ λj , divΓ λi〉Γ.

It is obvious that when κ is small the second part of the single layer matrix is
dominating. The matrix W has a large kernel. For simple connected domains he
kernel can be described very well:

ker(Wκ,h) = curlΓ(S
1
h(Γ)).

This effect is illustrated in Figure 6.2, where we see a plot of the eigenvalues of the
boundary element matrices Aκ,h, Vκ,h, Sκ,h and Fκ,h. We observe that for small κ
the spectrum of the matrix Sκ,h almost coincides with the spectrum of the matrix
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Figure 6.2: Eigenvalues of the matrices Aκ,h,Wκ,h, Sκ,h and Fκ,h for κ = 0.1(1+ i) for
Ω = (0, 0.5)3 with 384 boundary elements.

Vκ,h. The matrix has a kernel, whose size corresponds to the number of nodes of the
boundary element mesh minus one. This kernel influences the condition number of
the matrix Sκ,h. In Figure 6.2 we also see that the spectrum of the matrix Fκ,h is not
affected by the kernel of the matrix Vκ,h.
To find a remedy for this problem let us recall the stabilized ansatz from Section
4.6.1:

(
Aκ ∇ΓVκ

Vκ divΓ κ2Vκ

)(
γ int
N E

γintn E

)
=

(
(1
2
I − Cκ)F

0

)
. (6.6)

The bi-linear form of the stabilized system (6.6) is not elliptic, therefore we cannot
apply Cea’s lemma, but we can use the theorem of Brezzi for the discrete case [10].
An important result, which is needed is the following discrete inf-sup condition:

Lemma 6.4. For κ = 0 or κ ∈ C with ℜ(κ) > 0, there exists a constant c > 0 such
that

sup
06=λh∈Fh(Γ)

〈Vκ divΓ λh, φh〉Γ
‖λ‖

H
−1/2
‖

(divΓ,Γ)

≥ c‖φh‖H−1/2(Γ), ∀φh ∈ S0
h(Γ). (6.7)
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For a proof of Lemma 6.4 we refer to [9, 31]. With the discrete inf-sup we are now
ready to prove the stability of the discrete variational problem and an a priori error
bound:

Proposition 6.5. For κ ∈ C with ℜ(κ) > 0 the discrete variational problem:
Find (λh, φh) ∈ Fh(Γ)× S0

h(Γ) such that

〈Aκλh,µh〉Γ + 〈Vκφh, divΓµ〉Γ = 〈(1
2
I + Cκ)Fh,µh〉Γ (6.8)

〈Vκ divΓ λh, ψh〉Γ + κ2〈Vκφh, ψh〉Γ = 0 (6.9)

is satisfied for all (µh, ψh) ∈ Fh(Γ)× S0
h(Γ), has a unique solution, and we have the

quasi optimal estimate

‖λ− λh‖H−1/2
‖

(divΓ,Γ)
+ ‖φ− φh‖H−1/2(Γ) ≤

c

(
inf

µh∈Fh(Γ)
‖λ− µh‖H−1/2

‖
(divΓ,Γ)

+ inf
ηh∈S0

h(Γ)
‖φ− ηh‖H−1/2(Γ)

)
.

Proof. For the proof we are going to apply Proposition 2.11 in [10]. For this propo-
sition it is required that the bi-linear forms

〈Vκ., .〉Γ : H−1/2(Γ)×H−1/2(Γ) → C

〈Aκ., .〉Γ : H
−1/2
‖ (divΓ,Γ)×H

−1/2
‖ (divΓ,Γ) → C

are positive definite. In the case of complex valued bi-linear forms this means that
its real part is greater or equal zero. The bi-linear form 〈Vκ., .〉Γ this is the case due
to Lemma 4.30. The bi-linear form 〈Aκ., .〉Γ is also positive definite since we have
that

ℜ(〈Aκλ,λ〉Γ =

3∑

i=1

〈Vκλi, λi〉Γ.

The proof follows then by applying Proposition 2.11 in [10] together with Lemma
6.4.

For the case κ = 0 we have a similar result:

Proposition 6.6. The discrete variational problem:
Find (λh, φh) ∈ Fh(Γ)× (S0

h(Γ) ∩H
−1/2
∗∗ (Γ)) such that

〈A0λh,µh〉Γ + 〈V0φh, divΓµ〉Γ = 〈(1
2
I + C0)Fh,µh〉Γ (6.10)

〈V0 divΓλh, ψh〉Γ = 0 (6.11)
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is satisfied for all (µh, ψh) ∈ Fh(Γ)× (S0
h(Γ)∩H−1/2

∗∗ (Γ)), has a unique solution, and
we have the quasi optimal estimate

‖λ− λh‖H−1/2
‖

(divΓ,Γ)
+ ‖φ− φh‖H−1/2(Γ) ≤

c

(
inf

µh∈Fh(Γ)
‖λ− µh‖H−1/2

‖
(divΓ,Γ)

+ inf
ηh∈S0

h(Γ)
‖φ− ηh‖H−1/2(Γ)

)
.

Since the discrete inf-sup condition (6.4) is also fulfilled for the case κ = 0, the proof
follows by applying the discrete version of Brezzi’s theorem given in [10]. Together
with the approximation properties from Theorem 6.2 and 6.3 we can obtain an error
bound in dependence of the mesh width h. The convergence order, which we get
from this error bound depends on the regularity of the solution. The regularity is
influenced by the properties of the domain, in particular solutions for domains with
edges and corners can have very little regularity, results on the regularity of solutions
of the eddy current problem can be found in [20, 21].
The discrete variational problem (6.8)-(6.9) can be rewritten as the following linear
system

(
Aκ,h Bκ,h

B⊤
κ,h κ2Vκ,h

)

︸ ︷︷ ︸
Fκ,h

(
λ
φ

)
=

(
(−1

2
Mh + Cκ,h)F

0

)
,

where the system matrix Fκ,h is invertible due to Proposition 6.5. In what follows we
present numerical examples, which illustrate the theoretical results for the behaviour
of the stabilized ansatz for small κ. In Table 6.3 we have noted the number of GMRES
iterations for the stabilized ansatz and for the standard boundary integral equation
(6.3). We observe that for the stabilized ansatz the number of GMRES iterations is
significantly lower, for the third and fourth level the GMRES method for the single
layer potential Sκ did not converge anymore.

6.3 Eddy Current Model

In this section we deal with the numerical solution of eddy current problems using
boundary element methods. We are going to discretize the boundary integral for-
mulations for the eddy current model as introduced in Section 5. We compare those
formulations with respect to the conditioning of the system matrix. At first we are
going to consider the E-field formulation:
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edges It It Sκ error1 eoc error2 eoc

120 46 82 3.325e-01 - 5.167e-02 -
480 65 178 1.850e-01 0.8 7.970e-03 2.7

1920 87 not conv. 9.528e-02 1.0 1.853e-03 2.1
7680 138 not conv. 4.820e-02 1.0 4.566e-04 2.0

Table 6.3: Results for the stabilized system for a ball Ω = B1(0) with κ = −0.01 −
0.01i, the source point xs = (1.3, 1.0, 1.1)⊤, and the evaluation point x∗ =
(0.2, 0.2, 0.2)⊤ and the analytic solution (6.5). In the second column we
find the GMRES-Iteration numbers for the stabilized system, in the third
column we find the GMRES-Iteration numbers for the Maxwell single layer
potential Sκ.

edges It It Sκ error1 eoc error2 eoc

36 23 11 8.049e-01 - 1.005e+00 -
114 66 39 4.266e-01 0.9 2.687e-01 1.9
576 89 72 2.135e-01 1.0 5.975e-02 2.2

2304 122 129 1.058e-01 1.0 1.404e-02 2.1
9216 198 243 5.275e-02 1.0 3.452e-03 2.0

Table 6.4: Results for the stabilized system for a cube Ω = (0.5, 0.5, 0.5)3 with κ =
−5 − 5i, the source point xs = (1.3, 1.0, 1.1)⊤, and the evaluation point
x∗ = (0.2, 0.2, 0.2)⊤ and the analytic solution (6.5). In the second column
we find the GMRES-Iteration numbers for the stabilized system, in the
third column we find the GMRES-Iteration numbers for the Maxwell single
layer potential Sκ.

6.3.1 A boundary element method based on the E-field

The discretization of the continuous variational problem (5.26)-(5.31) using the bound-

ary element spaces H
−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ) leads to the following discrete

variational problem:
Find λi,h ∈ H

−1/2
‖ (divΓi∩Γ 0,Γi) ∩ Fh(Γi) and uh ∈ Eh(Γ) such that

M∑

i=0

(
1

µi
〈N i

κuh|Γi
,vh|Γi

〉Γi
+ 〈Bi

κλi,h,vh|Γi
〉Γi

)
= f(vh|Γ), (6.12)
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Figure 6.3: Plot of the condition number against κ of the matrices Sκ,h and Fκ,h for
Ω = (0, 0.5)3 with a surface mesh with 384 boundary elements and 576
edges.

stabilized ansatz direct ansatz

κ It ‖λ− λh‖L2(Γ) ‖t− th‖L2(Γ) It ‖λ− λh‖L2(Γ)

i 98 8.389e-02 3.511e-02 135 8.389e-02
1e-1i 98 9.814e-02 4.119e-02 196 3.910e+03
1e-2i 98 9.841e-02 4.132e-02 243 4.097e+02
1e-3i 98 9.841e-02 4.132e-02 301 6.003e+09
1e-4i 98 9.841e-02 4.132e-02 - -

Table 6.5: Results for the stabilized and direct ansatz for Ω = (0, 0.5)3 and a dis-
cretization containing 576 edges and 384 elements. The wave number κ
varies from i to 1e− 4i.

M∑

i=0

(
〈C i

κuh|Γi
,µi,h〉Γi

+ µi〈Si
κλi,h,µi,h〉Γi

)
= g(µ0,h) (6.13)

is satisfied for all µi,h ∈ H
−1/2
‖ (divΓi∩Γ 0,Γi) ∩ Fh(Γi) and vh ∈ Eh(Γ).

The right hand side functionals are given by (5.28)-(5.29). The unique solvabil-
ity of the discrete variational problem follows immediately from the ellipticity of
the continuous variational problem by using Cea’s lemma. For the implementa-
tion of the presented boundary element method we need to discretize the space
H

−1/2
‖ (divΓi∩Γ 0,Γi) ∩ Fh. In Chapter 5 we gave two possibilities for the implemen-

tation, we will now discuss the realization in a boundary element method:

Method 1:

In Method 1 we will incorporate the condition divΓ λh = 0 by an explicit represen-
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tation of H
−1/2
‖ (divΓ 0,Γ) ∩ Fh(Γ):

Let us assume that Ω is simply connected and that the material parameter κ is
constant in Ω, i.e. we have only one subdomain Ω. Then we have that

Fh(Γ) ∩H
−1/2
‖ (divΓ 0,Γ) = curlΓ(S

1
h(Γ)) (6.14)

holds and thus λ ∈ H
−1/2
‖ (divΓ 0,Γ) can be represented as

λh(x) = curlΓ

M∑

i=1

αiφ
1
i (x).

This means that the degrees of freedom are now given by the nodes of the surface
mesh and not by the edges of the surface mesh. In the engineering literature the
functions in the space curlΓ(S

1
h(Γ)) are also known as loop currents. The discrete

variational problem reads:
Find (uh, φh) ∈ Eh(Γ)× S1

h(Γ) such that

〈( 1
µr
Nκ +N0)uh,vh〉Γ + 〈(Bκ +B0)curlΓφh,vh〉Γ = f(vh),

〈(Cκ + C0)uh, curlΓψh〉Γ + 〈(µrAκ + A0)curlΓφh, curlΓψh〉Γ = g(curlΓψh)

holds for all (vh, ψh) ∈ Eh(Γ)× S1
h(Γ) with the right hand side given by

f(vh) = 〈(1
2
I +B0)γNEp,vh〉Γ + 〈N0γtEp,vh〉Γ,

g(curlΓψh) = 〈S0γNEp, curlΓψh〉Γ + 〈(1
2
I + C0)γtEp, curlΓψh〉Γ.

The corresponding linear system then reads
(

1
µr
(Nκ,h +N0,h) −(C̃κ,h + C̃0,h)

⊤

C̃κ,h + C̃0,h µr(D̃κ,h +D0,h)

)(
u
φ

)
=

(
f
g

)
(6.15)

with the matrices

C̃0,h[i, j] = 〈C0uj , curlΓφ
1
i 〉Γ, i = 1, . . . , Nn, j = 1, . . . N e,

C̃κ,h[i, j] = 〈Cκuj , curlΓφ
1
i 〉Γ, i = 1, . . . , Nn, j = 1, . . . N e,

and

D0,h[i, j] = 〈A0curlΓφ
1
j , φ

1
i 〉Γ, Dκ,h[i, j] = 〈AκcurlΓφ

1
j , φ

1
i 〉Γ, i, j = 1, . . . , Nn.

The matrix D0,h corresponds to the boundary element matrix of the hypersingular
operator for the Laplace equation.
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The drawback of this method is that it is difficult to implement if the unknown λ is
required to be solenoidal only on a part of the surface mesh. This would be the case if
we deal with a conducting domain with piecewise constant material properties. This
approach can also be extended to the case of multiple connected domains, however
in this case we have to have some knowledge about the topology of the conducting
domain and we have to introduce ’cutting surfaces’ (see [32]).

Method 2:

To enforce the condition divΓ λh = 0 we follow Method 2 as described in Section
5.2.1. At first we assume that κ is constant in Ω. The discretization of (5.32)-(5.34)
leads to a system of the type



µr(Aκ,h + A0,h) Cκ,h + C0,h −∇Γ(Gκ,h +G0,h)
−(Cκ,h + C0,h)

⊤ 1
µr
(Nκ,h +N0,h) 0

(Gκ,h +G0,h)
⊤ 0 S





λ

u

p


 =



f
g
0




with the matrices

Gκ,h[i, j] = 〈∇ΓVκφ
0
j ,λi〉Γ, G0,h[i, j] = 〈∇ΓV0φ

0
j ,λi〉Γ

and the stabilization

S[i, j] = 〈1, φ1
i 〉Γ〈1, φ1

j〉Γ.

Let us now consider the case that κ is piecewise constant on a domain decomposition
(5.1) of Ω. In this case the linear system is given by




1
µr
Nκ,h −[C0

h]
⊤ −[C1

h]
⊤ . . . −[CM

h ]⊤

C0
h µrA

0
h −G0

h

[G0
h]

⊤ S0
h

C1
h µrA

1
h −G1

h

[G1
h]

⊤ S1
h

...
. . .

CM
h µrA

M
h −GM

h

[GM
h ]⊤ SM

h







u
λ1
p
1

λ2
p
2
...
λM
p
M




=




f
g
0
...
0



.

For the implementation we need an operator, which maps the local degrees of freedom
of uh|Γi

to the global vector uh.
This approach has been followed by Breuer in his thesis [9]. The advantage is that
not simply connected domains can be treated in an easy way, the drawback is that
this approach results in a larger linear system, which needs more GMRES-iterations
as examples show (cf. Table 6.7).
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6.3.2 A boundary element method based on the H-field

The H-field formulation leads to the discrete variational problem:
Find ((uh, φh),λi,h, th) ∈ V0,h × Eh(Γi)× S0

h(Γ) such that

n((uh, φh), (vh, ψh)) +

M∑

i=1

〈(1
2
I +Bi

κ)λi,h,vh|Γi
〉Γ − 〈(1

2
I −K ′

0)th, ψh〉Γ = f(vh),

(6.16)

M∑

i=1

〈(−1

2
I + C i

κ)uh|Γi
,µi,h〉Γ +

M∑

i=1

〈ε̃iSi
κλi,h,µi,h〉Γ =

M∑

i=1

g(µi,h),

(6.17)

〈(1
2
I −K0)φh, ph〉Γ +

1

ω2µ0

〈V0th, ph〉Γ = 0

(6.18)

holds for all ((vh, ψh),µi,h, ph) ∈ V0,h × Eh(Γi)× S0
h(Γ) with

n((ũh, φh), (vh, ψh)) =
M∑

i=1

1

ε̃i
〈N i

κũh|Γi
,vh|Γi

〉Γi
+ ω2µ0〈D0φh, ψh〉Γ.

The discrete space V0,h is defined by

V0,h = {(vh, ψh) ∈ Fh(Γs)× S1
h(Γ) : vh|Γ = ∇Γψh}. (6.19)

This means that on the outer boundary Γ the degrees of freedom of u can be repre-
sented as nodal degrees of freedom.
The discrete variational formulation for the direct H-field formulation leads to a lin-
ear system of equations, which has a two-fold saddle point structure. Let us assume
that κ is constant in Ω, in this case we can replace the unknown u by ∇Γφ. The
discrete variational problem (6.16)-(6.18) then leads to the linear system




ω2(µDκ,h + µ0D0,h)

1
2
M⊤

h − C⊤
κ,h −1

2
Mh +K⊤

0,h

−1
2
Mh + Cκ,h ε̃Sκ,h 0

1
2
Mh −K0,h 0 1

ω2µ0
V0,h








φ
λ
t



 =




f
g
0





with the matrices

Dκ,h[i, j] = 〈AκcurlΓφ
1
j , curlΓφ

1
i 〉Γ,

D0,h[i, j] = 〈A0curlΓφ
1
j , curlΓφ

1
i 〉Γ, i, j = 1, . . . , Nn

and

K0,h[i, j] = 〈K0φ
1
j , φ

0
i 〉Γ, i = 1, . . . , N, j = 1, . . . , Nn.
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6.3.3 An indirect boundary element method based on the H-field

In Chapter 5 we have presented an indirect formulation, which is based on the H-field,
for the case that all material parameters are constant in the conducting domain. We
now replace the continuous variational problem (5.55)-(5.56) by the following discrete
variational problem:
Find (λ, σ) ∈ Fh(Γ)× S1

h(Γ) such that

〈Sκλh,µh〉Γ+ 〈(−1

2
I + C0)∇Γφh,µh〉Γ = 〈γtHp,µ〉Γ (6.20)

−〈λh, (−
1

2
I + Cκ)∇Γψh〉Γ+

κ2

µr
〈D0φh, ψh〉Γ =

κ2

µr
〈γnHp, ψ〉Γ (6.21)

is satisfied for all (µh, ψh) ∈ Fh(Γ)× S1
h(Γ).

The corresponding linear system of equations has the following saddle point struc-
ture 


Sκ,h C0,h

C⊤
κ,h

κ2

µr
D0,h



(
λ
φ

)
=

(
f
g

)

with the matrices

Sκ,h[i, j] = 〈Sκλj,λi〉Γ, i, j = 1, . . . , N e

Cκ,h[i, j] = 〈(−1

2
I + Cκ)∇Γφ

1
j ,λi〉Γ, i = 1, . . . , N e, j = 1, . . . , Nn

D0,h[i, j] = 〈D0φ
1
j , φ

1
i 〉Γ, i, j = 1, . . . , Nn

and the right hand side vectors

f [i] = 〈γtHp,λi〉, i = 1, . . . , N e

g[i] =
κ2

µr
〈γnHp, φ

1
i 〉, i = 1, . . . Nn.

As this is an indirect approach, the discrete solution of the linear system λh and
φh have no physical meaning in general. However, by inserting those functions into
the representation formula, we can compute the magnetic field inside the conducting
domain

B(x) = µΨκ
SL(λh)(x), x ∈ Ω,

and in the non-conducting domain

Bs(x) = µ0∇Ψ0
DL(φh)(x), x ∈ Ωc.

The gradient of the double layer potential can be computed by applying the Maxwell
double layer potential to the surface gradient of φh due to Lemma 4.17, hence we
get

Bs(x) = µ0Ψ
0
DL(∇Γφh)(x), x ∈ Ωc.
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6.3.4 Numerical examples

We will present two numerical examples. In the first numerical example we con-
sider a conducting ball with a wire around it. In the wire we have an impressed
time harmonic current, which generates the primary magnetic field. For this partic-
ular problem there exists an analytic solution of the eddy current model, which was
derived in [54]. The electric field is then given by

E(x) = Eφ(r, θ)eφ (6.22)

where Eφ(r, θ) is given by

Eφ(r, θ) =





∞∑

n=0

Eext
n r−1/2J2n+ 3

2
(ir

√
ik)P 1

2n+1(cos(θ)), r ≤ a,

∞∑

n=0

Eint
n r−2n−2P 1

2n+1(cos(θ))−Enr
2n+1P 1

2n+1(cos(θ)), r > a.

The constants can be computed by

En =
µ0(−1)n(2n− 1)!!

(2b)2n+2(n+ 1)!
, Eint

n =
Eext

n a−2n− 3
2 − Ena

−2n− 3
2

J2n+ 3
2
(ia

√
ik)

,

Eext
n = Ena

4n+3

ai
√
ik

J
2n+1

2
(ia

√
ik)

J
2n+3

2
(ia

√
ik)

− 2n− 1− µr(2n+ 2)

ai
√
ik

J
2n+1

2
(ia

√
ik)

J
2n+3

2
(ia

√
ik)

− 2n− 1 + µr(2n+ 1)

,

where a denotes the radius of the sphere, b stands for the radius of the coil. We
compare the boundary element solution with the analytic solution.
In the second example we consider a conducting plate, in the front of this plate
we place a coil with an impressed time harmonic current, which generates the pri-
mary magentic field. For this problem setting we don’t have an analytic solution at
hand, we will compare the number of GMRES iterations of the presentend boundary
element formulations.

Conducting Sphere

Let us now look at the first example. The conducting domain is the ball Ω = B1(0).
Around the sphere we have a wire, the center of the wire is in the origin and the
radius of the wire is 1.5. For the following numerical example we assume σ = 0.1
and µ = µ0. In Table 6.6 we give the GMRES-iterations and the error as defined in
(6.4). We observe that for low conductivities, i.e. for small κ the method tends to
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Figure 6.4: Conducting ball with a wire.

f = 1e6 f = 1e4

N It error It error

80 52 8.983e-2 58 5.801e-1
320 133 4.350e-2 166 5.773e-1

1280 329 2.150e-2 - -

Table 6.6: Results for the E-field formulation - Method1 for Ω = B1(0), for the case
f = 1e6 we have κ = 0.63(1+ i) and for f = 1e4 we have κ = 0.063(1+ i).

be instable as the results do not converge.

We have now derived three formulations for the eddy current model, one was based
on the E-field, the two other formulations were based on the H-field. In the E-
field formulation we have two possibilities to deal with the space H

−1/2
‖ (divΓ 0,Γ),

in one method we enforced the condition divΓ γ
ext
N E = 0 by using Lagrange multi-

pliers, in the other method we used an explicit representation of the space Fh(Γ) ∩
H

−1/2
‖ (divΓ 0,Γ). In Table 6.7 we compare the formulations for the E-field and for

the H-field.

E-field Method 1 E-field Method 2 H-field

edges It error1 It error1 It error1

120 27 1.137e-01 101 1.138e-1 93 1.227e-01
489 68 5.656e-02 379 5.650e-2 256 5.676e-02

1920 164 2.823e-02 924 2.872e-2 657 2.823e-02

Table 6.7: Examples for the Benchmark problem, κ = −5− 5i
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Conducting Plate

Let us now consider Example 2, a conducting plate. In front of the conducting
plate we place a coil with the center in (0, 0.5, 1.5)⊤ and the normal vector (0, 0, 1)⊤,
the radius of the coil is r = 0.2 (cf. Figure 6.5). The conductivity of the plate is
σPlate = 1e7S/m and the frequency is 50 Hz. We start with a boundary element
discretization with 798 boundary elements. Table 6.8 shows the GMRES iteration

Figure 6.5: Conducting plate with coil.

E-field Method1 E-field Method2 H-field H-field indirect

edges It It It It

1197 102 1028 658 314
4788 117 2092 1827 464

Table 6.8: GMRES Iterations for the solution of the eddy current problem for the
conducting plate.

numbers for the solution of the linear systems for the conducting plate. It shows that
for the E-field formulation Method 1 needs significantly less iterations than Method
2.
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ℜ(γ int
t E) ℜ(γ int

N E)

Figure 6.6: Real part of the tangential and Neumann trace of the electric field E.

6.4 The Reduced Model

For a symmetric boundary element discretization of the variational formulation (5.60)
we introduce a sequence of admissible boundary element meshes Γi,h for the domain
decomposition (5.1) with a globally quasi uniform mesh size h. By S1

h(Γi) = S1
h(Γs)|Γi

we denote the localized boundary element space of local basis functions φ1
i , and

by φ
k
= Akφ we describe the localization of the global degrees of freedom. The

symmetric boundary element approximation of the variational problem (5.60) results
in the linear system, see, e.g. [65],

p∑

k=1

κkA
⊤
k Sk,hAkφ = −iω

p∑

k=1

κkA
⊤
k fk

, (6.23)

where

Sk,h = Dk,h + (
1

2
M⊤

k,h +K⊤
k,h)V

−1
k,h (

1

2
Mk,h +Kk,h)

are the discrete Steklov–Poincaré operators. Note that

Dk,h[j, i] = 〈Dkφ
1
i , φ

1
j〉Γk

, Vk,h[ℓ,m] = 〈Vkφ0
m, φ

0
ℓ〉Γk

,

Kk,h[ℓ, i] = 〈Kkφ
1
i , φ

0
ℓ〉Γk

, Mk,h[ℓ, i] = 〈φ1
i , φ

0
ℓ〉Γk

are local boundary element matrices. Moreover, the right hand side in (6.23) is given
locally as

fk,j =

∫

Γk

[Ak(x) · nk]φ
1
j (x)dsx.
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The stability and error analysis of the symmetric boundary element discretization of
the variational problem (5.60) is well established, see, e.g. [65], and the references
given therein.

6.4.1 Numerical results

As conducting domain we first consider the cylinder

Ω = {x ∈ R
3, x21 + x22 < 0.1, 0 < x3 < 0.2},

where the transmitting coil is modeled as a current loop of radius 0.04 which is
centered at (−1.4, 0, 1)⊤, see Fig. 6.7. The vector normal to the current loop points
into the direction of the x1–axis, i.e., n = (1, 0, 0)⊤. Inside the cylinder we place a
ball with radius r = 0.02, whose center lies in the point (−0.06, 0, 0.1)⊤.

Cylinder mesh |n× (E|Γ × n)|]

Figure 6.7: Mesh of the cylinder and the magnitude of the tangential electric field on
Γ.

The background conductivity of the cylinder is κ = 0.1, and the conductivity of the
inscribed ball is κinc. Fig. 6.7 shows the magnitude of the electric field |n×(E|Γ×n)|
for κinc = 0.1. In Fig. 6.8 we give a comparison of the reduced model with the full
eddy current. For this we plot the real and imaginary part of the normal component
of the magnetic field B(x) · n(x) along a circle around the cylinder for the frequency
f = 100kHz, and for varying conductivities κinc ∈ {0.1, 1, 10}. For the reduced model
B(x) · n(x) was computed by using the boundary element approach as described in
the previous section. The solution of the full eddy current problem was computed
by using the finite element software packages Netgen [62] and NGSolve [1].

For the reduced model we have ℜ(B(x) · n(x)) = 0, while for the full eddy current
model ℜ(B(x) · n(x)) is comparable small. For the imaginary part we obtain a
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Figure 6.8: Real (upper row) and imaginary (lower row) parts of B(x) ·n(x), f = 105.

very good coincidence between the solution of the reduced and of the full model.
Indeed, in Fig. 6.9 we give a plot of the error and of the relative error in x =
(−0.141,−0.141, 0.15)⊤ between the normal magnetic field computed with the full
eddy current model and the reduced model in the case κinc = 0.1, and for a frequency
range from 100kHz up to 1GHz.
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Figure 6.9: Absolute and relative pointwise error for different frequencies.

Based on the above results we conclude that the reduced modell describes an appro-
priate approximation of the full eddy current model as used in magnetic induction
tomography models.
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In a second example we consider the model of a human thorax with two lungs, see
Fig. 6.10. The volume mesh consists of 83514 volume elements and 15641 volume
nodes, while the boundary element mesh consists of 13076 boundary elements and
7548 boundary nodes. The background conductivtiy of the thorax was set to the
conductivity of a muscle at 100kHz, i.e., κmuscle = 0.3618S/m, while the conductivity
of the lungs at 100kHz is κlung = 0.2716S/m. The center of the transmitting coil was
placed in the point (0,−0.2, 0)⊤, the normal vector of the coil is given by (0, 1, 0)⊤,
and its radius is 0.05. In Fig. 6.10 we plot the magnitude of the tangential trace of
the electric field, i.e. |n × (E|Γ × n)|. The field lines of the primary magnetic field
Bp of the secondary magnetic field Bs are given in Fig. 6.11.

Lung mesh |n× (E|Γ × n)|

Figure 6.10: Mesh of the thorax and lungs and the magnitude of the tangential elec-
tric field.

Primary field Bp Secondary field Bs

Figure 6.11: Field lines of the primary and secondary magnetic fields.



7 THE INVERSE PROBLEM OF MAGNETIC

INDUCTION TOMOGRAPHY

In this last chapter we deal with the inverse problem of Magnetic Induction Tomog-
raphy. The forward problem of Magnetic Induction Tomography was described in
Section 2.3. In principle there are two ways of dealing with the inverse problem.
Either we can see the inverse problem as a parameter identification problem, where
we get the distribution of certain parameters such as the complex conductivity in the
case of MIT out of the solution of the inverse problem. The shape and position of
objects inside the domain have to be reconstructed from the parameter distribution
in a postprocessing step. The solution of the inverse problem using the parame-
ter identification approach in combination with the finite element method was done
in [29, 35].
The second method is to view the inverse problem as a shape reconstruction problem,
where we reconstruct the shape of a certain object in the inverse problem solution
procedure. For the shape reconstruction approach we have to assume that the ma-
terial parameters of the object, which we want to reconstruct, are constant. For
the shape reconstruction approach the boundary element method is suited very well,
since no volume mesh is needed in the inverse solution process.
In this thesis we will concentrate on the shape reconstruction approach. Dealing with
the inverse problem as a shape reconstruction problem requires the minimization of
a cost functional, for the minimization we need to find a representation for the asso-
ciated shape derivative [23,64]. We define the cost functional for Magnetic Induction
Tomography and compute its shape derivative for the reduced model.

7.1 Shape Reconstruction

Our aim is to reconstruct the shape of a hidden domain Ω1 inside a domain Ω with a
given, fixed boundary Γ. We denote the boundary of Ω1 by Σ. We set Ω0 = Ω \ Ω1.
We further assume that the material parameters σ, ε and µ are constant in Ω0 and Ω1

(cf. Figure 7.1). To be able to perform a shape sensitivity analysis we need to specify
how to describe the perturbation of the domain Ω1. There are several possibilities to
do this, here we will use the velocity method, where the deformation of a domain is
given by a velocity field V (cf. [41]). Let us now render more precisely how such a
deformation looks like:
For a given Lipschitz continuous vector field V : R3 → R3, and for τ > 0 we define

99
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receiver
coil

transmitter
coil

C_i C_j

conducting object κ_0

κ_1

Figure 7.1: Setting for the shape reconstruction for Magnetic Induction Tomography

the family of transformations Tt(V)(X) = x(t, X) by a system of ordinary differential
equations:

d

dx
x(t, X) = V(x(t, x)), 0 < t < τ, x(0, X) = X. (7.1)

Using these transformations, we can now define the perturbed domain
Ω1,t = Tt(V)(Ω1), which enables us to define Eulerian semiderivative of a given
functional:

Definition 7.1. For V ∈ Ck(R3,R3) with k ≥ 0 the Eulerian semiderivative is
defined by

dJ(Ω1;V) := lim
tց0

J(Ω1,t)− J(Ω1)

t
. (7.2)

The notion of the Eulerian semiderivative enables us to give a definition of the shape
differentiability of a functional:

Definition 7.2. The functional J (Ω1) is shape differentiable at Ω1 if its Eulerian
semiderivative exists for all V ∈ Ck(R3,R3) with k ≥ 0 and

V → dJ (Ω1,V) (7.3)

defines a linear and continuous mapping from Ck(R3,R3) → R.

Let us now return to the Magnetic Induction Tomography setting. We denote the
measured voltage in the receiver coil by vδ. The voltage, which is obtained by the
solution of the forward problem is given by the functional J (Ω1,t). The aim when
solving the inverse problem is then to minimize the functional

r(Ω1,t) := |J (Ω1,t)− vδ| → min . (7.4)
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For the minimization of the functional r(Ω1,t) we use a descent method, i.e. we choose
a direction V∗ such that

dr(Ω1;V
∗) = ℜ(dJ (Ω1;V

∗)(J (Ω1,t)− vδ)) < 0.

Later we formulate the forward model for the shape reconstruction setting. In the
following section we compute the shape derivatives for the reduced model, where we
use the adjoint variable technique.

7.2 Forward Model

In this section we define the forward map for the reduced model. We assume that
outside of the conducting object Ω we have two coils, a transmitting coil Ci and a
receiver coil Cj . The measurement in the receiver coil is given by

v = −iω
∫

Cj

Bs(x) · n(x)dsx = −iω
∫

∂Cj

As(x)dsx.

Due to (2.54) we can compute As by evaluating the following integral:

As(x) =
µ0

4π

∫

Ω

κ(y)
∇φ(y)− Ei

p(y)

|x− y| dy, (7.5)

where Ei
p is the primary electric field produced by the transmitter coil Ci in free

space. Hence it is independent of Ω and κ and can be computed by (2.33). Thus the
voltage v can be computed by the formula:

v = −iω
∫

∂Cj

τ(x) ·As(x)dsx = −iω
∫

∂Cj

µ0

4π
τ(x) ·

∫

Ω

κ(y)
∇φ(y)−Ei

p(y)

|x− y| dydsx. (7.6)

By interchanging the order of integration we get

v = −iω
∫

Ω

κ(y)(∇φ(y)− Ei
p(y))

µ0

4π

∫

∂Cj

τ(x)

|x− y|dsxdy. (7.7)

Inserting the representation

Ej
p(y) = −iω µ0

4π

∫

∂Cj

τ(x)

|x− y|dsx (7.8)
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for the primary field Ej
p we obtain

v =

∫

Ω

κ(y)(∇φ(y)−Ei
p(y))E

j
p(y)dy. (7.9)

Let us now consider the shape reconstruction setting: We decompose the conducting
domain Ω into two domains Ω0 and Ω1 with two different conductivities, see Figure
7.2:

Ω = Ω0 ∪ Ω1, Ω0 ∩ Ω1 = ∅ κ(x) =

{
κ0, x ∈ Ω0,
κ1, x ∈ Ω1.

We denote the outer boundary by Γ = ∂Ω and the transmission boundary by

κ_0

κ_1

n
n

Σ

Γ

Ω

Ω

0

1

Figure 7.2: Fixed domain Ω with subdomains Ω0 and Ω1

Σ = ∂Ω1. With n0 we denote the exterior normal vector of Ω0 and n1 the exterior
normal vector of Ω1. We set n = n0 on Γ and n = n1 = −n0 on Σ as depicted. We
also set

φ(x) =

{
φ0(x), x ∈ Ω0,
φ1(x), x ∈ Ω1.

From (2.51)-(2.52) we conclude that φ0 and φ1 satisfy the following transmission
problem

−∆φ0(x) = 0, x ∈ Ω0, (7.10)

−∆φ1(x) = 0, x ∈ Ω1, (7.11)

φ0(x)− φ1(x) = 0, x ∈ Σ, (7.12)

κ0

(
∂φ0(x)

∂n(x)
− Ei

p(x) · n(x)
)

= κ1

(
∂φ1(x)

∂n(x)
− Ei

p(x) · n(x)
)
, x ∈ Σ, (7.13)

κ0

(
∂φ0(x)

∂n(x)
− Ei

p(x) · n
)

= 0, x ∈ Γ. (7.14)
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7.3 Shape Sensitivity Analysis

As we have discussed the forward model in the previous section we can now state a
formula for the shape functional J (Ω1,t):

J (Ω1,t) = κ0

∫

Ω0,t

(∇φ0,t(y)−Ei
p(y))E

j
p(y)dy+κ1

∫

Ω1,t

(∇φ1,t(y)−Ei
p(y))E

j
p(y)dy. (7.15)

The functions φ0 and φ1 are defined as the solution of the transmission problem
(7.12)-(7.22), hence φ0 and φ1 both depend on the shape of the domain Ω. We
introduce the derivatives of φ0 = φ0(Ω) and φ1 = φ1(Ω) by

φ′
0 := dφ0(Ω;V), φ′

1 := dφ1(Ω;V).

From (7.10) we deduce that the shape derivatives φ′
0 and φ′

1 also satisfy

−∆φ′
0(x) = 0, x ∈ Ω0 (7.16)

−∆φ′
1(x) = 0, x ∈ Ω1. (7.17)

For computing the shape derivative J ′(0)V := dJ (Ω;V) we use Reynold’s transport
theorem. We obtain J ′(0)V = J1 + J2 with

J ′(0)V = κ0

∫

Ω0

∇φ′
0(x)E

j
p(x)dx+ κ1

∫

Ω1

∇φ′
1(x)E

j
p(x)dx

+ κ0

∫

∂Ω0

(∇φ0(x)−Ei
p(x))E

j
p(x)(V(x) · n0(x))dsy

+ κ1

∫

∂Ω1

(∇φ1(x)−Ei
p(x))E

j
p(x)(V(x) · n1(x))dsx.

We are now going to derive a different representation for the shape derivative J ′(0)V,
for this we split J ′(0)V into two parts, which we will treat seperately:

J1 := κ0

∫

Ω0

∇φ′
0(x)E

j
p(x)dx+ κ1

∫

Ω1

∇φ′
1(x)E

j
p(x)dx

and

J2 := κ0

∫

∂Ω0

(∇φ0(x)−Ei
p(x))E

j
p(x)(V(x) · n0(x))dsx

+ κ1

∫

∂Ω1

(∇φ1(x)−Ei
p(x))E

j
p(x)(V(x) · n1(x))dsx.
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At first we are going to reformulate J1. Using Gauss’ formula we obtain

J1 = κ0

∫

Ω0

∇φ′
0(x)E

j
p(x)dx+ κ1

∫

Ω1

∇φ′
1(x)E

j
p(x)dx

= κ0

∫

∂Ω0

φ′
0(x)E

j
p(x) · n0(x)dsx + κ1

∫

∂Ω1

φ′
1(x)E

j
p(x) · n1(x)dsx

− κ0

∫

Ω0

φ′
0(x) divEj

p(x)dx− κ1

∫

Ω1

φ′
1(x) divEj

p(x)dx.

As a next step we introduce the adjoint transmission problem

∆ψ0(x) = divEj
p(x), x ∈ Ω0, (7.18)

∆ψ1(x) = divEj
p(x), x ∈ Ω1, (7.19)

ψ0(x)− ψ1(x) = 0, x ∈ Σ, (7.20)

κ0

(
∂ψ0(x)

∂n(x)
− Ej

p(x) · n(x)
)

= κ1

(
∂ψ1(x)

∂n(x)
−Ej

p(x) · n(x)
)
, x ∈ Σ, (7.21)

κ0

(
∂ψ0(x)

∂n(x)
− Ej

p(x) · n(x)
)

= 0, x ∈ Γ. (7.22)

Using (7.18)-(7.19) we obtain the following expression for J1:

J1 = κ0

∫

∂Ω0

φ′
0(x)E

j
p(x) · n0(x)dsx + κ1

∫

∂Ω1

φ′
1(x)E

j
p(x) · n1(x)dsx

− κ0

∫

Ω0

φ′
0(x)∆ψ0(x)dx− κ1

∫

Ω1

φ′
1(x)∆ψ1(x)dx.

Applying Green’s second formula gives

J1 = κ0

∫

∂Ω0

φ′
0(x)E

j
p(x) · n0(x)dsx + κ1

∫

∂Ω1

φ′
1(x)E

j
p(x) · n1(x)dsx

− κ0

∫

Ω0

∆φ′
0(x)ψ0(x)dx− κ1

∫

Ω1

∆φ′
1(x)ψ1(x)dx

+ κ0

∫

∂Ω0

∂φ′
0(x)

∂n0(x)
ψ0(x)dsx − κ0

∫

∂Ω0

φ′
0(x)

∂ψ0(x)

∂n0(x)
dsx

+ κ1

∫

∂Ω1

∂φ′
1(x)

∂n1(x)
ψ1(x)dsx − κ1

∫

∂Ω1

φ′
1(x)

∂ψ1(x)

∂n1(x)
dsx.
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We further make use of the fact that the shape derivatives φ′
0 and φ′

1 satisfy the
Laplace equation (7.16)-(7.17), this results in the following relation:

J1 = κ0

∫

∂Ω0

φ′
0(x)

(
Ej

p(x) · n0(x)−
∂ψ0(x)

∂n0(x)

)
dsx

+ κ1

∫

∂Ω1

φ′
1(x)

(
Ej

p(x) · n1(x)−
∂ψ1(x)

∂n1(x)

)
dsx

+ κ0

∫

∂Ω0

∂φ′
0(x)

∂n0(x)
ψ0(x)dsx + κ1

∫

∂Ω1

∂φ′
1(x)

∂n1(x)
ψ1(x)dsx.

With the transmission conditions (7.20) -(7.22) we then obtain

J1 = κ0

∫

Σ

(φ′
1(x)− φ′

0(x))

(
Ej

p(x) · n(x)−
∂ψ0(x)

∂n(x)

)
dsx

+

∫

Σ

(
κ1
∂φ′

1(x)

∂n(x)
− κ0

∂φ′
0(x)

∂n(x)

)
ψ0(x)dsx.

(7.23)

To be able to reformulate (7.23), we have to derive transmission conditions for φ′
0

and φ′
1. Computing the shape derivative of the transmission condition (7.12) gives

us

φ′
1(x)− φ′

0(x) = − [κ]

κ1

(
∂φ0(x)

∂n(x)
−Ei

p(x) · n(x)
)
(V(x) · n(x)), x ∈ Σ, (7.24)

where [κ] = κ1 − κ0 denotes the jump of κ at the transmission boundary Σ. Since V

is zero on the fixed outer boundary Γ we obtain

κ0
∂φ′

0(x)

∂n(x)
= 0, x ∈ Γ. (7.25)

For the derivation of the shape derivative of the Neumann transmission condition
(7.13) we need the following lemma:

Lemma 7.3. Let u : Ω → C be a function, which satisfies

∆u(x) = 0, x ∈ Ω, (∇u(x)− F(x)) · n(x) = 0, x ∈ Γ,

for a given function F with divF(x) = 0 for x ∈ Ω. Then the normal derivative of
u′ is given by

∂u′(x)

∂n
= divΓ [(∇Γu(x)− F(x))(V(x) · n(x))]−H(x)(F(x) · n(x))(V(x) · n(x)),

where H(x) denotes the curvature in the point x on the boundary Γ.
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Proof. Using the chain rule and (7.1) we obtain

0 =
d

dt
[(∇ut(Tt(x))− F(Tt(x))) · nt(Tt(x))]t=0

=
∂u′(x)

∂n(x)
+ [∇(∇u(x)− F(x))V(x)] · n(x) + (∇u(x)− F(x)) · (∇n(x)V(x) + n′(x)),

where u′ = du(Ω;V) denotes the shape derivative of u. For the shape derivative of
the normal vector n(x) we have the following representation (see [41])

n′(x) = −(∇n(x)n(x))(V(x) · n(x))−∇Γ(V(x) · n(x)).

Moreover we introduce the decomposition of V = VΓ + (V · n)n into its tangential
and normal parts, this leads to

∇nV + n′ = ∇nVΓ −∇Γ(V · n),

hence we obtain

∂u′(x)

∂n
= − [∇(∇u(x)− F (x))V(x)] · n(x)

− (∇u(x)− F(x)) · (∇n(x)VΓ(x)−∇Γ(V(x) · n(x))).

As a next step we set

L := −∇(∇u(x)− F(x))V(x) · n(x)− (∇u(x)− F(x)) · ∇n(x)VΓ(x) = Ln + LΓ.

Inserting the decomposition V = VΓ + (V · n)n we get L = Ln + LΓ, where

LΓ := − [∇(∇u(x)− F(x))VΓ(x)] · n(x)− (∇u(x)− F(x)) · ∇n(x)VΓ(x),

Ln := − [(∇(∇u(x)− F(x))n(x)) · n(x)] (V · n(x)).

Because the expression (∇u(x)− F(x)) · n(x) is zero on the boundary Γ, we deduce
that its gradient is also zero on the boundary, i.e.

∇ [(∇u(x)− F(x)) · n(x)] ·VΓ(x) = 0, on Γ. (7.26)

This yields LΓ = 0 and thus

∂u′(x)

∂n(x)
=(∇u(x)− F(x)) · ∇Γ(V(x) · n(x)))

−(∇(∇u(x)− F (x))n(x) · n(x))(V(x) · n(x)).

With using ∆u = 0 we get

∇(∇u(x)n(x)) · n(x) = −∆Γu(x)−H(x)
∂u(x)

∂n(x)
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Out of divF(x) = 0 it follows that

∇(F(x)n(x)) · n(x) = −divΓF(x)

holds and hence we finally obtain

∂u′

∂n
= (∇Γu− F) · ∇Γ(V · n)) + divΓ(∇Γu− F)(V · n)−H(F · n)(V · n)
= divΓ((∇Γu− F)(V · n))−H(F · n)(V · n).

For the derivation of the shape derivative of the transmission condition (7.27) we use
lemma 7.3 by setting

u = κ1φ1 − κ0φ0, F = −[κ]Ej
p.

Due to the transmission condition (7.12) we have that ∇Γφ1 = ∇Γφ0 and thus it
follows

∇Γu = κ1∇Γφ1 − κ0∇Γφ0 = −[κ]∇Γφ0.

With this information we obtain the following Neumann transmission condition for
the normal derivatives of φ′

0 and φ′
1:

κ1
∂φ′

1(x)

∂n(x)
− κ0

∂φ′
0(x)

∂n(x)
= −[κ]divΓ

[
(∇Γφ0(x)−Ej

p(x))(V(x) · n(x))
]

+ [κ](H(x)Ej
p(x) · n(x))(V(x) · n(x)), x ∈ Σ.

(7.27)

Inserting the transmission condition (7.24)-(7.25) into (7.23) yields

J1 = −κ0
κ1

[κ]

∫

Σ

(
∂φ0(x)

∂n(x)
− Ei

p(x) · n(x)
)(

∂ψ0(x)

∂n(x)
−Ej

p(x) · n(x)
)
(V(x) · n(x))dsx

− [κ]

∫

Σ

divΓ

[
(∇Γφ0(x)− Ei

p(x))(V(x) · n(x))
]
ψ0(x)dsx

+ [κ]

∫

Σ

H(x)(Ei
p(x) · n)(V(x) · n(x))ψ0(x)dsx

= −κ0
κ1

[κ]

∫

Σ

(
∂φ0(x)

∂n(x)
− Ei

p(x) · n(x)
)(

∂ψ0(x)

∂n(x)
−Ej

p(x) · n(x)
)
(V(x) · n(x))dsx

+ [κ]

∫

Σ

(∇Γφ0(x)− Ei
p(x))(V(x) · n(x))∇Γψ0(x)dsx.
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Let us now take a look at the expression J2. Since on the fixed boundary Γ the
velocity field is zero, i.e. V = 0, we get

J2 = −κ0
∫

Σ

(∇φ0(x)− Ei
p(x)))E

j
p(x)(V(x) · n(x))dsx

+ κ1

∫

Σ

(∇φ1(x)− Ei
p(x))E

j
p(x)(V(x) · n(x))dsx.

Combining this with the transmission conditions (7.12) and (7.13) leads us to

J2 = −[κ]

∫

Σ

(∇Γφ0(x)− γtE
i
p(x))γtE

j
p(x)(V(x) · n(x))dsx, (7.28)

where the tangential part of a vector is defined as γtE = E− (E · n)n. By summing
up J1 and J2 we finally obtain the following formula for the shape derivative:

J ′(0) = −κ0
κ1

[κ]

∫

Σ

(
∂φ0(x)

∂n(x)
−Ei

p(x) · n(x)
)(

∂ψ0(x)

∂n(x)
− Ej

p(x) · n(x)
)
(V · n(x))dsx

+ [κ]

∫

Σ

(∇Γφ0(x)− γtE
i
p(x))(∇Γψ0(x)− γtE

j
p(x))(V(x) · n(x))dsx.

(7.29)

A descent direction to minimize the shape functional r(Ω1,t) is thus given by

V∗(x) = −[κ](J (Ω1,t)−vδ)
[
−κ0
κ1

(
∂φ0(x)

∂n(x)
− Ei

p(x) · n(x)
)(

∂ψ0(x)

∂n(x)
− Ej

p(x) · n(x)
)

+ (∇Γφ0(x)− γtE
i
p(x))(∇Γψ0(x)− γtE

j
p(x))

]
n(x), x ∈ Σ. (7.30)

7.4 The Level Set Method

For the solution of the inverse problem of Magnetic Induction Tomography we need
to choose a method how to represent the transmission boundary Σ. One possibility
would be to represent Σ by a parametrization [40]. Another method for representing
a domain and its boundary is given by the Level Set Method ([53]). In the Level Set
Method the transmission boundary Σt is described by a level set function ϕ(x, t) :
Ω1 × R+ → R:

Σt = {x : ϕ(x, t) = 0}.
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The level set function ϕ satisfies the partial differential equation

∂

∂t
ϕ(t, x) +V · ∇xϕ(t, x) = 0.

For the Magnetic Induction Tomography the direction V can be computed by the
formula (7.30).
To solve the inverse problem of Magnetic Induction Tomography we would proceed
as showed by the following algorithm:
Choose an initial level set function ϕ0 and determine the initial transmission bound-
ary Σ0.

1. Solve the transmission problem (7.10)-(7.14) for φk
0 and φk

1.

2. Solve the adjoint transmission problem (7.18)-(7.22) for ψk
0 and ψk

1 .

3. Compute the descent direction Vk(x) by using formula (7.30).

4. Update the level set function ϕ by solving

∂

∂t
ϕ(t, x) +Vk(x) · ∇xϕ(t, x) = 0.

5. Determine the transmission boundary Σk.

6. Check if convergence is reached

|J (Ω1,t)− vδ| < ε.

If the convergence is not reached go to 1.

An implementation of the level set method has not been done in this thesis, however
using a Level Set Method in combination with the solution of the forward problem
with the boundary element method seems promising.
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8 CONCLUSIONS AND OPEN PROBLEMS

8.1 Conclusions

In this thesis we investigated the simulation of eddy current problems using bound-
ary element methods. Taking the Maxwell equations as a starting point we derived
mathematical models for the eddy current problem. We introduced a representation
formula for electric and magnetic fields in or outside a conducting domain. We fur-
ther derived integral equations for the electric and magnetic fields. We presented a
new stabilized formulation for the solution of boundary value problems, when con-
sidering small wave numbers. We illustrated this effect by numerical examples.

For the eddy current transmission problem we introduced different formulations. We
presented two formulations, which are based on a direct boundary element method,
one was formulated in terms of the electric field E, the other one was formulated
using the magnetic field intensity H. In addition we deduced an indirect formulation
for the magnetic field intensity H. We introduced a discretization for the derived
boundary integral formulations and gave numerical examples.

In the end we dealt with the inverse problem of Magnetic Induction Tomography
using the shape reconstruction approach. We computed shape derivatives for a re-
duced model.

8.2 Open Problems and Possible Further Work

The simulation of eddy current problems in industrial applications requires a fast
and robust solver. The bottleneck when using the boundary element method to sim-
ulate the eddy current problem is the setup time and the memory consumption of
the boundary element matrices. To decrease the memory requirements and to speed
up the setup time for the matrices a fast boundary element method can to be im-
plemented, e.g. a H matrix structure in combination with the ACA method can be
used for the boundary element matrices [6, 30]. Another possibility would be to use
the Fast Multipole method [27].

For the solution of the linear systems a good preconditioner has to be implemented.

111
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As seen in Chapter 6 the eddy current transmission problem requires the solution of
a block system. When using an iterative solver a good balance of the blocks in the
linear system is crucial. A possibility for the preconditioning of the block systems
would be an implementation of the Bramble-Pasciak transformation [8].

From a theoretical point of view the proof of the unique solvability of the varia-
tional problem (5.55)-(5.56), which resulted from an indirect formulation for the
eddy current problem based on the magnetic field intensity H, is still open.

In industrial applications, e.g. the simulation of transformers one also has to deal
with nonlinear materials. To be able to cope such type of problems a coupling of the
finite element method and the boundary element method is advantageous (cf. [31]).

In the last chapter of the thesis we presented a strategy for solving the inverse prob-
lem of Magnetic Induction Tomography by using a shape reconstruction approach.
A numerical implementation of this strategy has not been done so far. A possibility
for an implementation would be to combine the level set method with the boundary
element method presented in Chapter 6.
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