
Dissertation

Algorithms for 3D Objects
using Unions of Balls

Bernhard Kornberger
März 2010

————————————–

Institut für Grundlagen der Informationsverarbeitung

Technische Universität Graz

Vorstand: o.Univ.-Prof.Dr.Wolfgang Maass

Gutachter und Betreuer: Univ.-Prof. DI. Dr. Franz Aurenhammer

Institut für Grundlagen der Informationsverarbeitung

Technische Universität Graz

Gutachter: Univ.-Prof. DI. Dr. Günter Rote

Institut für Informatik

Freie Universität Berlin



This thesis was written in partial fulfillment of the requirements for the degree of
“Doktor der technischen Wissenschaften” at Graz University of Technology, Austria.
It was carried out during the period of August 2005 to March 2010, in which both,
research and development took place.

This work was supervised by Prof. DI. Dr. Franz Aurenhammer from the Institute
for Theoretical Computer Science, Inffeldgasse 16b/1, 8010 Graz, Austria. My research
was funded by the FWF Joint Research Project “Industrial Geometry”, S9205-N12, at
which I was employed as researcher until December 2009. Parts of this thesis have been
published in scientific journals and conferences.

i



Abstract

Balls are among the simplest geometric objects, and they allow for computationally

cheap operations like change of their size and inclusion tests. The structural properties

of a union of balls can also be computed quickly, namely using their power diagram and

its dual regular triangulation, respectively. This makes unions of balls an ideal support

structure for approximation algorithms.

Our research partially relies on a known approach which uses the Voronoi diagram

of a set of sample points of an object to compute a set of balls, whose union approx-

imates this object. This approach yields unreasonably large, possibly unstable sets of

balls. We have developed a technique to extract small, stable subsets, which efficiently

approximate the object. This kind of representation allows for computation of stable

medial axis approximations, which we substantiate by examples. Further, we have

developed a new algorithm for the computation of Minkowski sums of such representa-

tions. We have compared this algorithm to existing exact and approximate solutions,

and it scores well with respect to running time and robustness.

A completely different approach is the construction of a set of balls, whose union

encloses the surface of an object on both sides like a thick skin. Thereby, the object

is only given by an unorganized sample point cloud, and from the balls we can —

optionally after pruning — reconstruct the object’s surface.

This work has evolved in the rather academic area of computational geometry. We

believe that scientific research has additional value, when the results find their way to

real life. We bridge over with robust implementations of our algorithms.
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Kurzfassung

Kugeln gehören zu den einfachsten geometrischen Objekten, und sie erlauben rechne-

risch billige Operationen, wie etwa Größenänderungen und Inklusionstests. Die struk-

turellen Eigenschaften einer Vereinigung von Kugeln können ebenfalls schnell berechnet

werden, nämlich über deren Power-Diagramm bzw. die dazu duale reguläre Triangulie-

rung. Das macht Vereinigungen von Kugeln zu einer idealen Grundlage für Approxi-

mationsalgorithmen.

Diese Arbeit beruht teilweise auf einem bekannten Ansatz, der aus dem Voronoi-

Diagramm einer Menge von Samplepunkten eines Objekts eine Kugelmenge generiert,

deren Vereinigung dieses Objekt annähert. Dieser Ansatz erzeugt unverhältnismäßig

große, möglicherweise instabile Kugelmengen. Daher haben wir ein Verfahren ent-

wickelt, das daraus kleine, stabile Teilmengen extrahiert, die das Objekt effizient appro-

ximieren. Diese Art der Repräsentation erlaubt das Berechnen stabiler Mittelachsen-

Approximationen, wofür wir Beispiele zeigen. Wir haben weiters ein neues Verfahren

zur Berechnung von Minkowski-Summen solcher Repräsentationen entwickelt, das sich

gegenüber bestehenden exakten und approximativen Lösungen als robust und schnell

erweist.

Ein ganz anderer Ansatz ist die Konstruktion von Kugelmengen, deren Vereinigung

die Oberfläche eines Objekts wie eine dicke Haut beidseitig umschließt. Dabei ist dieses

Objekt nur durch eine lose Punktwolke gegeben, und aus der konstruierten Kugelmenge

können wir – wahlweise nach Ausdünnen – die Oberfläche des Objekts rekonstruieren.

Diese Arbeit ist im eher akademischen Bereich der rechnerischen Geometrie ent-

standen. Wir glauben fest, daß wissenschaftliche Forschung den größten Nutzen hat,

wenn die Resultate ihren Weg ins wirkliche Leben finden. Diese Verbindung stellen wir

mit robusten Implementierungen unserer Algorithmen her.
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Jedenfalls danken möchte ich auch meinen Forschungspartnern und Co-Autoren der

Universität Innsbruck, der TU Wien und der JKU Linz für die Zusammenarbeit und
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Chapter 1

Introduction

In this chapter, we give an overview of the problems that have been considered. We

shortly review existing work, and we state our contributions. The subsequent chapters

will then cover the particular problems, the related work, and our contributions in

detail.

1



1. Introduction Problem statement and contributions

1.1 Problem statement and contributions

1.1.1 Discrete medial axis (transforms)

For humans it is natural to recognize objects by features on their surface, by their

dimensions or whatever is visible of the objects. In contrast, it is much more natural

for algorithms to treat an object O by its skeletal structure, i.e., by its medial axis

M(O), [DZ04, FLM03]. The medial axis has important applications in mesh generation,

object simplification and analysis of an object. Related to this important geometric

shape is the medial axis transform, which is an (infinite) set of balls, centered at M(O),

whose union equals O. A finite approximation, which we call the discrete medial axis

transform, is particularly beneficial for collision detection, Minkowski sum computation,

and approximate medial axis computation, to name only a few.

Groundbreaking work exists to compute a topologically correct discrete medial axis

transform of an object O, which is given by a sample point cloud S. But the sheer

Voronoi approach, as described in [AB99, AK00], is very sensitive to undersampling,

i.e., it works only correctly for r-sampled inputs (see Chapter 3 for details). A second

problem is the high density of the output, which is due to the fact that almost every

input sample point causes a ball in the resulting discrete medial axis transform. A

third problem of the approach is that it (correctly) reproduces the unstable behavior

of the real medial axis transform of O, which leads to small, surface-near balls.

Our contribution includes a labeling method that reliably distinguishes inner from

outer Voronoi vertices, when O is given by a triangular mesh on top of S. This is

much more appropriate in practice, because undersampling, in terms of an r-sampling,

occurs inevitably at sharp edges of O. For the other two problems, namely instability

and high density of the output, we propose a pruning technique. This technique is

based on set-covering, and it extracts a small and stable subset of the initial discrete

medial axis transform, which represents O efficiently. Such a representation of O is a

result by itself, and it can, e.g., be used for collision detection. But it is also particularly

well suited for medial axis computations.

Generally, the response of medial axes to even tiny perturbations on an object’s

surface is unproportional, and we refer to this problem with the term instability. Due

to instability, one is rather interested in reasonably pruned medial axes than in exact

ones. Such approximate medial axes are often computed in two steps: First, a more

or less exact medial axis of O is computed. Then, some pruning criterion is applied

in order to remove its superfluous branches. We have reversed these steps: First we

2



1. Introduction Problem statement and contributions

compute a stable union of balls, which efficiently approximates O. Then we compute

its exact medial axis as approximation of the medial axis of O. We have implemented

the known medial axis algorithm [AK01] to be able to evaluate it in the context of

our toolchain, and it works very well. Parts of this work appeared as a conference

paper [AAH+07].

1.1.2 Surface reconstruction

Given an unorganized set of points S which are sampled from an unknown surface F

in R3, construct a surface through the points in S. This is the classical surface re-

construction problem, which has applications in laser scanning and computer graphics.

Several surface reconstruction approaches exist, e.g., [ACK01, DG06, BC00] and [CL08],

to name a few. Our approach is similar to work in [CL08] in the sense that we also

create balls centered at the sample points S, from which we then retrieve the surface.

In contrast to [CL08] we do not assume prior knowledge of the local feature sizes of S,

but we estimate them using distances from the sample points to the so called pole points

that occur in the mentioned Voronoi approach. Our work distinguishes also substan-

tially from [CL08] in that we prune the surface balls at a selectable degree before we

reconstruct the surface from their union. This way we achieve coarse-to-fine surface

reconstruction. We map the omitted sample points to those participating as vertices in

the reconstructed mesh and call this enhanced mesh a seed polytope of O because it is

intended as a starting point for incremental refinement or reconstruction of O by, e.g.,

triangular Bézier patches.

To the best of our knowledge this is the first result that uses, from a practical point

of view, approximations of local feature size and medial axis to obtain locally adaptive

reconstructions of an unknown surface. We have proven topological correctness of

our work, which involved a number of new proofs on angles and distances related to

local feature size and pole points. We believe that these proofs are by themselves an

important contribution because the mentioned Voronoi machinery has a wide range of

applications. Our results appeared as a conference paper [AAK+09].

1.1.3 Minkowski sums

The Minkowksi sum, also known as the morphological dilation operation, has important

applications. Among them are collision detection, motion planning and offset compu-

tation. However, the Minkowski sum of two non-convex polyhedra in 3D is inherently

3



1. Introduction Structure of the thesis

hard to compute. A common decomposition approach works as follows: Decompose

the two polyhedra into convex parts. Then compute the pairwise Minkowski sums of

these parts, and finally compute the union of the pairwise Minkowski sums. The time

complexity of this approach is O(m3 ·n3), where m and n denote the number of vertices

of the two polyhedra, see [FHW08].

We have developed a novel algorithm that computes Minkowski sums of objects,

which are represented by unions of balls. In a sense, this input is also a convex repre-

sentation, and we follow the described scheme in that we compute pairwise Minkowski

sums of balls. These are, however, much easier to compute. The union of the pairwise

Minkowski sums, whose computation is supported by the power diagram of the balls,

serves as approximation of the Minkowski sum of the original objects. We have imple-

mented our approach, and in comparison with other available software packages our

application scores well with respect to running time and memory consumption.

1.2 Structure of the thesis

In Chapter 2 we review fundamental data structures and algorithms from computa-

tional geometry that we use in our approaches, and we describe a software library that

we use for our applications. In Chapter 3 we first review the Voronoi approach [AK00]

to compute discrete medial axis transforms from r-sampled objects. Then we describe

our hybrid approach of exact and heuristic set-covering methods to prune and stabilize

such sets of balls. Finally, we evaluate our implementation of the medial axis algo-

rithm [AK01] in the context of our toolchain. Chapter 4 treats surface reconstruction

with adjustable level of detail. Thereby, we enhance the above mentioned Voronoi ap-

proach with a number of new theoretical bounds, which enable us to prove topological

correctness of our constructions. In Chapter 5, we cover a novel algorithm for ap-

proximate Minkowski sums, where the input objects are represented by balls. Finally,

Chapter 6 puts the individual algorithms in a more global context and summarizes the

contributions of this thesis.
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Chapter 2

Background

In this chapter we introduce fundamental data structures and algorithms along with

their properties. Among them are triangulations as well as spatial search structures,

and we will refer to them throughout this thesis. As a practice related work, we have

set value on results that are not only provable but are also feasible in practice. Thus

we have implemented most of our approaches. Thereby we relied on the Computational

Geometry Algorithms Library CGAL [CGA], which provides stable implementations of

these algorithms and which we also describe in this chapter.

5



2. Background Introduction

2.1 Introduction

From a scientific point of view, it makes no sense ‘to re-invent the wheel again and

again’. Therefore, some of the data structures that we use for our algorithms, have not

been implemented from scratch. Instead our software makes use of the robust imple-

mentations provided by the Computational Geometry Algorithms Library CGAL [CGA].

Although this thesis is not primary about CGAL, we start with an overview of CGAL

here, because the subsequent descriptions of the fundamental data structures and al-

gorithms will refer to it.

2.1.1 CGAL

The Computational Geometry Algorithms Library is a huge library for geometric al-

gorithms and data structures. Currently, CGAL consists of almost 700 000 lines of

code, and its user and reference manual comprises more than 4 000 pages. There are

also other libraries, which provide adequate implementations for our needs. But CGAL

is open source software, it has a uniform interface and it is supported by an active

community. These advantages make it the best choice for scientific implementations.

The CGAL library is released under different licenses. Our software uses the so

called linear kernel which is under the GNU Lesser General Public License [Fre01],

as well as the packages mentioned in the following, which are under the Q public

license [Tro].

2.1.2 The linear kernel in CGAL

An issue of many implementations of geometric algorithms is computational accuracy.

Floating point arithmetic with limited precision data types like, e.g., in C++ the built-

in data type double, is afflicted with numerical errors. While tiny geometric inaccuracies

introduced by these errors might be acceptable, a program might hang or crash when

it relies on predicates, which are evaluated using inexact arithmetic, because a wrong

result can lead to a wrong decision or it can lead a program into a wrong state.

To achieve robust implementations, we use a so called linear kernel from CGAL. In

CGAL, a kernel consists of a collection of basic geometric objects like points, lines, tri-

angles etc., construction operations like the intersection of two objects, and predicates

like, e.g., orientation tests. CGAL follows the generic programming paradigm, and thus

the used number type can be chosen according to the needs of a specific problem. We

use two different, predefined CGAL kernels for our implementations, and their behavior

6



2. Background Introduction

is determined by nested chains of parametrizations, see Listing 2.1.

Listing 2.1: Parametrization of CGAL Kernels

typedef Filtered_kernel < Simple_cartesian <double > >

Exact_predicates_inexact_constructions_kernel ;

typedef Lazy_kernel <Simple_cartesian <Gmpq > >

Exact_predicates_exact_constructions_kernel ;

As to the Exact predicates inexact constructions kernel : The part that consists of the

template class Simple cartesian, parametrized by the C++ number type double, de-

notes already a simple CGAL kernel. But this kernel uses cheap (and inexact) double

precision floating point arithmetic for both, evaluation of predicates and representation

of objects by cartesian coordinates. To achieve exact evaluation of predicates, one could

parametrize this kernel with a slow multi-precision number type instead of double. But

there is a more efficient way to achieve robustness, which is called arithmetic filtering:

The inexact kernel Simple cartesian<double> is plugged into a Filtered kernel [FS06],

which uses interval arithmetic [BBP01] to detect if a predicate, evaluated with the

inexact number type, is possibly incorrect. In cases where the arithmetic filter fails,

the predicate is re-evaluated with arbitrary-precision rational arithmetic. Thus, the

filtered kernel provides exact predicates although it uses computationally expensive

multi-precision arithmetic (hopefully) only rarely. The major drawback of the Ex-

act predicates inexact constructions kernel is that its constructions are computed with

inexact arithmetic, such that even its exactly evaluated predicates will possibly fail if

they involve constructed objects, like shown in Listing 2.2.

Listing 2.2: Provoking an error in spite of exact predicates

typedef CGAL:: Exact_predicates_inexact_constructions_kernel K;

typedef K:: Point_2 Point;

typedef K:: Line_2 Line;

Line line1(Point (0,0), Point (1 ,2));

Line line2(Point (0,1), Point (1 ,0));

Point p;

assign(p,intersection(line1 ,line2 ));

assert(line1.has_on(p) && line2.has_on(p));

Therefore, in cases where exact constructions are necessary to make our implementa-

tions robust, we use the Exact predicates exact constructions kernel, whose parametriza-

tion is also shown in Listing 2.1. For this kernel, the template class Simple cartesian

7



2. Background Voronoi diagram

is parametrized differently, namely by the class Gmpq, which provides an arbitrary

precision rational number type based on the GNU Multiple Precision Arithmetic Li-

brary [GMP]. Although Simple cartesian<Gmpq> denotes already an exact kernel, it

is, for performance considerations, not used directly. Instead this kernel is plugged into

a Lazy kernel which tentatively uses interval arithmetic for constructions. If later a

filter fails, i.e. a predicate, applied to an object, can not be evaluated safely, then exact

arithmetic is used. The additional cost of this kernel is an increased memory usage as

the history of all construction steps for the inexactly evaluated objects has to be stored.

We refrain from repeating a huge number of details from the manual and refer the

interested reader to [CGA].

2.2 Voronoi diagram

The Voronoi diagram [Aur91] of a set S of points (sites) in R3 is a partition of space into

(possibly unbounded) polyhedral regions, called Voronoi cells. Several types of Voronoi

diagrams - depending on the underlying metric - exist, and the most common one is

the euclidean nearest site Voronoi diagram to which we refer in this thesis whenever we

use the term Voronoi diagram. Let d(a, b) denote the euclidean distance between the

two points a and b in R3. In the Voronoi diagram V(S) of S, each site si ∈ S has an

associated Voronoi cell v(si) which consists of all points of R3 having si as their nearest

site:

v(si) = {p | d(p, si) ≤ d(p, sj), si, sj ∈ S}

These Voronoi cells are convex, and there is exactly one cell for each site s ∈ S, which

is infinite iff s is an element of the convex hull of S. A remarkable property of the

Voronoi diagram is its duality to the Delaunay triangulation: In CGAL, 3D Voronoi

diagrams can not be computed explicitly. Instead, the Delaunay triangulation DT of

the input points must be computed, and the elements of the Voronoi diagram can then

be retrieved as the dual elements of DT as described in Section 2.3.

Concerning the complexity of the Voronoi diagram, let n be the number of points

in S. Then each of the n regions of V(S) can share a Voronoi facet with the other n−

1 regions. In R3 worst case configurations of S exist (see [DV77]) that enforce the

maximum number of
(
n
2

)
facets in V(S), so the complexity in R3 is O(n2). However,

Dwyer [Dwy89] showed that the expected size of V(S) in Rd is O(n) if S is a random

point set uniformly distributed in the unit ball. In our setting, the sites are points from

the boundary of three-dimensional objects, and from an empirical point of view, both

8



2. Background Delaunay triangulation

the size of their Voronoi diagrams as well as the computational runtime, behave also

linear.

2.3 Delaunay triangulation

The Delaunay triangulation DT(S) [Aur91] of a point set S is the dual diagram of

the euclidean nearest site Voronoi diagram of S. In R3, each m-face of one diagram

corresponds to an n-face of the other diagram, such that m + n = 3 holds:

• Delaunay tetrahedron ⇔ Voronoi vertex

• Delaunay facet ⇔ Voronoi segment

• Delaunay segment ⇔ Voronoi facet

• Delaunay vertex ⇔ Voronoi cell

There is an implementation for Delaunay triangulations in CGAL, and CGAL provides

so called circulators (which are basically iterators that work in a circular fashion) that

can be used to traverse the elements of DT(S) conveniently in order to compute their

dual elements in V(S). For example, the Voronoi facet fV which is dual to a Delaunay

edge eD can be computed by retrieving all Delaunay tetrahedra incident to eD and

computing their circumcenters which are just the vertices of the facet fV .

Along with the duality to the Voronoi diagram, one of the most remarkable prop-

erties of the Delaunay triangulation is its empty-sphere property. The circumsphere of

each tetrahedron in DT(S) is empty, i.e., no point of S is contained in the circumsphere

of any tetrahedron of the Delaunay triangulation. We will use this property later on in

many of our proofs and constructions.

2.4 Power diagram

A power diagram [Aur88] is a generalized Voronoi diagram, computed on top of a set

of weighted points Sw = {(pi, wi)|i = 1, · · · , n}, where pi denotes a point site and wi is

its weight. Let

π((pi, wi), (pj , wj)) = ‖pi − pj‖
2 − wi − wj (2.1)

denote the power distance of two weighted points si = (pi, wi) and sj = (pj , wj). The

power diagram of Sw is a partition of space into a collection of possibly unbounded
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2. Background Regular triangulation

polyhedral cells, defined by

cell(si) = {x ∈ Rd |π(x, si) ≤ π(x, sj), si and sj ∈ Sw}

The Voronoi diagram can be seen as a special case of power diagrams where all weights

are 0. But unlike in Voronoi diagrams, cells of a power diagram do not need to contain

their weighted site, and moreover, sites do not need to have non-empty cells at all.

Power diagrams have remarkable properties with respect to unions of balls, because

balls can be interpreted as weighted points, see Chapter 5.

As in the case of the Voronoi diagram, CGAL does not support explicit computation

of the power diagram. Instead, the power diagram must be derived from its dual

diagram, which is a regular triangulation, see Section 2.5.

2.5 Regular triangulation

Like the Delaunay triangulation of an unweighted point set S is dual to the Voronoi

diagram of S, a regular triangulation of a weighted point set Sw is dual to the power

diagram of Sw. In R3, a subset T ∈ Sw with |T | = 4 forms a tetrahedron of the

regular triangulation of Sw, iff there is an unweighted point x ∈ R3, such that the

power distance of x with respect to the points in T is equal and minimal with respect

to the points in Sw \T . Unlike in Delaunay triangulations, possibly only a subset of Sw

is involved in its regular triangulation. The Delaunay triangulation is a special case of

regular triangulations, where all weights are 0.

In CGAL, the power diagram of Sw can be computed from the regular triangulation

of Sw using the duality already described in Section 2.3.

2.6 Weighted α-shape

The weighted α-shape, [Ede92], Aα(Sw) of a set of weighted points Sw in R3 is a

polytope in R3, that is uniquely defined by Sw and a value α ∈ R. Consider a subset T ⊆

Sw with |T | = k + 1 ≤ 3. T spans a k-simplex σT , which is called α-exposed if there

exists a weighted point (q, α) such that (see Equation 2.1)

π((p, w), (q, α))





= 0 ∀(p, w) ∈ T

> 0 ∀(p, w) ∈ Sw \ T

The boundary of Aα(Sw) is the union of all α-exposed simplices spanned by subsets

of Sw (Definition adapted from [Ede92]). Only the weighted zero α-shape, i.e., the
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weighted α-shape for α = 0, is used in this thesis, and we will, for short, denote A0(Sw)

by A(Sw).

2.7 kd-tree

A kd-tree [Ben75] is a binary tree that organizes a set of k-dimensional points such that

geometric queries can be performed efficiently. It subdivides Rk into axis aligned cells.

The root node of the tree consists of a cell which encloses all points. It is recursively

split by a hyperplane orthogonal to its longest coordinate axis at the median of the

data, and the two new cells are the sons of the node that has been split. The subdivision

is stopped as soon as the number of data points in a cell is below a certain threshold.

There are several variants of such trees, and they vary with respect to the splitting rule

(where to split), the choice of the coordinate axis (one can cycle through the coordinate

axes or always choose the longest one) and the abort criterion, i.e. the threshold or

bucket-size. kd-trees can be built in O(n · log(n)) time, and they require O(n) memory.

We use CGAL’s kd-tree in Chapter 3 when we perform spherical range queries, i.e.

when we search for points being contained in a certain sphere.

2.8 Skin surfaces

The algorithms described in this thesis treat objects by unions of balls. But sometimes it

might be desirable to convert intermediate results or the final output of our software to

triangular meshes. Fortunately, the so called Skin Surface package [Kru09] is contained

in CGAL, which allows to compute from a given set of balls a triangular mesh which

approximately represents the boundary of its union. We believe that the possibility to

do such ball-to-mesh conversions greatly enhances the value of our techniques.
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Chapter 3

Medial Axis Transforms and

Medial Axes

3.1 Motivation

It is simple and intuitive to describe a three-dimensional object O by its boundary,

e.g., by a polygonal mesh. This representation is beneficial for visualization, but fur-

ther processing with O often requires adapted representations. Collision detection,

for example, is faster with octree or sphere-tree representations [BO04]. Similarly, a

number of other algorithms takes advantage of a representation which approximates O

by the union of a set of balls, the so-called discrete medial axis transform DMT(O).

Aside from collision detection we have fast Minkowski sums, medial axes and surface

reconstruction in mind. Nevertheless, algorithms using this kind of representation are

hardly seen in practice because it is hard to compute a stable set DMT(O) with low

cardinality.

Medial axes are important shapes in computational geometry and computer graph-

ics as they allow for object simplification, mesh generation and analysis of an object.

But instability is inherent to medial axes in the sense that they respond unproportion-

ally to insignificant features of the object surface. Thus, one is rather interested in

stable approximations [DZ04, FLM03].

We propose a practically approved approach to compute a stable and small discrete

medial axis transform from a boundary triangulated object O. This result enables us

to compute stable, piecewise linear approximations of the medial axis of O with the

algorithm [AK01] as demonstrated in this chapter.
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3. Medial Axis (Transforms) Introduction

3.2 Introduction

The continuous medial axis transform MT(O) of an object O is an infinite set of balls,

whose union is just O, see Definition 3.1. These balls are medial balls, i.e., they are

centered at the medial axis M(O). Unfortunately, a large fraction of M(O) typically

consists of branches which correspond to insignificant features or even noise on the

surface of O. In MT(O), this unstable behavior is expressed by many small, surface-

near balls which describe the same insignificant features.

The first goal described in this chapter is to replace MT(O) by a finite set of

balls DMT(O), whose union approximates O. We started to tackle the problem with the

theoretically well founded work [AB99, ACK01] to which we refer as Voronoi approach.

The Voronoi approach yields such a set DMT(O) from a dense point sample S of O,

see Definition 3.2. But in practice we faced several difficulties with the original Voronoi

approach. First of all, the Voronoi approach requires an r-sample of a smooth object

as input, and it does hardly work properly otherwise. Our extension to overcome

this issue is of a practical nature. Our implementation takes a triangular mesh τ as

input, see [AAH+07]. The mesh allows our variant to work correctly even if S (which

consists of the vertices of τ in our case) is not r-sampled. The second problem of the

Voronoi approach is over-density. As observed in practice, the cardinality of DMT(O)

is always in the range of |S|, and thus DMT(O) is much more dense than required in our

setting. Finally, the key problem of the original Voronoi approach is the high accuracy

by which it models the unstable behavior of MT(O). Thus, DMT(O) contains many

small, surface-near balls to which we refer as unstable balls. Several pruning criteria

have been proposed to eliminate the unstable balls from DMT(O), [SFM07, SAAY06,

FLM03, SB98]. But still the question remains open how to lower the density of the

stable balls of DMT(O).

We propose a natural pruning scheme, based on set covering, to tackle two problems

at once, instability and over-density of DMT(O). Thereby we generate from DMT(O)

a new set DMT+
in of slightly enlarged balls which covers S redundantly. Then we choose

from DMT+
in a preferably minimal subset DMT∗

in which still covers S. This is an in-

stance of the classical set covering problem. The set covering aims to minimize |DMT∗
in|.

To this end it must prefer balls which are centered near stable parts of M(O) because

they cover larger subsets of S than unstable balls. Thus the goal of stabilization is

implicitly reached. In this approach, the degree of pruning can be chosen via the ball

enlargement. Low density and stability make DMT∗
in an ideal input for the elegant
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3. Medial Axis (Transforms) Definitions and notation

medial axis algorithm [AK01] which operates on unions of balls. We have implemented

this algorithm to demonstrate the potential of our novel method to stabilize medial

axes.

The rest of this chapter is organized as follows: In Section 3.3 we recall funda-

mental definitions and introduce the used notation. Section 3.4 deals with the original

Voronoi approach. In Section 3.5 we describe two different methods to compute DMT+
in

in a topologically correct way. In Section 3.6 we describe our hybrid technique of ex-

act and heuristic set covering methods. Moreover a post-processing step that ensures

topological correctness of DMT∗
in is described. In Section 3.7 we shortly sketch the

algorithm [AK01]. Section 3.8 covers important details of our implementation. Finally,

in Section 3.9 we use three different models to demonstrate how our constructions work

in practice.

3.2.1 Related work

Aside from the already mentioned related work from Amenta et al. [AB99, ACK01,

AK01], we are aware of [BO04]. In this work, sphere-trees for hierarchical collision

detection are constructed. The authors use set covering implicitly and they do not

create balls via poles. In contrast we develop the set covering approach systematically

and for a different goal, namely to stabilize medial axes. Thereby we we achieve more

efficient and topologically correct representations. Therefore we claim that set covering

for medial axis stabilization is a new contribution.

3.3 Definitions and notation

Let O denote a bounded set in R3, and denote with F its boundary. We will assume

that F is a connected set. The definitions below are standard in the literature; see,

e.g., [BT06].

Definition 3.1.

• The medial axis transform, MT(O), of O is the (infinite) collection of maximal

balls that avoid F , where maximality is with respect to ball inclusion.

• The medial axis, M(O), of O is the set of centers of the balls in MT(O).

The surface F splits M(O) and MT(O) in their inner and outer parts. M(O) behaves

unstable in the sense that it responds unproportionally to even tiny features of F . The
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3. Medial Axis (Transforms) Discrete medial axis (transform)

corresponding medial axis transform MT(O) expresses this instability by describing

those tiny features by surface-near balls.

Definition 3.2.

• The local feature size lfs(x) of a point x ∈ F is the minimum distance from x to

any point of M(O).

• A finite point set S ⊂ F is an r-sample of F if every point x ∈ F has at least

one point s ∈ S within distance r · lfs(x).

• The Voronoi diagram of a finite set S of points in R3 is a partition of R3 where

each point si ∈ S has its associated Voronoi cell

V (si) = {x ∈ R3 : ‖x − si‖ ≤ ‖x − sj‖ , si, sj ∈ S}

• For a (sample) point set S ⊂ F , the two vertices of a Voronoi cell V (si) being

farthest away from si ∈ S on either side are called the poles of V (si).

The notions of r-samples and poles have been introduced by Amenta and Bern

in [AB99]. Throughout this paper, we assume that S is an r-sample of F for r = 0.08.

3.4 Discrete medial axis (transform)

For practical purposes, it is beneficial to compute a finite subset of MT(O). We will

refer to such a subset as a discrete medial axis transform, DMT(O), of O. The medial

axis of the union of all the balls selected for DMT(O) is called the discrete medial

axis, DM(O), of O. It is well known that DM(O) is a piecewise linear object that can

be constructed efficiently once the set DMT(O) is given [AM97, AK01, GMP07].

In [AK00], Amenta and Kolluri describe a Voronoi diagram based approach to

compute such a discrete medial axis transform which works as follows. Let S denote

some set of sample points from F . First, the Voronoi diagram of S is computed from

which all pole points are extracted. Then the discrete medial axis transform DMT(O),

consisting of so called polar balls, is constructed. A polar ball is a ball centered at some

pole point p, and its radius is the euclidean distance between p and the related site s ∈ S.

The surface F of the object represented by S splits the set of polar balls into two parts,

where the inner part approximates the object and the outer part approximates its

complement. As shown in [AK00], the inner part, DMTin, is homeomorphic to the
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original object O, provided S is an r-sample of O (for suitable r). This implies that the

corresponding discrete medial axis, DMin, is homotopy equivalent to O. Pole points

are labeled as inner or outer poles according to an angle criterion which works for

r-sampled objects. As an alternative [AAH+07], an additional triangular mesh on top

of S can be used, in order to overcome labeling problems if S fails to be an r-sampling,

for example, when F contains sharp edges or is poorly sampled and noisy.

By construction, each Voronoi vertex is either not a pole point, or it is a pole point

for k sample points with 1 ≤ k ≤ 4 in the non-degenerate case, which implies

|S|

4
≤ |DMTin| ≤ |S| .

From computations with real data sets we know that |DMTin| is typically almost |S|.

Thus, DMTin is very dense and, moreover, as it approximates the inner part of the

medial axis transform MTin(O), it features the same instability.

3.5 Ball enlargement

We additively enlarge the radii of the balls bi in DMTin by small values εi > 0 and refer

to the set of enlarged balls as DMT+
in. The size of εi controls the degree by which DMT+

in

will be pruned in the subsequent set covering step. Note that multiplicative enlargement

is an option as well, but the choice for additive enlargement reflects our intention

that noise and small features should have the same (in-)significance everywhere on F .

Whatever method is chosen, εi can not be made arbitrarily large, because we demand

the unions of the balls in DMTin and DMT+
in, respectively, to have the same topology.

Denote with DMin (and DMout) the medial axis of the union of all the balls in DMTin

(and DMTout).

3.5.1 Pole method

As a necessary topology condition, balls from different sides of DMout must not inter-

sect. To this end, we compute for each ball b ∈ DMTin a bound on its radius enlarge-

ment such that b still avoids DMout. We start with a technical lemma. Recall that an

r-sampling S of the object boundary F is available.

Lemma 3.3. Let bp,ρ′ ∈ DMT+
in be a ball with radius ρ′, centered at an inner pole

point p. For every point y ∈ DMin ∩ bp,ρ′ the line segment py intersects F in at least
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Figure 3.1: Topological correctness

one point x, and the distance between p and the closest sample point sj ∈ S of x is

‖sj − p‖ ≤
1 − r

1 − 2.2802 · r
· ρ′ <

r≤0.08
1.126 · ρ′

Proof. Because S is an r-sampling of F , we have

‖sj − x‖ ≤ r · lfs(x) .

Due to the Lipschitz-continuity of local feature sizes [AB99, Lemma 1], we know

lfs(x) ≤
lfs(sj)

1 − r
.

This combines to

‖sj − x‖ ≤
r

1 − r
· lfs(sj) .

Let D̂(sj) denote the distance from a sample point sj to its closest pole point. In [AAK+09],

Lemma 5.1, we prove an upper bound for the local feature size of sj , namely lfs(sj) ≤

1.2802 · D̂(sj). Thus

‖sj − x‖ ≤ 1.2802 ·
r

1 − r
· D̂(sj) . (3.1)

As y is contained in bp,ρ′ and x lies on the segment py we have

‖p − x‖ ≤ ρ′ .

17



3. Medial Axis (Transforms) Ball enlargement

By the triangle inequation (see Figure 3.1) we now get

‖sj − p‖ ≤ ‖p − x‖ + ‖sj − x‖

≤ ρ′ + 1.2802 ·
r

1 − r
· D̂(sj)

≤ ρ′ + 1.2802 ·
r

1 − r
· ‖sj − p‖ ,

‖sj − p‖ ≤
ρ′

1 − 1.2802 · r
1−r

=
1 − r

1 − 2.2802 · r
· ρ′ .

The next lemma uses the bound developed in Lemma 3.3 to define a critical range

around each polar ball in which we consider the contained sample points.

Lemma 3.4. Let bp,ρ′ ∈ DMT+
in be a ball with radius ρ′, centered at an inner pole

point p. Let S′ = {s ∈ S : ‖s − p‖ ≤ 1.126 · ρ′} and let D̂(si) denote the distance

from si ∈ S′ to the closest pole point of si. Then bp,ρ′ ∩ DMout = ∅ if

ρ′ < min
si∈S′

(‖p − si‖ + (0.817 − 1.2802 ·
r

1 − r
) · D̂(si)) (3.2)

Proof. To obtain a contradiction, we assume that bp,ρ′ ∩ DMout 6= ∅ and let y be

the closest point of bp,ρ′ ∩ DMout to p. We have the same setting as in the proof of

Lemma 3.3: There is a point x ∈ F where py intersects F , and as shown in Equation 3.1,

the distance to its nearest pole point sj is bounded by

‖sj − x‖ ≤ 1.2802 ·
r

1 − r
· D̂(sj) . (3.3)

By assumption, ‖p − y‖ ≤ ρ′, and the points p, x and y are collinear, so we get

‖x − y‖ ≤ ρ′ − ‖p − x‖ .

By the triangle inequation (see Figure 3.1) we have

‖x − y‖ ≤ ρ′ − ‖p − sj‖ − ‖sj − x‖

≤ ρ′ − ‖p − sj‖ .

Substituting ρ′ from Equation 3.2 we get

‖x − y‖ ≤ min
si∈S′

(‖p − si‖ + (0.817 − 1.2802 ·
r

1 − r
) · D̂(si)) − ‖p − sj‖ .

18



3. Medial Axis (Transforms) Ball enlargement

As D̂(si) ≤ ‖p− si‖, the point si which minimizes min
si∈S′

(‖p− si‖+ (0.817− 1.2802 ·

r
1−r

) · D̂(si)) is the one which realizes min
si∈S′

‖p − si‖. Thus ‖p − si‖ ≤ ‖p − sj‖ and we

can write

‖x − y‖ < (0.817 − 1.2802 ·
r

1 − r
) · D̂(sj) .

Together with Equation 3.3 we have

‖x − y‖ < 0.817 · D̂(sj) − ‖sj − x‖ . (3.4)

In [AAK+09], we introduce the discrete local feature size l̃fs(s) of a sample point s

as its distance to the closest point of the discrete medial axis DM(O) and prove

that l̃fs(s) ≥ 0.817 · D̂(s). By the triangle inequation we have

‖sj − y‖ ≤ ‖sj − x‖ + ‖x − y‖

We substitute Equation 3.4 and get

‖sj − y‖ < ‖sj − x‖ + 0.817 · D̂(sj) − ‖sj − x‖

‖sj − y‖ < 0.817 · D̂(sj) .

This is a contradiction, because l̃fs(sj) ≥ 0.817·D̂(s), and thus the lemma is proven.

Corollary 3.5. By Lemma 3.4, we can determine for each polar ball bp,ρ a new ra-

dius ρ′ > ρ, such that the enlarged ball bp,ρ′ does not intersect DMout.

Ensuring that DMout and DMT+
in remain disjoint will give correct results in practice.

However, we can construct examples where DMT+
in defines holes and tunnels that are

not present in DMTin even if this condition is maintained. To overcome this problem, we

can, as an alternative, utilize the power diagram, PD(DMTin), of the balls in DMTin.

3.5.2 Power diagram method

PD(DMTin) is the power diagram [Aur88] of the set of weighted points that we get by

considering the centers of the balls in DMTin and weighting them by their squared radii.

This diagram contains a (possibly empty) polyhedral cell for each weighted point. For

the corresponding ball, exactly those parts which contribute to the union of all the balls

in DMTin are contained in this cell. The diagram does not change when the weights

of all its points are additively enlarged by the same value. If we enlarge the respective

balls in this manner, topological changes for DMTin will occur only if a group of balls
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(of size two, three, or four, in the non-degenerate case) gets mutually in touch. But

using only this property would lead to lots of false positives, as such new intersections

occur also frequently within the union of the balls to be enlarged, which then do not

harm.

Definition 3.6. Let f be a face (facet, edge, or vertex) of PD(DMTin), and consider

the intersection, g(f), of f with its dual face (edge, triangle, or tetrahedron) in the

corresponding regular triangulation. If g(f) 6= ∅ then we call this point the Gabriel

point of f . We say that g(f) is critical if g(f) is not contained in any ball from DMTin.

If we enlarge the balls in DMTin as described above, then the critical Gabriel points

are just the points where a face is touched first (and simultaneously) by its defining

balls. We use this property for a growing algorithm which constructs DMT+
in as follows.

Step 1 Compute PD(DMTin) and its set G of critical Gabriel points.

Step 2 Enlarge all weights additively by a common value, such that G and the

enlarged set of balls remain disjoint. If the enlargement meets the user’s choice, we

output the current set as DMT+
in. Otherwise, we continue with the next step.

Step 3 Let g ∈ G denote the point which has stopped the enlargement in Step 2.

We keep the (at most four) balls associated to g at constant size for the rest of the

algorithm, and remove their cells from the power diagram. (The set G of Gabriel points

is kept unchanged.)

Continue with Step 2.

Concerning the correctness of the algorithm, note that ceasing the growth of balls

cannot cause undetected intersections. Moreover, it is not necessary to increase G with

additional critical Gabriel points that would stem from updating the power diagram

after deletion of ceased balls: Such points have to lie in the interior of initial power

cells, and thus are never touched prior to points already in G.

Observe that Gabriel points on power facets prevent new tunnels from being created,

whereas Gabriel points on power edges prevent existing tunnels from disappearing, and

new holes from appearing. Finally, Gabriel points at vertices of the power diagram

ensure that no already existing hole is covered.
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Procedure GreedySetcover ing

DMT∗

in = ∅

while (S 6= ∅)

{

Let˜bi ∈ DMT+

in be a b a l l which maximizes˜|bi ∩ S|

DMT∗

in = DMT∗

in ∪ bi

S = S \ bi

}

Listing 3.1: Simple greedy set covering algorithm

3.6 Pruning the set of balls

Our next goal is to extract a (preferably minimal) subset DMT∗
in ⊂ DMT+

in such that

the balls in this subset still cover all sample points in S. This is an instance of the well

known set covering problem. The general set covering problem is NP-hard [Kar72].

The input from our specific setting might be easier, but exact computations for more

than 400 balls are unlikely to finish within reasonable time, while we need solutions for

a thousand times that many.

There is a standard greedy heuristic which computes approximate solutions, see

Listing 3.1. This algorithm comes with a theoretically best-possible approximation

guarantee, stating that the output is at most H(k) times larger than the optimal

solution, where k is the number of covering sets (balls in our case) and H(k) ≤ ln k +1

is the k-th harmonic number.

We have implemented an elaborate combination of exact and heuristic methods

which computes not only an approximate solution for the set covering problem, but

also an upper bound on its overhead compared to the optimal solution. We obtain

significantly better results than with the simple greedy algorithm; see Section 3.9.

3.6.1 Set covering

For the subsequent set covering step, we first transform geometric properties into com-

binatorial information. We compute a so-called covering matrix C, which is an (k×n)-

matrix with k = |DMT+
in| and n = |S|. For a ball bi ∈ DMT+

in and a sample point sj ∈ S,

the entry in C is defined as

ci,j =





1 if sj ∈ bi

0 otherwise.
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C can be computed within reasonable time using an efficient spatial search structure

based on kd-trees. Typically C is quite sparse, but the number of 1-entries in the matrix

depends not only on the amount of enlargement of the balls, but also on geometric

properties of the object O to be approximated. As an extreme case, when O is a ball

itself, we will get a matrix of ones, even for tiny enlargements. Fortunately, excessive

memory consumption can nevertheless be avoided using certain reduction rules.

The covering matrix C is likely to contain redundancy, in the sense that after

its removal the reduced problem still grants an optimal solution. There are three

reduction rules that are standard in the field of FPGA design, see [CMF93], where logic

minimization of boolean functions involves set covering. We say that a row (column)

dominates another one if it includes the same 1-entries.

• If row i is dominated by row k, then row i (ball bi) can be deleted from C because

all points covered by bi are also covered by ball bk.

• If column j dominates column ℓ, then column j can be deleted from C because

every solution that covers point pℓ will cover point pj as well.

• If column j has a single 1-entry, e.g., in row i, then this row can be deleted

from C. Ball bi is necessarily contained in any solution, and is marked as part of

the result.

These reduction rules are applied iteratively as long as they are successful. In our

experiments, the number of 1-entries in C is significantly reduced after this step.

3.6.2 Exact partial solutions

We continue with integer programming (IP) in order to keep optimality as long as

possible. Let x = (x1, . . . , xk) where k = |DMT+
in|. The IP formulation for the set

covering problem is

min
∑

xj w.r.t. CT · x ≥ (1, . . . , 1)T , xj ∈ {0, 1}. (3.5)

Although integer programming is NP-hard, moderately sized problems can be solved

with a branch-and-bound technique; see [LPS]. After reduction according to the rules

above, we split our data into independent parts (submatrices) Ci of C, where indepen-

dency is given by the connected components of the corresponding bipartite incidence

graph between points and balls. Parts Ci being small enough are then solved exactly

and removed from C, and the balls associated with the (optimal partial) solution vec-

tor x are marked as such.
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DMT+

in

Reduction

Success?

Decomposition

Integer Progr.

Finished?

Greedy Pick

DMT∗

in

n y

n y

Figure 3.2: Control flow of the set covering algorithm

3.6.3 Greedy selection

Whereas up to this point optimality is kept, we have to use a heuristic method to

continue. For each independent submatrix Ci of C that has resisted the reduction rules

and integer programming, we select one row containing a maximum number of 1-entries

among the rows belonging to Ci. The balls associated to these rows are marked as part

of the solution and the rows are removed from C. After such a selection in a greedy

manner, the reduction rules from Subsection 3.6.1 are applied again, which, as observed

for our data, again significantly reduces the number of 1-entries in C. Afterwards, it

is likely that new small independent parts do exist, and integer programming from

Subsection 3.6.2 is applied to them again.

We repeat this process until C is empty, at which time DMT∗
in is completed. That

is, the union of the sets of points contained in the balls from DMT∗
in is exactly S.

Control flow of our hybrid algorithm of exact and heuristic methods is schematically

depicted in Figure 3.2.

3.6.4 Overhead

Optimal solutions cannot be computed for large set covering instances, and the approx-

imation guarantee of heuristics is unlikely to be improvable beyond a logarithmic factor

in polynomial time [Fei96]. Therefore we want to determine the maximum overhead

that is contained in the approximate solutions computed by our hybrid algorithm. One
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way to calculate such a lower bound is to solve the linear program in Equation 3.5

under the relaxation xj ≥ 0. Clearly, this gives a lower bound of

|Bopt| ≥ ⌈
∑

xj⌉

for the optimal solution Bopt. However, even after redundancy removal (see Subsec-

tion 3.6.1) this method takes a considerable amount of time, and using the software

lpsolve [LPS] we were not able to compute lower bounds for large inputs (see Sec-

tion 3.9). We therefore give two alternative methods where bounds on the overhead

are easy to obtain.

Lemma 3.7. If the hybrid algorithm chooses g of the balls in DMT∗
in a greedy fashion

(as in Listing 3.1), then

|DMT∗
in| ≤ Bopt + g.

Proof. After the last greedy pick, bg, let B′ be the set of balls still to choose from.

Assume that the optimal solution for B′ uses m balls. Taking no more greedy picks, our

algorithm solves B′ ∪ {bg} with m + 1 balls, whereas the optimal solution for B′ ∪ {bg}

uses at least m balls. The lemma follows by induction.

To get another bound, consider any set B of balls which cover S. For a ball b ∈ B

put α(b) = |b ∩ S|. Further, for a point s ∈ S, define its share as

share(s) =
1

maxs∈b∈B α(b)
.

Let b(s) be a ball that achieves maxs∈b∈B α(b). Under the (ideal) assumption that B is

a disjoint covering of S (and hence covers each element s with ball b(s) alone), share(s)

expresses the amount that s contributes to |B|. Thus, for any solution B, we have the

lower bound
⌈ ∑

s∈S

share(s)
⌉
≤ |B|.

Let now B′′ denote the set of balls being selected in the optimality keeping initial

steps (i.e., before the first greedy pick). Clearly, the size of the optimal solution

for DMT+
in \ B′′ differs from that for DMT+

in by exactly |B′′|. If we fix the shares

for the elements in S with respect to the set DMT+
in \ B′′, then the following holds.

Theorem 3.8. The overhead in the selected set DMT∗
in of balls is at most

|DMT∗
in| − |B′′| −

⌈ ∑

s∈S

share(s)
⌉
.
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3.6.5 Keeping the topology

In most cases, the unions U(DMT∗
in) and U(DMT+

in) share the same topology, but there

is no guarantee. In our experiments we have occasionally observed topological errors

in U(DMT∗
in), especially when the sampling quality of S was poor.

Let BR = DMT+
in \ DMT∗

in be the set of balls that have been removed during the

pruning step. We can post-process DMT∗
in with an algorithm that detects topological

errors and repairs them by returning balls from BR. The principal idea of our reparation

approach is: If the topology of a union of balls changes due to removal of balls, then

adding those balls to the pruned set of balls will change the topology of its union again.

Five topological changes are conceivable when balls are added:

E1) An existing hole can disappear

E2) A new hole can appear

E3) A tunnel can disappear

E4) A new tunnel can appear

E5) Disconnected parts can get connected

Let X denote the set of all circular edges and vertices of the boundary of U(DMT∗
in).

Each edge in X is defined by two intersecting balls from DMT∗
in. Likewise, each vertex

in X is defined by the common intersection of (at least) three balls. We call an edge or

vertex x ∈ X a critical intersection with respect to a certain ball b, if x∩ b 6= ∅ and the

center of b is not contained in all balls by which x is defined. Let us assume that b ∈ BR

is a ball which, when it is added to DMT∗
in changes the topology of U(DMT∗

in). We treat

all cases that can possibly occur (Note that our algorithm updates X upon insertion of

balls, as later described in Listing 3.2):

• ad E1: If b closes a hole, then b covers a vertex x ∈ X which is critical with

respect to b, because the center of b can not lie within all balls whose boundaries

form the hole.

• ad E2 and E3: If b generates a hole or interrupts a tunnel then b intersects a

subset R ∈ DMT∗
in whose union contains at least one tunnel, i.e. the balls in

R have no common intersection. The consecutive intersections of the balls in R

form circular arcs (edges) in X of which at least one is critical with respect to b.
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Function TopologyRepair (DMT+

in ,DMT∗

in )

{

BR = DMT+

in \ DMT∗

in

BT = DMT∗

in

X = getBoundaryIntersections(BT ) // . . . from the power diagram of BT

for each b ∈ BR

{

i f ( (b has c r i t i c a l i n t e r s e c t i o n s in X ) OR

( i n s e r t i o n o f b gene ra t e s c r i t i c a l i n t e r s e c t i o n s ) )

{

DMT∗

in = DMT∗

in ∪ b

return TopologyRepair (DMT+

in ,DMT∗

in ) // r e s t a r t the procedure

}

BT = BT ∪ b

X = getBoundaryIntersections(BT ) // . . . from the power diagram of BT

}

return DMT∗

in

}

Listing 3.2: Topology verification and reparair

• ad E4 and E5: If inserting b reverses disconnectedness or generates new tunnels,

then b connects two previously ’locally disjoint’ components. Therefore, inserting

b generates two ore more new elements in X , at least one of which is critical with

respect to b.

Listing 3.2 describes the algorithm to detect possible topological errors in U(DMT∗
in)

and to repair them by returning balls. Note that this algorithm might yield a few

false positives, i.e. it might return balls which are not essential for correct topology,

but they do not harm, though. However, such false positives are unlikely because the

balls under consideration intersect deeply. If two balls of the unpruned set DMT(O)

define an edge on the boundary of the union U(DMT(O)), then they intersect at least

at 120◦ as shown in Lemma 4.10. We have analyzed the intersection angles of the

discrete medial axis transform of the oilpump model from Section 3.9. This model is

not r-sampled, but the Lemma remained true for most of the angles, see Figure 3.3(a).

For a heavily pruned version DMT∗
in (where only every 220th ball was kept), the occur-

ring intersection angles were still good, see Figure 3.3(b). We have not implemented

this post-processing algorithm because—for reasonable sampling quality—the pruning

works flawlessly without, as observed in our experiments.
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(a) Oilpump, |DMT(O)| = 560928 balls,

min=4.51◦, max=179.98◦, avg=168.67◦
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(b) Oilpump, |DMT∗

in| = 2546 balls,

min=7.40◦, max=178.88◦, avg=118.03◦

Figure 3.3: Histograms of ball intersection angels at the boundary of a union of balls

as observed in our experiments with the oilpump model from Section 3.9.

3.7 Computing the medial axis

After generating, enlarging, pruning, and post-processing the set of balls in order to get

a suitable discrete medial axis transform DMTfin of the input object O, it just remains

to compute the medial axis of the union of the balls in DMTfin. This medial axis is

guaranteed to be homotopy equivalent to O. Moreover, it has a particularly beneficial

structure, as it consists of piecewise linear primitives, which can be computed exactly.

An algorithm for doing so has been described in [AM97, AK01]. We refrain from

repeating the details in these papers and only give a short overview.

• Compute the dual graph of PD(DMTfin), which is a regular triangulation RT ;

see Figure 3.4(a).

• Consider the union of the balls in DMTfin, and compute the Voronoi diagram V

of the vertices of this union; see Figure 3.4(b).

• Extract the weighted zero alpha shape A of DMTfin, using A ⊆ RT . Split A into

its singular (not full-dimensional) part S and its regular part R; see Figure 3.4(c).

• Output the medial axis of DMTfin, which is S ∪ (R ∩ V); see Figure 3.4(d).
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We have implemented this algorithm. Examples and running times are presented

in Section 3.9.

(a) A regular

triangulation on top

the weighted points

(balls) in DMTfin

(b) Voronoi

diagram V of the

vertices of the union

of DMTfin

(c) Weighted zero

alpha shape A,

consisting of a

regular part R (blue)

and a singular part S

(green)

(d) The medial axis

of DMTfin, consisting

of S ∪ (R ∩ V)

Figure 3.4: Medial axis algorithm

3.8 Implementation details

3.8.1 Matrix storage model

Let k = |DMT+
in| and n = |S|. By construction, each Voronoi vertex can be a pole

point for up to four sites from S. Therefore, k ≤ n holds, although in practice k is

always in the range of n, as observed in our computations. For practical purposes, it

(a) Dragon, 71720 triangles (b) 3Cross, 107136 triangles (c) Oilpump, 1140049 and

350000 triangles, respectively

Figure 3.5: The three input models
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is convenient to regard the (k × n) covering matrix C, introduced in Section 3.6.1, as

a (n×n) matrix, and we simulate the n−k rows by duplicating the balls which belong to

more than one sample point. This way C becomes a quadratic, non-symmetric binary

matrix. A fundamental question of the set covering implementation was to choose the

right storage model for C. We had to account for the following requirements:

1. C can get huge, i.e. it can consist of a million lines and rows but it is typically only

sparsely populated by non-zero elements, so a sparse storage model is required.

2. The row reduction rule of our approach frequently needs to check if a row of C is

a subset of another row, so fast access to only its non-zero elements is required.

3. The column reduction rule frequently needs to check if a column of C is a superset

of another column, which requires fast access to only its non-zero elements.

No program library supported all requirements, so we had to implement our own matrix

representation class. In the following, we refer by the term STL-set to the container

set of the C++ Standard Template Library. This container stores its contents in

a balanced binary tree, such that the time consumption for the operations find and

remove is logarithmic in the container size.

We store the rows of C in a collection of STL-sets as follows: For i = 1, · · · , n

the STL-set Ri stores the indices of all columns of C, that contain a non-zero entry

in the ith row. By its own, this scheme accounts for the requirements 1 and 2, but

it leaves requirement 3 unconsidered. Hence, to answer the question if column j1 is

a superset of column j2 we would need to check for all STL-sets {R1, · · · , Rn} if the

value j2 is contained, and if so, check them also for j1. To meet also requirement 3,

we store another copy of C, namely using another collection of STL-sets {C1, · · · , Cn},

where the Cj stores those rows of C that contain a non-zero entry in the jth column.

This storage scheme fulfills the described requirements, at the price of double memory

consumption and the requirement to perform update operations on C twice.

3.8.2 Fast subset tests

The row reduction rule of our approach needs to determine all rows of C being a

subset of any other row. This is similarly true for the column reduction rules, where all

supersets need to be determined. We stick in our explanations with the row reduction

rule as for columns things work analogously.
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A naive implementation would compare all n2 pairs of rows with each other, consid-

ering every element contained within. Although our storage model is very advantageous

for these tests, such an implementation would be way too expensive when n gets in the

range of a million or even only a tenth of it. We had to find a clever way to speed up

these tests significantly, and we have implemented two different approaches. One ap-

proach involves hash values that eliminate the need to compare a pair of rows by their

non-zeroes in many cases. The other one computes a permutation of C to minimize

the number of pairs to be compared.

The hashing approach

Our idea to speed up the individual row-to-row comparisons was to eliminate the need

to struggle with their data elements. To this end we augment C with hash values.

More accurately, we add to each row Ri of C a 32-bit hash value ri that represents

the information contained in Ri in a compressed and simplified form. Let us denote

the k-th bit of ri by ri(k), and let t denote a certain threshold that can be chosen

appropriately. We assign ri(k) as follows:

ri(k) =





1
(k+1)· n

32
−1∑

j=k· n
32

xi,j > t

0 else

This scheme virtually splits Ri into 32 sections. When the number of non-zero elements

exceeds t in the k-th section, then ri(k) is set, otherwise it is cleared. Now, when we

test if Ri2 is a subset of Ri1, we first evaluate

ri1 OR ri2
?
> ri1 (3.6)

If the predicate in Equation 3.6 yields true, then there is at least one k, for which ri2(k) >

ri1(k) holds, and then the k-th virtual section of Ri2 contains more non-zeroes than the

k-th virtual section of Ri1. Consequently, Ri2 cannot be a subset of Ri1, and we are

done. Else, if the predicate yields false, we must compare Ri1 and Ri2 by their data

elements.

Every CPU in a personal computer supports the bitwise OR operation of Equa-

tion 3.6 in hardware. Thus we can compare all 32 bits in a computationally cheap

way in one task. We have implemented this approach using 32 counters per row which

are updated whenever their corresponding row of C is updated. This approach works
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quite well, and compared to the naive implementation, it reduces the running time

considerably.

Bandwith reduction of C

The approach described in Section 3.6 saves time. But still, every time the row reduc-

tion rule is applied to C, O(n2) operations have to be performed. Fortunately, I was

on a research stay at Inria, Sophia Antipolis, back in 2006, where I gave a talk and

mentioned the problem. After my talk, Pierre Alliez, a researcher in the Geometrica

Group, proposed to compute a bandwidth reducing permutation of C to eliminate the

need to compare O(n2) pairs of rows. The very successful approach that we derived

from Pierre’s idea is described in the following.

Definition 3.9. Let G = (V, E) denote an undirected, connected graph, where V is the

set of vertices and E is the set of edges, and let A(G) = {ai,j} denote the adjacency

matrix of G. The bandwidth β of A(G) is defined as

β = max
ai,j 6=0

|i − j|

Generally speaking, if A(G) is sparse, it is for many problems beneficial to minimize

its bandwidth before further operations are performed with A(G). To this end, the

vertices in G = (V, E) must be re-labeled, such that all non-zeroes of A(G) get as close

as possible to its main diagonal. This is the so called bandwidth minimization problem,

known to be NP-complete [Pap76], and the classical Cuthill-McKee [CM69] algorithm

is an approach for approximate results, i.e., bandwidth reduced matrices.

In our case, reducing the bandwidth of the covering matrix C is also very benefi-

cial, as will be described at the end of this section. But C is neither symmetric nor

necessarily connected, so we have devised a variant of the Cuthill-McKee algorithm,

that accounts for these specifics.

First we (virtually) derive from C a new n × 2n-matrix Y, whose elements are

yi,j =





xi,j−n j > n

0 else

The new matrix Y describes a directed graph Gy on top of 2n vertices. We use Y as

input for our Cuthill-McKee-variant, which can be thought of as a classical breadth

first search in Gy. As a specialty of this breadth-first search the neighbors of a certain
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function cuthillMcKeeVariant (Y)

Vector R, C; // Output of the algorithm

Queue Q; // Queue for breadth -first search

while(|R| < n and |C| < n)

{

Q.push_back(any unexplored vertex with min. outdegree); // Init queue

while(Q.size() > 0) // Until connected component is fully explored ...

{

Vertex v=Q.front (); // Get first vertex v from Q

Q.pop_front (); // Remove v from Q

if(v ≤ n)

{

R.push_back(v);

Vector NEIG={j|yv,j 6= 0, j /∈ (C ∪ Q), j = n + 1, · · · , 2n};

sort_vertices_ascendingly_by_outdegree(NEIG);

Q.push_back(NEIG);

}

else

{

C.push_back(v);

Vector NEIG={i|yi,v 6= 0, i /∈ (R ∪ Q), i = 1, · · · , n};

sort_vertices_ascendingly_by_outdegree(NEIG);

Q.push_back(NEIG);

}

}

}

return (R,C);

Listing 3.3: Computing the permutation vectors R and C
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(a) The torusBalls model (b) Scatter plot of the

original covering matrix C.

Rows correspond to balls,

columns correspond to sample

points of torusBalls

(c) The bandwidth limited

version of C. Rows and

columns have been re-labeled

Figure 3.6: The torusBalls model and scatter plots of the non-zero elements of the

corresponding covering matrix C.

vertex v are sorted by their outdegree before they are inserted into the queue Q as

described in Listing 3.3.

The output of this algorithm are two vectors R and C, and we use them to compute

a permutation of Y. Thereby, the number r on the i-th position of R means that the r-

th row of Y has to be given the new row number i. For C and the columns of Y this

is done in the same manner. After the permutation, the first n rows and columns of Y

contain the desired result, i.e., the bandwidth-limited version of C.

As to our implementation: In fact, the second matrix Y serves only as a means

to describe the algorithm. In practice, our implementation operates only on C and

it simulates the existence of Y by index shifting. We illustrate the results of our

algorithm using the torusBalls model, shown in Figure 3.6(a) as input object O. We

have computed its discrete medial axis transform DMT(O) and have enlarged the radii

of these balls by 0.001 times the length of the largest edge of the object’s axis aligned

bounding box. The corresponding covering matrix C is shown in Figure 3.6(b). We

have applied our Cuthill-McKee-variant, and the resulting covering matrix C is shown

in Figure 3.6(c).

Now, what is the big advantage of the bandwidth-reduced version of C? Let fi,j

denote the first non-zero element of a certain row i of C. The described breadth-first

algorithm visits each vertex in Gy exactly once. Further, it inserts the vertices into the
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� Row i

Figure 3.7: Magnification of Figure 3.6(c). Rows with entries outside the two vertical

lines cannot be a subset of the i-th row.

queue Q and later into R or C in the order they are explored. As a consequence, when

we consider fi,j and fi′,j′ with i′ > i, then j′ ≥ j holds, see Figure 3.7. This property

greatly limits the range of candidate rows, possibly being a subset of a certain row i.

3.9 Examples and evaluation

In this section, we explore the behavior of our implementations with respect to running

time and memory consumption. Three input models with quite different properties

are considered. As a widely known and commonly used model we have chosen dragon,

see Figure 3.5(a), which is a part of the dragon model from the Stanford 3D Scanning

Repository [STA]. We have constructed the 3Cross model in Figure 3.5(b), whose

parts of the medial axis are easy to imagine. Finally, we use the original as well as a

down-sampled version of the oilpump model from the Aim@Shape repository [AIM] as

technical model with many sharp edges, see Figure 3.5(c). Though these models are

not necessarily r-sampled, our algorithm works well in these realistic situations.

The software has been implemented as far as useful for scientific purposes. Local

feature size computations, although easy to implement after our theoretic work, are

not included. The models can nevertheless be rendered because only tiny values are

required for the ball enlargement parameter ε to greatly reduce and stabilize the balls

from DMTin.

Our applications have been compiled with gcc [GCC] for 64bit Linux systems, and

“O3” optimization was set. CGAL 3.3.1, on which our applications are based, is not

thread-safe, so we have completely renounced parallel computing, and all applications

are single-threaded. As large models may require lots of memory, we have carried out

all benchmarks on server hardware, namely on an Intel XEON E5345 CPU running at

2.33 GHz, where 16 GB RAM were available.
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3.9.1 Discrete Medial Axis Transform

Table 3.1 shows the time and memory consumption of our discrete medial axis transform

software, that takes a triangulated boundary representation of the object as input and

computes the set DMTin. The main time consumption is caused by the part which

extracts pole points from the Voronoi diagram. This includes distance computations,

sorting of distances, as well as breadth-first searches on the input surface mesh for

labeling the Voronoi vertices as being inside or outside the object. The latter is more

expensive for dense meshes, as can be seen from the growth of the running time for

the oilpump model, which has been rendered in two different resolutions. The memory

consumption behaves linearly, as one may expect.

Input Output Time Memory

Vertices |DMTin| [sec] [MB]

Dragon 35862 35676 74.76 367.27

3Cross 53570 52946 289.74 622.55

Oilpump small 174994 170106 1287.32 1798.01

Oilpump large 570018 560928 9070.44 5908.74

Table 3.1: Discrete medial axis transform

3.9.2 Covering matrix

The time requirement for building the covering matrix consists of the time needed to

construct a kd-tree of the sample points S, and of the time needed for the spherical

range searches. The time consumption for these queries is output sensitive. It depends

on the ball enlargement parameter ε as well as on the shape of the object.

Table 3.2 displays the time for calculating the covering matrices, where we have

enlarged the balls additively by certain percentages of the longest edge of the object’s

bounding box (shown as labels heading the columns in Table 3.2). We keep the memory

consumption of this part of our toolchain low by storing only the kd-tree in main

memory, while the output of the queries is immediately written to a compressed binary

file.

3.9.3 Set covering

Our set covering software takes the covering matrix from Section 3.9.2 as input, where

the covering information of DMT+
in with respect to the original sample points is encoded,
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|DMT+

in| 0.01% 0.05% 0.10% 0.30% 0.50%

[sec] [sec] [sec] [sec] [sec]

Dragon 35676 44.1 46.7 50.0 62.2 72.8

3Cross 52946 209.3 220.1 230.5 262.4 284.8

Oilpump small 170106 417.4 580.8 751.9 1272.9 1805.0

Oilpump large 560928 2475.5 3668.9 4591.3 7858.1 11649.9

Table 3.2: Covering matrix

and it determines a small subset DMT∗
in ⊂ DMT+

in that still covers all the sample

points. In Table 3.3 we compare our hybrid algorithm with the simple greedy heuristic.

In column ’Over’ we show the upper bound on the overhead in balls for these instances,

according to the formulas in Subsection 3.6.4. It becomes apparent that almost minimal

sets of balls are computed. Our application allows to choose between different trade-

offs regarding running time, memory consumption, and quality of the result, and the

benchmarks have been performed such that high quality results were computed. At

entries ’•’ the tasks were too memory consuming for our hardware. We could still solve

such huge instances by reducing the amount of data in a preprocessing step, but the

results would not be comparable, so we have refrained from doing so.

Input ε Greedy Hybrid Over Hybrid Hybrid

#balls #balls #balls #balls [s] [MB]

Dragon 35676 0.01 6883 6035 120 43.8 38

35676 0.05 3709 3212 276 85 61.6

35676 0.10 2422 2062 327 91.2 92.2

35676 0.30 1022 842 181 120.1 173.3

35676 0.50 628 508 114 101.4 242.7

3cross 52946 0.01 4874 4252 164 96.9 118.8

52946 0.05 2847 2529 117 252.4 151

52946 0.10 2151 1848 121 56 355

52946 0.30 465 387 58 59.9 564.6

52946 0.50 329 253 39 91.4 748.7

Oilpump 170106 0.01 12608 10883 1632 2868.3 388.9

170106 0.05 3027 2546 871 4165 1502.9

170106 0.10 1386 1163 416 4864.6 2890.7

170106 0.30 285 231 91 10418.7 9581

170106 0.50 • • • • •

Table 3.3: Set covering: Greedy and hybrid solutions
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3.9.4 Medial axis computation

This part of our toolchain is a straight implementation of the approach described

in [AK01]. Table 3.4 shows the running time and memory usage of the medial axis

application. Its time consumption depends not only on the number of input balls

but is also affected by the complexity of the connected components of the respective

weighted alpha shape. For example, the more pruned versions of the 3cross model

contain only few regular components, and their per-ball time consumption is less than

a third of one of the dragon model, which comprises large connected components.

In our first example, the input object O is the 3cross model, and we have computed

approximations at two different degrees of pruning. Figures 3.8(a) to 3.8(c) show a ver-

sion, where DMT∗
in is insufficiently pruned, and thus the corresponding discrete medial

axis DM(O) differs significantly from an intuitive medial axis of the apparently smooth

3cross model. One might conclude that the unwanted branches are due to inaccuracies

of the Voronoi approach (see Section 3.4). However, the contrary is true: DMTin is a

good approximation of MT(O), and therefore accurately models the unstable behavior

of M(O) with respect to perturbations on F . Such perturbations indeed exist in the

3cross model, but are due to a poor sampling strategy of the used modeling software;

cf. Figure 3.9. No matter whether perturbations are due to poor sampling or noise,

the artifacts disappear after sufficient pruning, as is shown in Figures 3.8(d) to 3.8(f).

In Figure 3.10, we display the dragon model at two different levels of pruning. Its

medial axis has a particularly complicated structure, and our approach proved to be

capable of dealing with all the small details in a topologically correct way. This shows

the flexibility of our method, in the sense of adapting itself to coarser and finer object

details.

The largest model in our experiments is the oilpump model. This model features

many details and sharp edges. The corresponding point sample does therefore certainly

not keep the r-sampling condition, and the original Voronoi approach would fail. With

our extensions with respect to the labeling strategy, see [AAH+07], the model can

nevertheless be rendered. The time and memory consumption (as shown in Table 3.4)

for more than 10 000 balls indicates that there is still potential for even larger, more

detailed inputs.
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Balls [sec] [MB]

Dragon 6035 192.25 264

Dragon 3212 72.24 119.9

Dragon 2062 38.52 70.38

Dragon 842 15.34 28.82

Dragon 508 7.88 16.3

3Cross 4252 287.44 217.17

3Cross 2529 113.34 124.09

3Cross 1848 106.84 85.43

3Cross 387 1.64 10

3Cross 253 1.17 6.99

Oilpump 10883 105.78 378.15

Oilpump 2546 17.8 80.18

Oilpump 1163 6.42 37.78

Oilpump 231 0.92 9.91

Table 3.4: Medial axis computation

(a) 2529 Balls (b) Transparent (c) Medial axis

(d) 387 Balls (e) Transparent (f) Medial axis

Figure 3.8: The 3cross model
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Figure 3.9: Bad sampling of the 3cross model

(a) 6035 Balls (b) Transparent (c) Medial axis

(d) 2062 Balls (e) Transparent (f) Medial axis

Figure 3.10: The dragon model
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3. Medial Axis (Transforms) Conclusions

(a) 10883 Balls (b) Transparent (c) Medial axis

(d) 2546 Balls (e) Transparent (f) Medial axis

Figure 3.11: The oilpump model

3.10 Conclusions

We have developed a toolchain, which takes boundary triangulated 3D objects as input,

computes approximations by balls, stabilizes and prunes them, and extracts the medial

axes of their union, as approximate medial axes of the original objects. To this end, we

have significantly modified and extended the technique described in [AB99, AK00] to

robustly approximate objects by unions of balls. We have proven the topological cor-

rectness of our constructions, which relies heavily on r-sampling theory. The stability

problem, inherent to medial axis constructions, is coped with set covering. To the best

of our knowledge, pruning medial axes through set covering is a novel approach. Con-

siderable effort has been spent to implement a set covering application which combines

exact and and heuristic methods, and it does in practice not only achieve better results

than a simple greedy algorithm, but can also bound the overhead with respect to the

optimal solution. To be able to evaluate our constructions, we have also implemented

the medial axis algorithm in [AK01]. We are aware of the fact that it is not realistic

to expect r-sampled input in a real world setting. Our software works well even if the

input objects fail to be r-sampled within certain ranges.
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Chapter 4

Surface Reconstruction and Seed

Polytopes

4.1 Abstract

For a surface F in 3-space that is represented by a set S of sample points, we construct a

coarse approximating polytope P that uses a subset of S as its vertices and preserves the

topology of F . Thereby, we use as few points from S as possible. Such a polytope P is

useful as a ‘seed polytope’ for starting an incremental refinement procedure to generate

better and better approximations of F based on interpolating subdivision surfaces or

e.g. Bézier patches.

Our algorithm starts from an r-sample S of F and constructs a set of surface

balls, whose centers are the points in S. The radii are carefully chosen, such that the

topology is retained. From the weighted zero α-shape of a proper subset of these highly

overlapping surface balls we get the desired polytope. By the choice of the radii of the

surface balls one can control the degree by which sample points are omitted. Thus, our

method can also be used for coarse-to-fine surface reconstruction.
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4.2 Introduction

This chapter of the thesis deals with recovering structural information for a 3-dimensional

object that is represented by a sample point cloud. More specifically, given an object O

in 3-space and an r-sample S of its boundary, we want to find an approximating poly-

tope P that uses a subset of the points in S as its vertices and preserves the topology

of O. Our goal is, on the one hand, to use as few points of S as possible and, on the

other, to get a flexible approximation whose level of detail can be tuned from coarse to

fine. Motivation for studying this problem is based on open problems in object simpli-

fication and surface reconstruction, two fundamental tasks in several areas of computer

science, like geometric modeling, computer graphics, and computational geometry.

The main support structure we use is an approximation of the object in ques-

tion with a union of balls. In the context of object simplification, this approach is

used for many purposes, e.g. collision detection [Hub96], shape matching [SS04], and

shape interpolation [RF96], to name a few. Regarding surface reconstruction, approx-

imating objects with balls also plays a major role, see for example the power crust

algorithm [ACK01], related work [AB99, AK00, AK01] and also [CL08], naming again

only a few.

In our approach, which is similar to work in [CL08], we build a union of so-called

surface balls, centered at the points in our r-sample S on the surface F of O, whose

radii adapt to the local feature size of F . The desired approximating polytope P is then

extracted from the weighted α-shape [Ede95] (for α = 0, of a carefully chosen subset of

these balls. In contrast to [CL08], where prior knowledge of the local feature size of F

is assumed, we obtain an estimation of this function from the data, by using distances

to poles, see Definition 3.2. Using a tailored technique of pruning the surface balls, we

obtain a coarse-to-fine approximation of F by polytopes. This is the first result that

uses, from a practical point of view, approximations of local feature size and medial

axis to obtain locally adaptive reconstructions of an unknown surface.

The polytopes we construct are topologically correct reconstructions of F . Thus

our results differ from existing multi-scale surface reconstruction techniques in [NSW08,

CL08, CCSL09, GO08] where topological filtering occurs. At the coarsest level, the

polytope we obtain is what we call a ’seed polytope’, as it provides not only a coarse

approximation of F but also a mapping of the non-used sample points in S to the

vertices of the polytope. Such a mapping is needed for incrementally generating ap-

proximations of F based on interpolating subdivision surfaces or Bézier patches. We
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stress that the intended purpose of the seed polytope is not primarily in approximat-

ing F but rather in serving as a (topologically correct and small) starting structure for

subsequent approximations by patches. We thus do not try to keep the approximation

error small for the seed polytope itself, and use this additional freedom to keep the

polytope small.

4.3 History and contributions

This chapter describes joint work with my co-authors Astrid Sturm and Günter Rote

from the Institute of Computer Science, Free University Berlin, Simon Plantinga and

Gert Vegter from the department of Mathematics and Computer Science, University

Groningen, as well as Franz Aurenhammer from the Institute for Theoretical Com-

puter Science and Oswin Aichholzer from the Institute for Software Technology, both

Institutes belonging to Graz University of Technology.

Previously to this work, the two papers Convex approximation by spherical patches,

[BPR+07], and Approximating boundary-triangulated objects with balls, [AAH+07], have

evolved independently from each other. The ultimate goal of our joint work was to

combine the previous work into a new technology to approximate non-convex objects

by curved patches. The outcome of our research has been published in the paper

Recovering Structure from r-sampled Objects, [AAK+09], as well as in [Stu09].

4.4 Definitions and notation

We continue to use the notation and definitions which we have introduced in Section 3.3

and 3.4. In particular, we denote the object we want to reconstruct by O and its surface

by F , and we assume that S ∈ F is an r-sample of O for r ≤ 0.08.

Definition 4.1.

• The discrete medial axis DMin (DMout) is the medial axis of the union of polar

balls in the sets DMT(O)in (DMT(O)out).

• The discrete local feature size l̃fs(x) of a point x ∈ F is the minimum distance

from x to DMin ∪ DMout.

• The pole distance D̂(x) of a point x is the distance to the nearest pole.
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We will see that D̂ is a good estimate of l̃fs (Corollary 4.12), as well as an upper

bound on the true local feature size (Lemma 4.8). In practice, D̂ is easier to compute

than l̃fs, and the true local feature size is not computable at all.

The weighted α-shape for α = 0 is the dual shape of a union of balls [Ede95], see

the definition in Section 2.6. It is a simplicial complex whose vertices are the centers

of the balls, and which is homotopy-equivalent to the union of balls. We will refer to

the weighted zero α-shape of DMT(O)in as Ain and to the one of DMT(O)out as Aout.

Proposition 4.2. [AK01] Let Ain and Aout be the weighted zero α-shapes of DMT(O)in

and DMT(O)out. Then we have

DMin ∪ DMout ⊆ Ain ∪ Aout.

4.5 Our approach

4.5.1 The union of surface balls.

A surface ball is a ball with center at a sample point s ∈ S. For seed polytopes, our

goal is to represent the surface F of O in a topologically correct way with as few faces

as possible. We try to make the surface balls as large as possible, while guaranteeing

correct topology of the the union U(BF ) of the set BF of surface balls. A subsequent

pruning step will delete some of these balls whenever the sample is denser than neces-

sary. For surface reconstruction, we will output meshes of adjustable complexity. The

only modification necessary to reach this goal is to choose surface balls with smaller

radii.

4.5.2 Pruning

We prune BF with the set covering approach that we have already used for discrete

medial axis transforms in Section 3.6. This approach computes a small subset B′
F , in a

purely combinatorial manner, without regard to geometry and topology, i.e. it assures

that S is covered by the union of B′
F , not necessarily F . Thus, we needed to find a

way to keep the set covering step from punching holes in our constructions.

Before we launch the set covering procedure, we (virtually) shrink the balls in BF .

This is done such that covering of S by a subset of shrunk balls guarantees that the

corresponding original surface balls cover the surface F , and moreover, their union

represents the topology of F correctly.
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α

F

Figure 4.1: A wiggly curve F with a point sample on a straight line. (Adapted

from [AK00].)

4.5.3 The polyhedral approximation.

Finally we compute the weighted zero α-shape of B′
F , which has the same topology as F

and which gives the desired seed polytope. The vertices of the weighted zero α-shape

are points in S, because the centers of the balls in B′
F have been chosen from S. We

use the power diagram of B′
F to find out which vertex of the polytope each sample

point s ∈ S belongs to, and provide a list of pointers representing this relation.

4.5.4 Obtaining the local feature size.

A distinguishing feature of our problem setting is that we cannot get a lower estimate

on the local feature size. Figure 4.1 shows a section of a curve F that consists of

alternating short circular arcs. The horizontal lines are part of the medial axis. The

points of the r-sample S are aligned vertically. By reducing the angle α, such an

example can be built for any r > 0. The algorithm sees only these samples. Thus, to

the algorithm, this input is indistinguishable from a very densely oversampled straight

line.

4.6 Technical results

In order to generate adequate sets of polar balls and surface balls (in both cases, the

topology must be maintained), we need to derive certain information concerning the

local feature size of the sampled object. The present and the subsequent section are

devoted to this issue. We obtain several new properties of r-sampled objects for suitable

values of r.

Let Min and Mout denote the inner and the outer (real) medial axis of the given

object O, respectively. We start by bounding the distance of poles to the respective
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parts of the medial axis—a result crucial for bounding the radii of surface balls in

Section 4.7.

Theorem 4.3. For an r-sample S, let p be an inner (resp. outer) pole of a sample

point s ∈ S, and denote with Bp the inner (outer) polar ball of s, with radius Rp. The

distance from p to Min (Mout) is at most O(r) · Rp.

In the limit, when the sampling density approaches zero, poles and the medial axis

coincide, as has already been shown by Amenta et al. [ACK01, Theorem 35]. In contrast

to this result, we give an explicit quantitative analysis in terms of r. Results similar to

Theorem 4.3 have been shown (see e. g. [ACK01, Lemma 34], on which Theorem 35 is

based, or [BC01, Proposition 16]). However, we could not use these results, since they

hold only when the angle between the two closest surface points to a given point on

Min (Mout) is not too small, (These points form the γ-medial axis.)

Proof. The idea of the proof is to turn the polar ball Bp into a medial ball, while not

moving its center too much. The proof is based on several technical lemmas which are

given subsequently. We proceed in three steps, see Figure 4.2(a):

1. While keeping the center of Bp fixed we shrink the radius of Bp until the ball

becomes empty, touching the surface F of O at some point x0. By Lemma 4.4

below, the difference ∆1 between the new radius and the original radius Rp is at

most ∆1 = O(r2) · Rp.

2. We expand the shrunken ball from the touching point x0 by moving its center in

the direction
→

x0p until either

(2a) the ball has the original radius Rp of Bp, or

(2b) the ball touches the surface at another point. If this occurs we have found

a point of Min within distance ∆1, and we are done.

3. In case (2a), we “roll” the new ball B′
p (with radius Rp) on the surface. More

precisely, let K1 be the component of Bp ∩ F which contains x0. Consider the

balls of radius Rp that are tangent to F in a point of K1 and lie on the same side

of F as p. The locus of the centers of these balls is the inner parallel surface F̄

of K1. We claim that the rolling ball touches another point of F , and therefore F̄

contains a point of Min.
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p

F

K1

Bp

O(r2)

B′

p

p′ ∈ F
mx ∈ F

Rp
Rp

Rp

my ∈ F

x0

(a) After shrinking and expanding the ball Bp

we roll the new ball B′

p on K1 (e.g. the gray

ball).

Bp
BT

t

cp x v

l
Rp

l · r l · sin α

α

(b) Deepest penetration into Bp

Figure 4.2:

We prove this by contradiction. Let us suppose that the ball can roll on K1 with-

out ever touching a second point of F . K1 cuts Bp into two parts: B+ containing p,

and the rest B−. By Lemma 4.7 below, B+ is completely covered by the tangent

balls of K1. Since by assumption these balls never hit another point of F , it

follows that K1 is the only component of F ∩Bp. Let s ∈ Bp be the sample point

whose pole is p. This point must lie on K1 and therefore we can roll the empty

tangent ball of radius Rp to s. The radius RM of the medial ball at s is therefore

at least Rp. On the other hand, each point of the medial axis is contained in the

Voronoi cell of the nearest sample point, therefore ‖p − s‖ = Rp ≥ RM . This

implies Rp = RM and the tangent ball at s has its center on Min, and we are

done. We remark that this last case can actually never arise, since Rp > RM

unless the medial axis branches and the ball touches F in several points.

We have established that F̄ contains a point mx of Min which is the center of a

medial ball with radius Rp touching K1 in x. We know by Lemma 4.6a that the

angle γ = ∠mxxp is at most 3r + O(r). Thus, ‖p − mx‖ ≤ Rp · (3r + O(r2)).

In the following, we will assume that p is an inner pole. (The situation is symmetric

for outer poles.)
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Lemma 4.4. Let p be a pole with polar radius Rp. The surface F cannot get closer

to p than

Rp

(√
1 − 4(r2 − r4

4 ) − r2
)
≥ Rp

(
1 − 3r2 − O(r4)

)
.

For an r-sample with r = 0.08 the distance between the center p of a polar ball with

radius Rp and F is larger than 0.9807 · Rp.

Proof. Let x be the point on F closest to p. Let BT be an empty outer ball tangent

to x with center c and radius l = lfs(x). By the sampling condition, there must be a

sample t within distance rl of x. t lies outside the balls Bp and BT and therefore the

distance from x to the circle ∂Bp ∩ ∂BT is at most r · l (see Figure 4.2(b)). Thus, the

angle α = ∠cpt is bounded by sin α
2 ≤ r

2 . For fixed l and Rp, the point x is closest to p

when α is maximized. We thus analyze the situation for sin α
2 = r

2 :

sinα = 2 sin
α

2
cos

α

2
≤ 2 ·

r

2

√
1 − r2

4 =

√
r2 − r4

4

‖v − p‖ =
√

R2
p − (l · sinα)2 =

√
R2

p − l2 · (r2 − r4

4 )

‖v − x‖ =
√

(l · r)2 − (l · sinα)2 =
√

(l · r)2 − l2 · (r2 − r4

4 ) =
l · r2

2

‖x − p‖ ≥ ‖v − p‖ − ‖v − x‖
√

R2
p − l2 · (r2 − r4

4 ) −
l · r2

2

The inner polar ball Bp contains a point of Min ([ACK01, Corollary 13]), therefore l ≤

2Rp. It follows that the distance between p and F is at least

√
R2

p − 4 · R2
p · (r

2 − r4

4 ) − Rp · r2 = Rp ·
(√

1 − 4 · (r2 − r4

4 ) − r2
)
,

as claimed in the lemma.

Lemma 4.5. Let Bp denote a polar ball with center p. For r < 0.25, the normal at a

surface point x ∈ Bp is never perpendicular to the ray −→px.

Proof. By contradiction: We assume that lfs(x) = l. The points m1, m2 are centers of

two tangent balls in x of radius l, both balls are empty, one is located inside F and the

other one is outside. The surface must cross the path m1pm2 at least once. Assume it

crosses m1p in some point y. Then the following holds (see Figure 4.4):
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p

x
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F
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w

σ+

y

Figure 4.3: The tangent balls of K1 cover B+

Rp−‖p − m1‖ + ‖m1 − y‖ = Rp − ‖y − p‖

= dist(y, boundary of Bp)

≤ dist(y, closest sample) ≤ r · lfs(y)

≤ r(l + ‖x − y‖) ≤ r(l + ‖x − m1‖ + ‖m1 − y‖)

= r(2l + ‖m1 − y‖).

Therefore,

‖p − m1‖ − Rp ≥ ‖m1 − y‖ (1 − r) − 2rl

≥ l(1 − r) − 2rl ≥ l(1 − 3r)

and also (according to Lemma 4.4)

‖p − m1‖ − l ≥ ‖p − y‖ ≥ Rp

(√
1 − 4(r2 − r4

4 ) − r2

)
.

If ∠pxm1 is a right angle, then ‖p − m1‖
2 = ‖p − x‖2 + l2 ≤ R2

p + l2. We have l >

0, Rp > 0, ‖p − m1‖ > 0, so

‖p − m1‖
2 ≥ (l(1−3r)+Rp)

2 therefore we get (l(1−3r)+Rp)
2 = R2

p + l2. For l < 2Rp

and r ≤ 0.25 this leads to a contradiction.

Lemma 4.6. Let x be a surface point x inside a polar ball Bp with center p.

a) The angle γ between −→xp and the surface normal at x is bounded by 3r + O(r2) =

O(r).
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p

y

m2
m1

x

Bp

F

O(r2)

Rp

l

Figure 4.4: An absurd situation; the normal in x is perpendicular to the ray px. The

points m1 and m2 can lie inside Bp (as in the picture) or outside.

p y y0 m

x
x0

BT

Bp

γ

lx

Figure 4.5: Bounding the angle γ. Intersection of the polar ball Bp and the empty

tangent ball BT .

b) (The penetration bound) The distance from x to the boundary of Bp is is bounded

by 3
2 lfs(x)(r2 + O(r3)).

Proof. Since the two parts have the same assumption, we start with calculations which

are common to both claims. Consider the empty tangent ball BT at x of radius lx =

lfs(x) on the opposite side of p and let m denote its center, see Figure 4.5. For any

surface point z inside Bp the ray −→pz intersects the surface transversely and never tan-

gentially by Lemma 4.5, therefore the surface patch around x must pass between p

and BT and cannot fold back. In particular, it must intersect the segment mp at some

point y. The distance from y to the closest sample point s is ‖y − s‖ ≥ ‖y − x0‖, where

x0 is the closest point of the circle Bp ∩ BT . By the sampling condition we know

‖y − x0‖ ≤ ‖y − s‖ ≤ r · lfs(y)
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and using the Lipschitz condition we get

r · lfs(y) ≤ r · (lfs(x) + ‖x − y‖) ≤ r · (lfs(x) + ‖y − x0‖)

Thus

‖y − x0‖ ≤
r

1 − r
lx

The intersection point y = mp∩F for which ‖y − x0‖ is smallest is y0 with ‖y0 − m‖ =

lx,

‖y0 − x0‖ ≤ ‖y − x0‖ ≤
r

1 − r
lx.

We get for the angle α = ∠pmx0:

α = ∠pmx0 = 2 arcsin
‖y0 − x0‖ /2

lx
≤ 2 arcsin

r/2

1 − r
.

We now continue with the proof of part (a). A similar assertion [ACK01, Lemma 17]

says that the angle at which BT and Bp intersect is at most 2 arcsin(2r), which is less

than π
2 for r < 0.35.

Therefore, if x varies on the tangent sphere BT , the largest possible γ (within Bp)

is achieved when x is on x0. From now on we assume x = x0 (see Figure 4.6). We have

γ = α + β. sinβ =
lx sinα

Rp
≤ 2 sinα

because lx ≤ 2Rp according to [ACK01, Corollary 13], so

β ≤ arcsin(2 sin α)

β + α ≤ 3r + 3r2 + 33
8 r3 + 51

8 r4 + O(r5) = 3r + O(r2)

γ ≤ 3r + O(r2) = O(r),

as claimed in the lemma.

(b) The distance d from x to Bp is no more than the distance of y0 to Bp. We can

therefore use Figure 4.6:

d = Rp(1 − cos β) + lx(1 − cos α)

= Rp(1 −

√
1 − sin2 β) + lx(1 −

√
1 − sin2 α)

= Rp(1 −
√

1 − sin2 α · l2x/R2
p) + lx(1 −

√
1 − sin2 α)

= 1
2 · [Rp(sin

2 α · l2x/R2
p + O(α4)) + lx(sin2 α + O(α4))]

= 1
2 · [(sin2 α · lx(lx/Rp) + O(α4)) + lx(sin2 α + O(α4))]

≤ 1
2 · [(sin2 α · 2lx + O(α4)) + lx(sin2 α + O(α4))]

= lx · (3
2r2 + 3r3 + O(r4)).
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γ

αβ
y0

x0

mp

lxRp

Figure 4.6: Bounding the angle γ.

To complete the proof of Theorem 4.3, we still need to show that the tangent balls

of K1 cover all parts of B+. Recall that K1 cuts Bp in two parts: B+ containing p, and

the rest B−.

Lemma 4.7. The tangent balls of K1 completely cover B+.

Proof. Let w ∈ B+ and let x be the closest point of K1. We claim that the tangent

ball at x covers w. If x lies in the interior of K1, then wx is perpendicular to F , and

the claim is obvious. Let us assume that x is at the boundary of K1, that is Bp∩F (see

Figure 4.3). Assume that the surface normal nx does not go through p; otherwise it is

obvious that w is covered. Consider the plane σ through nx and through the point p.

Figure 4.3 shows the projection on this plane. Locally around x, F is approximated

by the tangent plane T and Bp ∩F is the halfspace of T that projects onto the ray xy

in Figure 4.3. It follows that x can only be the point of K1 closest to w, if w lies in

the plane σ and in the closed halfplane σ+ of σ which is bounded by nx and does not

contain p.

4.7 Construction of balls

4.7.1 Surface balls

In order to maintain correct topology of the piecewise linear surface reconstruction,

the surface balls we generate have to be large enough such that their union does not

only cover S but also F and, on the other hand, these balls avoid the medial axis of

the union of the balls in DMT(O)in and DMT(O)out. The above restrictions limit the

possible radii to a certain range. Maximizing the radii within this range will lead to

a coarse result (which is desirable for seed polytopes), while minimizing the radii of
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Figure 4.7: Distance from pole p to the medial axis point mx

the surface balls will lead to a faithful and detailed representation of the object. The

choice of the radii determines the degree by which the surface balls are pruned in a

subsequent set covering step.

Lower bound on the radii

To ensure that F is completely covered by surface balls we choose the radii of the

surface balls such that they cover at least the intersection of their site’s Voronoi cells

with F . For a point s in an r-sample, this intersection is covered by a sphere around s

whose radius is ρ ≥ r
1−r

· lfs(s), see [AB99], and so the surface balls need to have at least

that radius. As lfs(s) is unknown, we need to estimate it in terms of the distance D̂(s)

between s and the nearest among the poles of all sample points. Using Lemma 4.8

below, we get

lfs(s) ≤ 1.2802 · D̂(s)

and so we must choose the radius ρ of a surface ball around s to be at least

ρ ≥ r
1−r

· 1.2802 · D̂(s).

The distance D̂(s) can be calculated relatively easily using a spatial search structure.

Lemma 4.8. Let s ∈ S be a point of an r-sample S with r ≤ 0.08, and let D̂(s) =

‖s − p‖ denote its distance to the nearest pole p. Then

lfs(s) ≤ 1.2802 · D̂(s).

Proof. The local feature size of s cannot be larger than D̂(s) plus the distance from p

to the medial axis. To bound the latter distance for a specific value of r, we revisit the
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cases developed in Theorem 4.3 (and we use the notation introduced there). If case

(2a) occurs we know that F̄ contains a point mx ∈ Min (Mout); see Figure 4.7. By

Lemma 4.6a, the maximum angle between the touching point x ∈ K1 of the medial ball

centered at mx and p is γ = ∠mxxp < 14.99◦ if r ≤ 0.08. By Lemma 4.4,

d = ‖x − p‖ ≥

(√
1 − 4(r2 − r4

4 ) − r2

)
· Rp > 0.9807 · Rp.

Therefore

‖p − mx‖ ≤ 2 · Rp · sin(
γ

2
) + (1 − 0.9807)Rp < 0.2802 · Rp

which is at most 0.2802 · D̂(s) because s lies outside the polar ball centered at p.

Otherwise, case (2b) occurs and by Lemma 4.4, p is not farther from Min (Mout) than

Rp · (1 −

√
1 − 4 · (r2 − r4

4 ) + r2) < 0.0193 · Rp.

The lemma follows.

Upper bound on the radii

To prevent surface balls from ”different” parts of F from intersecting we want to ensure

that they do not reach the discrete medial axis DMin (resp. DMout). Thus, the discrete

local feature size l̃fs(s) is an upper bound on the radius that we can use. We will

replace l̃fs(s) by a smaller value, that is easier to compute, see Proposition 4.2.

Consequently, the minimum distance from s to any of the two weighted zero α-shapes

is a lower bound on l̃fs(s). Computing Ain and Aout and determining the minimum

distance directly would consume too much time and memory, however. We show how

to estimate this distance, again using the distance D̂(s) to the nearest pole to s.

Lemma 4.9. Let s be a sample point, and let v be a point with the following properties

• v lies in the Voronoi cell of s.

• v is not in the interior of the polar ball around the pole p of s that lies on the

same side of F as v.

Then

(a) ‖v−s‖ = O(r)·lfs(s). In particular, for r = 0.08, the distance to s is at most 0.123·

lfs(s).
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O(r · lfs)

p

≥ lfs(s)

O(r)

≥ lfs(s)

n

O(r2 · lfs)

m

Bp

Bm

v

v̄ s

Figure 4.8: A point v that is not covered by the polar ball must lie close to the surface.

(b) The distance from v to the closest point v̄ on the surface is

O(r2 lfs(s)) = O(r2 lfs(v̄)).

For r = 0.08, the distance ‖v − v̄‖ is at most 0.0355 · lfs(s) ≤ 0.0424 · lfs(v̄).

Proof. We perform the calculation for r = 0.08, and only indicate the asymptotic

dependence on r. We will first show part (a).

‖v − s‖ ≤ 0.123 · lfs(s) = O(r lfs(s)).

Let p be the pole of s on the same side of the surface as v. If ‖v − s‖ > kr · lfs(s)

for k = 1.536, the angle between sv and the surface normal is at most

arcsin
1

k(1 − r)
+ arcsin

r

1 − r
< 47.2◦

see [AB99, Lemma 4]. Similarly, the angle between the normal and sp is at most

2 arcsin r
1−r

< 12.8◦. In total the angle vsp is less than 60◦. Since ‖v− s‖ ≤ ‖p− s‖, by

the definition of the pole, it follows that v must be contained in the polar ball around p,

whose radius is ‖p− s‖, a contradiction. We thus conclude that v is contained in a ball

of radius

kr · lfs(s) ≤ 0.123 · lfs(s) (= O(r lfs(s)))

around s. Since v avoids the polar ball Bp around p, it lies in the shaded region indicated

in Figure 4.8. The direction sp of the polar ball deviates at most 2 arcsin r
1−r

< 12.8◦

(= O(r)) from the normal direction n at s. Thus the “highest” possible position of v is as

indicated in the figure. We know that the surface must pass above the opposite medial
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Bq
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γ ϕq

≥ 1

D

ϕp

p

Figure 4.9: Schematic figure of an intersection of two polar balls such that their inter-

section point v is not covered by the union of polar balls.

ball Pm of s, and thus we can estimate the distance from v to the surface and prove (b).

A straightforward calculation gives the bound ‖v − v̄‖ ≤ 0.0355 lfs(s) (= O(r2 lfs(s))).

By the Lipschitz condition,

0.0355 lfs(s) ≤
0.0355

1 − 0.123 − 0.0355
lfs(v̄) ≤ 0.0424 · lfs(v̄)

is obtained.

Lemma 4.10. Let pq be an edge of the weighted zero α-shape Ain (Aout). Then the ex-

terior angle of intersection between the polar balls Bq, Bp around p and q is at least 120◦.

Proof. Since pq is an edge of the weighted zero α-shape, there is a point v on the

intersection of the boundaries of the two polar balls Bp and Bq which is not covered by

any other polar ball, see Figure 4.9. Therefore, the neighborhood of v contains points

outside all polar balls and, by Lemma 4.9 v is close to F : For the closest surface point v̄

we have

d = ‖v − v̄‖ ≤ 0.0424 · lfs(v̄).

Without loss of generality, we assume lfs(v̄) = 1. Consider the medial ball B of v̄ on

the opposite site, with center m and radius ‖v̄ −m‖ ≤ lfs(v̄) = 1. By [ACK01, Lemma

17], a polar ball Bp or Bq intersects a medial ball D on the opposite site at angle

β ≤ 2 arcsin 2r. Let us focus on one ball Bp and the angle φp between this ball and the

surface normal vm. The other ball is treated in the same way, and the total exterior

angle is then φp + φq.
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We have φp = γ − π, where γ = ∠pvm. To get an upper bound on φp (or on γ),

let us fix the angle γ and try to find circles Bp and D that are consistent with this

situation. We have the following constraints:

(i) 1 = lfs(v̄) ≥ ‖v̄ − m‖;

(ii) d := ‖v − v̄‖ ≤ 0.0424 · lfs(v̄) ≤ 0.0424;

(iii) The intersection angle between Bp and D is β ≤ 2 arcsin 2r.

This gives us a distance ‖c − v‖ = 1+ d, using the triangle inequality we get ‖q − v‖ =

1− d. For the triangle qcv only the segment qc is of unknown length. We consider also

a second triangle, formed by the points q, c and one intersection point i of the medial

ball with the polar ball Bq. Again only the distance of the segment qc is unknown.

From the triangles we get the following equations:

cos β =
1 + (1 − d)2 − ‖c − q‖2

2(1 − d)
,

cos γ =
(1 + d)2 + (1 − d)2 − ‖c − v‖2

2(1 − d)(1 + d)
,

for β = ∠cvq = π − β = π − 2 arcsin 2r, γ = ∠qic, d = 0.0355. Solving these equations

for γ gives an angle ϕ = 2 · (γ − π/2) > 120◦.

Based on the preceding lemmas, it is possible to derive the following bound on l̃fs(s).

Lemma 4.11. If m is a point on an edge pq of DMT(O)in (or in a triangle pqr

of DMT(O)in) and v is outside or on the boundary of U(DMT(O)in) then

‖m − v‖ ≥ 0.817 · min{‖p − v‖, ‖q − v‖},

(or ‖m − v‖ ≥ 0.817 · min{‖p − v‖, ‖q − v‖, ‖r − v‖}, respectively).

Proof. We first consider the case when m lies on an edge pq,as illustrated in Figure 4.10.

Let m′ be the point on pq that is closest to v. If m′ is one of the endpoints p or q, we

are done:

‖m − v‖ ≥ ‖m′ − v‖ = min{‖p − v‖, ‖q − v‖}.

Otherwise we know that m′ − v is perpendicular to pq. We know from Lemma 4.10

that the intersection of the two polar balls Bp and Bq cannot be too thin: their angle

of intersection is at least 120◦. For fixed balls Bp and Bq, the angles and hence the
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Bp Bq

Figure 4.10: The distance from the sample point s to the weighted zero α-shape

ratios are minimized when s lies on the intersection between the balls (the point v0 in

the figure).

Now keeping v0 fixed at the intersection and considering a variation of the balls Bp

and Bq, maintaining min{‖v − p‖, ‖v − q‖}, it is clear that the distance from v to the

edge pq is minimized when the angle ∠pvq is at its upper bound of 60◦ and the two

distances are equal: ‖v−p‖ = ‖v−q‖. Then the ratio ‖v−v‖/‖v−p‖ = cos 30◦ > 0.866.

Now consider the case when m lies in a triangle pqr. If the point m′ on pqr that is

closest to v lies on an edge or at a vertex of the triangle, we have reduced the problem

to the previous case. Otherwise we know that m′ − v is perpendicular to pqr. The

remaining argument is similar as in the case of an edge: The extreme situation is a

triangular pyramid with equal angles ∠pvq = ∠qvr = ∠rvp = 60◦ at the apex m and

equal sides ‖p− v‖ = ‖q − v‖ = ‖r − v‖. The ratio between the height of this pyramid

and the length ‖p − v‖ is
√

(1 + 2 cos 60◦)/3 > 0.817.

Corollary 4.12. Let s ∈ S be a sample point, and let D̂(s) be its distance to the nearest

pole. Then

D̂(s) ≥ l̃fs(s) ≥ 0.817 · D̂(s).

Proof. Since the poles are part of the discrete medial axis, the inequality l̃fs(s) ≤ D(s)

is obvious. For the other direction, we bound l̃fs by the distance from v to the weighted

zero α-shape A of the polar balls, which contains the discrete medial axis. The proof

of the lower bound on the ratio

l̃fs(v)

D
=

‖v − m‖

D
≥ max

{
‖v − m‖

‖v − p‖
,
‖v − m‖

‖v − q‖

}
,

follows from Lemma 4.11.
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v

m

v
′

m
′

Figure 4.11: Part of the fibration which is used to show isotopy. The shaded area is

the weighted zero α-shape.

4.7.2 Topological correctness

To show that the union U(BF ) of surface balls is homotopy-equivalent to the surface F ,

we follow the standard approach of using a fibration (a partition of U(BF ) into a

continuous family of curves, each intersecting F in a single point) and moving the

boundaries of U(BF ) along the fibers towards F .

The usual fibration by surface normals does not work since the medial axis might

be closer than it appears from looking at the sample points, see Figure 4.1. Instead we

use the fibers of the union U(DMT(O)in) of all polar balls. It is known that this union

is homotopy-equivalent to O, and its boundary is homotopy-equivalent to F [AK00].

The boundary of the union U(DMT(O)in) is not smooth, but still, it is in a certain

sense “smooth from the inside” (it has no convex edges or vertices) and has therefore

a reasonable fibration connecting the boundary to its inner medial axis DMT(O)in, see

Figure 4.11. We concentrate on the inner discrete medial axis DMT(O)in; the outer

discrete medial axis DMT(O)out is treated analogously. The fibers are line segments

that partition U(DMT(O)in)\DMin, and they run from a surface point v on the bound-

ary to a point m on the inner discrete medial axis DMin. In three dimensions, there

are three types of fibers: from a point v on a spherical patch of the boundary to a ver-

tex m of the medial axis; from a point v on a circular edge formed as the intersection

of two spheres to a point m on an edge of the medial axis; and from a vertex v of the

boundary, formed as the intersection of three (or more) spheres to a point m on a face

of the medial axis. Our proof treats all three cases uniformly.

We take the radius of the surface balls as ρD̂(s) where the factor ρ can be chosen

in the interval

ρmin = 0.24 ≤ ρ ≤ ρmax = 0.56. (4.1)
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≤ k1 · ‖v − m‖

v

s

Bs

m

F

rs

t

s0

x

1

k1 · ‖v − m‖

v

s

Bs

m

rs

s0 x0

1

x

(a) (b)

Figure 4.12: A ball Bs that intersects the fiber vm improperly

The upper bound ensures that the surface balls do not intersect the discrete medial axis,

and the lower bound ensures that they are large enough to cover the surface completely.

The bounds are stricter that would be required to reach only these two goals, since we

also want to achieve ensure topological correctness of the union U(BF ) of surface balls:

Lemma 4.13. If ρ is chosen in the interval (4.1), every fiber from a point v on the

boundary of U(DMT(O)in) to a point m on the medial axis of U(DMT(O)in) starts in

the union U(BF ) of surface balls and intersects the boundary of U(BF ) precisely once.

The lemma implies that the boundary of U(BF ) can be continuously deformed

along the fibers into the boundary of U(DMT(O)in), and thus the two boundaries

are homotopy-equivalent. The boundary of U(DMT(O)in) is already known to be

homotopy-equivalent to F , and thus, the correct topology is established.

Proof. For simplicity we prove the bound for ρ = 0.3. The calculation for general ρ is

slightly more involved.

Let Bs be a surface ball around a sample point s such that the segment vm enters Bs

in a point x, see Figure 4.12a. We will show that this does not lead to a violation of the

lemma, because the segment vx is covered by the union of surface balls. We assume

without loss of generality that vm is vertical and ‖m − v‖ = 1. We first show that x

must have distance ‖x − v‖ ≤ k1 for k1 = 0.074.

Suppose that this is not true. The medial ball of radius 1 around m is inside the

union of balls, and hence it does not contain s: ‖s−m‖ ≥ 1. We claim that this implies

‖s − x‖ > 0.37 · ‖s − m‖. (4.2)
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We know that s must lie outside the ball of radius 1 around m; s must also lie above

the horizontal line through x. Thus, s is restricted to the shaded area in the figure.

The ratio ‖s − x‖/‖s − m‖ is minimized when x is as low as possible (‖x − v‖ = k1)

and s is at the lower right corner s0 of this area. Here we have ‖s−x‖2 +(1−k1)
2 = 1,

from which one can compute ‖s − x‖/‖s − m‖ = ‖s − x‖ > 0.37.

On the other hand, since m ∈ DMT(O)in ⊆ Ain, we have by definition ‖s − m‖ ≥

l̃fs(s) ≥ 0.817D̂(s), by Lemma 4.11. Thus, the radius rs of Bs is rs = ‖s − x‖ ≤

ρD̂(s) ≤ ρ/0.817 · ‖s − m‖ < 0.368 · ‖s − m‖, contradicting (4.2).

Let us denote the extreme positions of s and x in the above analysis by s0 and x0.We

have established that x and s lie below horizontal line s0x0, see see Figure 4.12b. For

an arbitrary x and s we now claim

‖s − x‖

‖x − v‖
≥

‖s0 − x0‖

‖x0 − v‖
≥ 5. (4.3)

We know that s must always lie higher than x, For a fixed point x, we can rotate s

around x until it lies at the same height as x, without changing the above ratio, So

we can assume that s and x lie at the same height, with ‖x − v‖ ≤ k1. The sample s

cannot lie in the polar ball around m, and in particular, s must lie below the dotted

line segment. The claim (4.3) follows.

Now to complete the proof we will show that the segment vx is covered by a surface

ball, namely by the ball around the surface sample t closest to v. We are done if we

can show that the radius rt of this ball is at least ‖t − v‖ + ‖v − x‖:

rt = ρD̂(t) ≥ ‖t − v‖ + ‖v − x‖ (4.4)

This implies that rt ≥ ‖t − v‖ and rt ≥ ‖t − x‖ (by the triangle inequality), and thus

ensures that the whole segment vx is covered. It establishes also that the starting

point v of the fiber is covered, irrespective of whether another ball Bs intersects vm

“in an improper way”.

First we show that there is a sample point t with

‖t − v‖ ≤ 0.123 · lfs(t) (4.5)

We distinguish two cases:

(a) v lies inside F (on the same side as m), see Figure 4.13(a). Let t be the sample

point closest to v. The point v satisfies the assumptions of Lemma 4.9 with respect

to t: By definition, v lies in the Voronoi cell of t. Moreover, v lies in none of the polar

balls around the vertices of DMT(O)in. Thus, by Lemma 4.9a, ‖t − v‖ ≤ 0.123 · lfs(t).
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Figure 4.13: A ball Bs that intersects the fiber vm improperly, v lies either inside F

(a) or outside F (b)

(b) v lies outside F , see Figure 4.13(b). By Lemma 4.11, there is a pole p in DMT(O)in

such that

‖p − v‖ ≤
1

0.817
· ‖m − v‖ ≤ 1.224 · ‖m − v‖

The segment vp must intersect F in some point v̄. Lemma 4.6b limits the penetration

of the surface point v̄ into the ball Bp:

‖v̄ − v‖ ≤ (3/2 · r2 + O(r3)) · lfs(v̄).

In particular, for r = 0.08,

‖v̄ − v‖ ≤ 0.0114 · lfs(v̄).

The nearest sample point t from v̄ is less than r · lfs(t) away:

‖v̄ − t‖ ≤ r · lfs(t)

The Lipschitz condition yields

lfs(v̄) ≤ lfs(t) + ‖v̄ − t‖ ≤ (1 + r) · lfs(t).

Therefore we get:

‖t − v‖ ≤ ‖v − v̄‖ + ‖v̄ − t‖

≤ 0.0114 · lfs(v̄) + r · lfs(t)

≤ 0.0114 · (1 + r) lfs(t) + r · lfs(t)

≤ 0.093 lfs(t) ≤ 0.123 lfs(t)
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proving (4.5).

We have, by Lipschitz continuity, and using (4.3),

D̂(t) ≥ D̂(s) − ‖s − x‖ − ‖x − v‖ − ‖v − t‖

≥ ‖s − x‖/ρ − ‖s − x‖ − ‖x − v‖ − ‖v − t‖

= ‖s − x‖(1/ρ − 1) − ‖x − v‖ − ‖v − t‖

≥ 5(1/ρ − 1)‖x − v‖ − ‖x − v‖ − ‖v − t‖

= [5(1/ρ − 1) − 1] · ‖x − v‖ − ‖v − t‖

> 10.6 · ‖x − v‖ − ‖v − t‖ (4.6)

By (4.5) and Lemma 4.8, we have ‖v − t‖ ≤ 0.123 · lfs(t) ≤ 0.123 · 1.2802 · D̂(t) <

0.1575D̂(t) and hence

D̂(t) > 6.3 · ‖v − t‖ (4.7)

Multiplying (4.6) by 0.095, (4.7) by 0.175, and adding them together yields

0.27D̂(t) ≥ ‖x − v‖ + ‖v − t‖, (4.8)

implying (4.4).

4.8 Pruning by set covering

If we have a sample that is much denser than required by our conditions, we will get a

correct “surface reconstruction”, but we would like to obtain a coarser approximation

to reduce the data, while maintaining topological correctness. We will therefore only

use a subset of the surface balls.

We establish a condition that is easy to check and guarantees the correct topology:

As before, we use balls of radius ρD̂(u) around surface points u; for each ball we also

consider a shrunk copy of radius ρ̄D̂(u), where ρ̄ = 0.03 < ρ. We can then prove the

following statement.

Theorem 4.14. If the shrunk balls around the points u of a subset S′ ⊆ S cover all

sample points S, then the union of the original balls (of radius ρD̂(u)) around these

points is homotopy-equivalent to F .

Proof. The proof proceeds via the statement of Lemma 4.13. In that proof, we have

established the existence of a sample point t that is close enough to v such that the ball

around t covers the segment vx. This is extended to the present setting as follows: we
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Figure 4.14: The segment vm is covered by the enlarged ball around u.

can now no longer be sure that the ball around t is used, but there must be a (shrunk)

ball around some sample point u that covers t. Then the (original) ball around u is

large enough to guarantee that it reaches vx.

We know, by the pruning condition, that the covering contains a ball of radius ρD̂(u)

around a sample point u such that the shrunk ball with radius ρ̄D̂(u) covers t:

‖u − t‖ ≤ ρ̄D̂(u)

From this, together with the above bound (4.8) on ‖t − x‖, we obtain

‖u − x‖ ≤ ‖u − t‖ + ‖t − x‖ ≤ ρ̄D̂(u) + (ρ − ρ̄)D̂(u) = ρD̂(u),

and thus the ball Bu covers x. The same calculation shows that Bu covers v, and hence

the whole segment vx.

We try to select a minimum subset of surface balls whose shrunk copies cover the

whole sample. This is an instance of the (in general NP-hard) set covering problem,

and in Section 3.6.1 we describe a combination of exact and heuristic methods that

yields high quality results.

The lemma remains true if the shrinking factor 0.03 is replaced by a smaller number.

This parameter allows us to scale the algorithm to different levels of coarseness or

refinement of the approximation. If the shrinking factor approaches 0, each shrunk ball

will contain no sample points except its center, and thus the full sample will be used.

The small radius 0.03 · D̂ that we have proven may not seem very impressive, but it

must be seen in relation with the sampling constant r = 0.08. Thus, balls will start to

be eliminated as soon as the actual sampling density exceeds the required minimum by

a factor of about 4–5 (in terms of the sampling radius). Note, that unlike to what we

are able to prove until now, shrinking factors of up to 0.6 work well in practice.
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4.9 Experimental results

4.9.1 Example 1

Figure 4.15 illustrates how different choices of radii for surface balls lead to different

levels of detail in the approximating polyhedral surface mesh. The initial point cloud

for this doubleTorus model consists of 85237 points. Due to the effect of pruning, the

mesh for the big ring is more and more coarsened, whereas the necessary details are

preserved for the small ring. The running times for these computations (for a single

threaded application on a Core2 Duo E6700 CPU) are shown in Table 4.1. Filtered

floating point arithmetic has been used.

Figure 4.15abc 4.15def 4.15ghi

Surface balls 55s 55s 55s

Pruning - 35s 159s

# Remaining balls 85237 4198 549

Weighted zero α-shape 217s 7s 1s

Table 4.1: Runtimes for the doubleTorus model in Figure 4.15

4.9.2 Real World Datasets

The input points for the doubleTorus model in Section 4.9.1 where taken from a smooth

model, such that the r-sampling condition was kept. This condition is important for

our theoretic work, because our proofs build on existing work, [ACK01, AK00], that

also uses r-samplings. Besides, in lack of any restriction on sampling quality one could

as well call a set of, say, four sample points a proper sample of the doubleTorus model,

so the r-sampling condition makes definitely sense.

As to the situation in real world settings: When an object is scanned, the data points

are usually acquired in a sequence of overlapping scans, between which the scanner or

the object is moved for full coverage of the object. The independent scans, each afflicted

with noise and inaccuracies, must then be registered, aligned and merged. The merged

point cloud, which is the input for the surface reconstruction step, will most likely

contain errors from misalignment, noise, and inaccuracies as well as holes, i.e. missing

data, due to an inappropriate scanning angle. Thus, we can not expect r-sampled

inputs in a real world setting.
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(a) Without pruning: 85237

balls

(b) Transparent (c) Mesh on top of 85237

vertices

(d) Moderately sized balls.

After the pruning step: 4198

balls

(e) Transparent (f) Mesh on top of 4198

vertices

(g) Large balls allow for heavy

pruning: 549 balls

(h) Transparent (i) Mesh on top of 549 vertices

Figure 4.15: Reconstruction of the doubleTorus model
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(a) Noisy point sample, high density (b) Noisy point sample, low density

Figure 4.16: Effect of sampling density and noise

In Section 4.9.3 we will reconstruct the well known Happy Buddha model. The

scan data for this model is available from the Stanford 3D Scanning Repository, [STA],

where it is provided in four different resolutions, namely 543652, 144647, 32328 and

7108 vertices. One may assume that the point cloud with the highest density is best

suited for surface reconstruction. But ironically, in presence of noise and other errors,

dense point samples can be worse than sparse ones. In Figure 4.16(a) we sketch a

dense, noisy point sample of an object. This point sample appears to the Voronoi

approach as if it comes from a feature-rich surface. The medial axis of such an object

would comprise branches running to these small features. The corresponding (discrete)

medial axis transform of the object must express these by small, surface-near balls. In

point samples with lower density this effect fades away, as sketched in Figure 4.16(b).

4.9.3 Example 2

According to Equation 4.1, the radii of the balls in BF can be chosen between 0.24·D̂(si)

and 0.56 · D̂(si). This range guarantees topological correctness as long as the input

quality is sufficient. However, for non-r-sampled inputs, there is no guarantee. Thus,

we have made our application such that the parameters from our theoretic work can be

overruled, i.e., adapted to the given data. Figure 4.17 shows the pruned set of surface

balls BF and a reconstructed mesh of the Happy Buddha dataset, which consists of

543652 vertices. In this example, the effects described in Section 4.9.2 led to very small

pole distances D̂. Therefore we have chosen the radii of the surface balls at a large

fraction, namely at 0.95 · D̂(si). But the reconstructed surface nevertheless comprised

holes, because still F * U(BF ). Another negative effect is that the pruning step is less
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(a) Pruned set of surface

balls B′

F , |B′

F | = 92948

(b) Surface reconstruction from B′

F

(c) B′

F magnified, there are areas with

unexpectedly small balls

(d) Magnified reconstructed surface

with holes on top of 92948 points

Figure 4.17: Reconstruction of the Happy Buddha model, 543652 sample points
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effective for such small surface balls, and thus |B′
F | = 92948, which is quite high. We

have come up with three different heuristic methods to avoid the negative effects of bad

sampling quality.

1. For every ball bi ∈ BF , let si ∈ S be its corresponding sample point and let sj ∈ S

denote its 3rd-nearest neighbor in S. Enforce for each ball bi a minimum radius

ρmin
i = 1.5 · ‖si − sj‖.

2. Same as above, but the minimum radius is globally defined by the user.

3. Compute D̂(si) not as minimum distance si to any pole point of DMT(O) but

to any pole point of a pruned version of DMT(O) (which is more stable, see

Chapter 3 for a detailed description on how to prune DMT(O)).

The second method from above sufficed to reconstruct the large Happy Buddha cor-

rectly. We have also tried to reconstruct this model from the dataset, which consists

only of 7108 vertices, and we were again successful with a minimum radius, see Fig-

ure 4.18. For this computation, we have set the radii to 0.05·D̂ and 0.95·D̂ respectively,

to illustrate again the effect of pruning. With the third heuristic from above, which

estimates the local feature size using a stable medial axis transform, we may expect

even better pruning. However, we have not implemented this method. Table 4.2 shows

the running times for the various components of our software toolchain. Thereby the

set covering step for half a million input points took more than 24 hours to complete

because we have chosen best possible output quality. Note, that with less ambitious

settings this task takes only a few minutes to complete. The shown Happy Buddha

meshes contain some edges, where more than two triangles meet. This is an artefact

of the weighted zero α-shape, and can be removed, but this is non-trivial from an im-

plementation point of view. As not essential for our scientific work, we have refrained

from dealing with this implementation issue.

4.10 Conclusions

In contrast to traditional surface reconstruction approaches, our method is able to

simplify the given input before a mesh is computed. The observed running times are

practical for moderately large data sets, but naturally cannot compete with mesh re-

construction methods that do not come with a topological guarantee (see e.g. [KBH06]).

Still, our approach compares well with mesh reconstruction methods with guarantee;
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(a) Radius factor

0.05, additionally a

minimum radius was

enforced, |B′

F | =

5853

(b) Reconstructed

mesh on top of 5853

vertices

(c) Radius factor

0.95, additionally a

minimum radius was

enforced, |B′

F | =

4252

(d) Reconstructed

mesh on top of 4252

vertices

Figure 4.18: Reconstruction of the Happy Buddha model, 7108 sample points

|S| SB Factor MTX Set cov. |B′
F | Seed

[balls] [s] [s] [s] [balls] [s]

543652 848 0.05 106.11 19988.4 319654 318

543652 848 0.95 219.86 88307.9 92948 108

7108 44.15 0.05 1.02 0.47 5853 5.4

7108 44.15 0.95 1.19 1.94 4252 4.1

Table 4.2: Running times for the reconstruction of the Happy Buddha dataset at dif-

ferent resolutions. Column “SB” shows the time for surface ball generation, “Factor”

is the fraction of D̂, which has been used for the radii, column “MTX” shows the time

for computing the covering matrix, and column “Seed” contains the time consumption

to extract the mesh from B′
F .
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4. Surface Reconstruction Conclusions

see e.g. [DGH01]. The strength of our method lies in combining topological correctness

with the possibility to choose the desired accuracy of the output mesh.

A limitation of our approach is its dependence on r-sampled inputs, and therefore

also sensitivity to noise. However, in practical situations, heuristic methods can be

used to overcome problems that originate from poor quality of the input point sample.
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Chapter 5

Minkowski Sums

5.1 Motivation

Will that huge piano fit through the narrow stairway? Which paths can our robot take

through the obstacles? How will the workpiece look like, when the cutting tool has

moved along the planned trajectory?

Questions like these are actually questions of motion planning, offset computation

and collision detection, and they are closely related to Minkowski sums. Minkowski

sums of non-convex objects in R3 are inherently hard to compute, and often approxi-

mate results will suffice. The Minkowski sum of two balls is easy to compute, loosely

speaking it is just the sum of the centers and the radii of the balls. We use this fact in

our novel algorithm, to compute Minkowski sums not directly from the input objects

but from their ball representations, which we get from triangular mesh representations

with the method described in Chapter 3. The output of our algorithm consists of a

set of balls, whose union is the Minkowski sum of the ball representations of the input

objects, and it approximates the Minkowski sum of the original objects. In general, not

all possible pairs of balls contribute to the union of balls that forms the approximate

Minkowski sum, and we use the power diagram for a computationally inexpensive con-

tribution test. We have explored a hierarchical approach to reduce the number of balls

to consider. Techniques exist that, if required by an application, turn the boundary of

the union of the computed balls back into a triangular mesh, [Kru09].
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5. Minkowski Sums Introduction

5.2 Introduction

Minkowski sums in two and three dimensions are used in various fields, for exam-

ple mathematical morphology, computer graphics, convex geometry and computational

geometry. Moreover they are relevant in applications such as NC machining and gen-

eralized offset computation.

This motivated many researchers to study algorithms for Minkowski sum computa-

tion. Given two sets A and B in R2 or R3, the set

A ⊕ B = {a + b|a ∈ A, b ∈ B}

is called the Minkowski sum of the sets A and B, see Figure 5.1(a). It is obvious that

the sets A and B can be exchanged.

Considering the case where B is a ball of radius r, centered at the origin, the

Minkowski sum A⊕B is the offset object of A at distance r, see Figure 5.1(b). Thus, at

least for centrally symmetric convex sets B the Minkowski sum A⊕B can be considered

as generalized offset object of A. Considering a cutting tool performing a translational

motion defined by a path curve, the shape of the cut in the material is the Minkowski

sum of the tool and the path. Minkowski sums occur also in testing collisions when

objects undergo translational motions.

The computation of the Minkowski sum of convex solid objects A and B in R2

and R3 is a well explored subject, see [O’R98], and it is known that A ⊕ B is convex

again. Moreover, the boundary ∂(A ⊕ B) of the Minkowski sum A ⊕ B equals the

sum ∂A ⊕ ∂B of the boundaries ∂A and ∂B for convex input data. For non-convex

input objects this is no longer true, and one is facing several difficulties. Considering

volumetric objects one strategy is to perform a convex decomposition to the input

objects, see e.g. [Hal02]. This results in the representations A = ∪iAi and B = ∪jBj

with convex sets Ai and Bj which decompose the input sets A and B. The Minkowski

sum A⊕B of two non-convex objects is obtained by computing the partial Minkowski

sums Ai ⊕ Bj of all pairs of convex parts. The union of these partial sums represents

the Minkowski sum.

In [VM04] this concept is applied to the Minkowski sum computation of complex

polyhedral objects. The challenging part is, on the one hand, the complexity when all

pairs of partial Minkowski sums are computed, and, at the other, the merging of all

partial Minkowski sums. In particular, if we consider free form objects with non convex

parts the convex decomposition results in a large number of parts depending on the

accuracy of the computation we want to achieve.
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5. Minkowski Sums Introduction

(a) The Minkowski sum

of two basic objects

(b) Offset object of a

triangle, dilated by a disc

Figure 5.1: Simple Minkowski sums in 2D

We present a new method for the computation of Minkowski sums which is based

on approximate representations of the input objects A and B by the unions U(A)

and U(B) of sets of balls. We construct such sets of balls A and B with the method

described in Chapter 3. We write (x, y, z, r) for a ball with center (x, y, z) and radius r.

The Minkowski sum a⊕ b of two balls a = (xa, ya, za, ra) and b = (xb, yb, zb, rb) is again

a ball, and is computationally cheap:

a ⊕ b = (xa + xb, ya + yb, za + zb, ra + rb)

Let A and B be two sets of balls which approximate the input objects A and B. In

our approach, the Minkowski sum A⊕B is approximated by the Minkowski sum of the

unions of these approximate ball representations. It consists of the union U(A⊕B) of

the Minkowski sums of all possible pairs of balls

U(A⊕ B) = U(a + b|a ∈ A, b ∈ B)

Let h(X1, X2) denote the one sided Hausdorff distance from a compact set X1 to another

one X2. If A ⊆ U(A) and B ⊆ U(B), then

h(U(A⊕ B), A ⊕ B) ≤ h(A, A) + h(B, B)
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5. Minkowski Sums Minkowski sums of unions of balls

holds. In many cases not all of the |A|· |B| partial Minkowski sums contribute to U(A⊕

B) and we present methods to reduce the number of partial sums.

The outline of this Chapter is as follows:

• Section 5.3 discusses the two principal strategies that we use to compute ball

Minkowski sums. A simple quadratic approach is discussed as well as a hierar-

chical approach, based on spatial subdivison.

• Section 5.4 covers our implementation for the 2D case. This software, amink 2d ,

served as a prototype for the 3D case to gain experience with the practical aspects

of our algorithms like feasibility, time and memory consumption.

• Our second implementation, amink 3d , deals with the 3D case. It is based on

our experience with amink 2d and is discussed in Section 5.5, where it is also

compared to existing approaches.

• Finally, in Section 5.6 we conclude our work.

5.3 Minkowski sums of unions of balls

The union of the set of balls {a ⊕ b|a ∈ A, b ∈ B} is the Minkowski sum of U(A)

and U(B). But generally, not all of these balls contribute to their union. In this section

we describe an efficient contribution test, and we describe two approaches to compute

the minimal set C ⊂ A⊕ B such that U(C) = U(A⊕B). This set C then is the output

of our algorithms.

5.3.1 The quadratic approach

A simple quadratic approach tentatively computes C as the set of all |A| · |B| partial

Minkowski sums. Then it discards those balls from C which are redundant, i.e., do not

contribute to U(C). To find out if a ball c ∈ C contributes to U(C), let C be a set of

weighted points, consisting of the centers of the balls in the set C, weighted by their

squared radii, i.e.

C = {(cx, cy, cz, c
2
r)|(cx, cy, cz, cr) ∈ C}

We compute the power diagram P (C), definied in Section 2.4. Let Cell(c) denote the

power cell of a weighted point c ∈ C corresponding to a ball c ∈ C. We decide weather

to keep c or not, using the property

U(C) 6= U(C \ c) ⇔ Cell(c) ∩ c 6= ∅. (5.1)
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5. Minkowski Sums Minkowski sums of unions of balls

That is, c contributes to U(C) iff the intersection of c with its own power cell Cell(c) is

non-empty [Aur88, Lemma 1], see Figure 5.2.

Cell(a)

Cell(b)

Cell(c)
a

b

c

a

b

c

(a) Each ball contributes with

those parts of its boundary to

the union of the three balls

which lie within the power cell

of its corresponding weighted

point

Cell(a)

Cell(b)

Cell(c)
a

b

c

a

b

c

(b) Only the balls a and b

contribute to the union of the

three balls, because c doesn’t

intersect the power cell of its

corresponding weighted point c

Figure 5.2: Three balls and their power diagram

5.3.2 The hierarchical approach

The described approach, namely constructing ai⊕bj for each possible pair and deleting

the balls that do not contribute to U(C), works correctly and is worst case optimal.

However, in cases where a large fraction of these balls does not contribute, a hierarchical

approach might be better suited. We have developed such an approach, and, depending

on the input, it often considerably reduces the number of ball pairs to be processed.

W.l.o.g., assume that |B| ≥ |A|. We generate for B an octree-like data structure TB,

where each node Nβ in TB represents the subset β ⊆ B of balls having their centers

in the octree cell associated with Nβ . In each node we store the smallest enclosing

circumball Sβ of U(β). The leafs of TB are buckets, containing a small number of

balls of B. The hierarchical Minkowski sum algorithm takes A and TB as input and

computes the result C as well as P (C) iteratively. It traverses TB for every ball a ∈ A

in a top-down manner and checks if the ball a ⊕ Sβ would contribute to U(C). If this

is not the case, the set {a ⊕ b|b ∈ β} can not contribute to U(C) and we can stop the

computations for a in the respective branch of TB. Otherwise the (up to) eight sons of

the current node Nβ of TB must be traversed for a in a recursive manner. Whenever
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(a) Polygonal model

sqroot , 10 edges

(b) Polygonal

model euro,

363 edges

Figure 5.3: Input objects in 2D

a leaf, i.e.; a bucket, is reached, the contained balls are checked for contribution. The

ones that contribute are added to C, and P (C) is updated. C is only partially known

during the algorithm, and so some balls which do not contribute to U(C) might survive

the contribution tests. They are removed afterwards in a cleanup step using the already

existing power diagram P (C) and the property from Equation 5.1.

5.4 2D Minkowski sums

We use the models sqroot and euro, shown in Figure 5.3, to evaluate our software

amink 2d . The input for amink 2d has to consist of sets of discs, so we have prepro-

cessed the two polygons with a 2D version of the polyhedron-to-balls conversion method

described in Chapter 3. We refrain from repeating the details here as the algorithm is

straightforward for one dimension less, and as its time consumption is negligible. We

have approximated each of the two polygonal models by a coarse and a more accurate

union of discs. Thereby, the new representation of the euro model consists of 321 and

486 discs, and the sqroot model is represented by 157 and 565 discs, respectively, see

Figure 5.4.

We denote by algo sq the quadratic algorithm (Section 5.3.1) where the Minkowski

sum of each possible pair of balls is computed and tested for contribution. The more

sophisticated hierarchical approach is referred to as algo h. The two approaches are

implemented in our amink 2d software, and Table 5.1 shows their running times for the

coarsely approximated inputs as well as for the more accurate version. The resulting

approximate Minkowski sums are shown in Figure 5.5(a) and in Figure 5.5(b).

To compare our approximate results with the real Minkowski sum of the original
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(a) Model sqroot ,

157 discs

(b) Model sqroot ,

565 discs

(c) Model euro,

321 discs

(d) Model euro,

486 discs

Figure 5.4: Input objects, represented by unions of discs

sqroot euro |sqroot | · |euro | |C| algo sq algo h

[discs] [discs] [discs] [discs] [s] [s]

157 321 50397 7688 10.20 16.61

565 486 274590 43165 185.36 338.38

Table 5.1: Running times of amink 2d , benchmarked on a Intel Core i7 940 CPU

running at 3 GHz

(a) Minkowski sum, 7688

discs

(b) Minkowski sum,

43165 discs

(c) Exact Minkowski

sum of the polygonal

models sqroot and euro

Figure 5.5: Minkowski sums of the disc representations as compared to the exact

Minkowski sum of the original polygonal models
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input objects we have computed sqroot ⊕ euro with the exact Minkowski sum 2 pack-

age [Wei09] from CGAL. The output is shown in Figure 5.5(c). The Minkowski sum 2

package showed an execution time of less than 100 ms for this task, i.e. it greatly out-

performs amink 2d . As the package is also amazingly fast for more complicated inputs,

there is probably no need for our approach in 2D (at least not with respect to running

time). We nevertheless analyze the reasons for the long running times of amink 2d in

the next section.

5.4.1 Analysis of amink 2d

We consider the example where the inputs were represented by 565 and 486 balls,

respectively. Here our hierarchical approach algo h avoided the computation of 29

percent of those partial Minkowski sums that are not part of the final solution. But

although algo h is apparently superior to algo sq , it showed a worse running time. The

reason for this behavior can be found in the way we have implemented amink 2d , which

doesn’t account for the way the underlying regular triangulation package from CGAL

works.

Let T denote an instance of CGAL’s regular triangulation class [Yvi09]. As de-

scribed in Section 5.3.2, our algorithm algo h frequently tests if the Minkowski sum of

a disc a ∈ A and the circumdisc Sβ of a set of discs β ∈ B contributes to the Minkowski

sum computed so far. For this test, a weighted point Sβ , corresponding to Sβ , is in-

serted into the regular triangulation T computed so far. Then the contribution test

is performed, and then Sβ is immediately removed again. This is a straightforward

implementation. But when we stop treating the underlying triangulation package as

black box, it becomes clear that this implementation is disadvantageous: As Sβ is a

circumdisc of a number of discs, the weight of Sβ can be huge compared to the weights

of the points in T . Thus, when Sβ is inserted into T , a large set of the triangles of T

is probably in conflict with this point. These triangles need to be removed, and the

conflict zone needs to be re-triangulated. Even worse, when Sβ is removed again, not

only the just introduced changes are to be reverted, but also the set of the so called

hidden vertices must be considered. This term requires an explanation: T possibly uses

only a subset of its input points as vertices of the triangulation. The other ones are

stored as hidden vertices. Whenever a point is removed from T , hidden vertices can

re-appear in the triangulation. Thus they must all be checked when Sβ is removed

from T .

Yet another problem that affects algo h is the way the underlying triangulation
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library is implemented. The respective class applies an insertion algorithm, which

sounds appropriate at first sight. But at each insertion, a time critical point location

query is necessary, and this can considerably slow down the triangulation process. If

all points can be passed to T at once, then the points can be preprocessed, i.e., CGAL

first orders them along a Hilbert curve and then inserts them in that order. This order

is particularly advantageous, because it provides locality, i.e., two consecutive points

are with high probability nearby. Now, each time the point location routine is called,

it takes the previous result as initial guess, and this way the time consumption of

the point location queries becomes negligible. Moreover, this insertion order is cache

friendly, i.e., temporally consecutive changes in T will occur locally, and thus there

is a good chance that the affected elements of T are already cached when they are

referenced. Unfortunately, the hierarchical version of our approach, algo h, can only

pass the input points one by one to T . Thus the advantage of this optimization is lost.

We have explored the impact of the insertion order to the running time of the

bare triangulation process. When we passed a million of randomly created points at

once to CGAL’s Delaunay triangulation class, the triangulation is computed within a

second. However, when we passed the same points one by one, the time consumption

was 104 seconds. We must nevertheless not conclude that random insertion order is

generally a hundred times worse. Recently I have written my own 2D triangulation

class, and I have observed a much better running time for random order insertion (at

the price of a slightly higher memory consumption for a point location data structure).

As amink 2d serves just as a prototype for the 3D case, we have not ported it to use

the new class. But we believe that the hierarchical approach is still attractive, if it is

properly supported by the underlying triangulation class.

5.5 3D Minkowski sums

Our implementation for the 3D case is called amink 3d , and it has been developed

based on the experience we gained with amink 2d . Let T again denote an instance

of a regular triangulation. As to the hierarchical approach: We would have been able

to test circumballs for contribution without actually inserting them into T . But for

optimal running time and memory consumption we demand proper support for random

order point insertion, and it should be possible to just discard hidden vertices. This

is currently not possible with CGAL, so we have instead implemented the quadratic

algorithm (Section 5.3.1) in two different ways. We refer to them as algo mem and
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5. Minkowski Sums 3D Minkowski sums

(a) brakeBowl, 5023

balls

(b) brakeBowl, 2400

balls

(c) brakeBowl, 662 balls (d) smallBall, just one

ball

(e) knot, 682 balls (f) innerEar, 687 balls (g) innerEar, 2915 balls (h) s-tube, 135 balls

Figure 5.6: Input objects, represented by unions of balls

algo time. Thereby, algo mem inserts a weighted point c for the Minkowski sum c of

every possible pair of balls into T and immediately checks if c contributes to the union

of the so far computed partial Minkowski sums. If c doesn’t contribute, c is removed

immediately from T . Thus, algo mem is memory efficient. However, a post-processing

step is necessary: As not all partial Minkowski sums are known at the time of the

contribution tests, the surviving balls must be re-checked again at the end. Further,

algo mem can only pass the weighted points one by one to T , and in conjunction with

CGAL this slows down the triangulation process as described in the previous section.

Our second algorithm, algo time, first computes the Minkowski sums of all possible

pairs of balls. Then it passes the corresponding weighted points at once to T . The con-

tribution checks are performed only once and only for the balls that do not correspond

to hidden vertices of the triangulation. Obviously, algo time performs faster, but at

the price of a higher memory consumption.
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5.5.1 3D examples

We use the models shown in Figure 5.6 to evaluate our approach, and in order to com-

pare it with existing approaches, [Lie08, Hac09], for which software is publicly available.

We have partially downloaded these models from [Jyh, AIM] and have converted them

into unions of balls using the method described in Chapter 3.

Our first example combines A = brakeBowl with the B = smallBall model, which

consists just of one ball. The resulting object is a special case of Minkowski sum, namely

it is the offset object of brakeBowl for the offset r, i.e., this offset object consists of

all points of R3 that lie within a distance r from brakeBowl, where r is the radius of

smallBall. We have created the brakeBowl model at three different levels of accuracy,

see Figure 5.6(a), 5.6(b), and 5.6(c), and the computed offset objects A⊕B are shown in

Figure 5.7(a), 5.7(b), and 5.7(c). Table 5.2 shows the corresponding running times and

memory consumptions and compares them to the ones of CGAL’s Minkowski sum 3

package [Hac09], shortly referred to as mcgal in the following, and to the ones of the

software m+3d [Lie08, Jyh].

Our software computed the result within 21 seconds, and its memory consumption

stayed below 8 MB as opposed to the exact software mcgal, which needed 2 hours

and almost 11 GB main memory. The other approximate software, m+3d, threw an

assertion:

"src/minkowski -facet -stitch.h:103: m_f_graph_face* get_valid_face(

m_f_graph*, uint): Assertion ‘0’ failed".

We have written a bug report, and the authors of the software have kindly promised

to have a look at the problem. However, at the time we finished this work, the reason

why the assertion was triggered was still unclear. In our second example we simulate

the movement of an object along a path, namely we set A = innerEar and B = s-tube.

Here, a considerable fraction of the |A| · |B| balls contributes to U(A ⊕ B) (shown

in Figure 5.7(d)), and our approach needed 202 seconds. The software m+3d was

apparently able to benefit from the particularly simple structure of the s-tube model,

and it finished successfully within less than 14 seconds. The exact software mcgal,

however, threw an assertion:

terminate called after throwing an instance of ’CGAL::

Assertion_exception ’

what(): CGAL ERROR: assertion violation!

File: /opt/CGAL351/include/CGAL/Convex_decomposition_3/Ray_hit_generator

.h

Line: 152
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Explanation: ray should hit vertex , edge , or facet

Aborted

We have made a detailed bug report, but we got no answer from the CGAL project.

Therefore we can’t interpret what happened exactly.

For our third example we have set A = innerEar and B = knot , and with our

software we have computed the Minkowski sum for two different levels of accuracy,

shown in the Figures 5.7(e) and Figure 5.7(f). As our approach is not affected by

the complicated structure of these examples, it has successfully accomplished this task

within 28 and 201 seconds, respectively. The software m+3d took 825 seconds, and

it had a worse memory consumption. The mcgal software terminated again with an

assertion.

Actually, we also intended to compare our approach with the topology retaining

approximate approach [VM04], but unfortunately the authors do not have the models

they have used for their paper anymore. We have also made a detailed bug report

about the bug that occured in mcgal, but got no response from the CGAL project. So

we settle with the results of our software amink 3d and the partial results of mcgal and

m+3d. Clearly, the comparability of the three different approaches is limited: One is

exact, the other two are not. Ours is robust and it has to pay penalty for the use of

filtered arithmetic (see Section 2.1.2), while the robustness issues with m+3d might

come from the use of fast and inexact predicates. Also, one would actually need to put

the accuracies into perspective, by which the different representations approximate the

real input objects. But then still the shape of the input objects would heavily influence

which algorithm is the best choice.

5.6 Conclusions

We have developed and implemented a new approach for approximate Minkowski sum

computations. We have successfully applied our implementation to different models

in settings like motion planning and offset computation. We have also compared our

results with the exact Minkowski sum package from CGAL as well as with the publicly

available m+3d software for approximate Minkowski sums. As our approach operates

on unions of balls it is not directly comparable to any existing one. But our examples

show that our software scores well with respect to robustness, running time and memory

consumption. Our approach does not guarantee that the topology of the approximate

Minkowski sum equals the one of the exact Minkowski sum of the input objects. But
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(a) Offset computation:

brakeBowl ⊕ smallBall ,

5023 ⊕ 1 = 5023 balls

(b) Offset computation:

brakeBowl ⊕ smallBall ,

2400 ⊕ 1 = 2400 balls

(c) Offset computation:

brakeBowl ⊕ smallBall ,

662 ⊕ 1 = 662 balls

(d) Moving an object

along an s-shaped path:

innerEar ⊕ s-tube,

2915 ⊕ 135 = 167692

balls

(e) innerEar ⊕ knot ,

687 ⊕ 682 = 63143 balls

(f) innerEar ⊕ knot ,

2915 ⊕ 1388 = 273112

balls

Figure 5.7: Minkowski sums
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Model 1 Model 2 |A| · |B| |M. sum| algo time algo mem mcgal m+3d

|A|, |A| |B|, |B| [#balls] [#balls]

brakeBowl smallBall 5023 5023 21.22 s 21.32 s 7267.87 s •

5023,7532 1,501 8.16 MB 7.52 MB 10,96 GB

brakeBowl smallBall 2400 2400 11.29 s 11.29 s 7267.87 s •

2400,7532 1,501 5.109 MB 4.80 MB 10,96 GB

brakeBowl smallBall 662 662 2.8 s 2.8 s 7267.87 s •

662,7532 1,501 2.94 MB 2.94 MB 10,96 GB

innerEar s-tube 393525 167692 201.74 s 228.72 s • 13.53 s

2915,32236 135,500 304.44 MB 252.64 MB 144 MB

innerEar knot 468534 63143 28.18 s 39.76 s • 825 s

687,32236 682,992 269.84 MB 198.91 MB 2.14 GB

innerEar knot 4046020 273112 201.34 s 387.34 s • 825 s

2915,32236 1388,992 2.18 GB 1.53 GB 2.14 GB

Table 5.2: Running times and memory consumption for the 3D case on an Intel Core

i7 940 CPU running at 3 GHz with 12 GB RAM. The first and second columns show

the input models and the number of balls and triangles by which they are represented.

At “•” entries, the respective software with which we compare ours did not succeed.

in fact, we know only of one approximation approach [VM04] which comes with such a

guarantee, and this approach, as well as the exact Minkowski sum software of CGAL

are limited to relatively small inputs. Thus one might need to simplify real world

objects and thereby lose the topological guarantee anyway. In view of this, the lack

of topological guarantees is not a real drawback of our approach. Still, the choice of

the best approach depends heavily on the shape of the input objects as well as on the

demands on the output quality.
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Chapter 6

Conclusions

6.1 Abstract

Algorithmic solutions for three quite different problems have been considered indepen-

dently from each other in the previous chapters. In this chapter we establish connec-

tions between them. For this purpose we extract the principal functional blocks of our

approaches. We show that many of these functional blocks are shared between our

algorithms, and we demonstrate how everything fits in a big framework. We discuss

further applications of our techniques, and we also discuss its limitations.

86



6. Conclusions The common framework

6.2 The common framework

Figure 6.1 shows the overall framework that has evolved. All algorithms start with an

r-sample of one or more objects, and they terminate with their respective construction,

i.e., with a seed polytope, a reconstructed surface, an approximate medial axis, an

approximate Minkowski sum of two objects, or with a shape prior for medical image

segmentation. The latter has not been introduced yet because it is not a subject of this

thesis. A short description of our related work is given in Section 6.3.1.

6.2.1 Computation of the discrete medial axis transform

The topmost functional block in the diagram in Figure 6.1 is common to all algo-

rithms. It computes from a given r-sample S of an object O a discrete medial axis

transform DMT(O). This set of balls serves two purposes. Firstly, it supports esti-

mation of the local feature sizes in S, which is required for the construction of proper

surface balls. Secondly, the union of DMT(O) approximates O, and this property is

used by the other algorithms.

6.2.2 Pruning by set covering

The set covering block in Figure 6.1 is a central element of our framework, because

all algorithms introduced in this thesis involve pruning. The motivation to prune sets

of balls is different in the various approaches. In the case where surface balls BF are

treated, density reduction is the primary goal. Therefore, this is the stage where the

degree of accuracy for subsequent surface reconstruction from B′
F is controlled. In the

other case, where approximate medial balls DMT+
in are treated, density reduction is

still very important. But in this case, the key goal is stabilization, i.e., removal of balls

which correspond to ’nonrelevant’ features of O.

No matter what kind of balls is supplied, the set covering algorithm treats them

as sets in a mathematical sense, i.e., it operates purely combinatorially. Therefore,

this step must be adapted to the kind of input to maintain topological correctness, as

described in the respective chapters.

6.2.3 The weighted zero α-shape

In the surface reconstruction branch of our framework, we compute the weighted

zero α-shape A(B′
F ) of a pruned set of surface balls B′

F , and in a subsequent step a
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Compute the discrete

medial axis transform

Generate surface balls

within some range

Generate largest

possible surface balls

Inflate the input balls

Pruning
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algorithm

Minkowski

sum

algorithm

Medical

image

segmentationExtract a triangular

mesh
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in
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Reconstructed
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Medial axis Minkowski

sum
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Figure 6.1: Overall framework
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triangular mesh is extracted from A(B′
F ), which serves either as a reconstructed surface

or as part of the seed polytope. Note that we discuss local feature sizes in Chapter 4,

using the weighted zero α-shape A(DMT(O)) of DMT(O). But A(DMT(O)) is only

virtually used there, and thus A(DMT(O)) is not part of the framework.

6.3 Further applications

Over the last years, a wide range of different people was interested in our constructions.

Among them were scientists from various fields of research, an arms manufacturer (we

did not collaborate here), a video game producer as well as a ’Voronoi’ sculptor. Their

interest provides evidence that our constructions can be applied to many real-world

problems. One of these problems, whose connection to our constructions is not obvious

at first sight, is medical image segmentation. Jointly with scientists from this field of

research, we have developed a new segmentation approach, as desribed in the following.

6.3.1 Medical image segmentation

Medical image segmentation is a key to success of better medial imaging. But missing

data, low contrast and noise, often present in medical images, impede the segmentation

of objects of interest. In [JAS] we tackle the problem with a pipeline of algorithms,

ranging from the ones in our framework to statistical methods.

Human organs, that have been segmented from medical image data by experts,

serve as training data for our approach. From the supplied meshes, we compute with

our framework small sets of balls whose unions approximate the organs in a stable way.

Then, after an alignment and matching step, a statistical model is established from the

balls, which assists later in semi-automatic segmentation of such organs. We refer the

interested reader to [JAS] and [Abh10].

6.4 Limitations

A limitation of our approach is that thin or very detailed objects are not well suited

to approximation by balls. Consider, for example, car body parts like an engine hood

made of metal sheet. A large, memory consuming set of tiny balls is required to

approximate such an object. An idea to avoid excessive memory consumption is to

base the approximation on ellipsoids (see, for example, [BK02]). This does not require

a new framework, because scaling the original object in its principal directions and
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treating it by balls equals treatment of the original object by axis-aligned ellipsoids.

On the other hand, the available memory in average office computers has increased

steeply over the last five years of our research. This provides evidence that memory

consumption will become an even less limiting factor in the future.
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