
Dipl.-Ing. Christian Bachmann

Automated Power Emulation
Methodology For Power-Aware

Hardware/Software Codesign of SoCs

————————————–

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr. techn.)

durchgeführt am Institut für Technische Informatik
Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Graz, im März 2011



Dedicated to my family:
Minu kallis Mari, my parents and my brother.

For your continuous support and understanding.



EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen / Hilfsmittel nicht benutzt und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz, the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Signature)



Kurzfassung

Insbesondere im Hardware/Software Codesignprozess von Systems-on-Chip (SoC), die für
den Einsatz in mobilen Geräten bestimmt sind, spielt die Berücksichtigung der Leistungs-
aufnahme eine immer wichtigere Rolle. Die Komplexität dieser Systeme nimmt durch die
höher werdenden Performance-Anforderungen neuer Applikationen stetig zu. Die Fort-
schritte im Bezug auf die Energiespeicherung sowie das Nutzen der Umgebungsenergie
(”Energy Harvesting”) hinken dieser Entwicklung allerdings hinterher und verschärfen
somit die Forderung nach SoC-Designs mit niedrigem Energiebedarf. Die steigende Kom-
plexität wirkt sich auch erschwerend auf die Untersuchung der Leistungsaufnahme im
Rahmen des Hardware/Software Codesigns aus, da die Simulation des gesamten Systems
immer aufwändiger wird und erhebliche Simulationsdauern nach sich zieht. Der Hardware-
beschleunigte Ansatz zur Emulation der Leistungsaufnahme eines SoC-Designs, auch als
”Power Emulation” bezeichnet, stellt eine vielversprechende Alternative zu Softwaresimu-
latoren dar. Die Abschätzung der Leistungsaufnahme kann parallel zur funktionalen Emu-
lation mit hoher Geschwindigkeit durchgeführt werden. Allerdings operieren ursprüngliche
Power-Emulations-Ansätze auf niedrigem Abstraktionsniveau, verursachen daher einen
hohen zusätzlichen Hardwareaufwand und eignen sich nur beschränkt für die Emulation
ganzer Systeme. Ansätze auf höherer Abstraktionsebene (”High-Level Power Emulati-
on”) verursachen nur geringen Zusatzaufwand und erlauben dadurch höhere Emulations-
geschwindigkeiten. Der Erstellung einer generischen Methodik, die die Verwendung des
High-Level Power-Emulations-Ansatzes im Entwurfsprozess vereinfacht, wurde bis jetzt
allerdings nur wenig Aufmerksamkeit geschenkt. Des Weiteren ist die Verwendung der
Power Emulation, unter Berücksichtigung von Anforderungen an Leistungsaufnahme und
Performance, im Hardware/Software Codesign bisher wenig untersucht.

Diese Arbeit stellt eine automatisierte Methode vor, um die High-Level Power Emu-
lation von SoC-Designs zu ermöglichen. Zu diesem Zweck wird sowohl die automatisierte
Erstellung von High-Level Modellen der Leistungsaufnahme als auch die automatisierte
Hardware-Implementierung dieser Modelle behandelt. Die resultierende High-Level Power-
Emulations-Plattform wird anschließend im Hardware/Software Entwurfsprozess verwen-
det. Durch die Integration der zur Laufzeit geschätzten Leistungsaufnahmeprofile in eine
Software-Entwicklungsumgebung, wird die Software-Optimierung unter Berücksichtigung
der Leistungsaufnahme stark vereinfacht. Des Weiteren können die Profile für die au-
tomatische Detektion und Optimierung von Spitzen in der Leistungsaufnahme, die die
Stabilität des Systems gefährden, verwendet werden. Die zusätzliche Hardware-basierte
Überwachung der Performance des Systems ermöglicht Hardware/Software-Optimierungen
bezüglich der Leistungsaufnahme und des Energieverbrauches bei gleichzeitiger Berück-
sichtigung der Auswirkungen auf die Performance des Systems.

Anhand zweier, prototypischer SoC-Designs, deren jeweilige Anwendungsdomäne einen
überaus energieeffizienten Entwurf erfordert, wird die vorgestellte Methode erfolgreich
evaluiert. Durch die Erstellung einer High-Level Power-Emulations-Plattform für beide
Systeme wird die Anwendbarkeit im Hardware/Software Codesignprozess dargestellt.

i



Abstract

Power-awareness has become increasingly significant in the hardware/software codesign
process of system-on-chip (SoC) designs, particularly for mobile devices. With the increas-
ing complexity of SoCs, fueled by new applications and higher performance requirements,
and combined with the expected slow progress in the enhancement of energy storage de-
vices as well as energy harvesters, the low-power design requirement for these systems will
become even more important. The rising design complexity also affects the simulation-
based power consumption profiling and analysis within the hardware/software codesign
process, as the simulation of entire systems becomes increasingly difficult due to extensive
simulation times. Hardware-accelerated power emulation techniques represent a promis-
ing alternative to software simulators, performing the power estimation process at high
speeds alongside the standard functional emulation of the system-under-test. While low-
level power emulation approaches suffer from large area overheads that complicate their
use for the full-system emulation of large designs, high-level power emulation approaches
entail only low overheads and allow for high emulation speeds. However, only little at-
tention has been awarded so far to the problem of devising a generic methodology for
automatically enabling the high-level power emulation of a given system-under-test. Fur-
thermore, the use of the high-level power emulation technique in the codesign process
for both power- and performance-aware hardware/software power optimization is little
explored.

This work presents an automated power emulation methodology that aims at enabling
the high-level power emulation of novel SoC designs. To this end, the methodology ad-
dresses both the automated high-level power model creation and the automated implemen-
tation of the derived power model in hardware. The resulting power emulation platform
can then be used in the power-aware hardware/software codesign process. The integration
of the run-time power estimates, generated by the platform, into a standard software de-
velopment environment allows for truly power-aware software optimizations. Furthermore,
the power profiles can be employed to automatically detect and reduce software-induced
power consumption peaks that are threatening the system’s stability. By additionally
enabling the monitoring of hardware performance events, hardware and software power
optimizations can be performed while considering their performance impact.

The automated power emulation methodology is successfully evaluated on two pro-
totypical SoC designs that are operating in very power- and energy-constrained environ-
ments. By creating high-level power emulation platforms for both test systems, the ap-
plicability of the high-level power emulation technique in the hardware/software codesign
process is illustrated.

ii



Acknowledgements

This dissertation is part of the POWERHOUSE project that constituted a successful
collaboration between the Institute for Technical Informatics at the Graz University of
Technology, the Infineon Design Center Graz as well as the AustriaCard GmbH, Vienna.
I would like to thank all the people from these three organizations who supported me and
my work in the course of this dissertation. As it is not possible to mention everyone, I
would like to name but a few.

I would like thank Prof. Reinhold Weiß of the Institute for Technical Informatics, for
providing the research facilities as well as his guidance and helpful advice in the course of
composing this dissertation. I am especially grateful to Christian Steger for his thoughtful
supervision of the project, beneficial feedback and comprehensive advice. I would also like
to thank all students contributing to this project: Daniel Reitz, Michael Schön, Daniel
Wittibschlager, Michael Lackner, Stephan Gether and Michael Schaffernak. Special thanks
also go to my PhD colleagues Armin Krieg and Johannes Grinschgl for providing beneficial
feedback on this thesis.

Furthermore, I am particularly grateful to our project leader Josef Haid of Infineon, for
the great amount of guidance, advice and inspiration he contributed to this dissertation.
I would like to thank the entire team of the Infineon CC Concept Engineering group for
their support and for welcoming me with open arms: Dietmar Scheiblhofer for providing
a great working environment in his group and for all system-level support. Bernd Zimek,
Thomas Leutgeb, Albert Missoni for sharing their deep knowledge regarding analog- and
RF-related topics. Robert Hofer and Christian Goral for always being very helpful in
investigating all aspects of firmware and software development. Furthermore, I would
like to thank Holger Bock for his great effort in project funding and project management
support. I would also like to thank Klaus Holler for always sharing his extensive EDA
knowledge and for his helpful assistance in solving the numerous EDA-related issues.

I would like to thank Christiane Ulbricht of AustriaCard for providing beneficial in-
sights into customer requirements for power-aware software development and helpful feed-
back. Furthermore, I would like to thank the Austrian Federal Ministry for Transport,
Innovation, and Technology for providing us with funding for the POWERHOUSE project
under the FIT-IT contract FFG 815193. Without this funding my dissertation would not
have been possible.

Special thanks go to my colleague Andreas Genser for the perfect collaboration during
the last three years. Our inspiring discussions based on his deep understanding of hard-
ware/software codesign and his numerous well-founded comments constitute a considerable
contribution to the success of this project.

Finally, I would like to express my gratitude to my family for their continuous support
in the course of my studies and my dissertation. I owe my deepest gratitude to my dear
Mari for her great support, her patient love and her understanding during this challenging
period of both our lives.

Graz, March 2011 Christian Bachmann

iii



Extended Abstract

Rapid advances in the integration level of semiconductor devices during the past four
decades have enabled the realization of entire Systems-on-Chip (SoCs) that form the basis
for a multitude of novel applications. The required functionality for these applications
is in most cases achieved by the interplay of hardware and software components. These
components are typically designed in a concurrent approach that is referred to as hard-
ware/software codesign. Particularly in - but not limited to - the codesign process of
mobile devices, power-awareness has become increasingly significant. In fact, the power
consumption is considered as one of the major design constraints besides the speed and
silicon area constraints.

While the complexity of future systems-on-chip is expected to increase further over the
coming years, progress in extending the capacity of energy storage devices and in improving
the efficiency of energy harvesters is forecast to be lagging behind. Therefore the low-
power and low-energy design requirements will become even more stringent. For meeting
these requirements, advanced power management techniques will have to be used, such
as fine-grained clock- and power gating, dynamic voltage and frequency scaling (DVFS)
as well as special low-power and hibernation states of system components. These power
management features further increase the system’s complexity and have to be considered
by both hardware and software engineers in all stages of design and verification.

The rising design complexity poses a challenge to the purely simulation-based power
consumption analysis and verification within the hardware/software codesign process. The
full-system simulation of large designs is becoming more and more difficult due to extensive
simulation times. By raising the level of abstraction employed in the simulation a higher
simulation performance can be achieved but the simulation accuracy decreases. This
increases the risk of concealing the low-level implications and side effects of design decisions
and optimizations.

With the availability of field programmable gate arrays (FPGAs), able to contain large
system designs, emulation-based power estimation approaches have become a promising
alternative to software simulators. The power emulation technique, i.e., the hardware-
accelerated power estimation process, allows for generating cycle-accurate power consump-
tion estimates at high speeds. Initial low-level power emulation approaches, however, suffer
from extensive overheads in terms of required FPGA resources, rendering the power emu-
lation of large systems infeasible. Therefore, high-level power emulation approaches have
been introduced that only entail small overheads and allow for high emulation speeds.

The POWERHOUSE project, in which this work is embedded, aims at harnessing
the benefits of hardware emulators for accelerating the power-aware hardware/software
codesign process. To this end, a high-level, run-time power emulation methodology is
devised and integrated into the codesign process. The resulting power emulation platform

iv



speeds-up the power-aware hardware/software codesign process and enables the rapid
power management exploration for novel system designs.

In this work an automated power emulation methodology for use in a power-aware
hardware/software codesign process of systems-on-chip is presented. This methodology
and its main components are depicted in Figure 1.

Automated Power Modeling Automated Hardware 

Implementation

Power-Aware Software 

Optimization

Power-Constrained System-on-Chip

Power- and Performance-Optimized SoC

Parameter Selection

Coefficient Fitting

Simulation Measurement

Automated Power 

Profile Optimization

Power-Aware Software 

Development

Joint Power Emulation and 

Performance Monitoring

Hardware Performance 

Monitoring Instantiation

Multi-Core Power 

Emulation

*.c/h

SoftwareHardware

*.c/h

Opt. SWOptimized HW

5 1

8 2

*.vhd

A
u
to
m
a
te
d
 h
ig
h
-l
e
v
e
l 
p
o
w
e
r
 e
m
u
la
ti
o
n
 

P
o
w
e
r
-a
w
a
r
e
 H
W
/
S
W
 c
o
d
e
s
ig
n

Power Emulation Platform

of System-on-Chip P
o
w
e
r

Time

HDL Model 

Adapation

Power Emulation 

Unit Generation

Power Model

PE UnitSoftware/Hardware-under-Test

*.c/h

Figure 1: Automated power emulation methodology for power-aware hardware/software codesign

The proposed methodology aims at automatically enabling the power emulation of a
given system-under-test. To this end, an automated power modeling step creates a high-
level power macromodel that captures both dynamic and static power consumption of the
given system1. Based on a set of microbenchmarking applications, a training set con-
sisting of power consumption estimates and activity data is derived using state-of-the-art

1Automated Power Characterization for Run-Time Power Emulation of SoC Designs, 13th IEEE Eu-
romicro Conference on Digital System Design: Architectures, Methods and Tools 2010 (DSD ’10), Lille,
France, 1-3 Sept. 2010.

v



simulation tools. At later design stages, i.e., when first tape-out silicon is available, power
consumption measurement data can be integrated into the training set. The training set
data are analyzed in a subsequent parameter selection stage that aims at identifying in-
ternal signals of which the activity data correlate well with the power consumption data.
These signals are then used as power model parameters in the high-level power macro-
model. Finally, a model coefficient fitting step employs a least squares fitting algorithm
to derive coefficients for the chosen parameters.

For enabling the power emulation of the given system-under-test this high-level power
model needs to be implemented in hardware. For this purpose an automated hardware
implementation step has been devised that replaces the time-consuming and error-prone
manual hardware implementation of the power emulation functionality1. First, the hard-
ware description language (HDL) model of the system is analyzed and modified to al-
low for the monitoring of all internal signals that are employed by the high-level power
macromodel. Second, the power emulation hardware, i.e., the power emulation unit, is
generated from HDL templates and its internal structure is adapted to the used power
model. This power emulation unit monitors all signals representing power model param-
eters and thereby generates cycle-accurate power estimates during the run-time of the
system-under-test.

After performing the automated power modeling and hardware implementation, the
resulting power emulation platform of the given system-on-chip design can be utilized
in the power-aware hardware/software codesign process2. By additionally introducing a
joint power emulation and performance monitoring approach, the run-time monitoring of
hardware performance indicators allows designers to evaluate design trade-offs between
the power/energy consumption and the performance of the system3. Furthermore, the
automated power emulation methodology has been extended to enable the joint power
emulation and performance monitoring in heterogeneous multi-core environments.

The application of the power emulation methodology for enabling power-aware soft-
ware optimization represents a main goal of the POWERHOUSE project. To achieve this
goal, the generated run-time power estimates are being integrated within a standard soft-
ware development environment4. The analysis of the recorded power consumption traces
provides valuable power feedback to software engineers and allows for refined power-aware
software optimization.

The run-time power estimates can also be used for the automated detection and reduc-
tion of power consumption peaks. Especially in power constrained mobile systems these
power peaks can lead to supply-voltage drops below critical limits and, hence, threaten the

1Automated Power Characterization for Run-Time Power Emulation of SoC Designs, 13th IEEE Eu-
romicro Conference on Digital System Design: Architectures, Methods and Tools 2010 (DSD ’10), Lille,
France, 1–3 Sept. 2010.

2An Emulation-Based Real-Time Power Profiling Unit for Embedded Software, 9th IEEE International
Symposium on Systems, Architectures, Modeling, and Simulation 2009 (SAMOS ’09), Samos, Greece,
20–23 July 2009.

3An Emulation-Based Platform for Power- and Performance-Aware HW/SW Development of Embedded
Multi-Core Systems, submitted for publication / under review, 2011.

4Accelerating Embedded Software Power Profiling Using Run-Time Power Emulation, 19th International
Workshop on Power and Timing Modeling, Optimization and Simulation 2009, (PATMOS ’09), Delft, The
Netherlands, 9–11 Sept. 2009, published in Springer Lecture Notes in Computer Science, 2010, Volume
5953.

vi



system’s reliability. For analyzing and optimizing power consumption peaks during the de-
sign phase, an automated power peak reduction framework has therefore been introduced
that automatically detects and reduces software-induced power consumption peaks5. De-
pending on the software-controllable power management features available on the given
system an optimization strategy is chosen and applied to the software application’s source
code. Furthermore, a run-time power profile flattening approach based on the hardware-
accelerated power estimation technique has been presented that eliminates the need for
costly on-chip measurement hardware6.

To summarize, this dissertation introduces an automated power emulation method-
ology that aims at automatically enabling the power emulation of novel system-on-chip
designs. By covering both the high-level power macromodel creation and the subsequently
required hardware implementation of the power model, the effort for enabling power emu-
lation in a hardware/software codesign environment is vastly reduced. Furthermore, this
work illustrates the benefits of using this high-level power emulation approach for power-
as well as performance-aware hardware and software optimization.

5An Automated Framework for Power-Critical Code Region Detection and Power Peak Optimization
of Embedded Software, 20th International Workshop on Power and Timing Modeling, Optimization and
Simulation 2010, (PATMOS ’10), Grenoble, France, 8–10 Sept. 2010, published in Springer Lecture Notes
in Computer Science, 2011, Volume 6448.

6Estimation-Based Run-Time Power Profile Flattening for RF-Powered Smart-Card Systems, 11th IEEE
Asia Pacific Conference on Circuits and Systems, (APCCAS ’10), Kuala Lumpur, Malaysia, 6–12 Dec.
2010.

vii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Need for Power-Awareness in Hardware/Software Codesign . . . . . . . 2
1.1.2 Increasing SoC Design Complexity Challenge . . . . . . . . . . . . . . . . . 3
1.1.3 Limitations of State-of-the-Art Power Emulation Methods . . . . . . . . . . 4
1.1.4 Missing Integration of Power Emulation in HW/SW Codesign . . . . . . . . 4
1.1.5 Motivational Example: Low-Power ASIP HW/SW Codesign . . . . . . . . . 5

1.2 Automated Power Emulation Methodology For Power-Aware HW/SW Codesign . 6
1.2.1 The POWERHOUSE Project . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Contributions and Significance . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9
2.1 Power Consumption Profiling Methods . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Measurement-Based Power Profiling Methods . . . . . . . . . . . . . . . . . 9
2.1.2 Estimation-Based Power Profiling Methods . . . . . . . . . . . . . . . . . . 10

2.2 Power and Performance Profiling for HW/SW Codesign . . . . . . . . . . . . . . . 12
2.3 Power Peak Optimization of Embedded Software . . . . . . . . . . . . . . . . . . . 13
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Novel Automated Power Emulation Methodology For Power-Aware HW/SW
Codesign 16
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Automated Power Emulation Methodology . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 High-Level Power Emulation Technique . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Automated Power Modeling for Power Emulation . . . . . . . . . . . . . . . 18
3.2.3 Automated Power Emulation Hardware Implementation . . . . . . . . . . . 19

3.3 Power-Aware HW/SW Codesign Based on Power Emulation . . . . . . . . . . . . . 20
3.3.1 Joint Power Emulation and Performance Monitoring for Multi-Core Systems 20
3.3.2 Power-Aware Software Development Using Power Emulation . . . . . . . . 21
3.3.3 Emulation-Based Power Peak Optimization of Embedded Software . . . . . 21

4 Evaluation of Methodology and Case Studies 23
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Power Emulation Test Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Automated Power Emulation Methodology . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Automated Power Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Power Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.3 Power Emulation Hardware Generation and Implementation . . . . . . . . . 27

viii



4.3.4 Power Emulation Performance . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Emulation-Based Power-Aware HW/SW Codesign . . . . . . . . . . . . . . . . . . 29

4.4.1 Joint Power Emulation and Performance Monitoring . . . . . . . . . . . . . 29
4.4.2 Power-Aware Software Development Using Power Emulation . . . . . . . . 31
4.4.3 Emulation-Based Power Peak Optimization of Embedded Software . . . . . 31

5 Conclusion and Future Work 34
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Hybrid Power and Fault Attack Emulation for Trusted SoC Design . . . . . 36
5.2.2 Run-time Thermal Estimation Based on Power Emulation . . . . . . . . . . 36

6 Publications 38
6.1 A Low-Power ASIP for IEEE 802.15.4a Ultra-Wideband Impulse Radio Baseband

Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 An Emulation-Based Real-Time Power Profiling Unit for Embedded Software . . . 46
6.3 Automated Power Characterization for Run-Time Power Emulation of SoC Designs 53
6.4 An Emulation-Based Platform for Power- and Performance-Aware HW/SW Devel-

opment of Embedded Multi-Core Systems . . . . . . . . . . . . . . . . . . . . . . . 61
6.5 Power Emulation: Methodology and Applications for HW/SW Power Optimization 75
6.6 Accelerating Embedded Software Power Profiling Using Run-Time Power Emulation 80
6.7 An Automated Framework for Power-Critical Code Region Detection and Power

Peak Optimization of Embedded Software . . . . . . . . . . . . . . . . . . . . . . . 90
6.8 Estimation-Based Run-Time Power Profile Flattening for RF-Powered Smart-Card

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

References 104

ix



List of Figures

1 Automated power emulation methodology for power-aware hardware/software code-
sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1.1 Power-awareness in the IT systems of the future ([2], with modifications) . . . . . 1
1.2 Generic hardware/software codesign flow with focus on power-awareness . . . . . . 2
1.3 Expected consumer portable SoC design complexity trends (ITRS) [11] . . . . . . . 3
1.4 Expected consumer portable SoC power consumption trends (ITRS) [11] . . . . . . 3
1.5 Time to simulate/emulate 1s of large-scale CMP workload execution ([13], with

modifications) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Architecture of the UWB ASIP [19] . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Different power states of the UWB ASIP [19] . . . . . . . . . . . . . . . . . . . . . 5
1.8 Overview of the POWERHOUSE methodology ([20], with modifications) . . . . . 6

2.1 Overview of HW/SW power profiling methods . . . . . . . . . . . . . . . . . . . . 9
2.2 Generic simulation vs. generic hardware-accelerated power estimation methods . . 11

3.1 Overview of automated power emulation methodology for power-aware hardware/software
codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Power emulation unit [62] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Simulation- and measurement-based automated power modeling methodology for

power emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Automated power emulation hardware implementation . . . . . . . . . . . . . . . . 19
3.5 Joint power emulation and performance monitoring method . . . . . . . . . . . . . 20
3.6 Use of power emulation platform in a standard software development tool flow [63] 21
3.7 Integration of power emulation data into a standard software development environment 21
3.8 Framework for emulation-based power peak optimization of embedded software [64] 22

4.1 Average and RMS estimation error for different power models [62] . . . . . . . . . 25
4.2 Per-benchmark average error (left) and total average and RMS error (right) for the

smart card microcontroller power model . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Per-benchmark average error (left) and total average and RMS error (right) for the

multi-processor core power model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Integration of smart card test system and power emulation unit . . . . . . . . . . . 27
4.5 Integration of multi-processor test system and power emulation unit . . . . . . . . 27
4.6 Integration of multi-processor test system and joint power emulation and perfor-

mance monitoring functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Emulation-based power and performance profiling illustrating the impact of compiler

optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 Emulation-based power and performance profiling illustrating the impact of manual

array access optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

x



4.9 Emulation-based power and performance profiling of a Linux task migration between
two processor cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.10 Power-aware software development GUI based on power emulation . . . . . . . . . 32
4.11 Emulated power consumption and resulting supply voltage profiles of non-optimized

software application [64] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.12 Emulated power consumption and resulting supply voltage profiles of optimized

software application [64] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Overview of the publications covering the automated power emulation methodology
for power-aware HW/SW codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



List of Tables

4.1 Architectural parameters for the smart card microcontroller test system [65] . . . . 24
4.2 Architectural parameters for the multi-processor test system [45] . . . . . . . . . . 24
4.3 Power model parameter selection effort [62] . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Power model parameters for smart card microcontroller test system . . . . . . . . . 25
4.5 Power model parameters for multi-processor test system . . . . . . . . . . . . . . . 25
4.6 Comparison of HDL implementation effort for power emulation on smart card mi-

crocontroller test system [62] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 FPGA utilization for power emulation of smart card test system . . . . . . . . . . 28
4.8 FPGA utilization for power emulation of quad-core multi-processor test system . . 28
4.9 Simulation vs emulation time comparison for multi-processor test system . . . . . . 28
4.10 Monitored performance events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 Power peak optimization impact on the execution time . . . . . . . . . . . . . . . . 33
4.12 Power peak optimization impact on the code size . . . . . . . . . . . . . . . . . . . 33

xii



List of Abbreviations
AES Advanced Encryption Standard
ASIP Application-Specific Instruction-Set Processor
CAN Controller Area Network
CMOS Complementary Metal Oxide Semiconductor
CMP Chip Multi-Processor
CS Control Set
DES Data Encryption Standard
DVFS Dynamic Voltage and Frequency Scaling
EDA Electronic Design Automation
FPGA Field Programmable Gate Array
HDL Hardware Description Language
HW Hardware
IEEE Institute of Electrical and Electronics Engineers
ITRS International Technology Roadmap for Semiconductors
LUT Look-Up Table
MAC Multiply-Accumulate
NFI Non-Functional Instruction
NNLS Nonnegative Least Squares
NVM Non-Volatile Memory
MPSoC Multi-Processor System-on-Chip
NoC Network-on-Chip
PE Power Emulation
RFID Radio Frequency Identification
RAM Random-Access Memory
RMS Root-Mean-Square
RNG Random Number Generator
ROM Read Only Memory
RSA Rivest-Shamir-Adleman Public Key Cryptography
RTL Register Transfer Level
SoC System-on-Chip
SMP Symmetric Multi-Processing
SPARC Scalable Processor Architecture
SW Software
TRNG True Random Number Generator
TS Training Set
UART Universal Asynchronous Receiver / Transmitter
VGA Video Graphics Array
VLIW Very Long Instruction Word

xiii



Chapter 1

Introduction

1.1 Motivation

The rapid advances in the integration level of semiconductor devices during the past four
decades, as predicted by Moore’s law1 [1], have drastically increased the performance and
the functionality of integrated circuits (ICs). At the same time these advances have made
it possible to decrease the chip area and, hence, to decrease the costs. As a consequence,
the integration of entire systems on a single chip (”systems-on-chip”) has become feasible.

- Electricity costs
- Cooling costs
- Environmental aspects

Server Farms

Data Centers

Cloud Storage

Base Stations

Mobile Phones

Smart Phones

Personal 
Digital 

Assistants

Identifcation 
(RFID)

Navigation
(GPS) Mobile 

Entertainment

Mobile
Computers

Optical

Acoustic

Vibration

Chemical

Electrical

Authentication

Location

Force

Sensors / 

Actuators

Mobile 

Access

Core

Thermal

Lab-on-Chip

Soft Sensors

Sensor Nodes

Bio Sensors

MEMS

Smart Dust

Sensor / Actuator Swarm

Mobile Access

Infrastructural Core

- Battery lifetime
- Form factor
- Portability

- Energy harvesting
- Energy autonomy
- Miniaturization

© Maschinenjunge /

Wikipedia

© http://chem.agilent.com

© http://hp.com

© http://samsung.com

© http://nasatech.com

© http://hp.com

© http://freescale.com

© http://nordicid.com

© http://bsac.eecs.

berkeley.edu

Figure 1.1: Power-awareness in the IT systems of the future ([2], with modifications)

The advent of these technologies paves the way for a multitude of new applications
and may lead to a future IT platform as illustrated in Figure 1.1. The envisioned IT

1The doubling of components per chip roughly every 18 months.

1



1. Introduction 2

platform [2], consists of three main layers: (1) an infrastructural core providing most of
the computational resources as well as data storage capacities, (2) a mobile access layer
enabling user interaction as well as serving as a gateway to the core and (3) a swarm of
mostly minuscule sensor and actuator nodes.

For devices on all of these layers a minimization of power and energy consumption is of
increased interest for several reasons [3]: In large-scale data and computing centers on the
one hand a reduction of operational costs for electricity and cooling is the main motivator.
Besides, the minimization is also consistent with the global awareness of environmental
issues. For mobile devices and sensor/actuator nodes on the other hand, the stringent low-
power and low-energy requirements are determined by the limitations of the used energy
storage or energy harvesting devices. Furthermore, device form factors and the need for
miniaturization play an important role.

1.1.1 The Need for Power-Awareness in Hardware/Software Codesign

A great majority of the systems envisioned in this future IT platform will possess the
required functionality and abilities thanks to the interplay of hardware and software com-
ponents. The design of these components is typically carried out in a concurrent matter
that is referred to as hardware/software codesign [4]. In this codesign process the power
consumption has become an increasingly stringent constraint.

Regarding hardware design, power-awareness has become a major issue in CMOS-
based integrated circuit (IC) design since the early 1990s. At that time steep power
dissipation increases, caused by exponentially rising microprocessor operating frequencies,
sparked the interest in low-power design [5]. In the following years the power consumption
constraint was added to the previously existing IC design constraints regarding speed and
silicon area. For software design power-awareness similarly plays an important role, as
software can significantly influence average, peak and instantaneous power of the hardware
execution platform [6].

A number of power-aware optimizations, such as clock and power gating [7, 8], guarded
evaluation [9] and dynamic voltage and frequency scaling (DVFS) [10], have been intro-
duced, aiming at the reduction of the power consumption. The verification of power
constraints and the evaluation of the effectiveness of power-aware optimizations represent
significant parts of the hardware/software codesign flow as depicted in Figure 1.2.

Constraints met 

Design Completion

Constraints not met

Design Iteration

Design & Synthesis

Hardware

Software

Verification

Functionality

Power Cons.

Analysis & 

Evaluation

Application

Constraints

Partitioning & 

Mapping

Figure 1.2: Generic hardware/software codesign flow with focus on power-awareness



1. Introduction 3

1.1.2 Increasing SoC Design Complexity Challenge

Ever increasing demands for higher performance and new functionality, fueled by new ap-
plications, are the drivers for a continued rise in design complexity. This rising complexity
poses a challenge to hardware and software development as well as to verification.

For a typical consumer portable system-on-chip (SoC) device, as it could be envisioned
on the mobile access layer in the example introduced before, Figure 1.3 illustrates the In-
ternational Technology Roadmap for Semiconductors (ITRS) [11] forecast regarding the
increase in the number of processing engines. Each engine represents a specifically cus-
tomized processor that is used alone or in conjunction with other engines to implement a
given function [11].

The increase in design complexity is also reflected by an increase in forecast power
consumption levels of these consumer portable SoCs as shown in Figure 1.4. This in-
crease is affecting both the dynamic as well as the static power consumption of logic and
memory components. While phases of total power reduction are also expected, due to
the assumed introduction of new technologies and a decrease in supply voltage, the over-
all trend is clearly indicating an increasing power consumption. Note that the forecast
power consumption requirement remains unaltered due to slow progress in extending the
capacity of energy storage devices and in improving the efficiency of energy harvesters,
further aggravating the need for innovative low power design and novel power management
methods.

N
u
m
b
e
r 
o
f 
P
ro
c
e
s
s
in
g
 E
n
g
in
e
s

3000

2500

2000

1500

1000

500

0

54 90 129 166
238

309
398

502

645

809

1041

1323

1658

2136

2713

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Year

Trend: Number of Processing Engines

Figure 1.3: Expected consumer portable SoC
design complexity trends (ITRS) [11]

6000

5000

4000

3000

2000

1000

0

7000

8000

P
o
w
e
r 
[m
W
]

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Requirement: Dynamic + Static Power

Trend: Memory Dynamic Power

Trend: Memory Static Power Trend: Logic Static Power

Trend: Logic Dynamic Power

Figure 1.4: Expected consumer portable SoC
power consumption trends (ITRS) [11]

For meeting these stringent low-power requirements advanced power management tech-
niques will have to be deployed in SoC designs, such as such as fine-grained clock- and
power gating, dynamic voltage and frequency scaling (DVFS) as well as special low-power
and hibernation states of system components. Furthermore, leakage power management
will be of increased interest with future nanoscale technology nodes [12]. The introduction
of these advanced power management techniques will further increase the overall design
complexity.

The increasing design complexity, however, renders simulation-based exploration and
verification approaches more and more difficult. For an exemplary chip multi-processor
(CMP) system consisting of 32 cores, executing a benchmarking application for one second,
Figure 1.5 illustrates the simulation time effort [13]. Higher levels of abstraction, resulting



1. Introduction 4

in less simulation accuracy, speed up the simulation but still fail to deliver results in
reasonable time. Therefore, emulation-based approaches that allow for drastically reducing
the timely effort represent a promising alternative to simulators.

53.3 minutes 8.9 hours 3.7 days

37 days

370 days
S
im
u
la
ti
o
n
 /
 e
m
u
la
ti
o
n
 t
im
e
 [
h
]

0

2000

4000

6000

8000

10000

10 M 1 M 100 K 10 K 1 K

Speed [Instructions/s]

Emulators

Functional

Simulators

Behavioral

Simulators

Cycle-

Accurate

Simulators

Figure 1.5: Time to simulate/emulate 1s of large-scale CMP workload execution ([13], with
modifications)

1.1.3 Limitations of State-of-the-Art Power Emulation Methods

The advent of large but moderately priced field programmable gate arrays (FPGAs) has
enabled the introduction of the power emulation technique, i.e., the emulation-based power
estimation process. Initial low-level power emulation approaches at the register transfer
level (RTL) [14, 15] achieve high estimation accuracies but suffer from extensive area
overhead due to the additionally required power emulation hardware. The large overhead
at this level of abstraction entails relatively low emulation speeds and a large set-up
overhead for reducing the complexity of the used power models.

High-level power emulation approaches circumvent these large overheads by employ-
ing a power macromodeling approach. Implementations on the architectural level using
hardware event counters have been shown [16]. However, these approaches require the
polling and validation of event counter values through software and, hence, also impact
the system-under-test. Furthermore, for novel designs a considerable manual power mod-
eling and hardware implementation set-up overhead is required.

1.1.4 Missing Integration of Power Emulation in HW/SW Codesign

The power emulation approach allows for the rapid power profiling of a software application
running on the system-under-test. While existing approaches focus on enabling the power
emulation of a given system-under-test [14, 15, 16], the integration and utilization of the
power emulation method in the hardware/software codesign process is little explored.

For enabling truly power-aware software development the integration of power emula-
tion traces into an industry-grade software development environment, such as Keil µVision
[17] or Eclipse [18], is required. By combining the high-level power emulation approach
with a standard software development toolchain, the low-power design intent could also
be conveyed to software engineers.



1. Introduction 5

In a typical hardware/software codesign process designers are not only bound by power
consumption but also by performance constraints. While power emulation approaches
based on performance event counters exist [16], a joint power- and performance-emulation
approach is yet missing. By recording both power consumption and performance event
traces, hardware/software designers could explore power/performance trade-offs better.

1.1.5 Motivational Example: Low-Power ASIP HW/SW Codesign

An application-specific instruction-set processor (ASIP) for baseband processing according
to the IEEE 802.15.4a ultra-wideband impulse radio standard amendment serves as a
motivational example for the automated power emulation methodology. This baseband
ASIP that is required for the purpose of synchronization and data reception between
nodes, represents a critical part of future ultra-low-power wireless sensor nodes. Hence,
an especially power-aware design process is required. The ASIP, as depicted in Figure
1.6, is implemented as a four issue slot VLIW2 architecture that contains two scalar issue
slots for executing scalar instructions and two vector issue slots capable of operating on 16
operands in parallel. The ASIP is presented in greater detail in the publication in Section
6.1.

Vector Data

Memory

Scalar Data 

Memory

Scalar Issue Slots Vector Issue Slots

VLIW UWB Architecture

Scalar

Issue Slot 1

Vector

Issue Slot 1

Vector

Issue Slot 2

U
W
B
E
x
t.

RF 16 x 96 bit 

(16 x 6 bit)

RF 16 x 96 bit

(16 x 6 bit)

MUX MUX MUX MUX MUX MUX

Scalar

Issue Slot 2

U
W
B
E
x
t.

SC Register

RF 1 x 64 bit

RF 16 x 16 

bit

RF 16 x 16 

bit

MUX MUX

Figure 1.6: Architecture of the UWB ASIP
[19]

0

5

10

15

20

25

27

9.4
8.5

4.7

18.4

7.2
8.9 9.1

4.5

7.8P
o
w
e
r 
[m
W
]

S
D
 (
16
)

S
D
 (
64
)

F
D
 (
16
)

F
D
 (
64
)

E
O
P
 (
16
)

E
O
P
 (
64
)

P
S
D
U
 (
4)

P
S
D
U
 (
16
)

P
S
D
U
 (
32
)

P
S
D
U
 (
12
8)

Figure 1.7: Different power states3 of the
UWB ASIP [19]

The execution of the baseband processing algorithms on this ASIP results in a number
of different power states as depicted in Figure 1.7, according to the used mode of operation
and the utilization of the individual issue slots. In a standard simulation-based HW/SW
codesign approach the processor’s power states as well as potential future power manage-
ment features, required to meet certain constraints, are explored through time-intensive
gate-level power simulations. The use of the power emulation technique would vastly de-
crease the timely effort and would allow for the execution of extensive benchmarks and
real-world workloads, thus, enabling a more complete power analysis and verification.

2Very Long Instruction Word.
3Executed sub-algorithms: Signal detection (SD), fine acquisition (FD), end-of-preamble detection

(EOP), payload decoding (PSDU).



1. Introduction 6

1.2 Automated Power Emulation Methodology For Power-
Aware HW/SW Codesign

1.2.1 The POWERHOUSE Project

The work at hand is part of the ”Power-Aware, Hardware-Supported Operating Sys-
tem and Ubiquitous Application Software Development Environment” (POWERHOUSE)
research project4 that represents a collaboration between the Institute for Technical In-
formatics at the Graz University of Technology, Infineon Technologies Austria AG and
AustriaCard GmbH. The POWERHOUSE methodology, as outlined in Figure 1.8, aims
at employing the power emulation technique for increasing the power-awareness in the
hardware/software codesign process.

Power-Constrained System-on-Chip

Power Emulation Platform of System-on-Chip

Power- and Performance-Optimized SoC

Automated Power 

Emulation 

Methodology

High-Level Power 

Emulation Prototype

Power- & Performance-

Aware HW/SW 

Codesign 

Power Management 

Exploration

Figure 1.8: Overview of the POWERHOUSE methodology ([20], with modifications)

The main goals of the project are the creation of a power emulation platform for em-
bedded systems. An initial high-level power emulation prototype serves as the proof-of-
concept for the methodology. The automated power emulation methodology that derives
a high-level power model and that performs the hardware implementation of these power
models, facilitates the power emulation of novel system-on-chip designs. The run-time
power consumption estimates, generated by the power emulation platform for the func-
tionally emulated system, are used for increasing the power-awareness both in the hardware
and in the software development process. By including hardware performance monitor-
ing functionality, performance-awareness is added to the power-aware hardware/software-
codesign process. Furthermore, the power emulation platform can be utilized in the rapid
exploration process of novel power management techniques.

4The POWERHOUSE project was funded by the Austrian Federal Ministry for Transport, Innovation,
and Technology under the FIT-IT contract FFG 815193.



1. Introduction 7

1.2.2 Problem Statement

This thesis addresses the limitations and deficiencies in the power-aware hardware/software
codesign process and previous power emulation approaches:

• Extensive timely effort for traditional simulation-based power estimation approaches

• Large hardware overhead for low-level power emulation approaches

• High power characterization and power modeling effort for novel designs

• Extensive hardware implementation effort for enabling power emulation

• Lack of hardware-accelerated power- and performance-aware HW/SW codesign ap-
proaches

• Lack of tight integration of power consumption feedback in software development
and optimization environments

With respect to these limitations, this dissertation aims at introducing the power em-
ulation method to the traditionally simulation-based hardware/software codesign process
of systems-on-chip. By utilizing a high-level power macromodeling technique the extensive
hardware overhead inherent to low-level power emulation is being vastly decreased. For
enabling the use of the power emulation methodology in a productive hardware/software
codesign environment, the effort for creating the power emulation platform of a novel
system-under-test has to be considerably decreased. In this work, this reduction of effort
is achieved by devising an automated power modeling and an automated power emulation
hardware implementation method.

Furthermore, this dissertation addresses the lack of hardware-accelerated power- and
performance-aware hardware/software codesign approaches. To this end, the utilization
of this automatically generated high-level power emulation platform in the power-aware
hardware/software codesign process is being explored. By integrating hardware perfor-
mance monitoring functionality into the power emulation platform, not only power- but
also performance-awareness can be considered in the HW/SW design optimization process.
The missing integration of run-time power consumption feedback in software development
is tackled by coupling a software IDE and an automated software optimization framework
with the power emulation approach.

1.2.3 Contributions and Significance

The two main contributions, constituted by this dissertation, can be summarized as fol-
lows:

1. Automated power emulation methodology: The methodology addresses the automatic
creation of a power emulation platform for use in a power-aware hardware/software
codesign environment. An automated power modeling technique derives a high-
level power model from training set data. To this end, a power model parameter
selection process selects power-relevant system signals and derives fitting coefficients
using linear regression. For the derived power model the power emulation unit is



1. Introduction 8

automatically generated and its internal structure is adapted. The HDL model of the
system-under-test is parsed, analyzed and modified in order to allow the monitoring
of internal power-relevant signals that are used in the high-level power model that
is implemented in the power emulation unit.

2. Emulation-based power- and performance-aware HW/SW codesign: The use of the
power emulation methodology in the power-aware hardware/software codesign pro-
cess is being explored. The combination of power emulation and hardware perfor-
mance monitoring functionality permits joint power- and performance-aware system
optimizations. By integrating the run-time power emulation traces into a stan-
dard software development environment, valuable power consumption feedback can
be provided to software engineers and, hence, power-awareness can be increased.
The run-time power traces can further be automatically analyzed to detect exces-
sive power consumption peaks that threaten the stability of the system-under-test.
An automated framework for use during the design phase is presented that utilizes
run-time power emulation to detect software-induced power consumption peaks and
adapts the software application to reduce these peaks. Furthermore, a run-time
power profile flattening approach is outlined that uses the run-time power estimates
to actuate dynamic frequency and voltage scaling power management functionality.

1.2.4 Structure of the Work

The remainder of this work is structured as follows. In Chapter 2 the state-of-the-art
regarding measurement- and estimation-based power profiling methods is reviewed. In
view of power estimation methods, different power simulators and previous hardware-
accelerated power estimation approaches are outlined. Furthermore, the application of
these power profiling methods in power-aware hardware/software codesign is reviewed.
Chapter 3 outlines the automated power emulation methodology, consisting of the auto-
mated power modeling and the subsequent automated power emulation hardware imple-
mentation steps. In addition, the use of the resulting power emulation platform in the
hardware/software codesign process is illustrated with regard to power- and performance-
aware hardware as well as software optimizations. Evaluation results for the presented
methodology are given in Chapter 4. These include case studies performed on two proto-
typical SoC designs, operating in power- and energy-constrained environments. Chapter
5 concludes the dissertation with a summary of findings and provides an outlook on fu-
ture work. A number of selected publications that are further extending the presented
methodology and the evaluation thereof are included in Chapter 6.



Chapter 2

Related Work

For enabling the power-aware HW/SW codesign and optimization process of novel system-
on-chip designs the power consumption profiling of these systems is required. For this pro-
filing process different methods are available, as illustrated in Figure 2.1. At late design
stages, typically when first tape-out silicon is available, power measurements can be uti-
lized while in early design phases estimation-based methods have to be employed. Power
profiling methods that have been used in the early-stage power-aware hardware/software
development process include software simulators, hardware-accelerated approaches utiliz-
ing either emulation platforms, dedicated hardware or already existing hardware imple-
mentations and hybrid approaches.

Measurement Estimation

Power Profiling

Direct Indirect Simulation HW-Accel. Hybrid

Figure 2.1: Overview of HW/SW power profiling methods

For the purpose of power and performance profiling in the HW/SW codesign process of
complex systems, full-system simulation frameworks as well as emulation-based profiling
approaches have been presented. Furthermore, the simulated power consumption profiles
have been used for the detection and optimization of power consumption peaks caused by
the execution of software applications.

2.1 Power Consumption Profiling Methods

2.1.1 Measurement-Based Power Profiling Methods

At more mature stages of the design process, when a physical implementation of the
design-under-test, i.e., tape-out silicon, is available, power measurements represent a fast
and accurate way to determine the system’s power consumption.

Traditional direct power measurement approaches rely on ammeters, oscilloscopes and
other direct-measurement data acquisition systems. In early works measurement-based

9



2. Related Work 10

power profiling has been employed for investigating the power consumption caused by the
execution of different software applications. Tiwari et al. have used a standard ammeter-
based measurement setup to collect training set data for the characterization of instruction
level power models [21, 22]. Flinn et al. have employed a similar setup for profiling the
energy usage of software applications running on general purpose computer systems [23].
By combining the measured power consumption with system activity data collected by
an operating system daemon process, their approach is able to map the system’s energy
consumption to program structure. Regarding commercial solutions, Texas Instruments
has presented an oscilloscope-based approach measuring the currents drawn by a DSP
system while executing given software applications [24]. The power measurement data
are displayed within the provided software development environment. Hitex has provided
another commercial measurement-based solution, allowing for the concurrent measurement
of up to four loads [25]. By integrating the measurement data within the Keil software
IDE [17], the correlation between power consumption and source code can be analyzed.

Indirect power measurement by thermal imaging has been presented as an interesting
alternative to traditional power measurement approaches. Hamman et al. have presented
an experimental technique that derives a chip’s spatial power distribution from infrared
(IR) thermal imaging [26]. They have illustrated the applicability of their technique
for measuring the temperature and, hence, the power distribution as a function of the
given workload. Mesa-Martinez et al. similarly have used an IR measurement setup for
determining the thermal characteristics and the power consumption of a given chip [27].
By applying genetic algorithms they derive a detailed per-component power consumption
breakdown that can subsequently be used to evaluate and refine existing power simulators.

While measurements provide a fast and accurate way of profiling a system’s power
consumption, they are only applicable late in the HW/SW codesign process. Furthermore,
traditional power measurement approaches typically fail to deliver detailed per-component
power consumption data due to chip integration and packaging that limit the measurement
instrumentation. Indirect measurement approaches utilizing thermal imaging elude this
limitation as no direct measurement probe contact is required. However, they entail large
experimental setup overheads and require extensive preparation steps such as the removal
of heatsinks, the thinning of the chip to improve the observability of the heating effects,
thermal calibration, etc.

2.1.2 Estimation-Based Power Profiling Methods

At early design stages, when parts of the design are still incomplete, power estimation
methods have to be utilized that build on assumptions regarding the detailed structure
and layout of the later physical implementation of the system and its sub-components
[28]. For accelerating the power estimation process, hardware-accelerated power estima-
tion approaches have been derived in recent years. Figure 2.2 compares generic methods
for the either simulation-based or hardware-accelerated power estimation process. While
simulation-based approaches garner the activity data required for estimating the system’s
power consumption through the evaluation of models, hardware-accelerated approaches
derive activity data by monitoring either the system’s functional emulation or its physical
implementation. Based on these activity data power consumption estimates are derived.
Emulation-based approaches exist that further speed up the power estimation by imple-



2. Related Work 11

menting both the activity data acquisition and the power estimation process in hardware.

Design

Architecture 

Estimation

Architecture 

Synthesis

Model

Netlist / 

Implement.

Power 

Estimation

Power 

Models

Power Reports

Activity

Data

SW Simulation

HW Emulation / 

Execution

Figure 2.2: Generic simulation vs. generic hardware-accelerated power estimation methods

Simulation-Based Methods

A multitude of simulation-based methods, operating on different levels of abstraction, has
been proposed. At low levels of abstraction such as the gate level and the register transfer
level numerous state-of-the-art power estimation tools, e.g., Synopsys PrimeTime [29] and
Magma Blastfusion [30], are available. For increasing the simulation speed, higher levels
of abstraction have been researched.

Instruction level models, consisting of base costs per instruction as well as overhead
costs for switching between different instructions, have been defined [21, 22]. These
instruction-level models have been further refined by considering microarchitectural ef-
fects in, e.g., pipeline-aware models, resulting in improved estimation accuracies [31].

At the system level SimplePower, introduced by Ye et al. [32], and Wattch, presented
by Brooks et al. [33], constitute processor power simulation tools based on the SimpleScalar
tool set [34, 35]. SimplePower simulates the integer subset of the SimpleScalar instruction
set and considers the processor’s datapath, memory and on-chip buses but does not include
the processor’s control unit, as well as the clock generation and distribution network in
the power simulation process [32]. Wattch simulates a processor containing a five-stage
pipeline and performs the power estimation for numerous components such as caches,
register files, functional units as well as the clocking network [33].

By raising the level of abstraction used in simulation-based approaches, higher simu-
lation speeds can be achieved while reducing the simulation accuracy. For the simulation
of large workloads on increasingly complex system-on-chip designs, however, simulation-
based approaches still fail to deliver results in reasonable time [13]. Therefore, various
hardware-accelerated methods have been researched and represent a promising alterna-
tive to simulation-based approaches.

Hardware-Accelerated Methods

With regard to hardware-accelerated power estimation methods, techniques leveraging ex-
isting hardware event counters [36, 37, 38], dedicated estimation coprocessors [39, 40, 41,
42] and emulation-based approaches [14, 15, 16, 43, 44] have been presented.

Initial works have been utilizing existing hardware event counters for the purpose
of power estimation by correlating the occurrence of specific hardware events with the



2. Related Work 12

system’s power consumption. The feasibility of this approach has been shown for com-
mercially available desktop processors by Bellosa et al. [36] and Joseph et al. [37]. The
same approach has also been applied to embedded processors by Contreras et al. [38].

Especially for enabling dynamic power management in mobile embedded systems, ded-
icated energy- and power-estimation coprocessors have been introduced. Haid et al. have
introduced the JouleDoc coprocessor that performs run-time energy accounting based on
energy macromodels by counting the occurrence of energy-relevant system events [39, 40].
The CLIPPER methodology that has been presented by Peddersen et al. represents a
similar approach which implements run-time power estimation hardware counters along-
side the system-under-test, hence, resembling the power estimation coprocessor paradigm
[41, 42].

With the advent of FPGAs that are large enough to hold entire system-on-chip de-
signs, the emulation-based power estimation technique, referred to as ”power emulation”,
has become feasible. For enabling the power emulation of a given system-under-test, the
system’s HDL model is augmented with dedicated power estimation hardware that per-
forms the power estimation process as a by-product of the functional emulation process. In
recent work, power emulation approaches operating on different levels of abstraction have
been presented. Initial power emulation approaches as presented by Coburn et al. employ
RTL macromodels and achieve high estimation accuracies (mean error 3.4% as compared
to gate level simulations) [14, 15]. By combining the power emulation with the cosimula-
tion of non-synthesizable parts of the system, a hybrid simulation- and emulation-based
power estimation technique has been introduced by Ghodrat et al. [44]. Low-level power
emulation approaches suffer, however, from high area overhead (on average 3.1 times the
area of the original design) [14]. This overhead decreases the maximum reachable operat-
ing frequency of the emulated design and entails a large set-up overhead for reducing the
complexity of the used power models.

Therefore, a system level power emulation approach using event-based power account-
ing has been introduced by Bhattacharjee et al. [16]. Through the use of a high-level
power model less than 3% of the available FPGA LUTs are required (the dual-core Gaisler
LEON3 test system [45] is reported to require 60% in the used configuration) while the
estimation error in comparison to gate-level simulations is reported to be below 10% [16].
However, the approach relies on manually inserted hardware performance event coun-
ters, entailing the required effort for the manual selection of power-relevant events, for
the power modeling itself and for the hardware implementation of the used event coun-
ters. Furthermore, the evaluation of the event counter values, with regard to the used
power model, is performed in software and slightly modifies the execution behavior of the
system-under-test.

2.2 Power and Performance Profiling for HW/SW Codesign

In the power and energy optimization phase of the HW/SW codesign process, design-
ers are typically also constrained by performance requirements for the given design. For
the purpose of power- and performance-aware HW/SW design space exploration of com-
plex systems, a number of full-system simulation- as well as emulation-based profiling
approaches have been presented in literature.



2. Related Work 13

Initial full-system simulators include the SimpleScalar [34, 35] simulator upon which
the power simulators SimplePower [32] and Wattch [33] build. Magnusson et al. have pre-
sented the Simics full-system simulator at the instruction-set level that is offering simu-
lation models for various microprocessor architectures [46]. The SystemC-based MPARM
simulation platform by Benini et al. allows for the simulation of entire multi-processor
systems-on-chip (MPSoC), including buses and memories [47]. Furthermore it contains
a cycle-accurate ARM processor instruction set simulator (ISS) [47]. Cong et al. have
introduced the MC-Sim simulation framework for heterogeneous multi-core systems that
is consisting of a functional ISS for the processor cores, cycle-accurate structural mod-
els for the interconnect and behavioral models for coprocessors [48]. A transaction level
simulation environment for MPSoCs with focus on software timing and performance esti-
mation has been presented by Gerin et al. [49]. By annotating a given embedded software
application the execution behavior of a specific target processor is simulated.

Simulation-based approaches offer the benefits of early design phase applicability and
easy instrumentation of various system components for extracting power and performance
statistics. However, with increasing hardware complexity and increasing number of col-
lected statistics, the simulation speed drastically decreases. By introducing higher levels
of abstraction this effect can be partially circumvented, nevertheless, the risk of conceal-
ing low-level effects and potential design errors increases. For overcoming the limitations
of simulators, emulation-based power and performance profiling approaches have been
introduced.

Due to the large area overheads of the initial register transfer level power emulation
approach presented by Coburn et al. [14], its application in full-system profiling is limited.
A full-system MPSoC emulation framework has been proposed by Del Valle et al. [50].
The framework has been extended by Atienza et al. with manually inserted sniffers for
monitoring event statistics of different system components. The statistical data allow for
the derivation of power and thermal estimates based on known power figures of already
existing cores [43, 51]. Bhattacharjee et al. have introduced a similar high-level event-
counter-based power emulation approach for a proposed chip multi-processor LEON3 de-
sign. By evaluating a set of manually inserted hardware performance event counters, a
power model implemented in software (i.e., in the Linux timer kernel interrupt routine)
derives power estimates every 10 ms (or multiples thereof) [16]. Due to the required power
model evaluation in software that slightly modifies the system’s execution behavior and
consumes execution time, this approach cannot be regarded as truly non-invasive. An-
other emulation-based framework for the design space exploration of embedded multi-core
systems has been presented by Meloni et al. [52]. The framework estimates technology-
dependent power consumption and area requirements of proposed ASIC implementations
based on the extraction of statistics collected by performance event counters [52]. In a case
study different multi-processor NoC architectures are being explored using this approach,
however, the accuracy of the power and performance estimates is not being quantified.

2.3 Power Peak Optimization of Embedded Software

The execution of software applications has an impact both on a system’s average as well
as its peak power consumption. Software-induced power consumption peaks can lead to



2. Related Work 14

supply voltage drops that particularly threaten the reliable and stable operation of battery-
and electromagnetic-field-powered devices [53]. Therefore, the detection and reduction
of power consumption peaks is of increased interest. Furthermore, it has been shown
that a system’s power consumption leaks essential information about the execution flow
of a given software application and the data processed within this application. This
information can be used by attacks such as the differential power analysis [54] to extract
secret cryptographic keys. Hence, the reduction of power profile variability is of increased
interest for security applications as a countermeasure against these attacks.

For the purpose of reliability enhancements for smart card systems, a number of power
peak reduction methods have been researched. Grumer et al. have presented a framework
that profiles the power consumption of given software applications using an instruction
set simulator coupled with a power model for a MIPS32 4KSc processor [55]. They em-
ploy instruction-level power models as initially introduced by Tiwari et al. [56] as well as
additional power models considering the bus system, the memories and the peripherals. A
subsequent power peak elimination stage aims at reordering operations at the instruction-
level and at the intermediate-language-level by adapting the instruction schedule pass of
the compiler [55]. By reordering the instructions, the algorithm tries to minimize the
power consumption by reducing the switching activity due to circuit state changes. In
[57] the same authors have presented a different approach for power peak optimization.
By utilizing an iterative compilation process that is using different combinations of com-
piler optimization passes on the intermediate-language-level of the compiler the authors
try to reduce the existing peaks. Using the same power profiling framework Wendt et
al. have explored the insertion of non-functional instructions (NFI) that do not modify
the functionality but exhibit a lower power consumption (due to less switching activity
during their execution) as a means for reducing short-term average power consumption
and, hence, for reducing power peaks [58].

For software applications in the security domain, a number of power profile flattening
techniques aiming at the reduction of the profile’s variability, have been investigated in
order to avoid information leakage. Muresan et al. have presented a source code transfor-
mation technique and a hardware architecture that are both employing NFI insertion for
reducing power profile variability [59]. Power profile flattening by means of an integrated
real-time current-injection module has been proposed by Li et al. [60]. For reducing the
energy consumption overhead inherent to this flattening approach, they have proposed to
only enable the current-injection module during security-critical execution periods. This
approach has been extended by Vahedi et al. to include dynamic voltage scaling capabil-
ities [61]. The combined current-injection and dynamic voltage scaling approach, allows
for improved flattening performance while limiting the energy consumption overhead.

While simulation-based approaches allow for the power peak detection and reduction
at early design phases, the risk of omitting power peaks caused by sources not considered
in the simulation model exist. Furthermore, the profiling of entire real-world applications
scenarios requires extensive simulation times. Hardware-based approaches are able to
reduce the power profile’s variability at a much finer level of granularity, allowing for the
effective flattening. The additionally required in-system measurement hardware as well
as the presented flattening approach utilizing current-injection, however, lead to a higher
energy consumption.



2. Related Work 15

2.4 Summary

Power consumption profiling methods represent a necessity in the power-aware hard-
ware/software codesign process and have been extensively researched in related work.
Especially at early design phases, when measurement-based approaches are not applica-
ble, estimation-based power profiling approaches have to be employed. Numerous power
simulators, operating on different levels of abstraction, have been presented in literature.
By raising the level of abstraction, higher simulation speeds are achievable at the cost
of decreased estimation accuracy. However, the simulation of long software test cases on
increasingly complex hardware designs still results in extensive simulation times.

Hardware-accelerated power estimation approaches speed-up the profiling process by
deriving activity data from the system’s hardware implementation. For deriving power
estimates these activity data are then evaluated by a power model implemented either
in hardware or in software. More recent emulation-based approaches have focused on us-
ing the hardware-accelerated power estimation approach during the system’s design phase.
While initial low-level power emulation methods suffer from large hardware overheads that
inhibit their use for the power profiling of complex system designs, high-level power emu-
lation approaches entail only small overheads and permit high emulation speeds. Existing
approaches, however, have not addressed the issue of automatically enabling the high-level
power emulation of a given system-under-test, including the required power modeling and
hardware implementation steps.

Regarding the power-aware development process that is also constrained by perfor-
mance requirements, the utilization of the high-level power emulation technique for HW/SW
analysis and optimization is little explored. Full-system simulation frameworks, operating
at higher levels of abstraction to accelerate the simulation, bare the risk of concealing low-
level effects and design errors. Existing emulation-based frameworks entail large setup
overheads and cannot be regarded as truly non-invasive due to the required high-level
power model evaluation in software. In terms of power-aware software development, the
use of the power emulation technique is little explored. Existing simulation-based ap-
proaches for detecting and optimizing software-induced power consumption peaks, exhibit
slow simulation speeds and contain the risk of omitting peaks caused by sources not con-
sidered in the simulation model.

With regard to related work, the objectives of this dissertation can be summarized:

• Accelerating the required power profiling in the HW/SW codesign and optimization
process by utilizing an emulation-based approach

• Decreasing the power emulation hardware overhead of initial low-level power emu-
lation approaches by using a high-level power macromodel

• Enabling the automated power modeling of novel systems-under-test to decrease the
power emulation setup overhead

• Automated power emulation hardware implementation to allow for the fast deploy-
ment of the system-under-test’s power emulation platform in the design process

• Exploration of a joint power emulation and performance monitoring approach for
use in the HW/SW codesign and optimization process

• Exploration of manual as well as automated power-aware software development and
software-induced power peak optimization utilizing emulation-based power profiling



Chapter 3

Novel Automated Power
Emulation Methodology For
Power-Aware HW/SW Codesign

3.1 Overview

The high-level power emulation technique represents a promising alternative to simulation-
based power profiling approaches. The proposed automated power emulation methodology
aims at overcoming the limitations of previous power emulation approaches to facilitate its
use in the hardware/software codesign process for novel system-on-chip designs. Figure
3.1 provides an overview of the individual contributions that represent the automated
power emulation methodology and illustrate its use in the power- and performance-aware
codesign process. These contributions are presented in more detail in the publications
included in Chapter 6.

The low-power SoC design introduced in Section 6.1 serves as a motivational exam-
ple and illustrates the need for an accelerated power estimation approach for use in the
power-aware hardware/software codesign process. The publications in Sections 6.2 and
6.3 introduce the high-level power modeling approach for enabling the power emulation of
a given SoC design. The initial prototype of the platform that has served as a proof-of-
concept for the high-level power emulation approach is presented. Furthermore, the novel
methodology, consisting of automated power modeling and the automated power emulation
hardware implementation, is outlined in Section 6.3. The application of the resulting high-
level power emulation platform in the power- and performance-aware codesign process is
illustrated in the publications in Sections 6.4-6.8. By augmenting the power emulation
approach with hardware performance monitoring hardware, power/energy optimizations
can be performed while observing their performance impact (Section 6.4). The integration
of the run-time power traces into a standard software development environment, enables
truly power-aware software optimizations (Sections 6.5, 6.6). Furthermore, the run-time
power estimates can be used for the detection and reduction of power peaks that threaten
the system’s stability. A software-based power peak reduction framework is presented in
the publication in Section 6.7, whereas a hardware-based approach is introduced in Section
6.8.

16



3. Novel Automated Power Emulation Methodology 17

Publication in 
Section 6.1

Publication in 
Section 6.2 Publication in 

Section 6.3

Publication in 
Section 6.5

Publication in 
Section 6.4

Publication in 
Section 6.6

Publication in 
Section 6.7

Publication in 
Section 6.8

Power & Performance Optimized 
System-on-Chip

Automated Power Profile Optimization

Power-Aware Software Development

Joint Power Emulation & Performance Monitoring

Power Emulation Platform

Automated Power Emulation Methodology

Automated Power Modeling
Automated HW Implementation

Power Emulation Platform Prototype

HW-Accelerated Power Estimation
High-Level Power Emulation

Power-Constrained System-on-Chip

Power-Critical Code Region Detection
Run-Time Power Profile Flattening

Power-Aware Software IDE
Source Code Power Annotations

Hardware Performance Monitoring
Multi-Core Power & Perf. Emulation

Figure 3.1: Overview of automated power emulation methodology for power-aware hard-
ware/software codesign

3.2 Automated Power Emulation Methodology

3.2.1 High-Level Power Emulation Technique

The high-level power emulation method represents a key component of the POWER-
HOUSE project. In contrast to initial RTL power emulation approaches as outlined in
Section 2.1.2, the high-level approach offers the benefit of decreased hardware overhead
and decreased emulation impact, resulting in higher emulation speeds and reduced emu-
lation platform costs.

For a CMOS-based system the power consumption can be given as P = Pdyn + Psta,
consisting of dynamic and static power consumption. The dynamic power consumption
Pdyn = α(fCV 2) is dependent on the component activity factor α, the clock frequency f ,
the capacitance C being switched and the supply voltage V . Psta represents sources of
static power consumption including leakage power. In the high-level power emulation
method presented in this thesis the total power consumption P of a given system is
approximated using a power macromodel that derives a cycle-accurate power consumption
estimate P̂ [t] by observing a number N of power-relevant signals xi[t] of the system.
The model is implemented as an additive linear equation of model parameters xi[t] and
according coefficients ci as expressed in Equation 3.1. In this macromodel, the coefficient
c0 accounts for sources of static power consumption whereas the coefficients ci (i = 1 . . . N)



3. Novel Automated Power Emulation Methodology 18

represent the dynamic power consumption.

P̂ [t] = c0 +

N∑

i=1

cixi[t] = c0 + c1x1[t] + . . .+ cNxN [t] (3.1)

The power emulation unit, as depicted in Figure 3.2, represents the hardware im-
plementation of the power macromodel. It monitors the power-relevant signals xi[t] and
derives the cycle-accurate power estimate P̂ [t] for the system and its sub-components. Fur-
thermore, post-processing and host data transfer functionality is provided by the power
emulation unit.

...

...

...

Power Estimator

CPU CoProc Memories

Component State

Power Model

Component State

Power Model

Component State

Power Model

Power Trace

AveragingDebug Trace Generator

Power Sensor Power Sensor Power Sensor

Configuration

P
o
w
e
r

E
m
u
la
ti
o
n

F
u
n
c
ti
o
n
a
l

E
m
u
la
ti
o
n

FU 1 FU n

CoProc 2

CoProc 1 RAMROM

NVM

Figure 3.2: Power emulation unit [62]

The high-level power emulation methodology and its hardware implementation are
described in more detail in ”An Emulation-Based Real-Time Power Profiling Unit for
Embedded Software” (Section 6.2) and ”Automated Power Characterization for Run-Time
Power Emulation of SoC Designs” (Section 6.3).

3.2.2 Automated Power Modeling for Power Emulation

For enabling the power emulation of a novel system-under-test a power model suitable
for the implementation in the power emulation unit has to be created first. To this end
an automated power modeling methodology as depicted in Figure 3.3 is employed that
derives a power model from activity and power consumption data.

Activity 

Data

Power 

Data

Non-Negative 

Linear 

Regression

Model Parameter Selection Model Coefficient Fitting

Funct. & Power 

Simulations

Power 

Measurements

5 1

8 2

Power 

Model

*.vhd

System 

HDL

µBenchmark

Apps *.c/h

Automated Power Modeling for Power Emulation

Power & Signal Activity Corr.

Signal Activity Correlation

Name Pattern Matching

Figure 3.3: Simulation- and measurement-based automated power modeling methodology for
power emulation

These data are typically derived from functional and power simulations using state-
of-the-art RTL or gate-level power simulation tools such as Synopsys PrimeTime [29] and



3. Novel Automated Power Emulation Methodology 19

Magma Blastfusion [30]. At later design stages, i.e., after first tape-out silicon is available,
power measurements can be conducted and the resulting measurement data can also be
used in the power modeling process. The automated power modeling methodology consists
of two main stages: 1) The model parameter selection stage consists of the signal name
pattern matching, the intra-signal correlation and the power - signal activity correlation
filtering steps. It aims at identifying a number of N model parameters so that N �
Nall, i.e., the number of selected parameters is smaller than the total number of available
parameters. 2) The model coefficient fitting process employs a least squares regression
technique with non-negativity constraint to derive coefficients for the parameters selected
before.

The automated power modeling method for power emulation is described in greater
detail in ”Automated Power Characterization for Run-Time Power Emulation of SoC
Designs” (Section 6.3).

3.2.3 Automated Power Emulation Hardware Implementation

After deriving a power model another obstacle for enabling the power emulation of a novel
system-under-test is constituted by the time-consuming and tedious task of implementing
the automatically devised model in hardware and integrating it into the existing HDL
model of the system-under-test. This obstacle is addressed by introducing an automated
power emulation hardware implementation method as depicted in Figure 3.4.

Mod. System 

HDL

PE Unit 

HDL

HDL Model 

Adaptation

PE Unit 

Generation

Automated Power Emulation Hardware Implementation

5 1

8 2

System

HDL *.vhd *.vhd

*.vhd

Power 

Model Adapted Power Emulation UnitModified System-under-Test

Memories

Peripherals

CPU

CoProc.
Power 

Sensor

Power 

Sensor

A
c
c
u
m
u
la
to
r Filter

Trace 

Gen.

HDL Model for Power Emulation of System-Under-Test

System & 

PE Unit 

HDL 

Merging

Figure 3.4: Automated power emulation hardware implementation

The approach consists of two main stages: 1) The automated HDL adaptation of
the given system-under-test to allow for the monitoring of internal signals that are used
within the system’s previously derived power model. This stage comprises the parsing of
the system’s HDL model and its modification by routing power-relevant signals originating
in different design entities at different levels of hierarchy to the instantiation of the power
emulation unit. 2) The power emulation unit HDL generation for implementing the devised
power model. Based on HDL template files of the power emulation unit an adaptation
algorithm modifies the number and the structure of used power sensors as well as the
structure of the power value accumulator and the filtering unit. Afterwards the power
emulation platform for the given system-under-test can be created from the adapted HDL
model using a state-of-the-art FPGA hardware implementation tool flow that performs the
typical hardware synthesis, mapping, place and route, as well as the bitstream generation.

The publication ”Automated Power Characterization for Run-Time Power Emulation
of SoC Designs” (Section 6.3) further details the automated power emulation hardware
implementation approach.



3. Novel Automated Power Emulation Methodology 20

3.3 Power-Aware HW/SW Codesign Based on Power Em-
ulation

3.3.1 Joint Power Emulation and Performance Monitoring for Multi-
Core Systems

While minimizing the power and energy consumption of a system in the hardware/software
codesign process, designers are typically also bound by performance constraints that are
dictated by the given application. In an emulation-based hardware/software codesign
process both the profiling of the power consumption as well as the analysis of performance
indicators of various system components is therefore of increased interest.

For this purpose a joint power emulation and performance monitoring approach has
been introduced by additionally enabling the monitoring of performance indicators of the
given system-under-test. This performance monitoring and logging allows designers to
develop a deeper understanding of trade-offs between the power/energy consumption and
the performance of the system. Furthermore, this approach allows for identifying both the
source as well as the causing mechanisms of excessively high power consumption or poor
execution performance.

In addition, the previously introduced high-level power emulation methodology has
been extended to enable the joint power and performance emulation approach in multi-
core environments. This allows for individually estimating the power consumption and
monitoring the performance of heterogeneous system components.

. . .

P
e
rf
o
rm
a
n
c
e
 

M
o
n
it
o
ri
n
g

M
u
lt
i-
C
o
re

S
y
s
te
m

. . .

Core N

Data Aggregation & Control Unit

Core 1

Perf. Mon. 1

...

PE Unit 

1

R
F

C
tr
l

C
o
-P
.

IC
a
c
h
e

F
U
s

M
M
U

T
L
B

D
C
a
c
h
e

Event 
Counter

Event 
Counter

Perf. Mon. N

...

PE Unit 

N

R
F

C
tr
l

C
o
-P
.

IC
a
c
h
e

F
U
s

M
M
U

T
L
B

D
C
a
c
h
e

Event 
Counter

Event 
Counter

Host I/O

Event 
Detection

Event 
Detection

Event 
Detection

Event 
Detection

Figure 3.5: Joint power emulation and performance monitoring method

In ”An Emulation-Based Platform for Power- and Performance-Aware HW/SW De-
velopment of Embedded Multi-Core Systems” (Section 6.4) an extended discussion of the
joint power emulation and performance monitoring approach for multi-core systems is
provided. Furthermore, evaluation results for an embedded multi-core test system are
presented.



3. Novel Automated Power Emulation Methodology 21

3.3.2 Power-Aware Software Development Using Power Emulation

A main goal of the POWERHOUSE project is the refinement of power-aware software
development trough the use of the power emulation methodology. By providing the run-
time power-feedback derived from the power emulation methodology, the low-power design
intent can be realized not only by hardware but also by software engineers.

Application

(C Source Code)

Compiler

Assembler & Linker

Machine Code

P.E. Configuration

(C, optional) 

Power TraceFunctional Trace

P.E. + System 

Netlist & 

Configuration

SW Development & 

Debugging Environment

Emulation Platform

Figure 3.6: Use of power emu-
lation platform in a standard soft-
ware development tool flow [63]

Functional debugging

Power debugging

Figure 3.7: Integration of power emulation data into
a standard software development environment

For the purpose of enabling power-aware software development, a standard software
development tool flow has been extended with the power emulation technique as depicted
in Figure 3.6. A standard toolchain consisting of compiler, assembler and linker translates
the application source code. The compiled application is then loaded onto and executed
on the power emulation platform in the same way as performed for purely functional
emulation. During the execution of the application on the power emulation platform the
power trace is recorded alongside the functional execution trace. These data are evaluated
within an integrated software development and debugging environment (IDE) that is used
for visualizing and analyzing the recorded traces as illustrated in Figure 3.7. The IDE
performs the execution trace to source code correlation, allowing for the assignment of
power consumption estimates to individual source code lines.

The use of the power emulation methodology for enabling power-aware software devel-
opment is covered by ”Accelerating Embedded Software Power Profiling Using Run-Time
Power Emulation” (Section 6.6).

3.3.3 Emulation-Based Power Peak Optimization of Embedded Software

Especially in power-constrained mobile systems, power consumption peaks can lead to
supply voltage drops below a critical limit and can, therefore, threaten a system’s stabil-
ity and reliability. The detection and reduction of power consumption peaks, caused, e.g.,
by the concurrent activation of power-intensive peripherals during the execution of a given
software application, is of increased interest in power-constrained systems development.



3. Novel Automated Power Emulation Methodology 22

Design Phase Power Peak Optimization
For analyzing and optimizing power consumption peaks caused by software applications
during the design phase, a complete framework consisting of multiple stages as depicted
in Figure 3.8 has been introduced. First, the embedded software application is processed
using a standard software development tool chain (A). The resulting machine code is then
automatically profiled on the power emulation platform (B). The resulting power profiles
are then analyzed and evaluated in terms of their impact on the supply voltage circuitry
of the given system-under-test (C). Based on these data, power-critical software source
code regions that cause power peaks, leading to critical supply voltage drops, are detected.
Depending on the power management features available on the given system-under-test,
an optimization algorithm chooses a power management approach that is afterwards au-
tomatically applied to the source code (D).

Power

Emulation

Functional

Emulation

Trace – Source 

Correlation

Supply Voltage 

Simulation

Power-Critical 

Code Region 

DetectionPower 

Model

Optimized

Source 

Code

Critical 

Code 

Region

Report

Binaries

Run-Time Power Profiling Detection of Power-Critical Code Regions

Power Peak 

Optimization

Standard Software Development Flow Power Peak Code Optimization

Memory Map

Debug Info

A

B C

D

Source 

Code
SW Development 

Toolchain

Figure 3.8: Framework for emulation-based power peak optimization of embedded software [64]

Run-Time Power Profile Flattening
Furthermore, a run-time power profile flattening approach has been presented that is based
on the hardware power estimation architecture used in the high-level power emulation
approach. The run-time estimates are used to actuate system-level dynamic frequency
and voltage scaling (DVFS). The system’s power consumption is, hence, controlled in
a purely digital manner, rendering costly analog on-chip-power measurement hardware
unnecessary.

The emulation-based peak-power optimization method for embedded software is de-
scribed in more detail in ”An Automated Framework for Power-Critical Code Region De-
tection and Power Peak Optimization of Embedded Software” (Section 6.7), whereas the
run-time flattening approach is outlined in ”Estimation-Based Run-Time Power Profile
Flattening for RF-Powered Smart Card Systems” (Section 6.8).



Chapter 4

Evaluation of Methodology and
Case Studies

4.1 Overview

For evaluating the automated power emulation methodology and its use in the power-aware
HW/SW codesign process, high-level power emulation platforms for two prototypical SoC
designs have been created. This chapter presents the evaluation results for these test sys-
tems. By using the automated power modeling and hardware implementation methods the
high-level power emulation platforms have been devised. For these platforms the power
estimation accuracy, the additionally required hardware overhead and the power emula-
tion speed-up in comparison to software simulators are being quantified in this chapter.
The applicability of the joint power emulation and performance monitoring to multi-core
architectures is being illustrated. Furthermore, the use of the high-level power emulation
in power-aware software development and the automated reduction of stability-critical
power consumption peaks is being presented.

4.2 Power Emulation Test Systems

For the evaluation of the novel automated power emulation methodology a 16-bit Infi-
neon SLE78 smart card microcontroller system-on-chip [65] and a 32-bit Gaisler LEON3
multi-processor system-on-chip (MPSoC) [45] have been chosen. These two test systems
represent SoC designs that are operating in very power- and energy-constrained operating
environments that make a power-aware HW/SW codesign process particularly necessary.
The architectural parameters of the two test systems are given in Table 4.1 and Table 4.2
respectively.

Test System 1: Heterogeneous Smart Card System-on-Chip
A 16-bit smart card microcontroller SoC [65], supplied by an industrial partner, represents
the first test system. It contains volatile and non-volatile memories, cryptographic copro-
cessors as well as other peripherals such as random number generators and timers. The
system is also intended to operate in contactless smart cards that are harvesting energy
from the electromagnetic field generated by a reader device. For this reason the system is

23



4. Evaluation of Methodology and Case Studies 24

Architecture 16-bit Infineon SLE 78
Number of Cores 2a

Clock Rate 1-33 MHz

Technology 0.13 µmb

CoProc./HW Acc. AES/DES, RSA Crypto
Interfaces UART, RF

Peripherals Timers, (T)RNG
Memories ROM, RAM, NVM

Table 4.1: Architectural parameters for the
smart card microcontroller test system [65]

aRedundant cores for increased security.
bTechnology node for power modeling.

Architecture 32-bit SPARC V8
Number of Cores 1-16

Clock Rate 35 MHza

Technology 90 nmb

CoProc./HW Acc. HW MAC/MUL/DIV
Interfaces CAN, Ethernet, UART

Peripherals PS/2, Timers, VGA
Memories ROM, RAM

Table 4.2: Architectural parameters for the
multi-processor test system [45]

aDepending on FPGA implementation.
bTechnology node for power modeling.

based on an especially power-optimized design, containing dedicated power-aware system
states (e.g., low-power halt and sleep modes of certain components). Due to these low-
power states and the especially power-aware design of the system, it represents an ideal
test system for the evaluation of the automated power emulation methodology.

Test System 2: Multi-Processor System-on-Chip
An Aeroflex Gaisler LEON3 32-bit SPARC V8-compliant multi-processor SoC [45] consti-
tutes the second test system. The LEON3 processor contains a SPARC V8 integer unit
with a 7-stage pipeline, incorporates hardware multiply, divide as well as MAC units and
a number of other peripherals. A LEON3-based multi-processor SoC can be implemented
with up to 16 cores, enabling the execution of symmetric multi-processing (SMP)-enabled
operating systems (e.g., Snapgear Linux [66]). Furthermore, the system is also optimized
for low power consumption, allowing for its use in wireless and mobile applications. Due to
the higher hardware complexity and the multi-processor support the LEON3 constitutes
an ideal second test system for the automated power emulation methodology.

4.3 Automated Power Emulation Methodology

4.3.1 Automated Power Modeling

High-level power macromodels, as introduced in Section 3.2.1, of both test systems have
been created by utilizing the automated power modeling approach (see Section 3.2.2).
For evaluating the effectiveness of the automated power modeling approach, different
power modeling techniques have been benchmarked for the smart card microcontroller
test system: (1) Manually selected power model parameters. Power-relevant signals of the
system-under-test have been selected in a manual way to allow for the first implementation
of the power emulation platform. These signals have been used as candidate power model
parameters. (2) A brute force approach by applying the linear regression algorithm to the
large set of potential power model parameters chosen only by their corresponding signal
names. All parameters assigned significant coefficient values have been retained and used
as power model parameters. (3) Power model parameters retained after intra-signal activ-
ity correlation filtering. Signals of which the activity data correlate with other signals for
the used set of benchmarks have been discarded. The remaining signals have been used as



4. Evaluation of Methodology and Case Studies 25

power model parameters. (4) Power model parameters retained after intra-signal activity
correlation and power correlation filtering, which represents the finally used parameter
selection technique in this work. Only signals of which the activity data correlate with
the training set power consumption data have been used as power model parameters.

Table 4.3 compares the timely effort for these different power modeling approaches.
The automated power modeling approach clearly outperforms the manual power modeling
as well as the naive brute force approach. In terms of power modeling accuracy, Figure 4.1
summarizes the estimation errors for the different power modeling techniques. To this end,
a number of benchmarking applications have been divided into a set of characterization
microbenchmarks, i.e., the training set (TS), and a set of evaluation benchmarks, i.e.,
the control set (CS). The automated power modeling approach outperforms the manual
modeling and the brute force approach both in terms of average estimation error and
root-mean-square estimation (RMS) error that represents the cycle-by-cycle estimation
accuracy. Figure 4.1 illustrates the reduction of the average error from 11.78% to 4.71%
and for the RMS error from 42.24% to 24.04% for the automatically generated power
model in comparison to the manually created one. The publication in Section 6.3 further
elaborates the evaluation of the automated power emulation technique.

Parameter Selection Effort / Execution
Method Time

Manual selection several days
Brute forcea ∼ 12 days

Signal corr. filtera 8.2 min
Sig. and pow. corr. f.a 8.3 min

Table 4.3: Power model parameter selec-
tion effort [62]

aExecuted on a 3 GHz AMD Opteron system.

0

5

10

15

20

Average Error per Power Model

A
v
e
ra
g
e
 E
rr
o
r 
[%
]

0

10

20

30

40

50

RMS Error per Power Model

R
M
S
 E
rr
o
r 
[%
]

TS C
S TS C

S TS C
STS C

S TS C
S TS C

S TS C
STS C

S

Manual model

Brute force

Signal corr. filter

Sig. and power corr. filter

Figure 4.1: Average and RMS estimation er-
ror for different power models [62]

4.3.2 Power Model Evaluation

The high-level power models required for enabling the power emulation of the given test
systems have been created using the automated power modeling approach. Table 4.4 and
Table 4.5 summarize the power modeling parameters for both test systems.

Models Single model for SoC

Characterization Simulation-/Measurement-
Method Based NNLS (entire SoC)

# Model
54 (entire SoC)

Parameters

Table 4.4: Power model parameters for
smart card microcontroller test system

Models
Core (IU, FUs, MMU)

I/D Caches, Register File

Characterization NNLS (Core)
Methods eCACTI (Caches, RF)

# Model 53 (Core)
Parameters 6 (Caches), 2 (RF)

Table 4.5: Power model parameters for
multi-processor test system

A single model is covering the entire smart card microcontroller test system. In the
characterization process training set data derived both from simulations and from measure-



4. Evaluation of Methodology and Case Studies 26

ments have been used (see Table 4.4). For the multi-processor SoC (MPSoC) test system
the core’s power model has been created from simulation-based training set data using the
automated power modeling approach. For both test systems power model parameters have
been automatically selected and coefficients have been derived using a nonnegative least
squares (NNLS) coefficient fitting algorithm. Due to the lack of a physical implementation
of the cache memories and the register files, these components have been modeled using
characterization data obtained from the eCacti tool [67] (see Table 4.5).

Average Error per Benchmark

A
v
e

ra
g

e
 E

rr
o

r 
[%

]

0

1

2

3

4

5

6

7

8

9

10

A
rit

hm
.

Lo
g.

C
ac

he

M
em

or
ie
s

A
E
S
12

8,
LP

A
E
S
12

8

D
E
S
,L

P
D
E
S

D
hr

ys
to

ne

B
as

ic
M

at
h

B
itC

ou
nt

Q
S
or

t

P
ay

m
en

t

Characterization Benchmarks

(Training Set)

Validation Benchmarks

(Control Set)

Total RMS and Average Error

E
rr

o
r 

[%
]

Tra
in

in
g 

S
et

C
on

tro
l S

et

RMS Error

Average Error

0

5

10

15

20

25

Figure 4.2: Per-benchmark average error (left) and total average and RMS error (right) for the
smart card microcontroller power model

Figure 4.2 and 4.3 illustrate the average error for training set and control set bench-
marks for both test systems in comparison to detailed gate-level power simulations. For
the smart card microcontroller test system the average error per benchmark remains below
9% for the training set (TS) and below 5% for the control set (CS). Summarized, for the
smart card test system the power model achieves an average error across all benchmarks
of 4.71% (TS) and 2.78% (CS). For the root-mean-square (RMS) error these numbers are
24.04% (TS) and 19.07% (CS).

Total RMS and Average Error

E
rr
o
r 
[%

]

Tr
ai
ni
ng
 S
et

C
on
tro
l S
et

RMS Error

Average Error

Average Error per Benchmark

A
v
e
ra
g
e
 E
rr
o
r 
[%

]

A
rit
hm
.

Lo
g.

C
ac
he

D
hr
ys
to
ne

P
ow
er
-

D
ow
n R

A
M

R
O
M

Ti
m
er
s

C
or
em
ar
k

Q
ui
ck
so
rt

B
itc
ou
nt

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Characterization Benchmarks

(Training Set)

Validation Benchmarks

(Control Set)

0

5

10

15

20

25

Figure 4.3: Per-benchmark average error (left) and total average and RMS error (right) for the
multi-processor core power model

For the MPSoC core power model the average error per benchmark remains below 4%



4. Evaluation of Methodology and Case Studies 27

(TS) and 5% (CS) respectively. Summarized, for the MPSoC core power model the average
error is 1.66% (TS) and 2.60% (CS). The RMS error amounts to 12.14% (TS) and 18.12%
(CS). Considering the high-level nature of the used power macromodeling technique this
power model accuracy can be considered sufficiently high for use in the power emulation
methodology. The publications in Sections 6.3 and 6.4 discuss the power modeling of the
two test systems in greater detail.

4.3.3 Power Emulation Hardware Generation and Implementation

After performing the automated power modeling, the obtained high-level power macro-
models have been implemented in hardware to enable the power emulation of the given
test systems. To this end, both test systems have been augmented with a power emulation
unit as illustrated in Figure 4.4 and Figure 4.5. The concept for the automated power
emulation hardware generation and implementation, as outlined in Section 3.2.3, has been
used to implement the automated HDL model adaptation1,2 as well as the generation of
the power emulation unit itself3.

UART

RAM

I
2
C

CL Interface

NVM

TRNG PRNG Timer

Interfaces

MemoriesCore

MED

Co-Processors

Peripherals

ROM

...

Cache

Symmetric Crypto

Asymmetric Crypto

Power Emulation Unit

Dual CPU

CPU 1 CPU 2

Figure 4.4: Integration of smart card test
system and power emulation unit

UART

CAN

Ethernet
VGA Timers

Interfaces

Memories

Peripherals

. . .

Processor 1

LEON3 

CPU 1

MMU

FPU

Cache

Power Emulation Unit

...

Processor N

LEON3 

CPU N

MMU

FPU

Cache

RAM

ROM

Figure 4.5: Integration of multi-processor
test system and power emulation unit

Table 4.6 provides an overview of the execution time required for the automated power
emulation hardware implementation of the smart card microcontroller test system, per-
formed on a 3.2 GHz Intel Xeon server system. The HDL model of this test system com-
prises 400 HDL files in total, approximately 10% thereof have been automatically adapted
to enable the monitoring of internal signals that represent power model parameters. Fur-
thermore, the timely effort for executing the template-based HDL model generation of
the power emulation unit itself is listed. While the manual effort varies largely with the
hardware designer’s expertise and knowledge regarding the test system’s architecture, in
any case the automated approach largely reduces the timely effort.

In terms of hardware overhead Table 4.7 and Table 4.8 provide FPGA resource uti-
lization figures for the two test systems. For the smart card system the power emulation

1D. Reitz, “Automated test system adaptation for power emulation,” Bachelor’s Thesis, Graz University
of Technology, 2009.

2M. Schön, “Automated test system adaptation for power emulation: Extended features,” Technical
Report, Infineon Technologies Austria AG, 2010.

3D. Wittibschlager, “Modelling of a real-time power emulation architecture,” Bachelor’s Thesis, Graz
University of Technology, 2009.



4. Evaluation of Methodology and Case Studies 28

HDL Implementation Method Effort / Execution Time

HDL analysis 28.9 s

Dependency extraction 4 s

Signal routing & Write-back 24.3 s

PE unit HDL generation 0.2 s

Automatic implementation total 57.4 s

Manual implementation several hours

Table 4.6: Comparison of HDL implementation effort for power emulation on smart card micro-
controller test system [62]

Component Utilizationa [%]

Test System 66.0

Power Emulation 1.6

Total (Test System + PE) 67.6

Table 4.7: FPGA utilization for power emu-
lation of smart card test system

aPercentage of total available LUTs on Altera
Stratix II platform.

Component Utilizationa [%]

Test System 80.8

Power Emulation 7.8

Total (Test System + PE) 88.6

Table 4.8: FPGA utilization for power emu-
lation of quad-core multi-processor test system

aPercentage of total available LUTs on Xilinx
Virtex 5 platform.

accounts to an additional 1.6% of look-up table (LUT) utilization on top of the 66.0%
used for purely functional emulation. For the MPSoC test system, used in a quad-core
configuration, the additional utilization accounts to 7.8% (∼1.95% per core) as compared
to 88.6% for the functional emulation. Hence, the impact of the power emulation ap-
proach onto the emulation platform can be considered minor and still leaves a margin
for implementing additional functionality. The power emulation hardware generation and
implementation for both test systems is discussed in greater detail in the publications in
Section 6.3 and Section 6.4.

4.3.4 Power Emulation Performance

The high emulation speed represents one of the main advantages of the high-level power
emulation methodology as compared to low-level approaches or software simulators. Table
4.9 illustrates the speed-up achieved for the MPSoC test system for some benchmarking
applications. The power emulation performance of both test systems is discussed in greater
detail in the publications in Section 6.2 and Section 6.4.

Benchmarks Bitcount Coremark Quicksort OS Booting

RTL Simulation Time 26.46 s 144.56 s 30.71 s 7.39 db

IS Simulationa 2.45 ms 11.81 ms 2.51 ms 54.23 sb

Emulation Time 0.50 ms 2.39 ms 0.50 ms 11 s

Speedup vs RTL Sim. 52744 60507 60890 58047c

Speedup vs IS Sim.a 4.9 4.9 5.0 4.9c

Table 4.9: Simulation vs emulation time comparison for multi-processor test system

aPurely functional simulation, no power estimation process.
bValue is extrapolated from average speedup of emulation vs RTL/IS simulation.
cAverage value.



4. Evaluation of Methodology and Case Studies 29

4.4 Emulation-Based Power-Aware HW/SW Codesign

4.4.1 Joint Power Emulation and Performance Monitoring

By additionally enabling the monitoring of performance indicators of the given system-
under-test, trade-offs between the power/energy consumption and the performance of the
system can be more easily explored. To this end, performance monitoring units, as intro-
duced in Section 3.3.1, have been added alongside the power emulation hardware. Figure
4.6 depicts the power emulation and performance monitoring architecture implemented
for the LEON3 multi-processor test system4. A number of performance-relevant events,
as listed in Table 4.10, are covered by monitoring internal signals of each core’s pipeline,
register file, and cache memories.

FPGA Board

Core 1

Host PC

Core 4

.
.
.

LEON3 MPSoC

Power Emulation

and Perf. Monitoring

Core 1Core 1PE Unit

Core 1Core 1Perf. 

Mon.

Eth. PHY

Ethernet 

Frame

Generator

Memory

Mapped

Ctrl. Regs. Ctrl

Prof.

Data

Visualization

File LoggingJPCAP Packet 

Capturing

Control & Cfg.

Post-Processing

D
a
ta
 A
g
g
re
g
a
ti
o
n

Packet 

Parsing

Figure 4.6: Integration of multi-processor test system and joint power emulation and
performance monitoring functionality

General Execution Stage Register File Instruction Cache Data Cache

Clock Cycles Add, Logic, Shift S/D Read Read Hit Read/Write Hit

Stall Cycles Mul, Div Op. Write Read Miss Read/Write Miss

Table 4.10: Monitored performance events

The benefits of the joint power emulation and performance monitoring approach in
the HW/SW codesign process are illustrated by profiling prototypical applications. In the
first example, as depicted in Figure 4.7, the profiling of different compiler optimization
levels applied to the Coremark [68] benchmark is shown. While the unoptimized version of
the benchmark (compiler level 0) exhibits a number of data cache stall cycles, the number
of stalls is largely reduced in the optimized version (compiler level 3), hence, largely
reducing the execution time. Note that these optimizations are purely compiler-based,
i.e., no manual code modifications have been performed.

The second example, depicted in Figure 4.8, illustrates the usefulness of the joint power
emulation and performance monitoring platform during manual software optimization.
The unoptimized version subsequently modifies a large data array in two execution steps.
However, due to the large size of the array it cannot be entirely held in the cache and has
to be loaded again for the second execution step, causing a number of data cache stalls.

4M. Lackner, “Design and implementation of a multi-core power and performance emulation platform,”
Master’s Thesis, Graz University of Technology, 2010.



4. Evaluation of Methodology and Case Studies 30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [ms]

Coremark, Optimization Level 0: Power Emulation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [ms]

Coremark, Optimization Level 0: Performance Monitoring

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [ms]

Coremark, Optimization Level 3: Power Emulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [ms]

Coremark, Optimization Level 3: Performance Monitoring

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

P
o
w
e
r 
[n
o
rm
]

V
a
lu
e
 [
n
o
rm
]

P
o
w
e
r 
[n
o
rm
]

V
a
lu
e
 [
n
o
rm
]

Power

I-Cache Stalls

D-Cache Stalls

RF Writes

Power

I-Cache Stalls

D-Cache Stalls

RF Writes
Reduced D-Cache Stalls

Figure 4.7: Emulation-based power and performance profiling illustrating the impact of compiler
optimizations5

The optimized version the two execution steps are performed only on smaller parts of the
array that are entirely fitting into the data cache. Therefore, the number of data cache
stall cycles is being reduced, resulting in a shorter execution time.

Loop 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

P
o

w
e

r 
[n

o
rm

]

Non-optimized array usage: Power Emulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

V
a

lu
e

 [
n
o

rm
]

Non-optimized array usage: Performance Monitoring

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

P
o

w
e

r 
[n

o
rm

]

Optimized array usage: Power Emulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

V
a

lu
e

 [
n
o

rm
]

Optimized array usage: Performance Monitoring

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Power

I-Cache Stalls

D-Cache Stalls

RF Writes

Power

I-Cache Stalls

D-Cache Stalls

RF Writes

Loop 2

Loop 2 I-Cache Stall

Continous D-Cache Stalls

Loop 1.1 Loop 1.2
L 2.1 L 2.2

Cached Execution

Execution 

Time 

Reduction

Execution 

Time 

Reduction

Figure 4.8: Emulation-based power and performance profiling illustrating the impact of manual
array access optimizations5

The high emulation speed that represents one of the main advantages of the power
emulation approach as compared to software simulators allows the profiling of applications
exhibiting long execution times. In Figure 4.9 the profiling result of a task migration
procedure on an SMP-enabled SnapGear Linux 2.6 [66] is shown. The migration process
is clearly visible both in the cores’ power profiles as well as in the performance profiles
monitoring the cache activity. The detailed evaluation of the joint power emulation and
performance monitoring approach is presented in the publication in Section 6.4.

5Data normalized due to existing confidentiality agreement.



4. Evaluation of Methodology and Case Studies 31

0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

P
o

w
e

r 
[n

o
rm

]

Thread Migration Example: Power Emulation

Power (1)

Power (2)

0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

V
a

lu
e

 [
n

o
rm

]

Thread Migration Example: Performance Monitoring

I-Cache Stalls (1)

D-Cache Stalls (1)

RF Writes (1)

I-Cache Stalls (2)

D-Cache Stalls (2)

RF Writes (2)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Task Execution on Core 1 Task Execution on Core 2

Task Execution on Core 1 Task Execution on Core 2

Figure 4.9: Emulation-based power and performance profiling of a Linux task migration between
two processor cores6

4.4.2 Power-Aware Software Development Using Power Emulation

The integration of the power emulation methodology into the software development process
in order to increase the power-awareness represents a major goal of the POWERHOUSE
project. To this end, the high-level power emulation technique has been incorporated in
the software development tool chains and development environments for both test systems
using the concept outlined in Section 3.3.2.

For the smart card test system, script-based power emulation support has been in-
tegrated for Keil µVision [17] software projects. Furthermore the WaveViewer [20] Java
application has been devised to analyze and visualize power emulation traces that have
been recorded using the Hitex HiTop [69] IDE/debugger that is controlling the emulation
platform. Furthermore, a Java-based power emulation GUI7 has been implemented that
performs the execution trace to source code correlation for both test systems, allowing for
the quick assignment of power consumption estimates to individual source code lines (see
Figure 4.10). The publication in Section 6.6 provides more details on the power-aware
software development process based on the power emulation technique.

4.4.3 Emulation-Based Power Peak Optimization of Embedded Software

The run-time power profiles generated using the power emulation technique have been
employed in the software-induced power peak optimization framework as introduced in
Section 3.3.3. This framework has been evaluated for the smart card test system, assuming
an RF-powered smart card device.

Figure 4.11 depicts the profiling result of an unoptimized benchmarking application

6Data normalized due to existing confidentiality agreement.
7S. Gether, “Design und Implementierung einer grafischen Benutzeroberfläche für Power Emulation,”

Bachelor’s Thesis, Graz University of Technology, 2010.



4. Evaluation of Methodology and Case Studies 32

P
o
w
e
r 
[n
o
rm
a
liz
e
d
]

Time [normalized]

0

1

0 1

Power consumption to 

source code correlation

Source code

Run-time power estimates

Execution trace

Figure 4.10: Power-aware software development GUI based on power emulation8

that exhibits a series of power consumption peaks leading to supply voltage drops below
a critical limit. By modifying the benchmarking application by means of the automated
power peak optimization framework, the critical power peaks can be diminished, reducing
the severity of the supply voltage drops as illustrated in Figure 4.12. This is achieved by
applying frequency scaling and non-functional instruction (NFI) insertion to the source
code regions causing these peaks, hence decreasing their impact on the power consumption
and the supply voltage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

Time [normalized]

P
o
w
e
r 
[n
o
rm

a
liz
e
d
]

Unoptimized Power

Power Peaks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.8

1

Time [normalized]

S
u
p
p
ly
 V
o
lt
a
g
e
 [
n
o
rm

a
liz
e
d
]

Voltage Drops

VLimi

t

Unoptimized Supply Voltage

Figure 4.11: Emulated power consumption
and resulting supply voltage profiles of non-
optimized software application8 [64]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

Time [normalized]

P
o
w
e
r 
[n
o
rm

a
liz
e
d
]

Optimized Power

Reduced Power Peaks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.8

1

Time [normalized]

S
u
p
p
ly
 V
o
lt
a
g
e
 [
n
o
rm

a
liz
e
d
]

Optimized Supply Voltage

Reduced Voltage Drops

VLimit

Figure 4.12: Emulated power consumption
and resulting supply voltage profiles of opti-
mized software application8 [64]

While the insertion of power management control instructions improves the system’s
stability and reliability, it also inherently impacts the code size and the execution time. Ta-
ble 4.11 and Table 4.12 compare these overheads for different benchmarking applications.

8Data normalized due to existing confidentiality agreement.



4. Evaluation of Methodology and Case Studies 33

Regarding execution time the automatic approach (1.2% (Crypto) up to 6.8% (Authenti-
cation)) outperforms the manual optimization (∼10%) due to the finer granularity of code
modifications. In terms of code size the increase for the manual approach is almost negli-
gible (smaller than ∼1%) while for the automatic approach it is higher (0.2% (Crypto) up
to 3.2% (Dhrystone)) as more frequency scaling control instructions and NFIs are inserted.

Benchmark Execution Time9 [%]

Original Manual Autom.

Authentication 100.0 110.8 106.8

Coremark 100.0 110.4 105.2

Crypto 100.0 110.5 101.2

Dhrystone 100.0 111.1 104.1

Table 4.11: Power peak optimization impact
on the execution time

Benchmark Code Size9 [%]

Original Manual Autom.

Authentication 100.0 100.2 101.7

Coremark 100.0 100.1 102.7

Crypto 100.0 100.2 100.2

Dhrystone 100.0 101.1 103.2

Table 4.12: Power peak optimization impact
on the code size

Hence, in terms of overhead the automatic approach slightly increases the code size
but this increase is compensated by gains in execution time due to this higher selectivity
of modifications as compared to manual optimizations. The automatic approach assists
software engineers and decreases the required development as well as optimization effort.
The emulation-based power peak optimization of embedded software is discussed in greater
detail in the publication in Section 6.7.

9Data normalized due to existing confidentiality agreement.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

With the rising number of mobile devices, power-aware hardware/software codesign has
become increasingly important. The rising design complexity of novel system-on-chip de-
signs renders the simulation-based power consumption profiling increasingly difficult due to
extensive simulation times. Therefore, hardware-accelerated power estimation techniques
based on the emulation principle have been devised.

In this work a novel methodology has been introduced that allows for automatically
creating a high-level power emulation platform for use in the hardware/software code-
sign process of system-on-chip designs. The methodoloy is based on a high-level power
macromodeling approach that minimizes the required hardware overhead. By observ-
ing a number of power-relevant signals in the design-under-test, the power model derives
cycle-accurate power consumption estimates for the system and its sub-components.

For the purpose of creating the power macromodel of a given design-under-test an
automated power modeling method is employed. The method derives the high-level power
macromodel from system activity and power consumption training set data generated by
simulations or measurements. In a parameter selection stage internal system signals are
selected as potential power model parameters if their activity data correlate well with the
power consumption data. Afterwards a model coefficient fitting stage, utilizing a least
squares fitting algorithm, computes coefficients for the selected parameters.

The previously created power model needs to be implemented in hardware for im-
plementation on the emulation platform. To this end, an automated power emulation
hardware implementation method, consisting of two stages, is utilized. First, the HDL
model of the design-under-test needs to be modified to allow for the monitoring of internal
signals that are used as power model parameters. An adaptation algorithm analyzes all
HDL files associated with the design and performs the ”routing”, i.e., the creation of the
required internal connections, of signals originating in various sub-components at various
levels of hierarchy. Second, the power emulation unit itself is created from HDL templates
and adapted to the used power model. The resulting adapted HDL model can afterwards
be processed by a standard FPGA implementation tool flow that generates the netlist of
the power emulation platform.

Furthermore, the utilization of the resulting power emulation platform in the power-

34



5. Conclusion and Future Work 35

aware hardware/software codesign process has been illustrated. The integration of the
power emulation platform within a standard software development flow allows for pro-
viding power consumption feedback to software engineers, enabling truly power-aware
software development and optimization. Additionally, the profiles can be used to detect
software-induced power consumption peaks that threaten the reliable operation of the sys-
tem. A framework utilizing the run-time power emulation traces for detecting power con-
sumption peaks, assessing the supply-voltage impact and reducing their impact by means
of software-controllable power management has been presented. By extending the power
emulation platform with the ability of monitoring hardware performance indicators, both
power- and performance-awareness in the codesign process can be improved. The joint
power emulation and performance monitoring approach allows for performing hardware
and software power optimizations while considering their performance impact. Hence, it
enables the quick evaluation of trade-offs between a system’s power/energy consumption
and its performance.

For the purpose of illustrating the effectiveness of the automated power emulation
methodology, an evaluation on two test systems has been performed. The first test system
is represented by a heterogeneous smart card microcontroller SoC whereas the second
test system is constituted by a multi-processor SoC (MPSoC). The intended low-power
operating environment and the considerable amount of hardware complexity, including
power management features, make these two test systems particularly interesting for the
evaluation of the automated power emulation methodology.

For creating the power emulation platforms of both test systems, high-level power
macromodels have been created using the automated power modeling approach. For the
smart card test system the automated power models have been additionally benchmarked
against different modeling techniques, illustrating a reduction of the average error from
11.78% to 4.71% and for the RMS error from 42.24% to 24.04% as compared to gate-level
simulations. For the MPSoC test system the derived per-core power model achieves an
average estimation error of 2.60% and an RMS of 18.12%. Considering the high-level
nature of the used power macromodels these numbers illustrate the applicability of the
automated power modeling approach in the power emulation methodology.

By using the automated power emulation hardware implementation approach, the
power emulation units for the power models of both test systems have been generated and
the original HDL models have been adapted to allow for the monitoring of model-relevant
signals by the power emulation units. In terms of hardware overhead, for the smart
card system the power emulation accounts to an additional 1.6% of FPGA utilization as
compared to 66% already required for the functional emulation. For the quad-core MPSoC
system the power emulation units account to 7.8% (∼1.95% per core) as compared to 80.8%
used by the functional emulation. Hence, the impact of the high-level power emulation
approach in terms of hardware overhead is relatively small, enabling the full-system power
emulation of complex SoCs using moderately priced FPGA platforms.

Furthermore, the use of the resulting power emulation platforms in the HW/SW code-
sign process has been evaluated. By adding performance monitoring units to the MPSoC
test system, a total of 18 performance events per core can be detected and logged. The
benefits of the joint power emulation and performance monitoring approach has been il-
lustrated by comparing the impact of manual as well as compiler optimizations on bench-



5. Conclusion and Future Work 36

marking applications. For the Keil µVision and Hitex HiTop software development tool
chains power emulation support has been integrated, providing graphical user interface ap-
plications for the analysis and the source-code-correlation of the run-time power consump-
tion traces. Additionally, the applicability of the emulation-based power peak reduction
framework has been illustrated for the smart card test system, assuming an RF-powered
implementation. In comparison to manual optimizations, the automated insertion of soft-
ware power management instructions into the application’s source code reduces execution
time overheads.

5.2 Directions for Future Work

5.2.1 Hybrid Power and Fault Attack Emulation for Trusted SoC Design

In recent years the use of mobile system-on-chip devices in security applications has
strongly increased. A growing number of higher-order fault attacks have been devised
with the aim of extracting sensitive information from these devices. For detecting and
mitigating the effects of these fault attacks more complex fault detection and recovery
mechanisms will have to be integrated into future trusted SoCs. Due to the power-limited
operating environment inherent to mobile applications, the power- and energy-impact
of these mechanisms is of increased interest. Therefore, both power- and fault-attack-
awareness will have to be considered in the design process of mobile security-related SoCs.
Furthermore, the effectiveness of these mechanisms will have to be evaluated for a large set
of different fault attacks in realistic application scenarios that entail extensive execution
times. The simulation-based analysis and evaluation of the power-consumption-impact of
both fault attack detection as well as mitigation mechanisms will therefore be difficult due
to extensive simulation times.

The follow-up project ”Power Emulator and Model Based Dependability and Security
Evaluation Platform” (POWERMODES) [70] will address the limitations of state-of-the-
art simulation-based approaches by investigating the feasibility of a hybrid power and
fault attack emulation platform. By combining a fault attack emulation approach with the
automated high-level power emulation methodology presented in this thesis, the platform
could be used to enable rapid power-effectiveness evaluations of novel fault attack detection
and recovery mechanisms.

5.2.2 Run-time Thermal Estimation Based on Power Emulation

The combination of ever increasing performance requirements with higher levels of inte-
gration enabled by CMOS technology scaling, has led to higher system-on-chip operating
temperatures. These higher temperatures negatively influence both the performance as
well as the reliability of SoCs by, e.g., exponentially increasing leakage currents, increasing
interconnect resistivity, degrading device lifetime, etc. Therefore, the operating tempera-
ture has to be already considered during the design process for appropriately selecting chip
packages and cooling solutions. In many cases, however, the worst-case design in terms of
cooling solution is prohibitively expensive, therefore, requiring system designers to utilize
run-time power and temperature management techniques for keeping the system’s tem-
perature below a critical limit. For analyzing the run-time temperature behavior of SoC



5. Conclusion and Future Work 37

designs and evaluating the effectiveness of thermal management strategies, execution time
intervals of several seconds have to be considered in order to reach steady state tempera-
ture distributions accounting for the thermal capacities of the design. Both the thermal
as well as the power simulation of these temporal intervals using thermal finite element
simulators and power simulators respectively, represent computationally expensive tasks
resulting in prohibitively long simulation times.

Accelerated architectural level thermal simulators, such as the Hotspot compact ther-
mal model proposed by Skadron et al. [71], address the slow simulation speed of finite-
element-based approaches by representing a given SoC design as a thermal resistor-capacitor
(RC) circuit. The coupling of this thermal RC circuit simulation with the high-level
power emulation method derived in the POWERHOUSE project represents an interest-
ing approach for enabling long-time thermal evaluations and has already been investigated
within the project1. By integrating high-level power models alongside the power emulation
hardware within the emulation platform the thermal estimation process could be further
accelerated, allowing for novel approaches such as, e.g., the consideration of run-time
temperature-feedback in the power emulation process. Therefore, the emulation-based
power and thermal estimation approach promises to be an interesting topic for future
work.

1M. Schaffernak, “Thermal estimation for SoC design based on power emulation,” IT Project Report,
Graz University of Technology, 2010.



Chapter 6

Publications

This chapter comprises the publications covering the previously presented methodology
(Chapter 3) and the evaluation results thereof (Chapter 4), as well as the motivational
example (Chapter 1) in greater detail.

Publication 1: A Low-Power ASIP for IEEE 802.15.4a Ultra-Wideband Impulse Radio Base-
band Processing, 12th IEEE Design, Automation & Test in Europe Conference & Exhibition 2009
(DATE ’09), Nice, France, 20–24 April 2009.

Publication 2: An Emulation-Based Real-Time Power Profiling Unit for Embedded Software,
9th IEEE International Symposium on Systems, Architectures, Modeling, and Simulation 2009
(SAMOS ’09), Samos, Greece, 20–23 July 2009.

Publication 3: Automated Power Characterization for Run-Time Power Emulation of SoC De-
signs, 13th IEEE Euromicro Conference on Digital System Design: Architectures, Methods and
Tools 2010 (DSD ’10), Lille, France, 1–3 Sept. 2010.

Publication 4: An Emulation-Based Platform for Power- and Performance-Aware HW/SW De-
velopment of Embedded Multi-Core Systems, submitted for publication / under review, 2011.

Publication 5: Power emulation: Methodology and applications for HW/SW power optimiza-
tion, 8th IEEE/ACM International Conference on Formal Methods and Models for Codesign 2010
(MEMOCODE ’10), Grenoble, France, 26–28 July 2010.

Publication 6: Accelerating Embedded Software Power Profiling Using Run-Time Power Emula-
tion, 19th International Workshop on Power and Timing Modeling, Optimization and Simulation
2009, (PATMOS ’09), Delft, The Netherlands, 9–11 Sept. 2009, published in Springer Lecture
Notes in Computer Science, 2010, Volume 5953.

Publication 7: An Automated Framework for Power-Critical Code Region Detection and Power
Peak Optimization of Embedded Software, 20th International Workshop on Power and Timing
Modeling, Optimization and Simulation 2010, (PATMOS ’10), Grenoble, France, 8–10 Sept. 2010,
published in Springer Lecture Notes in Computer Science, 2011, Volume 6448.

Publication 8: Estimation-Based Run-Time Power Profile Flattening for RF-Powered Smart-
Card Systems, 11th IEEE Asia Pacific Conference on Circuits and Systems, (APCCAS ’10), Kuala
Lumpur, Malaysia, 6–12 Dec. 2010.

38



6. Publications 39

The publications in this chapter discuss various aspects of the automated power emulation
methodology for power-aware HW/SW codesign (Chapter 3) as well as evaluation results
and case studies (Chapter 4), as depicted in Figure 6.1.

Publication in Section 6.2:

An Emulation-Based Real-Time 
Power Profiling Unit for 
Embedded Software
(SAMOS '09)

Publication in Section 6.3:

Automated Power Characterization 
for Run-Time Power Emulation of 
SoC Designs
(DSD '10)

Publication in Section 6.4:

An Emulation-Based Platform for 
Power- and Performance-Aware 
HW/SW Development of Embedded 
Multi-Core Systems (to be 
published / under review, '11)

Publication in Section 6.1:

A Low-Power ASIP for IEEE 
802.15.4a Ultra-Wideband 
Impulse Radio Baseband 
Processing (DATE '09)

Publication in Section 6.8:

Estimation-Based Run-Time 
Power Profile Flattening for RF-
Powered Smart Card Systems
(APCCAS '10)

Publication in Section 6.7:

An Automated Framework for 
Power-Critical Code Region 
Detection and Power Peak 
Optimization of Embedded 
Software (PATMOS '10)

Publication in Section 6.5:

Power Emulation - Methodology 
and Applications for HW/SW 
Power Optimization
(MEMOCODE '10)

Publication in Section 6.6:

Accelerating Embedded Software 
Power Profiling Using Run-Time 
Power Emulation (PATMOS '09)

Power & Performance Optimized 
System-on-Chip

Automated Power Profile Optimization

Power-Aware Software Development

Joint Power Emulation & Performance Monitoring

Power Emulation Platform

Automated Power Emulation Methodology

Automated Power Modeling
Automated HW Implementation

Power Emulation Platform Prototype

HW-Accelerated Power Estimation
High-Level Power Emulation

Power-Constrained System-on-Chip

Power-Critical Code Region Detection
Run-Time Power Profile Flattening

Power-Aware Software IDE
Source Code Power Annotations

Hardware Performance Monitoring
Multi-Core Power & Perf. Emulation

Figure 6.1: Overview of the publications covering the automated power emulation methodology
for power-aware HW/SW codesign

The publication in Section 6.1 serves as a motivational example by illustrating the
need for fast power consumption profiling methods to support the power-aware hard-
ware/software codesign process. The high-level power emulation technique that allows for
the rapid power profiling of a given system-under-test is introduced in the publications in
the Sections 6.2 and 6.3. The novel automated power emulation methodology, consisting of
automated power modeling and power emulation hardware implementation, is introduced
in Section 6.3.

The resulting high-level power emulation platform is then utilized in the power-aware
HW/SW codesign process as illustrated in the publications in the Sections 6.4-6.8. By ex-
tending the power emulation method for use in heterogeneous multi-core environments and
by additionally enabling the monitoring of hardware performance events, a truly power-
and performance-aware development and optimization process can be realized (Section
6.4). Furthermore, the integration of the run-time power profiling results, obtained from
the power emulation platform, into the standard development process is illustrated in the
Sections 6.5 and 6.6. Finally, the use of the run-time power estimates for the purpose of
detecting and reducing power consumption peaks by means of a software-based framework
(Section 6.7) and a hardware-based approach (Section 6.8) is shown.



A Low-Power ASIP for IEEE 802.15.4a
Ultra-Wideband Impulse Radio

Baseband Processing
Christian Bachmann∗, Andreas Genser∗, Jos Hulzink†, Mladen Berekovic‡ and Christian Steger∗

∗Institute for Technical Informatics, Graz University of Technology
Inffeldgasse 16, 8010 Graz, Austria
†IMEC Netherlands, Holst Centre

High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
‡IDA, TU Braunschweig

Hans-Sommer-Str. 66, 38106 Braunschweig, Germany

Abstract—The IEEE 802.15.4a amendment has introduced
ultra-wideband impulse radio (UWB IR) as a promising physical
layer for energy-efficient, low data rate communications. A
critical part of the UWB IR receiver design is the low-power
implementation of the digital baseband processing required for
synchronization and data decoding. In this paper we present the
development of an application-specific instruction-set processor
(ASIP) that is tailored to the requirements defined by the
baseband algorithms. We report a number of optimizations
applied to the algorithms as well as to the hardware architecture.
This enables performance increases up to a factor of 122x and
energy consumption decreases up to 90x as compared to a 16-
bit baseline architecture. Furthermore, this ASIP offers greater
flexibility due to programmability as compared to an ASIC
implementation.

I. INTRODUCTION

Within IMEC’s Human++ research program [1], ultra-low
power radio transceivers are identified as the key components
in future wireless sensor networks for mobile healthcare appli-
cations. IEEE 802.15.4a ultra-wideband impulse radio (UWB
IR) represents a potential communication scheme for these
low-power radios.

UWB IR transceivers typically make use of an analog/digital
partitioning: An analog radio front-end is used to transmit
and receive modulated RF signals. The baseband signals are
encoded and decoded by a digital baseband processor as
depicted in Fig. 1.

In first generation systems an ASIC implementation has
been employed for digital baseband processing [2]. This
implementation has been extended to an application-specific
instruction-set processor (ASIP), offering greater flexibility as

Data 
Sink

Baseband 
Processor

Radio 
Front-
End

Data 
Source

Baseband 
Processor

Radio 
Front-
End Radio

Channel
Sender Receiver

Fig. 1. Baseband processing principle

well as better energy-efficiency [3]. Both implementations are,
however, operating on a predecessor modulation scheme and
do not support the latest revision of the standard. This paper
presents the design and implementation of a new baseband
ASIP supporting the low-power and low-rate modes of the
novel IEEE 802.15.4a standard amendment [4]. In addition to
the previous ASIP, basic channel estimation and a rake receiver
structure are being considered.

Section II gives a brief introduction to IEEE 802.15.4a ultra-
wideband impulse radio and baseband algorithms. The design
process of the baseband ASIP is described in Section III.
Furthermore, the design methodology is outlined. In Section
IV various optimizations are presented. Finally, Section V il-
lustrates implementation results and in Section VI conclusions
are drawn.

II. IEEE 802.15.4A ULTRA-WIDEBAND IMPULSE RADIO

Ultra-wideband impulse radio communication is based on
the emission of very short pulse waveforms, exhibiting wide-
band spectral characteristics in the frequency domain. Due
to the stringent UWB emission limits (e.g., [5]), the energy
contained in a single pulse is very low. In order to be still
able to extract information out of UWB transmitted data and
to fight noise and interference, a technique called spreading is
used. A symbol to be transmitted is represented by a number
of consecutive pulses instead of a single pulse. The pseudo-
random bit sequence determining the polarity of these pulses
is referred to as spreading code.

In order to restore the original bit, i.e. to despread the
sequence of pulses, a cross-correlation operation

y =

N∑

i=1

(x [i] · C [i]) (1)

of N pulses x with the spreading code C, also of length N ,
is calculated. The value of the decision variable y determines
the value of the original bit.

6. Publications Publication 1 - IEEE DATE 2009 40

c© 2009 IEEE. Reprinted, with permission, from Proceedings of 12th IEEE Design, Automation & Test
in Europe Conference 2009.



Tp

L L L

...

SHR Symbol (Duration TSHR)

Burst Position Burst PositionGuard Interval Guard Interval
TBPM TBPM

PSDU Symbol (Duration TPSDU)

TBURST TBURST

Fig. 2. SHR (top) and PSDU (bottom) symbols

A. IEEE 802.15.4a Frame Structure

In IEEE 802.15.4a UWB IR systems data is being transmit-
ted in frames consisting of three major sub-parts:

• Synchronization header (SHR) / Preamble

• Data header (PHR)

• Data unit, i.e. the actual payload data (PSDU)

The synchronization header, also referred to as preamble,
is being transmitted in order to aid receiver algorithms in
timing acquisition and frame synchronization. It also serves
the purpose of channel estimation and gain control setting
optimization. This preamble is composed of SHR symbols that
contain a number of isolated pulses as depicted in Fig. 2.

The data unit and its header are constructed out of PSDU
symbols. Each symbol is able to carry two bits of information:
One bit is coded in the symbol half in which a burst, i.e.
a concatenation of pulses, occurs (burst position modulation,
BPM). Another bit is used to determine the polarity (phase)
of the burst itself (binary phase shift keying, BPSK). The state
of a linear feedback shift register (LFSR) varies the spreading
code for each transmitted PSDU symbol. This spreading code
determines the burst sequence as well as the exact burst
position within one of the symbol halves (”hopping code”).
A PSDU symbol is depicted in Fig. 2.

B. Baseband Algorithms

When designing the UWB IR baseband algorithms, the
frame structure as pointed out in Section II-A has to be taken
into account. The different sub-parts of a frame are processed
by different sub-algorithms.

1) Synchronization / Timing Acquisition: The synchroniza-
tion phase is commonly composed of noise estimation, signal
detection (coarse acquisition), fine acquisition, channel esti-
mation and end-of-preamble search sub-states [7]:

• Initialization & Noise Estimation
All necessary data structures are initialized and a thresh-
old value corresponding to current noise levels is com-
puted.

• Signal Detection (SD)
The purpose of the signal detection state is to detect the
presence of an ultra-wideband impulse radio signal within
input data that is corrupted by noise.

• Fine Acquisition (FA) & Channel Estimation
The fine acquisition algorithm is used to optimize syn-
chronization and to detect false positives during signal
detection. Furthermore, channel estimation is integrated
into this algorithm.

• End-Of-Preamble (EOP) Search
The EOP search algorithm detects the end of the pream-
ble (synchronization header) and the start of the actual
payload data within the UWB IR frame.

2) Payload Decoding (PD) / PSDU Data Despreading:
Once all synchronization algorithms have been successfully
passed, the decoding of the actual payload data can be carried
out. A selective-rake receiver structure is employed in order to
achieve higher signal-to-noise ratios. The channel coefficients
previously derived by the channel estimation algorithm are
used as weights within the rake receiver structure.

III. DESIGN OF A BASEBAND ASIP

The methodology used for designing this ASIP employs a
gradual exploration process covering multiple processor archi-
tectures. The use of the following architectures for baseband
processing is investigated:

• Scalar RISC

• Vector RISC

• Vector Very Long Instruction Word (VLIW)

Each of these architectures is adapted to optimize the
execution of the baseband algorithms.

A. ASIP Design Flow

In the design process the IP Designer [6] tool suite by Target
Compiler Technologies as depicted in Fig. 3 was employed.

HDL Generator

Retargetable 
Compiler, 

Assembler & 
Linker

Retargetable 
Instruction-Set 

Simulator

Processor 
Model
nML

Application 
Code

C

Synthesizable 
HDL Model

Marchine Code
Elf / Dwarf

Fig. 3. Target tools environment [6] used for baseband ASIP design

6. Publications Publication 1 - IEEE DATE 2009 41



It allows for fast architectural exploration due to retar-
getability. The high-level description of the processor facil-
itates rapid architectural changes.

The highly optimizing C-compiler, the (dis)assembler and
the linker, are used to generate machine code for a given
processor architecture. This code is then executed and bench-
marked on the cycle-accurate instruction-set simulator. If
performance requirements are met, a HDL model can be
generated out of the same high-level description.

B. Architectural Exploration

We use a scalar 16-bit Harvard RISC processor as depicted
in Fig. 4 as the starting point in the architectural design
process. It comprises a 16-bit arithmetic logical unit (ALU),
a 16 × 16-bit register file (RF), load-store unit, branch unit
and instruction decoder. Furthermore, a custom extension unit
is used to speed up scalar UWB operations.

Due to the fact that the cross-correlation, which is heavily
employed by large parts of the baseband algorithms, is an ideal
candidate for parallelization, the move to a vector processor
seems obvious. A single instruction multiple data (SIMD)
architecture is hence used to investigate the impact of data
parallelism on execution performance. The vector architecture
as depicted in Fig. 4 is derived from the scalar architecture but
additionally includes a vector ALU, a vector register file and
vector data memory. In addition to standard vector operations,
dedicated UWB application-specific instructions are enabled
through the use of a custom extension unit and a spreading
code register.

In order to support real-time processing of IEEE 802.15.4a
UWB IR baseband data, the algorithmic functionality specified
above has to be executed on the baseband architecture obeying
several timing limitations. The minimum time spans of SHR
and PSDU symbols as well as the amount of data sampled per
symbol have to be taken into account. Maximum input data
rates of 1250.0 Mbit/s for SHR symbols1 and 624.4 Mbit/s

1These numbers are derived from timing requirements set forth in the
standard [4], an assumed ADC resolution of 5 bit as well as algorithm-
dependent settings.

Vector Data
Memory

Scalar Data 
Memory

Scalar Issue Slot

SC Register
RF 1 x 64 bit

Scalar UWB Architecture Vector UWB Architecture

Scalar Data 
Memory

Scalar / Vector Issue Slot

Vector
Issue Slot 2

U
W

B
Ex

t.

Scalar
Issue Slot

U
W

B
Ex

t.

Scalar
Issue Slot

U
W

B
Ex

t.

RF 16 x 16 
bit

RF 16 x 96 bit
(16 x 6 bit)

RF 16 x 16 
bit

Fig. 4. Architectural overview of scalar (left) and vector baseband processors
(right)

Vector Data
Memory

Scalar Data 
Memory

Scalar Issue Slots Vector Issue Slots

VLIW UWB Architecture

Scalar
Issue Slot 1

Vector
Issue Slot 1

Vector
Issue Slot 2

U
W

B
Ex

t.

RF 16 x 96 bit 
(16 x 6 bit)

RF 16 x 96 bit
(16 x 6 bit)

MUX MUX MUX MUX MUX MUX

Scalar
Issue Slot 2

U
W

B
Ex

t.

SC Register
RF 1 x 64 bit

RF 16 x 16 
bit

RF 16 x 16 
bit

MUX MUX

Fig. 5. Architectural overview of final VLIW baseband processor

for PSDU symbols1 have to be sustained by the architecture.
Both, scalar and vector architecture, fail to meet these data
rates for moderate clocking frequencies (<250 MHz).

To achieve sufficient throughput, our proposed UWB base-
band architecture resembles a four issue-slot VLIW archi-
tecture, consisting of two slots containing scalar and control
functional units and two slots containing vector units. Func-
tional units specially tailored to the requirements of baseband
processing are present in the design and can be accessed
through custom instructions. Register-file sizes are adapted to
the resolution of the ADCs used in the radio front-end as well
as to algorithm requirements. Similar to the vector processor
described above, a dedicated spreading code register is present.
Fig. 5 presents an architectural overview of the final baseband
processor.

IV. ASIP OPTIMIZATIONS

A. Vector Correlation

A vital part of UWB baseband processing is the cross-
correlation of input data and spreading code as expressed
in Equation 1. The multiplications inside the sum can be
calculated independently from each other, hence enabling their
parallel computation. Due to the binary or ternary structure
of the spreading code the multiplication itself can be imple-
mented as invert/replace operation.

Furthermore, the different sub-sums can partly be calculated
in parallel, resulting in an adder-tree of depth log2(n) where
n is the number of vector elements.

B. Custom Instructions

The instruction-set of the VLIW processor is extended by
a number of custom instructions as listed in Table I. Scalar
operations are used to load, read out and modify the spreading
code register. Furthermore, special arithmetic operations are
present in the form of the addition of absolute values as well
as the emulation of a linear feedback shift register (LFSR).

Custom vector instructions are used to implement the par-
allelized computation of the cross-correlation as pointed out

6. Publications Publication 1 - IEEE DATE 2009 42



TABLE I
LIST OF IMPLEMENTED CUSTOM INSTRUCTIONS

Instruction Input par. Outp. par.
Addition of absolute values (scl,scl) (scl)

Spreading code loada (scl) (-)
Spreading code storeb (-) (scl)
Spreading code rotatea (-) (-)

Spreading code shift-loada (scl) (-)
LFSR clocking (scl) (scl)

Vector SC correlation (PSDU) (vec) (scl)
Vector SC correlation (SHR) (vec) (scl)

Vector shift (vec) (vec)

aInternal spreading code register is modified.
bData is read from internal spreading code register.

in Section IV-A. Different variants for header as well as
payload decoding, operating on different representations of
the spreading code, are available. An additional vector logic
operation is present in the form of a vector shift instruction.

C. Algorithmic Optimizations

The baseband algorithms are adapted to the architectural
extensions implemented in the ASIP. The synchronization as
well as the payload decoding algorithms harness the cross-
correlation custom instructions as well as vectorization. Ex-
pensive mathematical operators such as divisions, squares and
roots can be replaced by suitable shift and absolute value
add instructions. Furthermore, by exploiting the size of the
register files, a multi-buffer synchronization approach can
be implemented. This speeds-up the signal detection state
by correlating more than one input data vector during each
synchronization phase.

D. Low-Power Techniques

Techniques for low-power logic design employed within the
baseband processor are clock gating and operand isolation.
By applying the clock gating technique [8] the distribution
of the clock signal to inactive modules of the processor is
avoided. The clock signal is then turned off, reducing the
power dissipation due to switching activity.

Operand isolation [9], often also referred to as guarded
evaluation, is used to avoid the propagation of switching
activity to inactive parts of the architecture’s datapath. Thus,
power dissipation due to unnecessary activity is eliminated
in unused modules. Both types of logic optimization are
performed automatically by the Target HDL generator [10].

V. EXPERIMENTAL RESULTS

Experimental results for evaluating the impact of archi-
tectural optimizations are structured into performance and
power consumption metrics. Performance metrics for different
processor architectures have been determined by means of
cycle count measurements on the instruction-set simulator
provided by the Target tool suite. For that purpose, various
versions of the baseband algorithms have been executed on

the different baseband processor architectures as introduced
in Section III-B.

In order to obtain power consumption characteristics of the
final UWB baseband processor, the VHDL model generated
by the ASIP tool flow, extended with the user primitives for
the custom functional units, is synthesized as well as placed
and routed for a TSMC 90nm process including memories.
The baseband algorithms are then simulated on the back-
annotated netlist of the placed and routed processor including
parasitics using Cadence NCSim 5.7. The value change data
(VCD) information obtained during these simulations is used
to obtain power consumption values with Synopsys PrimeTime
PX Z2007.

A. Performance Results

For evaluating the overall performance of an algorithm-
architecture combination, the different sub-algorithms have
been profiled while processing an entire UWB IR frame. Fig. 6
and Fig. 7 depict the worst-case amount of cycles consumed by
the different sub-parts of the baseband algorithm. In Fig. 6 the
cycle counts for the execution on the basic scalar architecture
are shown. Fig. 7 illustrates the cycle counts for processing the
same data executing the optimized algorithms on the optimized
vector VLIW baseband processor. It can be seen that the cycle
count numbers have been drastically reduced due to these
optimizations.

Fig. 8 and Fig. 9 illustrate the impact of different opti-
mizations on performance. For this, the baseband algorithms
were profiled on the vector VLIW architecture while gradually
enabling optimizations in the algorithms. The improvements

0

2

4

6

8

10

12

x 10
4

C
y
c
le

s

11
85

91

14
14

2
57

84
44

88
22

25 36
2

13
5

Cycles per state (scalar arch.)

 

 

Signal Detection

Fine Acquisition

Payload Decoding

EOP Search

Noise Estimation

Delay Compensate

Initialization

Fig. 6. Cycles per algorithm on scalar architecture

0

200

400

600

800

C
y
c
le

s

89
2

21
8

20
9

18
1

11
8 80 66

Cycles per state (opt. VLIW architecture)

 

 

Signal Detection

EOP Search

Fine Acquisition

Initialization

Payload Decoding

Delay Compensate

Noise Estimation

Fig. 7. Cycles per algorithm on vector VLIW architecture

6. Publications Publication 1 - IEEE DATE 2009 43



C
yc

le
s

Signal detection (16)

Scalar
Scalar, HW ABS
Vectorized Cor.
Vec., HW ABS

0

2

4

6

8

10

10
59

30

10
47

21
19

80 86
4

x 10
4 Fine acquisition (16)

0

2000

4000

6000

8000

10000

10
47

5
10

44
0

17
0

13
2

Fig. 8. Degrees of performance optimization for synchronization (vector
VLIW architecture)

0

5000

10000

C
yc

le
s

13
13

8
65

5
36

0
61

2
31

6

Payload decoding (128)

0

500

1000

1500

2000

22
48 13

0 98 88 57

Payload decoding (16)

Scalar
Vectorized Cor.
Vec., HW LFSR
Vec., HW ABS
Vec., HW LFSR + ABS

Fig. 9. Degrees of performance optimization for payload decoding (vector
VLIW architecture)

due to vectorization and enabling different custom instructions,
i.e. vector correlation, addition of absolute values and LFSR
emulation (see Section IV-B), are shown as compared to
a scalar implementation. For the signal detection and fine
acquisition algorithms cycle count reductions by factors of
122x and 79x can be achieved. For the payload decoding
algorithm the combined use of all architectural improvements
enables a reduction by factors of 39x (spreading code length
16) and 41x (SC length 128).

It is observed that the signal detection during synchro-
nization is the most cycle-intensive state, hence determining
the required clock frequency. Only due to all architectural
optimizations, real-time processing of baseband data at a
relatively moderate clocking frequency of 225 MHz is made
feasible. At this frequency, a computational performance of
7.65 GOPS is achieved by the VLIW architecture as compared
to 0.23 GOPS and 3.6 GOPS for scalar and vector architecture
respectively.

B. Power and Energy Results

Out of active and idle power consumption as well as
the execution time profiling information, energy values and
average power consumption values per algorithm state are
calculated.

Fig. 10 summarizes the average power values obtained
for different baseband algorithms running on the final UWB
baseband processor. It can be seen that during the execution of
the signal detection (SD) and the EOP search algorithms for a

0

5

10

15

20

25
27

9.4 8.5

4.7

18.4

7.2
8.9 9.1

4.5
7.8P

ow
er

 [m
W

]

SD
 (1

6)
SD

 (6
4)

FD
 (1

6)
FD

 (6
4)

EO
P 

(1
6)

EO
P 

(6
4)

PS
DU (4

)
PS

DU (1
6)

PS
DU (3

2)
PS

DU (1
28

)

Average power per algorithm

Fig. 10. Average power consumption of different baseband sub-algorithms
(vector VLIW architecture)

spreading code length of 16, the average power consumption
is quite high. This is due to the fact that in these phases the
computational effort is high while the time span available for
processing is very limited. For the fine acquisition (FA) and
the decoding of the actual payload data (PD) on the other
hand, the duty cycle is considerably smaller, resulting in a
lower average power consumption.

Fig. 11 and Fig. 12 depict the decrease of energy con-
sumption for different versions of the synchronization and
the payload decoding algorithms. All algorithms are being
profiled on the final vector VLIW baseband architecture but
make use of different processor optimizations. The impact of
vectorization as well as the benefit of enabling different custom

E
ne

rg
y 

[n
J]

Scalar
Scalar, HW ABS
Vectorized Cor.
Vec., HW ABS

Signal detection (16) Fine acquisition (16)

0

200

400

600

800

1000

96
8.4

96
5.1 17

.7
13

.7
0

2000

4000

6000

8000

88
51

87
50

19
0.1 97

.9

Fig. 11. Energy optimization results for synchronization (vector VLIW
architecture)

Payload decoding (128) Payload decoding (16)

Scalar
Vectorized Cor.
Vec., HW LFSR
Vec., HW ABS
Vec., HW LFSR + ABS

E
ne

rg
y 

[n
J]

0

200

400

600

800

1000

1200

11
73

.7 71 43
.5

67
.5

39
.9

0

50

100

150

200

19
2.8 13 9.8 9.4 6.3

Fig. 12. Energy optimization results for payload decoding (vector VLIW
architecture)

6. Publications Publication 1 - IEEE DATE 2009 44



instructions, as introduced in Section IV-B, is shown. Due to
the shorter run-times, energy consumption is reduced by a
factor of 90x for signal detection algorithm and 70x for the fine
delay search state. For the payload decoding, improvements by
a factor of 30x for a spreading code length of 16 and a factor
of 29x for a SC length of 128 are achieved as compared to
the unoptimized version. These improvements enable energy-
efficient baseband processing.

C. Area Results

The overall area of the final baseband processor (vector
VLIW) after synthesis, place and route, is 0.77 mm2. Program,
scalar data and vector data memories contribute to almost 60%
of this area. Large data memories are required to buffer incom-
ing data of the radio front-end. A large part of the processor
core itself is used by the vector register file (58%) that is
especially needed for synchronization. The UWB IR functional
units implementing the custom instructions as mentioned in
Section IV-B only contribute to a small part (≈3%) of the
core area.

VI. CONCLUSIONS

Novel wireless sensor networks require ultra-low power
radios for data communications. The IEEE 802.15.4a ultra-
wideband impulse radio amendment represents a promising
physical layer for energy-efficient, low data rate commu-
nications. In this paper we present an application-specific
processor architecture tailored to the needs of digital baseband
processing.

Within the design process, various optimizations on differ-
ent levels of abstraction are introduced. By exploiting these
optimizations and migrating from a scalar to a vector and
finally to a vector VLIW architecture, performance speed-
ups in the range of 39x to 122x for payload decoding and

signal detection algorithms are presented. Furthermore, energy
consumption can be decreased by a maximum of 30x for
payload decoding and 90x for signal detection as compared
to the baseline implementation.

We conclude that an energy-efficient, low-power baseband
ASIP implementation for IEEE 802.15.4a is feasible while still
offering a greater amount of flexibility due to programmability
than an ASIC.

ACKNOWLEDGEMENT

We would like to thank Target Compiler Technologies and
IMEC for their support in the course of this project.

REFERENCES

[1] B. Gyselinckx, R. Vullers, C. Hoof, J. Ryckaert, R. Yazicioglu, P. Fior-
ini, and V. Leonov. Human++: Emerging Technology for Body Area
Networks. VLSI-SoC, 2006.

[2] M. Badaroglu, C. Desset, J. Ryckaert, V. D. Heyn, G. V. der Plas,
P. Wambacq, and B. V. Poucke. Analog-digital partitioning for low-power
UWB impulse radios under CMOS scaling. EURASIP, 2006.

[3] J. Govers, J. Huisken, M. Berekovic, O. Rousseaux, F. Bouwens, M. D.
Nil, and J. L. van Meerbergen. Implementation of an UWB Impulse-
Radio Acquisition and Despreading Algorithm on a Low Power ASIP.
HiPEAC, 2008.

[4] IEEE. P802.15.4a Draft Amendment to IEEE Standard for Information
technology - Telecommunications and information exchange between
systems, 2006.

[5] FCC. Revision of Part 15 of the Commission’s Rules Regarding Ultra-
Wideband Transmission Systems, 2002.

[6] G. Goossens, D. Lanneer, W. Geurts, and J. Van Praet. Design of ASIPs
in multi-processor SoCs using the Chess/Checkers retargetable tool suite.
Intl. Symp. on System-on-Chip, 2006.

[7] C. Desset, M. Badaroglu, J. Ryckaert, and B. van Poucke. UWB Search
Strategies for Minimal-Length Preamble and a Low-Complexity Analog
Receiver. SPAWC, 2006.

[8] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and S. Kaijian. Low Power
Methodology Manual. Springer, 2007.

[9] M. Munch, B. Wurth, R. Mehra, J. Sproch, and N. Wehn. Automating
RT-level operand isolation to minimize power consumption in datapaths.
DATE, 2000.

[10] G. Goossens, J. Van Praet, D. Lanneer, and W. Geurts. Ultra-Low
Power? Think Multi-ASIP SoC!. IP-07, 2007.

6. Publications Publication 1 - IEEE DATE 2009 45



An Emulation-Based Real-Time Power Profiling
Unit for Embedded Software

Andreas Genser1, Christian Bachmann1, Josef Haid2, Christian Steger1 and Reinhold Weiss1
1Institute for Technical Informatics, Graz University of Technology, Austria

2Infineon Technologies Austria AG, Design Center Graz, Austria
{andreas.genser, christian.bachmann, steger, rweiss}@tugraz.at

josef.haid@infineon.com

Abstract—The power consumption of battery-powered and
energy-scavenging devices has become a major design metric for
embedded systems. Increasingly complex software applications as
well as rising demands in operating times while having restricted
power budgets make power-aware system design indispensable.
In this paper we present an emulation-based power profiling
approach allowing for real-time power analysis of embedded
systems. Power saving potential as well as power-critical events
can be identified in much less time compared to power simula-
tions. Hence, the designer can take countermeasures already in
early design stages, which enhances development efficiency and
decreases time-to-market. Accuracies achieved for a deep sub-
micron smart-card controller are greater than 90% compared to
gate-level simulations.

I. INTRODUCTION

Rising complexity of embedded software applications and
the advance in processing power available in embedded sys-
tems require power analysis techniques to identify power
saving potential. Furthermore, the detection of power-critical
events, such as power peaks, which can affect system stability
of energy-scavenging devices (e.g. contact-less smart-cards) is
of great importance.

Among all abstraction layers the greatest power reduction
potential can be identified on the application layer [1]. To
enable the design of power-efficient software applications,
power consumption feedback to the software designer should
be available already at early design stages. However, com-
mercially available power estimation and analysis tools are
often operating on low abstraction layers, which are usually
not available to the software designer. Moreover, low-level
power simulations lead to extensive run-times. This makes
power simulations for complex designs unfeasible.

Functional hardware emulation by means of prototyping
platforms, such as FPGA-boards, has become a widespread
technique for functional verification. Power information, how-
ever, is still in many cases gathered by power simulators. In
this work, which is part of the PowerHouse3 project, we pro-
pose an emulation-based real-time power profiling approach
to circumvent this limitation. A given design augmented
with power estimation hardware allows for obtaining power

3Project partners are Infineon Technologies Austria AG, Austria Card
GmbH and TU Graz. The project is funded by the Austrian Federal Ministry
for Transport, Innovation, and Technology under the FIT-IT contract FFG
815193.

Power
Verification

Functional 
Verification

FPGA Board

Power Estimation HW
Power Emulation

Embedded System
Functional Emulation

po
w

er

time

MOV @R8, R12
INC R8, #0x02
ADD R8, R5

Host PC

Fig. 1. Overview of an emulation-based power profiling approach for
embedded systems comprising host computer interaction and visualization

alongside functional characteristics in real-time. Power saving
potential or power peaks can hence be detected earlier in the
design cycle, which normally is not feasible before the design
is available in silicon and actual physical measurements can
be carried out.

By coupling this approach with a software development
environment, valuable power information can be transfered
to the software designer. This concept is depicted in Fig. 1.
The FPGA-platform collects functional verification and power
characteristics information, which is transmitted to a host
computer. These information can be evaluated and visualized
in a software development environment.

This paper is structured as follows. Section II provides
information on previous work on power profiling. Section III
briefly shows our research contributions. In Section IV the
design of the real-time power profiling unit is discussed. Sec-
tion V outlines a case-study applying the concepts developed
in this work to a contact-less deep sub-micron smart-card
controller and finally, conclusions drawn from the current work
are summarized in Section VI.

II. RELATED WORK ON POWER PROFILING

Embedded software application power profiling can be
categorized in (i) measurement-based and (ii) estimation-based
methods.

Measurement-based methods are performed by taking actual
physical measurements. This yields high accuracy compared
to other approaches but requires additional measurement-
equipment.

In contrast, power profiling by means of estimation methods
is often based on power modelling. These techniques are
usually less accurate but provide greater flexibility, since

6. Publications Publication 2 - IEEE SAMOS 2009 46

c© 2009 IEEE. Reprinted, with permission, from Proceedings of 9th IEEE International Symposium on
Systems, Architectures, Modeling, and Simulation 2009.



also power consumption for sub-modules of the system can
be derived. In the following we compare ongoing research
activities in the field of power profiling.

A. Measurement-Based Methods

In [2], PowerScope an energy profiling tool for mobile
applications is introduced. The system’s current consumption
is automatically measured during run-time by a digital multi-
meter. Measurement data are collected for later analysis on a
host computer.

An oscilloscope measurement-based profiling technique is
proposed by Texas Instruments in [3]. The current drawn by
a DSP system is profiled and results are visualized on a host
computer in TI’s software development environment.

B. Estimation-Based Methods

Power profiling by means of estimation techniques can
be subdivided into (i) simulation-based and (ii) hardware-
accelerated approaches.

Simulation-based power estimation executes programs on
simulators to obtain circuit activity information. Power values
are acquired using these information. In hardware-accelerated
power estimation approaches, power information is derived
from power models, which are implemented in hardware.

Estimation techniques can be employed on various levels
of abstraction resulting in different estimation accuracies.
Moreover, the degree of abstraction influences simulation
times for simulation-based approaches and hardware-effort for
hardware-accelerated methods. Real-time power estimation,
however, is limited to hardware-accelerated estimation tech-
niques.

Commercially available power estimation tools (e.g. [4])
operate on low abstraction levels, such as gate- or register-
transfer level (RTL). Achievable estimation accuracies are
high, while extensive simulation times render power estimation
of elaborate applications unfeasible. On top of this, low-level
simulators are often not available to software designers. There-
fore, attempts to estimate the system’s power consumption on
a higher level of abstraction are carried out.

A simulation-based approach employing power models for
instruction-level power estimations is proposed by Tiwari et al.
in [5]. It allows for power and energy consumption estimation
for given applications. The underlying power model considers
the power consumption during instruction execution (i.e. base
costs) and power consumption during the transition between
instructions (i.e. circuit state overhead costs). In [6], Sami
et al. consider additional microarchitectural effects to en-
hance the accuracy of instruction-level power estimation based
on a pipeline-aware power model for Very-Long-Instruction-
Word (VLIW) architectures. A co-simulation based power
estimation technique is introduced by Lajolo et al. in [7].
This approach for System-On-Chips (SoCs) works on multiple
abstraction levels. In principle, power estimation is performed
on system level, while for refinement purposes and accuracy
enhancements various components are co-simulated on lower
levels of abstraction. Countermeasures against high simulation

times are caching, statistical sampling and macro-modelling. A
simulation framework for system-level SoC power estimation
is introduced by Lee in [8]. This approach is based on power
models developed for the processor, memories and custom IP
blocks. Power values derived are provided cycle-accurately to
the designer in a dedicated profile-viewer.

Hardware-accelerated power estimation techniques are per-
formed by augmenting the given system with dedicated hard-
ware blocks. A power characterization process performed be-
forehand determines power values, which are mapped towards
corresponding power states. For example, hardware events
(e.g. CPU idle/run states, memory read/write states, etc.) are
representatives of such power states. For energy accounting,
existing power estimation hardware can be extended to power
state counters. In [9], Bellosa gathers information by means
of hardware event counters to derive thread-specific energy
information for operating systems. Joseph et al. obtain the
power consumption of a system by exploiting existing hard-
ware performance counters of a microcontroller [10]. A power
macro-model based coprocessor approach for energy account-
ing is proposed in [11]. Energy events identified by energy
sensors are tracked by a central controller. The additional
power estimation hardware requires extra chip area but yields
also a speed-up compared to simulation-based approaches.

Power emulation represents a special case of hardware-
accelerated power estimation. FPGA-boards can be used as a
typical prototyping platform to emulate not only the functional
system behavior but also its power consumption. A given
system comprising power estimation hardware is mapped
onto an FPGA-platform. Functional verification and power
estimation can be performed in real-time even before the
silicon implementation of the system is available.

An overview of the power emulation principle is pre-
sented in [12]. Run-time improvements by power estimation
hardware-acceleration of about 10x to 500x compared to
commercial power estimation tools are achieved. Strategies
to minimize the hardware overhead introduced by power
estimation are proposed. In [13], this approach is extended to a
hybrid power estimation methodology for complex SoCs. This
framework combines simulation and emulation techniques,
which significantly reduce power analysis times. In [14], the
power consumption of processor cores is estimated employing
power emulation to guide process migration between cores.

III. CONTRIBUTIONS

Power profiling by means of physical measurements is
typically very coarse-grained and limited to the entire chip due
to chip integration and packaging. Moreover, the final chip is
not available at early design stages.

Simulation-based power profiling techniques can be em-
ployed at the beginning of the design cycle. However, they
are rendered unfeasible for complex applications due to ex-
tensive simulation times. To encourage the software designer
to consider power aspects at early design stages, we provide
a real-time emulation-based power profiling approach. Power

6. Publications Publication 2 - IEEE SAMOS 2009 47



Power Emulator

Development Time 
Reduction by Power 

Emulation

Development TimeEmulator 
available

Silicon 
available

Silicon

Power Simulator Silicon

Traditional Development Process

Power Simulator

Emulation-Based Development Process

Estimated Power Measured Power 

Estimated Power
Estimated Power 

(Real-Time) Measured Power 

Fig. 2. Emulation-based vs. traditional power profiling approach

information is delivered to the software designer before sil-
icon is available by utilizing an FPGA prototyping platform
comprising power estimation hardware. Expensive redesigns
caused by ’power bugs’ can be avoided, which helps to
decrease time-to-market (see Fig. 2).

The main goals of this work can be defined as follows:
• Deliver power information to the designer at early design

stages to allow for:
– Power-efficient software application design
– Power-critical event detection

• Reduce development times

IV. DESIGN OF A REAL-TIME POWER PROFILING UNIT

Estimation-based power profiling methods derive power
information by exploiting power models. The abstraction layer
on which these models are set up determines complexity and
accuracy. Low-level models established on transistor- or gate-
level are complex and therefore not suitable for emulation-
based power profiling. In contrast, on a higher abstraction layer
only main system components (e.g. CPU, memory, coproces-
sor, etc.) are taken into account. This leads to more compact
models, hence real-time power profiling with moderate area
increases is only feasible following this approach.

A. Power Model

Power models on a high level of abstraction are often
based on linear regression methods. Details can be obtained in
[15] and implementations are discussed in [5], [16]. A linear
regression model can be given as

y =
n−1∑

i=0

cixi + ε. (1)

x = [x1, x2, ...xn−1] gives the vector of model parameters.
xi represent system states, such as CPU modes (e.g. idle,
run) or memory accesses (e.g. read, write) etc. The vector
of model coefficients is given as c = [c1, c2, ...cn−1]

T . Each
model coefficient ci contains power information and has to be
determined during a preliminary power model characterization
process. The linear combination of model parameters x and
model coefficients c form the power estimate y. The deviation
between the real power value and its estimate y is stated by ε
(i.e. the estimation error).

B. Power Characterization Process

Typically a linear regression model can be designed in three
major steps.

(i) Selection of model parameters. The choice of model
parameters directly influences the model’s accuracy and is
therefore of great importance. In addition, the cross-correlation
between model parameters reflects the amount of redundancy
in the model. This metric helps to keep a model as small as
possible and thus efficient.

(ii) Selection of the training-set. The training-set is based
on m power measurements for a number of m vectors xi, each
of which containing n model parameters

xi = [xi0, x
i
1, ...x

i
n−1] for 0 ≤ i ≤ m− 1. (2)

Vectors xi can be combined to the matrix

X = [x0,x1, ...xm−1]T. (3)

Power values y acquired for corresponding vectors xi can
be expressed as

y = [y0, y1, ...ym−1]
T . (4)

Finally, X and y define the training-set and can be given
as the tuple T in (5).

T = (y,X) (5)

The linear regression model given in (1) can also be written
in matrix-form. This is depicted in (6).

y = Xc (6)

Vectors xi in X are derived from test applications (bench-
marks) on a given embedded system and corresponding power
values y are determined by physical power measurements or
gate-level simulations.

(iii) Least squares fit method. The number of elements in
the training-set T is usually much higher than the number of
model parameters c. This implies that the number of rows in
y and the number of columns in X are higher than actually
required to solve the linear system of equations in (6). Hence,
the system is overdetermined and no exact solution exists. To
overcome this issue model parameters are determined while
minimizing the square error by using the least squares fit
method.

The above steps can be carried out iteratively. If the model’s
accuracy does not meet the requirements, a model refinement
by accounting more low-level information can be applied.

C. Power Emulation Architecture

The power emulation (PE) architecture that integrates the
power model in hardware is illustrated in Fig. 3.

Power sensors are employed to track state information of
system modules. For accuracy purposes also lower abstraction
layer information can be considered (e.g. state information
of functional units of the CPU). State vector and power

6. Publications Publication 2 - IEEE SAMOS 2009 48



System
Level

...

Architectural
LevelFU 1 FU n...

...

Power Estimation Unit

Po
w

er
Em

ul
at

io
n

CPU CoProc RAM

Component State
Power Model

Component State
Power Model

Component State
Power Model

Fu
nc

tio
na

l
Em

ul
at

io
n

Power Trace

AveragingDebug-Trace Generator

Power Sensor Power Sensor Power Sensor

Configuration

Fig. 3. Power emulation architecture

information are stored in a software-configurable table. These
state information is mapped towards power values using a
table-lookup approach. Fig. 4 depicts the principle structure
of a power sensor module.

Each of a number of k power sensors covers l system
states and contributes to the entire power model as expressed
in (7). The PE-architecture delivers power information each
cycle, hence time-dependency t is introduced in the following
equations to account for power values estimated at different
points in time.

yj,i(t) = ci xi(t) for 0 ≤ i ≤ l − 1 ∧ 0 ≤ j ≤ k − 1 (7)

16-bit registers are provided to configure the power sensors
with the power coefficients information obtained from c. It is
worth noting that this power table can also be reconfigured
during program run-time. This enables the masking of system
modules, allowing the tracking of the power consumption of
single sub-modules.

The power estimation unit accumulates 16-bit power sensor
outputs according to (8). This constitutes an instantaneous,
cycle-accurate up to 32-bit wide power estimate y(t) for the
overall system. The entirety of power sensors comprising the
power estimation unit represent the power model established
in hardware (see equality in (8)).

y(t) =
k−1∑

j=0

l−1∑

i=0

yj,i(t) =
n−1∑

i=0

ci xi(t) (8)

Further post-processing is applied by the averaging module,
which allows for smoothing and de-noising of a sequence
of power values. This is enabled by a configurable moving
average filter as shown in (9). Filtering properties can be
changed by adjusting N .

Power Model

Component State
0 1
3 1 9

Power Sensor
Power Value

Configuration

State Vector

n...
...

Fig. 4. Power sensor

Power Modelling

Switching Activity

RTL-Model of Target System

Power Profile

FPGA Target System 
+ PE Architecture

Emulation-Based Real-
Time Power Profiling

Netlist CreationModel 
Coefficients

Configuration

RTL-Model of 
PE-Architecture

Unify Target System 
and PE-Architecture

Characterization 
Process

Power Emulation 
Creation

Fig. 5. Design flow for emulation-based real-time power profiling

yavg =
1

N

N−1∑

j=0

y(t− j) (9)

The debug-trace generator unit captures power information
of the power estimation unit and the averaging module. A
debug-trace message is composed out of these data and is
delivered to the host computer for evaluation and further
processing.

D. Design Flow

Fig. 5 outlines the design flow of the emulation-based real-
time power profiling approach. A synthesizeable RTL-model
of the target system is provided to perform the characterization
process. After synthesis gate-level simulations based on bench-
marking applications are performed and activity information
as well as power profiles are acquired from value change dump
(VCD) files. These information is fed to a power modelling
process, deriving power model coefficients.

The target system RTL-models and the PE-architecture are
merged to allow the generation of a single netlist. After
downloading the netlist onto the FPGA-platform, power model
coefficients determined beforehand are used to configure the
power sensors for tailoring the PE-architecture to the given
target system. Now applications of interest can be executed
and real-time power profiles can be obtained.

E. System Set-Up

Power model coefficients obtained during the characteriza-
tion process deliver configuration data for the power sensors.
Listing 1 illustrates how to configure power sensors to tailor
them to the power consumption of system modules. 16-bit
registers are provided for this purpose.

/ / s t a r t o f program

/ / c o n f i g u r a t i o n o f power s e n s o r 1
PWRSEN0 STATE0 = 0x005A ; / / CPU run mode
PWRSEN0 STATE1 = 0 x0011 ; / / CPU h a l t mode
PWRSEN0 STATE2 = 0 x0013 ; / / CPU s l e e p mode

/ / c o n f i g u r a t i o n o f power s e n s o r 2
PWRSEN1 STATE0 = 0 x0013 ; / / memory r e a d

6. Publications Publication 2 - IEEE SAMOS 2009 49



PWRSEN1 STATE1 = 0x001A ; / / memory w r i t e

. . .

a c t i v a t e p o w e r e m u l a t i o n ( ) ;

s t a r t m a i n p r o g r a m ( ) ;

Listing 1. Power emulation set-up, power sensor configuration

A variable number of system states for a variable number
of system modules can be configured with power coefficients.
Finally, power profiling is activated before normal application
execution starts. The run-time overhead introduced due to
power sensor configuration is negligible compared to the
number of cycles executed by a typical application. A debug-
trace containing power information is automatically generated
and transfered to the host computer for power information
evaluation and profile visualization without the interaction of
the software designer.

If power analysis of sub-modules of the system is desired,
the power sensor attached to the module of interest is config-
ured as usual. The configuration of the remaining modules
is skipped, so they do not contribute to the overall power
consumption.

V. CASE STUDY: PROFILING OF POWER-CRITICAL
SMART-CARD APPLICATIONS

Smart-card applications have been penetrating manifold
market segments in the last years. Access control, electronic
passport or payment are only a few out of many existing
applications.

Smart-cards in general can be categorized in (i) contact-
based and (ii) contact-less derivatives. Contact-based smart-
cards are powered if inserted into a reader device, while
contact-less systems consume power via an RF-field generated
by the reader. Therefore, contact-less devices are subjected to
stringent power limitations.

Fig. 6 illustrates the coupling of the reader device with
the contact-less smart-card by a magnetic field H . A certain
amount of power is transfered from the reader device to the
smart-card at a time. The available power is limited, hence
exceeding a maximum power limit due to power-peaks affects
system stability and can cause malfunctions. This case-study
demonstrates the capability of our emulation-based power
profiling approach to support the software designer early in
the development process to avoid such worst-case scenarios.

Contact-less
Reader Device

Contact-less
Smart-Card

Power 
Transfer

Magnetic RF-Field H

Fig. 6. Power supply of a contact-less smart card by a magnetic field
generated by a reader device

A. Smart-Card Architecture Overview
Fig. 7 depicts a typical contact-less smart-card system. It

is based on a 16-bit pipelined cache architecture comprising
volatile and non-volatile memories. A symmetric coprocessor
(SCP) is included for Advanced Encryption Standard (AES)
and Data Encryption Standard (DES) algorithm acceleration.
Moreover peripherals, such as a UART for communication
purposes, timers or a random number generator (RNG) are
provided. System modules are powered by an externally gen-
erated RF-field. Energy is collected by an antenna system and
power supply conditioning and stabilization by means of an
analog front-end are carried out.

Analog
Front-End

UART

Timer, RNG, ...

CPU

Memories

Bus

Coproc (SCP)

Smart-Card System

Fig. 7. Block diagram of a typical contact-less smart-card system

System modules that are major contributors to the overall
power consumption are identified during a power characteri-
zation process. Moreover, available operating modes of each
system module influencing the amount of power consumed
are considered. A number of benchmarking applications to
test many of these operating modes were applied. Based
on the result of the characterization process, power model
coefficients were obtained to configure the power sensors as
shown in Listing 1. Table I summarizes system modules and
corresponding operating modes relevant for the power model.

TABLE I
OPERATING MODES OF TYPICAL SMART-CARD COMPONENTS

CONSIDERED IN THE POWER MODEL

Unit Mode(s)

CPU run, halt, sleep
Cache read, write (hit, miss)

Memories read, write
UART read, write

Peripherals on, off

SCP
Encryption:
AES128/192/256, (Single-, Double-, Triple-) DES

SCP
Decryption:
AES128/192/256 (Single-, Double-, Triple-) DES

B. Payment Application Profile Analysis
A typical application for smart-cards incorporating a sym-

metric cryptographic coprocessor is payment. Payment ap-
plications usually contain authentication procedures requiring

6. Publications Publication 2 - IEEE SAMOS 2009 50



cryptographic operations. Fig. 8 illustrates a typical power
profile of a future payment application obtained with the
emulation-based power profiling approach. The first power
peak marks the power consumption of an AES computation,
while the remaining slightly smaller and shorter power peaks
result from DES computations.

We assume that the maximum available power provided by
the RF-field is 0.9 as shown in Fig. 8 (Note that power values
are normalized). Hence, the payment authentication process
would fail due to power peaks caused by the SCP.

If the source of these power peaks is not obvious to
the designer already at this step, the power profile can be
decomposed into sub-modules by reconfiguring power sensors.
Fig. 9 depicts power profile results for the CPU, memories,
SCP and UART decomposed for sub-module power profile
analysis. As a reference also the cumulated power profile is
shown.

The major contributor to the power consumption in this
example is the CPU with more than 60%. Memories (including
cache) and the SCP account for the remaining power consump-
tion. The UART is inactive in this application and therefore
consumes no power. It can clearly be seen that the SCP’s
power consumption causes the overall power profile to exceed
the absolute maximum power of 0.9.

Various countermeasures could be taken to circumvent this
issue. The AES algorithm could be implemented in software to
avoid using the SCP. Another alternative is reducing the system
clock frequency. Both solutions reduce the payment applica-
tion’s speed, but ensure reliable operation. Fig. 10 shows the
power profile when scaling down the system frequency from
33 MHz to 28 MHz. Power peaks are below 0.9, hence system
operation is stable.

C. Accuracy of Emulation-based Power Profiling

Fig. 11 shows power profiles of the payment application.
A comparison between the emulation-based power profiling
result and gate-level power simulation profiles obtained with
Magma Blastfusion 5.2.2 [17] are given. The relative error on
average and the variance are 8.4% and 9.4%, respectively.

Accuracy considerations for other executed applications are

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time [normalized]

P
ow

er
 [n

or
m

al
iz

ed
]

Power Profile Emulation for a Payment Application

AES DES DES

Power limit

Fig. 8. Payment authentication application power profile obtained by
emulation-based power profiling (power exceeds affordable level)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [normalized]

P
ow

er
 [n

or
m

al
iz

ed
]

Power Emulation for a Payment Application, sub−module decomposition
CPU
SCP
MEM
UART
ALL

Fig. 9. Payment authentication application power profile decomposed for
sub-module power analysis

TABLE II
POWER EMULATION ACCURACY COMPARISON FOR VARIOUS

APPLICATIONS

Algorithm Duration (µs)
Error (%)

Performance Power Energy
(Cycles) avg. σ2 avg.

ALU1 70.8 2336 7.3 0.5 6.4
ALU2 44.2 1458 4.0 0.2 3.9
CPU 31.3 1032 -2.1 0.9 -3.2

Cache 12.4 4092 -1.5 0.9 -2.6
RAM 56 1848 -4.9 0.3 -5.5

SCP-AES128 13.5 4455 1.2 1.8 -0.2
SCP-AES256 15.7 5181 1.1 1.6 -0.2

SCP-DES 82.2 2712 1.1 0.8 0.3
SCP-DDES 76.9 2537 0.5 0.7 1.0

Payment 338 11160 8.4 9.4 2.0
Dhrystone 139 4587 0.4 2.0 -2.0

summarized in Table II. The relative power error on average
and the corresponding variance are given. Moreover, relative
energy error values are depicted. For all tested applications
relative power errors are less than 10% on average. Energy
accounting reaches accuracies of greater than 93%.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1

Time [normalized]

P
ow

er
 [n

or
m

al
iz

ed
]

Power Profile Emulation for a Payment Application, frequency scaled from 33 MHz to 28 MHz
freq = 33MHz

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1

Time [normalized]P
ow

er
 (f

sca
le

d)
 [n

or
m

al
iz

ed
]

freq = 28MHz

Fig. 10. Payment authentication application power profile obtained by
emulation-based power profiling (stable system operation due to frequency-
scaling)

6. Publications Publication 2 - IEEE SAMOS 2009 51



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Time [normalized]

P
ow

er
 [n

or
m

al
iz

ed
]

Power Profile Emulation Comparison for a Payment Application
measured
estimated

Fig. 11. Power profile comparison, gate-level power simulation profile vs.
emulation-based power profile

D. Performance Evaluation

One of the major advantages of the emulation-based pro-
filing approach is the capability to acquire power profiles in
real-time. Power estimation takes no longer than application
execution on the target-system. Hence, the power profile is
available immediately after execution. Table III shows ex-
ecution times of power profile simulations on a gate-level
basis using Magma Blastfusion compared to the emulation-
based approach. Extensively high simulation times are de-
picted compared to emulation run-times of a few hundreds
of microseconds.

As illustrated in Table III, power emulation of the payment
application takes 338 microseconds, whereas the power sim-
ulation is about 98 hours. Additional hardware introduced for
power emulation contributes only to 1.5% to the overall system
area.

It is obvious that the power simulation of complex ap-
plications is rendered unfeasible due to far too extensive
simulation times. Therefore, power saving potential or power
peaks leading to system failure as discussed in this section
cannot be detected in an early design stage. By means of
emulation-based power profiling, power estimates are available
immediately and already when working with FPGA prototyp-
ing platforms. Countermeasures to circumvent power peaks
causing system failures can be taken before the device is
available on silicon and physical measurements are performed.

VI. CONCLUSION

Extensive run-times of power simulators render power anal-
ysis of increasingly complex embedded software applications
unfeasible. The power profiling approach proposed in this
work, delivers power information to the software designer in
real-time. Moreover, by employing FPGA prototyping plat-
forms, these power information is available already at early
design stages. Emulation-based power profiling has proven to
be an effective option to estimate a system’s power consump-
tion, delivering power information with accuracies of 90%
on average. This paves the way for power-efficient embedded
software design and the capability to cope with power critical
events more efficiently.

TABLE III
PERFORMANCE COMPARISON OF POWER PROFILING FOR A SIMULATION

AND EMULATION APPROACH

Algorithm
Duration

Performance Simulation4 Emulation
(Cycles) (hours) (microseconds)

ALU1 2336 4.1 70.8
ALU2 1458 2.2 44.2
CPU 1032 0.78 31.3

Cache 4092 14.0 12.4
RAM 1848 2.9 56

SCP-AES128 4455 17.2 13.5
SCP-AES256 5181 24.0 15.7

SCP-DES 2712 5.5 82.2
SCP-DDES 2537 6.3 76.9

Payment 11160 98.3 338
Dhrystone 4587 18.1 139

4 Simulation is performed at a sampling rate of 33 MHz, which
corresponds to the clock frequency of the smart-card system.
The server system for simulations comprises 12 CPUs and 50
gigabytes of physical memory for user processes.

REFERENCES

[1] E. Macii and M. Poncino, Power Macro-Models for High-Level Power
Estimation. CRC Press, edited by C. Piguet, 2005, ch. 39 Low-Power
Electronics Design, pp. 39–1—39–18.

[2] J. Flinn and M. Satyanarayanan, “PowerScope: a tool for profiling the
energy usage of mobile applications,” in WMCSA, 1999, pp. 2–10.

[3] Analyzing Target System Energy Consumption in Code Composer
StudioTM IDE, Texas Instruments, 2002.

[4] J. Flynn and B. Waldo, “Power Management in Complex SoC Design,”
Synopsys Inc. White Paper, Tech. Rep., 2005.

[5] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis Of Embedded
Software: A First Step Towards Software Power Minimization,” in
ICCAD, 1994, pp. 384–390.

[6] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “An instruction-level
energy model for embedded VLIW architectures,” in IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 21, 2002, pp. 998–1010.

[7] M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno, “Cosimulation-
based power estimation for system-on-chip design,” in IEEE Trans. on
Very Large Scale Integration Systems, vol. 10, 2002, pp. 253–266.

[8] I. Lee, H. Kim, P. Yang, S. Yoo, E. Chung, K. Choi, J. Kong, and S. Eo,
“PowerViP: SoC Power Estimation Framework at Transaction Level,” in
ASP-DAC, 2006, pp. 551–558.

[9] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in SIGOPS European Workshop, 2000, pp. 37–42.

[10] R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in ISLPED, 2001, pp. 135–140.

[11] J. Haid, G. Kaefer, C. Steger, and R. Weiss, “Run-time energy estimation
in system-on-a-chip designs,” in ASP-DAC, 2003, pp. 595–599.

[12] J. Coburn, S. Ravi, and A. Raghunathan, “Power emulation: a new
paradigm for power estimation,” in DAC, 2005, pp. 700–705.

[13] M. Ghodrat, K. Lahiri, and A. Raghunathan, “Accelerating System-on-
Chip Power Analysis Using Hybrid Power Estimation,” in DAC, 2007,
pp. 883–886.

[14] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-System Chip
Multiprocessor Power Evaluations Using FPGA-Based Emulation,” in
ISLPED, 2008, pp. 335–340.

[15] A. Bogliolo, L. Benini, and G. D. Micheli, “Regression-based RTL
power modeling,” in ACM Trans. on Design Automation of Electronic
Systems, vol. 5, 2000, pp. 337–372.

[16] C. Krintz and S. Gurun, “A run-time, feedback-based energy estimation
model for embedded devices,” in CODES+ISSS, 2006, pp. 28–33.

[17] “Magma Design Automation Inc., Blastfusion,” (http://www.magma-
da.com/), April 2009.

6. Publications Publication 2 - IEEE SAMOS 2009 52



Automated Power Characterization for
Run-Time Power Emulation of SoC Designs

Christian Bachmann∗, Andreas Genser∗, Christian Steger∗, Reinhold Weiss∗ and Josef Haid†
∗Institute for Technical Informatics, Graz University of Technology, Austria

†Infineon Technologies Austria AG, Design Center Graz, Austria
{andreas.genser, christian.bachmann, steger, rweiss}@tugraz.at

josef.haid@infineon.com

Abstract—With the advent of increasingly complex systems,
the use of traditional power estimation approaches is rendered
infeasible due to extensive simulation times. Hardware acceler-
ated power emulation techniques, performing power estimation
as a by-product of functional emulation, are a promising so-
lution to this problem. However, only little attention has been
awarded so far to the problem of devising a generic methodology
capable of automatically enabling the power emulation of a
given system-under-test. In this paper, we propose an automated
power characterization and modeling methodology for high-
level power emulation. Our methodology automatically extracts
relevant model parameters from training set data and generates
an according power model. Furthermore, we investigate the
automation of the power model hardware implementation and the
automated integration into the overall system’s HDL description.
For a smart card controller test-system the automatically created
power model reduces the average estimation error from 11.78%
to 4.71% as compared to a manually optimized one.

I. INTRODUCTION

Power consumption has become a major design metric for
electronic systems and mobile devices in particular. For these
devices the power consumption severely affects operating
time as well as system stability. In order to verify power
requirements during the design phase of a given system, power
estimation has become an essential part of the design process.

Due to the advances in process technology scaling as
well as rising demands for computational performance and
functionality, increasingly complex designs have to be handled
in the power estimation process. Systems-on-chips (SoC) are
typically composed of a large number of sub-components, each
contributing to the overall power consumption. Furthermore, it
can be observed that the power consumption of these devices
is progressively more dependent on software applications,
determining the utilization of system components as well as
actuating available on-chip power management features. It is
therefore favorable, to provide power estimation resources not
only to system architects and hardware designers but also
to power-aware software application and operating system
developers.

For estimating the system’s power consumption while exe-
cuting elaborate program sequences (e.g., the booting sequence
of an operating system), state-of-the-art gate- and RTL-level
power simulators require extensive simulation times. Higher-
level simulators, such as behavioral- or system-level tools,

however fail at delivering cycle-accurate power estimates re-
quired for, e.g., evaluating the reaction of power management
algorithms on power transients. This curtails the usability of
these tools in power-aware software application development.

For this reason, hardware-accelerated power estimation ap-
proaches have been introduced, employing existing hardware
counters [1–3], dedicated power estimation coprocessors [4, 5]
and emulation-based approaches (i.e., power emulation) [6–
10]. For the purpose of fast yet accurate software power
estimation, high-level power emulation approaches [9, 10] as
depicted in Figure 1 are considered promising. While requiring
only small hardware overhead on a given FPGA already
employed for functional emulation, they achieve a consider-
able power estimation speed-up compared to simulation-based
methods. However, the time-consuming task of power model
generation and required hardware description language (HDL)
model adaptation for these power emulation approaches has, to
the best of our knowledge, so far not been further investigated.

In the context of high-level power emulation, the novel
contributions of this paper are as follows:

• We propose a systematic, automated power character-
ization and modeling methodology that automatically
determines power model parameters for a given system-
under-test.

• We develop an automated technique for implementing
this power model in hardware and for integrating this
generated power emulation hardware into the system-
under-test.

• A case study on a smart card microcontroller test-system
illustrates the benefits of our automated approach.

Functional Verification

FPGA Board

Power Emulation

System-under-Test (RTL)

Functional Emulation

Po
w

er

Time

MOV @R8, R12
INC R8, #0x02
ADD R8, R5

Host PC
Power Verification

Trace of Functional 
Execution

Trace of Power 
EstimatesPower Models &

Control Unit (RTL)

Activity Data

Fig. 1. Power emulation principle: Concurrent functional and power
emulation (adapted from [10])

6. Publications Publication 3 - IEEE Euromicro DSD 2010 53

c© 2010 IEEE. Reprinted, with permission, from Proceedings of 13th IEEE Euromicro Conference on
Digital System Design 2010.



II. RELATED WORK

Various hardware-accelerated power estimation techniques
have been explored, leveraging existing hardware event coun-
ters [1–3], dedicated coprocessors [4, 5] and emulation-based
approaches [6–10].

By correlating hardware events and power consumption,
initial works have been using existing hardware event counters
for the purpose of power estimation. The feasibility of this
approach has been shown for commercially available desktop
processors [1, 2] as well as for embedded processors [3].

Especially for enabling dynamic power management in
mobile embedded systems, dedicated energy and power es-
timating coprocessors have been introduced [4, 5]. For esti-
mating the power consumption, event-based energy and power
macromodels are utilized in these works.

By augmenting the HDL model of a given system with
dedicated power estimation hardware, power emulation can
be performed as a by-product of functional emulation. Power
emulation approaches using register transfer level (RTL)
macromodels [6] and architectural-level component event-
based power models [9] have been presented. In [8] a hy-
brid simulation- and emulation-based approach is introduced.
This cosimulation approach can be used to simulate non-
synthesizable parts of the overall system.

While RTL power emulation approaches achieve high es-
timation accuracy (mean error 3.4% as compared to RTL),
they also suffer high area overhead (on average 3.1 times the
area of the original design [6]). Furthermore, the additionally
required logic negatively influences the maximum reachable
operating frequency of the design. A high-level power emula-
tion approach as presented in [9], circumvents this limitation
due the use of a simplified power model. The estimation
error in comparison to gate-level simulations is reported to
be below 10% while requiring less than 3% of the FPGA
LUTs. However, the power model proposed in [9] targets
a specific implementation of a LEON3 chip multiprocessor
(CMP) system introduced by the authors and is not a generic
methodology.

In recent work, we have introduced our initial high-level
power emulation hardware unit [10] as well as the use of
this high-level power emulation methodology in power-aware
software development [11]. Based on these works, we intro-
duce and evaluate our automated power modeling and HDL
implementation methodology in the following sections.

III. HIGH-LEVEL POWER EMULATION

The principle of power emulation, as initially established in
[6], is based on augmenting the emulated system with special
power estimation hardware. Power estimates are generated as
a by-product of functional emulation during the run-time of
the system. The traces of execution for both, functional and
power emulation, can then be analyzed on a host computer as
depicted in Figure 1.

A. Power Model

Our power model is based on the assumption that the
power consumption of a given system and its sub-components
can be expressed by power states at given points in time
[12]. Furthermore we assume that for a given system-under-
test, interface as well as internal signals down to a given
hierarchical level are observable. This assumption is valid due
to the fact that the HDL model of the system is required for
synthesizing and mapping it onto the FPGA for functional
emulation in the first place. Based on these assumptions, our
power macromodel tries to map a number N of state- and
power-relevant signals xi to a power consumption estimate P̂ .

The total power consumption P of the system can be given
as P = Pdyn + Psta, where Pdyn resembles the well-known
equation of dynamic power consumption in CMOS and Psta

accounts for static power consumption and leakage power. For
Pdyn = α · (f · C · V 2), α expresses the activity of a given
component and the term (f ·C ·V 2) captures clock frequency
f , the amount of capacitance C being switched and the supply
voltage V .

We model the relationship of state-dependent activity and
the power consumption estimate as an additive linear equation
in the form of

P̂ = c0 +
N∑

i=i

cixi = c0 + c1x1 + . . .+ cNxN (1)

where the coefficient c0 models sources of static power
consumption Psta such as analog components and leakage.
The coefficients ci (i = 1 . . . N) express the non-activity-
dependent term of CMOS power consumption (f · C · V 2).
The activity factor α of a given component is determined by
the according state signal xi. We can also express Equation 1
in the vector form P̂ = xcT , where x = [1, x1, . . . , xN ] and
c = [c0, c1, . . . , cn]. Note that this model, while appropriately
simple for implementing it in power emulation hardware, is
sufficient to capture the power consumption dynamics of our
system-under-test as shown in Section VI.

The problem that arises from this high-level power macro-
modeling approach is twofold: 1) The adequate selection of
model parameters xi, i.e., the identification of power-relevant
state signals for a given system-under-test and 2) the fitting of
model coefficients ci for the selected parameters.

B. Power Emulation Unit

The power emulation (PE) unit monitors the power-relevant
state signals xi and derives cycle-accurate power estimates P̂
from these data. It contains the hardware implementation of
the power model as introduced in Equation 1. The architecture
of our initial power emulation unit [10], as depicted in Figure
2, is used as the foundation for this work.

The PE unit consists of a number of power sensors, mon-
itoring the state and activity of various system components.
Each power sensor maps the observed state signals to a
corresponding power value for the given module using a look-
up table approach. The power estimator itself accumulates the

6. Publications Publication 3 - IEEE Euromicro DSD 2010 54



...

...

...

Power Estimator

CPU CoProc Memories

Component State
Power Model

Component State
Power Model

Component State
Power Model

Power Trace

AveragingDebug Trace Generator

Power Sensor Power Sensor Power Sensor

Configuration

P
ow

er
E

m
ul

at
io

n
Fu

nc
tio

na
l

E
m

ul
at

io
n

FU 1 FU n
CoProc 2

CoProc 1 RAMROM

NVM

Fig. 2. Basic architecture of the power emulation unit monitoring system
components and deriving power estimates according to their states (adapted
from [10])

values generated by all power sensors and calculates the cycle-
accurate overall power consumption estimate P̂ of the system.

The power estimates are collected by a debug trace genera-
tion unit that assembles trace messages and delivers them to a
host computer. Additionally, a reconfigurable moving average
filtering module, serving the purpose of smoothing and de-
noising of power traces, is present in the PE unit.

While the initial power emulation unit presented in [10]
resembles the manually created prototype used as the proof-
of-concept for our high-level power emulation concept, in this
paper1 we present an automation approach that covers the
two main obstacles for the power emulation unit’s hardware
implementation: 1) The automated adaptation of the system-
under-test’s existing HDL model for the purpose of power
emulation. Internal power-relevant state signals, originating
at various levels of design hierarchy, have to be connected
to the power emulation unit. 2) The automated adaptation of
the power emulation unit itself to the automatically generated
power model.

IV. AUTOMATED POWER CHARACTERIZATION

The manual characterization and power modeling of a given
system is a time-consuming and tedious task. Therefore we
employ an automated characterization methodology, consisting
of multiple stages as depicted in Figure 3.

Based on a set of microbenchmarks, covering all compo-
nents of the system-under-test, state-of-the-art gate-level power
estimation tools are used to estimate power profiles of the sys-
tem’s physical implementation. At later stages of design, i.e.,
after the first silicon implementation is available, additional
measurement profiles can be used for a joint simulation- and
measurement-based characterization. The next step in creating
a power model is the automated selection of model parameters.
Finally, for the parameters selected before, coefficients are
determined by means of a model coefficients fitting process.

A. Joint Simulation- & Measurement-based Characterization

For the purpose of characterizing the system-under-test
and constructing a power macromodel, training set data are

1This work is part of the POWERHOUSE project that is funded by the
Austrian Federal Ministry for Transport, Innovation, and Technology under
the FIT-IT contract FFG 815193.

required [13]. The training set data tuple T = (X,p), con-
sisting of an observed signal state matrix (SSM) X and an
observed power vector p, are used to construct the power
model. By executing m microbenchmarking applications in
RTL or gate-level simulations, we obtain the signal state
matrix X = [X1, . . . ,Xm]T . Xi = [xi,1, . . . , xi,K ]T is the
signal state matrix for a given K-cycle benchmark, containing
a signal state vector xi,k for every clock cycle k. The power
vector p = [p1, . . . ,pm]T , where similar to above for a k-
cycle benchmark pi = [Pi,1, . . . , Pi,k]T , is typically generated
either in gate-level power simulations or, during later design
stages, through physical power consumption measurements. In
our characterization methodology we seek to improve training
set quality by offering the possibility to integrate physical
measurements performed on the same microbenchmarks that
are used in gate-level simulations.

We address the issue of merging simulation- and
measurement-derived training sets in a twofold manner: First,
marker operations that serve the goal of detecting beginning
and end of a test are inserted in each microbenchmark. Second,
we perform a cross-correlation between the two resulting
power profiles to compensate their temporal mismatch due
to the non-ideal triggering conditions of the physical mea-
surement. Afterwards, the simulated profile as well as the
delay-compensated measured profile are stored in a joint
measurement database that is used in the subsequent model
parameter selection and coefficient fitting steps.

B. Model Parameter Selection

The automated selection of adequate model parameters rep-
resents one of the key contributions of our work. Specifically
we try to minimze the number N of used power model
parameters so that N � Nall, i.e., the number of selected
parameters is by far smaller than the number of all available
parameters. A small number of parameters, and thus a small
number of coefficients to be fitted, vastly reduces model fitting
effort and improves model efficiency.

The power model parameter selection algorithm is com-
posed of three main sub-algorithms, as described in Algorithm
1, that are performed for the entire set of microbenchmarks.
In a first signal name pattern matching step, the large number

Non-Negative Linear Regression 

Power Model

Simulation- and 
Measurement-based 

Characterization

Model Parameter 
Selection

Model Fitting

Pattern Matching

Power & Signal Activity Filter

Signal Correlation

Benchmarking Suite

Functional & 
Power Simulations

Physical Power 
Measurements

Fig. 3. Overview of the automated power characterization methodology

6. Publications Publication 3 - IEEE Euromicro DSD 2010 55



Algorithm 1: Power model parameter selection
Input: List of benchmarks LBM , List of signals LS ,

Training set data tuple T (containing transient
power profiles for all benchmarks p and signal
activity data for all benchmarks X), Signal name
pattern list Lnpat, Intra-signal correlation
threshold Thcor, Power activity threshold Thpcor,
Lag threshold Thlag

Output: List of power model parameters Lpms

Step 1, signal name pattern matching:
List of candidate model parameters Lpms := {}
List of candidate signals Lcs := {}
foreach Signal xi in LS do

if Name of xi ∈ name pattern list Lnpat then
Lcs := Lcs ∪ xi

foreach Benchmark b in LBM do
List of candidate signals per benchmark Lc := Lcs

Step 2, intra-signal correlation:
foreach Signal xi in Lc do

if Signal activity α(xi) = 0 then
Remove signal xi from Lc, continue;

Rxi = CorrCoef(xi,SSM for benchmark Xb)
if Elements in |Rxi

| = 1 then
Remove same-cycle correlated signals from
Lc except lowest hierarchical level one

foreach Signal xj in Lc,i 6= j do
if
∣∣r(xi,xj)(τ)

∣∣ > Thcor for 0 ≤ τ ≤ Thlag
then

Remove delayed, correlated signals from
Lc except lowest hierarchical level one

Step 3, power - signal activity:
foreach Signal xi in Lc do

if
∣∣r(∆p,∆xi)(τ)

∣∣ < Thpcorr for 0 ≤ τ ≤ Thlag
then

Remove not power-related signals from Lc

Lpms := Lpms ∪ Lc

of potential model parameter signals xi is largely reduced by
only selecting signals matching a user-supplied list of certain
name patterns. This list is typically dependent on the coding
standard employed while creating the HDL implementation
of the given system-under-test. A default name pattern list
includes potential candidate signal name patterns, such as
”enable”, ”read”, ”write”, ”busy”, ”ready”, ”wait”, ”halt”,
”sleep”, etc., that are common to a large number of HDL
designs. Note that by adapting this list of name patterns to the
coding standard used while implementing the given system-
under-test, the filtering result can be further narrowed down,
reducing the run-time of the subsequent parameter selection
algorithms.

The intra-signal correlation analysis represents the second
sub-algorithm. It aims at analyzing signal activity statistics

and removing redundant signals. The following main tasks
are performed: 1) Removal of signals stuck at one logical
level for the entire set of benchmarks, i.e., signals lacking any
switching behavior. Note that a power benchmarking suite will
also include tests varying otherwise mainly static signals, such
as software configuration bits dictating the operating modes
of the design. Thus, these mainly static but power-relevant
configuration bits will not be eliminated by the intra-signal
correlation analysis.

2) Calculation of the correlation coefficients matrix R for
all N remaining signals x given as

R(xi, xj) =
C(xi, xj)√

C(xi, xi)C(xj , xj)
, 1 ≤ i, j ≤ N (2)

where C is the covariance matrix. For each row of the matrix
R all columns containing high absolute correlation coefficient
values resemble redundant signals, switching at similar points
in time. A negative correlation coefficient indicates an inverted
signal. These correlated signals are filtered out, only the
signal originating at the highest hierarchical level is retained2.
3) Calculation of the cross-correlation r(xi,xj)(τ) of all the
remaining signals within a specified maximum lag of Thlag:

r(xi,xj)(τ) =
K−1∑

k=0

xi(k) · xj(k + τ), 0 ≤ τ ≤ Thlag (3)

Signals exhibiting a high maximum correlation within the
maximum lag Thlag, e.g., typically a small number of clock
cycles, are also considered to be redundant. These redundant
and delayed signals are filtered out as well.

The third sub-algorithm performs the power - signal ac-
tivity cross-correlation analysis of the remaining signals. We
calculate the cross-correlation r(∆p,∆xi)(τ) for the forward
differences ∆f(x) = f(x + 1) − f(x) of both the remaining
signals xi and the transient power profile p as expressed in
Equation 4.

r(∆p,∆xi)(τ) =

K−1∑

k=0

∆p(k) ·∆xi(k + τ), 0 ≤ τ ≤ Thlag
(4)

This can be interpreted as a measure for the relation of signal
state changes to changes in the transient power consumption
of the system. Note that this is a measure similar to power
sensitivity as introduced in [14]. All signals exhibiting low
correlation within a certain lag Thlag, e.g., typically a small
number of clock cycles, are not considered power-relevant and
are removed.

The list of candidate model parameters Lc now only con-
tains power-related and non-redundant signals. While iterating
over the whole set of available microbenchmarks, the list of

2Keeping the signal originating at the highest level of design hierarchy is
in general beneficial for the automated HDL model integration as it reduces
the amount of hierarchical levels - and therefore typically also the amount of
HDL files - that have to be modified (see Section V-A).

6. Publications Publication 3 - IEEE Euromicro DSD 2010 56



potential power model parameters Lpms is compiled as the
concatenation of all candidate parameter lists Lc. This list can
then be used in the model coefficient fitting process.

C. Model Coefficient Fitting

Based on the power model parameters list Lpms compiled
by the parameter selection algorithm and containing Npms

parameters, the complete signal state matrix X of size K×Nall

can be reduced to Xpms of size K ×Npms by eliminating all
non-used parameters. The reduced training set data tuple is
then Tpms = (Xpms,p), with the either simulated or measured
power vector p as introduced above.

Determining the vector of fitting coefficients c requires
solving the typically heavily overdetermined equation system
p = Xpmsc. To this end, we employ Lawson’s well known
linear least squares regression technique with non-negativity
constraint (Nonnegative Least Squares, NNLS) [15]. This
algorithm aims at minimizing ‖Xpmsc − p‖ so that c ≥ 0.
The non-negativity constraint on the power model coefficients
helps reducing power emulation hardware complexity while
increasing model robustness.

V. AUTOMATED HDL MODEL IMPLEMENTATION

The automated power characterization, parameter selection
and model fitting methods as introduced in Section IV allow
for the rapid power modeling of a given system-under-test for
the purpose of enabling power emulation. The second obstacle
in this scope is constituted by the time-consuming and tedious
task of implementing this automatically devised power model
in hardware and integrating it into the existing HDL model of
the system-under-test.

We address this obstacle in a twofold manner as depicted
in Figure 4: 1) The automated adaptation of the existing HDL
model of the system-under-test, allowing for the monitoring of
internal power-relevant state signals by the power emulation

...

...

System-under-Test

Power Emulation Unit

H
D

L 
M

od
el

 
A

da
pt

at
io

n
Po

w
er

 E
m

ul
at

io
n 

U
ni

t G
en

er
at

io
n

Component Power Model

Component State
1 2

C1,1 C1,2 C1,n

n1...
...

Component Power Model

Component State
1 2

Cn,1 Cn,2 Cn,n

nn...
...

Memories

RAMROM

NVM

...

CPU

FU 1 FU n

n1 nn

Power Sensor Power Sensor

Accumulator

Power Trace

A A

B

C

FilterTrace Gen.

+ ++ +
++

+
Si

Pi

Pi Si ... ...
C

Fig. 4. Overview of the automated HDL model implementation, dotted lines
indicate automatic modifications: (A) ”Routing” of state signals in HDL model
of system-under-test, (B) number and structure of power sensors according to
the used power model and (C) internal structure of the power emulation unit

unit, i.e., the ”routing” of power-relevant state signals originat-
ing in different design entities at various levels of hierarchy.
2) The automated power emulation hardware generation, i.e.,
the HDL implementation of the devised power model.

A. HDL Model Adaptation

One of the remaining challenges for automatically enabling
the power emulation of the system-under-test is the vital task
of adding the additional connections of power-relevant signals,
originating at various hierarchical levels of the design, to the
power sensors as illustrated in Figure 4. For this purpose we
have implemented an algorithm that utilizes the VMAGIC
(VHDL manipulation and generation interface) Java library
presented in [16]. VMAGIC allows for VHDL code analysis,
manipulation and generation. This library itself builds upon the
ANTLR 3.1 parser generator [17]. Our adaptation algorithm
consists of the following steps as illustrated in Figure 5:

• VHDL parsing: Parsing of all files associated with the
system’s VHDL model.

• Dependency extraction: Creation of a tree-representation
of the dependencies and hierarchical levels of all design
entities.

• Signal routing: Routing of all signals specified in the
power model to the according power sensor. This step
includes the insertion of additional intermediate signals
as well as the inherent modification of the interfaces to
include these signals.

• VHDL modification and write-back: Generation of syn-
thesizable VHDL code of the modified components.

B. Power Emulation Unit Generation

After adapting the system-under-test’s HDL model for
power emulation, the final step is integrating the HDL model
of the power emulation unit itself with the system-under-test
in a common design that can be synthesized and downloaded
to the FPGA platform. For this purpose, the HDL model of
the PE architecture is split into several HDL template files,
containing a number of tags that can be easily parsed and
replaced by an adaptation algorithm. Essentially, this algorithm
is adapting the following components and properties of the
power emulation unit (see Figure 4):

• The number of power sensors as well as their internal
structure, i.e., the number of power tables and their
according bit-widths according to the power model and
the desired resolution of the power estimates.

• The power estimates accumulation unit, i.e., essentially
the width and height of the implemented adder tree.

• The length and bit-width of the filtering unit.

System-under-
Test

PE-Adapted
System-under-Test

Dependency 
Extraction

Signal 
Routing

VHDL 
Modification VHDLVHDL

VHDL 
Parsing

Signals

Power-related 
Signals

Fig. 5. HDL model adaptation algorithm

6. Publications Publication 3 - IEEE Euromicro DSD 2010 57



• The debug trace generator bit-widths according to the
accumulation and filtering unit.

VI. EXPERIMENTAL RESULTS

We have evaluated our automated power characterization
and HDL model implementation methodology on a smart card
microcontroller test system supplied by our industrial partner.
This system has been further extended for enabling power
emulation in an industrial setting. For different power models,
with parameters selected either manually or automatically,
we have evaluated the characterization effort as well as the
accuracy and the hardware implementation effort.

A. Test System and Used Power Models

A smart card microcontroller based on a 16-bit pipelined
cache architecture, composed of volatile and non-volatile
memories as well as a number of peripherals, e.g., cryp-
tographic coprocessors, UARTs, timers and random number
generators, is used as our system-under-test (see Figure 6).
This system has been extended with the power emulation unit
as shown in Section V. What makes the system particularly
interesting in terms of power characterization is the fact that
due to its typical operating environment particular care has
been taken to achieve a power-optimized design. Therefore,
dedicated power-aware system states (such as low-power halt
modes of certain components), also have to be considered by
the characterization process.

For illustrating the benefits of using the automated power
characterization process, we have compared various power
models in terms of accuracy and characterization effort. To
this end, four different power models have been benchmarked:
1) A manual model, i.e., the parameters were selected man-
ually, devised for the first implementation of our power
emulation unit. 2) A naive brute force approach - based power
model that was created by performing linear regression sepa-
rately for each microbenchmark using the entire large set of
signals found by the signal name pattern matching algorithm.
All parameters assigned significant coefficient values in this
process were considered candidate model parameters. 3) A

...

UART

RAM

I2C

CL Interface

NVM

TRNG PRNG Timer
Interfaces

MemoriesCore

MED

CPU

Co-Processors

Peripherals

ROM

...

FU 1 FU n

Cache

Symmetric Crypto

Asymmetric Crypto

Power Emulation Unit

Fig. 6. 16-bit smart card microcontroller test system augmented by power
emulation unit and internal state-signal connections

power model only using parameters retained after the intra-
signal correlation filter. Finally, 4) a model employing only
parameters retained after the intra-signal correlation and the
power-signal activity filter. Note that for all these models
coefficient fitting was performed using the same technique as
described in Section IV-C.

B. Comparison of Accuracy

We have evaluated the accuracy of the power emulation
results employing these power models against gate-level power
simulations using Synopsys Primetime PX V2008.12 SP3 [18]
on the basis of a cycle-by-cycle comparison. This evaluation
was performed on the set of microbenchmarks used for the
characterization process, i.e, the training set (TS) as well as
for a different set of control benchmarks, i.e, the control
set (CS). For this control set of benchmarks we have used
general purpose embedded benchmarks from the MiBench
suite [19] as well as Dhrystone. Due to the application-
specific nature of our test system, we have employed a custom
benchmarking application utilizing system components such as
the cryptographic co-processors and other peripherals that are
not covered by standard CPU benchmarks.

Figure 7 illustrates the average estimation error for these
benchmarks. Figure 8 further summarizes these numbers

0

5

10

15

20

25

Average Error per Benchmark

A
ve

ra
ge

 E
rr

or
 [%

]

Manual model
Brute force
Signal corr. filter
Signal and power corr. filter

Arith
meti

c

Lo
gic

al

Cac
he

Mem
ori

es

AES12
8

Lo
w-P

ow
er

AES12
8

DES

Lo
w-P

ow
er DES

Dhry
sto

ne

MiBen
ch

 

Bas
icM

ath
MiBen

ch
 

BitC
ou

nt

MiBen
ch

 

QSort

Pay
men

t

Characterization Benchmarks
(Training Set)

Validation Benchmarks
(Control Set)

Fig. 7. Comparison of average estimation error for various benchmarks

6. Publications Publication 3 - IEEE Euromicro DSD 2010 58



0

5

10

15

20

Average Error per Power Model

A
ve

ra
ge

 E
rro

r [
%

]

0

10

20

30

40

50

RMS Error per Power Model

R
M

S
 E

rro
r [

%
]

TS CS TS CS TS CSTS CS TS CS TS CS TS CSTS CS

Manual model
Brute force
Signal corr. filter
Sig. and power corr. filter

Fig. 8. Comparison of average and RMS estimation error for different power
models over all benchmarks from the training set (TS) and the control set (CS)

across all benchmarks and additionally illustrates root-mean-
square error (RMSE) values used as a measure for the cycle-
by-cycle accuracy. It can be seen that the power model created
by the intra-signal correlation and the power-signal activity
algorithm reduces the average error as compared to the manual
model from 11.78% to 4.71% on the training set and from
6.18% to 2.78% on the control set. The same is valid for the
RMSE that is brought down from 42.24% to 24.04% (TS)
and from 33.46% to 19.07% (CS). Furthermore, this approach
also outperforms the brute force and the stand-alone intra-
signal correlation approaches with regard to the same metrics.
The relatively high RMSE at this point is due to fact that we
are utilizing a single power model representing the entire test
system in order to decrease the impact of power emulation
onto the FPGA. We expect to further decrease this number
by using a model splitting approach that models on-chip co-
processors and memories seperately.

C. Power Modeling and HDL Adaptation Effort

Next, we compare the effort required for selecting the
parameters of the models compared above, for performing the
linear regression based coefficient fitting and for the required
HDL adaptation. Note that all methods operate on the same
training set data. Hence, this portion of the total time required
for characterization is constant for these models and is not
reflected in Table I.

Due to the different nature of the used parameter selec-

TABLE I
COMPARISON OF PARAMETER SELECTION EFFORT FOR DIFFERENT POWER

MODELS

Parameter Selection Method Effort / Execution Time
Manual selectiona several days

Brute forceb,c ∼ 12 days
Signal corr. filterc 8.2 min

Signal and power corr. filterc 8.3 min

aIterative parameter selection process by the power emulation unit
HW designer.

bSequential linear regression for all benchmarks, candidate parame-
ters from signal name pattern matching.

cExecuted on a 3 GHz AMD Opteron system.

0

100

200

300

400

500

600

700

Selected Parameters per Model

N
um

be
r o

f P
ar

am
et

er
s

70
0

48
1

10
6 39

Coefficient Fitting Effort

E
xe

cu
tio

n 
Ti

m
e 

[s
]

40
93

8
53

60 53
.6

2.1
2

10

10

10

10

10

10

0

1

2

3

4

5
Manual model
Brute force
Signal corr. filter
Sig. and pow. c.

Fig. 9. Comparison of number of coefficients and required execution time
for coefficient fitting (Note semilogarithmic scale for second plot)

TABLE II
COMPARISON OF SELECTED PARAMETERS AND REMAINING NON-ZERO

COEFFICIENT AFTER NNLS FOR DIFFERENT POWER MODELS

Power Model # Sel. Param. # Rem. Coeff. %
Manual model 39 15 38.5

Brute force 481 196 40.7
Signal corr. 700 186 26.6

Sig. & pow. corr. 106 54 50.9

tion methods, the number of obtained parameters varies (see
Figure 9). Likewise, the execution time for performing linear
regression - based coefficient fitting varies with the number
of coefficients. Note, however, that the execution time is not
only dependent on the number of parameters but also on
the conditioning of the input data. Even though the number
of parameters determined by the signal correlation filter and
the naive brute force approach is by far larger than for
the combination of signal and power correlation filter, these
models fail to deliver the same level of accuracy. Another
interesting observation is that the percentage of remaining non-
zero coefficients after performing the NNLS fitting algorithm
is the highest for the signal and power correlation filter method
as shown in Table II. When considering the lower model pa-
rameter selection and coefficient fitting efforts (Figure 9), the
automated parameter selection process is even more favorable.

To give an understanding of the required efforts for the
automatic HDL implementation as introduced in Section V, we
have compared the efforts for adapting the HDL model of this
particular system-under-test for the automatically generated

TABLE III
COMPARISON OF HDL IMPLEMENTATION EFFORT

HDL Implementation Method Effort / Execution Time
HDL analysisa 28.9 s

Dependency extractiona 4 s
Signal routing & Write-backa 24.3 s

PE unit HDL generationa 0.2 s
Automatic implementation totala 57.4 s

Manual implementation several hours

aExecuted on a 3.2 GHz Intel Xeon system.

6. Publications Publication 3 - IEEE Euromicro DSD 2010 59



TABLE IV
COMPARISON OF NUMBER OF COEFFICIENTS AND IMPACT ON

EMULATION PLATFORM FOR DIFFERENT POWER MODELS

Power Emulation Coefficientsa Utilizationb

Manual model 15 0.8%
Brute force 196 4.2%

Signal corr. filter 186 4.1%
Signal and power corr. filter 54 1.6%

Functional Emulation n.a. 66%

aRemaining non-zero coefficients after performing linear regression.
bPercentage of total available ALUTs on Altera Stratix II platform.

model in Table III. The table summarizes the execution times
for adapting the HDL model comprising 400 files in total,
∼10% thereof are being modified. Note that the amount of
manual effort will certainly vary largely with the designer’s
expertise.

D. Impact on Emulation Platform

The power emulated test system was implemented on an
Altera Stratix II platform. The microcontroller itself, as used
for functional emulation only, employs approximately 66%
of the platform’s available adaptive look-up tables (ALUTs).
Table IV lists the additionally required ALUT percentage for
implementing the respective power model.

The power model automatically generated using the signal
and profile correlation filter requires additional 1.6% of the
platform’s ALUTs as opposed to the 0.8% of the manual
model. Considering the overall increase in accuracy, we con-
sider the impact of the larger power emulation hardware on
the emulation platform as minor. Due to this minor impact,
the system can be operated at its targeted clocking frequency
of 33 MHz. Note that this relatively low clocking frequency
resembles a requirement of the test system and not a limitation
of the power emulation unit.

VII. CONCLUSIONS

With the increasing complexity of integrated circuits, power
simulations are becoming infeasible due to extensive simula-
tion times. Hardware-accelerated power emulation approaches
promise to be a solution to this issue. However, only little
attention has been awarded so far to the problem of devising
a generic methodology capable of automatically enabling the
power emulation of a given system-under-test.

In this paper we have outlined a method for the automatic
characterization and power model creation of a given system-
under-test for the purpose of power emulation. Using this
method a power model has been automatically established for
a smart card controller test-system that reduces the estimation
error from 11.78% to 4.71% as compared to a manually de-
rived one. Furthermore, we have illustrated how the automatic
hardware integration of this power model and the required
HDL model adaptation can be achieved. Both, the automated
power model creation as well as its automated hardware
integration, drastically decrease the overall effort for enabling

the power emulation of a given system-under-test. We believe
that this reduction of effort will allow the power emulation
technique to prove its benefits also in industrial settings.

VIII. ACKNOWLEDGEMENTS

We would like to thank our industrial partners Infineon
Technologies Austria AG and Austria Card GmbH for their
enduring support in the course of this project. Furthermore,
we would like to thank the Austrian Federal Ministry for
Transport, Innovation, and Technology for providing us with
funding for the POWERHOUSE project under the FIT-IT
contract FFG 815193.

REFERENCES

[1] F. Bellosa, “The benefits of event: driven energy accounting
in power-sensitive systems,” in Proc. of the 9th ACM SIGOPS
European workshop, 2000.

[2] R. Joseph and M. Martonosi, “Run-time power estimation in
high performance microprocessors,” in Proc. ISLPED, 2001.

[3] G. Contreras and M. Martonosi, “Power prediction for intel
XScale processors using performance monitoring unit events,”
in Proc. of the ISLPED, 2005.

[4] J. Haid, G. Kaefer, C. Steger, and R. Weiss, “A co-processor
for real-time energy estimation of system-on-a-chip,” in Proc.
of the 45th MWSCAS, 2002.

[5] J. Peddersen and S. Parameswaran, “Low-impact processor
for dynamic runtime power management,” Design & Test of
Computers, IEEE, vol. 25, pp. 52–62, 2008.

[6] J. Coburn, S. Ravi, and A. Raghunathan, “Power emulation: a
new paradigm for power estimation,” in Proc. 42nd DAC, 2005.

[7] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini,
G. De Micheli, and J. M. Mendias, “A fast HW/SW FPGA-
based thermal emulation framework for multi-processor system-
on-chip,” in Proc. 43rd DAC, 2006.

[8] M. Ghodrat, K. Lahiri, and A. Raghunathan, “Accelerating
system-on-chip power analysis using hybrid power estimation,”
in Proc. of the 44th DAC, 2007.

[9] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-system
chip multiprocessor power evaluations using FPGA-based em-
ulation,” in Proc. of the ISLPED, 2008.

[10] A. Genser, C. Bachmann, J. Haid, C. Steger, and R. Weiss, “An
emulation-based real-time power profiling unit for embedded
software,” in Systems, Architectures, Modeling, and Simulation
(SAMOS), 2009.

[11] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid,
“Accelerating embedded software power profiling using run-
time power emulation,” in 19th PATMOS, 2009.

[12] L. Benini, R. Hodgson, and P. Siegel, “System-level power
estimation and optimization,” in Proc. of the ISLPED, 1998.

[13] A. Raghunathan, N. Jha, and J. Dey, High-Level Power Analysis
and Optimization. Kluwer Academic, 1998, ch. 3, p. 43.

[14] Z. Chen, K. Roy, and T.-L. Chou, “Power sensitivity—a new
method to estimate power dissipation considering uncertain
specifications of primary inputs,” in Proc. of the ICCAD, 1997.

[15] C. Lawson and R. Hanson, Solving Least Squares Problems.
Prentice-Hall, 1974, ch. 23, p. 161.

[16] C. Pohl, C. Paiz, and M. Porrmann, “vMAGIC - Automatic code
generation for VHDL,” International Journal of Reconfigurable
Computing, vol. 2009, 2009.

[17] http://www.antlr.org/.
[18] http://www.synopsys.com/.
[19] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,

and R. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in IEEE 4th Annual Workshop on
Workload Characterization, 2001.

6. Publications Publication 3 - IEEE Euromicro DSD 2010 60



An Emulation-Based Platform for Power- and

Performance-Aware HW/SW Development of

Embedded Multi-Core Systems

Christian Bachmann1, Andreas Genser1, Michael Lackner1,
Christian Steger1, Reinhold Weiß1, and Josef Haid2

1Institute for Technical Informatics, Graz University of Technology, Austria
2Infineon Technologies Austria AG, Design Center Graz, Austria

The rising complexity of embedded multi-core systems renders purely simulation-based design space
exploration increasingly difficult. Even for the execution of moderate software workloads, traditional
cycle-accurate power consumption and performance simulation approaches fail to deliver results in
a timely adequate manner. In this paper we present an emulation-based embedded multi-core eval-
uation platform that estimates the power consumption and monitors performance indicators of
a given system-under-test during its run-time. This information is collected and sent to a host
computer for evaluation, allowing for truly power- and performance-aware design phase analysis
and optimization of the system. We present the automated generation of multi-core power emula-
tion and performance evaluation hardware and its automated insertion into the system-under-test.
In an exemplary case study on a LEON3-based embedded multi-core test system we illustrate the
applicability of our approach to novel designs as well as the benefits of the detailed power and per-
formance profiles generation for the design process. For this test system, the power consumption
of each core is individually estimated with an average accuracy of more than 95%. Furthermore,
for each core 18 performance indicators are monitored.

1 Introduction

In the design space exploration process HW/SW designers have traditionally relied on simulation-
based approaches for exploring power consumption and performance trade-offs. However, the
rising complexity of embedded multi-core systems that is fueled by the demand for ever increasing
performance and new functionality, hinders purely simulation-based design space exploration. Even
for the execution of moderate software workloads, traditional power consumption and performance
simulation approaches fail to deliver cycle-accurate results in a timely adequate manner. This
is even more critical considering the huge number of degrees of freedom for these systems that
HW/SW designers have to cope with.

To overcome this problem two main research directions can be identified: First, the derivation of
simulation frameworks [1–6], typically operating at higher levels of abstraction in order to speed up
the simulation process of large multi-core systems. While this higher level of abstraction on the one
hand allows for shorter simulation times, on the other hand it also decreases simulation accuracy
and in general renders cycle-accuracy infeasible. Therefore, high-level simulations imply the risk
of concealing the low-level implications and side effects of design decisions and optimizations (e.g.,
timing errors due to deficient power management).

Second, with the availability of large but moderately priced field programmable gate arrays
(FPGAs), capable of holding entire multi-core designs, emulation-based approaches [7–13] for the

6. Publications Publication 4 - To be published 61

Submitted for publication / under review.



hardware-accelerated design evaluation of a system-under-test have emerged. With vast increases
in FPGA resources in recent years, these approaches have become a promising alternative to
software simulators, allowing for cycle-accurate design exploration and verification at high speeds.

In the context of emulation-based full-system power consumption and performance evaluation,
the novel contributions of this paper are as follows:

• We extend our previously introduced high-level power emulation methodology for the use
in an embedded multi-core environment, allowing for the individual power estimation of
heterogeneous system components.

• We additionally enable the monitoring of performance indicators of the given system-under-
test to enable a deeper understanding of trade-offs between power/energy consumption and
performance during the design phase. This joint approach greatly facilitates the identification
not only of the source of excessively high power consumption or poor execution performance
but also the causing mechanisms.

• A case-study on an embedded multi-core test system illustrates the applicability of our ap-
proach to novel systems as well as the benefits of our power emulation and performance
monitoring platform in the power- and performance-aware design process of these systems.

This paper is structured as follows. In Section 2 we review previous work in the field of
simulation- as well as emulation-based HW/SW design space exploration for embedded multi-core
architectures. We introduce our multi-core power emulation and performance monitoring platform
as well as its automated adaptation to new systems-under-test in Section 3 . To illustrate its
applicability in the design of future embedded multi-core architectures we present a multi-core
system case study in Section 4 and additional experimental results obtained using this system in
Section 5. Conclusions are drawn in Section 6.

2 Related Work

Previous work on power- and performance-aware HW/SW design space exploration of embed-
ded multi-core architectures has mainly focused on software simulators. With the availability of
sufficiently large but moderately priced FPGAs, the benefits of hardware-accelerated power and
performance emulation platforms have become a promising alternative to software simulators, of-
fering emulation speeds close to real-time as well as cycle-accuracy.

2.1 Simulation-based Methods

Simulation-based methods seek to increase simulation speed by employing higher levels of abstrac-
tion in the simulation process. Full-system single- as well as multi-core simulators have been pro-
posed on various levels of abstraction. SimpleScalar [1] is a widely used architecture-level simulator,
upon which the Wattch [2] power simulator builds. SimpleScalar supports multiple instruction-sets,
e.g., Alpha, Power PC, x86 and ARM. Simics [3] is another well known full-system simulator at the
instruction-set level, offering simulation models for various microprocessor architectures. MPARM
[4] is a SystemC-based simulation platform for entire multi-processor systems-on-chip (MPSoC),
containing models of the AMBA bus and memories, as well as a cycle-accurate ARM processor
instruction set simulator (ISS). MC-Sim [5] represents a heterogeneous multi-core simulator frame-
work, consisting of a functional ISS for the processor cores, cycle-accurate structural models for
the interconnect and behavioral models for coprocessors. A native MPSoC co-simulation frame-
work is presented in [6]. It implements a transactional level simulation environment with focus on
software timing and performance estimation. A given embedded software application is compiled
and annotated on a host PC to reflect the execution behavior of a specific target processor.

6. Publications Publication 4 - To be published 62



In general, simulation-based approaches offer the benefit of early availability during the HW/SW
design process. Furthermore, they allow for easy instrumentation of simulated modules at various
hierarchical levels for extracting power and performance statistics. However, the higher level of
abstraction - required for achieving tolerable simulation times - bears the hazard of concealing
crucial low-level effects. Furthermore, with increasing hardware complexity (i.e., increasing num-
ber of cores, accelerators and other peripherals) and with an increasing number of statistics to be
collected, the simulation speed drastically decreases.

2.2 Emulation-based Methods

Several emulation-based approaches have been proposed for overcoming the limitations of SW sim-
ulators. Initial power emulation, i.e., the hardware-accelerated power estimation on an emulation
platform, for smaller circuit designs was presented in [7]. While the low-level (RTL) power models
employed in this approach result in high estimation accuracy, they also entail large area over-
heads (on average a factor of three) requiring area and latency reduction techniques. A full-system
MPSoC emulation framework has been introduced in [8] and has been employed for the purpose of
thermal estimation [9, 10]. An extended version of this framework was later used to study operat-
ing system thermal management strategies [11]. The framework utilizes manually inserted sniffers
to collect run-time statistics of different system components and estimates the system’s power
consumption by utilizing power figures of already existing cores. A power emulation approach for
a LEON3-based chip multiprocessor system was shown in [12] using a high-level power model in
order to reduce the required hardware overhead. The approach utilizes manually inserted hard-
ware performance event counters related to power consumption and a power model implemented
in software. However, this approach cannot be regarded as truly non-invasive as the evaluation
of the power model in software both slightly modifies the execution behavior of the system as
well as consumes additional execution time. An emulation-based framework for the design space
exploration of embedded multi-core systems is presented in [13]. Based on the extraction of various
metrics of the emulated system, technology-dependent power consumption and area requirements
are being estimated. The framework integrates with Xilinx-proprietary FPGA tools [14] and puts
its emphasis on network-on-chip (NoC)-based systems. In a case study its applicability to different
multi-processor NoC architectures is illustrated but the estimation accuracy is not being quantified.

In recent work we have presented a high-level power emulation framework for single-core smart
card architectures [15] as well as its automated power characterization process [16]. This work
serves as the foundation for our design phase power consumption and performance evaluation
platform for future embedded multi-core architectures, presented in this paper. In contrast to
previously published emulation-based approaches we aim at automatically enabling the high-level
power- and performance emulation methodology, in order to avoid time-consuming and error-
prone manual modifications. Furthermore, the profiling approach is completely transparent both
to the system-under-test’s hardware as well as to the software applications being profiled. The
generation of power estimates of the system and its sub-components as well as the monitoring
of performance indicators both take place during the run-time of the system-under-test without
affecting or disturbing the system in any way.

3 Embedded Multi-Core Power Emulation and Perform-
ance Monitoring Platform

The principle structure of our proposed power emulation and performance monitoring platform
is illustrated in Figure 1. A given embedded multi-core system-under-test is implemented on
an FPGA board in the same way as required for, e.g., emulation-based functional verification.
Additionally, power emulation and performance counting units as well as a power and performance
data aggregation units are automatically instantiated in the design-under-test.

6. Publications Publication 4 - To be published 63



Performance

Statistics

FPGA Board

D
a
ta
 A
g
g
re
g
a
ti
o
n

Core 1

P
o
w
e
r

Time

Host PC

Power

EstimatesCore N

.
.
.

Power Emulation

Perf. Monitoring

Power Emulation

Perf. Monitoring

.
.
.

Performance Indicators

V
a
lu
e

System-under-Test

Figure 1: Power and performance evaluation platform

We can identify a number of requirements that have to be fulfilled for enabling the productive
design phase use of a power and performance emulation methodology in an industrial setting:

• Automated instantiation: The instantiation of hardware units required for power emulation
and performance monitoring in the HDL model has to be performed automatically.

• Transparent and non-invasive: The additional HW may not influence the system’s execution
behavior and should ideally be completely transparent to the system.

• SW controllable: Optionally, the control as well as the accessibility of statistics through
software applications running on the system should be possible.

• Low impact : The impact of the additional HW must be as low as possible to allow for the
emulation of complex multi-core architectures.

• Run-time data transfer : Power and performance statistics should be transferred to a host
PC during the system’s run-time to avoid the need for large buffer memories.

3.1 High-Level Multi-Core Power Emulation Principle

The power emulation technique is based on augmenting the emulated system with the hardware im-
plementation of its associated power model [7]. Power estimates are generated while the functional
emulation of the system-under-test is performed. In contrast to initial low-level power emulation
approaches that exhibit a large hardware overhead [7], high-level approaches [12, 15] reduce this
overhead by raising the level of abstraction of the used power models.

For CMOS-based systems the total power consumption of a component can be expressed as
P = Pdyn + Psta, consisting of dynamic power consumption Pdyn and static power consumption
Psta. For the dynamic power consumption term Pdyn = α·(f ·C ·V 2), α represents the activity of the
given component whereas the term (f ·C · V 2) models the well-known relationship with operating
frequency f , switching capacitance C and the supply voltage V . The static power consumption
Psta account for the static, i.e., non-activity-dependent power consumption as well as the leakage
power. In our high-level power emulation approach the cycle-accurate power consumption Pi[t] of
the given i-th system component (i = 1 . . . N) is approximated using an additive linear equation.

P̂i[t] = P̂sta,i + P̂dyn,i[t] = ci,0 +

Ni∑

j=1

ci,jxi,j [t] = ci,0 + ci,1xi,1[t] + . . .+ ci,Ni
xi,Ni

[t] (1)

In Equation 1, the coefficient ci,0 models sources of static power consumption P̂sta,i for the given
component such as analog sub-components and leakage. The coefficients ci,j (j = 1 . . . Ni) express
the non-activity-dependent term of CMOS power consumption (f ·C · V 2). The activity factor αi

of a given sub-component is determined by the according state signal xi,j [t]. The power estimate

6. Publications Publication 4 - To be published 64



of the entire multi-core system can then be simply derived as the sum of all component power
estimates as expressed in Equation 2.

P̂ [t] =
K∑

i=1

P̂i[t] = P̂1[t] + . . .+ P̂K [t] (2)

The power model for each component is derived using an automated power characterization meth-
odology as outlined in the following section.

3.2 Multi-Core Power Characterization

For enabling the power emulation of a future multi-core system-under-test we need to derive its
power model, i.e., a set of power models Pi for all major power-relevant system components.
The manual creation of these models - the system’s power characterization - is a time-consuming
and error-prone endeavor. For this reason we have introduced an automated characterization
methodology that determines power model parameters as well as fitting coefficients [16]. We have
further extended this characterization method to establish power models for the multi-core system-
under-test as depicted in Figure 2:

1. The system-under-test is implemented for a specific technology node, resulting in a gate-level
netlist representation.

2. For each major component the execution of a set of M microbenchmarks is simulated, gen-
erating an internal component activity data matrix Xi = [Xi,1, . . . ,Xi,M ]T .

3. The activity data is used in conjunction with a state-of-the-art power estimation tool to gen-
erate power consumption training set data vector pi = [pi,1, . . . ,pi,M ]T for each component.

4. By analyzing the activity and power consumption data tuple Ti = (Xi,pi), a power model
parameter selection process selects candidate model parameters xi,j [16].

5. A linear regression-based coefficient fitting process determines power model coefficients ci,j
for all parameters [16].

Once the characterization process is completed for the entire system-under-test, the derived power
models are fed to the subsequent power and performance emulation hardware generation process
as outlined in Section 3.5.

3.3 Performance Monitoring Principle

Built-in system performance monitoring units, also called hardware performance counters (HPC),
have become a vital tool for performance profiling, analysis and tuning of HW/SW systems. Mod-
ern microprocessors typically support a certain number of these HPCs that can be configured to
monitor performance-relevant events such as cache misses/hits, bus activity, pipeline stalls, etc. In
contrast to software simulators relying on simplified performance models, the HPCs allow designers
to evaluate the impact of optimizations on real hardware.

Synthesis, 

P&R

Gate-Level

Power Simulation

Benchmarks

Component 

HDL

Param. 

Sel.

Coeff.

Fitting

Power 

Model

Activity Data

1 3

4 5

Simulation
2

Gate-Level

Netlist

Figure 2: Power characterization flow

6. Publications Publication 4 - To be published 65



While the number of HPCs as well as the range of events that can be profiled is limited in
standard microprocessors, our emulation-based approach offers a greater degree of flexibility by
allowing the insertion of arbitrary, user-defined performance counters. We employ a set of modular
performance monitoring units, observing the behavior of each core and its sub-components. Based
on internal signal activity, a set of predefined events e[t] = (e1[t], . . . , eN [t]) is detected and logged
by the performance monitoring unit for the entire system-under-test.

ei[t] = fi(xi,1[t], . . . , xi,Ni
[t]); (3)

For each performance event ei[t], an activation function fi has to be defined that is specifying
which combination and state of different signals corresponds to the occurrence of the given event.
The activation function in Equation 3 could be a simple logical conjunction of input signals such as
f = x1[t]∧. . .∧xN [t] but also a more complex logical connective, e.g., f = x1[t]∧x2[t]∨. . .∨¬xN [t].
Furthermore, logical connectives of partly time-delayed signals such as f = x1[t]∧x2[t−2]∨¬x3[t−1]
could as well be of interest for a given system-under-test, e.g., for detecting certain changes in a
component’s state or operating mode.

The number and type of events to be profiled by the performance monitoring unit is determined
by a system-specific configuration supplied by the user. This configuration specifies the hierarchical
level and name of all signals to be monitored as well as the logical connective that defines the
occurrence of a performance event.

3.4 Multi-Core Power Emulation and Performance Monitoring Archi-
tecture

The multi-core power and performance evaluation architecture as shown in Figure 3 serves the
purpose of joint power emulation and performance monitoring. For each major system component
that shall be power and performance profiled, both, a power emulation unit and a performance
monitoring unit are instantiated. Furthermore, a data aggregation unit collects power emulation
as well as performance monitoring data and aggregates the data until it can be transferred to the
host computer.

3.4.1 Power Emulation Unit

The power emulation (PE) unit [15] represents the hardware implementation of the given compon-
ent power model as expressed in Equation 1. This unit monitors the power-relevant state signals
xi,j [t] and derives cycle-accurate power estimates P̂i[t] from these data. Each PE unit consists of a
number of power sensors, monitoring the state and activity of various sub-components. Each power
sensor maps the observed state signals to a corresponding power value for the given module using
a look-up table approach. The power estimator itself accumulates the coefficient values output by
each power sensor and calculates the cycle-accurate overall power consumption estimate P̂i[t] of the
component. A data aggregation unit collects all component power estimates for post-processing
and transfer to the host.

. . .

P
o
w
e
r 
a
n
d
 

P
e
rf
o
rm
a
n
c
e
 

E
v
a
lu
a
ti
o
n

M
u
lt
i-
C
o
re

S
y
s
te
m
 

E
m
u
la
ti
o
n

Core 1

R
F

C
tr
l

C
o
-P
.

IC
a
c
h
e

F
U
s

M
M
U

T
L
B

D
C
a
c
h
e

Host I/O

PE Unit 1

State

Coeff.

...
State

Coeff.

Power Estimation

Perf. Mon. 1

...

Event 
Counter

Event 
Counter

Event 
Detection

Event 
Detection

...

Core N

Perf. Mon. NPE Unit N

Data Aggregation & Control Unit

. . .

Figure 3: Power emulation and performance
monitoring architecture

System-under-Test

Power + Perf. Mon. Enabled

System-under-Test

Dep. Extraction

VHDL

VHDL Parsing

Power and Performance 

Monitoring Configuration

VHDL

VHDL Write-BackUnit Instantiation

Signal Routing VHDL Modification

Power

Models

Perf. Mon.

Cfgs.

Figure 4: Automated HDL modification for en-
abling the power and performance monitoring of a
given system

6. Publications Publication 4 - To be published 66



3.4.2 Performance Monitoring Unit

The performance monitoring unit serves the purpose of performance profiling of a given system
component. It is split into two major parts: (1) The performance-relevant event detection stage
and (2) the event logging functionality.

The event detection stage monitors performance-relevant signals xi,j [t] and compares these
signals to predefined event patterns. For each performance event a single- or multi-bit signal is
monitored. Depending on the activation function fi for the given event ei[t] to be detected, either
certain signals states or signal state transitions are being detected as an event. After the detection
of a performance event, a trigger signal is activated.

In the event logging stage a counter process is instantiated for each performance event. The
counter value is incremented when the trigger signal is activated. All counter values are being reset
when their current values have been collected by the data aggregation unit for the transfer to the
host computer.

3.4.3 Data Aggregation Unit

The data aggregation unit collects power and performance profiling data from the according units.
The amount of profiling data is dependent on the number of components monitored, the monitoring
granularity (i.e., the number of power models and performance events profiled) and the system’s
clock rate. Hence, the data volume can exceed the maximum data transfer bandwidth to the host.
For this reason, the data aggregation unit accumulates profiling values in sum-registers for the
timespan between consecutive data transfers to the host.

3.5 Automated HDL Modification for Power and Performance Monit-
oring

The manual implementation of the power emulation units as well as the required adaptation of the
original HDL model of the system-under-test entails a considerable level of effort. Therefore we
have devised an automated HDL model analysis and modification methodology [16] based on the
VMAGIC VHDL manipulation Java library [17] that is itself relying on the ANTLR [18] parser gen-
erator. For the purpose of constructing the multi-core power and performance evaluation platform,
we have further extended this approach to support per-component instantiation and connection of
both the power emulation units and the performance monitoring units. The adaptation algorithm
is composed of the following steps as shown in Figure 4:

• VHDL parsing and dependency extraction: The entire set of files representing the system’s
VHDL model is being parsed. A hierarchical dependency tree of all design entities is created.

• Signal routing and instantiation of the power emulation units as well as the performance
monitoring units: The units are being instantiated as defined by the power models and the
performance monitoring configurations. All internal component signals that are required by
either the power emulation, the performance monitoring units or both are being routed from
their origin to the respective units.

• VHDL modification and write-back: Synthesizable VHDL code is being generated for all
modified components and being written back to the affected VHDL files.

4 Case Study: Multi-Core LEON3 Power and Performance
Evaluation Platform

As a case study we have implemented a joint power and performance evaluation platform based
on the Gaisler LEON3 [19] architecture. This LEON3 system has been further extended for

6. Publications Publication 4 - To be published 67



FPGA Board

Core 1

Host PC

Core 4

.
.
.

LEON3 MPSoC

Power Emulation

and Perf. Monitoring

Core 1Core 1PE Unit

Core 1Core 1Perf. 

Mon.

Eth. PHY

Ethernet 

Frame

Generator

Memory

Mapped

Ctrl. Regs. Ctrl

Prof.

Data

Visualization

File LoggingJPCAP Packet 

Capturing

Control & Cfg.

Post-Processing

D
a
ta
 A
g
g
re
g
a
ti
o
n

Packet 

Parsing

Figure 5: Test system consisting of LEON3 MPSoC aug-
mented by power emulation and performance monitoring
functionality

Architecture 32-bit SPARC V8
Pipeline 7-stage, single-issue

Funct. Units Add, Shift, Mul, Div
I/D Cache 1-way, 8KB/2KB
Clock Rate 35 MHz
Technology1 90 nm

Table 1: Architectural parameters
chosen for the cores of the test system

enabling (1) multi-core power emulation as well as (2) multi-core performance event monitoring.
Furthermore, an Ethernet-based power and performance data transfer interface as well as the host
data processing software have been devised for this platform.

4.1 Test System

Our test system for evaluating the power and performance evaluation platform comprises an FPGA
board where the actual platform is implemented and a host PC that collects data generated by
the platform via an Ethernet-link as shown in Figure 5.

4.1.1 FPGA Board

We employ a Xilinx ML507 development board that is equipped with a Virtex5 XC5VFX70
FPGA. On the FPGA a Gaisler LEON3 multi-core system is implemented, consisting of four
32-bit pipelined SPARC V8 compliant cores with 8 KB of instruction and 2 KB of data caches
each. Table 1 lists the architectural parameters chosen for our implementation.

The LEON3 architecture has been further extended with power emulation and performance
monitoring units using our methodology as outlined in Section 3.5. The aggregated power and
performance profiling data generated during the emulation run is collected by an Ethernet frame
generator unit that uses the on-board Ethernet physical layer TX unit to transfer the data to the
host PC.

4.1.2 Host PC

On the host PC a Java-based application captures and parses incoming Ethernet frames. The
received profiling data is being post-processed and either being visualized in a GUI or logged to a
file for later evaluation.

4.2 Implemented Power Model

Alongside with the performance monitoring units, each core has been equipped with a power
emulation unit incorporating the core’s power model. For obtaining reference power consumption
data required by the power modeling process, the LEON3 core architecture has been synthesized
for a 90 nm process. Afterwards, gate-level power simulations of short microbenchmarks have
been conducted using Synopsys Primetime PX V2008.12 SP3 to generate reference power data.
The power models have been derived from these gate-level reference power data by performing the
automated characterization process as outlined in Section 3.2. For the current implementation of
the LEON3’s core architecture, we have derived a power model utilizing a total of 53 parameters
and their according coefficients. Furthermore, the caches and the register file have been modeled

1Target technology node used for power modeling.

6. Publications Publication 4 - To be published 68



Models
Core (IU, FUs, MMU)

I/D Caches, RF

Charact. NNLS (Core)
Methods eCACTI (Caches, RF)

# Model 53 (Core)
Parameters 6 (Caches), 2 (RF)

Table 2: Power model parameters

General Register File
Clock cycles Read (S/D) / Write

Stall cycles (I/D-Cache,Tot.) Inst. Cache
Execution Stage Read Hit / Miss

Add, Logic, Shift Op. Data Cache
Mul, Div Op. R/W. Hit/Miss

Table 3: Monitored performance events

µBench.1 AA AL CA DR PD RA RO TI
AE[%] 3.9 2.7 3.0 0.9 0.8 1.5 3.1 2.8

RMSE[%] 15.8 15.9 18.2 16.2 8.5 13.6 14.5 14.2

Benchmarks Coremark Quicksort Bitcount
AE[%] 2.3 4.5 4.5

RMSE[%] 17.7 16.9 22.8

Table 4: Power model average and RMS error for characteriz-
ation and evaluation benchmarks

in the eCACTI power estimation tool [20] for the same technology node. Table 2 summarizes the
used power models and the number of parameters used.

We have evaluated the accuracy of the implemented core power model both for the training
microbenchmarks as well as for a set of control benchmarks against reference gate-level power sim-
ulations as shown in Table 4. For the characterization microbenchmarks2 the average error is below
4% while the root-mean-square error (RMSE), which is a measure for the cycle-by-cycle accuracy,
is below 19%. For the training set, these values are below 5% and 23% respectively. Taking the
high-level nature of our power modeling approach into account, we consider this accuracy to be
sufficiently high for the early design phase applicability of our power emulation and performance
monitoring platform.

4.3 Implemented Performance Monitoring

For the given LEON3 test system, a total of 18 performance event detection units and associated
event counters have been instantiated as summarized in Table 3. The monitored performance
events are extracted from each core’s pipeline, register file as well as instruction and data cache
units. The collected performance profiling data contains information on the type (Add, Shift,
etc.) and number of executed instructions as well as the total number of clock and stall cycles.
Register file accesses and I/D cache hit/miss statistics are also collected. Furthermore, program
counter (PC) values are recorded to enable the correlation of power and performance profiles to
the system’s execution trace.

4.4 Impact on Emulation Platform

The quad-core LEON3 system-under-test including the power emulation and performance monit-
oring functionality was synthesized with Xilinx ISE 12.3 [14] for a target frequency of 40 MHz. Of
the available 44800 look-up tables (LUTs) on the used Virtex5 emulation platform, a total of 35232
(78.64%) are used. Of these LUTs, the test system requires 80.8% for the four cores (∼17% each)
and the peripherals (12.2%) as shown in Table 5. The power emulation units and the performance
monitoring units for all cores account to 7.8% and 1.0% respectively. Furthermore, the power

2Used microbenchmarks: ALU-Arithmetic (AA), ALU-Logical (AL), Cache (CA), Dhrystone (DR), Power-Down
(PD), RAM (RA), ROM (RO), Timer (TI)

6. Publications Publication 4 - To be published 69



Test System LUTs [%] Power Em. & Perf. Mon. LUTs [%]
Core 1 17.3 Power Emulation Units 7.8
Core 2 16.8 Performance Monitoring Units 1.0
Core 3 16.8 Run-Time Data Transfer LUTs [%]
Core 4 17.7 Data Aggregation 6.9

Peripherals 12.2 Run-Time Ethernet Transmitter 3.5
Total TS 80.8 Total PE, PM & Data Transfer 19.2

Table 5: FPGA utilization

and performance data aggregation functionality consumes 6.9% and the run-time Ethernet data
transfer controller 3.5% of the totally used LUTs.

4.5 Emulation Performance

For illustrating the speed-up by using our emulation-based approach we compare the emulation
time of benchmarking applications with RTL simulations and instruction-set simulator (ISS) per-
formance. RTL simulations are performed with Modelsim 6.6b while as ISS the TSIM/LEON3
SPARC simulator 2.0.18 (as an evaluation version) is employed. Both simulators are running on
an AMD Phenom II 3.2 GHz server system. Table 6 illustrates the speedup in profiling time
by using our emulation-based platform in comparison to RTL and IS-level simulations for three
benchmarking applications. Note that while the RTL simulation incorporates the power emulation
and performance monitoring functionality as outlined in Sections 4.2 and 4.3, the ISS only collects
general performance statistics and does not provide power estimation functionality.

For the profiled benchmarks, the speedup of the emulation platform is almost a factor of five
whereas for the RTL simulation the speedup is in the range of 50 to 60 thousand, according to
application characteristics. Furthermore, to highlight the benefit of employing an emulation-based
approach to profile longer workloads, we have used average speedup values to extrapolate RTL
and IS simulation times for the booting process of an embedded operating system that requires 11
seconds on the emulation platform. While an IS-level simulation could still be completed within
one minute, the RTL simulation would require more than 7 days.

5 Experimental Results

We illustrate the benefits of the joint power emulation and performance monitoring platform in an
embedded HW/SW development process by profiling prototypical applications.

Benchmarks Bitcount Coremark Quicksort OS Booting
RTL Simulation Time 26.46 s 144.56 s 30.71 s 7.39 db

IS Simulationa 2.45 ms 11.81 ms 2.51 ms 54.23 sb

Emulation Time 0.50 ms 2.39 ms 0.50 ms 11 s
Speedup vs RTL Sim. 52744 60507 60890 58047c

Speedup vs IS Sim.a 4.9 4.9 5.0 4.9c

Table 6: Simulation vs emulation time

aPurely functional simulation, no power estimation process.
bValue is extrapolated from average speedup of emulation vs RTL/IS sim.
cAverage value.

6. Publications Publication 4 - To be published 70



5.1 Software Optimization

5.1.1 Compiler Optimizations

Figure 6 illustrates the profiling of the Coremark benchmark on one core of our power emulation
and performance monitoring platform. The benchmark has initially been compiled using the
SPARC-ELF GCC 3.4.4 with all optimizations disabled (level 0, i.e., no compiler optimizations).
Afterwards, optimization level 3 was chosen, allowing the compiler to use common optimizations
as well as more expensive ones such as function inlining. The performance profiles nicely illustrate
how the compiler manages to optimize data access, hence, strongly reducing the amount of data
cache stall cycles and therefore also more than halving the execution time.

5.1.2 Manual Optimizations

An example of a manual optimization approach is shown in Figure 7, illustrating the manual
optimization of the cache usage of loops. In the original source code as shown in Listing 1 in a first
loop all elements on an array are incremented by a value op1, afterwards in a second loop they are
multiplied by a value op2. Due to the fact that the size of the array is larger than the available
data cache, old cache entries of the array items are already overwritten during the execution of the
first loop. Hence, even though the same array is modified in the second loop, all entries have to
be loaded again from the memory, which is indicated by a constant high number of D-cache stalls
during the loop’s execution.

In the manually optimized version as illustrated in Listing 2, both loops are split into smaller
parts that are only operating on smaller blocks of the array that are completely fitting into the
D-cache. The profiling result shown in Figure 7 clearly illustrates how the execution is acceler-
ated for the smaller loops that can operate on the cached array data values. Even though the
power consumption is higher during these phases due to the faster execution, the overall energy
consumption can be reduced by 8.6% due to the shorter execution time.

5.2 Profiling of Multi-Core Applications: Task Migration

One of the main advantages of our emulation-based profiling architecture presented in this paper
is the speedup in comparison to software simulators. This allows for the profiling of applications
exhibiting long execution times, such as, the execution of an embedded operating system. As oper-
ating system for our LEON3 multi-core test system we have employed an SMP-enabled SnapGear

1Data normalized due to existing NDA.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [ms]

Coremark, Optimization Level 0: Power Emulation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [ms]

Coremark, Optimization Level 0: Performance Monitoring

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [ms]

Coremark, Optimization Level 3: Power Emulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [ms]

Coremark, Optimization Level 3: Performance Monitoring

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

P
o
w
e
r 
[n
o
rm
]

V
a
lu
e
 [
n
o
rm
]

P
o
w
e
r 
[n
o
rm
]

V
a
lu
e
 [
n
o
rm
]

Power

I-Cache Stalls

D-Cache Stalls

RF Writes

Power

I-Cache Stalls

D-Cache Stalls

RF Writes
Reduced D-Cache Stalls

Figure 6: Profiling of benchmark application illustrating the impact of different
compiler optimization levels1

6. Publications Publication 4 - To be published 71



Loop 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

P
o

w
e

r 
[n

o
rm

]

Non-optimized array usage: Power Emulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

V
a

lu
e

 [
n
o

rm
]

Non-optimized array usage: Performance Monitoring

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

P
o

w
e

r 
[n

o
rm

]

Optimized array usage: Power Emulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]

V
a

lu
e

 [
n
o

rm
]

Optimized array usage: Performance Monitoring

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Power

I-Cache Stalls

D-Cache Stalls

RF Writes

Power

I-Cache Stalls

D-Cache Stalls

RF Writes

Loop 2

Loop 2 I-Cache Stall

Continous D-Cache Stalls

Loop 1.1 Loop 1.2
L 2.1 L 2.2

Cached Execution

Execution 

Time 

Reduction

Execution 

Time 

Reduction

Figure 7: Profiling of benchmark application illustrating the impact of manual array
access optimizations1

//Loop 1

for(i=0..N)

{

array[i] += op1;

}

//Loop 2

for(i=0..N)

{

array[i] *= op2;

}

Listing 1: Source code example of two
consecutive loops

for(i=0..N/2) //L1.1

array[i] += op1;

for(i=0..N/2) //L2.1

array[i] *= op2;

for(i=N/2..N) //L1.2

array[i] += op1;

for(i=N/2..N) //L2.2

array[i] *= op2;

Listing 2: Optimized source code con-
sidering D-cache size

Linux 2.6-P42 incorporating the Linux kernel 2.6.21.
Using the Linux scheduler, we can now migrate the execution of tasks from one core to the

other in a way as it would be required to achieve, e.g., load balancing or thermal-aware scheduling.
Our task consists of a simple increment operation executed in a loop. During the tasks execution
we force the Linux scheduler to migrate the running loop task from core 1 to core 2 by changing
the tasks processor affinity using the sched_setaffinity system call. The migration process is
clearly visible both in the cores’ power profiles as well as in the performance profiles monitoring
cache activity as depicted in Figure 8.

6 Conclusions

Simulation-based design space exploration and verification of embedded multi-core systems is be-
coming increasingly difficult due to the ever increasing complexity both in terms of hardware as well
as software functionality. Hardware-accelerated emulation approaches have becoming a promising
alternative in filling this design productivity gap.

In this paper we have introduced an emulation-based platform that derives power estimates
during the run-time of a given system-under-test and at the same time monitors various perform-
ance indicators. For facilitating the productive design phase use of our power emulation and per-
formance monitoring platform in an industrial setting, we have investigated the automated power
characterization and HDL model adaptation of future embedded multi-core systems-under-test.

1Data normalized due to existing NDA.

6. Publications Publication 4 - To be published 72



0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

P
o

w
e

r 
[n

o
rm

]

Thread Migration Example: Power Emulation

Power (1)

Power (2)

0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

V
a

lu
e

 [
n

o
rm

]

Thread Migration Example: Performance Monitoring

I-Cache Stalls (1)

D-Cache Stalls (1)

RF Writes (1)

I-Cache Stalls (2)

D-Cache Stalls (2)

RF Writes (2)

Task Execution on Core 1 Task Execution on Core 2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 8: Profiling of Linux task migration procedure between two cores1

In a case study of a LEON3-based multi-core system, we illustrate the applicability of our power
emulation and performance monitoring approach. The system has been automatically augmented
with power emulation units that enable a per-core average power estimation accuracy within 95%
of reference gate-level simulations. Furthermore, for each core 18 performance indicators are pro-
filed. The entire system-under-test consisting of four cores and including the power emulation and
performance monitoring functionality has been implemented on a Xilinx Virtex5 FPGA. On this
platform single- as well as multi-core SW applications can be easily profiled even when exhibiting
longer execution times that limit the use of simulation-based approaches.

The collected run-time power and performance profiles enable a deeper understanding of trade-
offs between power/energy consumption and performance. This joint approach greatly facilitates
the identification not only of the source of excessively high power consumption or poor execution
performance but also the causing mechanisms, therefore enabling a truly power- and performance-
aware HW/SW development process.

Acknowledgment

We would like to thank the Austrian Federal Ministry for Transport, Innovation, and Technology
for providing us with funding for the POWERHOUSE project under FIT-IT contract FFG 815193,
as well as our industrial partners Infineon Technologies Austria AG and Austria Card GmbH for
their enduring support.

References

[1] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for computer system modeling,”
Computer, vol. 35, pp. 59 –67, 2002.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level power analysis
and optimizations,” Computer Architecture, 2000. Proceedings of the 27th International Symposium
on, pp. 83–94, 2000.

[3] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner, “Simics: A full system simulation platform,” Computer, vol. 35, no. 2,
pp. 50 –58, 2002.

1Data normalized due to existing NDA.

6. Publications Publication 4 - To be published 73



[4] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, “Mparm: Exploring the multi-
processor soc design space with systemc,” J. VLSI Signal Process. Syst., vol. 41, no. 2, pp. 169–182,
2005.

[5] J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik, and G. Reinman, “Mc-sim: an efficient simulation
tool for mpsoc designs,” in Proceedings of the 2008 IEEE/ACM ICCAD ’08, 2008, pp. 364–371.

[6] P. Gerin, M. M. Hamayun, and F. Pétrot, “Native mpsoc co-simulation environment for software
performance estimation,” in Proceedings of the 7th IEEE/ACM CODES+ISSS ’09, 2009, pp. 403–
412.

[7] J. Coburn, S. Ravi, and A. Raghunathan, “Power emulation: a new paradigm for power estimation,”
in Proc. 42nd DAC, 2005.

[8] P. Del Valle, D. Atienza, I. Magan, J. Flores, E. Perez, J. Mendias, L. Benini, and G. De Micheli,
“Architectural Exploration of MPSoC Designs Based on an FPGA Emulation Framework,” in Proc.
XXI DCIS, 2006, pp. 12–18.

[9] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, and J. M. Mendias, “A fast
HW/SW FPGA-based thermal emulation framework for multi-processor system-on-chip,” in Proc.
43rd DAC, 2006.

[10] D. Atienza, P. G. Della Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, J. M. Mendias, and
R. Hermida, “HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs,” ACM
TODAES, vol. Vol. 12, pp. pp. 1 – 26,, 2007.

[11] S. Carta, A. Acquaviva, P. G. Del Valle, M. Pittau, D. Atienza, F. Rincon, G. De Micheli, L. Ben-
ini, and J. M. Mendias, “Multi-Processor Operating System Emulation Framework with Thermal
Feedback for Systems-on-Chip,” in 17th ACM GLSVLSI, 2007, pp. 311–316.

[12] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-system chip multiprocessor power evalu-
ations using FPGA-based emulation,” in Proc. of the ISLPED, 2008.

[13] P. Meloni, S. Secchi, and L. Raffo, “An fpga-based framework for technology-aware prototyping of
multicore embedded architectures,” IEEE Embedded Systems Letters, 2010.

[14] http://www.xilinx.com/.

[15] A. Genser, C. Bachmann, J. Haid, C. Steger, and R. Weiss, “An emulation-based real-time power
profiling unit for embedded software,” in SAMOS, 2009.

[16] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid, “Automated power characterization for
run-time power emulation of soc designs,” in 13th Euromicro DSD, 2010, pp. 587–594.

[17] C. Pohl, C. Paiz, and M. Porrmann, “vMAGIC - Automatic code generation for VHDL,” International
Journal of Reconfigurable Computing, vol. 2009, 2009.

[18] http://www.antlr.org/.

[19] http://www.gaisler.com/.

[20] M. Mamidipaka and N. Dutt, “ecacti: An enhanced power estimation model for on-chip caches,” In
Technical Report TR-04-28, CECS, UCI, Tech. Rep., 2004.

6. Publications Publication 4 - To be published 74



Power Emulation: Methodology and Applications 

for HW/SW Power Optimization 

J. Haid 

Infineon Technologies Austria AG 

Design Center Graz 

Graz, Austria 

C. Bachmann, A. Genser, C. Steger, R. Weiss 

Graz University of Technology 

Institute for Technical Informatics 

Graz, Austria

 

 
Power profiling methods are indispensible in the power-aware 

design of HW/SW systems. By extending functional emulators 

with power estimation hardware, high-level power information 

can be derived during run-time, yielding a considerable speed-

up as compared to simulation based approaches. A key enabler 

for the widespread use of the power emulation methodology is 

the automation of both power model creation and HDL 

adaptation. In this paper, we outline our system-level power 

emulation technique as well as its automatic power modeling 

and hardware adaptation. Furthermore, applications in the 

field of HW/SW power management are illustrated. 

I. INTRODUCTION 

Low power hardware platforms offer a wide range of power 

saving features. The challenge for software developers is to 

use them in the most efficient way when executing an 

application. This is not a trivial task as software developers 

often do not have a deep understanding of silicon 

technology and vice versa hardware developers are often not 

deeply familiar with complex software design techniques. 

Power emulation is one of the most promising techniques to 

close this gap and enable software developers to directly 

check the impact of their code on the corresponding 

hardware platform. The basic idea is to use emulators not 

only for functional verification, but also for providing 

detailed information about the power consumption of the 

executed code. Compared to measurement-based 

approaches power emulation does not require expensive 

measurement equipment as well as allows a more precise 

correlation between instructions and power consumption. 

Functional emulation of a system by means of an FPGA 

prototyping platform has become a widespread technique 

for functional verification. By additionally adding power 

estimation hardware to the system and by coupling this 

approach with a software development environment on a 

host computer, real-time power verification is feasible. The 

early design stage applicability of this approach makes the 

HW/SW co-design process more efficient and hence 

increases power efficiency of software and hardware. The 

principle behind the power emulation approach is depicted 

in Figure 1.  

This paper gives a comprehensive overview on FPGA-based 

power emulation. It addresses the following aspects: 

• An automated power model generation 

methodology for a given system-under-test 

• Implementation of power estimator hardware and 

its automatic adaptation to the power model 

• An automated software optimization approach 

exploiting results from the power emulator  

 

 
Figure 1: Power emulation principle, obtained from [8] 

 

Finally the paper shows how power emulation can be used 

to investigate and verify new power management policies 

with the goal to reduce the power management efforts 

required in software. 

 

II. RELATED WORK 

Numerous works have studied power profiling methods for 

use in SW/HW systems development and verification. 

Recently, hardware-accelerated power emulation 

approaches have been researched in order to speed up the 

power estimation process. Based on these approaches, 

power management techniques can be implemented and 

verified, seeking to increase the battery lifetimes as well as 

the general system stability of power- and energy-

constrained devices. 

 

A. Power Profiling 

Power profiling based on simulation approaches acquires 

activity and state information of given SoCs during program 

execution. Power estimation can be carried out on various 

levels of abstract yielding different estimation accuracies 

and simulation times. However, simulation-based 

approaches are generally limited to non-real-time execution. 

In [1], the authors define an instruction level power model 

to estimate the application’s power consumption. The model 

incorporates the power consumption while executing 

instructions (i.e., base costs) as well as the power 

6. Publications Publication 5 - IEEE MEMOCODE 2010 75

c© 2010 IEEE. Reprinted, with permission, from Proceedings of 8th IEEE/ACM International
Conference on Formal Methods and Models for Codesign 2010.



consumption while switching between instructions (i.e., 

circuit state overhead costs). A pipeline-aware power model 

for VLIW architectures improving instruction-level 

estimation accuracy is proposed in [2]. In [3], the authors 

describe a co-simulation based power estimation approach 

for SoCs. System power estimation is carried out on system-

level, while components of interest can be co-simulated on a 

lower level of abstraction to enhance estimation accuracy.  

Moreover, commercial power estimation tools operating on 

a low level of abstraction (i.e., register transfer or gate level) 

are shown in [4]. The execution of power estimation on a 

low abstraction layer leads to accurate results while 

exhibiting long simulation times that can become 

extensively long for complex applications. To circumvent 

this limitation, present trends tend to move from simulation-

based approaches to hardware-accelerated approaches. 

 

B. Power Emulation 

Hardware-accelerated power estimation speeds up power 

analysis methods up to real-time behavior by shifting the 

evaluation of power models from software to hardware. To 

derive power and energy consumption information from an 

SoC, existing hardware performance counters [5] or 

additional hardware counters are added to the system [6]. 

A special form of hardware-accelerated power estimation is 

power emulation. The SoC is augmented with power 

estimation functionality on a typical FPGA prototyping 

platform. Alongside functional verification, this approach 

also allows for power verification in an early design stage. 

The power emulation principle has first been proposed in 

[7]. The authors achieve run-time reductions between 10x 

and 500x by performing power emulation on register 

transfer level. However, the induced hardware overhead 

accounts up to 3x as compared to the base system. 

In recent work we introduced a system-level power 

emulation approach providing power consumption in real-

time at less hardware overhead [8] that can be used to 

enable power-aware software development [9]. 

A power characterization methodology that allows for the 

set up of accurate and low-effort power models forms the 

basis for estimation based power analysis. To feed power 

models with SoC activity and state information, access to 

internal system signals is required. In [10], we introduced 

methodologies in order to automatically set up accurate 

power models and to enable the automatic routing of power-

relevant system signals. 

 

C. HW/SW Power Management 

Power management techniques aim at optimizing the 

average as well as the peak power consumption of power-

constrained devices. Especially for energy harvesting 

devices such as RF-powered smart cards, power 

consumption peaks can lead to critical supply voltage drops 

threatening the system’s stability and hence its functionality. 

Previous attempts on SW power peak reduction have 

focused on instruction reordering to minimize the switching 

activity [11] as well as non-functional instruction (NFI) 

insertion [12]. In security applications the prevention of 

power analysis attacks by means of power profile flattening 

has been studied using NFI insertion. Both software and 

hardware implementations were shown in [13]. A HW based 

current-injection unit for real-time power consumption 

flattening was introduced in [14]. This approach has been 

further extended in [15] using a voltage scaling method to 

improve the power profile flattening. 

 

III. POWER MODEL AND CHARACTERIZATION 

A. System-Level Power Modeling 

System-level power estimation can be set up by linear 

regression models, which can be expressed as  

 

  � � ∑ ���� � �,


���                                    (1) 

 

where 
 � �
�, 
�, … 
��  gives the vector of model 

parameters. ix  represent power-relevant system states, such 

as CPU operating modes (run, idle).  

� � ���, ��, … �
�
� gives the vector of model coefficients to 

be determined during a power model characterization 

process. The result y  represents the estimated power value, 

which differs from the real power value by the estimation 

error ε . 

A linear regression based power model is set up 

following three major steps: (i) Parameter selection, (ii) 

training-set design and (iii) least squares fit method. Power-

relevant system states are determined during model 

parameter selection. The selection of model parameters 

influences the complexity and the accuracy of the power 

model. 

The training-set incorporates a set of microbenchmarks that 

are executed on the SoC. For a number of i model parameter 

vectors 
� � �
��, 

�
�, … 


�
��  excited by the 

microbenchmarks, power measurements are carried out. For 

all vector sets � � �
�, 
�, … 
���the corresponding power 

measurements can be given as � � ���, ��, … ���
� . 

The input vector sets � and associated power values � can 

be summarized as expressed in (2). 

 

  � � �X   (2) 

 

In general, the linear system of equations given in (2) is not 

exactly solvable, since the number of power measurements 

is usually higher than the number of model parameters. 

Hence, a least squares fit method finally determines the 

model coefficients �  while trying to minimize the square 

error for each of ��. 

 

6. Publications Publication 5 - IEEE MEMOCODE 2010 76



B. Automated Power Modeling Methodology 

For the high-level power modeling approach employed in 

our power emulation methodology, a challenge that arises is 

the identification of power-relevant state signals ��. For the 

given system-under-test these state signals shall then be 

used as power model parameters.  

We seek to automate this selection process by devising an 

automated model parameter selection algorithm previously 

introduced in [10]. This algorithm is integrated into the 

power characterization flow as depicted in Figure 2 and 

consists of three stages.  

In the first stage, a signal name pattern matching is 

performed. The typically very large number of signals 

available in the design is largely reduced by only selecting 

signals matching a list of user-supplied name patterns. A 

default name pattern list should be derived from the coding 

standard used while implementing the system-under-test and 

will contain name patterns such as “enable”, “busy”, 

“ready”, “halt”, “sleep”, etc.  

The second stage consists of the intra-signal correlation 

analysis, aiming at the further reduction of potential 

parameter signals by removing redundant signals based on 

their activity statistics. In the final third stage the power-

signal cross-correlation analysis is carried out, measuring 

the relation of signal state changes to changes in the 

transient power consumption of the system. All signals 

exhibiting only low correlation within a certain lag, e.g., 

typically a small number of clock cycles, are not considered 

power-relevant and are removed. 

 

 

Figure 2:  Automated power characterization methodology,  

obtained from [10] 
 

IV. POWER ESTIMATION HARDWARE GENERATION AND 

ADAPTION 

A. Power Estimation Hardware 

The power estimation hardware that is a key component of 

the power emulation approach is depicted in Figure 3. 

Power-relevant signals from the SoC are fed to power 

sensors that track state information of system modules. 

Power model coefficients � are stored in the power sensors 

and state information is mapped towards model coefficients 

using a table-lookup approach. The power estimation unit 

accumulates power sensor outputs yielding the power 

estimate � . The debug-trace generator collects power 

information from the power estimation unit, which are then 

transmitted to a host computer. A configurable averaging 

filter allows for power information smoothening and de-

noising. 

 

Figure 3: Power estimation hardware,  

obtained from [8] 
 

B. Automated HDL Model Adaption 

Now that power model parameters, i.e., power-related state 

signals, have been defined and used to create a power model 

of the given system-under-test, the last obstacle for enabling 

power emulation is the hardware implementation of this 

model. We address this issue in a twofold manner as 

previously presented in [10] and depicted in Figure 4.   

 
Figure 4: Automated HDL model implementation, obtained from [10] 

 

First, in an HDL model adaptation stage, we modify the 

original HDL model of the system-under-test by adding 

internal connections of the power-relevant state signals 

identified by the model parameter selection algorithm 

outlined above. This step can be interpreted as the "routing" 

of signals originating in different design entities at various 

levels of hierarchy to the power sensor units. Our approach 

6. Publications Publication 5 - IEEE MEMOCODE 2010 77



builds upon the VMAGIC (VHDL manipulation and 

generation interface) Java library [16] that itself builds upon 

the ANTLR 3.1 parser generator [17].  

Second, the HDL model of the power emulation unit has to 

be integrated into the adapted HDL of the system-under-test 

to allow for the FPGA synthesis and download. 

Furthermore, the power emulation unit itself has to be 

adapted to the used power model, affecting the internal 

structure of the power sensors, the power estimates 

accumulation unit, the filtering unit as well as the debug 

trace generator. 

 

V. HW/SW POWER MANAGEMENT BASED ON POWER 

EMULATION 

A. Case Study: Smart-Card SoC 

The power estimation hardware that is a key component of 

the power emulation approach can also be exploited for 

estimation-based power management strategies. 

We illustrate the effectiveness of power management 

approaches on a smart card SoC based on a 16-bit pipelined 

cache architecture, composed of volatile and non-volatile 

memories as well as a number of peripherals, e.g., 

cryptographic coprocessors, UARTs, timers and random 

number generators. This system has been extended with the 

power estimation hardware and is used as the test system for 

evaluating the power emulation approach itself as well as 

power optimization methods enabled by the power 

emulation technique. 

 

B. Automated Software Power Optimization Framework for 

Smart-Card SoCs 

One approach for minimizing power consumption peaks, 

and hence supply voltage drops, is the offline optimization 

of the software application. This is particularly useful for 

systems where no run-time power estimates are available 

and run-time power management techniques are not 

applicable.  

Figure 5 depicts an automated software power optimization 

approach based on power emulation: 1) A given software 

application is power-profiled by means of power emulation. 

2) Based on these power estimates, a supply voltage 

simulation of the system’s supply voltage circuitry is 

performed. By analyzing the results of this simulation, 

power peaks that actually lead to supply voltage drops 

below a critical level can be identified. 3) The code regions 

causing the critical power peaks are identified and 

optimized by means of power management features 

available on the given system, e.g., by applying frequency 

scaling around the problematic code regions. 

 

 
Figure 5: Principle of automated software power optimization 

We have applied the software power optimization approach 

to embedded software applications executed on the smart 

card microcontroller test system. Figure 6 illustrates the 

optimization results for a power-critical part of an 

authentication benchmarking software applications. While 

in the original version of the application power peaks occur 

that lead to supply voltage drops below a given limit, in the 

optimized version these peaks are reduced by means of 

inserting frequency scaling and non-functional instructions
1
. 

Hence also the supply voltage drops are diminished and the 

limit is not being violated. 

 
Figure 6: Non-power-optimized vs. power-optimized authentication 

benchmarking software application2  

 

C. Estimation-Based Power Management for Smart-Card 

SoCs 

In this section we exploit power profile smoothening based 

on the power estimation hardware as a run-time power 

management variant to minimize the number of power 

peaks within a power profile. This yields a higher reliability 

of the overall system due to the minimization of harmful 

supply voltage drops. The principle of this power 

management approach is depicted in Figure 7.  

 

Figure 7: Power profile smoothening principle 
 

We derive the present power consumption information by 

means of the power estimation architecture in a purely 

digital manner.  

Based on this power information, dynamic voltage and 

frequency scaling (DVFS) adaptions are applied to the 

system to stay within given power constraints. DVFS 

                                                           
1 Non-functional instructions, such as NOPs, typically exhibit a lower 

power consumption. 
2 Data normalized due to confidentiality agreement with industrial partners. 

6. Publications Publication 5 - IEEE MEMOCODE 2010 78



adaption decisions are taken by power profile smoothening 

policies that compare the actual power consumption of the 

system with given power constraints. The availability of the 

present system’s power consumption data as well as given 

power constraints in the digital domain substitute D/A 

conversions and allow for a simplified design of run-time 

power profile smoothening.  

Figure 8 illustrates the power profile smoothening result for 

the execution of a benchmarking algorithm on the smart-

card system under given power constraints. First, the system 

is operated at full operating speed and the maximum supply 

voltage. The power consumption exceeds the maximum 

affordable level of 0.6. Second, the estimation-based power 

profile smoothening approach is applied. Frequency and 

supply voltage adaptions are carried out in a way that the 

power consumption stays below the given power constraint. 

This is illustrated in the middle and bottom subplot of 

Figure 8. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

Time [normalized]

P
o

w
e

r 
[n

o
rm

a
liz

e
d

] Power Profiling Result, Standard System

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

Time [normalized]

P
o

w
e
r 

[n
o

rm
a
liz

e
d

] Power Profiling Result, Power Smoothening

0 0.2 0.4 0.6 0.8 1
20

22

24

26

28

30

32

34

Time [normalized]

F
re

q
u

e
n

c
y
 f
 [
M

H
z
]

 

 

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

S
u

p
p

ly
 v

o
lta

g
e

 V
D

D
 [
V

]

Frequency

Supply voltage

Figure 8: Power profile smoothening result2 

 

VI. CONCLUSIONS 

Power emulation represents a promising alternative to 

simulation-based power estimation techniques, providing 

run-time power estimates together with functional 

emulation.  

In this paper we have shown a comprehensive overview on 

the automation of power model creation and hardware 

generation for power emulation. Furthermore, we have 

illustrated the applicability of this technique in software as 

well as hardware based power management approaches.  

 

ACKNOWLEDGMENT 

We would like to thank the Austrian Federal Ministry for 

Transport, Innovation, and Technology for providing us 

with funding for the POWERHOUSE project under the FIT-

IT contract FFG 815193. 

 

 

 

REFERENCES 

 

[1] Tiwari, V.; Malik, S. & Wolfe, A. Power Analysis of Embedded 

Software: A First Step Towards Software Power Minimization Proc. 

IEEE/ACM International Conference on Computer-Aided Design, pp. 

384-390, 1994 

 

[2] An instruction-level energy model for embedded VLIW architectures. 

Sami, M.; Sciuto, D.; Silvano, C. & Zaccaria, V. IEEE (J-CAD), Vol. 

21, pp. 998-1010, 2002 

 

[3] Lajolo, M.; Raghunathan, A.; Dey, S. & Lavagno, L. Cosimulation-

based power estimation for system-on-chip design IEEE (J-VLSI), 

Vol. 10, pp. 253-266, 2002 

 

[4] Flynn, J. & Waldo, B. Power Management in Complex SoC Design. 

Synopsys Inc. White Paper, 2005 

 

[5] Joseph, R. & Martonosi, M. Run-time power estimation in high 

performance microprocessors. Proc. Low Power Electronics and 

Design, International Symposium on, 2001 

 

[6] Bellosa, F. The benefits of event: driven energy accounting in power-

sensitive systems. Proceedings of the 9th workshop on ACM SIGOPS 

European workshop, 2000 

 

[7] Coburn, J.; Ravi, S. & Raghunathan, A. Power emulation: a new 

paradigm for power estimation. Proc. 42nd Design Automation 

Conference, pp. 700-705, 2005 

 

[8] A. Genser, C. Bachmann, J. Haid, C. Steger  & R. Weiss: An 

Emulation-Based Real-Time Power Profiling Unit for Embedded 

Software, SAMOS, 2009  

 

[9] C. Bachmann, A. Genser, C. Steger, R. Weiss, J. Haid: Accelerating 

Embedded Software Power Profiling Using Run-Time Power 

Emulation, PATMOS, 2009  

 

[10] C. Bachmann, A. Genser, C. Steger, R. Weiss, J. Haid: Automated 

Power Characterization for Run-Time Power Emulation of SoC 

Designs, DSD 2010. 

 

[11] Grumer, M., Wendt, M., Lickl, S., Steger, C., Weiss, R., Neffe, U.,  

Muehlberger, A.: Software power peak reduction on smart card 

systems based on iterative compiling. Emerging Directions in 

Embedded and Ubiquitous Computing 2007. 

 

[12] Wendt, M., Grumer, M., Steger, C., Weiss, R., Neffe, U., 

Muehlberger, A.: System level power profile analysis and 

optimization for smart cards and mobile devices, SAC 2008. 

 

[13]  Muresan, R., Gebotys, C.: Current flattening in software and 

hardware for security applications. CODES + ISSS 2004.  

 

[14]  Li, X., Vahedi, H., Muresan, R., Gregori, S.: An integrated current 

flattening module for embedded cryptosystems. ISCAS 2005. 

 

[15] Vahedi, H., Muresan, R., Gregori, S.: On-chip current flattening 

circuit with dynamic voltage scaling. ISCAS 2006.  

 

[16]  C. Pohl, C. Paiz, and M. Porrmann, “vMAGIC - Automatic code 

generation for VHDL,” International Journal of Reconfigurable 

Computing, vol. 2009, 2009. 

 

[17]  http://www.antlr.org/ 

 

6. Publications Publication 5 - IEEE MEMOCODE 2010 79



Accelerating Embedded Software Power
Profiling Using Run-Time Power Emulation

Christian Bachmann1, Andreas Genser1,
Christian Steger1, Reinhold Weiß1 and Josef Haid2

1 Institute for Technical Informatics, Graz University of Technology, Austria
2 Infineon Technologies Austria AG, Design Center Graz, Austria

Abstract. Power-aware software development of complex applications
is frequently rendered infeasible by the extensive simulation times re-
quired for the power estimation process. In this paper, we propose a
methodology for rapidly estimating the power profile of a given system
based on high-level power emulation. By augmenting the HDL implemen-
tation of the system with a high-level power model, a power profile is gen-
erated during run-time. We evaluate our approach on a deep-submicron
80251-based smart-card microcontroller-system. The additional hard-
ware effort for introducing the power emulation functionality is only
1.5% while the average estimation error is below 10% as compared to
gate-level simulations.

1 Introduction

Power consumption has emerged as the most important design metric for embed-
ded systems, influencing operating time as well as system stability. Therefore,
power estimation has become an essential part of today’s embedded system de-
sign process. In this process, increasingly complex designs have to be handled.
Systems-on-chip (SoC) contain large numbers of components, each contributing
to the overall power consumption. For these systems, the power consumption is
increasingly dependent on software applications determining the utilization of
components as well as controlling available power management features.

Currently available simulation tools are usually operating on low levels of
abstraction and fail to deliver power estimates in admissible time. Higher levels
of abstraction are favourable in order to speed up the estimation process. Fur-
thermore, the greatest power reduction potential can be identified on high levels,
e.g., the application layer [1]. However, for estimating the power consumption
of elaborate program sequences such as the booting sequence of an operating
system (OS), software simulators require extensive runtimes. This curtails the
usability of these tools for power-aware software development of complex appli-
cations.

Hardware-accelerated methods employing existing hardware counters [2, 3],
dedicated power estimation co-processors [4–7] and emulation-based approaches
[8–10] have therefore been explored. While low-level emulation-based approaches

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 80

c© Springer-Verlag Berlin Heidelberg 2010. Reprinted, with permission, from
Proceedings of 19th International Workshop on Power and Timing Modeling,
Optimization and Simulation 2009 (Springer LNCS 5953/2010).



suffer from high hardware overhead (on average 3x increased area requirements)
[8], high-level event counter-based methods often require additional software
processing overhead for evaluating the counters and converting their values to
power estimates [10].

We propose a solution to the problem of software power profiling by using an
estimation approach based on high-level power models implemented alongside
the original system design on a hardware emulation platform.3 Power consump-
tion estimates are generated during run-time by special power estimation hard-
ware added to the functionally emulated system. By analyzing these estimates,
a truly power aware software design methodology can be enabled.

This paper is structured as follows. In Section 2 we discuss related work on
software power estimation. Section 3 introduces our contributions to the area,
whereas Section 4 evaluates experimental results. Conclusions drawn from our
current work are presented in Section 5.

2 Related Work

Previous work on software power estimation can be grouped in two distinct cate-
gories: (i) simulation-based and (ii) hardware-accelerated (run-time) estimators.

Simulation-based software power estimation methods determine activity and
state data through simulated program execution on a model of the system-under-
test. Different levels of abstraction used in describing these models yield different
estimation accuracies and variably long simulation times.

Many commercial power estimation tools, e.g., [11], operate on low levels of
abstraction such as gate or register transfer level (RTL). These low levels of ab-
straction allow for very high estimation accuracies but slow down the estimation
process. At higher levels, instruction-level power models have been explored.
Models consisting of base costs per instruction as well as overhead costs for
switching between different instructions have been defined [12]. By considering
microarchitectural effects in a pipeline-aware model, the estimation accuracy
has been improved [13]. At the system level, a transaction-based framework for
complex SoCs has been introduced in [14].

Hardware-accelerated power estimation methods leverage existing or specially
added hardware blocks. Using existing hardware event counters, the thread-
specific power consumption of operating systems can be determined [15]. Using
a similar approach, run-time power estimation in high performance microproces-
sors using hardware counters is shown in [2] and [3]. Dedicated power estimation
co-processors are utilized in [4–7].

By using a standard FPGA platform and a HDL model of a given system
that has been augmented with power estimation hardware, power emulation and
functional emulation can be performed concurrently. RTL [8, 9], high-level event
counter-based [10] as well as hybrid methods using simulation and emulation

3 The PowerHouse project is funded by the Austrian Federal Ministry for Transport,
Innovation, and Technology under the FIT-IT contract FFG 815193. Project part-
ners are Infineon Technologies Austria AG, Austria Card GmbH and TU Graz.

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 81



have been explored [16]. In [17] we have introduced a system-level power pro-
filing unit based on the emulation principle. It allows for generating run-time
power estimates and forms the basis of our accelerated software power estimation
methodology as first outlined in [18].

3 Embedded Software Power Profiling using High-Level
Power Emulation

Our embedded software power profiling method is based on the power emulation
principle as initially introduced in [8]. A high-level power model, created by an
adaptable characterization procedure, is utilized to estimate the current power
consumption as a function of the overall system state.

This model is implemented in hardware as a power emulation unit monitor-
ing the states of system components and generating according power estimates
during run-time [17]. Out of the power estimates a power trace is recorded and
stored on the emulation platform alongside the standard functional trace. These
traces are transferred to a host computer running an integrated software de-
velopment and debugging environment (IDE) that is used for visualizing and
analyzing the recorded traces.

3.1 Principle of High-Level Power Emulation

Hardware emulation on prototyping platforms, typically on FPGA boards, has
become a widespread technique for functional verification. The principle of power
emulation is to augment the emulated circuit with special power estimation
hardware [8]. By doing so, power consumption estimates can be generated as a
by-product of functional emulation.

Emulation-based power estimation offers a number of advantages as com-
pared to power profiling using physical measurements or software simulators. In
contrast to physical measurements that are often very coarse-grained and lim-
ited to the entire system due to packaging, the emulator allows for calculating
cycle-accurate estimates for the whole chip as well as for system subcomponents.
Simulation-based estimators offer a high degree of accuracy. However, this ac-
curacy comes at the cost of large simulation times. Due to the calculation of
power models in hardware, this simulation time is reduced vastly by the power
emulation technique.

Unlike RTL power emulation [8], we employ a high-level model that, due to its
high level of abstraction, significantly decreases the complexity of the estimation
hardware and therefore reduces its implementation effort. Thus, long combina-
tional paths in the power emulation unit are avoided, enabling the system-under-
test to be emulated in or near the targeted clocking frequency of the system’s
physical implementation. In contrast to high-level event counter-based power
emulation approaches, e.g. [10], no further post-processing of counter values in
software is required to obtain the power estimates. Our power model is outlined
in the following section.

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 82



3.2 Power Model

High-level power models, such as system- or component-level power models,
often derive power consumption estimates from the state of the system and
its components respectively. For a system-level state-based power model this is
shown, e.g., in [19]. In our high-level model, the power consumption estimate
P̂total of the system takes the form of

P̂total(t) = P̂idle +

N∑

i=1

P̂i(S̃i(t)) =

N∑

i=0

P̂i(Si(t)) (1)

where P̂i denotes the sets of power estimates for a number of N different sys-
tem components (e.g., CPU, coprocessors, peripherals) for their respective time-
dependent states Si(t). The idle power coefficient P̂idle comprises system com-
ponents with a constant, i.e., not state-dependent, power consumption such as
certain analog components or non-clock-gated parts of the system. We can in-
clude the idle term into our power model as a power estimate set containing only
one constant power value.

Hence, the state parameters Si(t) given as

Si(t) =

{
Sidle, i = 0

S̃i(t) = fi(xi(t)), 0 < i ≤ N
(2)

represents the state of each component including the idle power component.
It is a function of the time-dependent component state signal vector xi(t) =
[xi,0(t) . . . xi,Ki−1(t)], containing the Ki binary control signals xi that contribute
to the state information of the individual module. The mapping function fi
maps the binary control signals xi to a state value that is used to select the
power estimate in the set P̂i. Note that the mapping functions fi differ for each
component, based on the number of control signals and the meaning of each
individual signal in terms of state information.

We establish the power model for a given system-under-test by applying our
characterization methodology (see Section 3.4) to the HDL model of the system.
In the characterization process the granularity of the model is determined by
varying the number of included components and the number of states considered,
influencing the model’s accuracy and its complexity.

3.3 Power emulation unit architecture

Our estimation architecture, as introduced in a previous publication [17], resem-
bles the implementation of the power model in hardware and generates power
consumption estimates that are transmitted to and evaluated by a host com-
puter. It is composed of a number of sub-modules as depicted in Figure 1. Power
sensors are used to observe the activity and the state of all system components
(CPU, coprocessors, memories, peripherals, etc.). Each power sensor monitors
the Ki control signals of the according system component and maps the observed

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 83



System
Level

...

Architectural
LevelFU 1 FU n...

...

Power Estimator

Po
w

er
Em

ul
at

io
n

CPU CoProc RAM

Component State
Power Model

Component State
Power Model

Component State
Power Model

Fu
nc

tio
na

l
Em

ul
at

io
n

Power Trace

Post ProcessingDebug Trace Generator

Power Sensor Power Sensor Power Sensor

Configuration

Fig. 1. Architecture of the power emulation unit [17]

state vector xi to a corresponding state value Si by means of the mapping func-
tion fi. The component’s state information is then translated to a corresponding
power value using a table-lookup approach based on a set of power tables Pi. The
power estimator accumulates the outputs generated by the power sensors. The
result of a sequence of additions constitutes the instantaneous, cycle-accurate
power estimate P̂total for the overall system as pointed out in Equation 1. It
is worth noting that the power tables can also be reconfigured during program
run-time in order to adapt to, e.g., operating frequency or voltage changes and
to allow for the tracking of single components or certain groups of components.

3.4 Characterization Methodology

The straightforward adaptability of the power model and the power emulation
architecture to a given system-under-test is one of the key goals of our accelerated
power estimation approach. We use a comprehensive characterization method-
ology for determining a system’s power consumption and mapping these results
to our power model and the power emulation unit. The basic structure of the
characterization process is outlined in Figure 2.

The starting point for this process is a HDL model of the system to be
power-emulated. This HDL model is fed to a standard synthesis and place &
route design flow, yielding a model of the physical implementation of the system.
Based on the physical model, state-of-the-art power estimation tools, in our case
Magma Blastfusion 5.2.2, can be used to generate power profiles of the system.

A power modelling process derives model coefficients from a set of bench-
marking applications covering all system components that contribute signifi-
cantly to the overall power consumption. Our methodology automatically ex-
tracts a list of state signals based on user-defined name patterns, e.g., busy,
ready, action, etc. from the HDL model of the system. By analyzing the switch-
ing activity data for each signal across all benchmarks, highly correlated (i.e., re-
dundant) and nonrelevant signals are removed. Using regression analysis, power
consumption weights are assigned to the remaining control signals. For each sys-
tem component, all occurring control signal combinations are determined and
uniquely mapped to states.

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 84



The information obtained in the power modelling step is used in a threefold
manner: First, the architecture of the power estimation unit is adapted to suit
the requirements of the power model. Therefore, the number of available modules
and number of states within each module is adjusted. Second, the original HDL
model of the system is adapted in order to allow the power estimation unit to
track the internal state of every significant component. This means that signals
that can be used to monitor various power states of a component are routed to
the power estimation unit. Third, configuration information is generated that
is used to setup the power coefficients table inside the power estimation unit
according to the system’s power model.

The modified HDL model of the system-under-test, augmented with the
power emulation functionality, and the set of configuration data obtained in
the characterization process can then be used to enable power emulation in a
standard software development process.

Power Profiles

HDL Model of 
System

Synthesis, P&R

Power Estimation

Power Modelling

Power Model

HDL Model 
System + P.E.

System HDL Adaptation

HDL Synthesis

P.E. HDL Model

FPGA Fitting

P.E. Generation

P.E. Config Generation

P.E. Configuration P.E. + System 
Netlist

Fig. 2. Characterization methodology
for high-level power emulation [18]

Application
(C Source Code)

Compiler

Assembler & Linker

Machine Code

P.E. Configuration
(C, optional) 

Emulation Platform

Power TraceFunctional Trace

P.E. + System 
Netlist & 

Configuration

SW Development & 
Debugging Environment

Fig. 3. Software development flow uti-
lizing power emulation

3.5 Power-Aware Software Development Flow

We use a standard software development flow augmented with the power em-
ulation methodology as depicted by Figure 3 to enable power-aware software
development.

A software application in C is processed using a C compiler, assembler and
linker tool-chain. The resulting machine code is then loaded onto and executed
on the power-emulated system. Note that this process of loading and executing
an application is not affected by the use of the power emulation methodology.
Optionally, the behaviour of the power estimation unit can also be changed by
modifying the power configuration tables during normal program execution using
routines implemented in C.

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 85



The only required change as compared to the standard development flow is
the use of a modified netlist for the emulation platform. A netlist resembling
the FPGA implementation of the system including the power estimation unit is
loaded onto the emulation platform instead of the standard netlist. While exe-
cuting the machine code on the emulated system a functional trace as well as a
power trace are being generated. These traces are stored within an on-board trace
memory until they are transferred to the host computer. The software develop-
ment and debugging environment on the host computer controls the program
execution on the emulator (e.g., breakpoint insertion) and evaluates the trace
messages received from the emulator.

The power traces can then be plotted alongside the functional trace within
the IDE. We use the functional trace to derive the program counter (PC) status
as well as the operation code (Opcode) of the current instruction. The functional
trace could also be used to correlate the estimated power profile to higher-level
debugging information, e.g., for displaying the profile alongside C source code.

4 Experimental Results

We have evaluated our approach on software applications written for a commer-
cially available 80251-based 16-bit microcontroller architecture supplied by our
industrial partner. The microcontroller is composed of volatile and non-volatile
memories as well as a number of peripherals, e.g., cryptographic coprocessors,
UARTs, timers and random number generators.

4.1 Impact on Emulation Platform

An Altera Stratix II emulation platform was used for implementing the micro-
controller as well as the power estimation hardware. The microcontroller itself,
as it can be used for purely functional emulation, employs approximately 66%
of the platform’s available adaptive look-up tables (ALUTs). After augmenting
the system with the power estimation hardware, roughly 67.5% of the ALUTs
are required. Hence, with the additional 1.5% ALUTs we consider the impact of
the power emulation hardware on the emulation platform as minor. Note that
our approach is generic and could also be implemented on another emulation
platform as we do not employ any platform-specific processing elements (e.g.,
DSP blocks).

4.2 Speed Up

Due to the fact that our estimation unit has only minor impact on the total
system and no additional critical paths are introduced, we are able to operate
the emulated microprocessor and the estimation unit at the targeted clocking
frequency of 33 MHz. Therefore, cycle-accurate power estimates can be generated
during run-time. Note that the current implementation of the power estimation
unit only employs single-cycle arithmetic operators due to the relatively low

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 86



clocking frequency of the system-under-test. For higher frequencies, pipelined
multi-cycle operators could be introduced to reduce the critical path.

Compared to the extensive runtime of gate- and RTL simulations the run-
time estimation represents a major speed-up. The significant timely difference
can be illustrated on a test-run of the Dhrystone benchmark: While a gate-
level power simulation on a state-of-the-art server system takes 18.1 hours, the
emulation is finished within 139 µs. This vast reduction of simulation time, of
course, comes with losses in accuracy which are discussed below.

4.3 Comparison of Accuracy

Figure 4 depicts a comparison between the reference gate-level simulations and
the emulated power estimates for a benchmarking application.1 The magnitude
of the average estimation error for the whole application is below 10%. The
given results were achieved using a power model taking 5 system modules into
account: Two 16 state modules (CPU, cache+memories) and four peripheral
modules consisting of two states each. This represents a rather small overall
model that could be further extended to include more modules and states, hence
improving the estimates. Note that, as pointed out in Section 4.1, considerable
FPGA ressources are still available for increasing the accuracy of the model.

4.4 Power-Aware Application Examples

We illustrate the usability of our high-level power emulation approach on two
prototypical examples.1 In these examples the system’s power consumption while
executing an authentication application exceeds a given maximum power limit.
These power-critical events are easily detected by our power emulation method-
ology and, hence, can be avoided.

The first example, as depicted in Figure 5, shows the invocation of a crypto-
graphic coprocessor for an encryption operation. While waiting for the crypto-
graphic operation to finish, the CPU polls a status register of the coprocessor.

1 Data normalized due to existing NDA.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Time [normalized]

Po
w

er
 [n

or
m

al
iz

ed
]

Reference
Estimated

Fig. 4. Comparison of gate-level simulation and power emulation results

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 87



During this time, the estimated power consumption indicates that the limit will
be exceeded. Hence, in the second implementation, the CPU is set to a special
low-power sleep mode and is only reactivated after the cryptographic operation
has finished. By emulating the power profile of the power-aware, second imple-
mentation we clearly see that the limit is not exceeded any more. Note that
slight variations in program execution exist due to different coprocessor setup
algorithms and are also visible in the power trace.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

Time [normalized]

P
ow

er
 [n

or
m

al
iz

ed
] Standard implementation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

Time [normalized]

Po
w

er
 [n

or
m

al
iz

ed
] Low-power sleep implementation

PLimit

PLimit

DES

DES

Fig. 5. Profiling of an application utilizing
a component’s low-power mode.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

Time [normalized]
P

ow
er

 [n
or

m
al

iz
ed

] Standard implementation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

Time [normalized]

Po
w

er
 [n

or
m

al
iz

ed
] f-scaled implementation

PLimit

Power peaks

PLimit

Fig. 6. Profiling of an application utilizing
frequency scaling.

In the second example (see Figure 6), the cryptographic results from the ex-
ample above are further processed. In this phase, additional power peaks above
the limit are identified with the help of power emulation. In the power-optimized
implementation, these peaks can be diminished by scaling the clock frequency
from 33 MHz to 29 MHz. The power emulation result of the modified imple-
mentation indicates an acceptable execution time increase while observing the
permissible power limit.

5 Conclusions

Power-aware software development is often hindered by the lack of quick power
profiling methods. The rapid high-level power emulation approach presented
in this paper circumvents this limitation by exploiting hardware acceleration
techniques. By combining the functional emulation of a system’s HDL model
with power estimation hardware, run-time power estimates can be generated on
a standard FPGA emulation platform.

We have evaluated our approach on an 80251-based microcontroller system,
yielding cycle-accurate power estimates with an average estimation error below
10% in magnitude. These numbers were reported for a high-level power model
requiring only 1.5% of the available FPGA ressources. We believe that by mar-

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 88



rying these estimates with a standard software development environment truly
power-aware software engineering is enabled.

References

1. Macii, E., Poncino, M.: Power macro-models for high-level power estimation. In
Piguet, C., ed.: Low-Power Electronics Design. CRC Press (2005)

2. Joseph, R., Martonosi, M.: Run-time power estimation in high performance mi-
croprocessors. In: Proc. of the ISLPED 2001. 135–140

3. Contreras, G., Martonosi, M.: Power prediction for intel xscale processors using
performance monitoring unit events. In: Proc. of the ISLPED 2005, New York,
NY, USA, ACM 2005. 221–226

4. Haid, J., Kaefer, G., Steger, C., Weiss, R.: A co-processor for real-time energy
estimation of system-on-a-chip. In Proc. 45th MWSCAS 2002. II–99–II–102

5. Haid, J., Kaefer, G., Steger, C., Weiss, R.: Run-time energy estimation in system-
on-a-chip designs. In Proc. of the ASP-DAC 2003. 595–599

6. Peddersen, J., Parameswaran, S.: Clipper: Counter-based low impact processor
power estimation at run-time. In Proc. of the ASP-DAC 2007. 890–895

7. Peddersen, J., Parameswaran, S.: Low-impact processor for dynamic runtime power
management. Design & Test of Computers, IEEE 25(1) (Jan.-Feb. 2008) 52–62

8. Coburn, J., Ravi, S., Raghunathan, A.: Power emulation: a new paradigm for
power estimation. In Proc. 42nd DAC 2005. 700–705

9. Coburn, J., Ravi, S., Raghunathan, A.: Hardware accelerated power estimation.
In Proc. DATE 2005. 528–529 Vol. 1

10. Bhattacharjee, A., Contreras, G., Martonosi, M.: Full-system chip multiprocessor
power evaluations using fpga-based emulation. In Proc. of the ISLPED 2008.

11. Flynn, J., Waldo, B.: Power management in complex soc design. Technical report,
Synopsys Inc. White Paper 2005

12. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: A first
step towards software power minimization. In Proc. IEEE/ACM International
Conference on Computer-Aided Design 1994. 384–390

13. Sami, M., Sciuto, D., Silvano, C., Zaccaria, V.: An instruction-level energy model
for embedded vliw architectures. IEEE (J-CAD) 21(9) (2002) 998–1010

14. Lee, I., Kim, H., Yang, P., Yoo, S., Chung, E.Y., Choi, K.M., Kong, J.T., Eo, S.K.:
Powervip: Soc power estimation framework at transaction level. In Proc. of the
ASP-DAC 2006.

15. Bellosa, F.: The benefits of event: driven energy accounting in power-sensitive
systems. In: EW 9: Proceedings of the 9th workshop on ACM SIGOPS European
workshop, New York, NY, USA, ACM 2000. 37–42

16. Ghodrat, M., Lahiri, K., Raghunathan, A.: Accelerating system-on-chip power
analysis using hybrid power estimation. In: Proc. DAC 2007. 883–886

17. Genser, A., Bachmann, C., Haid, J., Steger, C., Weiss, R.: An emulation-based
real-time power profiling unit for embedded software. In: Proc. SAMOS 2009.
67–73

18. Bachmann, C., Genser, A., Haid, J., Steger, C., Weiss, R.: Rapid system-level
power estimation for power-aware embedded software design. In: Proc. DSD Work
In Progress Session 2009.

19. Benini, L., Hodgson, R., Siegel, P.: System-level power estimation and optimiza-
tion. In Proc. of the ISLPED 1998. 173–178

6. Publications Publication 6 - PATMOS 2009 (Springer LNCS 5953) 89



An Automated Framework for Power-Critical
Code Region Detection and Power Peak
Optimization of Embedded Software

Christian Bachmann1, Andreas Genser1,
Christian Steger1, Reinhold Weiß1 and Josef Haid2

1 Institute for Technical Informatics, Graz University of Technology, Austria
2 Infineon Technologies Austria AG, Design Center Graz, Austria

Abstract. In power-constrained mobile systems such as RF-powered
smart-cards, power consumption peaks can lead to supply voltage drops
threatening the reliability of these systems. In this paper we focus on the
automated detection and reduction of power consumption peaks caused
by embedded software. We propose a complete framework for automat-
ically profiling embedded software applications by means of the power
emulation technique and for identifying the power-critical software source
code regions causing power peaks. Depending on the power management
features available on the given device, an optimization strategy is cho-
sen and automatically applied to the source code. In comparison to the
manual optimization of power peaks, the automatic approach decreases
the execution time overhead while only slightly increasing the required
code size.

1 Introduction

The power consumption of embedded systems is increasingly dependent on soft-
ware applications determining the utilization of system components and periph-
erals. Furthermore, the embedded software actuates power management features
such as voltage and frequency scaling as well as dedicated sleep or hibernation
states. Hence, software applications impact the average as well as the peak power
consumption that is in turn affecting the reliability, stability and security of em-
bedded systems. Especially for RF-powered devices such as contactless smart-
cards, power peaks threaten the system reliability by impacting the power supply
circuit and leading to supply voltage drops [1]. These supply voltage drops can
in turn result in system resets or, even worse, in erroneous system states. There-
fore, power peak reduction and elimination methods for embedded software have
been proposed [2–4]. Furthermore, power peak reduction techniques have been
studied for the purpose of power profile flattening in hardware implementations
[5–7]. For security applications, the profile flattening resembles a countermeasure
against power analysis attacks.

In this paper we propose an automated methodology for profiling a software
application’s power consumption and deriving a power peak optimized imple-

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 90

c© Springer-Verlag Berlin Heidelberg 2011. Reprinted, with permission, from
Proceedings of 20th International Workshop on Power and Timing Modeling,
Optimization and Simulation 2010 (Springer LNCS 6448/2011).



mentation. Based on an integrated supply voltage simulation, critical code re-
gions are detected and optimized. While existing software optimization methods
employ either instruction-level power simulators [2–4] or physical on-chip power
measurements [5–7] to obtain power profiles, our approach utilizes a high-level
power emulation technique previously introduced in [8]. Using this technique,
cycle-accurate run-time power estimates are derived from the system-under-
test’s functional emulation. In comparison to measurement-based approaches,
the joint functional and power emulation offers the advantage of inherent power
profile to functional execution trace correspondence, i.e., a power consumption
value can be determined for each executed instruction. Furthermore, the emu-
lation is cycle-accurate while still allowing for rapid profiling of long program
sequences. This constitutes an advantage over simulation-based approaches that
are either lacking simulation detail and hence accuracy or simulation speed.

In contrast to hardware power profile flattening approaches, no additional
on-chip measurement and control hardware is required. Furthermore, opposed to
power peak reduction methods modifying intermediate language representations
of the given software application [2, 3], our approach operates on and modifies
the original C or assembler source code. The resulting power peak optimized
source code can afterwards still be manually modified by the software engineer
if required. In the context of embedded software power peak optimization, the
novel contributions of this paper are as follows:

– We present a framework for detecting source code regions causing power
peaks by analyzing the power consumption as well as the functional debug
information obtained during software execution.

– We derive an optimization algorithm, actuating power management features
for these power-critical source code regions and hence reducing the number
of power peaks.

– Finally, we illustrate the feasibility of our approach on a power-constrained
deep-submicron smart-card controller system.

This paper is structured as follows. In Section 2 we discuss related work on
power peak optimization and power profile flattening. Section 3 presents our
automated framework for power-critical code region detection and optimization.
We illustrate the effectiveness of our approach in Section 4. Finally, conclusions
drawn from our current work are summarized in Section 5.

2 Related Work

Due to the large influence of software on both average as well as peak power
consumption of embedded systems, numerous works have studied power- and
energy-aware software optimization methods. With regard to power-constrained
devices, the power profile flattening and the optimization of power consump-
tion peaks, is of increased interest. These power peaks are often caused due to
the occurrence of power-critical events during software execution. Especially in
battery- and RF-powered devices these peaks can severely impact the power

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 91



supply circuit and can lead to supply voltage drops [1]. These supply voltage
drops seriously jeopardize the stability and hence the reliability of the given sys-
tem. Power profile flattening hardware implementations have been studied in the
context of security-related applications. In the security domain, the reduction
of profile variability is of increased interest as a countermeasure against power
analysis attacks [9].

For the purpose of reliability enhancements, the reduction of power peaks
has been investigated in [3] by means of a simulation-based peak elimination
framework using iterative compilation. Other attempts on power peak reduction
have focused on instruction reordering to minimize the switching activity due to
circuit state changes [2] as well as non-functional instruction (NFI) insertion [4].

Power profile flattening in security applications, aiming at hindering power
analysis attacks by means of NFI insertion, was studied in [5]. Both software and
hardware implementations were shown. In [6] a current-injection-based real-time
flattening method has been proposed. This approach has been extended in [7]
by a voltage scaling capability for improved flattening performance.

3 Automated Power-Critical Code Region Detection and
Power Peak Optimization of Embedded Software

Our automated power profiling and power-critical code region detection method-
ology as depicted in Figure 1 builds upon a standard software development flow
(A) and our run-time power profiling approach (B). The power estimates, along-
side with the functional traces are being analyzed to detect power-critical code
regions (C). After these regions have been detected, an optimization algorithm is
used to reduce the power consumption and hence the power peaks during these
critical code regions (D).

Power
Emulation

Functional
Emulation

Trace – Source 
Correlation

Supply Voltage 
Simulation

Power-Critical 
Code Region 

DetectionPower 
Model

Optimized
Source 
Code

Critical 
Code 

Region
Report

Binaries

Run-Time Power Profiling Detection of Power-Critical Code Regions

Power Peak 
Optimization

Standard Software Development Flow Power Peak Code Optimization

Memory Map

Debug Info

A

B C

D

Source 
Code

SW Development 
Toolchain

Fig. 1. Automated flow for power profiling, power-critical code region detection and
optimization

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 92



3.1 Run-Time Power Profiling Based on Power Emulation

For the purpose of detecting power-critical code regions, power profiling of the
given software application has to be performed in the first place. In contrast
to existing software power peak optimization approaches, we employ the power
emulation technique previously introduced in [8] to obtain power profiles for the
software application’s execution. The principle of power emulation as depicted
in Figure 2, is to augment the functionally emulated system-under-test with
special power estimation hardware. This power estimation hardware monitors
the state of the system and its subcomponents. Based on these state data, the
power estimator derives cycle-accurate run-time power estimates according to
an integrated high-level power model.

FPGA Board

...

...

...

Power Estimator

CPU CoProc Memories

Component State
Power Model

Component State
Power Model

Component State
Power Model

Averaging Debug Trace Generator

Power Sensor Power Sensor Power Sensor

P
ow

er
E

m
ul

at
io

n
Fu

nc
tio

na
l

E
m

ul
at

io
n

FU 1 FU n
CoProc 2

CoProc 1 RAMROM

NVM

Functional Verification

P
ow

er

Time

MOV @R8, R12
INC R8, #0x02
ADD R8, R5

Host PC
Power Verification

Trace of Functional 
Execution

Trace of Power 
Estimates

Fig. 2. Embedded software power profiling utilizing power emulation: Run-time power
estimation and functional execution trace generation (adapted from [8])

As compared to low-level simulation-based power profiling, the power em-
ulation technique largely reduces profiling time. This allows for the profiling
of complex software applications and elaborate program sequences, such as the
booting process of an operating system. In contrast to high-level simulators,
power emulation offers the benefit of cycle-accuracy that instruction- or system-
level-simulators fail to deliver. Furthermore, power emulation offers the advan-
tage of inherent power profile to functional execution trace correspondence as
compared to measurement-based approaches.

3.2 Power-Critical Code Region Detection

Our power critical code region detection approach as depicted in Figure 1 con-
sists of multiple stages. First, the functional execution trace obtained in the
joint functional and power emulation step is used to establish the source code
correlation, i.e., identifying the source code region corresponding to each exe-
cution trace message. Second, using the power emulation trace as input data,
a supply voltage simulation employing a numerical model of the RF-supply is
performed3. Third, the resulting supply voltage profile is utilized to identify

3 Due to the limited computational complexity of the numerical RF-supply model, a
simulation-based implementation is adequate.

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 93



power peaks leading to critical voltage drops and finding the source code regions
causing these drops.

Figure 3 depicts the inductively coupled power supply of a contact-less smart-
card device. The impact of power peaks on the supply voltage level, however,
is dependent on the duration, power level and rate of these peaks as shown in
Figure 4. We define power-critical source code regions as parts of an embedded
software application resulting in power peaks that lead to supply voltage drops
below a critical limit. These peaks can be caused by, e.g., phases of high processor
activity, a number of consecutive memory read or write accesses and co-processor
as well power-intensive peripheral activity. In order to identify power peaks that
actually lead to critical supply voltage drops on the given system, a supply
voltage simulation based on the emulated power profile is performed.

Reader
Device C1 C2

Embedded 
System

Magnetic field H

Smart Card

Fig. 3. Inductively coupled power sup-
ply of RF-powered smart-card embedded
system (adapted from [10])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

Time [normalized]

Po
w

er
 [n

or
m

al
iz

ed
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

Time [normalized]

Su
pp

ly
 V

ol
ta

ge
 [n

or
m

al
iz

ed
]

Supply Voltage

Power

VLimit

Fig. 4. Impact of different power peaks
on the supply voltage (voltage drops)

3.3 Optimization of Power-Critical Source Code Regions

The subsequent power-critical code region optimization algorithm as shown in
Algorithm 1 aims at applying code modifications for power peak reduction to
the original C or assembler source code. Depending on the power management
features available on the given system, the frequency scaling and the NFI inser-
tion techniques are applied to these power-critical regions. Listing 1.1 illustrates
the insertion of frequency scaling control instructions around the call-site4 of a
function causing power peaks, whereas Listing 1.2 shows the use of NFI insertion
within a loop causing short power peaks.

The algorithm operates in three major stages: (1) The power-critical code re-
gions for each function are determined. If a large part of a function constitutes the
power-critical code region, the algorithm chooses to optimize the entire function.

4 The source code line calling a particular function.

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 94



start_f_scaling ();

power_critical_function ();

stop_f_scaling ();

Listing 1.1. f-scaling example

while(loop_condition)

{

short_loop_instruction;

nop (); //NFI

}

Listing 1.2. NFI insertion example

In this case the call-sites of the function are searched and marked for modifica-
tion instead of the function itself. (2) Consecutive source code lines marked for
modification are grouped into modification clusters. For each of those clusters,
the algorithm chooses an optimization strategy based on the cluster’s number
of power peaks and their respective duration: Short power peaks are likely to
be resolved by NFI insertion, longer power peaks or longer groups of peaks can
be reduced by applying frequency scaling. (3) Each of the found source code
clusters is then modified in the chosen way and the modified code is written
back to the source files.

Algorithm 1: Power-Critical Source Code Region Optimization

Input: Set of application source code S, List of power-critical code regions L,
Threshold of max. percentage of power-critical lines per function Thclpf ,
Threshold of f-scaling time penalty Thf−scale

Output: Set of optimized application source code So

Step 1, group by function:
List of affected source code lines Lsl := {}
foreach Function f in S do

Find source code lines of f in L
if Found source code lines > 0 then

Calculate percentage of power-critical code region in function
if Percentage > Thclpf then

Find call-sites of function f , add source code lines of call-sites to Lsl

else
Add source code lines to Lsl

Step 2, cluster lines to modify & choose optimization strategy:
Lslc := Cluster consecutive source code lines in Lsl

foreach Source code cluster C in Lslc do
if Duration C > Thf−scale then

Mark cluster C for f-scaling

else
Mark cluster C for NFI insertion

Step 3, perform modification:
So : = S
foreach Source code cluster C in Lslc do

Modify So by inserting selected optimization instructions

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 95



4 Experimental Results

For evaluating our framework, a smart-card microcontroller test-system supplied
by our industrial partner was employed. For different benchmarking applications,
power profiles were recorded using the power emulation technique. Afterwards,
these benchmarks were optimized both in a manual as well as in an automated
way utilizing the presented framework. This allows for evaluating the effective-
ness of our method.

4.1 Test System for Power Peak Optimization

The used smart-card microcontroller test system consists of a 16-bit pipelined
cache architecture. It comprises volatile and non-volatile memories as well as
a number of peripherals, e.g., cryptographic coprocessors, timers, and random
number generators. The system has been augmented with a power emulation unit
as depicted in Figure 5 to allow for the generation of run-time power estimates.

For detecting power peaks leading to problematic supply voltage drops, we
have implemented an RF power supply equivalent circuit model as proposed
in [1] and depicted in Figure 6. Based on power consumption changes in the
microcontroller test-system, the load current il(t) changes and affects the load
voltage vl(t). In phases of high power consumption and thus high load currents
when the required load current is higher than the supplied source current is(t),
the energy storage capacitor delivers the missing fraction ic(t). However, for
longer power peaks or a longer series of short power peaks, the capacitor fails to
deliver the required current resulting in a critical supply voltage drop.

...

UART

RAM

I
2
C

CL Interface

NVM

TRNG PRNG Timer

Interfaces

MemoriesCore

CPU

Co-Processors

Peripherals

ROM

...

FU n

Crypto Co-Proc. 2

Crypto Co-Proc. 1

Power Emulation Unit

FU 1

Cache MED

Fig. 5. 16-bit smart-card microcontroller
test system augmented by power emula-
tion unit (adapted from [11])

Test
System

+
-Vs Vz C

Ri

vl(t)

il(t)

ic(t)

is(t)

Fig. 6. Equivalent circuit of the RF
power supply of the test system (adapted
from [1])

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 96



4.2 Comparison of Original and Optimized Power Consumption
and Supply Voltage Profiles

We illustrate the optimization result by comparing the power consumption and
the respective supply voltage profiles of a given software application. Figure 7
resembles the results obtained during profiling of the original application. After
the power-critical code region detection and optimization, the power profiling
and supply voltage simulation was repeated yielding the profiles depicted in
Figure 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

Time [normalized]

Po
w

er
 [n

or
m

al
iz

ed
]

Unoptimized Power

Power Peaks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.8

1

Time [normalized]

Su
pp

ly
 V

ol
ta

ge
 [n

or
m

al
iz

ed
]

Voltage Drops

VLimit

Unoptimized Supply Voltage

Fig. 7. Unoptimized power consump-
tion and resulting supply voltage pro-
files of authentication benchmarking
application1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

Time [normalized]

Po
w

er
 [n

or
m

al
iz

ed
]

Optimized Power

Reduced Power Peaks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.8

1

Time [normalized]

Su
pp

ly
 V

ol
ta

ge
 [n

or
m

al
iz

ed
]

Optimized Supply Voltage

Reduced Voltage Drops

VLimit

Fig. 8. Optimized power consumption
and resulting supply voltage pro-
files of authentication benchmarking
application1

The results illustrate how a number of power peaks result in supply voltage
drops below the critical limit. By applying frequency scaling and NFI insertion
to the code regions causing these peaks, their power consumption and hence
their supply voltage impact can be diminished. Note that this modification,
while improving system stability and reliability, comes at the cost of a slightly
increased execution time. However, as illustrated in the subsequent section, the
additionally required execution time is smaller for the automatically than for the
manually optimized version because the frequency scaling and the NFI insertion
are applied more selectively.

4.3 Impact of Power Peak Optimization on Execution Time and
Code Size

We have applied the power peak optimization algorithm to various benchmarking
applications in order to evaluate its impact on the execution time and the code

1 Data normalized due to existing NDA.

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 97



size. For comparison we have also manually optimized the given benchmarking
applications by applying frequency scaling to the entire benchmark. For both the
manual and the automatic approach, all power peaks resulting in critical supply
voltage drops have been eliminated. Figure 9 illustrates these results for two
general purpose microcontroller benchmarks (Coremark [12] and Dhrystone) as
well as for two domain-specific ones (Authenthication and Crypto).

70

80

90

100

110

120
Execution Time per Testcase

E
xe

cu
tio

n 
Ti

m
e 

[%
]

Auth
en

tic
ati

on

Core
mark

Cryp
to

Dhry
sto

ne
90

95

100

105

110
Code Size per Testcase

C
od

e 
Si

ze
 [%

]

Auth
en

tic
ati

on

Core
mark

Cryp
to

Dhry
sto

ne

Original
Manual optimization
Automatic optimization

Fig. 9. Execution time and code size of original, manually as well as automatically
modified benchmarks1

The results show that in terms of execution time the automatic approach
outperforms the manual optimization due to the finer granularity of code mod-
ifications. For the manual optimization approach the execution time increases
by ∼10% due to the minimally required frequency reduction of ∼10% for elim-
inating all critical supply voltage drops. However, for the automatic approach
this increase is in the range of only 1.2% (Crypto) up to 6.8% (Authentication)
depending on the number and duration of power peaks. Note that the increase
in execution time also depends on the ratio of code regions affected by power
peaks that need to be optimized to regions requiring no optimization.

Furthermore, we compare the increase in code size caused by the insertion
of frequency scaling control instructions and NFIs. This increase is almost neg-
ligible for the manual approach (smaller than or ∼1% for all testcases). For the
automatic approach, the increase is slightly higher and in the range of 0.2%
(Crypto) up to 3.2% (Dhrystone).

5 Conclusions

The power consumption of embedded systems is to a large extent determined by
software applications, actuating power management features as well as control-
ling the overall system activity. Power peaks, caused by power-critical software

1 Data normalized due to existing NDA.

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 98



events, can seriously impact the supply voltage and lead to critical supply voltage
drops. These voltage drops pose a threat to the reliability of power-constrained
mobile devices such as RF-powered smart cards.

In this paper we have outlined an automated framework aimed at the power
peak detection utilizing the emulation-based power profiling of given embedded
software applications. By identifying the software code regions causing power
peaks, the framework is able to selectively apply power reduction strategies, such
as frequency scaling and non-functional instruction insertion, to the affected re-
gions. Furthermore, we have evaluated the effectiveness of this automated power
peak optimization framework on a number of benchmarking applications. For
these benchmarks the inherent execution time increase is in the range of only
1.2% up to 6.8% for the automatic modifications as compared to ∼10% for the
manual ones.

6 Acknowledgements

We would like to thank the Austrian Federal Ministry for Transport, Innovation,
and Technology for providing us with funding for the POWERHOUSE project
under FIT-IT contract FFG 815193, as well as our industrial partners Infineon
Technologies Austria AG and Austria Card GmbH for their enduring support.

References

1. Haid, J., Kargl, W., Leutgeb, T., Scheiblhofer, D.: Power management for RF-
powered vs. battery-powered devices. In: TMCS. (2005)

2. Grumer, M., Wendt, M., Steger, C., Weiss, R., Neffe, U., Muehlberger, A.: Au-
tomated software power optimization for smart card systems with focus on peak
reduction. AICCSA (2007)

3. Grumer, M., Wendt, M., Lickl, S., Steger, C., Weiss, R., Neffe, U., Muehlberger, A.:
Software power peak reduction on smart card systems based on iterative compiling.
Emerging Directions in Embedded and Ubiquitous Computing (2007)

4. Wendt, M., Grumer, M., Steger, C., Weiss, R., Neffe, U., Muehlberger, A.: System
level power profile analysis and optimization for smart cards and mobile devices.
In: SAC. (2008)

5. Muresan, R., Gebotys, C.: Current flattening in software and hardware for security
applications. In: CODES+ISSS. (2004)

6. Li, X., Vahedi, H., Muresan, R., Gregori, S.: An integrated current flattening
module for embedded cryptosystems. In: ISCAS. (2005)

7. Vahedi, H., Muresan, R., Gregori, S.: On-chip current flattening circuit with dy-
namic voltage scaling. In: ISCAS. (2006)

8. Genser, A., Bachmann, C., Haid, J., Steger, C., Weiss, R.: An emulation-based
real-time power profiling unit for embedded software. In: SAMOS. (2009)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO. (1999)
10. Finkenzeller, K.: RFID Handbook. John Wiley & Sons Ltd. (2003)
11. Bachmann, C., Genser, A., Steger, C., Weiss, R., Haid, J.: Automated power

characterization for run-time power emulation of soc designs. In: 13th Euromicro
DSD. In press. (2010)

12. http://www.coremark.org/

6. Publications Publication 7 - PATMOS 2010 (Springer LNCS 6448) 99



Estimation-Based Run-Time Power Profile
Flattening for RF-Powered Smart Card Systems

Andreas Genser1, Christian Bachmann1, Christian Steger1, Reinhold Weiss1, Josef Haid2
1Institute for Technical Informatics, Graz University of Technology
{andreas.genser, christian.bachmann, steger, rweiss}@tugraz.at

2Design Center Graz, Infineon Technologies AG
josef.haid@infineon.com

Abstract—Power-constrained systems, such as RF-powered
smart cards are gaining increased significance in the embedded
system’s domain. These systems are highly susceptible to sup-
ply voltage drops caused by power peak regions that impact
on the system stability. Power profile flattening mechanisms
have emerged as an effective power peak countermeasure to
enhance system reliability. In this paper we present a hardware
power profile flattening approach by employing system-level
DVFS adaptions coupled with a hardware power estimation
architecture. The exploitation of hardware-accelerated real-time
power estimation techniques replaces costly analog on-chip power
measurements and enables the dynamic control of the system’s
power consumption in a purely digital manner. We demonstrate
the effectiveness of our approach by conducting power profiling
and voltage drop analysis of a deep-submicron RF-powered smart
card system.

I. INTRODUCTION

RF-powered smart cards acquire power via an externally
generated RF-field that provides only a limited amount of
power dependant on the field strength and the distance between
the smart card and the RF-field generating reader device.
Power peaks (i.e., regions that exceed the power limit) that
are often caused by large power consuming system modules
(e.g., cryptographic coprocessors) can cause the supply voltage
of the system to drop below a critical limit, in a way that
stable system operation can not be guaranteed. A number of
countermeasures to ensure reliable system operation despite
occurring power peaks have been proposed. These works
can be grouped in two categories: (i) software power profile
flattening and (ii) hardware power profile flattening.

Software power profile flattening techniques aim at the
insertion of non functional instructions (NFIs) by modifying
program code sections causing power peak regions [1], [2]. An
automated software power peak optimization method has been
proposed in [3] by performing optimizations on the compiler
level and by instruction reordering. In [4], an automated frame-
work for power peak optimization has been presented based
on NFI insertion and frequency scaling. However, the number
of NFIs, their locations or the required system frequency to
avoid power peaks is not known during compile time, which
might require multiple optimization iterations until satisfying
results are achieved.

With the advent of hardware power profile flattening tech-
niques, these limitations are circumvented by utilizing dedi-
cated flattening hardware that performs run-time NFI insertion

based on power profile analysis. Power profiles are obtained by
on-chip analog power measurements, while power constraints
are held in registers in a digital manner. This requires D/A
converters to perform the decision making whether NFI inser-
tion is necessary [1].

A second variant of hardware power profile flattening is
done based on current injection methods as proposed in
[5]. Digital and analog solutions are proposed. Power profile
flattening is achieved by forcing redundant switching activity
or by adjusting a dedicated current sink depending on the
present system’s power consumption. In [6], a current injection
method combined with the scaling of the supply voltage is
presented. Current injection methods require a current reserve
to sustain phases of high power consumption, while keeping
the overall power consumption constant. This current reserve
reduces system efficiency.

In this paper, we present a hardware power profile flattening
technique based on a power estimation architecture that has
been proposed in [7]. The availability of real-time power
estimates in a purely digital manner replaces costly on-chip
analog measurements and D/A conversions, which simplifies
the overall system design. We implement dynamic voltage and
frequency scaling (DVFS) as a promising power profile flatten-
ing alternative to NFI insertion and current injection methods.
By varying the system frequency and the supply voltage, the
provided power can be exploited more efficiently compared to
current injection methods. We demonstrate the effectiveness of
our approach for a typical RF-powered smart card system. The
system-level implementation of the estimation-based power
profile flattening technique accounts only to 2.8% to the total
area and to approx. 2% to the overall power consumption of
the smart card system.

II. HARDWARE-ACCELERATED POWER ESTIMATION
PREREQUISITES

Hardware-accelerated power estimation allows to derive
cycle-accurate power consumption information in real-time
in a purely digital way. In our previous work, we proposed
a hardware-accelerated power estimation approach that is
implemented on system-level to keep hardware and power
overhead low, while still providing high estimation accuracies
[7]. The basic essentials of this work are discussed within this
section.

6. Publications Publication 8 - IEEE APCCAS 2010 100

c© 2010 IEEE. Reprinted, with permission, from Proceedings of 11th IEEE Asia Pacific Conference on
Circuits and Systems 2010.



A. Power Model

Power models intended for hardware integration typically
operate on high abstraction layers (e.g., system-level) and are
frequently based on linear regression methods [8]. A linear
regression model can be established by considering a linear
combination of a number of model parameters xi and model
coefficients ci yielding the estimate ŷ. This can be given as

ŷ = c0 +

n∑

i=1

cixi + ε. (1)

x = [x1, x2, ...xn] gives the vector of model parame-
ters, each of which representing system states, such as CPU
operating modes, memory accesses or coprocessor activity,
etc. The entirety of model coefficients can be written as
c = [c1, c2, ...cn]

T . Each of the model coefficients ci contain
power consumption information corresponding to a system
state xi. c0 resembles a special model coefficient that rep-
resents the leakage power consumption of the system. All
model coefficients in c are determined by a power model
characterization process [9]. The evaluation of (1) finally gives
the power estimate ŷ, which deviates from the true power value
y by the estimation error ε. If computed in hardware, the model
can be evaluated on a clock cycle basis allowing for real-time
power consumption information derivation.

B. Power Estimation Architecture

The power estimation architecture as illustrated in Fig. 1
implements the power model established according to (1) and
holds power model coefficients c determined during the power
characterization process. Power sensors implement lookup
tables that map system state information xi towards model
coefficients ci. Each of the sensors observes system states
of a system component and derives its power consumption.
The power accumulation unit sums up power consumption
information from the power sensors and assembles cycle-
accurate power samples P (x(t)).

Power model evaluations in hardware benefit from a huge
speed up over low-level power simulations (e.g., gate-level
simulations) in terms of simulation time. As reported in [7],
speedups of several orders of magnitude could be achieved
compared to gate-level simulations.

...

FU 1 FU n...

...

Power Accumulation Unit

P
o
w
e
r 

E
s
ti
m
a
ti
o
n

A
rc
h
it
e
c
tu
re

CPU CoProc RAM

Component State

Model Coeff.

Component State

Model Coeff.

Component State

Model Coeff.

E
m
b
e
d
d
e
d
 

S
y
s
te
m

Power Sensor Power Sensor

P(x(t)) Configuration

Fig. 1. Power estimation architecture, power consumption information
are derived from system state information by power sensors. Obtained and
modified from [7]

III. ESTIMATION-BASED POWER PROFILE FLATTENING

A system overview of our proposed estimation-based hard-
ware power profile flattening architecture is given in Fig. 2.

A. DVFS Power Scaling Extensions

The DVFS power scaling extensions block solves the is-
sue that power consumption information P (x(t)) lacks the
dependency from f(t) and VDD(t). P (x(t)) provides power
consumption information for a reference system frequency and
a reference supply voltage at which the power characterization
process has been performed. DVFS power scaling extensions
as depicted in Fig. 3, extend P (x(t)) with f(t) and VDD(t)
information yielding the real power consumption of the system
P (x(t), f(t), V 2

DD(t)). The DVFS power scaling extensions
block consists of a configurable lookup table (LUT) provid-
ing VDD(t) information depending on the system frequency
f(t). These (f, VDD)-pairs correspond to the supported f -
and VDD-settings of the considered system. The scaling unit
conducts the multiplication of P (x(t)), f(t) and VDD(t)
according to (2).

P (x(t), f(t), V 2
DD(t)) = P (x(t)) · f(t) · LUT 2(f(t)) (2)

B. Power Profile Flattening Controller

The actual power profile flattening is performed by the
power profile flattening controller. The present power con-
sumption Pt = P (x(t), f(t), V 2

DD(t)) is compared to given
power constraints Pc. The discrepancy between Pc and Pt is
given as Pε, which determines the decision criteria whether
the system frequency f(t) is to be increased or decreased.
By performing DVFS adaptions, the employed power profile
flattening policy aims at minimizing Pε according to (3).

FlatteningPolicy : min{Pε} = min{‖Pt − Pc‖} (3)

Fig. 4 depicts the state-machine of a greedy power profile
flattening policy. Starting from the Init-state, a state transition

Smart-Card 

System

Power Estimation 

Architecture

P(x)(t)
P(x(t), f(t), 

VDD²(t))
x(t)

Pc

DVFS Lookup 

Table

DVFS Power 

Scaling Power Flattening 

Controller

Power Flattening 

Policies

fset

fset VDD

Power Flattening 

Controller

Power Profile Flattening Architecture

DVFS Pow. Scl. Ext.

Fig. 2. Power profile flattening concept based on the power estimation
architecture, the power profile flattening architecture incorporating the power
profile flattening controller and DVFS power scaling extensions

DVFS Power 

Scaling

VDD(t)

f(t)f VDD

f1

f2

fn-1

...

... ...

...

VDD1

VDD2

VDDn-1
DVFS Lookup Table

f(t)

f

VDD

f1 fn-1

VDD1

VDDn-1

f(t)

VDD(t)

P(x(t), f(t), 

VDD²(t))

a) b)

P(x(t))

Fig. 3. DVFS power scaling extensions that incorporate a) system frequency
and supply voltage dependency and b) a power scaling unit

6. Publications Publication 8 - IEEE APCCAS 2010 101



f(t)=f(t)++

f(t)=f(t)--

P
t <= P

c

P t 
> P

c

P
t
<
=
 P
c

f(t)<fm
ax

P
t 
>
 P
c

P
t 
<
=
 P
c

P
t >
 P
c

Pt<=Pc

Pt > Pc

Pt<=PcPt > Pc

f(t)=fmax

f(t)=
f
m
inf(t)=fmax

fstallInit

fdec

finc

fstall

Fig. 4. System-level power profile flattening state-machine based on a greedy
flattening policy

to fdec or finc depending on the present value of f(t) is
performed. In state finc, f(t) is increased as long as the
present power consumption Pt is less than or equal to Pc,
else the state-machine enters state fdec and f(t) is decreased
to lower the system’s power consumption. If the minimum
frequency fmin or the maximum frequency fmax is reached,
two fstall states exist to prevent f from running out of bounds.
Note that each f-adaption outputs a new frequency set value
fset at the power profile flattening controller causing an
according lookup in the DVFS lookup table implemented in
the DVFS scaling extensions block. Both, fset and the cor-
responding supply voltage VDD steer the system’s operating
point in a way that the power profile is flattened.

IV. CASE STUDY: POWER PROFILE FLATTENING FOR AN
RF-POWERED SMART CARD SYSTEM

We demonstrate the results of the proposed estimation-based
power profile flattening approach based on an RF-powered
smart card system that is highly susceptible to power peaks.
If power peaks occur, the source voltage of the RF energy
source might drop below a critical limit, which leads to power
shortages at the smart card system.

To reproduce the behavior of the RF energy source, we
exploit SPICE simulations of LTSpice IV [10] based on an RF
energy source equivalent circuit [11]. By means of a typical
smart card application, results of the power profile flattening
approach are illustrated.

A. System Setup

Fig. 5 illustrates the coupling of the reader device to a
contact-less smart card via an RF-field. The available power
at the smart card device is dependent on the strength of the
magnetic RF-field H as well as the distance between the
reader and the smart card. Moreover, Fig. 5 illustrates the
structure of a typical contact-less smart card system. It is
based on a 16-bit pipelined cache architecture incorporating
a memory encryption-decryption (MED) unit and volatile and
non-volatile memories. Communication interfaces, such as
UART, I2C or a contact-less interface are provided. Moreover,
coprocessors to accelerate symmetric and asymmetric cryp-
tographic algorithms as well as peripherals such as random

CPU

Cache MED

RAM

ROM

NVM

UART

Contact-less Interface

I²C

Symmetric Coprocessor

Core

Memories

Interfaces

Coprocessors

Symmetric Coprocessor

RNG

Peripherals

Timer

Power Estimation Architecture & Power Flattening Architecture

R
F
-I
F
 /
 A
n
a
lo
g
 F
ro
n
t-
E
n
d

Contact-less Reader 

Device
Power 

Transfer

Magnetic RF-Field H

Fig. 5. Block diagram of a 16-bit contact-less smart card system incorporating
coprocessors to enhance system performance for cryptographic algorithms

number generators (RNG) or timers are built in. An analog
front-end powers system components with energy gathered
from the RF-field. System state information are provided to
the power estimation architecture by routing power-relevant
signals that have been determined during the power character-
ization process.

In order to apply DVFS adaptions for power profile flatten-
ing, the lookup table in the DVFS power scaling extensions
block has to be set up based on the frequency-supply voltage
relationship of the given smart card system. The supported
(f, VDD)-pairs are in the range of 1-38MHz and 0.5-1.7V,
and frequency and supply voltage steps are 1MHz and 0.1V,
respectively. The smart card system incorporating the power
estimation architecture and the power profile flattening archi-
tecture has been synthesized on an Altera StratixII FPGA.

B. Power Profile Flattening Results

A typical smart card application to obtain system power
profiles has been executed for the following scenarios:

• Scenario 1: Standard configuration without power profile
flattening hardware

• Scenario 2: Power profile flattening configuration incor-
porating the power estimation and the power profile flat-
tening architecture exploiting a greedy flattening policy.
Power from the RF-field is constraint to Pc = 0.4.

Fig. 6 and 7 show power profile flattening results of Sce-
nario 1 and 2, respectively. The power profile for a typical
smart card application is depicted in Scenario 1 in the upper
subplot of Fig. 6. During the occurrence of Peak 1 and Peak

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Time [normalized]

P
o

w
e

r 
[n

o
rm

a
liz

e
d

] Power Profiling Result of the Typical Smart Card Application Test; Standard System

0 0.2 0.4 0.6 0.8 1
20
22
24
26
28
30
32
34
36
38

Time [normalized]

F
re

q
u

e
n

c
y
 f
 [
M

H
z
]

 

 

0 0.2 0.4 0.6 0.8 1
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

S
u

p
p

ly
 v

o
lta

g
e

 V
D

D
 [
V

]

Frequency

Supply voltage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

Time [normalized]

S
o

u
rc

e
 V

o
lta

g
e

 [
V

]

 

 

SPICE Model

Harmful 

Voltage Drops

Neg. Peak Peak 1 Peak 2

NO DVFS Adaptions

Fig. 6. Scenario 1: Smart card application power profile, f and VDD , as
well as the behavior of the RF energy source voltage without power profile
flattening (data have been normalized for confidentiality reasons)

6. Publications Publication 8 - IEEE APCCAS 2010 102



0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

Time [normalized]

P
o

w
e

r 
[n

o
rm

a
liz

e
d

] Power Profiling Result of the Typical Smart Card Application Test; Greedy Power Flattening Policy

0 0.2 0.4 0.6 0.8 1 1.2
20
22
24
26
28
30
32
34
36
38

Time [normalized]

F
re

q
u

e
n

c
y
 f
 [
M

H
z
]

 

 

0 0.2 0.4 0.6 0.8 1 1.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

S
u

p
p

ly
 v

o
lta

g
e

 V
D

D
 [
V

]

Frequency

Supply voltage

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

Time [normalized]

S
o

u
rc

e
 V

o
lta

g
e

 [
V

]

 

 

SPICE Model

NO Harmful 

Voltage Drops

Peak 

flattened

Peak 

flattened

Peak 

flattened

DVFS Adaptions

Fig. 7. Scenario 2: Smart card application power profile, f and VDD , as well
as the behavior of the RF energy source voltage with power profile flattening
by the greedy policy (data have been normalized for confidentiality reasons)

2, the CPU and the coprocessor are working simultaneously,
while during the negative peak phase the CPU is put to sleep
mode and the coprocessor is active. The standard implementa-
tion executes the smart card application at a system frequency
of f=33MHz and a supply voltage of VDD=1.5V (see second
subplot in Fig. 6). The bottom subplot of Fig. 6 illustrates the
source voltage drop simulated by LTSpice IV. It can be clearly
observed that power peaks caused by coprocessor activity
make the source voltage to drop below the critical limit of
VDD=1.5V.
The achieved power profile flattening results of Scenario 2 are
illustrated in Fig. 7. Power peaks caused by the coprocessor are
flattened by adapting the system frequency f and the supply
voltage VDD (see middle subplot of Fig. 7). As a consequence,
the source voltage stays above the critical voltage limit. More-
over, the ’negative’ power peak phase is flattened by speeding
up the system to f=38MHz and VDD=1.7V. This behavior
exploits the available power more efficiently compared to
previously proposed works based on NFI insertion or current
injection methods that can not accelerate system execution.

Tab. I gives a general overview of the average to peak
power (A2P) and algorithm execution time (ET) for different
applications. A comparison between Scenario 1 and Scenario 2
shows that the average to peak power is reduced between 42%
and 71% for the given applications, which on the other hand
comes at the cost of an execution time increase of 17-23%.

TABLE I
COMPARISON OF AVERAGE TO PEAK POWER (A2P) IN % AS WELL AS

EXECUTION TIME (ET) IN % FOR DIFFERENT EXECUTED ALGORITHMS
(ALL VALUES NORMALIZED FOR CONFIDENTIALITY REASONS)

Smart card appl. Dhrystone CPU
A2P ET A2P ET A2P ET

Scen.1 100 100 100 100 100 100
Scen.2 29 123 58 122 47 117

C. Area and Power Overhead

Synthesized on an Altera StratixII FPGA, the entire system
allocates 84785 ALUTs, while power estimation and power
profile flattening hardware occupy 2416 ALUT resources.
Hence, hardware extensions contribute to 2.8% to the total
system area.

TABLE II
NORMALIZED AVERAGE POWER OF THE POWER PROFILE FLATTENING

HARDWARE (PPF-HW) COMPARED TO THE CURRENT FLATTENING
CIRCUIT PROPOSED IN [6]

Sys. Sys. + PPF-HW Overhead (%)
Our architecture 100 102 2

Vahedi et al. [6] 100 122 22
1 Power estimates have been derived from Altera PowerPlay.

Data have been normalized for confidentiality reasons.

As depicted in Tab. II, the proposed estimation-based power
profile flattening architecture accounts only to approx. 2 %
to the overall power consumption of the system. In contrast,
the current flattening technique proposed in [6] performs the
flattening at an average power overhead of approx. 22 %.

V. CONCLUSION

RF-powered smart cards rely on energy sources that provide
power at a high variability over time. This yields a high
susceptibility of these systems to supply voltage drops caused
by power shortages.

The proposed estimation-based power profile flattening ap-
proach aims at minimizing power peaks by employing DVFS
system adaptions based on a greedy power profile flattening
policy. For a typical smart card application executed on a 16-
bit RF-powered smart card system, power peak reductions are
achieved in a way that harmful voltage drops can be avoided.
The hardware overhead for power profile flattening hardware
extensions contributes only to 2.8% to the overall system area
and adds approx. 2% of power overhead. The presented work
provides an effective run-time countermeasure against harmful
power peaks that can significantly enhance system reliability.

REFERENCES

[1] R. Muresan and C. Gebotys. Current flattening in software and hardware
for security applications. In CODES+ISSS, 2004.

[2] M. Wendt, M. Grumer, C. Steger, R. Weiss, U. Neffe, and
A. Muehlberger. System level power profile analysis and optimization
for smart cards and mobile devices. In SAC, 2008.

[3] M. Grumer, M. Wendt, C. Steger, R. Weiss, U. Neffe, and A. Muhlberger.
Automated software power optimization for smart card systems with
focus on peak reduction. In AICCSA, 2007.

[4] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid. An automated
framework for power-critical code region detection and power peak
optimization of embedded software. In PATMOS, 2010.

[5] X. Li, H. Vahedi, R. Muresan, and S. Gregori. An integrated current
flattening module for embedded cryptosystems. In ISCAS, 2005.

[6] H. Vahedi, R. Muresan, and S. Gregori. On-chip current flattening circuit
with dynamic voltage scaling. In ISCAS, 2006.

[7] A. Genser, Ch. Bachmann, J. Haid, Ch. Steger, and R. Weiss. An
Emulation-Based Real-Time Power Profiling Unit for Embedded Soft-
ware. In SAMOS, 2009.

[8] A. Bogliolo, L. Benini, and G. De Micheli. Regression-based RTL power
modeling. In ACM Trans. on Design Autom. of Elect. Sys., volume 5,
2000.

[9] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid. Automated
power characterization for run-time power emulation of soc designs. In
DSD, 2010.

[10] Linear Technology, LTSpice IV. (http://www.linear.com/designtools/
software/), April 2010.

[11] Josef Haid, Walter Kargl, Thomas Leutgeb, and Dietmar Scheiblhofer.
Power management for rf-powered vs. battery-powered devices, 2005.

6. Publications Publication 8 - IEEE APCCAS 2010 103



Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.,” Solid-State Circuits
Newsletter, IEEE, vol. 20, no. 3, pp. 33 –35, 2006.

[2] J. Rabaey, “A brand new wireless day,” in Asia and South Pacific Design Automation
Conference (ASPDAC ’08), 2008.

[3] H. Varadarajan, V. Tiwari, R. Patel, H. Ramamurthy, S. Jamshidi, S. Jariwala, and
W. Jiang, “Low-Power Design Issues,” in The Computer Engineering Handbook (V. G.
Oklobdzija, ed.), CRC Press, 2002.

[4] G. De Micheli and R. Gupta, “Hardware/software co-design,” Proceedings of the
IEEE, vol. 85, no. 3, pp. 349 –365, 1997.

[5] C. Piguet, “History of Low-Power Electronics,” in Low-Power Electronics Design
(C. Piguet, ed.), CRC Press, 2005.

[6] C. H. Gebotys, “Low-Power Software Techniques,” in Low-Power Electronics Design
(C. Piguet, ed.), CRC Press, 2005.

[7] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and S. Kaijian, Low Power Methodology
Manual. Springer, 2007.

[8] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose,
“Microarchitectural techniques for power gating of execution units,” in International
Symposium on Low Power Electronics and Design (ISLPED ’04), pp. 32 – 37, 2004.

[9] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: pushing power management
to logic synthesis/design,” Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD), vol. 17, pp. 1051 –1060, Oct. 1998.

[10] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS digital design,”
Solid-State Circuits, IEEE Journal of, vol. 27, pp. 473 –484, Apr. 1992.

[11] “The International Technology Roadmap for Semiconductors (ITRS), 2010 Update,
System Drivers,” 2010. http://www.itrs.net/Links/2010ITRS/Home2010.htm.
Last accessed 2010-01-18.

[12] S. Kaxiras and M. Martonosi, Computer Architecture Techniques for Power-
Efficiency. Synthesis Lectures on Computer Architecture, Morgan & Claypool Pub-
lishers, 2008.

104

http://www.itrs.net/Links/2010ITRS/Home2010.htm


Bibliography 105

[13] L. Zhao, R. Iyer, J. Moses, R. lllikkal, S. Makineni, and D. Newell, “Exploring Large-
Scale CMP Architectures Using ManySim,” Micro, IEEE, vol. 27, no. 4, pp. 21 –33,
2007.

[14] J. Coburn, S. Ravi, and A. Raghunathan, “Power emulation: a new paradigm for
power estimation,” in 42nd Design Automation Conference (DAC ’05), 2005.

[15] J. Coburn, S. Ravi, and A. Raghunathan, “Hardware accelerated power estimation,”
in Design, Automation and Test in Europe (DATE ’05) (S. Ravi, ed.), pp. 528–529
Vol. 1, 2005.

[16] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-System Chip Multiprocessor
Power Evaluations Using FPGA-Based Emulation,” in International Symposium on
Low Power Electronics and Design (ISLPED ’08), 2008.

[17] “Keil R© µVision R© IDE.” http://www.keil.com/uvision/. Last accessed 2010-02-
22.

[18] “Eclipse R© Language IDE.” http://www.eclipse.org/. Last accessed 2010-02-22.

[19] C. Bachmann, A. Genser, J. Hulzink, M. Berekovic, and C. Steger, “A Low-Power
ASIP for IEEE 802.15.4a Ultra-Wideband Impulse Radio Baseband Processing,” in
Design, Automation and Test in Europe (DATE ’09), 2009.

[20] C. Bachmann and A. Genser, “POWERHOUSE - Power-Aware, Hardware-Supported
Operating System and Ubiquitous Application Software Development Environment,
Technical Report,” Institute for Technical Informatics, Graz University of Technology,
2011.

[21] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step
towards software power minimization,” in International Conference on Computer-
Aided Design (ICCAD ’94) (S. Malik, ed.), pp. 384–390, 1994.

[22] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee, “Instruction level power
analysis and optimization of software,” in International Conference on VLSI Design
(S. Malik, ed.), pp. 326–328, 1996.

[23] J. Flinn and M. Satyanarayanan, “PowerScope: a tool for profiling the energy usage
of mobile applications,” in Second IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA ’99) (M. Satyanarayanan, ed.), pp. 2–10, 1999.

[24] Texas Instruments, “Analyzing Target System Energy Consumption in Code Com-
poser Studio IDE,” Tech. Rep., 2002.

[25] “Hitex R© PowerScale R©.” http://www.hitex.com/. Last accessed 2010-02-22.

[26] H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil,
“Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Mea-
surements,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 56–65, 2007.

http://www.keil.com/uvision/
http://www.eclipse.org/
http://www.hitex.com/


Bibliography 106

[27] F. J. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau, “Power model validation
through thermal measurements,” in International Symposium on Computer Architec-
ture (ISCA ’07), ISCA ’07, (New York, NY, USA), pp. 302–311, ACM, 2007.

[28] W. Nebel and D. Helms, “High-level power estimation and analysis,” in Low-Power
Electronics Design (C. Piguet, ed.), CRC Press, 2005.

[29] “Synopsys R©, Inc.” http://www.synopsys.com/. Last accessed 2010-02-08.

[30] “Magma R© Design Automation, Inc.” http://www.magma-da.com/. Last accessed
2010-02-08.

[31] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “An instruction-level energy model
for embedded vliw architectures,” Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), vol. 21, pp. 998 – 1010, Sept. 2002.

[32] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin, “The design and use of simple-
power: a cycle-accurate energy estimation tool,” in Design Automation Conference
(DAC ’00), pp. 340 –345, 2000.

[33] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level
power analysis and optimizations,” International Symposium on Computer Architec-
ture (ISCA ’00), pp. 83–94, 2000.

[34] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” SIGARCH
Comput. Archit. News, vol. 25, pp. 13–25, June 1997.

[35] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an infrastructure for computer
system modeling,” Computer, vol. 35, pp. 59 –67, 2002.

[36] F. Bellosa, “The benefits of event: driven energy accounting in power-sensitive sys-
tems,” in Proc. of the 9th ACM SIGOPS European workshop, 2000.

[37] R. Joseph and M. Martonosi, “Run-time power estimation in high performance mi-
croprocessors,” in International Symposium on Low Power Electronics and Design
(ISLPED ’01), 2001.

[38] G. Contreras and M. Martonosi, “Power prediction for intel XScale processors using
performance monitoring unit events,” in International Symposium on Low Power
Electronics and Design (ISLPED ’05), 2005.

[39] J. Haid, G. Kaefer, C. Steger, and R. Weiss, “A co-processor for real-time energy
estimation of system-on-a-chip,” in Midwest Symposium on Circuits and Systems
(MWSCAS ’02), 2002.

[40] J. Haid, G. Kaefer, C. Steger, and R. Weiss, “Run-time energy estimation in system-
on-a-chip designs,” in Asia and South Pacific Design Automation Conference (ASP-
DAC ’03) (G. Kaefer, ed.), pp. 595–599, 2003.

[41] J. Peddersen and S. Parameswaran, “Clipper: Counter-based low impact processor
power estimation at run-time,” in Asia and South Pacific Design Automation Con-
ference (ASP-DAC ’07) (S. Parameswaran, ed.), pp. 890–895, 2007.

http://www.synopsys.com/
http://www.magma-da.com/


Bibliography 107

[42] J. Peddersen and S. Parameswaran, “Low-Impact Processor for Dynamic Runtime
Power Management,” Design & Test of Computers, IEEE, vol. 25, pp. 52–62, 2008.

[43] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, and J. M.
Mendias, “A fast HW/SW FPGA-based thermal emulation framework for multi-
processor system-on-chip,” in 43rd ACM/IEEE Design Automation Conference (DAC
’06), 2006.

[44] M. Ghodrat, K. Lahiri, and A. Raghunathan, “Accelerating System-on-Chip Power
Analysis Using Hybrid Power Estimation,” in Design Automation Conference (DAC
’07), 2007.

[45] Aeroflex Gaisler AB, “LEON3/GRLIB SoC IP Library Product Brief,” 2008. http:

//www.gaisler.com/doc/Leon3%20Grlib%20folder.pdf. Last accessed 2010-02-11.

[46] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50 –58, 2002.

[47] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, “MPARM: Explor-
ing the Multi-Processor SoC Design Space with SystemC,” J. VLSI Signal Process.
Syst., vol. 41, no. 2, pp. 169–182, 2005.

[48] J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik, and G. Reinman, “MC-Sim: an ef-
ficient simulation tool for MPSoC designs,” in International Conference on Computer-
Aided Design (ICCAD ’08), pp. 364–371, 2008.

[49] P. Gerin, M. M. Hamayun, and F. Pétrot, “Native MPSoC co-simulation environ-
ment for software performance estimation,” in International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS ’09), pp. 403–412,
2009.

[50] P. Del Valle, D. Atienza, I. Magan, J. Flores, E. Perez, J. Mendias, L. Benini, and
G. De Micheli, “Architectural Exploration of MPSoC Designs Based on an FPGA
Emulation Framework,” in Conference on Design of Circuits and Integrated Systems
(DCIS ’06), pp. 12–18, 2006.

[51] D. Atienza, P. G. Della Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, J. M.
Mendias, and R. Hermida, “HW-SW Emulation Framework for Temperature-Aware
Design in MPSoCs,” ACM Transactions on Design Automation of Electronic Systems
TODAES, vol. Vol. 12, pp. pp. 1 – 26,, 2007.

[52] P. Meloni, S. Secchi, and L. Raffo, “An FPGA-Based Framework for Technology-
Aware Prototyping of Multicore Embedded Architectures,” IEEE Embedded Systems
Letters, 2010.

[53] J. Haid, W. Kargl, T. Leutgeb, and D. Scheiblhofer, “Power Management for RF-
Powered vs. Battery-Powered Devices,” in TMCS, 2005.

[54] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in CRYPTO, 1999.

http://www.gaisler.com/doc/Leon3%20Grlib%20folder.pdf
http://www.gaisler.com/doc/Leon3%20Grlib%20folder.pdf


Bibliography 108

[55] M. Grumer, M. Wendt, C. Steger, R. Weiss, U. Neffe, and A. Muehlberger, “Auto-
mated Software Power Optimization for Smart Card Systems with Focus on Peak Re-
duction,” International Conference on Computer Systems and Applications (AICCSA
’07), 2007.

[56] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low energy: an
overview,” in Symposium Low Power Electronics, Digest of Technical Papers (S. Ma-
lik, ed.), pp. 38–39, 1994.

[57] M. Grumer, M. Wendt, S. Lickl, C. Steger, R. Weiss, U. Neffe, and A. Muehlberger,
“Software Power Peak Reduction on Smart Card Systems Based on Iterative Com-
piling,” Emerging Directions in Embedded and Ubiquitous Computing, 2007.

[58] M. Wendt, M. Grumer, C. Steger, R. Weiss, U. Neffe, and A. Muehlberger, “System
level power profile analysis and optimization for smart cards and mobile devices,” in
ACM Symposium on Applied Computing (SAC ’08), 2008.

[59] R. Muresan and C. Gebotys, “Current flattening in software and hardware for secu-
rity applications,” in International Conference on Hardware/Software Codesign and
System Synthesis (CODES + ISSS ’04), 2004.

[60] X. Li, H. Vahedi, R. Muresan, and S. Gregori, “An integrated current flattening
module for embedded cryptosystems,” in International Symposium on Circuits and
Systems (ISCAS ’05), 2005.

[61] H. Vahedi, R. Muresan, and S. Gregori, “On-chip current flattening circuit with dy-
namic voltage scaling,” in International Symposium on Circuits and Systems (ISCAS
’06), 2006.

[62] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid, “Automated Power
Characterization for Run-Time Power Emulation of SoC Designs,” in Proceedings of
the 13th Euromicro Conference on Digital System Design (DSD ’10), pp. 587–594,
2010.

[63] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid, “Accelerating Embedded
Software Power Profiling Using Run-Time Power Emulation,” in Power and Timing
Modeling, Optimization and Simulation, 19th International Workshop, PATMOS ’09,
2009.

[64] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid, “An Automated Frame-
work for Power-Critical Code Region Detection and Power Peak Optimization of
Embedded Software,” in Power and Timing Modeling, Optimization and Simulation,
20th International Workshop, PATMOS ’10, pp. 11–20, 2010.

[65] Infineon Technologies AG, “SLE 78CLX1440P - Short Product Overview,” 2010.
http://www.infineon.com/. Last accessed 2010-02-11.

[66] “SnapGear Embedded Linux Distribution.” http://www.snapgear.org/. Last ac-
cessed 2010-02-08.

http://www.infineon.com/
http://www.snapgear.org/


Bibliography 109

[67] M. Mamidipaka and N. Dutt, “eCACTI: An enhanced power estimation model for
on-chip caches,” Technical Report TR-04-28, CECS, UCI, 2004.

[68] “CoreMark an EEMBC benchmark.” http://www.coremark.org/. Last accessed
2010-02-08.

[69] “Hitex R© HiTOP R© IDE/Debugger.” http://www.hitex.com/. Last accessed 2010-
02-22.

[70] “POWERMODES - Power Emulator and Model Based Dependability and Security
Evaluation Platform, Project Proposal,” Institute for Technical Informatics, Graz
University of Technology, 2010.

[71] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan,
“Temperature-aware microarchitecture,” in International Symposium on Computer
Architecture (ISCA ’03), pp. 2 – 13, 2003.

http://www.coremark.org/
http://www.hitex.com/

	Title
	Dedication
	Statutory Declaration
	Kurzfassung
	Abstract
	Acknowledgements
	Extended Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.1.1 The Need for Power-Awareness in Hardware/Software Codesign
	1.1.2 Increasing SoC Design Complexity Challenge
	1.1.3 Limitations of State-of-the-Art Power Emulation Methods
	1.1.4 Missing Integration of Power Emulation in HW/SW Codesign
	1.1.5 Motivational Example: Low-Power ASIP HW/SW Codesign

	1.2 Automated Power Emulation Methodology For Power-Aware HW/SW Codesign
	1.2.1 The POWERHOUSE Project
	1.2.2 Problem Statement
	1.2.3 Contributions and Significance
	1.2.4 Structure of the Work


	2 Related Work
	2.1 Power Consumption Profiling Methods
	2.1.1 Measurement-Based Power Profiling Methods
	2.1.2 Estimation-Based Power Profiling Methods

	2.2 Power and Performance Profiling for HW/SW Codesign
	2.3 Power Peak Optimization of Embedded Software
	2.4 Summary

	3 Novel Automated Power Emulation Methodology For Power-Aware HW/SW Codesign
	3.1 Overview
	3.2 Automated Power Emulation Methodology
	3.2.1 High-Level Power Emulation Technique
	3.2.2 Automated Power Modeling for Power Emulation
	3.2.3 Automated Power Emulation Hardware Implementation

	3.3 Power-Aware HW/SW Codesign Based on Power Emulation
	3.3.1 Joint Power Emulation and Performance Monitoring for Multi-Core Systems
	3.3.2 Power-Aware Software Development Using Power Emulation
	3.3.3 Emulation-Based Power Peak Optimization of Embedded Software


	4 Evaluation of Methodology and Case Studies
	4.1 Overview
	4.2 Power Emulation Test Systems
	4.3 Automated Power Emulation Methodology
	4.3.1 Automated Power Modeling
	4.3.2 Power Model Evaluation
	4.3.3 Power Emulation Hardware Generation and Implementation
	4.3.4 Power Emulation Performance

	4.4 Emulation-Based Power-Aware HW/SW Codesign
	4.4.1 Joint Power Emulation and Performance Monitoring
	4.4.2 Power-Aware Software Development Using Power Emulation
	4.4.3 Emulation-Based Power Peak Optimization of Embedded Software


	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Directions for Future Work
	5.2.1 Hybrid Power and Fault Attack Emulation for Trusted SoC Design
	5.2.2 Run-time Thermal Estimation Based on Power Emulation


	6 Publications
	6.1 A Low-Power ASIP for IEEE 802.15.4a Ultra-Wideband Impulse Radio Baseband Processing
	6.2 An Emulation-Based Real-Time Power Profiling Unit for Embedded Software
	6.3 Automated Power Characterization for Run-Time Power Emulation of SoC Designs
	6.4 An Emulation-Based Platform for Power- and Performance-Aware HW/SW Development of Embedded Multi-Core Systems
	6.5 Power Emulation: Methodology and Applications for HW/SW Power Optimization
	6.6 Accelerating Embedded Software Power Profiling Using Run-Time Power Emulation
	6.7 An Automated Framework for Power-Critical Code Region Detection and Power Peak Optimization of Embedded Software
	6.8 Estimation-Based Run-Time Power Profile Flattening for RF-Powered Smart-Card Systems

	References

