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Kurzfassung

In dieser Arbeit wird zuerst der heutige Kenntrasst zur Analyse von

Unsicherheiten/Unschéarfe dargestellt. Im Bereich@eotechnik sind aus Sicht
der praktischen Ingenieursarbeit vor allem die povbabilistischen oder
unprazisen Methoden interessant, deren Theoriemletzten zwei Jahrzehnten
eine rasante Entwicklung erfahren hat. Jeweils emesgewéhlte non-
probabilistische und probabilistische Methode - lakgde ohne Modifikation des
Rechenkerns mit numerischen Methoden kombiniertdererkonnen - wird

erlautert, um zu zeigen, welche Informationen flmgenieurgemale
Beurteilungen und Entscheidungsfindungen im Turmelaus diesen Verfahren
gewonnen werden konnen. Unter den non-probabdistis Methoden erbrachte
besonders die Random Set Finite Elemente Method& HEM) sehr gute

Ergebnisse fir praktische ingenieurméafiige Probkdiasgen.

Kapitel 3 und 4 widmen sich der weiteren Untersuchuler Vorzige und
Beschrankungen der RS-FEM in Hinblick auf Aufgaltelhsngen des

Tunnelbaus. Ein Vergleich zwischen Berechnung uresdvingen demonstriert
im weiteren die Effizienz der Methode in einer ezalFallstudie. In Kapitel 5
wird die Leistungsfahigkeit des Verfahrens untensudie Unsicherheiten bei
der Auswahl des Stoffgesetzes und seiner Parameté&ertcksichtigen. Dazu
wurden zwei RS-FEM Berechnungen durchgefihrt, inedeMaterialmodelle

mit dem Mohr-Coulomb und dem Hoek-Brown Versageitsium verwendet

wurden. Die Unterschiede in den Berechnungsergsémisverden erdrtert und
mit den Messergebnissen verglichen. Zum Abschlussden die Ergebnisse
verschiedener RS-FEM Berechnungen unter Verwenddeg ,Evidence

Aggregation Method* zusammengefihrt. Im letzten ikdpvird am Beispiel der

gleichen Fallstudie die Punktabschatzmethode (Fstitnate Method, PEM) als
eine der probabilistischen Methoden mit der RS-FEbtglichen. Es wird

gezeigt, das unter bestimmten Annahmen mit PEM RS&IFEM &hnliche

Schlussfolgerungen in Bezug auf die Bandbreite deahrscheinliche

Systemverhalten eines Tunnels gezogen werden kénnen



Abstract

In the current study, first state-of-the-art unairty analysis methods are briefly
reviewed. To deal with uncertainties involved inotgehnical problems, non-
probabilistic or imprecise probability methods wldkeories have been rapidly
developing in the last two decades are appealingngineering practice. Two
selected non-probabilistic and probabilistic methedth the potential of being
combined with numerical methods —without requirgagy modification to the
core of the numerical code— are investigated toahestnate what useful informa-
tion can be provided for more rational engineefudgments and decision mak-
ing in tunnelling. Among non-probabilistic method&andom Set Finite Element
Method (RS-FEM) has demonstrated its attractivelt®sn practical geotechni-
cal problems.

Chapters 3 and 4 are devoted to the further inyasbin of merits and limitations
of the method, focusing on tunnel engineering mold. Moreover, a compari-
son between calculation and field measurementdigigh the efficiency of the
RS-FEM in a real case study. In Chapter 5, an g@itésrmade to demonstrate the
capability of the framework in considering the umiamty involved in the selec-
tion of material constitutive model. For this puspo two random set analyses
were accomplished in which the Hoek-Brown and MGbulomb criteria have
been used as the constitutive model. Discreparm@éseen the results are dis-
cussed and compared to the measurements. Finadyresults obtained from
different random set analyses are combined usimgerge aggregation methods.
In the last chapter, a comparison has been madeebetthe Point Estimate
Method categorised as one of the probabilistic @ggres and RS-FEM, using
the same case study. It is shown that under cemssnmptions, a similar conclu-
sion regarding the range of most probable behavadus tunnel problem ob-
tained from both PEM and RS-FEM approaches carrd&rd
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List of symbolsand abbreviations

This section lists the definition of used symbaisaiphabetical order. They are
additionally explained in the text when they fiegipear. Units are not included
in this list, they will be defined in the text whérey are first used.
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1 Introduction

1.1 Motivation

In association with engineering judgement, Lacas$eal. (2004) state:
“Engineering depends on judgment, the exercisehathvdepends on knowledge
derived from theoretical concepts, experiment, mesaments, observations, and
past experience. These building blocks have toelsegnized, assembled, and
evaluated collectively before judgment can be rezdle Specifically, in the
tunnelling industry Wannick (2007) mentions: “Sinte early 1990s, no other
area of the construction industry has been as aselyeaffected by major losses
as tunnelling. Besides property losses often intwedigit million range, third-
party liability losses have also been high, and enaws people have lost their
lives. The international insurance industry has engzhyments exceeding
US$ 600m for large losses”. Certainly a varietgafises may be included for the
losses such as flood, earthquake or fire. Howewatses originating from
uncertainties, lack of knowledge or insufficiental@rior to tunnel construction
cannot be overlooked. Therefore, modern concepadindewith uncertainties
(e.g. reliability analysis, risk management andsgesty analysis) have to be
introduced into common engineering practice, egbgcin large underground
structures. This requires an efficient user-frigndlamework to deal with
uncertainties. It seems that there is a demandtiiseusimple mathematical
concepts regarding uncertainties in tunnel engingeaind to introduce simple
and user-friendly frameworks for analysing and geisig underground
structures.

The usage of numerical methods such as the Finigendént Analysis is
becoming more widespread, as more designers resmfme advantages of using
such techniques in analysing complex geotechnicddlpms.

Traditionally, there are two approaches that réfieacertainty in the design,
namely probabilistic and deterministic approach€@aiantities achieved by
probabilistic and deterministic approaches, suchfalsire probabilities and
safety factors respectively, play an important rolequalitative studies and
standard codes of practice; however, they do ndicate a firm proposition
about what takes place in reality. In addition, tcary to classical probability
theory, the probability of failure computed in emggring practice cannot be
interpreted as a frequency of failure (Oberguggeydreand Fellin, 2002). On the
other hand, several authors have addressed théc@mamgs of probabilistic
methods in reliability analysis e.g. tail problems which the failure of
probability may vary by orders of magnitude whetirfg different distributions
to the same input data obtained from laboratorysté®berguggenberger and
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Fellin, 2002). Moreover, Elishakoff (2000) has ectied comments of a number
of experts about possible shortcomings of probstimlimethods in engineering,
in which interested readers could look into thenagis of current researchers
about the application of probabilistic methods liagpice.

In the present effort, two selected non-probalmlisind probabilistic methods
with the potential of being combined with numerioathods —without requiring
any modification to the core of the numerical codare investigated to
demonstrate what useful information can be provided more rational
engineering judgments and decision making in tuimggl

The work presented herein is a follow-up to foregoiresearch on non-
deterministic approaches in numerical analysisemitgchnical problems carried
out in the Computational Geotechnics Group at tisitute of Soil Mechanics
and Foundation Engineering of the Graz University T@chnology. First,
Thurner (2000) made an attempt to apply probailailistethods such as Point
Estimate Method, Monte Carlo simulation, and FOS8thg the Taylor Series
expansion method, as well as reliability analysisig FORM/SORM methods to
illustrate the pros and cons of these probabilistethods by applying them on
different types of geotechnical boundary value fmoils. Peschl (2004)
accomplished a research namely “Reliability Anasyse Geotechincs with
Random Set Finite Element Method”. A successfubréfivas made to integrate
the finite element method as a powerful computaitiomol with an adopted non-
probabilistic method, namely the Random Set Appnaacprovide a procedure
by which a reliability analysis of highly complexominear geotechnical
problems may be carried out where only scarce ambmplete data are
available.

Therefore, in the present dissertation the objedswo investigate the merits and
shortcomings of the Random Set Method and the PBsitmate Method

respectively, categorised in the non-probabilistitd probabilistic approach,
which are equally applicable to the finite elememalysis of geotechnical
problems, with particular references to tunnel regring.
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2 On approaches dealing with
uncertainty

2.1 Uncertainty

As a comprehensive reference, Walley (1991) hashenaatically and verbally
elaborated many statistical and probabilistic ternespecially regarding
imprecise probability and type of uncertaintiesggneral. In addition, Baecher
and Christian (2003) have devoted one chapter tegoase uncertainty and
clarify frequently used terms particularly in thentext of risk and reliability
analysis of geotechnical problems. In brief, twods of uncertainty associated
with geotechnical problems exist, for which in tleehnical literature the terms
‘aleatory’ and ‘epistemic’ are commonly used. Aleatory uncertainty represent
the natural randomness of a property. As an impobrtaature, this kind of
uncertainty is irreducible and is also known asurat variability or spatial
variability in the case of soil parameters, whi@rywover space (not over time).
Epistemic uncertainty is a type of uncertainty tbaginates from the lack of
knowledge. Consequently this type of uncertainty patentially be reduced by
means of abundant observations and collecting nmdition. There are also other
types of uncertainties concerning construction, ufecturing, maintenance and
human errors (Lacasse and Nadim, 1996) that areinchided in the latter
categories and are usually not considered in madedagineering performance.

2.2 Uncertainty model

In dealing with uncertainties in any system, aneutanty model is required.
Figure 1 illustrates how uncertainty propagate®uph a mechanical system
within an uncertainty model. An uncertainty modehsists of a collection of
input uncertainty, model uncertainty, and the tégph& by which the system
response is evaluated. Thus, two main sources oértainty, namely model
uncertainty and parameter uncertainty are ideditifie geotechincs, the input or
parameter uncertainties are affected by both tgascertainty. For instance,
the inherent variability of soil/rock materials wgell-recognised as a random
phenomenon (Lacasse and Nadim, 1996) and regattignigck of knowledge, it
is difficult to determine the borders of soil lagasr to exactly characterise the
loads acting on the structure. Model uncertaintyceons the degree of accuracy
of a chosen mathematical model that is capableestribing a real physical
behaviour of the mechanical system. This comes foominability to exactly
model the actual system; therefore, model uncdytaialls in the epistemic
category. The uncertain model will lead to uncertaiodel responses even if
crisp input values have been used. Accounting tmhsan uncertainty is of
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interest in the area of numerical analysis wherlebility or risk analysis is
being performed to observe the impact of model tacey as a mapping
function on the system responses in any non-detéstiu approach. In this
dissertation, both sources of uncertainty are adeiet and considered.

Regarding the representation of system responsésrnms of probability, it is
worth mentioning that in almost all geotechnicablgems, engineers face a
mixture of both types of uncertainties and therefdhe outcomes of the
probabilistic calculations or uncertainty analysae signifying some sort of
degree of belief (Bayesian approach) about theirddaresults rather than the
exact value of e.g. probability of a system failaseunderstood in the frequentist
approach (Baecher and Christian, 2003). This notaomd perception of
probability is more consistent with geotechnicaépbmena and practice.

Uncertainty Model

a mechanical system

Interval T ——

e.g. numerical model or closed form i i Displacement
solution
Probability i z

Parameter uncertainty Model uncertainty System response

Fig.1:  Uncertainty model and propagation of uncertairttiesugh a model

The uncertainty model of a mechanical system i# bpifor different purposes,
mainly categorised in the following three types asfalysis (Schweckendiek,
2006):

1. Uncertainty analysis, aims to estimate the extent of the system regsons
based on the uncertainties inherent in the modkela Icomprehensive
analysis a distribution is obtained, and if such@ough analysis would
not be feasible, at least some statistical chamatitss are produced.

2. Reliability analysis, is concerned with finding the reliability or the
probability of failure of a system using defineduee criteria expressing
the undesired events. According to US Army Corp&fineers (1997)
“The term ‘failure’ is used to refer to any occurce of an adverse event
under consideration, including simple events suEimaintenance items.
To distinguish adverse but non-catastrophic evéntich may require
repairs and associated expenditures) from everdataktrophic failure (as
used e.g. in the dam safety context), the termahitiby of unsatisfactory
performance is sometimes used.”
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3. Risk analysis, aims to identify the hazards pertinent to a prognd to
determine the risk of one taking the potential aseeonsequences of the
hazards and its relevant probability of their ocence into account
(Baecher and Christian, 2003).

The current dissertation is concerned with the fi® purposes. In engineering,
risk analysis relates mainly to the consequendaar(€ially) of the uncertainty
and is beyond the scope of this work. However, greting uncertainty and
reliability analysis can be considered as an intotidn or as primary steps for
such an analysis. As an example, Pottler et aD{pBave shown the application
of Random Set Finite Element Method in risk analysi

In the following, the techniques recently developedanalysing uncertainty in
mechanical systems are outlined with the aim ohtifigng the position of the
methods used in the current dissertation with retSjoeothers.

2.3 Approaches of uncertainty analysis

In order to perform uncertainty analysis on a maata system, the uncertainty
present in the system’s characteristics have tanbghematically quantified.
Probability theory has a long tradition in charastag uncertainty and the
majority of the approaches in uncertainty analyges from this theory. Some
shortcomings addressed by researchers should hovievevercome e.g. in
handling all types of uncertainty or when the doddy of the probabilistic
approach is questionable when data are insufficlerg. Ben-Haim, 1994).
Contrary to classical probability theory, the proitisy of failure computed in
engineering practice cannot be interpreted as guémcy of failure; and
regarding tail problems in reliability analysis mgi probabilistic methods in
which the probability of failure may vary by ordesé magnitude when fitting
different distributions to the same input data olgd from laboratory tests
(Oberguggenberger and Fellin, 2002). ElishakofO(®0has collected comments
of a number of experts about possible shortcomaigsrobabilistic methods in
engineering, and opinions of current researchermsutalthe application of
probabilistic methods in practice. Thus, to overeothe shortcomings, some
other mathematical theories have been recently ggdeto handle epistemic or
multiple types of uncertainty such as random sedomh (Kendall, 1974,
Goodman and Nguyen, 1985), evidence theory (Dempk®67; Shafer, 1976),
fuzzy set theory (Zadeh, 1965), possibility theg¢Badeh, 1978), imprecise
probabilities (Walley, 1991), interval approach @fe, 1966), and convex model
(Ben-Haim and Elishakoff, 1990) among others. Tfwees regarding non-
deterministic analysis a classification can be maadewhich the current
approaches for dealing with uncertainties are éithto two major methods: 1)
probabilistic methods and 2) non-probabilistic noeih (Moens and Vandepitte,
2005). Probabilistic methods are those supportegrbipability theory and the
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non-probabilistic methods incorporate the otheoti@s or probability theory is
only partly involved. Figure 2 depicts tree-diagraiftustrating the most
commonly used approaches stemming from probabilestid non-probabilistic
methods in uncertainty and reliability analysis.

2.3.1 Probabilistic methods

The existing probabilistic methods can be categdrig1 various ways from
different points of view. For instance, in a gebidcal context, Suchomel and
Masin (2010) distinguish between probabilistic nethbased on considering the
spatial variability of soil parameters. Generatipe possible classification of the
probabilistic methods is portrayed in Figure 2.

Non-deterministic

Approaches
I
[ ]
Probabilistic Non-probabilisitic
Methods Methods
I Interval Analysis
B Standard
ABS%’?;?; Reliability
Methods I Fuzzy Approach
Iterative Random
Random Finite Point Sampling | | Imprecise
Element Method Methods Probability, P-box
[
Crude MC, Directional L | Random Set
Stochastic Finite Sampling, Hypercube Approach
Element Method Sampling, Hasofer-Lind
Method
Response Surface
Method Prefixed Point
Sampling Methods

Taylor Series
Finite Difference
Method

Point Estimate
Methods

Fig. 2: Classification of non-deterministic approaches

There are many probabilistic methods, a selectionhioch is briefly mentioned
herein. Standard reliability methods and procedsresh as MC (Monte Carlo
simulation) or First Order Second Moment approxiora{ FOSM), First Order
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Reliability Method (FORM), Second Order Reliabili¥jethod (SORM), and the
Taylor series expansion can be found in standatdoieoks (e.g. Ang and Tang,
1975; Harr, 1996, Haldar and Mahadevan, 2000).

2.3.1.1 Bayesian approach

In many cases, the required information for prolgtid analysis is missing or
limited. Those researchers who are interestedimgysobabilistic methods tend
to overcome the main disadvantage (i.e. when i@efit data are available,
subjective assumptions should be made about tHeapildy distribution of the
input random variable) by applying the Bayesiarothie Thus, first a subjective
probability is assumed and with the help of prosipecobservations and test
results (whenever more data become available) usiagBayesian theory, the
probability distribution is amended and improvedisl clear that if no reliable
information is added to the analysis, the Bayesmmthod does not yield better
results or predictions of the system response. fdegathe Bayesian approach
in reliability analysis of geotechnical problemg ®aecher and Christian (2003).
Very recently, Stille et al. (2010) have utilizeldetBayesian approach in the
design of underground structures in combinatiornhie observational method,
since there is compatibility between these two ettogies and as the design
can be modified, if necessary, as more informati®nobtained during the
tunnelling progress. See also Zhang et al. (200%haracterising geotechnical
uncertainty models based on the Bayesian approach.

2.3.1.2 Response surface method

The response surface method can be considered amaertainty analysis
methodology in which the impact of the input partare and their interactions
on the system responses are evaluated and comeithug relationship between
the significant factors and the desirable systesparse in order to reduce the
analysis complexity of the mechanical system (Cora®90). The function
obtained by this method can replace the originadehn an uncertainty analysis.
Then one of the probabilistic methods is employed.(Monte-Carlo simulation)
in order to evaluate the system with significandynaller analysis time,
maintaining the same number of simulations. Zangeee al. (2002) have
employed this methodology in numerical geotechniealalysis, e.g. the
displacement analysis of slopes subject to eartequhe idea is simple and
attractive but from a practical point of view, i$ra shortcoming because it is
necessary to estimate the response function usgigession methods for each
individual response and it is valid only in the es#¢d ranges of the input
variables. For cases that many system responsesf améerest a great deal of
statistical analyses and computational effortsageired.
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2.3.1.3 Stochagtic finite element method

In the stochastic finite element method (see eltar®m and Spanos, 1991) the
‘stochastic process’ (time dependent charactesistic random variables) and
‘random field’ (variability of a parameter over gga i.e. spatial variability)
characteristics of input parameters are engagedhe governing partial
differential equations, which are to be discretisedl numerically solved by
means of the finite element method. The discretisaif random fields is usually
accomplished by means of series expansions or bytéviGarlo strategies. An
extensive review of such strategies has been daaoug by Keese (2003). All
system responses are given in terms of random ¥eddors, incorporating all
possible outcomes based on the random field clarstots of input parameters.
The method can be considered as one of the mosiissicpted probabilistic
methods that require significant changes to a stahfinite element code. This
method has been mainly utilised in structural ajgions.

2.3.1.4 Random field finite e ement method

Usually in probabilistic numerical methods, the tsgavariability of the soll
parameters is not taken into account. In other wjorthe inherent soil
characteristic, indicating a correlation betweeih @m@perties of an element with
respect to the surrounding elements in a certatadce, is ignored. Instead, a
soil layer is considered homogeneous with a releymabability distribution
which represents the stochastic behaviour of tlyer)ai.e. at each realisation
using one of the existing sampling methods (e.gntddCarlo sampling) the
respective soil property is identical within thedas elements. However, in the
Random Finite Element Method (RFEM), soil paranstare modelled by
random fields. The solil layer is divided into smalkments by means of finite
element discretisation and the sampling is impldas@rfor each individual
element. Considering the spatial correlation lengilinich depends on soil
characteristics) the soil property of tifeelement in the random field is assigned
using the local average subdivision technique. Aeseof papers presented by
Griffiths and Fenton have demonstrated the applitabf the method in several
geotechnical problems (see Griffiths and Fento®,72@uch as bearing capacity,
slope stability, footing settlement, and passivehepressure of spatially random
soils. Phoon and Cheng (2009) used the random fiigle element method for
the uncertainty analysis of a circular tunnel, mioag the Young’s modulus of
the soil layer as a random field. Providing theapagters required in RFEM
needs adequate information about the soil layeishwdre hardly obtained from
standard site investigation schemes. This issuace=dthe popularity of the
method in practice; however, it has accommodatggdeat insight into the real
soil behaviour from a scientific point of view.
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2.3.2 Non-probabilistic methods
2.3.2.1 Interval Analysis

Moore (1966) introducethterval analysis, interval vectors, and interval matrices
as a set of techniques that provide error analigesomputational results. The

interval approach is used to describe parametegrtainties either in geometry
and loadings or in soil model parameters as inteantities. The uncertainty is

assumed to be unknown, but bounded; it has lowdrugper bounds without

assigning a probability structure.

One interpretation of an interval number is a randariable whose probability
density function is unknown but non-zero in thegarf the interval. Another
interpretation includes intervals of confidencedecuts of fuzzy sets. In general,
the interval concept serves as a basis of otherpnoimabilistic uncertainty
models (Muhanna et al., 2007). For example, in filmezy set approach a
continuous membership function of input parametars be split into several-
levels with corresponding intervals and the fuzeyapproach turns into several
analyses on differertt-cuts (Kaufmann and Gupta, 1991; Peschl and Sclaweig
2003). It will also be shown in chapter 3 thathe fprocedure of the random set
analysis of a system, a series of interval analgsesperformed to obtain the
worst and best case on the Cartesian product @l felements of the system
parameters. Accordingly, knowledge of interval hanetic is of great
significance in applying modern uncertainty anaysiethods like the Fuzzy
Analysis, Random Set approach and Interval Analysisconnection with
numerical models.

In the interval analysis of a mechanical system,Htll of the solution se is
defined as the narrowest interval containing theults of a system response
resulting from uncertainties available in the ingystem parameters. In other
words, the hull of the solution set contains thieaféhe solutions. Suppose that
by internal analysis se¢ has been obtained as a solution setX3streferred to
as the enclosure of the solution set containinghilie of the solution set. It is
called a sharp enclosure if the obtained solutien §etX) is practically useful
and not significantly conservative. The inner bowfidhe exact solution is any
interval (i.e. excluding the endpoints of the intd) that is contained i and the
outer bound is any interval that contaths

The objective of interval analysis is to obtain thal of a solution set or at least
a rigorous sharp enclosure (outer bounds) for #mges of system responses.
From the mid-nineties many researchers have desdlopethods focusing on
solving interval system equations for applicationsinterval Finite Element
Analysis (IFEA) including the most common ones:
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1. Combinatorial method (e.g. Rao and Berke, 1997)

2. Perturbation method (e.g. Qiu and Elishakoff, 1998)

3. Sensitivity analysis method (e.g. Jasiski and Pownuk, 2000)
4. Optimization method (e.g. Mdller et al., 2000)

5. Monte Carlo sampling method (e.g. Kulpa et al., 1998)

6. Interval arithmetic FEM (e.g. Muhanna et al., 2007)

Combinatorial method: If f(xy,...,X,) denotes a monotonic function of the
parameters within the interval,..., X ,, the range of can be determined by
considering all possible combinations of the bouaflithe interval parameters.
Let the interval parameteb§ be denoted aX=[ x; ,Xi]:[xi',xi“]. Introducing all
possible combinations of the bounds of the intepaahmeters into the analysis,
the range of functiohcan be represented as an interval number as:

|£,F]=[min(f,), max(f,)]:r =1...2" 1)

The primary advantage of this method is that itsteaightforward in its
application to interval FEA. Any existing deternstic finite element code can
be used for evaluating the considered functiadowever, it must be noted that
the combinatorial method vyields the exact respamasge only if the system
response is monotonic with respect to each paranreiés interval range. The
computational cost increases exponentially with thember of interval
parameters. Fon interval parameters, there aré ¢édmbinations for which the
deterministic FEA has to be performed. The expaakobmplexity limits the
applicability of the combinatorial method to systewith a rather small number
of uncertain variables.

Perturbation method: This method is used when the uncertain paramesass v
in a very small range. In fact in this method thensidered function to be
evaluated, should be expanded around the mid-mditlhe parameter interval
with very small differentials. In the expanded dtpa higher order parts are
neglected and other differential parts are sulistitlby a first-order Taylor
series. The disadvantage of this method is thatbinends obtained are not
guaranteed to enclose the true response range thiadeigher order terms are
neglected in the equations. More details aboutrieshod can be found in Qiu
and Elishakoff (1998).

Sensitivity analysis method: The sensitivity analysis method determines the
bounds of the structural responses based on tlanelt knowledge about the



2 On approaches dealing with uncertainty 11

monotonicity of the responses with respect to trstesn parameters. Jaski and
Pownuk (2000) introduced the method to achieveamdy the bounds on the
system response of a linear interval equationalag an algorithm in testing the
system’s monotonicity over the entire interval ramgof the parameters.
Although the method is able to check the monottyicf the problem, its
usability is limited in practice since it requirsgnificant computational effort
when a large number of interval variables exist.

Optimization method: Another way to find the bounds of the responseois t
perform two optimizations to compute the minimatlanaximal responses when
each parameteris constrained to belong to an intervalMoller et al. (2000)
developed an optimization algorithm combining theoletion strategy, the
gradient method, and the Monte-Carlo method. Themgation algorithm was
applied to both static and dynamic linear/nonlinganctural analyses. This also
has a disadvantage from a practical point of vieegause for each response
guantity, the function has to be optimized twigeprder to find the minimal and
maximal values. Thus, when a small problem withitich uncertain parameters
is involved this method becomes more practical.

Monte Carlo sampling method: The Monte Carlo sampling method involves
sampling from intervals of input parameters expecthat the samples will fall
sufficiently close to the values accommodating el system responses. If the
number of samples is large enough, the lower amémupounds of the solution
set of the simulations could be a good approximafar the actual response
range. Since the interval parameters do not comt@rprobability information, a
probability distribution over the interval shouleé assumed for the sampling
purpose. The distribution can be chosen arbitrarity practice, a uniform
distribution over the interval is often chosen ¢onvenience. It should be noted
that this method, in spite of requiring a great ant®f realisations always gives
the inner bounds for system responses.

Interval arithmetic finite element method: Substituting variables in system
equations with interval quantities leads to a seveverestimation due to a
dependence problem addressed by several publisateag. Moore, 1966 and
Neimaier, 1990). Muhanna et al. (2007) enhancednte¢hod of solving the
interval system equations in order to improve thegutational efficiency of the
interval approach as well as overcoming the sepeegestimation of the system
response ranges using the Element-By-Element tg@gbniThis methodology is
referred to as the “interval arithmetic FEA”. Thiaite element equations are
reformulated seeking two objectives: 1) to reduce tepetition of the same
interval variables in the computations 2) to delay use of interval arithmetic as
late as possible in the computations, in ordenvtmdaoverestimation in solution
sets. In a recent development, a new formulatidk#A has been introduced by
Rama Rao et al. (2010) in which both primary (egdal displacements) and
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derived unknowns (e.g. normal stress in truss aishan the finite element
formulation can be estimated sufficiently accurat@jch are comparable with
precise methods such as the combinatorial approdul. approach is able to
handle a high degree of uncertainty (e.g. 10%)famtithe worst case in a truss
problem with over 10000 interval parameters effie and with considerably
less computational effort in comparison with thenbmatorial method.

The Random Set Finite Element Method (RS-FEM) ipleasised in this study
and as its procedure is explained in the next émaptcombinatorial method is
used to handle the required interval analysis.&this method is recognized as a
computationally expensive method, it is conveniastlong as the number of
random variables is low. On the other hand, it gia@ inner bound solution if
the system is not monotonic with respect to theiimandom variables (RVSs).
This issue will be addressed next. Furthermore,le@ymy interval arithmetic
FEM such as those used for structural problems iregjumanipulating
geotechnical software codes and also demands anthtg dealing with a non-
linear equation system, which is not such a sttéogivard task and seeks for an
extensive research in this topic. Therefore it setmat the combinatorial method
Is a practical solution for carrying out the int@nanalysis inside the RS-FEM
procedure. Nevertheless, the monotonic behaviouthef system should be
checked.

As a conclusion, IFEM alone has a limited usageeimability analysis since the
resulting computations are in a form of simple néés lacking probability
assignments. Thus a probability statement aboutethdts cannot be drawn (e.g.
probability of failure). On the other hand, the diepments lately carried out and
associated with IFEM can be used to dramaticaljuce the computational
efforts of other non-probabilistic approaches (duzzy set analysis and RS-
FEM) that are based on interval analysis.

Monotonicity check

It is not a straightforward task to prove the maonatity condition for a
geomechanical boundary value problem, especialljange scale problems
involving many parameters. For instance, tangerdgiaésses surrounding a
circular tunnel might be monotonic with respecthie variation of model input
parameters such as the elastic modulus, cohesidrredaxation factor, while
another system response like the crown displacemtnhe tunnel may not
demonstrate monotonic behaviour. Although such ltesardly happen in
geotechnical problems, prior to performing any nvéé analysis using the
combinatorial method, one should make sure thai&ehanical system behaves
monotonically. However, in the author’s opiniomrr a practical point of view
it suffices to check the monotonicity of a geotachhboundary value problem
with a simple sensitivity analysis (Peschl, 200¥jernatively, a more rigorous
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sensitivity analysis such as the monotonicity tegiteen by Rama Rao and
Pownuk (2007) or an optimisation scheme (Moellerakt 2000) could be
employed. Of course the latter methods are more tonsuming and demand
higher computational effort.

In the case of truss problems, however, it can la¢hematically shown (see
Neumaier and Pownuk, 2007) that the monotonicigpprties exist only when
the stiffness parameters are involved and varypeddently. This can be proven
because a special form of linear system of equai@ises in truss modelling. In
a highly nonlinear complex geotechnical problem tm@notonicity proof
however, is so complicated that it demands a sepamnaestigation which is
beyond the scope of this study.

According to Pownuk (personal correspondence) n@oplems are monotone
with respect to many parameters, however, unfotélyé cannot be generalised
to all mechanical problems and their respectivaimaters. For instance, in the
general case of FEA, when the stiffness matrix Iwve® intervals, the
monotonicity is not guaranteed (McWilliam, 2000pdahe interval obtained for
the system response is only an inner bound ofrtleeresponse range. Therefore,
prior to performing any interval analysis using thertex method (e.g. Dong &
Shah, 1987) one should make sure by one of theemummethods (e.g.
monotonicity test given by Rama Rao and Pownuk,72Q@Bat the system is
monotone to obtain the hull of the solution settfa desired system responses.

2.3.2.2 Fuzzy Method

The overall approach of the fuzzy method may bedsudied into three main

stages: 1) fuzzification 2) fuzzy analysis 3) deitization. The mapping of the

fuzzy input values onto the result space is basedhe extension principle in

combination with the Cartesian product. In fuzzyalgsis, the theory of

possibility for fuzzy sets is used, which considemstemic uncertainty. The
fuzzy approach to uncertain problems is to mathes@ahe model parameters
including geometrical, loading and soil model pagtans as fuzzy quantities
(Zadeh, 1965).

A fuzzy set is defined by its membership functionose domain is1 while its
range is bounded between [0,1]. The domain of tleenbership function is
known as the interval of confidence and the rarsgg&nown as the degree of
membership. Therefore, each degree of memberghif@-cut membership,
a[0,1]) has a unique interval of confidence,=fa,,b,], which is a
monotonically decreasing function af(Fig. 3).
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Fig.3:  Membership function of the cohesion of a soil lag®e a fuzzy
number, constructed from a histogram

The construction of a fuzzy set describing inputalality may be based on an
expert’s opinion of possible ranges of e.g. thelarg internal friction. Of
course, in this method a subjective shape shoulchbsen for the membership
function (e.g. a triangle). Another approach basedhe existing data comprised
of samples, may be utilized in the form of normedihistograms. An example of
a triangular fuzzy number is given in Fig. 3. Assitg a membership function to
the available data is calletuzzification. In this stage simplifications and
approximations are introduced. In this examplegah be interpreted that the
expert had assigned the degree of possibilityltabthe cohesion is in the range
of [15, 35] and a possibility of 1 that it has treue of 22 kPa. The computation
of the fuzzy set approach can be performed basethemnules of the fuzzy set
theory by adopting the-level discretisation of input variables to obtdlre
corresponding output of the same possibility leffelzzy analysis). Finally,
deterministic parameters of the system response®xracted from the fuzzy
results, which are presented in numbeesyzzification).

Some researchers have attempted to apply the fappyoach in reliability
analysis but using different terminology and intetptions concerning the
resulting reliability. For instance, Peschl and \8eiger (2003) utilise the
possibility of failure[l; for describing the safety level of a geotechnical
structure. Dodagoudar and Venkatachalam (2000)estutie reliability analysis
of slopes using the term ‘fuzzy probability of tag’. Shrestha and Duckstein
(1998) defined a kind of fuzzy reliability indexcm the framework of fuzzy set
theory, computed the probability of a fuzzy failusg introducing the fuzzy
reliability measure that satisfies the necessanppgnties of the probabilistic
reliability measures.
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Probability of failure given by possibilistic met® e.g. Fuzzy Point Estimate
Method (e.g. Dodagoudar and Venkatachalam, 2000)beaconsidered as the
upper bound for the probability. For instance, &nat al. (2002) exemplified a
case in which the fuzzy membership function for andom variable is

constructed based on the mean value and standasdtide of a random

variable, and showed that the possibility of falwbtained by fuzzy analysis is
1.0 while the probability of failure is only 0.5n Igeneral, a high degree of
possibility does not necessarily mean a high valuerobability (Dodagoudar

and Venkatachalam, 2000). On the other hand, wheevant is not possible it
also implies the event is improbable.

The random set approach and fuzzy set method mmitassito each other in the
sense of their concept, although the former talkee®tits of probability concepts
and the latter is backed by possibility theory. éwiing to Tonon (2000a)
random sets are is able to deal with imprecise @amstaa special kind of
‘ambiguity’ that is properly formalised by the ca@pt of fuzzy sets introduced
by Zadeh. In addition, a special case of randomrsenely the consonant sets
(discussed in Chapter 3) in which each focal eldroentains each other, can be
interpreted asi-cuts of a fuzzy set and consequently, the plalityitzind belief
function in the random set conform with the posgiband necessity function in
possibility theory respectively.

2.3.2.3 Imprecise probability method based on p-box
representation

A probability-box or p-box (Ferson et al. 2003gipair of CDFs which represent
the imprecise probability distribution of a randeariable as depicted in Figure
4. 1t is able to consider all possible distributitypes that might lie within these
two bounds. This representation of uncertaintyasywsimilar to the random set
representation but they are structurally differexstwill be discussed in Chapter
3. Using the p-box representation, two methods lwampplied alternatively in

combination with finite element analysis or any estitomputational tool for

reliability analysis; 1) Monte Carlo-based solutigdhang et al. 2010a) 2)

discretised p-box (Zhang et al. 2010b).

In the Interval Monte Carlo method, asgraphically illustrated in Figure 4a, one
can randomly generate intervals for each RV of gh@blem using a standard
uniform random numbeu;. Upon each sampling, the problem is turned imio a
ordinary Interval Finite Element Analysis. Therefpthe system responses are
obtained in the form of intervals and after a largamber of realisations, the
frequency distribution of the response’s internada be plotted, which look like
input p-boxes.
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In the discretised p-box approach, a uniform discretisation as depicted in
Figure 4b is employed to split the p-box structunéo several sets (the
discretisation method is arbitrary) with equally segated probability
assignments. From this stage on, the problem wtettelike a random set
analysis. Therefore, a Cartesian product of theggad sets or intervals is to be
constructed for obtaining input intervals for aluired realisations. Obviously
in this method, the number of realisations depe&mdthe number of subdivisions
carried out in the discretisation method.
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Fig. 4: Imprecise probability method based on p-box reprigion
a) discretised probability-box, Al to A4 are theguced focal
elements with the respective probability assignsemt to m4
b) Monte Carlo-based random intervals (after Zheingl. 2010b)

One of the disadvantages regarding this methodhas basically imprecise
probabilities are of interest, when scarce inforamtis available and
consequently two probability distributions required upper and lower bounds
are to be defined on the basis of subjective assangpunless abundant set-
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based observations would have been carried oubn8gG a large amount of
simulation is needed like any Monte-Carlo samplmgthod to give a correct
answer.

2.4 Adopted approachesin this study

In this Chapter, a short summary of common metragles for the evaluation of
an uncertainty model in mechanical systems has pessented along with their
main advantages and disadvantages. Basicallyaha@aterministic methods are
divided into two main categories, non-probabiligticd probabilistic methods. In
this work one method from each branch of the ndefdanistic methods shown
in Figure 2 has been selected. Although due takf@@acteristics of information
usually available in tunnelling problems, in thiady the Random Set Approach
is proposed to deal with the uncertainties involaed the main emphasis has
been given to this approach. On the other handhtHtstimate Method is still
appealing for engineering practice and therefore chapter is devoted to
evaluating the shortcomings and benefits of thisbgabilistic method in
tunnelling.

The Random Set Finite Element Method (RS-FEM) dmel Point Estimate
Method will be explained further in detail in Charg 3 and 6. In the following, a
summary of arguments in employing these methodsargioned.

Random Set Approach

In short, in random set, set valued informationcédoelements) with given
probability measures (probability assignments)amabined together leading to
probability bounds in terms of discrete cumulatilistribution functions (CDF).
The bounds comprise any distribution compatible hwihe existing data
including the actual distribution. The Random secpdure maps the inputs onto
the system response, also in terms of probabildynbls. This approach has
many similarities to other aforementioned non-pholgtic methods such as the
fuzzy set and p-box approach. For instance, botldam set and fuzzy set
approaches are supported by set theory and intenadysis would be an integral
part of their solution procedure. However, in Ramd8et the independence of
the individual information sources are preservedenim the p-box approach a
set is randomly taken by the Monte-Carlo procegsaah simulation. Random set
is concerned with the probability of events whitefuzzy set, the possibility of
events are measured.

Random Set Theory provides a powerful framewonklch different sources of
information may be combined, whereas it will bewghan the next section that
fuzzy sets can convolute different information owllyen special conditions exist
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(consonant sets are available). In this respectam sets are more general than
fuzzy set.

The random set is attractive in the sense thaiables engineers to consider both
aleatory and epistemic types of uncertainty. On dtkeer hand in tunnel
engineering due to the linear nature of tunnel quigj usually very limited
investigation programs are available at the begomif the design stage, which
leads to very sparse and scarce data. Consequdrdlgeotechnical properties
mostly appear in ranges without probability measuadtributed across the
ranges. In such conditions, the random set appnsgotoposed and preferable.

Point Estimate M ethod

Point Estimate Method is one of the probabilistietinods. In brief, the
probability distribution of input parameters is stituted by single values and
their respective predefined weights. The uncergambdel is evaluated with the
predefined sampling points and as a result, thesstal moments of system
responses that are of interest, are estimated.

This method in the sense of simplicity (from a picat point of view) as well as
its relatively low number of simulations is favobla although there are
disadvantages whose details are discussed in Ch@pteart of the study has
been devoted to identify the possible limitationsl anerits of such a method in
tunnel problems by comparison with the resulthefrandom set approach.
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3 Random Set Finite Element Method In
Tunnelling

The random set theory developed by several autferxs. Kendall 1974,
Matheron 1975, Goodman 1985, and Dubois 1991) hasded an appropriate
mathematical model to cope with uncertainty whileer@oming some of the
drawbacks of "classical" probability theory, whishnot well suited to deal with
imprecise data. In practical geotechnical engimggrsubjective assumptions
about the probability density function of parametare often made because in
many cases the results of geotechnical investigsitare set valued rather than
being precise and point valued. Tonon et al. (129890a, b) used Random Set
Theory (RST) to deal with the uncertainty in geohsstcal classification of
jointed rock masses and reliability analysis ofuanel lining. Peschl (2004),
Schweiger et al. (2007) have combined Random Sebrhwith the finite
element method, developing the Random Set FingenEht Method (RS-FEM),
which is practiced in this Chapter. They illustchtthe applicability of the
developed framework to practical geotechnical poid and showed that in
early design phases RS-FEM is an efficient tool feliability analysis in
geotechnics, being complementary to the obsenatimethod.

For tunnel excavation problems, numerical methadsfrequently employed to
assess both the stability and deformation behavibaterial parameters for
modelling the behaviour of the ground and the suppwasures are based on
geotechnical investigations and frequently derifredn experience. In order to
account for uncertainties in material parameterSiclv are inevitable due to
heterogeneities and the limitations of site in\gggion schemes, the scattering of
in-situ behaviour is reflected in geotechnical daesteports by defining values
within a certain range. However, in numerical cktans this is commonly
replaced by deterministic analysis with charactierivalues and a limited
variation of different parameter combinations. Indey to do that, ground
conditions are usually divided into homogeneoudi@es. It is shown in this
chapter that the Random-Set-Finite-Element-Meth&5-FEM) provides a
convenient tool to account for the scatter in makteand model parameters
(Tonon et al. 2000b) and thus can significantlyéase the validity of numerical
analyses. In addition, a comparison between cdlonland field measurements
allows an assessment of the quality of the geoteahmodel whereas it has to
be emphasized that in-situ measured values willo al&ry within a
"homogeneous" section and thus are also availablaniges. The basic concepts
of RST and RS-FEM procedures have been presentefiohgn (1996) and
Peschl (2004), however, a summary of the most itapbraspects will be
provided in the following section for continuity.
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3.1 Concept of random set theory

Random set theory provides a general frameworkdialing with set-based
information and discrete probability distributions.yields the same results as
interval analysis, when only range information isitable and under certain
conditions similar to result of Monte-Carlo simidais (Peschl 2004).

Let X be a non-empty set containing all the possibleieslof a variablex.
Dubois & Prade (1990, 1991) defined a random sef as a pair((,m) where[]
={A :i=1,...n} andmis a mappingl] - [0,1], so tham(d) = 0 and

> m(A) =1 (2)

[ is the support of the random set, the #¢t@re the focal elements andis the
basic probability assignment. Each $&f][], contains some possible values of
the variablex, andm(A) can be viewed as the probability tiais the range of.

As an example, each s&tcould be the result of an interval valued measerém
and m(A) its relative frequency in a sample (see Tonomle(2000a) for an
example of such a situation in rock engineerinddeatively, the setd; could

be ranges of a variable obtained from source numieh relative credibilitym.
Because of the imprecision, it is not possible atculate the probability of a
genericxdX or of a generic subs&tlX, but only lower and upper bounds on this
probability. Random set theory is one of the theithat deal withmprecise
probabilities(Walley 1991); in this case, imprecise probaleiitare expressed by
the intervals Bel(E), PI(E)] where the belief functiorBel, of a subseE is a set
function obtained through the summation of basicbpbility assignments of
subsetsA; included inE ; and the plausibility functiorRl, of subsetE is a set
function obtained through the summation of basicbpbility assignments of
subset#\ having a non-zero intersection wih They are bounds for all possible
probabilities of the everi.

3.1.1 Boundson the system response

Random set theory provides an appropriate matheataframework for
combining probabilistic as well as set-based infation, in which the extension
of random sets through a functional relation isigtitforward (Tonon et al.
2000a). Lef be a mapping;x...xXy - Y andx,,... Xy be variables whose values
are incompletely known. The incomplete knowledgeutlthe vector of basic
variablesx = (x,...,Xy) can be expressed as a random relaRpnwhich is a
random set[(,m) on the Cartesian produgtx...xXy. The random set{,0),
which is the image of.{,m) throughf is given by (Tonon et al. 2000b):
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0={R =f(A).A DO f(A)={f(x).xOA} (3)
p(R)= Y m(A) (4)
AR=T(A)

If A...A, are sets orX;x...xXy respectively andx,,...,xy are stochastically
independent, then the joint basic probability assignt is given by

m(Ax...xm:ﬁm(A), Ax..x A DD (5)

If the focal setA is a closed interval of real numbefs:= {x | x O [l;,u]}, then
the lower and upper cumulative probability disttibo functions, respectively
F.(x) andF (x), can be obtained given by Equations 6 and 7 atespointx
which are illustrated in Figure 5.

F.(9 =Y m(A) (6)
iey;
F ()= mA) (7)
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Fig.5:  Upper and lower bounds of random set input (&feschl, 2004)

The basic step is the calculation of the image dbaal element through the
functionf by means of Equations 3, 4. The requirement fainmogation in order
to locate the extreme elements of eactRdet] (Equ. 3) can be avoided if it can
be shown that the functidi§d) is continuous in alAO and also no extreme
points exist in this region, except at the vertiagaswhich case the methods of
interval analysis are applicable, e.g. the Vertethod (Dong & Shah 1987).
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f(A)=[lu] (8)

Assume each focal elemeat is anN-dimensional box, whose“2vertices are
indicated asu, k = 1,...,2". If the vertex method applies, then the lower and
upper boundR. andR" on each elemerROD will be located at one of the
vertices:

R. =min{f(v,):k=1..2"} 9)

R’ :mka>{f(uk):k:1...2N} (10)

Thus function f(A), which represents a numerical model in the RS-FEM
framework, has to be evaluatel ttmes for each focal elemeAt. The number
of all calculationsn, required for finding the bounds on the systerpoese is:

N

n =2" El n (11)

Where N is the number of basic variables andhe number of information
sources available for each variable.

In order to combine these sources an appropriateedure is required if more
than one source of information is available for paeticular parameter. Suppose
there aren alternative random sets describing some variahleeach one
corresponding to an independent source of infomatiThen for each focal
elementAX

A== m(A (12)

3.1.2 Types of random set and visualisation

A random set, evidence or sets of information canrépresented in three
different formats as follows:

1. Random intervals with their respective basic prdighveights
2. Contour function or plausibility of singleton.
3. Lower and upper cumulative distribution functiomgpebox

The first type of random set format preserves thastmnformation in itself,
whereas the other two formats, despite having sacheantages, lose some
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information relating to the original set&or instance, an infinite number of
random sets containing different focal elements lwarfitted into certairPI(E)
andBel(E) functions given in the format @f contour function or p-box, wheke
Is an arbitrary event.

An alternative to the visualisation of a random @ be presented through its
contour function (Shafer, 1976) over the basic alda x, assigning each
singletonx its plausibility; x — PI({x}). This contour function is obtained by
summing up the probability assignmentsof those focal element to whichx
belongs. Figure 6 depicts a random set composetl fotal elements and the
corresponding contour function which in some reafees are called the
plausibility of singletorx.

A random set is presented in terms of contour fonst when it is either
composed of a family of confidence intervals (Faatd Oberguggenberger, 2009)
using Tchebycheff’'s inequality or all focal elemeate nested. From the contour
function, one can readily derive the possibilityétion or membership function
of a fuzzy set equivalent to the random set.

Four types of random set are considered from nialgources that one might
encounter in practice: 1) consonant sets, 2) ctamisets, 3) arbitrary sets, and
4) disjoint sets.

Consonant sets can be represented as a nested structure of dedee vihe
elements of the smallest set are included in thd leger set, all of whose
elements are included in the next larger set amehsd his can correspond to the
situation where the information obtained over tinereasingly narrows or
refines the size of the sets. On the other hantieifconfiguration of the random
set lies within the next three categories, it idecha dissonant type of random
set.

Consistent sets insinuate that there is at least one focal elertteattis common
to all sets.

Arbitrary sets correspond to the situation where there is no fadament
common toall sets, though some sets may have elements in com@wa.
possible configuration has been illustrated in Fegl.

Digoint setsimply that any two focal elements have no commemelnts in any
other set.
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Random Intervals
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Consonant random set
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Disjoint random set
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Fig. 7. continued, Types of random set: d) disjoint

3.2 Procedure of the RS-FEM

The merits of numerical modelling using the Finiidement Method in
estimating deformations and internal forces of clemgeomechanical structures
are evident. The Finite Element Method has obtaioeadsiderable reputation
over the last decades in solving practical probldmsintroducing advanced
constitutive models, which can describe the mdtbeaaviour more accurately.
Particularly in tunnelling problems -which in thigork are the main concern- a
very limited number of closed form solutions areaitable. They are very
simplified and valid only under specific conditiofs.g. unsupported circular
deep tunnel surrounded by a single layer homogenamaterial) and also they
are not capable of considering all aspects of grdend structures’ behaviour.
Moreover, other methods such as limit equilibriund dimit analysis theorems
have limitations in assessing all aspects of grobedaviour and accordingly
have limited usability in reliability analysis. Ehstudy takes advantage of both
FEM and the concepts of random set analysis tonagumlate a procedure in
which a reliability analysis can be performed. Rleility analysis is of great
importance especially in the case of scarce daleereva sufficiently accurate
probability distribution function cannot be provitleto perform a full
probabilistic reliability analysis. Another advagéaof RS-FEM is that there is
no need to modify the available Finite Element Gpdand any commercial FE
software can be used for performing the requiretkrdenistic calculations.
Figure 8 graphically illustrates the items thatudddoe followed in the RS-FEM
and are summarized in the steps below:
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1. Defining the geometry or geometries of the probléme, preparation of
the respective master files and the FE model, sete@n appropriate
constitutive model for material and support eleraent

2. Selecting the input parameters that should be dersil as basic variables
in the random set analysis and providing the exgueatanges from
different sources of information (random sets).

3. Uncertainty reduction over the selected random, setsch show spatial
variability considering the length of the possitddure mechanism in the
model. This step requires the determination ofigpabrrelation length as
well as an estimation of the length of the posdiailerre line.

4. RS-FEM has exponential complexity, which meanscthraputational cost
increases proportional td' ZN is the number of basic random variables).
This entails employing a sensitivity scheme to tdgrthe variables that
have negligible effect on desired results evehefé¢ is a wide uncertainty
on them, in order to reduce the computational effor

5. Computation of the calculation matrix, which inclsdehe defined
parameter combinations, the preparation of detestienFE files and the
relevant probability share of the individual caktion considering the
dependencies (correlation coefficients) between thesic random
variables involved (see Peschl 2004)

6. Finite element calculations and determination suhs such as stresses,
strains, displacements and internal forces in sdpgdements in terms of
bounds on discrete cumulative probability functiomghich may be
compared to measured data once they become aeail8hbsequently
fitting the resulted CDF’s using the best-fit methpin order to achieve a
continuous distribution function. For this steppouercial software such
as the package @RISKPalisade, 2008) can be employed.

7. Definition of suitable performance functions. Thaefinition is of
paramount importance and is a crucial step in ttadyais. For example a
function can be defined over the critical deformas such as tunnel
crown displacement to control the required cleagawoicthe tunnel and/or
maximum stresses carried by shotcrete lining. Térdopmance function
can be evaluatedith results (bounds on continuous distributiondtions
of the evaluated system parameters) from the felgenent calculations,
in order to obtain a range for the probability afldre or unsatisfactory
performance.
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Basically preparation of a master file is requitedncorporate all the important

specifications of the tunnel problem. The master should be evaluated before
start of the duplication in order to constructtalk deterministic FE files, to be

assured that it can numerically model the actuddat®ur of the system as

accurately as possible. Next, this master fileuplidated as required according
to the calculation matrix. If a geometry uncertgirg involved, several master

files must be prepared based on different geonmawgels. The finite element

code Plaxis V9 (Brinkgreve & Broere, 2008) is s#d for all the random set

finite element calculations given in this thesisn Aappropriate pre- and

postprocessor is required for the preparation pfitirfiles and retrieving the FE

results, to minimize manual labour timEo do so, one can take benefit of the
calculation manager and sensitivity option in taé&glate menu of Plaxis, which

facilitates performing successive calculations @&xtracting the desirable FE

results for further reliability analysis. In addmi, appropriate Excel files have
been generated to prepare the calculation matrec,material needed for input

files and to present the results in terms of loaed upper discrete cumulative
distribution functions.

The application of RS-FEM analysis in tunnellingillastrated through a case
study in the following section. The objective ofstlthapter is to demonstrate
efficiency, applicability and convenience of suchalgsis prior to tunnel

construction. Furthermore, in combination with thleservational method the
current procedure can be considered a tool usifggnration -that is constantly
being updated by newer observations- to control ¢ffeciency of support

elements.

3.3 Principlesof NATM and historical background

When excavating tunnels according to the princippésthe New Austrian
Tunnelling Method (NATM), it is aimed to preservedamprove the potential of
the ground to support itself by utilising an archeffect in the surroundings of
the tunnel as much as possible. Therefore, a naatabunt of deformation of the
tunnel cross section has to be allowed, while om dther hand, too large
deformations that lead to the loosening of the gdoave to be avoided to arrive
at an equilibrium.

Following the NATM principles in poor or difficuliground conditions, to
provide sufficient stability at construction stagée tunnel cross section is
frequently divided into several phases. Variousagation sequences have been
applied in practice to provide the required stapilind to avoid excessive
settlement and disintegration of ground materiataundings of the excavation
area. One of the typical NATM construction sequenftm middle-size cross
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sections in which the tunnel’s width is not so widensists of three major phases
namely top-heading, bench, and invert.

For the first time Rabcewicz (1962) introduced & mencept and philosophy of
tunnelling in a lecture at the Geomechanics Colloguin Salzburg and 2 years
later he published the English version of that964 entitled “The New Austrian
Tunnelling Method®, and emphasised the role ofdheounding rock as a part of
the tunnel support system which is believed toHsekey principle of NATM.
Rabcewicz, Miller and Pacher are often referrecagothe "fathers" of the
NATM. Since 1972, the hypothesis of Pacher (196dncerning the trough
shaped ground response curve, the minimizatiorhefrock pressure, and the
lining thickness based upon it has become morenaor@ central to the concept
of the NATM (Karakus and Fowell 2004). Miller hadalarge contribution to
NATM in his professional career by publishing segrapers to establish the
NATM principles, avoiding misunderstandingem NATM concepts, and
removing the misconceptions (e.g. Miller 1978 a@8().

The three most important design principles of NAMhich can be derived from
many references, e.g. Health and Safety Executh89€), Miller (1990),
Schubert et al. (2000), can be summarized in thewog concepts:

1. The tunnel lining and the construction sequenceaulshbe designed in
such way that ground around the excavation couldy ¢ae overburden as
much as possible, on the basis of arching effeats plastic stress
redistribution, which naturally occurs due to exat@an in the ground; and
a relative light primary lining consists of sprays&tbtcrete in combination
with rock bolts (if required) should carry the restd provide a safety
required for performance of the tunnel structure.

2. The displacements should be controlled and be Wwéptn two limits to
accommodate the following two purposes:

— The lower limit of displacement is set in a manterpurposely
designate the ground a major contribution of therburden -
before the installation of the lining- in order &hieve a lighter
retaining structure and subsequently an econonicalelling. In
addition, it implies that deformations should na bompletely
stopped by the support right after installation ahd structure
needs to be relatively flexible. The case of shallonnels situated
in urban areas is an exception, in which even s@aabunts of
displacement are not allowed to occur in order ¢otrol the
surface settlement trough.

— The wupper limit of displacement is required to avdihe
deformations going beyond a critical level, wheisindegration
(loosening) of the rock mass/soil occurs. The duéion
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constraints regarding the performance of the sirecbr allowable

surface settlement should be satisfied.
A systematic deformation measurement is requiredviuate the assumed or
predicted behaviour of the rock mass and the reisystem, to observe the
stabilization process and provide information f@timisation of supports and
measures. Despite the development of analysis ttwds reliability of the
preliminary design is still low because of 1) theiseence of a number of
uncertainties in the ground model 2) the difficestito assess the ground
properties in an appropriate manner. Thereforegmiasion during construction
should be considered as an integral part of théxodeto appropriately adjust the
excavation method and support to the ground canditi

3.4 Application of RS-FEM to tunnel excavation case
study

To demonstrate the applicability and efficiency RS-FEM in geotechnical

practice, a real case study has been chosen, nam@hyel excavation located in
the south of Germany. The original design has la@eomplished by means of a
conventional deterministic approach on the basisclodracteristic material

properties. Random set approach was carried oastimate the most probable
ranges of results considering the existing una@gabased on the state of
knowledge prior to the start of the construction. this analysis, particular
attention is given to two important issues in tulng; first, tunnel closure or

convergence for the matter of maintaining the eleee of the tunnel section;
and second, satisfactory performance of shotcieitegl regarding safety issues.
Ultimately in this Chapter, the advantages of therent approach will be

identified by performing these analyses and comgathem to the standard
design approaches and the measured values.

The tunnel has a cross section ok18.3 m width and height respectively, and
has a total length of 460 m. The overburden albeguannel axis varies between
7.5 to 25 m. It is excavated according to the ppies of the New Austrian
Tunnelling Method (NATM) with three main construmoii phases to be
considered in the analysis: excavation of top hegdexcavation of bench and
finally the invert. NATM principles and historicabackground are briefly
introduced in the next section. In general, thenélns situated in a hard rock
mass except for the portal areas (zone I) and igeinzone located about 130m
away from the portal of the tunnel where the rocksenhas been faulted (zone
[Il) and weathered rocks are prevailing. Considgtimese differences in ground
conditions, three homogeneous zones, indicatedlband Il in Figure 9 can be
identified. In this chapter focus is on zone | whground conditions are less
favourable and the overburden is low (7.5 m). Fs section it is justified to
consider the rock mass as homogeneous materialtdthe fact that the original
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design has been made employing a simple Mohr-Cduloamstitutive model,
this has been preserved in the RS-FEM analysis.

< <t
p g
© Tunnel length 460m |
N~ (o]
© ©
= Ground Surface S0 =
X (/%2( \ i
il RS Vi
| Tunnel |
Length: 15 m 100 m 30m 290 m 25m
Section: |BQ1 BQ2 BQ3 BQ2 BQ1

Zone: | Il 11 ] |

Fig. 9: Longitudinal profile of the tunnel

The geometry and finite element mesh including somoelel specifications are
illustrated in Figures 10 and 11. Approximately 676-noded triangular
elements have been used.

In the geotechnical report the material paramdtax®e been specified in ranges,
which are summarized in Table 1. The design ofi@e@Q1 has been based on
a deterministic finite element analysis using theameters presented in Table 1,
which are within the aforementioned range. ElabBam elements and elasto-
plastic geomembrane elements were used to modekhberete lining and
anchors respectively. The specifications of theucstral elements are
summarized in Table 2.
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Tab.1l: The range and reference value of MC-model parasietdracted
from geotechnical report for zone |

Parameter Zone y Eref C ¢ Ko ® v
[MN/m?] | [MN/m? | [kPa] [°] [-] [-]

Range I 24 75-150 50-8( 20-22 0.4-0.6 0.35

Ref. value I 24 125 70 21 0.5 0.3%

Tab.2: Parameters for structural elements

young| old Force
[MPa] [kN] [cm]
Shotcrete| Top-heading Elastic 5000 15000 - 30
Shotcrete Bench Elastig 5000 15000 - 30
Shotcrete Invert Elasticc 5000 15000 - 20
Anchor | T.H. B, i:Z:L% 210000 200 2.2

3.4.1 Procedurefor determining basic variable setsin a
random set model

In order to determine the required sets used inrdmelom set analysis, the
following four steps have to be considered:

3.4.1.1 Deter mination of basic variables

First, all model parameters and material propettias are considered to have a
pronounced effect on the system response have tdebpéfied by engineering
judgement and this is not always done easily. ;ngresent study, 6 important
parameters were selected for further analysis, harie angle of internal
friction @, the effective cohesiog the coefficient lateral earth pressiig the
stiffness modulus from one-dimensional compresdiests Es, the Young's
modulus of young shotcrekg;, as well as the relaxation facterwhich takes the
3D effects of the construction process into accom@n approximate manner in
the 2D model. The choice depends on the problerhaatl and if in doubt
whether or not a particular parameter plays a Ba@mt role, it should be
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included at this stage because as will be showtharsection 3.4.1.3, a rigorous
assessment of the influence of each parameterrisg¢@ut.

The random sets are collected for each basic Jariabform of ranges from
reliable sources such as geotechnical reports, rexjmnion, comparison of
similar projects, and the literature. At least tagts are desirable for the basic
variables in order to produce results in the formreasonable probability
distributions; otherwise the outcome will appeaaasmple interval.

Tab.3: Basic variables of rock mass, relaxation fad®yr|ateral earth
pressure coefficient at re$ly, shotcrete elastic modulus of youiig,
Set Probability Es C @
No. assignment MN/m? kPa °
1 0.5 75-150 50-80 20-22
2 0.5 100-200 60-90 18-24
Design value | - 125 70 21
Tab.3: Continued
Set Probability|  Esh Ko™ R
No. assignment GPa - Phase No.
1 2 3
1 0.5 3-6 0.4-0.6 0.4-0.6 0.3-0.% 0.2-04
2 0.5 4-7 0.5-0.7 0.3-0.5 0.2-0.4 0.1-0,3
Design value - 5 0.55 0.5 0.25 0.25

Here, the basic variables are obtained from tworcesy first, from the
geotechnical report, which is based on a numbdalwratory and in-situ tests
and second, from expert knowledge that is derivethfprevious experiences of
similar projects. They are summarised in Table r8.prtinciple, a different
probability assignment to each set can be defimnedase one recognises that
some sources are more reliable in comparison witiers. In this case,
probability assignments of both sources are equ@l3, which means there is no
preference and both data sources have equal icBuam results.

The basic variables are illustrated in Figure 18 a8 in terms of upper and
lower cumulative distribution for both original dasets and spatially correlated
ones. To allow for spatial variability of the s@arameters, a modification is
carried out on primary data sets using variancelaoh technique, which is
explained in the next section.
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3.4.1.2 Variancereduction technique

It is well-known that the variance of soil propestiof large specimens or in-situ
tests that mobilise a large volume of soil is Igsm that of small specimens or
in-situ tests that mobilise only a small soil volkii\ccordingly, it is possible to

reduce the uncertainty of soil properties in a laug problem value by means
of the variance reduction technique. Vanmarcke 3198oposed the variance
reduction factor which can be estimated by a sifpleula leading to a relation

between the reduction factor and the distance wdech the soil parameter is
averaged (Equ. 13).

FZ:{%(l—Ll—(?_H for %sz (13)

Herel” = variance reduction facto®= spatial correlation lengtly; = length of a
potential failure surface.

In this study, an alterative approach based orvdramarcke method, suggested
by Schweiger & Peschl (2005) has been adopted dbaties the variance

reduction technique for the random set theoryn Bources of information are

assumed, the function of the spatial average ofdttax - can be calculated

from the discrete cumulative probability distritmrti of the field datag, using

[ from Equation 13 as given in Equations 14 and 15.

Xr=X-(X=-x)O (14)
1 (X %)
X = n—lmé 5 (15)

Tab. 4. Basic variables used in RS-FEM considering spa#ahtion

Es C ¢
Set No.

MN/m?2 kPa °
1 79-158 52-82 19.7-22.3
2 96-192 58-88 18.3-23.7

Typical values of spatial correlation lengtlé,for soils as given e.g. by Li &
White (1987)are in the range 0.1 to 5 m f&, and from 2 to 30 m fo&. The

spatial correlation length for this study is assdne be 10 m. Applying the
described procedure leads to a slight change inpdrameters of the basic
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variables, which are summarised in Table 4 andotleghin Figure 12 in the form
of discrete cumulative probability distributions.

3.4.1.3 Senditivity analysis

The main purpose of the sensitivity analysis tHie¥ang:

1. Identifying the most influential input parametem@vgrning the desirable
system responses.
2. To investigate the monotonic behaviour of the mawda system

The reduction of the number of basic variables,cwhare actually considered in
the formal RS-FEM analysis, is accomplished by researa sensitivity analysis.
This is essential in order to reduce the numbereqtiired finite element runs.
For instance 1024 finite element runs are requirédbasic variables with two
sets each are taken into account (see Equ. 11¢ whd amount is decreased to
256 runs in case of 4 basic variables.

A relatively simple sensitivity method given by UEPA: TRIM (1999) is used,
which has been extended and made compatible wathaithdom set approach by
Peschl (2004). In this method three major coeffitie namelysensitivity ratio
(Equ. 16),sensitivity scordEqu. 17) andelative sensitivity(Equ. 18) of each
input variable with respect to any system respoarge calculated. Figure 14
illustrates the parameters used in the formulad8.6Fhe ratio of the change in
model output per unit change of an input variablealled sensitivity ratio. In the
process of random set analysis, sensitivity anaiigsiecommended to be carried
out over both a small and a large amount of chamgeput variables which are
called local and range intervals respectively (Fig). For instance, in the
calculation of range sensitivity ratio, an inputigale, x, is varied across the
entire range of the random set. As it can be se®n Figure 14, the results can
be also used to some extent in recognizing the tooieity of the system
response. The total number dii4#l calculations are needed to accomplish the
sensitivity analysis.

f(xLRr) = (X
B f(x)

57

When the sensitivity ratio is weighted by some ahteristic of the input variable
(e.g. standard deviation over meamy/) the sensitivity score will be obtained,
which makes the sensitivity ratio independent fribia units of the variable. In
this work, the ratio of total range over referematue,x, is used instead aff .

1SR = (16)
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lo up
XR — Xp )
Nss=(srye *srxr *srxe *Tsrx) D(inR (17)

After the calculation of the sensitivity score @ifcé variable/ss;, on respective
results A, B,... (e.g. displacements, forces, factor of safetyl atc.) the
sensitivity matrix is constructed as shown in TableThe sensitivity score of
each input variable on a system response (e.g.ladspent, A) at all
construction steps can simply be added up to beeseptativersss a for the
whole construction sequence. Then the relativeitpahsof the system response
A is obtained as follows:

n
AA) =0 (18)
27155 A
2

Finally, the total relative sensitivity(x), for each input variable is given by

2/]ssi
a(x) =TS (19)
D s
Z

Depending on what kind of performance function @ng to be evaluated, a
respective relative sensitivity should be takero iatcount. For instance, the
relative sensitivity of a certain variable(x,), concerning the displacement of the
tunnel crown is negligible while the same variade significant influence (high
relative sensitivity) on another result e.g. théesafactor of the top-heading.
Thus, considering merely the total relative sewisjticould be misleading in
evaluating the influential parameters, althoughzirig the sensitivity score can
reduce the effect of input variable units. In ordermake a sound decision
concerning the parameters that are of significamee,suggested to look at both
the total relative sensitivity and relative sengiyi of an individual system
response.
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Fig. 14:  An illustration of target functions with differesensitivities with
respect to input variabbe(after Peschl, 2004)

Tab.5: Sensitivity matrix

Input Total

variables System response results sensitivity
A 04 [%0] B 0 [%] > a [%]

X1 Nssar  Oa(X1) Nsser  O5(X1) - 2Nss1 ()

X2 Nssa2  Aa(X2) Nsser  Op(X) 2Nss2 a(X2)

XN Nssan  Oa(Xy)  Nssen  As(Xn) ZNssn a(Xn)
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The sensitivity scheme described above was apphigtie tunnelling problem.
The input parameters with the ranges given in tlevipus section have been
used in evaluating the most influential parametéhe average of the lower and
upper values of random sets serves as referenagesval sensitivity analysis. It
is quite informative to display the relative sen#ly of individual results in
order to observe the impact of each input paramktesuch manner, the designer
gains a better understanding of the system behavoior to starting a
sophisticated probability analysis. In this cabegé major system responses such
as the factor of safety at the stage of the tomhingatunnel crown displacement,
and maximum normal force of the lining have beemsatered in the
calculations. Figure 15 depicts the respectiveltesilong with the total relative
sensitivity. If one wishes to select the most dffec variables regarding each
response based on a threshold value, different dfefsarameters would be
chosen. For instance, if only the safety factoith@f top-heading is taken into
accountKy, ¢, Es and¢ are identified, whereas if the normal force in liheng is
considered the set of parametés c, Es, R, and Eg, are identified as most
influential parameters. The total relative sengiivwill help to choose a
compromise of most important parameters. In aduitioe oot Of Rr and ¢ are
very close to the threshold value which makes irendifficult for the final
decision. Each of them has the same impact onrdifteresponses (i.@normal
rorce) Of Ry is identical toaeos) of @) but finally ey of Rr is higher than that of
@, and correspondingli falls into the set of important parameters. Tresoa is
the large discrepancy between the magnitude of rmbioalesssss of FOS and
crown displacement. This discrepancy amounts tatter of magnitude, in the
case 0frss rosand /ss crown-displacement 1 NUS, it is reasonable to assign weights to
sensitivity scores based on their significanceplibain a representative total
relative sensitivity which can equally consider @fuired indices for a sound
decision making. However, in the current calculagiono weighting is involved.

A threshold value has to be introduced to sepdmgtdy sensitive variables from
low ones. Usually, depending on the problem, asthotd value between 5 to 10
percent can be considered appropriate. Here, shibict value of 7% was chosen.
As depicted in Figure 15 with the acceptance of ibe threshold value, four
major basic variableEs, ¢, K,"°, R are identified and these were chosen for the
RS-FEM analysis. From experience follows that ugu&ato 4 basic variables are
sufficient to obtain relatively smooth cumulativeropability distribution
functions of output variables, which on the othand¢h maintain the number of
calculations within acceptable limits.
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Fig. 15: Results of sensitivity analysis

3.4.2 Calculation results and system response
3.4.2.1 Construction sequences

In accordance with the actual construction sequéncalculation phases have
been modelled:

Initial stresses

Pre-relaxation phase of top heading excavation
Installation of anchors and primary lining in togadling
Pre-relaxation phase of bench excavation
Installation of anchors and primary lining in bench
Pre-relaxation phase of invert excavation

Completion of primary lining and anchors

© N o o b~ W DdRE

Application of the strength reduction techniqueorder to obtain a factor
of safety after phase 3
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Convention sign
in measurement

i

Fig. 16: Position of nodes for evaluating results

As elaborated in section 3.4.1.3, four basic védemithave been considered for
the RS-FEM analysis resulting in 256 different inpats for the finite element
model. The following results of the analysis hawer evaluated in terms of
cumulative probability distributions and will be pleted in Figure 20 and

following.

Vertical displacement of the crown (Point A in Fig)

Vertical and horizontal displacement of the siddl {Woint B in Fig 16)
Maximum normal force in the lining

Maximum moment in the lining

Safety factor after the top-heading excavation

ahwbdPE
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Fig. 17. Tunnel construction sequences: (a) Pre-relaxatfotop-heading (b)
Excavation of top-heading, anchors and shotcrei@di installation
(c) Bench pre-relaxation (d) Bench excavation amgpsrt installation
(e) Invert pre-relaxation (f) Invert excavation astwtcrete lining
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3.4.2.2 Probability share of each deterministic FE
realisation

After the identification of input variables, therabination of different sources
and extremes of the parameters based on a randomma#el have to be
calculated. Thus, data files for deterministic ténelement calculations have to
be provided and as mentioned before, spread shiest rhay facilitate the
calculation process, which have been developethfsmpurpose. The concept of
constructing a random set relation according toohoet al. (2000a & 2000b) for
the case considered here is as follows.

Let xOX be a vector of set value parameters, in which:(E,c,K,R;) , and a

random relation is defined on the Cartesian prodixCxK xR . As a result,
according to combination calculus, the pairs gdaedrdy the Cartesian product
are given in the following vector:

ExCxKxR={(Ey,Cy, Ky, R, (Ep,Cp, Ky, Ry, (20)
(Eq,C2, K1, R)3,--,(E2,Co, Ko, Ro)p 6t

Here the index of parameters denotes the releveinismber and the index of
pairs signifies one combination of basic variabBscause there are two sets for
each basic variable, 16 combinations will be predud-or each combination, an
interval analysis is required, by which the deteistic input parameters of the
worst and the best case of each combination aregbenlised. As an example,
the deterministic input values of such analysistfa case ofH;,C,,K{,R,) are
presented in Table 6.

Tab.6: Inputs relating tol,;,C,,K1,R,) variables used in deterministic finite
element calculations

Run number 1 2 3 4 5 G [ 3 D 0 11 (12 |13 |14 |15 | 16
o
% g ol a|lolalol2|2|alol2|2=2]2=2]2

s gl5/8/3/2/2/2(3/3/3/3/12/3|2/2/3/3/3|3

[0 = >0 I 7 I A I e ) e e () e I o ) e ) s N e ) e T e T A I e 8 s T e
o5|E"| 1 179| 79| 79| 79 79 79 79 79 1b858|158|158|158|158|158|158

05| C| 1 |52| 52| 52| 520 82 82 82 82 52 52 b2 p2 82 (82 |82 |82

1-16

05/ K| 1]04/04|/06|06|/04|/04(06/06/04/04/06|0.6|/0.4|04|0.6|0.6

05|R | 1(04/06/04/06/04/06/04/06/04/06/04/06/04|0.6|0.4|0.6

* L denotes the lower extreme of a random set vareide) denotes the upper extreme.
t  units ofE, MPa ;c, kPa ;¢, degree
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Similarly the construction of all 256 required isations (see Equ. 11) and
relevant input files for a deterministic finite plent analysis are accomplished.
The next step is to determine the probability oé tassignment of each
realisation. Assuming that the random variables sdoehastically independent
with reference to Tonon et al. (2000b), the joirdkgability of the response focal
element obtained through functiéx) (in this case, the finite element model) is
the product of the probability assignmentof input focal elements by each
other. For instance, in the above case since thes rpeobability of each set
equals to 0.5 it results in:

m(f(E,C,, Ky, R)) =m(E) In(C,) In(K,) (R,
=05x05x05x%x05 (21)
=0.0625

3.4.3Validity of the model

Construction of therandom set resultsin the form of p-box:

To construct th&eliefandPlausibility distribution function (i.e. lower and upper
bounds) of a required response from determinidiac&lculations, the following
procedure is pursued. Suppose that it is requibeduild up the p-box of the
tunnel crown displacement. The crown displacemeaties pertinent to all 16
realisations, given in Table 6, are sorted out bdaim the minimum and
maximum of crown displacements which determinefteal element extremes
of crown displacements corresponding to the contimna(E,,C;,K{,R;). The
displacement values of those realisations betwhenektremes are discarded.
According to Equ. 21, the probability assignmentho$ focal element is 0.0625,
which constitutes one step in the cumulative distion function depicted in
Figure 20. Similarly, this process is repeated &wher combinations e.g.
(E1,C5,K5,Ry),... to calculate the extremes of all focal elementscrown
displacement. Finally, the left and right extrenedfsall focal elements are
arranged in ascending order to obtain the upperlaweér bounds for YA
respectively.

As depicted in Figure 18, measured values of &serf cross sections within an
assumed homogeneous region can be expressed mdéadiscrete cumulative
distribution in which the probability assignmentdraividual sections are equal.
In this way, measurements are comparable with ¢iselts of the random set
bounds. A single value measurement similar to 20 is illustrated with the
vertical line because only one observation is abél within the considered
region.
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Measurements
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Fig. 18: Representation of the measurement in terms ofalative
distribution function within a homogeneous region
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Fig. 19: Range of most likely valueB, andF- denote upper and lower
probability for respective system response, resgedgt

Figures 20 and 21 illustrate upper and lower bouonflsthe cumulative
distribution function for the selected points A aBdrespectively. The results
obtained from the deterministic design analysisvalk as measured values have
been overlaid on the figures for comparison. R8ltesan be generated for any
desirable target value at any construction stamenstance, Figure 20 compares
vertical crown displacement at two different stagesfter top-heading and 2)
after completion of the shotcrete lining. It digaalmost the same trend for
bounds of result at both stages with a slight défifiee in the absolute values.
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Fig. 20: Lower and upper bounds on vertical displacemeth®tunnel crown
for two construction stages, a) after top headigpeation b) after
completion of the invert

Generally, the most likely values are defined asuesm with the highest
probability of occurrence, where the slope of tlwresponding cumulative
distribution function is steepest. For the purpotsimplification, it is assumed
that the most likely results are those values, whusasure of their belief degree
are less than 50% and their corresponding plausik@#ihood of occurrence are
larger than 50% as shown in Figure 19.
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Fig. 21: Lower and upper bounds on vertical and horizoditgdlacement of
the tunnel side wall after the final excavatiorgsta

For instance, the most likely settlement of thenlrcrown at the final stage is in
a range from 8 to 46 mm. In the same way, the madiable values of the side
wall displacement in the vertical and horizontatedtion are in a range
approximately [9, 42] mm and [2, 9] mm, respectivel

Mean value of the true system response:

The mean value of the true system response obtdipgdndom set bounds is
within the following range given by Tonon et alO(®a):
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u{imi.inf(A);im.sup(A )} (22)

where inf@) and supf) denote lower and upper extremes of focal elerdent
respectively. The intervals obtained from both thest likely range definition
and those calculated from Equ. 22, indicate a gomuformity and they have
been tabulated below (Tab. 7).

Tab. 7. Lower and upper mean values of true system regpons

U-A | UB | UuB | O3 Max NI(\)/Ir?r)}(aI

Results T.H. | Moment Force

[cm] | [em] | [em] | [-] |[KN.m/m] | [KN/m]
Interval of true mean| Lower| 0.85| 0.87 0.1 1.46 14.5 462
values (Equ. 22) | Upper| 495| 45| 09| 1.82 38.1 787
Interval of most likely| Lower| 0.8 | 0.9 | 0.2| 1.46 14.4 461
values Upper| 46 | 42| 0.9 1.8(Q 38.5 779

Inter pretation:

One can demonstrate the validity of the numericatudations against the
observations using the quality indicator showniguFes 20 and 21. The quality
indicator consists of three parts: first in the digj the green colour shows the
area of the most likely values of the system resporThe full red colour
identifies the theoretical zone of an unlikely gystresponse. Outside the most
likely values zone, the green colour zone in theliuindicator starts to fade
and convert into the red one. This transition zoaer be called an alarm zone
because it indicates that the actual ground camdis gradually moving away
from the assumed conditions invoked in the RS amalyt should be noted that
this alarm zone is different than that alarm thodghvalue used in the
observational method (see e.g. Olsson and Still@2R In that context, defining
the alarm value is very difficult and controversialvaries from case to case and
depends on the significance of the project, ranfg¢he absolute values, the
extent of the expected uncertainties involved i@ pnoblem, and many other
indices that are defined based on engineering jedgnmHowever, the results
generated by RS-FEM along with the quality indicatefined in this manner can
be considered as a useful tool for decision makingaddition, when the
measured displacements of the tunnel lining arbimithe acceptable predicted
range (e.g. green zone) one can assume (at leastafipractical point of view)
that the design of the support elements are alg@ble albeit the internal forces
of tunnel structure have not been monitored.
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Strictly speaking if the numerical model is appraf@ and the parameters chosen
cover the "true" uncertainty in-situ measured valowist fall inside the range of
RS-FEM results, if not, this would be a clear imadion that either the model
itself (e.g. assuming a continuum for a jointedkrotass) is not appropriate or
the range of parameters is not representativéhéogtound conditions.

Figures 20 and 21 indicate that the predicted eartdisplacements at tunnel
crown and side wall comply with the lower boundtleé RS-FEM results, while
the horizontal displacement of the side wall lieshim the range of the most
likely values. The measured value of-A is slightly outside the random set
range but from a practical point of view this cam donsidered to be within an
error tolerance.

3.4.4 Deter mination of performance function

The performance function is selected to numericaliaracterise a mode of
performance of the tunnel structure. For each perdoce mode one or more
performance functions may be considered. For iestapossible performance
modes considered for a tunnel design would be:

1. Shotcrete failure (large cracks or complete damage)

2. Failure of the temporary footing at the top-headirgavation stage
3. Over-break of the surrounding rock mass

4. Face instability during construction

To evaluate the potential for rock-fall or over-dkea discrete element code is
required and the current finite element model isappropriate for assessing this
type of failure mode. The problem of face stabiigyalso not discussed here
because a 3D analysis would be required. The piestesxample is concerned
with shotcrete failure and the likelihood of foagirdamage only, but in a

complete design procedure the other possible &imechanisms have to be
taken into account as well. Figure 22 shows theiptesfailure mechanism at the
stage of top-heading excavation by means of incnémheshear strain contours
using the so called strength reduction techniquendicates that the failure

mechanism can take place due to inadequate becajpagity of the temporary

lining footing. Assuming that the safety factor tok ground failure at the top

heading stage should be higher than 1.3, a perfaxenfunction is set and by
using the random set results, the probability ofafety factor below 1.3 is

estimated. According to the normal distributiorteiit to the lower bound of the
RS result, the upmost probability of the safetytdadeing less than 1.3 is
approximately 0.0005 (Fig. 24).
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Possible failure zone, length of 18m in average

Fig. 22: Contour plot of incremental shear strain illustrgtpossible failure
mechanism at top-heading excavation

l 7 N

Fig. 23: Top-heading failure mechanism and deformed mesh
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Fig. 25: Bounds of maximum and minimum of safety factotrarms of
vertical crown displacement

The lower and upper probability values of top-hegdrOS being less than 1.0
are almost zero. It has to be acknowledged thatwhiue is not very accurate
because it depends considerably on the type afldisbn fitted to the discrete

data but it is sound enough as an estimate fromaetipal point of view. The

most probable values of the safety factor arerange of approximately 1.46 up
to 1.8.
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The minimum and maximum of safety factors giverFigure 24 can be plotted
versus the vertical displacement of the tunnel ar@mce such a result depicted
in Figure 25 can be used for assessing the behawibthe tunnel structure
including soil-structure interaction (ductile ontbe behaviour). Two points can
be inferred from Figure 25. Firstly, when the meaduwalues of vertical tunnel
crown displacement are about entering the rangedesst 12 and 20 cm a failure
mechanism can be expected and secondly, due tuthent measurement status
the actual safety after the excavation of the tegeling is more than 1.85. Figure
25 provides helpful information, for instance, thage of displacement in which
the failure can be expected. This can be considasea warning range or alert
value required for the Observational Method (Nishal et al., 1999).

3.4.5 Evaluating the serviceability limit state of the
shotcrete lining

To illustrate the applicability of RSM in relialii analysis, a serviceability limit
state function was considered. The serviceabilityit| state of the shotcrete
lining is based on the damage of the lining duecrtacking after the tensile
capacity of the material is exceeded. The admissialue of the normal force
Nim as a function of the eccentricigfx) as given by Schikora & Ostermeier
(1988) is:

N, =t (1— Pt eaj (23)
F. F.d

Where

fe uniaxial strength of shotcrete
€ imperfection

d thickness of lining

e(x) eccentricityM/N

M bending moment

N axial force

Fs factor of safety

The x indicates the position of the point in the shdkrning whose moment
and normal force is considered.
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Thus, the serviceability limit state function whishould be evaluated is defined
in Equation 24.

g(x) =N;, =N (24)

A Monte Carlo simulation was executed using thein_&typercube sampling
technique and employing @RfSk(Palisade, 2008) software to carry out a
reliability analysis for serviceability conditiord the shotcrete lining at the final
stage of construction. The uncertainty of uniaxgédength of shotcrete and
thickness of the lining as well as the eccentriatythe internal forces were
considered. For the shotcrete a C20/25 with a ualdisstrength of about 17.5
MPa is used and its uncertainties are modelled naisgu a Lognormal
distribution for the strength as LN(17.5,0.25) MBad for the thickness as
LN(0.25,0.017) m. To cover imperfections an ecaeityrof e, = 2.0 cm and for
the serviceability limit state a factor of safefyFQ = 2.1 is considered according
to Schikora & Ostermeier (1988). Based on the ditteimulative distribution
functions of the normal force, the bending momemid ahe respective
eccentricity illustrated in Figure 26, the limiat function has to be evaluated
four times in order to obtain bounds on the prolitgbiof exceeding the
admissible normal force in the lining, leading e four distributions shown in
Figure 27. The range of the probability of excegdime admissible normal force
in the lining,N>N;i,,, where cracking takes place, is given in Table 8.

1.00

0.75

0.50

Cumulative distribution

0.25 ~

0.00 4+— o=
0 500 1000 1500 2000

g(x)

Fig. 27: Cumulative distribution ofi(x) obtained from four eccentricity
functions

The value of the probability of failure indicatdsat the shotcrete satisfies the
serviceability criteria and it is expected not tiserve major cracks in the lining.
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Tab.8: Range of probability that NiN (Fs=2.1)

Construction Fitted distribution maxfP| min B
Phase Nmax I\lmin IVlmax IVlmin
Final stage Log-logistic Beta Beta Beta 3E-4 1.4E-5

Alternatively, it is possible to compute the penfiance functiong(x), directly
from random set analysis results. The advantageisthe performance function
is evaluated over all elements of the tunnel ceesgtion with the normal force
and its corresponding bending moment and in cantcaghe previous method,
the coincidence of maximum normal force and maximmoment is avoided in
the calculation. For each individual deterministelculation, eccentricity(x),
normal force and thickness of shotcrete are knoiang section of the lining.
Thus, Equation 23 can be evaluated assuming tlez oglquired parameters such
as shotcrete strength and thickness values ardatdnsn this way,g(x), is
evaluated like other primary system responses (@gnal force) and can be
presented in terms of discrete cumulative prokgbivith upper and lower
distribution. Figure 28 depicts such results foe turrent example for both
eccentricity and serviceability limit state funetg Obviously, the latter method
results in a narrower band fg(x) than the first method. The range obtained by
the first method varies between 400 and 1600 winiléhe respective result
yielded by the latter method, varies between 580 4220. The Lognormal
distribution fitted to the discrete upper and lowlestribution of the results (Fig.
28) indicates that the likelihood gfx) being less than zero is almost zero.

The disadvantage of this method is that it is nodsible to take the existing
uncertainty in the thickness and strength of thehte into account. Although
the first method of evaluating(x) is simple and capable to consider the
uncertainty existing in shotcrete strength, vaomtf shotcrete thickness and so
on, but it results in a conservative reliabilitys@assment. Therefore, in the cases
that the performance function is sufficiently digtdrom failure conditions, the
result of the first method is acceptable and carapgied, if not, the second
method should be used to check whether the perfarenss satisfactory or not.
According to US Army Corps of Engineers (1997) ga#ive evaluation of
performance level based on reliability index andbability measure obtained
from reliability analysis has been given in TableOh the basis of this table the
level of shotcrete performance is assessed asmgEéarmance.

In addition, if in the Equation 2Bsis set to zero, the serviceability limit state
function is converted to the ultimate limit staten€étion. Thus, simultaneously
both types of performance functions can be assessed
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Tab.9: Expected performance level

Expected Performance Reliability index | Probability of Unsatisfactory
Level ) Performance
Hazardous 1.0 0.16
Unsatisfactory 15 0.07
Poor 2.0 0.023
Below average 2.5 0.006
Above average 3.0 0.001
Good 4.0 0.00003
High 5.0 0.0000003
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Fig. 28: The p-boxes of both the eccentricity and the sktdimit state
function obtained directly from RS-FEM results
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3.5 Summary and conclusion

The application of an RS-FEM analysis to a realn&inproject has been
presented. Based on engineering judgement, imgonaael parameters have
been identified and their influences on resultsehlaeen evaluated quantitatively
by means of a sensitivity analysis. Based on timsigety, the basic variables
for the RS-FEM calculations have been chosen. TBeFRM results for the
selected responses were given in form of lower @pyper probability bounds.
One of the important features of Random Set armlisithat once in-situ
measurements are available, the quality of the ngalemodel can be judged.
The measurements that fall outside the range cltzkd displacements imply
that either the numerical model itself was not appate or the range of
parameters did not reflect the in-situ behaviodrisTresult may have important
consequences in cases where e.g. the ground iga®sht programme was
insufficient and therefore design and constructias been based on incorrect
assumptions. A review process of the design based andom set model is
depicted in Figure 29. For a management review gg®of a typical tunnel
monitoring the readers are referred to CIRIA red@% presented by Nicholson
et al. (1999).

Review Process Of A Tunnel Design Using RS-FEM

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Output
c . ) In the form of lower & upper CDF
Is) Input Simulation ;
8 Uncertainty introduced by the [ Repeated deterministic — > Reliability analysis
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c

.0 v

-

S

= Next Measurments . Set up alarm values

= . s Construction of L

2] construction Yes within the X Acceptable limits
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£ alarm values | ¢N° ‘ 3 | design
c ‘o ) : \ process
o iR Contingency plan | | \\r
7} =] i

5 3 qE’ g or :

8 {E | Stop construction

Fig. 29: Process of design based on random set model
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Advantages of applying RS-FEM were demonstratedhia chapter and are
summarized as follows:

1. RS-FEM provides a user-friendly and practice-oeenframework that
can take advantage of the advanced constitutiveelaaailable in FE
programmes. Complex tunnel geometry, subsurfacditons, nonlinear
structural elements and etc. can be taken intowsxtda order to predict
the behaviour of an underground structure witha tdinges of upper and
lower probability distributions without assumingbgective distributions
of input model parameters. In other words, all aizges of a complex
numerical model are preserved.

2. With relatively small number of simulations (in ghiexample, 256
realisations) relatively smooth bounds on the systesponses were
obtained, and as a result, a satisfactory religbilanalysis was
accomplished. The application of RE-FEM requiress leomputational
effort as compared to fully probabilistic methodsls as the Monte-Carlo
simulation.

3. Applicability of the RS-FEM was demonstrated byuartel example in
which the field measurements were in reasonableeagent with the
primary RS-FEM results without any updated dataiaf@mation during
construction.

4. When providing all required FE calculations, thé&gx of any desirable
result in any construction phase can be generatddilae serviceability
and ultimate limit states can be evaluated withsgmae model.

5. It provides a framework by which it is possiblecteck the validity of the
numerical model and corresponding design. In tupnglects constructed
corresponding to NATM principals, displacement nueasents of at
least 3 points in the cross section are recordegilady. Thus, the
required measurements are available at each conetristage. As it was
shown in this Chapter, the results of a randonmssdel can be provided
in all construction stages. When finishing thetfasnstruction phase (e.g.
top-heading), the random set model can be validagdinst the
measurements. If the measurements are in the predebcceptable
range, construction proceeds to the next phaserwite the obtained
information from the first stage is used to upddie uncertainty model.
The whole procedure is repeated and the requires@jmevariations are
applied for the next construction phase. The desagision can be carried
out within the lagging time available between diigt construction stages
(e.g. top heading and benci)herefore, RS results of the intermediate
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construction stages accommodate a chance for €adyg recognition of a
model error.
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4 Limitationsof RS-FEM

In the foregoing chapter, the procedure of the EMFwas reviewed and
application of RS results in reliability analysisasvdemonstrated for a tunnel
problem. As it was shown, all the required deterstion finite element
calculations should be performed to construct theet and upper bounds of the
desired system responses. If some of the calcoktwmuld have failed e.g. due
to non convergence of the finite element analysispuld have been impossible
to determine the probability bounds on the systesponse because result points
would have been missing. Therefore, applying RS-F&Msuch cases would be
problematic. In addition, in cases where the ramigéisplacements is very large
the results would become meaningless and a retiahihalysis based on those
results would not provide any help for decision mgk Therefore some
shortcomings of the method will be addressed is thiapter. This issue will be
illustrated by an example and possible solutions discussed in the next
sections.

4.1 Tunnel examplein faulted zone

For the purpose defined above, a section with arbmrden of 25 m within in

the faulted zone (zone lll-Figure 9) of the tundekcribed in Chapter 3 was
selected to apply the random set method. The tugeaetry and its relevant
2D finite element model mesh including some mogeicHications are depicted
in Figures 30 and 31 respectively. ApproximatelyO0 905-noded triangular

elements were employed in the model.

Due to similarities in rock mass characteristicshaf portal area (zone I) and the
faulted zone (Zone lll) the random sets for zohadlopted the same parameters
as given in Chapter 3 for zone |. The range of M@del parameters derived
from the site investigation report and values useddesign have been
summarised in Table 10. All the required steps gerforming the RS-FEM
procedure have been followed in the same mannénage for section BQ1 in
Chapter 3. Therefore, four basic variabl&g, elasticity modulus of the rock
massE,,, cohesion and relaxation factor, considered inrémeElom set analysis
of section BQ3 are given in Table 12. In addititime construction sequence
followed is similar to section BQ1 including topdteng, bench and invert. The
only difference between section BQ1 and BQ3 isatmunt of overburden and
support elements used in the design. The speatfiabf the structural elements
are given in Table 11.
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Tab. 10: The range of MC-model parameters extracted frongdwechnical
report for zone llland the representative values used in design

Zone | ¥ Erm C ¢ Ko™ v

[MN/m? | [MN/m? | [kPa] | [] [-] [-]

Geotechincal

report 1] 24 100-200 | 60-90| 21-23 0.4-0/6 0.3

Design-K6-1 Il 24 200 90 23 0.6 0.35

Tab. 11: Parameters for structural elements used in degigiios K6-1

young old Force

[MPa] [kN] [cm]
Shotcrete| Top-heading Elastic 5000 15000 - 25
Shotcrete Bench Elastic 5000 15000 - 20
Shotcrete Invert Elastic 5000 15000 - 15
Anchor | T.H. B, E:Ziﬁ; 210000 200 2.2

Tab. 12: The random sets used in section BQ3 consideringaspa
autocorrelation

Set | Probability | Em c Ko™ Ry

No. | assignment| MN/m3 kPa - T.H. Bench Invert

1 0.5 79-157| 52-82 0.4-0.6 | 0.4-0.6| 0.3-0.5 0.2-0.4
2 0.5 96-192| 58-88 0.5-0.7 | 0.3-0.5| 0.2-0.4 0.1-0.83

4.1.1 Random set finite eement results

Figures 32 and 33 show upper and lower boundsettimulative distribution
function for typical responses of a tunnel strueturcluding the tunnel crown
and side-wall displacements and the maximum moroémtternal lining. The
position of the points A and B are those depicte&igure 16 of Chapter 3. The
results obtained from the deterministic analysis design (Type K6-1) are
indicated in Figures 32 and 33 for comparison.
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Fig. 33: P-box of the maximum moment in the lining, basedandom sets
given in Table 12

The model assumptions for the deterministic dekmye been given in Table 10.
It follows from the figures that deformations andernal forces of the design
values are very close to the lower bound, whichlccde envisaged because
nearly all the input parameters have been choseesponding to the optimistic

extremes of the random sets.

I ®)]
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Plastic points

[ Mohr-Coulomb point M Tension cut-off point

Fig. 34: lllustration of the plastic points in the modef the cases, a) one of
the worst cases of the RS-FEM calculations, b)gheanalysis

When comparing the design values with the RS resiilappears that there are
certain combinations of the input parameters thahihse large plastic zones and
a failure mechanism (as depicted in Fig. 34) walvelop around the tunnel

structure resulting in large displacements. Theady/ proves the advantages of
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the RS-FEM that it can systematically detect thespeistic combination of the
uncertain input parameters leading to the worst sgstem behaviour but on the
other hand shows the disadvantage of the methtitkisense that results show a
very wide range which is of limited practical use.

When the results are sorted in the form of a bartcas in Figure 35, a large
difference in the results is obtained from cohesenl and 2. In this way the
most influential parameters can be identified.t lisinot possible to narrow the
range of possible values for this parameter by medmdditional investigations,
the extreme range in results cannot be reduced.
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Fig. 35: Discrete upper bound values of RS results in texhisput set
number, a) maximum moment in the lining b) vertidigplacement of
the tunnel crown. Each digit of a 4-figure numbegpresents the set
number of E-modulus, cohesidfy and relaxation factor from left to
right respectively.
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4.1.2 Scenarios concer ning the unsuccessful random set
results

The result of the random set method would be usfsatory if either one of the
followings takes place:

1. The RS results show a considerably large range dsetwhe lower and
upper bounds. For instance in the case shown ipriadous section, the
range of vertical displacement at the tunnel craxnes between a few
centimetres up to 2.5 metres, which is not admisgiiom a design point
of view.

2. Among the realisations required for the randomasstlysis, some FE-
calculations remain incomplete because paramet@bic@tions lead to
ground or structural failure. As a result, the bdsmiron the system
responses cannot be obtained.

The rest of the chapter attempts to show how tsesanentioned above can be
dealt with and turned into a successful result.

Two scenarios might exist regarding the above rmaeti issues:
Scenario 1:

On the one hand, the system response range isetleetion of the input
intervals, and on the other hand the selectiorhefibput parameter sets is
prone to error. It means that a very conservath@oe of input parameters
involved in the uncertainty analysis may be a naunse of the unsuccessful
RS results. As demonstrated in the previous exampkEgn has been carried
out on the basis of the most optimistic combinatdrparameters, and the
design outcome was satisfactorily conforming to ¢bestruction feasibility
and other design criteria. On the contrary, thesipaistic bounds (or belief)
of the RS-FEM results are far away from acceptahblegd raise doubts
whether the design is robust. It is therefore irapee to use reliable sources,
and in cases where too conservative assumptions baen made, the
selected sets must be corrected and/or rectifidgdis,T scenario 1 put a
question mark on validity of input parameter sets.

Scenario 2:
It is likely that the scenario 1 is rejected whiokans that the ranges of input

parameters reflect the actual uncertainty of sudbsarconditions. Therefore,
the large scatter of the results or failure of samalisations is a natural
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consequence of the degree of the existing uncéytarthe input data. This
implies that considering the existing state of klemlge, the current design is
not appropriate. Scenario 2 suggests modifyingdingent support design
since the current state of knowledge cannot be cextluunless more
investigation is carried out. So the master mod®leyed in the RSM should
be modified by applying additional support measures

In the following sections the two scenarios arecficad using the introduced
tunnel project. In section 4.2, scenario 1 isdaekd in which the input
parameters are revised and new random sets aneedenhich represent the
actual ground conditions. Section 4.3 follows scen2 assuming that the
current conservative random sets represent thealastubsurface condition.
However, a new class of support should be providedrder to obtain a
reasonable RS result.

4.2 Scenario 1. Revision of input random set according
to Hoek-Brown parameters

Assuming that the first scenario mentioned abovadispted, in this section an
attempt will be made to extract the MC parametearscty from test results
performed on rock samples, which have been givethénsite investigation
report. It follows that in the faulted zone Ill méi the rock type comprises
Andesite and Rhyolithe and the characteristic patarm of the rock mass can be
guantified by Hoek-Brown parameters summarisedahbld 13.

Tab. 13: The rock mass characteristics of zone Il derivedifthe site
investigation report

Param eter gﬁgﬁty Ewlggﬂ?us E}Z‘;‘; Streeorllzgt:]ri]cal ggrz%?ggsei?/e HB
Description Designation :)g é Etact rating | index isrfg(r:]tgigc?(f parameter
Symbol RQD Ei RMR | GSI o m

Unit - GPa - - MPa -
Value/Range <25% 19-25 25-35 30-40 10-50 15-25

4.2.1 Rock mass strength parameters

For the purpose of underground structure designnymaesearchers have
developed characterisation and classification ndshby which rock mass
behaviour can be distinguished and categorised $oime classes based on
related criteria. Based on that empirical clasatfan, relevant support and
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excavation methods are recommended. Another plplosois based on
evaluating the rock mass behaviour and determinimey appropriate support
based on site specific evaluations and experieme@milar conditions. Goricki
(2007) has developed a hierarchical design proeedfor rock mass
characterisation and classification based on roa&ssmbehaviour. He has
discussed the shortcomings of empirical classiboasystems and a summary of
well-known classification systems has been presente

Above all, in evaluating any underground systemalp@ur an estimate of the
rock mass strength is necessary and a failurerieriie commonly used to
quantify the capability of the rock mass in bearitie applied load. A
comprehensive review of failure criteria associatgti intact rock materials and
rock mass (e.g. Hoek & Brown 1980, Ramamurthy 1$&3tmerey 1989, Yoshida
1990) has been presented by Edelbro (2003). Amdhgr® the most two
common criteria in engineering practice are Mohulomb (MC) and Hoek-
Brown (HB) for evaluating the homogeneous rock mstssngth. There are a
number of corresponding empirical correlations,ezignced by practitioners as
well as tables and graphs, which provide values rimk mass parameters
according to rock type and quality. The correlagi@me valid provided that the
rock mass does not exhibit significant anisotropysirength and deformability
(e.g. rock mass contains a dominant joint set) #mel probable failure
mechanism has a shear failure mode. For instariber dailure modes like
buckling, ravelling, rock burst, sliding or fallingf kinematically free blocks and
so on cannot be evaluated by means of this cntesiod should be separately
checked by the respective criteria (Goricki, 208i&iner, 2005). Moreover, it is
possible to calculate the equivalent MC paramebtemy HB ones (and vice
versa) over a certain stress range. Both MC andniktiBlels are classified as
elasto-perfectly-plastic constitutive models witlffetent failure criteria. Mohr-
Coulomb failure criterion relates the major and oniprincipal stresses linearly.
However, the strength of the rock mass is usuadtyelb expressed by a parabolic
function which may comply more appropriately wittetreal behaviour of rock
(e.g. Brown 1970).

4.2.1.1 Hoek-Brown criterion

At failure, the generalized HB criterion (Hoek ¢t 2002) relates the maximum
effective stress; to the minimum effective stresg through the equation:

0, =0, +o-c{mo S sj (25)

ci
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whereog; is the uniaxial compressive strength of the intack, ands anda are
model constants. The relationships betweayim, s, a, and the geological
strength index (GSI) are as follows:

GSI-100
= _— 26
m=m ex{ 28-14D j (26)
s= ex{w] 27)
9-3D
1 1(- _
a=E+€(e GSINS _ 20/3) (28)

Hoek et al. (1995) introduced the Geological Sttkrigdex, as a complement to
their generalised rock criterion and as a way tonege the parametessa, and
m, in the criterion. This GSI estimates the reductionmock mass strength for
different geological conditions. The GSI value dam empirically estimated
either from rock classification systems (e.g. Qtays given by Barton et al.,
1974, and RMR introduced by Bieniawski, 1976) aedily from a table given
by Hoek et al. (1995) that practically varies oaetange between 10 to 100. By
definition, GSI values close to 10 correspond toyveoor quality rock mass,
while GSI values close to 100 correspond to exoelipiality rock masses. The
GSI takes the geometrical shape of intact rocknfixgts as well as the condition
of joint faces into account. Finallfp is a factor that quantifies the disturbance of
rock masses. It varies from 0 (undisturbed) to istgdbed) depending on the
amount of stress relief, weathering and blast da&mag

4.2.1.2 Equivalent M ohr-Coulomb parameters

As mentioned above it is possible to estimate thaivalent MC strength
parameters from HB parameters with various meth®dlds.choice of the method
for determining equivalent cohesion and frictiorglenis largely a matter of
experience (Merifield et al., 2006). Several wagséh been proposed to match
the HB and MC strength parameters (Sjbberg, 1997yeneral, there are two
options to derive equivalent cohesion and frictargle from HB parameters;
First, by fitting the MC failure line to the HB fare curve tangentially at a
specific minor principal stress or normal stresscdhd, a regression method can
be applied over a dominant stress range of thelgamglto obtain average values
of MC strength parameters. However, this may leadrt underestimate of the
strength for low stresses and an overestimateiffr stresses. Nevertheless, the
latter is the most frequently used method and pscally performed by fitting a
linear relationship to the curve generated by EHqua25 for a range of minor



4 Limitations of RS-FEM 73

principal stress values defined in Equation 29 wmilbg Hoek et al. (2002). This
formula has been suggested for shallow and dee@tapplications.

o o -094
3max — 0_47( ﬂj 29
aJcm M_' ( )

where o ., IS the global rock mass strength and a functiorHBf parameters
calculated by Equation 30,is the unit weight of the rock mass, aHdds the
tunnel depth below the surface.

o =g [im, +4s-a(m, ~8s))(m, /4+5)" (30)
om T 2(1+a)(2 +a)

This fitting procedure results in the following edquns for the equivalent MC
strength parameters:

o 6am,(s+m,o;, )"
— 31
7= fiv a2+ @)+ 6am(s+ mal ) (1

L o, [@+2as+ (1-a)may, |(s+moy,)* (32)

. (L+a)(@2+a)y1+(6am,(s+mos,)**)/((L+a)(2+a))

Whereaén: d3max/ i

It is noted thato sma Should be determined for each case individualhg t
stresses are likely to vary within the rock madsictv makes it more difficult to
select a representative value 0ofsma (Merifield et al., 2006). For general
geotechnical applications, another suggestion @®goby Hoek and Brown
(1997) is to match the MC failure line with HB ovére range 0 <o'; <

O 3ma=0.250;;. Here both suggestions are used to obtain therasdom sets for
MC strength parameters.

It is aimed to derive two sets for each MC strerquahameter from HB strength
parameters given in Table 13 using Equations 23A8%n constructing the first
set, lower values ain and g, are taken into account while the upper values are
used to make up a second set. To compute the loowerd of each set farand

@ the lower value of botb and GSI are used and for the upper bound the highe
values are taken. Thereby, considering two diffeasssumptions about the range
of ozin the fitting procedure results in two differe@ndom sets, which are
illustrated in Figure 36. In the computation thepttheof the tunnel has been
assumed equal to 30 meters.
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< Set 1 > < Set 2 >
O-c/=1o O-c/=50
m,-=15 m,-=25
| |
Left limit v Right limit Left limit v Right limit
GSI=30 GSI=40 GSI=30 GSI=40
D=0.5 D=0.0 D=0.5 D=0.0
°f 21 < ¢ < 31 25 < ¢ < 35
£} 298 < ¢ < 484 1800 < ¢ < 2850
o3 37 < ¢ < 47 53 < ¢ < 61
Ee
gs 79 < ¢ < 132 162 < ¢ < 286

Fig. 36: Random set of MC strength parameters drawn frormid8el
parameters, unit of cohesion is kPa

Obviously, alternative 2 gives higher friction aegjlthan alternative 1 because
the corresponding’;maxiS lower and the regression line is fitted in wdo range
of o3 stress. Consequently, the fitted line becomes stesamd the corresponding
cohesion is decreased. Furthermore, the randonf{adetmative 1 or 2) obtained
in this method give higher rock mass strength wibkpect to the previous
random set given in Tables 10 and 12 both in teohdriction angle and
cohesion.

4.2.2 Revised deformability modulus of the rock mass

For different reasons, it is often difficult to abt specific design parameters
directly from tests and as an alternative, emgirc@relations are used. To
obtain realistic values of rock mass deformatiorduios E,,,), in-situ tests, such
as plate bearing, flat jack, pressure chamber,hoteejacking and dilatometer
tests, need to be conducted. The in-situ tests,ehery are time-consuming,
expensive and, in some cases even impossible typ @at. Therefore, a number
of empirical methods have been developed that kederevarious rock quality
indices or classification systems to the defornmatrmdulus of rock masses. The
correlations are mostly between the deformation uhed and RQD (Rock



4 Limitations of RS-FEM 75

Quality Designation), RMR (Rock Mass Rating), Q $@stem) and GSI

(Geological Strength Index). The frequently usedalations are summarized in
Table 14. All of these classifications are basedhenassumption of isotropy and
homogeneity. This means that a rock mass must icoataufficient number of

discontinuities sets so that the real deformatiomsld be expected to exhibit
sufficiently isotropic behaviour.

The scatter of the rock mass stiffness values wobthifrom the empirical
correlations is considerable and therefore, takihthe correlations into account,
the difference in resulterould be one order of magnitudeéor the purpose of
determining the new random set for dheformability parameter a choice has to
be made which correlations are used. Hoek and Dede(2006) evaluated the
common correlations against large field data amy thointed out, for instance,
the E;, calculated by correlation 12 has shown just 5%rdrr comparison with
the Serafim and Pereira (1983) relation, whose rersaches 50% since
correlation 12 does not consider the damage fdExprZhang (2005) also found
that the equation given by Serafim and Pereira L@ erestimates the rock
mass deformation modulus for poor quality rocksm8oequations use only
classification indices that have not been dirertlgccess for this project or they
don’t consider any characteristics of the intackrd herefore, correlation 11 has
been used as a basis for deriving the two set® stnis consistenwith those
given for strength parameters in the previous secti
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Tab. 14: Empirical correlation equations for determiningkagsass

deformability

Correlation equation

Development/commer

t Author

1)E,, = 2RMR-100 [GPa]

Drawback: It gives
negative values for
RMR<50

Data of seven project
involved in the equation

Bieniawski, 1978

= — 1 O(RMR-10)/40) [GPa]

m

It estimates well for good
quality rocks, highly
overestimated for poor
rock quality

Serafim and Pereira,
1983

3)E,,, = 0.0736 ¥75RR

E,, = 0.1458%**% [GPa)

rm

Obtained from 115 in situ
plate loading and
dilatometer tests,

Only RMR or GSI index
is involved

Gokceoglu et al.,
2003

4)E, =E (0.0028RMFR’ + 0.9¢™""/?%?)

For general use

Nicholson and
Bieniawski, 1990

5 E,, = E (1—cos(rx RMR/100))/2

m

For general use

Mitri et al., 1994

o 1/3
6)E_ =10 Q—L
PR

g in MPa andE,, in
GPa

For general use

Barton, 2002

7) Lower boundE,, =10logQ
8) Upper boundE,, = 40logQ
9) Mean: E,, = 25logQ

Emin GPa

Only applicable taQ>1
and generally for hard
rocks

Barton et al., 1980

10)E,, = 033%%°® [GPa]

For general use

Hoek, 2004-for the
reference see Zhang,
2005

1)E, = (1-D/2) 1%)10“65"10”4‘” (GPa]

O <100 MPa

Hoek et al., 2002

12)Erm=Ei(0.02+ 1-D/2 j

1+e ((60+15D-GSI)/11)

Based on 494 in situ test
and back analyses
comprising wide range of
rock types and
0<GSI<100

5 Hoek and
Diederichs, 2006

1-D/2
B)E, :10((1+ @ ((75-25D-GSI)/1) j [GPa]

where only GSI data ar
available

eHoek and
Diederichs, 2006

14) Erm - Ei xlo 00186RQD-191

RQD is significantly
dependent on borehole
orientation; to reduce the
dependency of RQD see
treatment given in Zhang
2005

Zhang and Einstein,
2004

15)E,, =acE
ae =0.023XRQD) - 132> 015

Adopted by ASSHTO,
1989

Gardner, 1987
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Considering the ranges of GSI asmglpresented in Table 15, one is able to infer
two sets of parameters for the geological conditérihe rock mass assuming
that the lower value of UCS combined with the ran§&SI makes up the first
set and similarly the upper value of UCS formsgbeond set. Consequently, in
this manner two random sets given in Table 15 aaveld for the elastic
modulus of rock mass using correlation 11 of Tdlde

Tab. 15: Input random sets of elastic modulus of rock mass

Parameters Probability of | o¢i (UCS) GSl Erm (Mmodulus
assignment of rock mass)
Units - MPa - MPa
SetNo. 1 0.5 10 30-40 1000-1770
Set No. 2 0.5 50 30-40 2230-3970

4.2.3Basic variablesfor the random set model

As described in section 4.2.1.2, assuming two whffe ranges for fitting MC
strength parameters along the HB failure line, Itesm two different sets of
parameters with a large discrepancy. Thus, theseatternatives are included in
the following RS-FEM analyses in order to obsehe differences. The random
set model and procedure described in Chapter 3 felewed separately
considering the two alternatives. The number ofdeaariables was maintained
as four. Therefore, the number of FE calculatie@wuired for RSFEM remains
256 realisations. The spatial variability was tak&o account for the rock mass
parameters using the reduction technique excepthirstrength parameters of
alternative 2 since the change in the set limite tiu the reduction factor is
negligible. To compute the variance reduction fa¢t9, the spatial correlation
length (©@=10 m) was taken similar to the amount used foezan the previous
tunnel example with 7.5 metemserburden. The length of a potential failure
surface ) has been estimated about 30 meters from oneeafalculations using
the strength reduction method.

The final random set input variables utilized imtier analyses are summarised
in Tables 16 and 17 corresponding to alternativasd. 2 for strength parameters
respectively. It is noted that both sets chosertHerstress relaxation factor are
based on expert’s opinion and the lower valuesratehed to the set with lower
strength and deformability modulus values. In addjtthe values for different
stage constructions are correlated to each otleerini any realisation the left or
right extreme oRfor the top-heading, bench and invert are used|sameously.
Moreover, it should be noted that high values diesion sets in alternative 1
have been reduced to 75% (suggestion advised bl bloe Brown, 1997). The
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values given in Tables 16 and 17 have been rouafted applying the variance
reduction factor.

Tab. 16: Revised random set parameters (alternative 1)

Erm (rock
R R R
Var. | m(A) mass ) C
modulus) T.H. Bench | Invert
Units - [MPa] - - - [°] [kPa]
Setl 0.5 1300-2300 0.4-0/6 0.3-0.5 0.2-p.4 22-32 50-0
Set 2 0.5 1900-3400 0.3-05 0.2-04 0.1-0.3  24-34 00041600
Tab. 17: Revised random set parameters (alternative 2)
Em (rock
Ry R R
Var. | m(A) mass ) C
modulus) T.H. Bench | Invert
Units - [MPa] - - - [°] [kPa]
Setl 0.5 1300-2300 0.4-0/6 0.3-05 0.2-p.4 37-47 0-1®
Set 2 0.5 1900-3400 0.3-05 0.2-04 0.1-0.3 53-60 60-280

Extracting the input parameters directly from bgscameters, test results and
observations reflected in the site investigatiopore has significantlychanged
the input random sets, and demonstrates that thagy sets had been chosen as
too conservative.

4.2.4Validity of the RSFEM results

Considering the two alternatives for the reviseddoan set basic variables, the
bounds on selected results are illustrated in teohsdiscrete cumulative
probability in Figures 37 to 40. To evaluate thalgy of the input variables as
well as the random set model a comparison has Ibegte with available
displacement measurements. The measurement poingdAB have been
considered at the tunnel crown and its side wapeetively, whose positions
have already been depicted in Figure 16. Sincedis®rvations were available
within the faulted zone (section BQ3), measuremeats be presented in terms
of discrete cumulative probability that comprisetsteps corresponding to those
measurements as depicted in Figures 37 and 39.

The new random set results not only show a sigmficdecrease in tunnel
displacements but also a success in estimating ancdompassing the
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measurements within its bounds. The primary randetresults showed a very
wide range of displacements from millimetres to enetwhereas by revising the
values of the sets, the displacements dropped aenadily to a reasonable range.
For instance, regarding the results of alternafiyd-igure 37 shows that the
measured values of the vertical displacement ofttimmel crown have been
located within the green zone of the quality inthcaor in other words, they lie
within the range of the most likely values predictey the random set model.
Part of the measurements of the horizontal dispt@ce at point B falls outside
the most likely range; however, it is still withine green indicator. The vertical
displacement at point B shows partial disagreematht the random set model
although from a practical point of view it can begtected. However, it
theoretically implies that the numerical model aainrepresent all aspects of
ground behaviour perfectly. For instance, one Hypsis is that the rock mass
behaves heterogeneously and therefore an anisotrogrel should be employed
instead. A second hypothesis is that the sets rehgth parameters do not
properly represent the rock mass behaviour. Thdtsesf the second alternative
strengthen the correctness of the latter hypothdsgure 39 illustrates the
random set results of alternative 2, which demaistalmost a full agreement
between measured values and the predicted randanrasge. The only
difference between alternatives 1 and 2 is the temuéby which the Mohr
Coulomb parameters were derived. Considering tloeess of alternative 2 in
estimating the reasonable range for all respormses can confirm that Equation
29 used for obtaining the MC parameters of altérad could be appropriate for
tunnel applications.

Another example of the random set results is tifetysdactor of the top heading
excavation after installing the shotcrete linindieTlower and upper bounds of
the safety factor have been depicted in Figurear@B40 for alternatives 1 and 2
respectively. In an average, the factor of safétgioed in alternative 1 is twice
that of alternative 2 which would be expected cdesng the differences in
strength parameters. In addition the p-box of titernal forces of the tunnel
lining is illustrated. There is a slight differenbetween the responses of the two
alternatives.
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4.2.5 Evaluation of lining performance function

Having the random set results of the internal ferokthe shotcrete lining, it is
possible to assess the satisfactory performanteedining against cracking. To
do so, again the relationship given by Equationara3 24 is utilised. According
to the design value, a thickness of shotcrete di#pgnon the position of the
element is varied between 15 to 25 centimetres.

------- Alternative 2 ~—— Alternative 1
1.00

0.75 +

0.50 +

Cumulative distribution

0.25 4 :

0.00 . . . .
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e(x) [m]

1.00 :
(b)
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0.25 ~

Cumulative distribution

0.00

0 200 400 600 800 1000 1200 1400 1600
g(x) [kKN/m]

Fig. 41: RSFEM results from alternative 1 and 2, a) ecaatytrin the lining
cross section, b) serviceability performance fuorcof the shotcrete

For the shotcrete a C20/25 with a uniaxial stremdth7.5 MPa is used. To cover
imperfections an eccentricity &, = 2 cm and safety factor dfs = 2.1 to
consider the serviceability condition are takenre;leserviceability limit state
function, g(x), is evaluated directly from the results of eadh dalculations as
described in Chapter 3. The p-box of gfe) in terms of cumulative probability
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for both alternatives 1 and 2 at the end of corsitn are presented in Figure 41.
The most probable values of the performance funagsulting from alternative
1 ranges from 900 up to 1200 approximately. Thigjeais slightly increased for
alternative 2 from 1150 to 1350. The lower and wgm®bability distribution
functions indicate that the probability of exceedimdmissible normal force in
the lining, N, <N, where cracking takes place, is negligible. Hetioe revision
of the input random sets maintains a high perfogedevel of the lining and
major cracks are not anticipated.

4.3 Scenario 2. Change of construction sequence and
reconsidering the tunnel design

At the beginning of the chapter it was shown tleaidom set analysis regarding
the tunnel section in the faulted zone exhibiteduaaessful results including
large tunnel displacements and a wide range of rtaingy in the system
response as well as difficulties in numerical cogeaces. In section 4.1.2 two
scenarios were discussed for treatment. In thisosethe results of the second
scenario are presented and discussed. The objastit@ demonstrate that if
scenario one is rejected, by changing the constructequences and a new
tunnel design, satisfactory RS results can be o&iaiThe tunnel geometry and
design specifications have been shown in Figurars® the corresponding 2D
finite element mesh has been depicted in Figure 43.

To control the large displacements predicted bynary random set analysis, a
possible solution may be the closure of the tunigt after the top heading
excavation. The temporary bench lining will prevéim¢ lateral displacements
and consequently leads to a smaller amount of tiisplacement. In accordance
with the actual construction sequence 5 calculgtimeses have been modelled:

1. Initial stresses

2. Pre-relaxation phase of top heading excavation ¢@4g)

3. Installation of anchors and primary lining in topdding, temporary invert
(Fig. 44b)

4. Pre-relaxation phase of bench and invert excavdkaq. 44c)

5. Destruction of the temporary invert and the exdawabf the bench and
invert along with the completion of the primaryitig and anchors (Fig.
44d)
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Tab. 18: The range of MC-model parameters extracted frongdwechnical
report for zone llland the representative values used in design K6-4A

Parameters Eref c ) Ko™ v Re

Units IMN/m] | [kPa] | [] -] -] T.H. B&I

Geotechincal

- - -23 - - -
report 100-200 | 60-90 21-23 0.4-0{6 0.35

Design-K6-4A 75 50 20 0.55 035 0.5 0.25

Tab. 19: Parameters for structural elements used in destaA

young old Force
[MPa] [kN] [cm]
Shotcrete| Top-heading Elasti¢ 5000 15000 - 30
Shotcrete| Temp. Bench Elastic 5000 15000 - 20
Shotcrete Invert Elastic 5000 15000 - 30
Anchor | T.H. B, i:giﬁ; 210000 200 2.2

Tab. 20: The random sets used in design K6-4A for sectio® BQnhsidering
spatial autocorrelation

Set Probability Es c @ Ry

No. | assignmenf [MN/m?] [kPa] [°] T.H. B&l
1 0.5 79-157 52-82| 20-22 0.4-0.6 0.2-04
2 0.5 96-192 58-88| 21-23 0.3-0.5 0.1-0.3

The material parameters for the rock mass congidaréthe new design (K6-4A)
along with the ranges of the basic variables giverthe geotechnical report for
zone lll have been summarized in Table 18. In #r@om set model, four basic
variables with two sets each are involved, whiah given in Table 20. For the
deformability of the rock mas<%,,,, and cohesion the random sets are taken
similar to the primary random set given in Table [h&tead of the earth pressure
coefficient at rest, the friction angle of the roglass is taken as a third basic
variable. The chosen random set for these parasnater based on the range
given by the site investigation report and a snaatation suggested by expert
opinion. The 3D effects of the tunnel face are tddaby introducing the
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relaxation factor. The random set Bf has been constructed according to
Kielbassa and Duddeck (1991) and also expert’'s i@pirand engineering
judgement have been regarded.
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Fig. 42: Specifications of the tunnel geometry and anchodesign K6-4A
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Fig. 43: The 2D finite element mesh of the alternative gie$(6-4A for
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(@)

(c)

Fig. 44.

4.3.1 Calculation results

f

(d)

Stage constructions of the new tunnel design (Kbfdr section
BQ3, a) pre-relaxation of the top heading, b) tepding excavation,
temporary invert and anchors, c) pre-relaxatiothefbench and
invert, d) excavation of the bench and invert, clatipn of shotcrete

and anchors

The lower and upper bounds on the desirable sysésponses such as tunnel
displacements, internal forces and the evaluatetbnpeance function of the
shotcrete lining are depicted in Figures 45 andAM6omparison made with the
primary random set results shows a significanteEse in tunnel displacements
in the range of few centimetres instead of a fevense
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In Figures 45 and 46 besides the random set bouesid} of a deterministic FE
calculation based on characteristic values (desane) given in Table 18 has
been illustrated. As it is expected, the desiguesilfall within the random set
bounds.

Likewise Scenario 1 concerning the shotcrete perémce functiong(x), the
probability of unsatisfactory performance (i.e. lpability of failure) should be
assessed. Three different well-known distributiamctions namely Normal,
general Beta and shifted Weibull have been fitedhe discrete cumulative
probability function obtained in random set anay$irobability of failure of(x)
for respective distributions has been summarizedahle 21. Thep; obtained
directly from random set results is zero becauselitite ofg(x) = 0 does not
intercept the discrete CDF. It follows that the hability of failure ranges from
almost zero to the maximum value of 14807 Thus, in reference to Table 9
the level of expected performance is describecelmibto above average.

Tab. 21: Probability of failure obtained from different difiutions fitted to the
lower and upper bounds gfx)

Reliability Distributions

parameters Normal Beta Weibull Discrete CDF
Pr.max 1.15x 107 1.8x 10* 1.48x 10° 0.0
Prt-min =0.0 =0.0 =0.0 0.0

It follows from scenario 2 that in cases where @pprtion of the FE calculations
show failure, random set results can be improved t@asonable range by a
modification of the tunnel design. This can be ad@®d as an advantage of RS-
FEM, which is capable of demonstrating the inedimy of the design
(considering the current state of knowledge of tnparameters), while a
deterministic calculation with characteristic inpatlues at first sight shows an
adequacy of tunnel supports and a successful design

4.4 Summary and conclusion

As can be seen, the tunnel displacement predictd®SF-EM based on the new
design and primary random set input parametersirarthe range of several
centimetres. However, this design was not executedpractice and the
measurement showed a good agreement with the megected by the revised
random set. Therefore, it is concluded that th&t 8cenario has been correct and
the primary source of information has given too ssmative parameters.
Moreover, random set analysis contributed to idginy the most influential
input parameters. In addition it was demonstratedt tin cases where a
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proportion of the FE calculations show failure amhsequently the random set
bounds cannot not been constructed or result invide ranges which are not
acceptable from a practical point of view, randoet sesults imply the

inefficiency of the tunnel design. By revising thennel design, a reasonable
range for results can be obtained. Therefore, msine mentioned cases RS-
FEM shows the ability to evaluate a tunnel desigmsaering uncertainties
available in input parameters.
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5 On the effects of constitutive mode
change

5.1 Problem statement

Besides the uncertainties in input parameters,ingadnd geometry, employing

different material constitutive models causes d#f¢ system responses in a
numerical model. The objective of the chapter isagsess the uncertainty
reflected in the results of a tunnel problem du¢ht change of the rock model
used in the numerical analysis within a probaldiftamework of the Random

Set Finite Element Method.

At the beginning of a numerical analysis, a dedidias to be made regarding the
constitutive material model employed. In a tunnebjgct when a reliability
analysis is to be accomplished, the system respeasations caused by this
issue become more important and might significaaffgct the probability of
unsatisfactory performance of the tunnel. There @a@ny factors that are
involved in model selection. For instance, somefiianers choose a model like
Mohr-Coulomb (MC) for simplicity because it requereewer input parameters in
comparison to an advanced soil model. It may alsadifficult to derive the
parameters for an advanced soil model due to timigakions, unreliable sources
of information, or absence of proper test resuittshis chapter, the RS-FEM is
employed as a framework to allow for a model vasrain a numerical analysis
and investigating the consequences of a model ehamythe results of a
reliability analysis. To demonstrate the applicapibf the random set model in
considering model uncertainty in a reliability aysa$, two simple rock/soll
models, namely the Hoek-Brown (HB) model and thehMGoulomb (MC)
criterion are used.

5.2 A tunnel examplein rock with 25m over burden

To illustrate the differences in the outcomes afiuamerical analysis resulting
from selecting the two above mentioned material @mdhe master model of the
tunnel example given in Section 4.1 was chosen taiaing the layout of the
tunnel geometry, support specifications, excavasequences, and the relevant
finite element mesh (using approximately 900 15eatbttiangle elements) which
have been shown in Figures 30 and 31. No watere tabl present and
consequently all calculations have been perfornmettudrained conditions.
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5.2.1 Random set input parameters

Similar to Section 4.2 four basic variables aresidered for the MC-model
including two strength parameters of the rock nressely cohesion and friction
angle, elasticity modulus of the rock malg,, and the relaxation factor, which
are presented in Table 22 and 23. The random gd#isr@spect tcE,,, and the
relaxation factor are common between the HB-moddltae MC-model. Figures
47 and 48 illustrate the random set strength paesdan terms of p-box
corresponding to MC and HB model respectively.

Tab. 22: Input random set of both MC and HB strength paranset

HB Parameters MC Parameters
Var. m(A) m Oci D GSI ) c
Units - - [MPa] | - - [°] [kPa]
Set 1 0.5 15 10 0-0.5| 30-40 37-47 80-130
Set 2 0.5 25 50 0-0.5| 30-40 53-60 160-280
Tab. 23: Common input random set for MC and HB model
Var. m(A) Em (rock mass modulus)| Relaxation Factor
Units - [MPa] T.H. Bench Invert
Setl 0.5 1300-2300 0.4-0.6 0.3-0.5 0.2-0.4
Set 2 0.5 1900-3400 0.3-0.5 0.2-0.4 0.1-0.3

Recalling Section 4.2.1.2 in which the procedurelatining the equivalent MC
strength parameters from the HB-model parameters been described,
alternative 2 is adopted for the MC strength patarseused in this section. The
main reason is that alternative 2 considers a rarigaminor principal stresses
(Equ. 29) in its fitting procedure, which corresgerapproximately to the stress
state in the vicinity of the tunnel elevation. Cegsently the system responses
obtained by both HB and MC-models are expectectoltise and comparable to
each other.
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In fact in the HB-model there is only one interiak GSI andD but by
combining it with two constant values af ando. two sets are made in the
respective random set model. The strength parasetehe HB model are given
in Table 22. It should be noted that the GSI Bndre dependent parameter sets
such that the lower limit oD is used with the upper value of GSI in the
calculations and vice versa to represent the bedt tae worst geological
conditions respectively. The input for individuaktdrministic FE calculations
resulted from the random set model for the casa®HB-model is summarized
in Table 24.
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Tab. 24: Input parameters of 64 FE deterministic calculatiosed for the HB-

Combination of extremes of the sets
Run . . Set
i m(A) Basic Variables No LLL LUL LLU uLL uuL LUuU ULU uuu
2 GSI 30 30 30 40 40 30 40 40
5 D
050 : a 05 0.5 05 0 0 05 0 0
@ 5 m; 15 15 15 15 15 15 15 15
-
= O 10 10 10 10 10 10 10 10
0.50 Eim 1 1300 1300 2300 1300 1300 2300 2300 2300
P GSI 30 30 30 40 40 30 40 40
4
© D
e g 2 05 0.5 05 0 0 05 0 0
Q & m; 15 15 15 15 15 15 15 15
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The RS-FEM procedure is applied separately for eamtstitutive model. The
number of realisations required to accomplish tiseHEM in which the HB and
the MC model have been used, based on Equationrd164 and 256 FE
calculations respectively.
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5.2.2 Calculation results

Displacements and internal forces in structuramelets obtained from both MC
and HB constitutive models are plotted in Figur8sa#d 50 along with the in-
situ measurements in terms of the lower and upgecrete cumulative
probability distribution bounds. It should be notkdt the random variables have
been assumed stochastically independent, whicknsrglly not correct; but for
the sake of simplicity and from a practical poiftveew it is admissible. Since
the measurements of only two sections of the tumigl similar conditions to
the model were available, the measurement valeslastrated in the plot with
two steps in form of a discrete cumulative disttido.

The cumulative distributions of the bound of resyliven by the HB-model are
generally more inclined than the MC bounds; coneatly, the HB-model
indicates more uncertainty in the system respofssa result, HB results could
encompass the measurements within its most likeldipted values. For
instance, from Figure 49b it can be seen that fheeulimit of the measured
value lies at the end of the upper bound of the mi&lel, whereas in the HB-
model it is situated within the most likely valudgevertheless, it follows that the
results of the calculated bounds from both modedsragood agreement with the
measurements. It maintains the capability of theHE® in capturing the
uncertainties involved in the basic random varigbédthough the displacements
are small in the sense of absolute values. Degpgefact there was not a
possibility to measure the internal forces of imnp, it is anticipated that like
the crown displacement, actual moments and norowake$ in the lining fall
inside the range shown in Figure 50. Table 25 mtssthe most likely values of
obtained system responses based on the definitten gn Chapter 3.

Tab. 25: The range of most likely values obtained from HBl #C random set

model
Max
U-A | UsB | UB _'??f’ M'(\)/'ri‘]’;n | Normal
Results M. Force
[mm] [mm] [mm] [ [KN.m/m] [KN/m]
lower 1.8 1.2 0.5 2.07 6.7 262
HB-model
upper 5.3 3.4 1.3 3.50 16.3 574
lower 1.7 1.0 0.5 2.39 3.9 170
MC-model
upper 4.3 2.5 0.9 3.70 14.5 477
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Fig. 49:
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Fig. 51: Yield curve and direction of plastic flow in ba¥hC and HB-model

From a modelling point of view, the observed diieces between the two
models might have originated from minor differenegssting in the constitutive
models that are discussed next.

In the theory of plasticity, the yield functiondefined as being a scalar function
of stress. In MC and HB models their respectivdufai line acts as a vyield
function (denoted b¥in Fig. 51), which is regarded as a criteriontfae onset of
plastic straining (Potts and Zdravkovic, 1999). thew issue is to determine the
direction of plastic straining at every stressestdiis is carried out by means of
a flow rule using a potential function (denoteddin Fig. 51) that can be the
same as the yield function and is then called aoaated flow rule. For MC
type yield functions, the theory of associated {ptag overestimates dilatancy
and results in unrealistic volume changes. Commahéy potential functions
contain the dilatancy anglg which controls plastic volumetric strains. Thirs,
a non-associated flow rule, at every stress statngle exists between the yield
function and the plastic potential function, whisha function of the dilatancy
angle.
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Fig. 52: lllustration of stress points of FE calculationgrincipal stress space
for the given equivalent HB and MC strength pararset

The difference in the potential functions usedha MC and HB models is the
most influential factor for the differences of tresults between the two models.
For the MC model two potential functions have bebpnsen: a non-associated
flow rule in the deviatoric part and an associaiad on the tension cut-off line.
As a limiting case the dilatancy angle is sele&gqdal to +90 at the tension cut-
off line (the plastic strain vector has no compdnerthe vertical direction) and O
for the deviatoric line as depicted in Figure Sie(plastic strain vector has no
component in the horizontal direction).

At the apex point of the HB failure line the dilaty angle is equal t@. AS
depicted in Figure 51¢ decreases linearly from,. to O within the range of
minor principal stresses between uniaxial tengilength ¢f) and gy. The value
of gy is equal to zero which is a default value for rockterial.
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After the tunnel excavation, stress points arourel tunnel follow stress paths
that are deviating from the initial stress state ffte Ky-line). It can be seen from
Figure 52 that most of the stress points that ateaffected by the excavation are
concentrated near theqo#ine. Figure 52 shows the stress state in mwle
model after the final construction stage. Furtheemdwo observations can be
made: firstly, the range of; over which HB and MC failure lines are fitted
together (Equ. 29) encompasses all the stressspibiat are close to the failure
line. It implies that Equation 29 gives a reasoeadstimation forosn., (see
Figure 52 showing the position @f;.y. The second observation is that the
majority of the stress points hit the failure linea range of minor principal stress
betweeng; and ozma/2. They are especially concentrated around thg ape the
tension cut-off line. It follows that the discreggmdepicted in Figures 49 and 50
between the two constitutive models is most likelye to the natural
consequences of the difference between the comdspp yield and potential
functions in the range of low minor principal sses.

5.2.3 Serviceability limit state

Finally, the serviceability limit state of the shidte lining at the final stage will
be assessed based on the primary results takectlylifeom the random set
model FE calculations. On the basis of the resoitt®ined from the original
design calculation a shotcrete thickness of abOutif is required for the top-
heading and bench. This amount is decreased ton2fdicthe invert. The limit
state function following Equation 23 given by Sahik and Ostermeier (1988) is
considered. The serviceability limit state of thHeotsrete lining is defined by
exceeding the admissible stress, which is baseth@mpotential for damage of
the lining due to cracking when the tensile capagitthe material is exceeded.
The following assumptions were made regarding oWlagiables involved in the
Equation, i.e. for the shotcrete a uniaxial strer@ftabout 17.5MPa is assumed,
and to cover the imperfections an eccentricityepf= 2.0cm, and for the
serviceability limit state a safety factor 6f = 2.1 is considered. Figure 53
depicts the range of the evaluated limit state tioncusing RS-FEM results in
terms of CDF. For fitting a density and cumulatdistribution function over the
discrete data, @RISK(Palisade, 2008) employs only the Root-Mean Sqglare
Error method. This is the same quantity that @RifiKimized to determine the
distribution parameters during its fitting procel$éss a measure of the “average”
squared error between the input and fitted curixs $tatistic measures how well
the distribution fits the input data and how coefitone can be that the data was
produced by the distribution function. It turnedt dliat Beta distribution ranks
first among the others and has been fitted tohal discrete CDF ofj)(x). The
lower and upper values of the probability of exeegdhe admissible normal
force in the lining,N>N;,, where cracking takes place, corresponding to lowe
and upper fitted distributions ovg(x) for both HB and MC models are zero and
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3.19%«10° respectively. The values of the probability of diaél indicate that the
shotcrete satisfies the serviceability criterionl amajor cracking is not expected
to occur in the lining.
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Fig. 53: Bounds of the random set results of shotcretacsbility limit state
function

5.3 Merging of RS-FEM results obtained from
different constitutive models

Model uncertainty is distinguished from parametccertainty, which is the
uncertainty of the value(s) of a particular var@abh fact, the system response of
any mechanical system is affected by both paramvelees and the relationships
that tie the parameters together. These relatipasaie expressed in models.
This means that model uncertainty could be justcagial as parametric
uncertainty. In general, this source of uncertainsy neglected. Model
uncertainty is also referred to uncertainties concerning statistical
parameters used in an uncertainty model e.g. uncertainty relating to the
distribution family (Oberguggenberger and Fellin, 2008), and dependencies
among basic variables (Berleant and Zhang, 2004) for which distribution
envelope approaches have been developed, but these are not discussed

herein.

To perform a comprehensive reliability analysis amgk assessment it is
recommended to examine various scenarios, diffatesdries and constitutive
models in the context of the numerical method. Afeeds, an approach is
needed to merge all the results for a rationalsi@eimaking. The objective of
the aggregation of the two model results is toarably simplify and unify the



5 On the effects of constitutive model change 105

information obtained on the system response fosegient reliability analysis.
In this regard, many operations have been develapedntly to combine
different sources of information that basicallyl fal three main categories:
conjunctive (based on set intersection), disjurctfleased on set union), and
trade-off (an integration of foregoing operatioogerations (Sentz and Ferson,
2002). A conjunctive operation is appropriate whlea sources are considered
reliable, and in situations where only one of tbarses is probably reliable a
disjunctive operator is recommended.

An extensive review has been carried out by Feetaal. (2003) regarding the
aggregation methods and their respective advantages disadvantages,
discussing how different evidence or sources obrimation can be combined
together in order to consider the model uncertaidihough they use these
methods to combine different sources for the inmartameters of a model, the
same notion is adopted here to combine the RS-FHtdomes obtained from
two different constitutive models in order to come with one solution for the
system response. The most commonly and widely asgplegation methods
consist of: Intersection, Envelope, Dempster’s ,rdlbang’s rule, Bayes’ rule,
Mixing, and Convolutive averaging. In the followisgctions, Envelope, Mixing,
and Convolutive averaging, which are more appropritor the objective

mentioned before, are going to be discussed. Fstance, Dempster's rule
ignores and excludes the conflicting focal elementthe aggregation process,
which is not favourable when it is applied for thggregation of results of
various constitutive models.

5.3.1Intersection

The intersection operator is acted over a collactibfocal elements of various
random set structures. For computational purpeaaeslom set results in the form
of p-boxes are discretised into e.g. 100 redundiacal elements, each with a
mass of 0.01. The aggregation outcome is simplgpiobtl by intersecting the

respective focal elements from the discretisatibtine random set results (e.g. of
both the MC-model and the HB-model), and then thessas of new focal

elements are accumulated to construct the mergelbna set structure.

From the mathematical point of view, the intersamttiresult holds the true
response only when the RS results of each indiViduzdel contain the true
response. This type of aggregation is only readenab long as the mentioned
condition regarding the involved models is assur8ohce each constitutive
model has its own shortcomings and merits, one atagenerally claim that the
actual behaviour is thoroughly captured by all lvé models. Therefore in the
current case, an envelope of the results would beoee logical solution and
more conservative.
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5.3.2 Envelope

Similar to the Intersection method, the randomsseictures in the form of p-
boxes are descretised, but instead of the inteosegperation, the union is used.
Contrary to the intersection method, envelopingasmmonly employed in the
situation where the reliability of individual systeresponses is uncertain. In
other words, since each constitutive model canllysabharacterise only specific
aspects of the material behaviour, the true respomght fall either within or

outside the range predicted by each model. Thexefdroosing the Envelope
method would be a reasonable and cautious strategy.

5.3.3Mixing

The general form of the Mixing method takes différeeights for each estimate
(i.e. source of information) into account, as fol Suppose that there are-
boxes Fi, Ful, [F2, Fel, ..., [Fn, F+], with their associated weights;, ws,
..., Wy, and the resulting p-box from the Mixing proceasesg [F', F:] where,

F'() = (WiFy (9 + WoF2 (%) +...+ WaF (X))/Z W (33)
Fa(X) = Wi () + WoFsp (X) +...4+ WoFen (X))/Z W (34)

If the estimates are in terms mfinite random set structures with massgsmy,
..., m, the resulting weighted mixture has the basic podltyaassignmentn (A):

M(A) = Y wm (A) (35)

2w 4

For example, the unweighted mixture of two randetnssructuresk, = {([2, 6],
0.4), ([3, 7], 0.6)}, and~, = {([1, 4], 0.5), ([2, 8], 0.5)} results i = {([2, 6],
0.2), ([3, 7], 0.3), ([1, 4], 0.25), ([2, 8], 0.35)

Unlike Convolutive averaging, the Mixing method mtains the disagreement
between the estimates or rather summarizes it antsingle distribution. In
addition, according to Sentz and Ferson (2002) ieasonable to use the Mixing
method when the disagreement between the varidimatses represents actual
variability.
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5.3.4 Convolutive aver aging

Convolutive averaging of given random set structureS my), ..., d,, m,)
with their respective focal elemems, ..., A, results in the random sef’(, m)
whose focal element®\[ are obtained on the Cartesian produciAgf...x A,.
Aassuming the respective random set structuresiradependent, then the
associated masses are defined by:

M= Y ﬁm(m (36)

AEWAE A WA,

wherew; is the weight concerned wiff random set structure such tt¥at, =1
andw;>0.

From Equation 36 it follows that all of the focdements of one random set
structure are convolved with those of the otheat(lls, all possible pairs are
considered). In fact, the relationship mentioneavals nothing but a random set
analysis with a simple arithmetic averaging asni@pping function. For the

purpose of illustration, a numerical example isegivn Table 26.

As an advantage, the Convolutive averaging is egble to those random set
structures between which conflicting and disjoin¢dl elements exist. Both the
Mixing and Convolutive averaging operations posselke property of
commutativity but not associativity; therefore, sk care should be taken when
these operators are acting on multi-arguments. dditian, it can readilybe
shown that the Mixing operation is idempotent; hegre Convolutive averaging
does not possess this algebraic property.

Tab. 26: Combination of the random set variaBl@and B using the
Convolutive averaging

Set A1), M(Ay) Set A2), m(A2)
[3, 5], 0.4 [4, 6], 0.6
Set B1), m(B1) [1,3],0.5 [2,4],0.2 [2.5,4.5],0.3
Set B,), m(B>) [2,4],0.5 [2.5, 4.5], 0.2 [3,5],0.3
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5.4 Calculation and results

In section 5.2.2, the difference in the resultsaot®#d from two constitutive
models in the framework of random sets has beewrshidere an attempt will be
made to aggregate the results of the two sepaaaom set analyses (i.e. one
with the HB and the other with the MC model) to ®uap with the final bounds
enclosing the uncertainty in the material modeésdn. The random set result
of each material model is considered as one soiilee.bounds created by the
above mentioned methods have been shown in Figdresd 55 for the results
of the crown displacement and the maximum momenh®ftunnel lining. As it
can be seen, the envelope of the bounds resuls @onservative solution,
whereas the Convolutive averaging and the Mixingthm@ yield almost a
compromise between the bounds obtained by bothtiagnge models. The
measured values of the tunnel crown displacemagt &) lie within the most
likely values region of both the HB and MC randoghiesults and still remain in
the corresponding most likely value regions wheplypg various aggregation
methods. The Intersection method makes the regulbandwidth of the
aggregation narrower and it contains the drawbaektimned in the previous
section.

Ferson et al. (2003) argue that when the estimatdse aggregated represent
variability (aleatory uncertainty) the Mixing methas more justifiable to be
applied, and if it is appropriate to ignore the i@bility (i.e. the estimates
represent an epistemic type of uncertainty) as aglthe dependency between
the estimates, employing the Convolutive averagimgthod would be more
suitable. The constitutive model uncertainty bdbicéies in the epistemic
category and it cannot be considered as a reability in the model selection.
Therefore, the latter aggregation method would beemeasonable to be adopted
for the current case.

On the other hand, the Envelope ensues more ca@is&rwalues, albeit the
Convolutive results in some locations are outsidé® envelope bounds (Fig. 54
and 55). Ferson et al. (2003) have also pointedhaitif many independent p-
boxes having similar scatter are combined by meahghe Convolutive
averaging, the results tend to become an interbalses band reflects the overall
incertitude. This phenomenon can be seen in theepted results because the
scatter of the resulting bounds has been consilyeratbuced although only two
p-boxes have been involved. On the contrary, tharigimethod has resulted in
a larger scatter even with respect to each indadxp-
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Evaluation of serviceability limit state function

To show the effects of different aggregation meghod reliability analysis of a
tunnel system, a performance function relatinght tunnel crown deformation
is considered. The simplest form of such perforreafunction is assumed
below:

g(U yA) = 6_UyA (37)

whereUy, is the vertical displacement of the tunnel crowmwdwards, and 6 mm
is the criterion adopted in this example.

CDF of the upper bound &f,, results illustrated in Figure 54 are used to obtain
the probability of failure (or probability of unssfiactory performance) using the
following Equation:

P, = p(g(u)<0) = [ f,(u)du (38)

g(u)<0

The upper values of the probability of ‘failure’ éaming in this context that the
limiting value for crown displacement is exceedédye been summarized in
Table 27 regarding various aggregation method$ollbows that for a certain

performance function, the adoption of an aggregatieethod could result in a
considerable discrepancy in the calculated proitabibf unsatisfactory

performance. As expected, the Envelope has prodaceohservative value in
contrary to the Intersection method.

Tab. 27: Maximum probability of unsatisfactory performandeeguation 37
considering various aggregation methods

Aggregation - Convolutive -
method Envelope Intersection avg. Mixing
Probability of
failure 0.25 0.0 0.0599 0.125
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5.5 Conclusion and summary

In this chapter an extension of the RS-FEM was gmesl that enables the
Random Set model to consider the uncertainty ofctivestitutive model used in

numerical analysis by using evidence aggregatiothogs. By using the existing
method of combining different sources of informatite results of two separate
RS-FEM analyses are merged to come up with the douhat take the

uncertainty in model selection into account. Amdhg four applied merging

methods, namely Intersection, Mixing, Envelope @uahvolutive averaging only

the later two are suitable for the aggregationh&f two models’ results. The
Mixing method is appropriate when the differencesaleen results come from
actual variability. However, in model uncertainhete is no inherent variability
and in fact the differences between results argpa df epistemic uncertainty.
The Envelope method yields conservative boundssfits.

Two separate Random Set Finite Element Analyse® werformed in which
common constitutive models, namely the Hoek-Browd ¢he Mohr-Coulomb
model were employed. The range of the predictedilteesof the tunnel
displacements extracted from both models was cosdptiy the measurements
available in the project and good agreement wasrgbd. The HB-model
requires less finite element realisations as coagaro the MC model
maintaining the quality of the random set model,iclwhcan be seen as an
advantage from a practical point of view.

The differences between HB and MC results origirfeden two main reasons.
First, despite the suitable fitting procedure, ¢hisra difference between the two
failure criteria, which results in different numbeaf failure points in each model,
leading to different plastic strains and consedyeanternal forces in the lining.
Secondly, different flow rules are adopted for ttv® models, which has some
influence on element results in particular at ldress levels and tensile stresses.



6 Comparison of RS-FEM and PEM 113

6 Comparison of RS-FEM and Point
Estimate Method

This chapter aims to compare the results of tweeritamty models, namely the
Point Estimate Method (PEM), and the Random Sethbtethaving different
theoretical backgrounds, against the measuremehtsheo tunnel problem
presented earlier. The Point Estimate Method ipsupd by probability theory,
while the Random Set Method is categorized in thprécise probability group
and is backed by random set theory. PEM has beest ifntroduced by
Rosenblueth (1975). In simple words, PEM as unc#ytanodel defines each
random variable by two numbers. The mean valuehe$d two numbers gives
the magnitude of the variable, and the differersca measure of the uncertainty.
In the original form of PEM the calculations werade for all combinations of
input data. For instance, fornumbers of variables this will lead t8 2umbers
of calculations. RSM and PEM are similar from tive following aspects:

« PEM does not care about the mapping function ofeahanical system
that maps the input variables from a domain in gpace of the system
response. Therefore it is applicable to a probsthlievaluation of a
mechanical system whose solution is given by a mundé empirical
graphs or the required calculation is carried oytab non-accessible
computer code, or in other words, there are no i@kpéquations
characterizing the problem. However, only the sta@l moments of
target values are yielded by PEM, and no infornmaséibout the type or the
shape of the distribution can be obtained.

* Reliability analysis of a mechanical system in gaetron with numerical
models can be broken down into a limited humbedeiErministic finite
element calculations based on the number of pradeted points given
by the method. In this sense Point Estimate Metisodimilar to the
Random Set Finite Element Method.

The accuracy and precision of the two methods atecomparable but it is
anticipated that random set results encompass igtgbdtion of the system
response obtained from PEM. By comparing the measeints both methods can
be evaluated against each other and their limnatare pointed out.

Schweiger et al. (2001) demonstrated the applitalf PEM to determine the
low-order statistical moments of the considereditlistate function (LSF) in
geotechnical problems. PEM would be rather usethénreliability analysis of
complex problems, since commonly used reliabilitgtimods such as FORM
(First Order Reliability Method) or SORM (Secondd@r Reliability Method)



114 6 Comparison of RS-FEM and PEM

require an extra code coupled with a Finite Elenteoltto numerically calculate

the partial derivatives of the implicit LSF (Schweadiek, 2006). For each LSF
a modification should be performed to the code tuehe existing partial

derivatives. Furthermore, it seems that PEM id siipealing and has been
satisfactorily applied in some civil engineeringphgations (e.g. Tsai and
Franceschini, 2005).

6.1 Point estimation method

In reliability analysis it is favourable to estireathe actual distribution of the
system response or the desired limit state functow subsequently the
corresponding failure probability of the system.wéwer, for most geotechnical
problems this is a very difficult task and normalippractical. Thus an
assortment of approaches have been proposed tdifgite issue and among
others the most commonly used method in enginegmiagtice is the first order
reliability method (FORM) using the notion of rddiaty index (8), (according to
Ang, 2009) first suggested by Cornell (1969) antissguently improved by
Hasofer and Lind (1974). To compute the reliabiirigex it is onlyessential to
obtain the low order moments of the limit statedion G(X). The exact k-th
moment of GK), E[G‘(X)], is obtained by the solution of the multipledgtal
given in the following:

E[G"(X)]:T---fo(&,...,xn)G"(xl,...,xn)dxl...dxz (39)

wheref,(X) is the joint PDF of the random vectdr= (X;, X,,..., X,). When a
closed-form solution for such a limit state funati&s(x) is not available,
approximate solutions are used. A common approadolving this problem is
to expand the limit state function in a Taylor esr{Harr, 1996), in which only
the linear terms are considered. In terms of tHetiso process, the method is
very similar to PEM but should not be confused veiith other. The accuracy of
their results, depending on the form of the lintéts function is however less
than that of the point-estimation method (Thur2€Q0).

In the Point Estimate Method (PEM), the continugaiat distribution density
function f,(x) is replaced by specially defined discrete proldads which are
supposed to model the same low-order momentg(9f The determination of
these moments is done by addung the weighted discrete realisations. In Figure
57 this relationship is simplified by the two realiions a. andx represented
with the corresponding weightg, andw.. This method implicitly allows input
random variables to have any distribution, provided mean, variance and
skewness (at least first two moments) are known.
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Representative points
PDFA Probability distribution PDFA and weights
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Fig. 56: Notion of PEM in representing a random variabfée(arhurner,
2000)

There are two main distinguishable approachesHerpoint estimate method:
first, Rosenblueth’s approach ftine point estimate method (for the first time
introduced by Rosenblueth, 1975) and its modifiedthmd given by his
followers (e.g. Lind 1983, Harr 1989, Hong 1998htthattempted to save
computational cost by reducing the number of pezfisampling points; however
in the case of large numbers of variables somedptermined sampling points
lie outside the range of PDF of the respectivealde or give negative values
which have non-physical meaning for some specifidables. This issue has
been addressed by Christian and Baecher (20029n8gthe approach proposed
by Zhou and Nowak (1988) including three differamtegration rules, namely
n+l, 2, 2n*+1(n is the number of basic variables involvedha analysis) and
the latter is used in this chapter since from tieestigation accomplished by
Thurner (2000), it turned out that the?21 integration rule results in an
optimum compromise between accuracy and computdtieffort. Theory,
procedure and the accuracy of this method are goirge briefly presented and
discussed in the next sections.

6.2 Approach proposed by Zhou & Nowak (1988)

Zhou and Nowak (1988) have presented a generalegooe to numerically
approximate Equ. 40, considering various possisli{e.g. with and without a
known joint distribution function, a correlation tkeen variables, any type of
distribution) using the Gauss-Hermite quadraturentda. Basically this method
has been established for a multivariate case indata normal space, which
gives the approximation of the Equ. 40 as follows:

gl @] o) we' (2 12) (40)

wheren is the number of variables) is the number of considered poirgsare
typical predetermined points amgl are the respective weights given in Table 28.
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Therefore the required number of realisations és@nted in the first column, the
formulas for the calculation of the required poimtshe second column, and the
corresponding weights in the third column. The safrthe weights is always 1.0
and the number of required calculations thus depe@mdthe integration rule. In
their original paper formulas for three rules knoasn+1, 2, and 2*+1 have
been presented and only the two latter are givehalsle 28 and hereafter they
are designated as ZN-Il and ZN-lll respectively.eTkffects of different
integration rules on the accuracy of the resultgehaeen discussed by Thurner
(2000). The case of a single, normally distributediable Z and a non-linear
limit state function &) is graphicallyillustrated in Figure 57.

4
G(2)

A
K G(2)
G(Z3) \

G(z,)
G(z)

AN

1 4y 2 Z

Fig. 57: lllustration of Gauss-Hermite quadrature Integnatising 3 points

For a non-normally distributed variabk the same principle applies, only a
transformation from the standard normal spacedoctBpace is necessary:

Elc ()] Diwjek(xj) :iwjek(lzx‘l(cb(zj ) (41)

where @(2) is the cumulative distribution function of standl@ormal variable&.
®(z) | F(x)
A
1

V4

VA X

< = »>

z X

Fig. 58: Transformation of a random variable from normahéom-normal
space

Figure 58 depicts how the transformation is caraetlby setting the value of the
cumulative distribution functiof,(x) at the point; equal to the valueXz).
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Tab. 28: Evaluation points and respective weights in PEMrathou and
Nowak (1988)
Formulas Points Weights factors
m (22, --,%, .- %) Wi
le—Znﬂ:(\/ﬁ,O,___,O) W1:Wn+1:i
2n
on Z,=-2,,=(0n0,..0) W, =w —Zi
or n
ZN-II
— _ 1
Zn - _Zn+n - (010 ----- \/ﬁ) W, =Whn =72
2n
Z = (00,...0) -
n+2
2n*+1 A-n
or Z =(+Jn+2,0,...,0° W; =m
ZN-II ( )
1
z:(i\/n+2,4_r\/n+2,___,0)a W=
2 2 (n+2)
?Points include all possible permutations of couatés.
The difficulties that may arise in numerical opemas and respective

approximations are not discussed here, and ineztestaders are referred to the
original paper of Zhou and Nowak for more detablsf in summary, in the
general case of correlated, non-normally distridutaariables, the following
process determines the required input data forrtieidual realisations in the
original space (Thurner, 2000):

Step 1:
Step 2:

Step 3:

Step 4:

Setting up the correlation mataxC

Transforming the correlation coefficient) (from the original

space to the correlated normal

transformation> C,

spade using a Nataf-

Determining the lower triangular matrix ngsithe Cholesky-

decomposition o€y 2 Lo

The predefined uncorrelated integratiomisa (given in Tab. 28)
are correlated to each other based on the cooelatatrixL, and
are accordingly transformed into the correlatednarspace

2> Y =LyZ and in matrix form:
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Yy L, 0 ... . 0z
= . A . (42)
: R ¢
ynj Lnl e I-nn an
Step 5: Mapping the variables from the correlatedmal space to the

original space with "arbitrary” marginal distriboris
> X =FYAY)) and in matrix form:

% szl[cp(ylj )]

S (43)

X ) (Fy,)]

Step 6: Computing the low-order moments of G u&igg. (41) as follows:
e = E[GOO] = Y. WG+ %,) (44)
E[GZ(X)]:ZT:W].GZ(X“ ) (45)
var[G(X)] = E[G2(X)] - (1 (46)

The formula expressing the skewness in terms ohtrecentral moment KXf]
can be expressed by expanding the definition faaraslfollows:

Vo = Ske\z{G(X)] = E[G (x)]_gsﬂeae — Hs (47)

G

wherel; andgg are the mean and variance oiX}¢espectively.

6.3 Accuracy of the PEM

The accuracy of the PEM generally varies from exacpproximate statistical
parameters of a target value depending on the @odtpl of the mapping

function and the number of points included in tledcglations. The result of
Rosenblueth’s PEM is precise for sums of uncoredlair correlated variables
(Alén, 1998) while in the case of more complex tiots the degree of accuracy
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drops. However, it can be sufficiently accuratenany practical situations (Harr,
1996; Baecher and Christian, 2003). According ténA{1998) the more linear
the function is, the more accurate the method foigtia, also the error given by
the PEM-approximation is on the safe side. Themnadiae latter comment is not
true for all types of limit state function (espdlgiain association with

Rosenblueth methods; see work of Eamon et al. (200¥et Baecher and
Christian (2003) state “The method is reasonablyusb and is satisfactorily
accurate for a range of practical problems, thoogmputational requirements
increase rapidly with the number of uncertain qiti@stof interest”.

In the case of Zhou and Nowak (1988), the error @uéhe nonlinearity of a
function can be reduced by using integration rulath more points (e.g.
integration rule with 8+1 instead oh+1 points). Thurner (2000) has found the
2n’+1 integration rule given by Zhou and Nowak (1988)be an optimum
compromise between accuracy and computationalteffor

Zhou and Nowak (1988) provide no evaluation ashtdxpected effectiveness
or limitations of the method; however, their asstions in deriving the method
are clear. They made an attempt to approximateiritegral required for the
reliability analysis. Such an approach has beercéis developed concerning
polynomial functions using the Gauss-Hermite indign method. Amm-oint
Gaussian quadrature integration method is exagbdbmomials of a degree up
to 2n-1. It should be noticed that by definition, a paynial is an expression of
finite length constructed from variables and comistausing only the operations
of addition, subtraction, multiplication, and noegative whole-number
exponents. That means PEM might result in a biassgdonse, especially when
the considered LSF is related to a specific in@rtable with a non-polynomial
expression along with a significant sensitivityth@ variation of that particular
input random variable. On the other hand, Thurr200Q) demonstrated the
applicability of PEM in the reliability analysis & classical bearing capacity
problem with sufficient accuracy.

Assessment of the reliability index of numerous ownly used limit state
functions in the context of structural engineeringve been investigated by
Eamon et al. (2005) comparing the accuracy andiefity of the number of
simulations and sampling methods including e.g.1Zid 1l, Latin Hypercube
(LH) and Importance Sampling (IS). Unfortunately tAN-11l method, which is
expected to have higher precision with respect e other Zhou-Nowak
methods, has not been considered in their surviegnse. It turned out that in
estimating the reliability index PEMs should bdizgid with care in the context
of structural reliability calculations, since iessults vary significantly in terms of
accuracy and precision. The accuracy limits of PElgiglied on various types of
limit state functions in terms of linearity, numb@&f random variables,
distribution type and variance of input variablesvé been quantified.
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Considering all major influential factors affectinige reliability analysis, the
mean value of the error ratio (calculajdexactf) using the ZN-I method is 0.8
with a COV of 15%, and using ZN-Il is 0.88 with ®¥ of 15%. It implies that

in an extreme case, assuming that the error is abyrndistributed the ratio

amounts to 0.35 in ZN-I. Thus, a nearly high COMa# error indicates that the
precision of the PEMs in calculating the reliagilihdex is low. PEMs are ideal
methods and give perfect answers for functions lizate normally distributed
random variables, are linear and/or have low vagarlso according to this
study PEM shows unsatisfactory results in comparisdh Monte-Carlo based
sampling methods in computing the failure probabiihan the reliability index.

Recently Russelli (2008) modified Rossenblueth’sMPRnd called it the

Advanced Point Estimate Method (APEM) in order oépe& with the shortcoming
of the Point Estimate method in assessing smallegabf the failure probability.

Also according to her findings, the bearing capaoit strip footings as an LSF
can be characterised well enough with a shiftesdogpal distribution function

provided one may be able to evaluate the skewrfegedarget function or the
considered LSF reasonably accurate.

Next, the accuracy of ZN-IIl in estimating low-ordstatistical moments is
investigated over several basic functions<dhat typically arise in geotechnical
reliability analyses and are similar to those ealrout by Baecher and Christian
(2003) which is a reference to compare Rosenblsd®oint Estimate Method;
furthermore, their exact statistical moments ar¢ difficult to obtain. The
functions are namely, taX), exp(X), 1/X, In(X), X3, and a polynomial function
with two variablesY=X;>+X,. To evaluate the accuracy of PEM with regard to
the distribution type of the variable, Normal andifdrm distribution have been
considered. The effects on the number of randonabigs have been examined
in the case of polynomial functions. In additiohe tinfluence of the absolute
mean value on the accuracy has been assesseddasihef tarX). The results
of the investigation are illustrated in Figures 8961 in terms of the error
produced by PEM and given by the following Equation

y* (exac) - y* (PEM)

Error% = ”
y“(exac)

x100 (48)

wherey¥(exact) is the exact value kfth statistical moment of functiovi. More
details about statistical specifications of eacdhcfion have been given on each
individual graph. The following observations canibierred from Figures 59 to
61:

* In all cases, the error in the estimate of thedsesh deviation is almost
half of the variance. In addition the mean values aways accurate or
very close to the exact value. In general ZN-lllshgiven more
satisfactory results in the case of polynomials.
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« Normally it is expected that the larger the CO\g kigher the error in the
estimate of the moments; for instance, see theltsesil the first two
moments in Figure 59a and all of the moments catedl in Figure 61.
Surprisingly however, it is not always the case,ekample, in the reverse
function (Fig. 59b) ZN-III yields the exact meandavariance at COV =
0.27 (probably by coincidence) while for higher dodier COV values
the method respectively overestimates and underats the low-order
moments. For the function ), the corresponding COV value by which
the method would yield the exact mean and variaiscabout 0.5, which
is a relatively high value for the coefficient aination.

 From Figure 60 it follows that the absolute meatu@aof a random
variable slightly affects the trend of the errothalgh tanX) with the
specifications given in Figure 60b is the only fuoie that does not
exhibit error variation with the change of COV.

« In the ZN-lll method &°+1 integration rule is used which means in a
single variable function liké® as mentioned before, the results of PEM
will be exact for polynomials of order 5 or lesiug, the mean of of
order 3 is computed exactly, while in estimatirgguairiance and skewness
that are of order 6 and 9 respectively, some ésranticipated.

 From Figure 61 it can be seen that the error gh8lf reduced when the
number of variables increase; it should be notedl tte added ternixg)
does not dramatically influence the value of thection. The reduction in
error takes place because more integration poirgsuged when the
random variables increase and consequently thé&sedithe integral tend
to be more accurate. Furthermore, in contrast heratypes of functions,
skewness in the case of polynomials can be evaluwaith an admissible
accuracy in practical cases and especially in dhge of normal COVs in
geotechnical engineering since, based on PhoorKatldwy (1999), the
mean value of COVs of most soil properties are leas 35%.

* A conclusive statement cannot be made as to whetieerstatistical
moments computed by ZN-llI are always overestimatex
underestimated. The results show the accuracy dsgeghly on the type
of distribution and the range of COV.
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Fig. 59: Error in the estimate of the statistical momentsffinctions: a) €b)

1/x ) In(x), using the ZN-1ll method
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Fig. 60: Error in the estimate of the statistical momentsféinction tang) with
different mean values, using the ZN-IIl method

All above evaluations consider only explicit LSFmd no particular PEM

accuracy assessment in complex geotechnical boynddue problems with

implicit LSFs has been found in the literature. ragiical example of the above
functions would be a specific LSF in which soiffsiess is an uncertain random
variable and the displacement of a tunnel is evatuéy knowing the fact that
there is an inverse relationship between theseabi@s. The accuracy of the
method strongly depends on the type of LSF, anarbefpplying such an

approach it should be verified against a referemsthod such as the MC
simulation approach. It should be noted that theative of the present study is
to compare the range of system responses obtajndieltwo selected methods
(PEM and RSFEM) with each other rather than catmdaa precise failure

probability.
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Fig. 61: Error in the estimate of the statistical momentstivo polynomial
functions: a)C b) x*;+%,, using the ZN-1Il method

6.4 Limitations and advantages

Regarding the Point Estimate Method, particularliN-ia, the following
advantages are pointed out:

1. The simplicity of the method, which allows engireén benefit from it
with limited knowledge of probability.

2. Correlations between random variables can be ceresid

3. It gives reasonable accuracy in the estimate ofrtéan (the most accurate
result) and variance of polynomials and most comfplactions.
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4.

It is a favourable method in terms of the numberF& calculations
comparing to the Random Set Finite Element MethBdndom set
analysis with the total number of calculations) (4given 2 sources of
information for each basic variableleads to a significantly larger
computational effort in comparison with that of ZN{2n”+1) in cases
where the number of basic variables is more th@e8 Fig. 62).
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105 1
104
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10t A
100

Number of calculations

0O 2 4 6 8 10 12 14 16 18 20

Number of uncertain quantities

Fig. 62: Comparison of RS-FEM with ZN-IIl in terms of thember of

realisations

Despite many appealing points regarding PEM, basethe above discussion
there are some disadvantages as follows:

1.

PEM vyields only the statistical parameters of tiistesm response but no
information concerning the shape of the responstilolition. Therefore a

subjective assumption is needed in this regardchvimay affect the

amount ofP; obtained by this method.

2. The method has severe limitations in handling largebers of variables

because if the case, difficulties may arise in thetermination of
meaningful points in the x-space.

3. According to Baecher and Christian (2003), apprating statistical

moments higher than second have less accuracy e@nRibsenblueth
method (for instance, the computed skewness isr&dsdble). However,
based on the investigation above, ZN-Ill may resalta reasonably
accurate skewness in the case of polynomial funstio

Low accuracy will be achieved when the functionshe variableX to be
integrated, are largely disparate from a polynoraah.
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6.5 Evaluating PEM against RS-FEM for tunnel
example

In this section, an uncertainty analysis of a tlrsteicture whose random set
results are already in hand, is performed by meaiEM using ZN-IIl and are

compared with each other. For this purpose, a@eetith an overburden of 25
m described in Chapter 4 was selected. The turewhgtry and its relevant 2D
finite element model mesh including the model djpeations are depicted in

Figures 30 and 31 respectively. The material prigeer@are those adopted for
alternative 1 in section 4.2.3 and given in Talfleafhd are not repeated here.

6.5.1Providing distribution functions equivalent to
random sets

In order to apply PEM, it is necessary to haveabability distribution function
for each random variable. To determine the digtrdm function for a particular
soil property, more than 40 data points are ned@eaditer et al., 2000). In fact
due to the lack of test results and limited sangplinwas not feasible to build an
exact PDF of the considered random variables. thtiad, in order to be able to
compare PEM results with those of RS-FEM, the uaady of the input should
be matched with each other; although it cannot l@ded perfectly, it is
achievable to some extent. The following threeraditves are discussed to
properly match the random set input variable giwerthe Table 16 with a
corresponding PDF used in the prospective PEM tations. At the end, one
alternative is selected for this purpose.

Alternative 1, averaging random set bounds

The objective is gaining a distribution, which sapedly represents the true PDF
of a random variable as well as covering the wieatent of the random set. One
possible approach might be to average the probaldistributions fitted to the
lower and upper bounds of the random set inputibégi Figure 63 illustrates an
example of this alternative applied to the randetos the friction angle. Fitting
a curve to the discrete cumulative random set b®gad be accomplished by the
best fitting procedure or just assuming variousdgppwell-known distributions
as it has been carried out in the example. Forptimpose of illustration, the
Pareto distribution (@RiSk 2008) has been fitted to the left bound and a
Lognormal type was fitted to the right bound. Mpié combinations of various
distribution types have been tried out and theeetspe PDF and CDF of the
resulting averaging have been illustrated in FigGBe Irrespective of what
distribution type one chooses for lower and upprimdls, the mean distribution
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does not properly cover the whole range of the sandariable. Therefore, this
approach is ruled out since it is not able to appately fulfil the purpose.

1.00 T - 0.5
w e Random set bounds
8 Pareto Loa © T7° Fitted distributions
= 0.75 - ~
£ S PDF or CDF of
§ - 03 3 averaged distribution
g 0.50 - % — (Triangular;Triangular)
o L 02 -; — — (Pareto;Lognormal)
g = — —- (Normal;Normal)
2 0.25 1 Lognormal_ 1 § —-— (Lognormal;Lognormal)
3 a ——— (Pareto;Loglogistic)

(Uniform;Uniform)
0.00 - f T T 0.0
15 20 25 30 35 40

N

Fig. 63: Input PDF of the friction angle obtained by altgime 1 (averaging)
assuming various PDFs fitted to the lower and uppends of the
random set op

Alternative 2, the “three-sigma” rule

In probability theory Tchebysheff's inequality assehat in any data sample or
probability distribution, no more thanki/of the distribution's values can be
more thark standard deviations away from the mean, whichbsaexpressed in
terms of the following mathematical equation:

P(X-4{zko)s 7 (49)

whereX is a random variable with the expected valwnd finite variance” and

k is any positive real number. In fact,—(k?)x100 indicates the level of
confidence that the random variable is within thewementioned interval. This
confidence level for the case Xfbeing an Ng,o°) normally distributed variable
increases to about 99.7% since for any real nurkb@y P(|X-y|<ko) = 2@(K)
-1, where @(.) is the standard normal cumulative distributimmction. In a
particular casék = 3, it follows thatP(u—3o<X<p+30) = 0.9973. Based on the
relationship held for a normally distributed vat@bas a rule of thumb, an event
is considered to be “practically impossible” iffdglls away from its mean by
more than 3 times the standard deviation. This mewn as the "three-
sigma” rule. For non-normal distributions the 3r3#&y rule possesses 95%
confidence level, provided the distributiof is uni-modal in the sense that
having a mode, its density functiori(X) is non-decreasing or-+$,V) and non-
increasing on ¥,+~) (Pukelsheim, 1994). Duncan (2000) has applied‘3he
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rule’ to estimate COVs of most commonly used sailgmeters and extended the
method to a graphical procedure in geotechnicalineeging. In addition,
Schneider (1999) proposed the relationships givedavb implicitly using the 3-
sigma rule to determine the true mean and stardiewition of soil parameters
when no test values are in hand:

0% Y% and cov=Zpo XX
H X +4+X

(50)
wherey; is the estimated minimum valueg,the estimated maximum value, and
is the most likely value or mode.

As an example, Figure 64 shows an application ofr@le to a random set of the
friction angle using the relationship given by Seider. The most probable value
is obtained by averaging all random set extremeesl The estimated extreme
values X,x) would be the most outer values of the random bgeinds as
depicted in the Figure with red dashed lines. Thethod can be used but it
could pose a drawback that the probability measidréhe values around the
random set bounds is very low. Therefore, this epgn may underestimate
some values around the edge of the random setiglttrhe more reasonable to
use an approach that can allow for a more appreppaobability share for
extreme values in the random set to provide a bettgch between the RS and
PEM input variable.
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Fig. 64: Distribution of the friction angle equivalent toetrandom set using
the ‘three-sigma’ rule
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Alternative 3, the selection of a best fit to a uform distribution

In this alternative, first a uniform distributioa constructed whose left and right
extreme values are respectively medians of left aglt random set bounds
(green distribution in Fig. 65). Then, typical anell-known distributions are
fitted to the obtained distribution and dependingtbe shape of the random
bounds and the variable itself, one can judge lecsan appropriate distribution
for further analysis. For instance, the approack aaplied again to the friction
angle using Triangular, Normal and Lognormal dmttions as depicted in
Figure 65. In this particular case where the CDkhefvariable is very coarse, a
considerable discrepancy between the differentriligion types occurs and
engineering judgment is necessary. Selecting a Blodnstribution seems to be
very conservative with large dispersion, which éh& no need for since the
random set is wide enough itself. Although the mandet exhibits some kind of
symmetry on the right and left bounds, the selactb Lognormal looks more
reasonable since it covers the whole range of mansket values and it is also a
commonly used distribution for the friction angle the literature because it
always gives positive values. When there is abundaiormation and the
random set bounds are smoother, the appropriatendsis alternative emerges.
Thus, this alternative is chosen for providing tkeguivalent probability
distribution for further point estimate analysis.

The approach has been applied to other randomblesiaf the problem whose
results are illustrated in Figure 66.
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Fig. 65: Distribution of friction angle equivalent to thendom set using
alternative 3
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For each random parameter some judgment has be@daaut as follows:

Elasticity modulus: Lognormal distribution shows skewness to the lespired
by the random set; it also covers the entire raofghe random set rather well.
Triangular and Uniform distributions do not entyrebver the random set.

Cohesion: Normal distribution is chosen since it has a bet®rerage on the
whole random set than the others, and also shovekeéwness or predisposition
to the left or right just like the correspondingdam set.

Relaxation factor: Normal distribution is adopted since there is niolence that
the relaxation factor has any sort of skewness.tl@n other hand, Normal
distribution covers the range of the random setequell and takes some values
out of the range into account (but with a very srpabbability value), which
places the results on the safe side.

According to the above discussion, detailed infdromaabout the probability
distribution of the four basic random variablesestdd for PEM analysis is given
in Table 29.

Tab. 29: Basic random variables and the respective PDFldetai

Basic variable Unit Blpsérlbutlon Mean dS(t;:lI]dard COV%
Friction angle ¢ degree | Lognormal 28 5 17.8
Elasticity modulusk MPa Lognormal | 2256 631 28
Cohesiongc kPa Normal 950 205 21.6
Relaxation factorR - Normal 0.45 0.09 20

6.5.2Calculation results

The Point Estimate procedure described in sectidh @sing the ZN-llI
integration rule is applied. The input parameters given in Table 29. No
correlations between basic random variables hawn daken into account.
According to the integration rule the numerical mlodf the tunnel based on the
sampling points summarised in Table 30 has to muated 33 times. Eight
realisations can be left out since the respectiegghis are zero; therefore, the
number of calculations decreases to 25 realisatibne number of calculations
in comparison with the random set carried out imitar 4 is dramatically lower
and can be considered as an advantage of the PEM.
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Tab. 30: Value of variables of sampling points and respectiights

Analysis Input variables .

No. @ E Ry c Weigths
1 27.8 2172.9 0.45 949.6 0.33333
2 42.9 2172.9 0.45 949.6 0
3 18.0 2172.9 0.45 949.6 0
4 27.8 4256.8 0.45 949.6 0
5 27.8 1109.1 0.45 949.6 0
6 27.8 2172.9 0.67 949.6 0
7 27.8 2172.9 0.23 949.6 0
8 27.8 2172.9 0.45 1451.4 0
9 27.8 2172.9 0.45 447.8 0
10 37.8 3495.8 0.45 949.6 0.02778
11 37.8 1350.6 0.45 949.6 0.02778
12 20.5 3495.8 0.45 949.6 0.02778
13 20.5 1350.6 0.45 949.6 0.02778
14 37.8 2172.9 0.61 949.6 0.02778
15 37.8 2172.9 0.29 949.6 0.02778
16 20.5 2172.9 0.61 949.6 0.02778
17 20.5 2172.9 0.29 949.6 0.02778
18 37.8 2172.9 0.45 1304.4 0.02778
19 37.8 2172.9 0.45 594.8 0.02778
20 20.5 2172.9 0.45 1304.4 0.02778
21 20.5 2172.9 0.45 594.8 0.02778
22 27.8 3495.8 0.61 949.6 0.02778
23 27.8 3495.8 0.29 949.6 0.02778
24 27.8 1350.6 0.61 949.6 0.02778
25 27.8 1350.6 0.29 949.6 0.02778
26 27.8 3495.8 0.45 1304.4 0.02778
27 27.8 3495.8 0.45 594.8 0.02778
28 27.8 1350.6 0.45 1304.4 0.02778
29 27.8 1350.6 0.45 594.8 0.02778
30 27.8 2172.9 0.61 1304.4 0.02778
31 27.8 2172.9 0.61 594.8 0.02778
32 27.8 2172.9 0.29 1304.4 0.02778
33 27.8 2172.9 0.29 594.8 0.02778

The following results similar to those consideredChapter 3 have been selected
for comparison:

1. Vertical displacement of the tunnel crown (PoininA-ig. 16)

2. Vertical and horizontal displacement of the siddl \fRRoint B in Fig

16)

Maximum normal force and moment in the lining

Safety factor after the top-heading excavation

. The serviceability limit state of the shotcretdrm based on Equation

24

6. The eccentricity of the normal force acting on ¢thess section of the
shotcrete lining,g(x), which is a function of both normal force and
moment of the lining (see Equ. 23)

AW
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The first three statistical moments of the reshése been tabulated below (Tab.
31) and graphically illustrated in Figures 67 to ¥@dth the overlaid
corresponding RS-FEM p-boxes. For each result, temommonly used
distributions, namely Normal and Lognormal haverbassumed corresponding
to the estimated statistical moments given in T&dleand if possible, a shifted
lognormal distribution recommended for some geataeh application by
Russelli (2008) has also been considered. It shdmddnoted that shifted
lognormal can be used only when the skewness adligigbution is known and
positive. Therefore, it was impossible to use shiftognormal for displacement
results with negative skewness. In addition, iné&a out that in the cases in
which skewnesg’< 1 the difference between Lognormal and shiftedriasmal
iIs negligible. For instance, as Figure 68a depilcess maximum normal force
having a skewness of 0.7, the modal values of bistinibutions are close to each
other and have been captured by the range of tis¢ likely values given by RS-
FEM.

Tab. 31: Statistical moments of some results and the rahgfgeanost likely
values given by RS-FEM

Response Uj-A  U,B Uy-B FOS NFOOr:Efll Moment  e(X) a(X)

Unitl| mm mm mm - KN.m/m_ kN/m m kN/m
PEM results Averaged| 2.5 0.58 15 6.7 264 12.2 0.158 966
Stan. dev.€)| 0.8 0.14 0.4 1.3 78 2.6 0.047 307

Skewnessyj| -0.79 -0.58 -0.78 0.10 0.71 0.56 1.10 -1.41
p+l.8| 3.9 0.83 2.2 9.0 405 16.9 0.243 151Pp

p-1.8| 1.2 0.33 0.7 45 124 7.5 0.073 4172
RS-FEM Upper limif 3.9 0.77 2.2 8.6 407 16.8 0.174 1289
most likely values lower limjt 1.6 0.44 1.0 5.2 164 7.3 068 897

Based on the mean/)(and standard variatioro) of the results, Table 31 gives
the extremes of the 86% confidence interyaltl(80), regardless of distribution
type (Pukelsheim, 1994). They show a good confgrmith the range of the
most likely values (see section 3.3.4 for the dedfin) given by RS-FEM except
for target variableg(x) andg(x). The range, 1.8 has been identified for the
PEM results because it can have the same funditip@al the range of the most
likely values given by RS-FEM for the quality indtor, which is discussed later.
As it can be seen in Figures 67 and 68 primaryamsgs such as displacements
and internal forces show a good conformity with R&&-FEM results in the sense
that PEM'’s results are supposed to present the’‘ttistribution of the system
response and should not exceed the random set ©odod/iever, the secondary
responses, which are obtained from the primary arswhow a larger scatter
than random set bounds (Fig. 69) which is inadmlssbecause RSs are
supposed to give the boundaries of the real regpand the answers outside
these bounds are theoretically not allowable. |e ttase ofg(x) a large
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proportion of the distribution given by PEM fallatside the random set answers.
The inadequate accuracy of PEM in estimating theamee of the limit state
functions that are not the direct FE results, sthobé proven by further
investigation.

Recalling from Chapter 3 a quality indicator waspéogyed in order to evaluate
the probabilistic results obtained by RS-FEM adaiie measurement, and
assess the validity of the calculation method. Aligy indicator analogous to
that used for the RSFEM is established for inténpgethe results of PEM
providing more or less the same validity concepid zone. The concept of the
quality indicator is explained by illustrating tbemulative distribution of tunnel
displacements calculated by PEM along with theitun#sieasurement in Figure
70. The quality indicator consists of three zorm@snost likely zone (in green) b)
warning zone (green and red) and c) unlikely zoad)( which are quantified by
the intervals: £1.80<x<+1.8d}, {£1.8 o<x<+3.0a}, and {+3.00<x & x<-3.00},
respectively. From probability theory (Pukelsheit®94) it is known that the
interval, 1.8, represents the 86% confidence interval irrespectf what
distribution the target variable has, on conditioat the distribution is unimodal.
As it was shown before in Figures 67 and 68 thisrual either conforms to the
most likely zone given by RSFEM or presents a largege than that. Therefore,
this range is chosen for the PEM results to repitetbe most likely range (green
zone) for the expected measurement values. Outsedmost likely values zone,
the green colour zone in the quality indicatortstém fade and convert into the
red one. This transition zone can be called ammaiane because it indicates that
the measured value is gradually moving away frora #&xpectation value
calculated by the PEM analysis and the validitytloé results is gradually
decreasing. If it goes beyon@;3a very small probability of the occurrence of
such an event is expected, or in other words, aukhbe practically ‘unlikely’
since the interval 3 theoretically encompasses at least 95% of theatege
results. Finally, Figure 70 shows a relatively gamohformity between the RS-
FEM quality indicator and that proposed for PEMnfra practical point of view.

In a tunnel, as soon as the reflectors are installe the shotcrete lining, the
measurable displacements are recorded and theyogeftgther as the tunnel

face progresses. In practice if a designer provaileh results (i.e. Fig. 70) the
measurements can be easily checked against thelatalo. In any case, the

measured value lies within one of above mentioretg and probably changes
with the progress of the tunnel. So the inspectam make an appropriate
decision if the measured value in a special sedleviates significantly away

from the expected results. Thus accommodating seshits may be helpful in

the context of the ‘Observational Method'.

Furthermore, the concept of the quality indicatan de also utilised in setting
the warning and alarm values required for monitpiine tunnel deformations.
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For instance, it is suggested that i I8 considered as the warning values and
+3.00 as the alarm values.

The two-step discrete cumulative probability dimition of the measurements
implies that only the measurements of two tunnessrsections were available.
As it can be seen from Figure 70a, both measurétesaf the tunnel crown
could be captured by the interval x&8However, concerning the side wall
displacement, the measurement of one of the cexg®as falls outside of 3
Since the absolute values are small, this devidtimm the predicted result may
be neglected in practice.

As depicted in Figure 70c, one of the measuredesafalls outside the@range,
while the RS-FEM results covers that in its warnzape. Obviously the two
discrete cumulative steps on the right side ofrtleasured value indicate that the
two combinations involved in the random set analysisult in higher values.
Although the discrepancy between random set arsagysil PEM results in terms
of absolute displacement value is not of importanteshows that these two
extreme values have distinctly higher values netato other upper bound values
of RS-FEM. The reason is that a certain combinabbrRS input parameters
result in a larger plastic zone around the tunnetamparison to the rest of the
combinations. Higher deformations are the consetpie@n the other hand, the
predetermined point estimate samples have a cedistance from the mean
value, depending on the number of basic varialoleslved. Also it is known that
the more basic variables are involved, the farthersampling points get from
the respective mean value. In the current exaniplaeviewing the sampling
points in Table 30, one can realise that the samgpfioints of the cohesion
(which is one of the most influential rock paramgten displacement, see
Chapter 3 sensitivity analysis) are inside the geBpe random set input p-box.
Therefore, all the FE calculations of the prefbamnbination of the sampling
points result in relatively limited plastic zonesid accordingly lower horizontal
displacement at point (B). Actually, this issue slag®t lead to significantly
different results between both the methods, bunight happen in a higher
nonlinear problem that the discrepancy between R RS-FEM becomes
considerably larger. In addition, this finding affis that alternative 2 (three-
sigma rule) is not a good choice for matching #r@dom set input p-boxes with
the PEM input distributions.
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In the context of reliability analysis it is of arest to compare the probability of
unsatisfactory performance of the shotcrete lin{hg. using the limit state
function, g(x)) obtained from the two methods. The upper bourabability of
failure, calculated based on the RS-FEM resulisG&-9, which is considerably
less than 8.5E-4 obtained by PEM assuming a Nombstlibution for the
function g(x). As discussed above, this is due to the highdstah deviation
calculated by PEM. Nevertheless, PEM yields a avasee answer on the safe
side. Basically, a level three method of reliapifinalysis is required to calculate
the value ofP; accurately enough, such as Monte-Carlo based ationl
methods that need many FE realisations and havéewt considered in this
work.
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6.6 Summary and conclusion

The limitations and advantages of PEM were disals$e particular, the
accuracy of PEM in estimating the statistical moteesf some basic functions
(section 6.3) using the ZN-Ill integration rule wasgestigated. It was shown that
the first two moments of functions can be estimaigith reasonable accuracy
while the skewness may be accompanied by a large except in the case of
polynomial type functions. The PEM was applied teeal case tunnel problem.
A process of obtaining a probability distributiononsistent with the
corresponding random set p-box was proposed. Thsltse of PEM in
comparison with RS-FEM were satisfactorily congigten particular, in the case
of the primary FE results.

The standard deviation of the secondary targetables (e.g. Limit State
Functions) -calculated based on the primary FElt®sis overestimated by
PEM. Consequently, the estimated probability dsition of the LSF
considerably exceeded random set bounds. Althdugloverestimated scatter is
on the safe side, it might be too large from a fizatpoint of view. Thus, it can
be considered as a shortcoming of the PEM. Ontther thand, the number of FE
calculations required by PEM is significantly lowtaan those in the random set
method especially when the number of basic randariables increases.
Furthermore, it was found that in all results thege of +1.8 with respect to the
mean value encompasses the range of most likelyesastimated by RS-FEM.
This range theoretically represents an intervdeast with 86% confidence. A
range in terms of the standard deviation of thelltesobtained by PEM was
established as a quality indicator similar to thdseussed in Chapter 3 for the
RS-FEM by which the validity of the probabilisti€EFesults can be checked
against the measurement. When the “observation#tiadé is used, setting up
warning values is beneficial for decision-making.

It should be noted that the main objective of thapter was to estimate the most
likely range of system responses resulted fromutheertainty available in the
current state of knowledge, rather than calculaéimyecise probability of failure
(Ps). A practical aspect of providing a most probatalege is that the inspecting
engineer, design team, and client would be moraldepf making a timely and
rational decision when the measurements exceed athiecipated values.
Measurements are commonly carried out in tunnejepts, but what is more
crucial is to interpret them and make the engimgedecisions in the appropriate
time. The essential decision making tool is propaculations, which enables
one to determine the nonconformity between the gi@sy engineer’s
understanding of the tunnel environment and thdityeal'his research work
illustrated that from a practical point of view, MEsucceeds to provide such
information with reasonable calculation effort.
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RS and PEM methods both produce a common rangesafts, although their

input and assumptions are clearly different, ang thfference in results have to
be expected. Depending on each case, the quantitygaality of the required

input data of a system could determine which metisothvoured. When the

soil/rock data parameters are abundantly availab&r probability distributions

are definable with sufficient accuracy, thus appdyPEM is advantageous in this
case. However, in practice the results of geoteahninvestigations are set
valued rather than being precise and point valQégkn the value of the required
parameters exists in form of ranges with no prdighbassignment across the
interval from various independent sources e.g. daseengineering judgement,
expert opinion or experience from neighbouring @ctg. In this case it is

advisable to combine the sources of informatioreting to the RS method.
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7 Conclusions and further research

7.1 Summary and achievements

In uncertainty and reliability analysis of tunnel problems involved in this work
two methods from two different underlying mathematical backgrounds were
selected, namely, the random set approach and the point estimate method. The
Random set approach is categorised as a non-probabilistic method and PEM
originates from probabilistic approaches.

The main focus was on the RS-FEM method, since at the beginning of the tunnel
projects usually there is a lack of sufficient information and thus a probability
distribution for input parameters is not available. The required data are derived
from different independent sources which are to be combined. This data aso
suffers from ambiguity and imprecision. According to these conditions, previous
researchers had already recognized RS-FEM as an appropriate mathematical
framework to deal with such kind of information. When a large number of
uncertain variables exists and each are estimated from several sources (numerous
focal elements), the computational effort of the random set approach increases
exponentially, which is not favourable. However, it is fortunately not the case in
the majority of tunnel projects and insignificant input variables are identified in
order to reduce the number of the underlying uncertain variables by performing a
sensitivity analysis scheme.

This work demonstrates the merits of applying the Random Set approach as a
beneficial tool in the context of engineering judgment and decision making. For
instance: 1) the wide range of uncertainty in the system response may lead to
different classes of tunnel section design, 2) RS-FEM results simplify the
interpretation of the numerical results against measurements, and 3) the RS-FEM
framework can be placed within the observational method design procedure as a
supplementary analysing tool.

It was illustrated that the RS-FEM not only takes uncertainty of input parameters
into account, but also has the capacity in considering constitutive model
uncertainty or combining the numerical results of different soil/rock constitutive
models.

From a practical point of view RS-FEM has provided a ssimple framework to
predict the system response within a range. This range is in the form of a p-box
which incorporates imprecise probabilities concepts. Working with a range of
probabilities seems to be more acceptable for geotechnical engineers in practice.
Furthermore, employing the RS-FEM framework helps increasing the credibility
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of numerical analysis results since its computational results -shown in a real
project- could successfully capture the range of the ground behaviour.

The spatial variability of the soil/rock parameters cannot be allowed for in
rigorous manner; athough, the two approaches proposed in Chapter 3 are
consistent with the RS-FEM procedure.

When only one set (the foca element) is available for each basic random
variable, the random set approach converts into an Interval Analysis and results
in merely an interval for each system response and consequently no reliability
analysis can be carried out. On the other hand, in the case of abundant sources of
information (many focal elements) and a large number of uncertain basic
variables, a rather high computational effort is indispensable in RS-FEM. In the
latter case, an alternative approach (i.e. PEM) can be employed that not only
requires considerably less calculations, but also results in a reasonable agreement
with the random set approach almost with comparable benefits. However, the
secondary results (e.g. the limit state function of the tunnel shotcrete) obtained by
PEM tends to show a higher scatter than the corresponding results obtained by
the random set approach. This finding needs to be confirmed by further studies.

7.2 Further research

Throughout the study it is assumed that the system on which the random set
approach is performed has a monotonic behaviour with respect to the considered
uncertain parameters. However, it is not a straightforward task to prove the
monotonicity condition for a geomechanical boundary value problem. In the
examples presented herein, the monotonicity property has been roughly
examined by the sensitivity analysis (U.S. EPA: TRIM 1999) which is acceptable
from a practica point of view. The monotonicity behaviour should be
investigated with an appropriate mathematical framework such as efficient
optimization methods in a more rigorous manner. This has been addressed in
Chapter 1.

The accuracy of the Point Estimate Method using the Zhou-Nowak 2n°+1
integration rule should be verified and assessed against fully probabilistic
methods such as the Crude Monte Carlo simulation method in uncertainty and
reliability analysis of tunnel problems, which are missing in geotechnical
literature, since most of the validations and studies available in the literature have
been conducted in simple geotechnical problems considering mostly linear
performance functions. The range of problems can vary from tunnel problems
having closed form solutions (e.g. deformation behaviour of circular deep tunnels
in an elasto-plastic material) to the numerical analysis of non-circular shaped



144 7 Conclusions and further research

tunnels in multi-layered subsurface conditions with advanced constitutive
material models.

In the current RS-FEM all the input random variables are assumed to be
independent. This assumption is mostly conservative regarding soil/rock
parameters and also logica when little knowledge exists concerning the
dependency among the parameters. However for future work, the influence of
dependency between soil parameters can be investigated on the results of RS-
FEM in tunnel problems. In this regard two approaches are available:

1. Computing the envelope on the Random Set bounds assuming no specific
dependency. The developments have been lately carried out, for instance one
may refer to the computational algorithms given by Berleant and Goodman-
strauss (1998) and Berleant and Zhang (2004).

2. Using the notion of copulas or Pearson correlation coefficients, which
quantitatively describe the dependency between the parameters, and obtaining
the corresponding joint probability of the basic random variables. In this context
Ferson et al. (2004), and Williamson and Downs (1990) provide a good
guidance.

3. A comprehensive study can be conducted for areal tunnel project in which the
results and the current accomplishments obtained by RS-FEM provide the
primary computational steps required for subsequent essential uncertainty
analysis associated with the cost and time estimate of the tunnel project up to a
risk analysis.
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