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Abstract

The goal of the thesis was to develop two empirical ionosphere models based on neural net-
works. One for low latitude based on data from Arecibo (Puerto Rico, 18.34°N 66.75°W,
150 - 700 km) and another model for high latitude based on data from Svalbard (Spitzber-
gen, 78.09°N 16.02°E, 100 - 700 km, including rocket data from Heiss Island). Artificial
neural networks are able to ”learn” relations between input parameters, generalize, and
ultimately to predict outputs for new input data.
In this case inputs for diurnal time, seasonal time, solar activity, magnetic index and alti-
tude are used as input parameters to predict the dependent output, the electron density.
To achieve wide validity it is essential to have a large amount of training data which cov-
ers most of the ranges of the input parameters. The models are single station model and
strictly speaking only valid for one latitude (18.2°, 78.09° respectively). As an additional
topic of research the night decay of the electron density was analysed.

Zusammenfassung

Ziel der vorliegenden Arbeit war es zwei empirische Ionosphärenmodelle zu entwickeln,
welche sich auf künstliche neuronale Netze stützen. Ein Modell beschreibt das Verhalten
der Ionosphäre in niedrigen Breiten von ca. 150 km bis ca. 700 km (Daten aus Arecibo,
Puerto Rico, 18.34°N 66.75°W).
Das zweite Modell beschreibt das Verhalten der Ionosphäre in hohen Breiten (Daten aus
Svalbard, Spitsbergen, 78.09°N 16.02°E + Raketen Heiss). Künstliche neuronale Netze
sind in der Lage Zusammenhänge von Eingangsparametern zu ”lernen” und zu gener-
alisieren. Somit ist es möglich Voraussagen für neue Eingangsparameterkonstellationen
abzugeben.
Im konkreten Fall werden Jahreszeit, Tageszeit, Sonnenaktivität, Magnetfeldstörung und
geometrische Höhe als Eingabe Parameter verwendet um die davon abhängige Elektro-
nendichte zu beschreiben. Um einen möglichst großen Gültigkeitsbereich gewährleisten zu
können, ist es nötig eine große Menge an Trainingsdaten zu benützen.
Da nur Daten von jeweils einem Beobachtungspunkt verwendet wurden, sind diese Modelle
strenggenommen nur für den jeweiligen Breitengrad (18.2°, 78.09°) gültig. Als zusätzlicher
Forschungsgegenstand wurde die Abnahme der Elektronendichte in der Nacht untersucht.
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1 Introduction

Radio wave propagation in the upper atmosphere is strongly influenced by the ionosphere.
The ionosphere is the ionized part of the atmosphere and it is of interest to know its
behavior to calculate radio wave propagation.
In this thesis the development of two new ionospheric models (single station) is presented.
Two widely different stations are selected, Arecibo (Puerto Rico, 18.34°N 66.75°W) and
Svalbard (Spitsbergen, 78.09°N 16.02°E) not least because edited raw data for these sta-
tions are available.

The attempt is to develop two models based on artificial neural networks which can
predict electron densities from 100 km to 700 km. A short introduction of the physical
basics and existing models is given in this chapter.

In the Ch. 2 ”Neural Networks” a short explaination of artificial neural networks
is given to understand the basic idea of this modelling approach. To gain an overview
about structure of datasets in Ch. 4 ”Data sources” many statistics and distributions are
provided. Later in Ch. 3 ”Other Models” the most important facts about the neutral
atmosphere model MSIS and IRI model are summarized.
Ch. 5 ”Input Parameters and Preprocessing” includes all steps of Data Preprocessing
and calculation of physically appropriate Input Parameters. As a main Ch. 6 ”Model
Development” provides all important steps of optimisation of the model design regarding
combinations of input parameters, architecture, learning parameters and time dependent
inputs.

Finally the Results (Arecibo, Ch. 7 and Svalbard, Ch. 8) of the Models are dicussed,
and limitations and comparisons to IRI are shown.

1.1 Atmosphere

At first an overview over different parts of the atmosphere is given. Traditionally meteo-
rology divides the atmosphere into following layers:

� Troposphere (below approx. 12 km altitude)

1



1 Introduction

� Stratosphere (12 to 50 km altitude)

� Mesosphere (50 to 80 km altitude)

� Thermosphere (80 to 500 km altitude)

� Exosphere (above 500 km altitude)

A planetary atmosphere can be described by four properties: pressure, density,
temperature and composition. The different layers are traditionally named by the variation
of temperature with height. Different regions are called spheres and the upper limit layers
are called pauses. Up to 12 km the atmosphere’s density is high enough to make weather
possible (troposphere), in it the temperature decreases with about 10 K km−1. Above it
is the stratosphere, where the temperature increases with height. At about 50 km there
is a maximum of temperature because of the absorption of solar ultra-violet radiation
(ozone layer); this region is called the stratopause. In the mesosphere the temperature
decreases again to 180 K (-90° C) or even lower at a height of about 80 to 90 km. This
coldest region of the atmosphere is called mesopause. In the thermosphere solar ultra-
violet radiation increases temperature. The temperature in the thermosphere is above
1000 K which makes thermosphere the hottest part of all these different regions which can
also be seen in Fig.1.1.

In the field of wave propagation the atmosphere is divided into different ionized
layers as can be seen in (Fig.1.1).

Figure 1.1 Nomenclature of the upper atmosphere based on temperature, composition,
mixing and ionisation [Hargreaves, (1992)].

2



1 Introduction

1.2 Ionosphere

The ionized part of the atmosphere is called ionosphere. The name comes from the free
electrons and positive ions in this layer. Electrons and ions are generally in equal numbers
(quasi-neutrality). The majority of the particles are uncharged, but the charged ones have
a crucial influence on the electrical properties in this layer. These charged particles make
radio communication over large distances possible by reflecting radio waves.

Figure 1.2 The earth in the solar wind [Hargreaves, (1992)].

With the development of radio communication the ionosphere became more and
more interesting and the history of ionospheric research began[Hargreaves and Hunsucker, (2003)].
Marconi’s transatlantic communication experiment (from Cornwall to Newfoundland) showed
that there must be a reflective ionized layer because of the earth’s curvature there is no
line of sight (Fig 1.3).

The ionosphere acts as a mirror situated between 100 to 400 km above the earth’s
surface as can be seen in Fig. 1.3. The spatial distribution of charged particles deter-
mines the behavior regarding radio waves. This spatial distribution varies due to several
influencing parameters. These parameters are primarily:

� day time (zenith angle, Chapman production, ...)

� season (daily integrated insolation, day number, ...)

� Earth’s magnetic field (ap, kp, dst, ...)

� solar activity (Rz, F107, ...)

3



1 Introduction

� latitude

In this thesis from these determining parameters a model is developed. In Chap-
ter Development 6 all design steps and decisions are described. Examples of electron
distributions (electron profiles) are given in Figs. 1.6.

Figure 1.3 Long Range Radio Communication by reflections between ionosphere and
ground [Hargreaves and Hunsucker, (2003)].

Radio Communication (terrestrial)

When using high frequencies, the ionosphere reflects the transmitted radio ray. The ray
returns to Earth’s surface and may again be reflected to the ionosphere.

A radio wave in the ionosphere forces the electrons to oscillate with the same fre-
quency as the incident radio wave. Some of the radio wave energy is lost due to collisions
with neutral particle by the oscillation. Total reflection can occur when the plasma fre-
quency of the ionosphere equals the radio frequency.

The limiting frequency at or below a radio wave is reflected at vertical incidence
by an ionospheric layer is called critical frequency. If the transmitted frequency is higher
than the plasma frequency of the ionosphere, the electrons cannot respond fast enough,
and they are not able to reradiate the signal. This critical frequency is calculated in an
approximate way as shown below.

4



1 Introduction

The Appleton-Hartree formula as defined by Appleton:

Where n is the complex and dual refractive index and v is the electron collision
frequency.

X =
ω2

0

ω2

Y =
ωH
ω

Z =
v

ω

This simplified relation is derived from the Appleton-Hartree formula [Lassen, (1926)]
with the simplification that used frequencies are much higher than the collision frequency
v (Z=0) and much higher than the gyro frequency ωH (Y=0). The imaginary part and
the dual property disappear.

fcritical = 9.10−3
√
N

Where Ne = electron density per cm−3 and fcritical is in MHz. The Maximum Usable
Frequency (MUF) is defined as the upper frequency limit that can be used for transmission
between two points at a specified time.

fmuf =
fcritical
sin(I)

where I = the angle of the wave relative to the horizon.
These relations show that it is necessary to know the electron density Ne at a specific

altitude dependent on solar activity, magnetic field, season and daytime. If it is possible
to predict electron densities, it is in conseqence possible to calculate wave propagation.

Satellite communication

If we sum up the electron densities along a line we obtain the so-called total electron content
(TEC). A plasma reduces the speed of a radio signal traveling through it. The greater its
density and/or the lower the radio frequency, the more it is delayed. This signal delay in-
troduces an error in measurements made by positioning systems like GLONASS or Global
Positioning Systems (GPS). Further details can be found in [Jakowski et al. (2002)].
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1 Introduction

1.2.1 Chemical Composition

The upper atmosphere mainly consists of oxygen and nitrogen in molecular or atomic
form, or helium and hydrogen at greater heights. Up to 100 km the major species are in
almost the same proportion as at ground level.

With increasing altitude molecular oxygen is dissociated to atomic oxygen by ultra-
violet radiation betweeen 102.7 and 175.9 nm. The atomic and molecular forms reach
equal concentration at about 125 km, and above the atomic form dominates. In Fig. 1.4
densities of all minor and major species of molecular and atomic forms are plotted.

Figure 1.4 Number density (m−3), Atmospheric composition to 1000 km for a typical
temperature profile (US Standard Atmosphere, 1976).

1.2.2 Variation of Electron Density

Due to the insolation the ionosphere is changing electron density with day and season. At
nighttime electrons and ions recombine and the electron density decreases. If the solar
activity is high, more high energy radiation is emitted. This larger radiation causes a
larger electron production which can be seen in Fig. 1.5.

6
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Figure 1.5 Typical vertical profiles of electron density in the mid-latitude ionosphere:
- sunspot maximum, – sunspot minimum (After W. Swider, Wallchart
Aerospace Environment, US Air Force Geophysics Laboratory).

To give an idea how electron density varies in space and time dimension a plot of a
whole day is shown in (Fig. 1.6).

Sunset is around 2100 and sunrise is about 1030 (UTC). When the sun disappears
electron densities decrease as can be seen in Fig. 1.6.

7
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Figure 1.6 Electron density plot over a whole day. Local midnight is at 0430, noon at
1630, densities in log(m−3).

1.2.3 Perturbations caused by the Sun

Strong solar flares can occur when the Sun is in the active part of its cycle. These flares
cause so-called Sudden Ionospheric Disturbances, SID’s. Hard X-Rays (Sudden Iono-
spheric Disturbances, SID) hit the sunlit side of Earth. High frequency (3 - 30 MHz) radio
blackouts caused by released electrons due to penetration of X-Rays to D-region. Very
Low Frequency (3 - 30 kHz) signals are reflected during this time by the D rather than by
the E layer. Signal loss through the D layer is reduced. When the X-ray emissions end,
signal strengths return to normal due to rapid recombination of electrons in D layer.

Polar Cap Absorption (PCA). 15 minutes to 2 hours later high-energy protons reach
the earth. The protons spiral around and down the magnetic field lines of the Earth and
penetrate into the atmosphere near the magnetic pole. The ionisation in D and E layer is
increased. PCA’s typically last from one hour to several days, with an average of around
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24 to 36 hours [USGS, (2005)].

9



2 Neural networks

This chapter explains the fundamental idea of modelling physical relations with artificial
neural networks. Artificial neural networks are mathematical structures based on the
functionality of the human brain.

2.1 Theory of neural networks

Technically speaking artificial neural networks are parallel computing units which con-
sist of connected simple processors called neurons. Each simple processor only knows the
signals provided by its inputs. If many of these simple processors work together in a co-
ordinated network they can solve complex problems like pattern recognition or empirical
modelling.

The theoretical principles were developed in the 1920’s but not until the late 1980’s
artificial neural networks gained relevance in practice. Such networks can be implemented
as hardware units or as software simulations. Due to very ready availibility of high per-
formance CPU’s the variant of software simulations is used more often as here in this thesis.

The main difference between neural networks running on simulators and conven-
tional software is that here the solutions of problems are ”learned” from real data and
not programmed like in hard-coded software. If neural networks are used their solution is
better or it is not possible to solve the problem with hard coded software.

There are many applications where artificial neural networks are used such as recog-
nition of credit card fraud, stock predictions, credit evaluation, machine maintainance
monitoring, optical pattern recognition (to collect highway fees) and many more.

There are many different architectures and training algorithms but we will restrict
further explainations to Feed Forward Networks used for empirical modelling.

10



2 Neural networks

2.2 Architecture

A simple processing unit called neuron has several inputs and one output. There are two
rules, one how to combine the inputs and one how to calculate the output value out of this
combination. A simple network is displayed in Fig. 2.1. One blue square represents one
neuron. All outputs of the neurons of one layer are linked to every input of the next layer.
Every neuron in the first layer (input layer, networks input) has just one input. There a
set of input data (a vector) is fed to the network. The output of the one neuron in the
last layer is at the same time output of the neural network.
A full data vector consists of input and output data, in our case the input data contains
information about time of the day, season, solar activity, geomagnetic index and altitude.
The output data of the neural network is just the electron density Ne.

In a training cycle data (n inputs and 1 output) is presented to the neural network
datapoint by datapoint. The difference between the output of the neural network and
the measured electron density is squared and summed over all datapoints of the training
dataset and is called summed squared error (SSE).

The connections between the neurons of the networks do not transmit a signal one
to one, they act as valves and are called weights. During the training process these weights
are optimized according to a special training algorithm called Backpropagation to achieve
a minimum summed squared error.

The main problem is to find a network architecture that is suitable for the particular
task. We want a model that can predict electron densities. Therefore it is important that
the network is detailed enough to ”learn” all relevant physical relations. On the other
hand we want to achieve a good generalisation, meaning that the predictions should be
based on physical relations and not too much on singular occurences is training data.

To achieve a good generalisation the network has to be simple enough not to be able
to ”learn” singular occurences. Further it is necessary to monitor the training process
to avoid overfitting. Therefore two pattern sets are used, one for training and one for
validation. In the training process the weights are adjusted to minimize the SSE. In the
validation process the SSE for the validation patternset is determined. This is done after
every training cycle. At the end the network with the lowest SSEval is used for the model.
Further information is given in Chapter Development 6.1.

11



2 Neural networks

Figure 2.1 Architecture of a simple neural network with 3 input neurons and 2 hidden
layers with 4 neurons each (Screenshot from SNNS Creator GUI).

How a training process can look is shown in Fig. 2.2. The upper trace shows the
SSE for the training pattern set, the lower curve the SSE for the validation pattern set.
Each trace consists of 5 lines because a model consists of 5 neural networks, each with
different random starting weights to avoid influences caused by starting weights. As model
output a mean value of all five neural network outputs is calculated.

12



2 Neural networks
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Figure 2.2 Characteristics of SSE training (upper trace) and validation (lower trace), 5
lines each for 5 neural networks, 5 networks with lowest SSEval are saved (red
circles) and, model output is the mean of the 5 network outputs.

For detailed information about training parameters and architecture used for the
ionospheric models see Figs. 6.1.1 and 6.1.2.
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3 Used Models

In this chapter other models used in this thesis are shortly described.

For comparison purposes the IRI model is used too. With the IRI model it is pos-
sible to get electron densities for every data point of the Arecibo data. More information
about IRI can be found in Ch. 3.1.

The original data from Arecibo and Svalbard consist of time [UTC], altitude [km]
and electron density. To have the air pressure as well, the MSIS model is used to calculate
pressure from altitude, time and geographic coordinates. More information about MSIS
can be found in Ch. 3.2.

3.1 IRI

The IRI1 model is the result of a cooperation of URSI2 and COSPAR3 (Working Group
4). It is the most extensive attempt to develop an empirical ionosphere model. IRI is de-
fined for non-auroral latitudes, at day time up from 65 km and in night time up from 80 km.

In the IRI model the following input parameters are used: latitude, longitude, zenith
angle, solar activity, season time and geometric height. Beyond electron density the model
yields ion composition (O+, H+, He+, NO+, O2

+) and ion-/electron temperature. In this
thesis only electron density is used for comparison purposes.

The data on which the IRI model is based consists of thousands of electron profiles
(not manually cleaned data). In F-layer data come mainly from satellite measurements.
Data from D-layer originate mainly from rockets. In E- and F1-layer data stem from
incoherent scatter radars and ionosondes.

1International Reference Ionosphere
2Union Radio Scientifique Internationale
3Committee on Space Research
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3 Used Models

The IRI model attampts to approximate the electron density profiles by an analytic
function, which leads to dependent height layers that causes poor results in lower altitudes.
An example of data produced by the IRI model (IRI 2007) can be seen in Fig. 3.1.
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Figure 3.1 IRI output for the coordinates of Arecibo, 4 electron density profiles, valley at
night time. Local midnight at 0430, noon at 1630.

The plots in Fig. 3.1 show electron maxima at 1012 per m3 at an altitude of around
270 km. There is also a valley at night time at 170 km. The IRI model in this thesis is
only used to test whether the neural networks are able to approximate clean data with
no distortions but with similar structure as the measured real life data. The IRI model
is also used to evaluate the developed models based on neural network regarding their
availability of predicting electron densities. Further information about IRI 2007 can be
found at [Bilitza, (2009)].
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3 Used Models

3.2 MSIS

To test the relevance of altitude and air pressure for the ionosphere, a model which pro-
vides air pressure is needed. MSIS is actually several models which describe the neutral
atmosphere in terms of temperature, densities and composition (N2, O, O2, He, Ar and
H) from the ground to the thermosphere. The following inputs are needed:

� geographic coordinates

� day of the year

� altitude

� solar activity

� geomagnetic index kp
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Figure 3.2 Variation of the pressure during the year 1970 at 200 km over Arecibo accord-
ing the the empirical model MSIS. Locations inside the tropic of the Cancer
experience two insolation maxima (c.f. Fig. 5.6).
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The data on which the models are based includes measurements from the ground,
from rockets and from satellites. Measurement instruments were incoherent scatter radars,
mass spectrometers, solar ultraviolet occultation, pressure gauges, falling spheres and
grenade detonations. The MSIS models were originally developed by A.E. Hedin at
NASA Goddard Space flight Center. For detailed information of several MSIS models
see [NASA Goddard].

For this thesis the version NRLMSISE-00 Model 2001 was used. To see an example
of MSIS density outputs pressure is plotted for one year (Arecibo, altitude 200 km) in Fig.
3.2.

Due to large variations between day and night, a second (zoomed) plot is displayed
in Fig. 3.3.
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Figure 3.3 MSIS pressure changes in the year 1970, zoomed range to display diurnal
changes (Arecibo, 200 km).
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Any empirical model hinges on a good and extensive data base. The approach to develop
a model by using artificial neural networks requires good data coverage for all the model
space. Because due to their optimization algorithms based on least square methods, the
network weights are adjusted to fit as good as possible to the training data. Further the
knowledge of data statistics is important to give limitations and validity ranges for the
models, because artificial neural networks yield unreasonable results for extrapolation. In
this chapter the measured data is analysed and presented to give an overview how well
all ranges of the input parameters are covered. Note that always the logarithmic electron
density is used.

4.1 Arecibo Electron Density Profiles

The first amount of data comes from Arecibo (about 18° N) and was measured from
1966/7/4 to 2002/4/16 and consists of 1,585,824 datapoints in 98,554 electron density
profiles (after editing). The raw dataset was manually edited by Prof. Friedrich to elimi-
nate obviously unrealistic datapoints.

4.1.1 Arecibo Observatory

The electron density data was measured by the NAIC1 in Arecibo. Arecibo is a town in
Puerto Rico, the observatory is in the interior at the (18° 20’ 36” N, 66° 45’ 11” W).

The idea to build the observatory came from professor William E. Gordon, who
was interested in the study of the ionosphere. Gordon’s research during the fifties led
him to the idea of radar back scatter measurements to gain more information about the
ionosphere.

1National Astronomy and Ionosphere Center
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Figure 4.1 The Arecibo observatory (http://www.naic.edu/)

Begiinning in summer 1960 a huge reflector (about 300 m diameter) was built into
a natural dell. Three years later the obsevatory started its measurements under the direc-
tion of Gordon.

The surface of the reflector consists of 40,000 perforated aluminium panels, each
measuring about 3 by 6 feet (about 1 by 2 meters). To bear the weight of the panels steel
cables are strung across the underlying Karst sinkhole. It is a spherical (not parabolic!)
reflector.

Suspended 450 feet (about 150 meters) above the reflector is the 900 ton platform.
Fixed on this platform the bow-shaped azimuth arm containing the feed is mounted.

The dish in Arecibo is the world’s largest, but for incoherent scatter radar purpose
only part of it can be illuminated by the feed. Depending on the feed position another
part of the dish acts as reflector. Thus the Arecibo incoherent scatter radar does not
have a significant lower treshold than for example the EISCAT2 installation in Tromsø,

2European Incoherent Scatter
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4 Datasources

or ALTAIR3 in the Kwajalein Atoll. The Arecibo system can operate at frequencies
ranging from 50 MHz (6 m wavelength) to 10 GHz (3 cm wavelength). In 1974 a new high
precision surface for the reflector was installed together with a high frequency planetary
radar transmitter. Further information can be found at [NAIC 2010]. The 1962 built
transmitter has a fixed center frequency of 430 MHz and a maximum total peak pulse
output power of 2.5 MW.

4.1.2 Incoherent Scatter Radar ISR

High energy ultraviolet radiation from the Sun separates electrons from some of the atoms
and molecules in the atmosphere, and these free electrons can scatter radio waves.

Figure 4.2 Height-frequency diagram to compare various ionospheric radar probes
[Schlegel, (1984)]

Characteristics of the ionosphere are measured by the Arecibo 430 MHz radar using
incoherent scatter. The transmitted waves reach the ionosphere and each of the millions
of electrons in the ionosphere illuminated by the beam act as a target. The radar echo of
all the little targets is reflected by the dish to the receiver. The received power correlates
with the amount of free electrons.

3ARPA Long-Range Tracking and Instrumentation Radar
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The ions and electrons in the ionosphere are split mainly by ultraviolet radiation from the
sun. The light electrons respond to the radar waves and scatter it. The heavy ions are too
slow, but they hold electrons nearby, that is why overall motions of electrons also show
motion of ions.

Through signal processing with Fourier transformations and autocorrelations it
is possible to calculate from the radar echo the properties of the ionospheric plasma
[NAIC 2010].

A diagram of working point and application range of incoherent scatter radars com-
pared to other radar probes is shown in Fig.4.2.

4.1.3 Arecibo Statistics and Distributions

Table 4.1 shows the mean value, the 1st sextile, the 1st quartile, the 3rd quartile and the
5th sextile for all relevant parameters of the Arecibo data.

Variable Unit 1.Sextile 1.Quartile Mean 3.Quartile 5.Sextile

zenith angle ° 42.6 58.9 95.5 133.0 142.2

10.7 cm flux 74.9 80.1 129.4 176.2 193.2

dst -40.0 -33.0 -21.1 -4.0 0.0

kp 1.3 1.7 2.7 3.7 4.0

ap 5.0 6.0 17.2 22.0 27

alt km 138.0 140.0 324.1 447.1 515.8

logNe m−3 9.89 10.56 10.95 11.63 11.82

Table 4.1 Most important input parameters are analysed for range coverage (Arecibo).

To develop a reliable model it is important to achieve a good coverage of input
parameters ranges. On the following pages distributions for all relevant parameters are
shown.
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Distribution of zenith angle and day number.
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Figure 4.3 Arecibo, distribution of zenith angle and day number

Distribution of UT and hour number.
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Figure 4.4 Arecibo, distribution of UT and hour number
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Distribution of F107 flux and dst.
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Figure 4.5 Arecibo, distribution of F107 flux and dst

Distribution of kp and ap.
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Figure 4.6 Arecibo, distribution of kp and ap
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Distribution of altitude and electron density.
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Figure 4.7 Arecibo, distribution of altitude and electron density
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4.1.4 Minimum Altitude

For the interpretation of the model results in Chapter 7 it is important to know the
distribution of the minimum altitudes of Arecibo electron density profiles.
In Figure 4.8 all lowest datapoints of all profiles are displayed in a scatter plot. Because
of the much lower electron densities at night the electron density profiles after sundown
begin at significant higher altitudes.
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Figure 4.8 Distribution of minimum altitudes of the electron density measurements as a
function of solar zenith angle. Note the considerable higher starting heights
at the measurements compared to the Svalbard data. Due to low electron
densities measurements are started at higher altitudes at night.
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4.2 Svalbard Electron Density Profiles

4.2.1 Svalbard observatory

The second source of data was measured at the Kjell Henriksen Observatory (KHO) in
Svalbard (Longyearbyen) (Fig. 4.9) (78° 09’ 11” N, 16° 01’ 44” E, 78.15305° N, 16.02889°
E) at 445 m altitude [EISCAT]. The data are measured with an incoherent scatter radar
(ISR) as is described in Ch. 4.1.2. The feed in this installation is a Cassegrain type. The
transmitter has a fixed center frequency at 500 MHz and a peak power of 1 MW.

The ISR data used here start in 1996 and end in 2004. The data from the incoherent
scatter radar is supplemented by data (7049 datapoints) from 371 rocket flights starting
on 28. 2. 1979 and ending at 2. 3. 1994. These rockets were launched at Heiss Island
(80.62° N, 58.05° E), slightly further north than EISCAT Svalbard, but at almost the same
geomagnetic latitude. Further details can be found in [Danilov et al. (2003)].

Figure 4.9 The archipelago of Svalbard in the north of Norway.

One profile from a rocket flight on 6. 7. 2003 launched near Svalbard (coordinates of
measurement: 78.91° N 11.93° E, conducted by Prof. Friedrich) was added (39 datapoints)
as well(4.11).
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In the total number of data points used for the Polar Cap Model consists of 1,459,262
datapoints in 162,507 electron density profiles after editing. The raw dataset was manually
edited by Prof. Friedrich to exclude obviously unrealistic datapoints.

The UT timestamps of the rocket flights are corrected to coordinates of Svalbard
EISCAT radar, to treat them like data from radar measurement. Further details to EIS-
CAT can be found in [Schlegel, (1995)].

To have an idea of values of the rocket measurements all electron density profiles
are plotted in Fig. 4.10. Data is available down to a minimum altitude of 50 km and an
electron density of approximately 6.8 106 m−3.
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Figure 4.10 All data from rocket flights at Heiss Island (Egger, 2004). The threshold
electron density is slightly below 107, the lower altitude limit is determined
by the probe deployment and the upper limit coincides with the apogee of
the rocket (M100-B).
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Figure 4.11 Rocket flight 6. 7. 2003, Svalbard. This is the only profile in the dataset
based on a wave propagation experiment and hence inherently unbiased.

4.2.2 Svalbard Statistics and Distributions

Table 4.2 shows the mean value, the 1st sextile, the 1st quartile, the 3rd quartile and the
5th sextile for all relevant parameters.
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Variable Unit 1.Sextile 1.Quartile Mean 3.Quartile 5.Sextile

zenith angle ° 77.9 84.8 94.1 104.8 108.4

10.7 cm flux 137.9 147.4 174.5 197.5 210.6

dst -39.0 -30.0 -19.9 -2.0 2.0

kp 0.7 1.0 2.2 3.0 3.3

ap 3.0 4.0 13.2 15.0 18.0

alt km 126.0 141.0 273.6 348.0 451.0

logNe m−3 10.47 10.64 10.94 11.33 11.46

Table 4.2 Most important input parameters are analysed for range coverage (Svalbard).

To develop a reliable model it is important to achieve a good coverage of input
parameters ranges. On the following pages distributions for all relevant parameters are
shown.

Distribution of zenith angle and year.
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Figure 4.12 Svalbard, distribution of zenith angle and year. The few data before 1997 are
the rocket experiments from Heiss Island.
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Distribution of UT and hour number.
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Figure 4.13 Svalbard, distribution of UT and hour number

Distribution of F107 flux and dst. The data used here are somewhat biased
towards high solar activity prevalent in the first years of assertion.
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Figure 4.14 Svalbard, distribution of F107 flux and dst
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Distribution of kp and ap.
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Figure 4.15 Svalbard, distribution of kp and ap

Distribution of altitude and electron density.
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Figure 4.16 Svalbard, distribution of altitude and electron density
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4.2.3 Minimum Altitude

For interpretation of model results in Chapter 8 it is important to know the distribution
of the minimum altitudes of Svalbard electron density profiles.
In Figure 4.17 all lowest datapoints of all profiles are displayed in a scatter plot. In
Svalbard a large number of profiles reaches to at least 90 km due to measurements from
rocket flights.
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Figure 4.17 Variation of minimum heights including rocket data from Heiss Island. Note
the considerable lower starting heights at the measurements compared to the
Arecibo data. Due to low electron densities measurements are started at
higher altitudes at night.
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4.3 Conclusion

In this chapter the structure of the two datasets is shown. The Arecibo dataset consists
of 2,077,902 datapoints in 98,554 electron density profiles (Ch. 4.1.3) and the Svalbard
dataset consists of 1,459,223 datapoints in 162,506 electron density profiles (Ch. 4.2.2).
These two datasets are used to train the artificial neural network and can consequently
be called substructures of the two ionospheric models.
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5 Input Parameters and Preprocessing

The better the problem is described through preprocessing, the more successfully the
artificial neural network will solve the problem. For example, to just provide the number
of hour (0 to 23) is not very effective, because the values do not show that it is a circular
effect.

5.1 Zenith angle

The zenith angle is defined as angle between sun and zenith which means that the zenith
angle is zero for highest solar position. At 90° the Sun’s position is at the horizon.
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Figure 5.1 Diurnal variation of the solar zenith angle during a full year at Arecibo. Note
the large diurnal variation and that the extrema occur twice a year.
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In Figure 5.1 the zenith angle for one year is plotted (Arecibo). Due to low latitude
the sun reaches relatively small (and very large) zenith angles throughout the year.

In Figure 5.2 the zenith angle for one year is plotted (Svalbard). Due to a high
latitude (beyond polar circle) the sun reaches middle zenith angles of 55° at day time and
80° at night time.
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Figure 5.2 Solar zenith angle of a full year at Svalbard. The seasonal variation is much
larger than the diurnal.

This 24 hour day leads to a very high insolation in midsummer at polar cap. This
effect can be seen in Figures 5.6 and 5.7. On the other hand the zenith angle never reaches
90° around midwinter (polar night).

5.2 Chapman production

As input parameter for the diurnal variations of electron density the Chapman production
was choosen because of its direct correlation.
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The Chapman grazing incidence function as defined 1931 by Chapman:

Ch(x, χ) = x sinχ

x∫
0

ex−x sinχ/sinαcosec2αdα (5.1)

where x = (R+h)/H and χ is the solar zenith angle, R is the Radius of the Earth, h
is the altitude and H is the scale height of the absorbing gas. Unfortunately Equation 5.1
is not analytically solvable, thus a numerical approach was taken. The inverse Chapman
grazing incidence function is shown in Fig. 5.3.

Figure 5.3 Inverse Chapman grazing incidence function vs. solar zenith angle with com-
parison to cosine (H = 5 km, Altitude = 100 km) [Egger, (2004)].

The Chapman production means electron-ion pair production by ionization. As a
simplification an approximation function was used here. It consists mainly of the cosine
of day time zenith angles.
The characteristics of the Chapman production at spring equinox is plotted in Figures 5.4
(Arecibo) and 5.5 (Svalbard).
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Figure 5.4 Chapman production, Averages: 0, 2.5 h, 11 h, Arecibo midnight: 04:30 noon:
16:30

To allow a diurnal asymmetry for the model a second diurnal input parameter is
needed. Therefore an 11 hour average of Chapman production is calculated. With this
pair of input parameters the neural network can ”learn” a difference between a morning
datapoint and an evening datapoint for the same zenith angle. If we would use the zenith
angle as an input parameter the neural network would not have this information. Detailed
information to Chapman production can be found in [Titheridge, (1988)].
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Figure 5.5 Chapman production, Averages: 0, 2.5 h, 11 h, Svalbard

5.3 Daily integrated insolation (Dii)

The daily integrated insolation is used to provide the neural network information about
the seasonal location of the datapoint. The cosine of the zenith angle is integrated over
one day from sunrise to sunset.

A daily integrated insolation of value ”1” means, that the Sun would shine 24 hours
with an zenith angle of 0° (i.e. 1.18 108 Ws/m2).

In Figure 5.6 values of daily integrated insolation are coded in colour for every day
of the year and all latitudes. In this contour plot the variation in Sun - Earth distance (of
about ±5%) is also considered which makes the plot is asymmetric.
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Figure 5.6 Daily integrated insolations for any latitude and day of year. Two lines mark
the latitudes of Arecibo and Svalbard, respectively. Note that in the equa-
torial region the daily integrated insolation has two maxima in a year (more
pronounced in the southern hemisphere).

In Figure 5.7 the seasonal characteristics are plotted for the latitudes of Arecibo and
Svalbard.
To achieve a seasonal asymmetry we use a pair of seasonal input parameters. At first
the daily integrated insolation and as second input a 30 day average value of the daily
integrated insolation is used. With this pair of input parameters the neural network can
distinguish between spring and autumn values.
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Figure 5.7 Daily integrated insolation for Arecibo and Svalbard (average of the 30 pre-
ceeding days is plotted).

5.4 Solar activity (10.7 cm flux)

As a measure for solar activity the value for the solar flux at 2800 MHz is used. The Sun
changes its magnetic field every 11 years. At this time solar activity increases and more
radiation and particles are emitted.

The solar flux is measured since 1947 by the NRC1. One precise measurement is
taken at local noon (20:00 UT in Penticton since 1991). This flux is called ”observed
flux”. Out of this raw value an so-called ”adjusted flux” which considers the variation of
Sun - Earth distance is calculated (corresponding to 1 AU); AU = astronomical unit =
mean Sun-Earth distance (149.6 106 km).

1National Research Council of Canada
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As input parameter for the neural network the observed flux is used, because for the
ionosphere the intensity of the solar flux hitting the Earth is relevant.

The solar flux from 1960 to 2000 is plotted in Figure 5.8.
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Figure 5.8 10.7 cm solar flux (1960 - 2000).

In Figure 5.9 the solar flux and several running means are plotted for some months
in 1991. Further information how to choose average time can be found in Ch. 6.2.5.
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Figure 5.9 10.7 cm solar flux, average calculation range [days], (year 1991 JAN-APR).

5.5 Magnetic indices ap, kp, Dst

Disturbances reflected in deviations of the Earth’s magnetic field occur due to currents
in the E-region, in turn due to enhanced electron densities. To provide information of
magnetic conditions geomagnetic indices are used.

The Dst index of magnetic storms gives information about the reduction of the
magnetic H component at the equator due to the ring current. Dst is measured in units
of nanotesla and is mainly interesting for singular magnetic storms. Further information
is given in [Hargreaves and Hunsucker, (2003)].
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Figure 5.10 Relation between the geomagnetic indices Dst and kp from 1979 to 2003.

The geomagnetic indices ap and kp give information on disturbances in the geomag-
netic field. The index kp is measured by 13 non-auroral observatories all over the world.
It is a mean value over 3 hours and was introduced by J. Bartels in 1949 and published
by the IAGA2 (formerly IATME3) in 1951 [Egger, (2004)].

In Figure 5.10 the relation between kp and Dst is shown.
Figure 5.11 shows characteristics of the geomagnetic indices ap, kp and Dst for

some months in 1991. When a magnetic disturbance occurs, all indices display significant
excursions.

2International Association for Geomagnetism and Aeronomy
3International Association for Terrestrial Magnetism and Electricity
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Figure 5.11 ap, kp and dst, geomagnetic indices (year 1991 JAN-APR)

The geomagnetic index ap is derived from kp via a fixed relation. The relation and
the data can be found at NOAA4.

Due to a better ability to describe normal situations, ap was choosen as input pa-
rameter to provide information for geomagnetic conditions. To achieve time dependence
an average value of ap is used as well to model more inert characteristics of electron density.

4National Oceanic and Atmospheric Administration, http://www.ngdc.noaa.gov/stp/GEOMAG/kp ap.html
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In Figure 5.12 ap and several running mean values are plotted.
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Figure 5.12 ap running mean [days], (year 1991 JAN-APR)

5.6 Normalization

To make values comparable and non-dominant it is important to normalize them. The
values of all input and output parameters are normalized and stored in a dedicated file for-
mat suitable for the SNNS5. Values are normalized to a range of 0 to 1. More information
about normalization is given in Ch. 11.1.2.

5Stuttgart Neural Network simulator
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5.7 The day-night border

The day night border has to be calculated for every datapoint. The solar UV radiation
which mainly causes ionization and photo detachment is absorbed in the ozone layer. That
is the reason why we have to take a larger radius than the geometric Earth radius. This
calculation is illustrated in Fig. 5.13.

Figure 5.13 Geometry of day night border. The sun rises at the right hand side.

The ozone layers altitude hOzone is here assumed to be at 25 km in accordance with
atmospheric models [Isaksen, (1973)]. For an altitude h the day-night border is calculated
as follows:

χO = 180 − arcsin(
R+ hOzone
R+ h

)

For example h = 100 km yields a day night border of 98° [Egger, (2004)].
With this calculation we can separate between day and night data because we have

a defined sunset for every altitude.

5.7.1 Hour Number starting at Sunset

With the exact sunset time calculated by a regula falsi algorithm the time after sunset
can be determined for every datapoint.

In Figure 5.14 and 5.15 all datpoints are plotted to show the relation between hour
number after sunset and zenith angle.
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Figure 5.14 Arecibo, zenith angle vs. hours after sunset. The length of the night can be
seen as the time after sundown to midnight. It varies from 4 hours in summer
with a maximum zenith angle of 140°, to 5 hours in winter when the zenith
angle can reach 180°.
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Figure 5.15 Svalbard, Zenith angle vs. hours after sunset. Note the different scales com-
pared to the previous figure of both the zenith angle range (maximum 125°)
and the length of the night.

5.8 Conclusion

In this chapter all calculated input parameters of the artificial neural network are de-
scribed. Zenith angle, Chapman production, daily integrated insolation, solar activity
and magnetic index are used to present the neural network data which determine the
physical situation of the datapoint. For example, is for the seasonal variation the daily
integrated insulation and a 30 day average of daily integrated insulation used, to ensure
asymmetric behavior and a closed ”loop” around the year as well. Closed ”loop” means
that at the end of the year is the same situation as at the beginning of a year. With day of
year alone as input parameter the neural network is not able to learn these conditions.



6 Development of an empirical model using

neural networks

The main problem of modelling physical processes using measured data is to balance two
reqirements. On the one hand we want to fit the model as good as possible to the mea-
sured data and on the other hand we want to get a model which is able to generalize and
make predictions.

On the following pages it is described how to account for these needs and find an op-
timum network architecture, input parameters and learning parameters. An introduction
to artificial neural networks was given earlier in Chapter 2.2 Neural Networks.

6.1 Neural Network Architecture and Learning Parameters

In this section different neural network sizes, activation functions and training parameters
are compared. At first it is important to mention that it is not easy to find a proper
architecture and parameters for a specific application. A lot of empirical work has to be
done because it is hard to find thumb rules in literature. In Table 6.1 all used neural
networks are listed. Many different neural networks were trained with different input
parameters and training parameters.

6.1.1 Importance of Architecture

In Figure 6.1 it is shown, which network yields which RMS at different altitudes. It is
difficult to make a decision, because networks with a lower RMS at low altitudes have a
higher RMS at higher altitudes and vice versa. So the overall RMS values are compared,
which can be seen in Figure 6.2 and Table 6.2.
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Figure 6.1 RMS error factor as a function of altitude for different network architecture
(number of hidden layers/units). At higher altitudes more complex networks
yield a better result.
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hidden units weights hidden layers units per layer

10 35 2 5

18 54 3 6

24 70 4 6

30 86 5 6

36 85 4 9

45 104 5 9

63 142 7 9

Table 6.1 Collection of neural networks which were used for model development, number
of weights are calculated with 10 inputs

Description RMSall RMStrain RMSval RMStest

10 units 2.31 2.51 1.88 1.97

18 units 2.13 2.29 1.84 1.80

24 units 2.19 2.32 1.88 1.94

30 units 2.17 2.32 1.84 1.93

36 units 2.26 2.42 1.85 2.01

45 units 2.17 2.32 1.85 1.90

63 units 2.12 2.28 1.85 1.79

Table 6.2 Influence of architecture
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Figure 6.2 Arecibo, RMS error factors for different architectures and datasets (Arecibo).

As can be seen in Figure 6.2 there is an optimum for RMS at 18 hidden units. This
neural network has 3 hidden layers with 6 neurons each and yields a good performance
concerning RMS and as well training time. The training time for this neural network
is about 4 hours with 400 training cycles and approximately 1.3 million training and
validation datapoints (input patterns).
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Figure 6.3 Architecture of a neural network with 10 input neurons and 3 hidden layers
with 6 neurons each (Screenshot from SNNS Creator GUI).

A visualisation of a neural network is shown in Figure 6.3. On the left side there
are the input neurons, then the signals propagate via weighted connections to the first
hidden layer. The output of each neuron is connected to every neuron of the next layer.
In a neuron all input values (weighted via connections) are summed and the output value
is calculated via the activation function.
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Figure 6.4 Arecibo, distribution of absolute error, 1 is an error of a factor of ten in electron
densities.

6.1.2 Influence of Training Parameters

The question of choosing suitable training parameters for the neural network is very difi-
cult. The only way to find parameters for a new modelling requirement is by trial and error.

The learning rate η is a factor which controlls how much the weights are adjusted
dependent on the error (difference between the real output and the teaching input).

The learning rate η has to be low enough to find a local minimum and on the other
hand it has to be high enough to ensure an acceptable learning time.

The maximum difference dmax between a teaching value and an output unit which
is tolerated.

In all neural networks which are used here a η (learning rate) of 0.04 a dmax of 0.03
and number of training cycles of 400 is used. These values need long training times but
they lead to reliable and compareable results. As an activation function there is always
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tanh used. In Figure 6.4 the distribution of the absolute error is shown. All training data
patterns are presented to the neural network, and prediction values are the result. These
predictions are compared with the original measured data.

6.1.3 Influence of Pattern Selection

If as test data the most recent 20 % of data are taken(Fig. 6.6), the RMS for test data is
lower than the RMS for training data. This may appear strange but is probably caused
by different quality of the Arecibo data. I assume that there is less scatter in more recent
Arecibo data.
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Figure 6.5 RMS (yr) 18 hidden units. Version A, oldest data is used for testing.

If as test data the oldest 20 % of data are taken, (Fig. 6.5), the RMS for test data is
higher than the RMS for training data. To avoid this effect, training data and validation
data are split profile-wise and randomly over the the entire time range (Fig. 6.7). To be
sure, that there are no dependencies between training and test data the most recent 20 %
of data are used for testing only in development process (Fig. 6.6).
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Figure 6.6 RMS (yr) 18 hidden units. Version B, youngest data for testing.

For the model version B is used as shown in Figure 6.6
The most recent 20 % of data is used for testing. the RMStest obtains lower results

than the training dataset what seems to be unlogical.
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Figure 6.7 RMS (yr) 18 hidden units. Version C, all data (training, validation and test)
are profilewise randomly distributed.

6.2 Combinations of Input Parameters

The main factor of developing a proper model is to choose the right input parameters. In
Ch. 5 (Preprocessing) all input parameters are described. Here is described how average
times and optimal combinations can be found.

6.2.1 Altitude and Pressure

The information of altitude for every datapoint comes with the dataset. To proof whether
it is better to use altitude or air pressure, the air pressure is calculated for every datapoint
with the MSIS model, described in Ch. 3.2. In Figure 6.8 three models are compared.
One with altitude, one with logarithmic air pressure and one with both quantities as
input parameters. Between 160 and 310 km altitude gives better results and otherwise
logarithmic air pressure gives best result. Thus for further models both quantities are used
as input parameters.
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In theory pressure should provide better results because energetic radiation at a
point in the atmosphere depends on the air column above this point (i.e. the local pres-
sure).
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Figure 6.8 Influence of altitude and pressure. At low altitude the parameter altitude
yields better results, whereas at high altitudes pressure yields better results.

The model with both quantities (pressure and altitude) as input gives as well the
best overall RMS for test patternset of 1.82 (shown in Table 6.3).

Description RMSall RMStrain RMSval RMStest

alt 2.16 2.31 1.84 1.87

log p 2.20 2.37 1.87 1.85

alt + log p 2.17 2.34 1.85 1.82

Table 6.3 Influence of altitude and pressure
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Altitude dependence on Ne for Arecibo and Svalbard.
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Figure 6.9 Altitude dependence on Ne for Arecibo and Svalbard.
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Figure 6.10 Air pressure dependence on Ne for Arecibo and Svalbard.
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6.2.2 Seasonal Changes

If we look at seasonal variation of electron density we have the problem that we need to
present the neural network a ”looped” quantity. This means, that we have to find a way
to ”show” the neural network that the situation at the end of the year is the same as
at the beginning. This is achieved by using the daily integrated insolation as input. For
further information see Ch. 5.3.
The second problem is to provide information of an asymetric component to the neural
network, because in autumn we have a different situation from that in spring even though
there is the same daily integrated insolation. For this reason a 30 day average value of daily
integrated insolation prior to the data to be predicted is used as second input parameter
for seasonal variation to achieve an optimum of seasonal modelling capability. In Figure
6.11 the correlation between daily integrated insolation and Ne is shown.
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Figure 6.11 Daily integrated insolation for Arecibo.
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6.2.3 Diurnal Changes

A very important influence on electron density is the Earth’s rotation about its own axis.
Similar to the seasonal changes of electron densities the diurnal changes demand a ”looped”
quantity to avoid the disadvantage of, for example, hour number. If we would take hour
number as input parameter to present diurnal changes for the network it would not be
able to learn, that 23.99 is nearly the same physical situation as 0.00.

Therefore the Chapman production function is used to provide the neural network
an optimum of physical relevant information. As second input describing diurnal changes
an eleven hour average value of the Chapman production function is used to make possible
an asymmetric behavior of the model. Because the electron density distribution before
sunset is different to electron density distribution after sunrise, at otherwise similar zenith
angle.

In Figure 6.12 the influence of Chapman production function on electron densities
in Arcibo is shown (raw data). The plot shows an increasing mean of Ne with increasing
Chapman production function. This relation is very similar in Svalbard shown in Figure
6.13.

A diurnal ”loop” can also be reached by using sinus and cosine [McKinnell, (2002)].
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Figure 6.12 Original data from Arecibo Ne(chza). A clear correlation between electron
density and Chapman production is obvious. Note that there is a peak in the
distribution at 0 because during nighttime Chapman production is 0.
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Figure 6.13 Original data from Svalbard Ne(chza). As in Fig 6.12 a clear correlation
between electron density and Chapman production is obvious. Note that the
mean electron densities in Svalbard are lower than in Arecibo.
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6.2.4 Correlation with kp, ap, Dst

In Figures 6.14 and 6.15 the correlation of Ne and kp respectively Dst is shown for Arecibo
and Svalbard. As an input parameter for the neural networks ap is used.
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Figure 6.14 Geomagnetic index kp for Arecibo and Svalbard. Apparently at high latitudes
kp is a more important parameter than near the equator.
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Due to the high latitude of around 79° geomagnetic influence in Svalbard is
dominating.
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Figure 6.15 As Fig. 6.14, but for the index Dst.
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6.2.5 Best Lead Time for the Solar Flux Index F107

Due to the longer lifetime of free electrons in higher regions of the ionosphere it is useful
to add a timedependent input parameter. A first approach is to use a running mean of
the solar flux preceding the time the data were taken.
To determine the best timespan of calculating the average different times were used. Sev-
eral neural networks were trained with different average calculation times. An overview is
given in Table 6.4.

As shown in column RMStest a 60 days average value is taken in addition to the
actual solar flux value as input. An optimum of 60 days average time was also found in
[McKinnell, (2002)].

Description RMSall RMStrain RMSval RMStest

0 days 1.99 1.99 1.99 1.99

5 days 1.99 1.99 2.00 2.00

15 days 1.99 1.98 2.01 1.98

30 days 1.97 1.97 1.99 1.95

60 days 1.97 1.97 1.98 1.94

120 days 1.98 1.97 2.00 1.99

Table 6.4 Influence of running mean of F107 (Arecibo).

In Figure 6.16 the dependence of the RMS on altitude is displayed. At higher
altitudes longer lead times would be better.
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Figure 6.16 Influence of running mean of F107 (Arecibo).

The Figure 6.17 is a visualization of Table 6.4. An optimum RMS can be seen for
60 days.
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Figure 6.17 Influence of running mean lead time of F107 (Arecibo).
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Figure 6.18 F107 Solar Flux for Arecibo and Svalbard
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Figure 6.19 F107 Solar Flux for Arecibo and Svalbard with x day average.
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6 Development of an empirical model using neural networks

6.2.6 Best Running Mean Lead Time for the Geomagnetic Index ap

Due to lower and less distinct dependence on geomagnetic index ap it is difficult to decide
which averaging time is best. Therefore 0 days and 60 days was taken which provide a
good compromise between short time and long time dependence.
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Figure 6.20 Geomagnetic index ap from Arecibo and Svalbard.
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Figure 6.21 Geomagnetic index ap from Arecibo and Svalbard with x day average.

6.3 Dummy Data

One problem of developing an empirical model is that measurement errors are not known.
The empirical model should ”learn” the physical relation, but due to measurement errors
it is possible that contradictory data is presented to the neural network in the training
phase.
Therefore a little trick is needed to test how the neural network would learn the relations
between input parameters from clean data. In the present context clean means that there
are no contradicting data and statistical spreading. IRI (2007) output is used to train the
neural network. Instead of measured data ”synthetic” data from a model are used.

As we see in Fig. 6.22, the RMS stays approximately at 1.7 over the years. It is
also to mention that this is an indicator for the phenomenon of a quality improvement in
Arecibo data from 1965 to 1995 as seen in Fig. 6.22.
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Figure 6.22 RMS diagram for neural network trained with dummy data (IRI model,
Arecibo).

6.4 Conclusion

In this chapter the choice of the most suitable input parameters for the neural network is
given. To obtain height data, altitude and air pressure is used. For diurnal changes the
Chapman production and an 11 hour average value of Chapman production is used. To
ensure information about seasonal changes the daily integrated insolation and a 30 day
average was used. Solar activity is presented to the neural network by both the actual so-
lar flux and a 60 day average preceding the time in question. And finally the geomagnetic
index and a 60 day average is used to describe disturbances in Earth’s magnetic field.
In sum these are 10 parameters used as inputs for the neural network which cover all im-
portant factors for electron densities in the ionosphere. An visualisation of the architecture
is shown in Figure 6.3.

1. Chapman production

2. Chapman production 11 hour average
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3. F107 solar flux

4. F107 solar flux 60 day average

5. Magnetic index ap

6. Magnetic index ap 60 day average

7. Altitude

8. Pressure

9. Daily integrated insolation

10. Daily integrated insolation 30 day average



7 Results of the Arecibo Model

In the first part of the results the developed model for Arecibo will be discussed. Figure
7.1 shows the mean characteristics of electron density as a function of altitude for day-
and nighttime.
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Figure 7.1 Logarithmic mean of the raw data electron densities in 20 km bins (Arecibo).

To illustrate the ”learning” capability of the neural network, the learning- and out-
put electron density values are compared in Figure 7.2. Similar plots can be seen in
[Minow, (2004)].
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7 Results of the Arecibo Model

If we compare all datapoints used for testing (youngest 10 %) with the model’s
prediction, we get an RMStest of 1.74 (RMStest,IRI = 1.95). If we compare all datapoints
with the model’s prediction, we get an RMS of 2.09 (RMSIRI = 2.20).

Figure 7.2 Distribution of neural network output vs. input (electron densities, Arecibo).

At higher electron densities it can be seen that the neural network provides too
small values for the majority of the data. But the neural network is capable to ”learn”
such high electron densities which can be seen at the light blue areas.
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7 Results of the Arecibo Model

7.1 Charts from model output

At first all parameters are fixed instead of the hour of the day [UTC]. In Figures 7.3, 7.8
and 7.9 the plots for several altitudes at spring equinox, midwinter and midsummer are
shown.
The electron density is increasing steeply when sun rises and decreases again starting
at sunset. Beyond the zenith angle and the daily integrated insolation is plotted. The
parameters ap and solar flux are fixed to 17.2 and 130 Jy unless indicated otherwise.

In the model for Arecibo electron density profiles are extended by 5 datapoints from
the empirical model FIRI when the lowest datapoint is higher than 150 km. With the ex-
tended FIRI data the model has a slightly better RMS error due to more stability at lower
altitudes. Further details about the FIRI model can be found in [Friedrich and Torkar, (2001)].
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Figure 7.3 Arecibo, Electron densities at various altitudes during a day, centered at local
midnight. With FIRI data, Spring equinox, dummy data (model output). Red
crosses indicate the day-night border according to Ch. 5.7.

In Fig. 7.4 a dayplot of an model is shown were no FIRI data were added to the
training data, Arecibo. Note that all other plots from Arecibo model here are with FIRI
in training data.
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Figure 7.4 Arecibo, Electron densities at various altitudes during a day, centered at local
midnight. Without FIRI data, Spring equinox, dummy data (model output).
Note the unrealistic behaviour at the lowest altitudes which are only insuf-
ficiently covered by the IS radar. Red crosses indicate the day-night border
according to Ch. 5.7.
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7 Results of the Arecibo Model

In Fig. 7.5 a dayplot of an IRI 2007 is shown (F107 = 168 Jy). At 100 km electron
density is limited to 9.5106 m−3. Remarkable is a increase of electron density at night in
200 and 250 km. This is apparently a bug in IRI 2007 software.
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Figure 7.5 IRI 2007 output for spring day (F107 = 168 Jy).

These density peaks increase with lower latitude. At higher altitudes IRI shows a
similar traces as the Arecibo model but with slightly higher electron densities.

In Figures 7.6 (including FIRI) and 7.7 (without FIRI) electron density profiles for
different zenith angles are shown. With FIRI data the model produces lower electron
densities at around 150 km where FIRI data was added. Note that all other plots shown
from Arecibo model are extended by FIRI data due to more stability at lower altitudes.

Without FIRI data the neural network ”learns” mainly electron densities where data
coverage is good, and delivers poor results at the edge of the data range.
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Figure 7.6 Arecibo, different zenith angles, including FIRI data (lower electron densities
at around 150 km), AM (model output).
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Figure 7.7 Arecibo, different zenith angles, without FIRI data, AM (model output). At
the lowest altitudes results are biased to the instruments tresholds.
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7 Results of the Arecibo Model

In Figures 7.8 and 7.8 the diurnal variation at Arecibo is shown for midwinter and
midsummer. The electron desities corresponds to Chapman production. The difference
between midsummer is not very strong because Arecibo’s low latitude. The daily inte-
grated insolation only varies between 0.22 (midwinter) and 0.33 (midsummer).
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Figure 7.8 Arecibo, diurnal variation at midwinter (model output). Upper panel: electron
densities, central panel: daily integrated insolation (DII), bottom panel: Solar
zenith angle and Chapman production.
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Figure 7.9 Arecibo, as Fig. 7.8, but for a midsummer day.

The next variant is to vary the day of the year to get an idea of seasonal variations
in Arecibo. In Figure 7.10 and 7.11 electron densities for several altitudes at noon and
midnight are plotted. Seasonal variations are not very pronounced due to the low latitude.
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Figure 7.10 Arecibo, seasonal variation of noon electron densities for median geophysical
conditions. Upper panel: electron densities, central panel: Daily integrated
insolation (DII), bottom panel: Solar zenith angle and Chapman production.
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Figure 7.11 Arecibo, as Fig. 7.10, but for midnight.

At 200 km the solar zenith angle is always greater than 130°. Daily integrated
insolation has more impact at night than the zenith angle.
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7 Results of the Arecibo Model

The solar activiy expressed by solar flux is very high. In Figures 7.12 and 7.12
electron density profiles are plotted for several solar fluxes (80, 130 and 180 Jy) at spring
equinox at noon and midnight.

The influence is as yet unresolved , but confirmed by an other model based on
global foF2 measurements ([Friedrich et al. (2007)]). In Figure 7.14 a plot is shown
where F107 influence is compared with a model from E. Oyeyemi for midnight and noon
([Oyeyemi, (2005)]).

But also at daytime there is an influence at altitudes higher than about 300 km.
Plots for midsummer, autumnal equinox and midwinter can be found in appendix starting
from Figure 11.1.
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Figure 7.12 Arecibo, solar activity dependence of noon electron densities at spring
equinox. IRI which is shown for comparison but for one solar activity only
(due to a software problem intentionally entering other solar activities is not
possible).
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Figure 7.13 Arecibo, as Fig. 7.12, but for midnight.

Figure 7.14 At night there is more electron density variation at different solar activity.
Red arrows indicate the corresponding range of electron density in model by
E. Oyeyemi ([Oyeyemi, (2005)] and [Friedrich et al. (2007)]).
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7 Results of the Arecibo Model

The reversal of the solar flux dependence near 150 km is not physical, but with
reflects the insufficient data coverage. However a physical reversal is expected below
about 70 km.

The final parameter, the geomagnetical index ap is varied. In Fig. 7.15 and 7.16
several values of ap are plotted at noon and midnight for spring equinox. The influence of
ap is very small only at midnight there is a marginal dependence at high electron densities.
With more ap a slightly higher electron density occurs.
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Figure 7.15 Arecibo, ap dependence of noon electron densities at spring equinox.
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Figure 7.16 Arecibo, as Fig. 7.15, but for midnight.
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7 Results of the Arecibo Model

7.2 Sunset Night Decay

In Figure 7.17 for every hour after sunset an electron density profile is plotted. The
electron density decreases due to recombination.
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Figure 7.17 Arecibo, electron density decay with hours after sunset.

In Figures 7.18 and 7.19 it is shown how electron density decays with zenith angle
and hours after sunset (exponential decay). Electron density Ne is displayed in different
colors (9 to 12.5 m−3). Note that the two Figures are based on measured date including
all season, all ap and all F107.

In Fig. 7.19 electron density increases after midnight due to scattered ultraviolet
radiation.
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7 Results of the Arecibo Model

Figure 7.18 Arecibo, nocturnal electron density (400 km, measured data).

Figure 7.19 Arecibo, nocturnal electron density (150 km, measured data).

In Fig. 7.20 the model output for several times around sunset is compared with a
plot from the literature [Knight, (1972)]. The Arecibo model delivers very similar results.
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7 Results of the Arecibo Model

Figure 7.20 Comparison with plot from the literature, [Knight, (1972)] (left), and the
Arecibo model for median conditions (right).

In Figures 7.21 and 7.22 the gradient of Ne is plotted as a function of altitude for
hours after sunset and zenith angle (measured data).
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Figure 7.21 Gradient (Ne/hn), night(measured data). The red line indicates the lower
quartile of the data distribution. Below data are not considered relevant.

At higher altitudes the electron density decays exponentially with about 15 % per
hour. At lower altitudes electron density is predominantly controlled by scattered ultra-
violet radiation at about 1 % per degree.
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Figure 7.22 Gradient (Ne/za), night(measured data). The red line indicates the lower
quartile of the data distribution. Below data are not considered relevant.

This exercise is not very successful with Svalbard data. Due to the small range of
solar zenith angle and the not very pronounced transition from day to night (Fig. 8.14).

7.3 Seasonal and diurnal variations

In Figures 7.23 to 7.28 contour plots for 200, 400 and 600 km are shown. Each plot shows
the electron densities for all seasonal and diurnal conditions. The plot from original data
includes all ap and F107 for the regarding altitude layer. The model output is at mean
condition. On the right side an intersection is shown for midsummer (red line) and mid-
winter (blue).

The seemingly diferent shape of the contours is due to the uneven distribution of
data and physical conditions.
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7 Results of the Arecibo Model

In Figures 7.23 and 7.24 contourplots for 200 km are shown.
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Figure 7.23 Arecibo, original data, 200 km. Lines of constant electron densities (left) and
a crossection for midsummer and midwinter (right).
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Figure 7.24 Arecibo, model data, 200 km.
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7 Results of the Arecibo Model

In Figures 7.25 and 7.26 contourplots for 400 km are shown.
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Figure 7.25 Arecibo, original data, 400 km. Lines of constant electron densities (left) and
a cross section for midsummer and midwinter (right).

The seemingly diferent shape of the contours is due to the uneven distribution of
data and physical conditions.
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Figure 7.26 Arecibo, model data, 400 km.
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In Figures 7.27 and 7.28 contourplots for 600 km are shown.
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Figure 7.27 Arecibo, original data, 600 km. Lines of constant electron densities (left) and
a cross section for midsummer and midwinter (right).

The seemingly diferent shape of the contours is due to the uneven distribution of
data and physical conditions.
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Figure 7.28 Arecibo, model data, 600 km. Note the double peak at 12 and 18 h LT most
pronounced in April.

In general the model produces good outputs, sometimes higher electron densities
than measured sometimes lower due to uneven data coverage. For example it can occur
that in spring time there is more data at high solar activity because the incoherent scatter



7 Results of the Arecibo Model

radar was used for ionospheric measurements sometimes very sporadically and sometimes
very often.
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8 Results of the Svalbard Model

In the second part of the results we will discuss the model for Svalbard at 78° latitude.
Model prediction plots will be discussed and explained.

8.1 The Ionosphere at high latitude

At high latitudes the geomagnetic field runs nearly vertical which causes a more complex
ionosphere than at low- or middle latitudes. The magnetic field lines connect the iono-
sphere to the outer magnetosphere. The electron density at high latitude is very dynamic
and controlled by the solar wind. Due to vertical magnetic field lines this region is more
controlled by energetic particles emitted by the Sun.

In Figure 8.1 the dependence of electron density on altitude is plotted. All datapoints
are taken and a logarithmic mean is calculated.
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Figure 8.1 Logarithmic mean of the raw data electron densities, 20 km bins (Svalbard).
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8 Results of the Svalbard Model

To illustrate the ”learning” capability of the neural network, the learning- and out-
put electron density values are compared in Figure 8.2.

If we compare all datapoints used for testing (youngest 10 %) with the model’s
prediction, we get an RMStest error factor of 2.38 and for all datapoints we get an RMSall
error factor of 2.21.

As an example, the model for the lower ionosphere in the auroral zone (IMAZ),
delivers an RMS error factor of 2.26 (IMAZ v2, [McKinnell and Friedrich, (2007)]). IMAZ
is also an empirical model based on neural networks.

Figure 8.2 Distribution of neural network output vs. input (electron densities, Svalbard).

The predicted values appear to scatter equally below and above the input data,
where there is a bias to predict too large values in the Arecibo model ( Fig. 7.2). The
neural network is unable to reproduce data near to the edge of the input space (e.g. data
with 1012 are capped to 1011.7).
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8 Results of the Svalbard Model

8.2 Charts from model output

At first all parameters are fixed except for the hour of the day [UTC]. In Figures 8.3, 8.4
and 8.5 the plots for several altitudes at spring equinox, midwinter and midsummer are
shown.

Because of the slow sunrise/sunset at high latitudes the electron density increases
gradually when the sun rises and decreases again starting at sunset. Beyond the zenith
angle and the daily integrated insolation is plotted. The parameters ap and solar flux are
fixed to 13 and 175 Jy unless indicated otherwise.
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Figure 8.3 Svalbard, spring equinox, diurnal variations of Ne, hours [UTC], dummy data
(model output). Red crosses indicate the day-night border according to Ch.
5.7.
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Figure 8.4 Svalbard, Midwinter, dummy data (model output). Obviously there is no
diurnal variation due to full darkness for the whole day. Red crosses indicate
the day-night border according to Ch. 5.7.
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Figure 8.5 Svalbard, Midsummer, dummy data (model output).

The diurnal variation at midsummer in Fig. 8.5 is more pronounced than at mid-
winter because it is always daylight and zenith angle changes between 50 and 80 degrees
what can be seen in Figure 8.6 and 8.7.
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8 Results of the Svalbard Model

The next variant is to vary the day of year to get an idea of seasonal variations
in Svalbard. In Figure 8.6 and 8.7 electron densities for several altitudes at noon and
midnight are plotted.
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Figure 8.6 Svalbard, seasonal variation, Noon (model output).

Due to the latitude of 78° Svalbard has polar night and day which can clearly be
seen in zenith angle characteristics and well as in the electron densities.
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Figure 8.7 Svalbard, seasonal variation, Midnight (model output).

In Figures 8.8 and 8.9 electron density profiles are plotted for several solar fluxes
(140, 175 and 200 Jy) at spring equinox, noon and midnight. Due to vertical magnetic
field lines it is much easier for energetic particles to get into ionosphere.

Plots for midsummer, autumnal equinox and midwinter can be found in appendix
starting at Figure 11.1.
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Figure 8.8 Svalbard, spring equinox noon (model output).

In Figures 8.8 and 8.9 the true quiet electron density is plotted (dotted lines). Fur-
ther information about the true quiet electron density can be found in [Egger, (2004)].
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Figure 8.9 As Fig. 8.8, but for midnight.

The final parameter the geomagnetical index ap is varied. In Figures 8.10 and 8.11
several values of ap are plotted at noon and midnight for spring equinox. The influence
of ap is very small only at midnight there is a little dependence near the F-region peak.
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Figure 8.10 Svalbard, Spring equinox noon, dummy data (model output).
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Figure 8.11 Svalbard, Spring equinox midnight, dummy data (model output).

8.3 Sunset Night Decay

In Figure 7.17 for every hour after sunset an electron density profile is plotted. The
electron density decreases due to recombination. Note that the plot is produced from raw
data.
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Figure 8.12 Svalbard, electron density decay with hour after sunset (raw data).

In Figure 8.14 and 8.13 the gradient of Ne is plotted as a function of altitude for
hour after sunset and zenith angle. Note that the plots are produced from raw data.
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Figure 8.13 Gradient (Ne/hn) night(raw data). The red line indicates the lower quartile
of the data distribution. Below data are not considered relevant.

The electron density decay is approximately only about half the value obtained for
Arecibo (15 % per hour at higher altitudes).
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Figure 8.14 Gradient (Ne/za) night (raw data). The red line indicates the lower quartile
of the data distribution. Below data are not considered relevant.
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(a) Svalbard, spring equinox, night decay dependence
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(b) Svalbard, spring equinox, night decay dependence

on zenith angle (model output).

Figure 8.15 Due to darkness for the whole day above 160 km no useful results can be
produced.

8.4 Seasonal and diurnal variations

In Figures 8.16 to 8.21 contour plots for 200, 400 and 600 km are shown. Each plot
shows the electron densities for all seasonal and diurnal conditions. The plot from original
data includes all ap and F107 for the regarding altitude layer. The model output is at
mean condition. On the right side an intersection is shown for midsummer (red line) and
midwinter (blue line).In Figures 8.16 and 8.17 contourplots for 200 km are shown.
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Figure 8.16 Svalbard, original data, 200 km. It seems that the data coverage in summer is
not very good, which leads to an infirm model result for this season and height.
Lines of constant electron densities (left) and a crossection for midsummer
and midwinter (right).
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Figure 8.17 Svalbard, model data, 200 km. The shift of the peak can be explained with
uneven data coverage. In the raw data plots all solar and geomagnetic con-
ditions are included. The model output plot is produced at mean conditions.
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8 Results of the Svalbard Model

In Figures 8.18 and 8.19 contourplots for 400 km are shown.
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Figure 8.18 Svalbard, original data, 400 km. Lines of constant electron densities (left)
and a crossection for midsummer and midwinter (right).
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Figure 8.19 Svalbard, model data, 400 km.
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In Figures 8.20 and 8.21 contourplots for 600 km are shown.
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Figure 8.20 Svalbard, original data, 600 km. Lines of constant electron densities (left)
and a crossection for midsummer and midwinter (right).
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Figure 8.21 Svalbard, model data, 600 km.

In general at Svalbard the data coverage is not very good because most of the data
is from few years with very uneven data distribution. Nevertheless the model produces
useable predictions which corresponds well with seasonal and diurnal conditions like zenith
angle. And at high latitude it is due to a disturbed ionosphere obvious that many data was
measured under special conditions what makes it here difficult to compare model output
and original data.



9 Conclusion

For both models (Arecibo and Svalbard) the same input parameters are used, which are
listed in Table 9.1).

Altitude and pressure are used as input parameters because the combination of both
produces the best RMS. Pressure is calculated using the MSIS model.

To get the geomagnetic influences into the model the geomagnetic index ap and an
average value with 60 days preceding time (ap60) are used as input parameter. 60 days
does represent a pronounced optimum but was found to be a good compromise for all
altitudes. In general both at Arecibo and Svalbard the geomagnetic dependence is much
less than the dependence on solar flux. In general in Svalbard the geomagnetic (ap/kp,
Dst) influence is larger than in Arecibo.

As input for the solar activity the 10.7 cm solar flux (F107) and an average value
(F10760) with 60 days preceding time are used. Again 60 days was found to be a good
compromise.

For seasonal and diurnal variation of electron density it is important to find a way
to ”teach” the neural network a cyclic behaviour, for example the last day of year is 1 day
before the first day of the year and the model should produce similar results.

For seasonal variation the Daily Integrated Insolation (dii) and a 30 day averaged
(dii30) value are used as input parameter.

To model diurnal variation the Chapman production (ch) and an 11 hour averaged
value (ch11) are used as parameter for the neural network. Two inputs are used to make
it possible for the neural network to ”learn” asymmetric characteristics.

To model the diurnal and seasonal variation alternatively sine and cosine functions
may be used which produce good results as exercised by [McKinnell, (2002)]. Here the
Chapman production and Daily Integrated Insolation is used due to a better correlation
with electron density of these measures. Further details can be found in Ch. 6 Develop-
ment.
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9 Conclusion

Parameter Description

alt Altitude

logp Logarithm. air pressure

ap Geomagnetic index ap

ap60 Geomagnetic index ap, averaged, 60 days preceding time

F107 10.7 cm solar flux

F10760 10.7 cm solar flux, averaged, 60 days preceding time

dii Daily integrated insolation (seasonal variations)

dii30 Daily integrated insolation, averaged, 30 days preceding time

ch Chapman production (diurnal variations)

ch11 Chapman production, averaged, 11 hours preceding time

Table 9.1 Input parameters for the neural networks.

In Table 9.2 the models for Arecibo and Svalbard are compared. Further details can
be found in Ch. 4 Datasources. The data for both models come from ISR’s (Incoherent
Scatter Radar). An other comparison of two datasets (EISCAT and Millstone Hill) was
done bei [Lei et al.].

The data for the Svalbard model is augmented by data from 372 rocket flights from
Heiss Island (local time is corrected for Svalbard) and one rocket flight from Svalbard.

The electron density profiles for the Arecibo model are extended by approximately
20 % FIRI data (if minimum altitude of a profile reaches below 160 km) to increase sta-
bility at low altitude.

For the Arecibo model a neural network with 18 hidden nodes (3 hidden layers, 6
nodes each) is used. This architecture was found as optimum. For the Svalbard model
this type of neural network produces poor results due to a more disturbed ionosphere and
greater range of altitude. Therefore a neural network with 30 hidden nodes (5 hidden
layers, 6 nodes each) is used for the Svalbard model.
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Criteria Arecibo Svalbard

latitude 18.2° 78.2°

data source ISR ISR + rocket data (372)

data points 1,585,824 +20 % FIRI 1,459,262

profiles 98,554 162,507

hidden nodes 18 30

hidden layers 3 5

data time range 1966 to 2002 1996 to 2004

+ rocket flights since 1979 (below 100 km)

data distribution sporadic, within 36 years sporadic

most data within 8 years

altitude range 130 km to 700 km 60 km to 700 km

RMS error factor 2.09 2.21

Table 9.2 Comparison of Arecibo and Svalbard model.

The RMS error factors (model output is compared with all measured data) are 2.09
(Arecibo) and 2.21 (Svalbard) which is usable for predictions and is compareable to other
models as IMAZ (RMS = 2.26, [McKinnell and Friedrich, (2007)]) or IRI (RMS = 2.20,
when compared with the Arecibo data).

Due to a more disturbed ionosphere at higher latitude and a greater altitude range
the RMS error factor is slightly higher. Probably the RMS difference would be greater if
the measured data from Arecibo would have a constant good quality like data from the
80’s or younger (shown in Ch. 6.1.3).

The Arecibo model produces good results from 130 to about 700 km due to less
coverage at low altitude. The Svalbard model produces good results from 80 to about 700
km due to rocket data down to 60 km. Due to the uneven data coverage of the first years
of operation used here more data over a longer time range would be needed to improve
this model. Notably low solar activity conditions currently are only poorly covered.



10 Table of variables and abbreviations

Name Description

η Learning rate of a neural network

χ Zenith angle,

alt Altitude

ap Geomagnetic index ap

ch, chza Chapman production

dmax Maximum tolerated difference between input and output

Dst Geomagnetic index dst

F107 10.7 cm solar flux

I The angle of the wave relative to the horizon

kp Geomagnetic index kp

Ne Electron density [m−3]

IMAZ Ionosphere Model for Auroral Zone

IRI International Reference Ionosphere

EISCAT European Incoherent Scatter Radar

NAIC National Astronomy and Ionosphere Center

NOAA National Oceanic and Atmospheric Administration

PCA Polar Cap Absorption

RMS Root Mean Square

SNNS Stuttgart Neural Network Simulator

SSE Summed Squared Error

Table 10.1 Used variables and abbreviations.
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11 Appendix

In appendix the most important Matlab functions are explained and additional plots are
shown.

11.1 Matlab Software Architecture

In this section it is briefly desrcibed how the Matlab (R14) software works and what its
main functions do.

The training of the neural network itself is done with SNNS due to its much better
performance concerning speed and ability to process large amounts of training data. But
all process steps around are done with MATLAB. At first all model parameters are ad-
justed in d indunet (11.1.1). If we run this script all process steps are done auomatically,
the filter file is written(11.1.2), the pattern files are written and the SNNS batch file is
generated and started.

The script d write pattern saves a MATLAB matrix in a SNNS pattern file format.
These files are read by SNNS batch processor.

Every neural network is stored in an own directory tree, 5 different networks are
trained and after that compiled together with a MEX File to get an MATLAB function.
With this MATLAB function it is possible to directly produce predictions by passing
normalized input parameters to the function. At the end the d indunet script evaluates
the neural network by comparing all datapoints with the predictions.

In another script called d rms batch all dummy plots are produced by fixing most
input parameters and vary just the parameters which should be observed.

11.1.1 d indunet

In the script d indunet ar respectively d indunet sh all parameters for a new model(network)
are to be edited.
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11.1.2 d writefilter

The function d writefilter contains all values which are important for filtering and norming
input and output data for the neural network.

All values are stored in a matrix, in the function standard values are coded which
can be edited by parameters of the function. So in d indunet filter values can be edited,
for example data should be filtered for datapointswhere altitude is lower than 170 km.

11.2 Additional Plots

11.2.1 Arecibo
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Figure 11.1 Arecibo, Midsummer noon, dummy data (model output).
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Figure 11.2 Arecibo, Midsummer midnight, dummy data (model output).
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Figure 11.3 Arecibo, Autumnal eqinox noon, dummy data (model output).
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Figure 11.4 Arecibo, Autumnal equinox midnight, dummy data (model output).

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13
0

100

200

300

400

500

600

700

electron density [1/m³]

al
tit

ud
e 

[k
m

]

Midwinter noon, varied inputs: alt, f107;   dn=355  hn=16.5  ap=17.2  

80  Jy
130  Jy
IRI 2007 147 Jy
180  Jy

Figure 11.5 Arecibo, Midwinter noon, dummy data (model output).
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Figure 11.6 Arecibo, Midwinter midnight, dummy data (model output).

11.2.2 Svalbard
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Figure 11.7 Svalbard, Midsummer noon, dummy data (model output).
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Figure 11.8 Svalbard, Midsummer midnight, dummy data (model output).
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Figure 11.9 Svalbard, Autumnal equinox noon, dummy data (model output).
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Figure 11.10 Svalbard, Autumnal equinox midnight, dummy data (model output).
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Figure 11.11 Svalbard, Midwinter noon, dummy data (model output).
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