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Ṽ f̃(k)eik·xd3k´

V δ(x)f(x) := f(0) Delta distribution δ(x)

a
Sj

i Quantity defined on surface patch j of domain i

E Young’s modulus

ν Poisson’s ratio

K = E
3(1−2ν) Bulk modulus

G = E
2(1+ν) Shear modulus

ρ0 ≈ 1.2 kg m−3 Density of air at standard conditions

( T = 20◦C, p = 101.325 kPa )
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Abstract

In this thesis, a method for the prediction of vibro-acoustic system responses based
on component characterization is developed. Each subsystem is described by an
impedance relation on its surface that can be obtained either experimentally on ma-
terial samples or from numeric simulations. The method is analyzed and applied to
a simplified test case of a rigid air cavity baffled by a flexible plate that is treated
with an absorptive porous layer. Possible ways of component characterizations by
measurements are proposed. Finally, a comparison between the predicted responses
and the results of reference measurements on the assembled physical system is pre-
sented.
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Introduction

The accurate prediction of the response of vibro-acoustic systems is of great im-
portance in many areas reaching from basic research in nanoscale systems over ul-
trasound technology to application in industrial development, building physics and
environmental noise protection.

Numerical simulation plays a crucial role in this area, since it is often not possible to
predict the behavior of the system in a straightforward way. Furthermore, it enables
the optimization of parameters where experimental trial and error is impossible
or too costly. Unfortunately, with increasing system complexity, the calculations
become more time-consuming and yield less accurate results.

In particular, multilayered systems of poroelastic materials that are commonly used
in acoustic treatments pose a special challenge. While it it easy to make rough
estimates on their noise-reducing effects, it is is difficult to predict their exact be-
havior numerically. An important reason for this lies in uncertainties in the material
parameters due to the manufacturing process.

State of the art

For vibro-acoustic simulations in the low-frequency range, deterministic methods
like the Finite Element [Zienkievicz and Taylor, 2000] and Boundary Element meth-
ods [Ciskowski and Brebbia, 1991] are widely used to solve the underlying time
harmonic elastic equations [Lalor and Priebsch, 2007]. These numerical methods
require elastic parameters, accurate geometrical models and boundary conditions
for the calculation domains. They yield accurate results for the spatial distribution
of the vibrational and acoustic field quantities for both, structural and fluid domains,
up to their frequency limits that are determined by the mesh size. Additionally, they
are able to predict the phase relation between time-harmonic quantities. A coupled
simulation of structural and fluid domains is possible up to 400 Hz in typical appli-
cations (e.g. automotive body structures). For higher frequencies, modeling effort
and calculation time limit the practicability.

For predictions in the high frequency range, methods based on the energy flux for
reverberant systems (SEA, [Lyon, 1975]) and geometrical propagation models for
damped systems (Ray tracing, [Krokstad et al., 1968]) are often used. The results
of SEA do not depend on the domain geometry and contain no modal behavior.
Without additional experimental data, the predictions can be very inaccurate due to
parameter uncertainties. In contrast to that, ray tracing methods take the shape of
the calculation domain into account but neglect the wave nature of acoustic fields.
Therefore they are only suited for large domains at high frequencies. Neither of the
methods is able to reproduce phase relations or diffraction phenomena. Moreover,
the validity of the approaches and the possible accuracy is not easily predictable
[Fahy, 1994, Bork, 2005].

A commonly used model for poro-elastic damping materials is the Biot theory [Biot,
1941, 1956], which has been originally developed for soil mechanics. The Biot



model allows both, structural and acoustic wave propagation, inside a porous ma-
terial with an elastic skeleton. The model equations can be implemented in a one-
dimensional transfer matrix approach [Allard et al., 1986] or a FEM calculation
[Atalla et al., 1998]. It is possible to include Biot model calculations into existing
deterministic structure-fluid models and perform a fully coupled simulation. Also
general parameters like absorption coefficients can be obtained from the Biot model
and used in high-frequency models.

The biggest disadvantage of the Biot model for complex materials is the required
amount of parameters [Panneton and Olny, 2006]. In a multi-layer system each
layer has to be characterized seperately in a series of experiments. For industrially
produced materials, the interaction between glued layers is difficult to model.

Aim of this thesis

The method that is proposed in this thesis is based on the principles of deterministic
calculations and includes phase information for all considered quantities.

In the assembly of a vibro-acoustic system some parts often already exist physically.
If their properties do not change during the assembly it is unnecessary to create nu-
merical models for their description - direct measurements on the subsystems should
yield more accurate results. A prediction method for assembled systems should al-
low for the combination of these data with numerically simulated components.

Therefore a hybrid method is proposed: Instead of a numeric calculation based
on material parameters, the vibro-acoustic surface response of a subsystem can be
obtained on a real material sample. The method is, however, also compatible with
numerical models, therefore it is also applicable to purely simulated subsystems.

Based on a characterization on the boundaries, the procedure is able to assemble
a full system from experimentally characterized and numerically modeled subsys-
tems. This allows a choice of the most appropriate characterization method for each
component that is independent from the remaining ones.
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Competence Center) for the good collaboration and the experimental characteriza-
tion data. I am indebted to my family and my friends who have always supported
me during my studies.

Christopher Albert, August 2012



Chapter 1

Linear Vibroacoustics

1.1 Discrete mechanics

A common model for coupled dynamical systems of mechanical bodies is the concept
of mass, springs and dampers. In the one-dimensional case, these components react
to a displacement u(t) with dynamic forces

Fspring(t) = Ku(t)

Fdamper(t) = Du̇(t) (1.1)

Fmass(t) = Mü(t) ,

where K, D and M are the spring constant, damping constant and mass, respec-
tively. When a point mass is connected to a rigid anchor by a parallel system of a
spring and a damper (Figure 1.1), the overall reaction force is therefore given by

F (t) = Fspring(t) + Fdamper(t) + Fmass(t) = Mü(t) +Du̇(t) +Ku(t) .

mass M

spring K damper D

displacement uforce F

Figure 1.1: System of a mass, a spring and a damper

In the frequency domain, the derivatives are transformed to factors of iω and the
equation becomes

F =
(
−ω2M + iωD +K

)
u . (1.2)
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Consequently, the frequency responses of the displacement u, the velocity v = iωu

and the acceleration a = −ω2u to a force F are

u

F
=

1

−ω2M + iωD +K
(1.3)

v

F
=

1

iωM +D +K/iω
(1.4)

a

F
=

1

M +D/iω −K/ω2
, (1.5)

respectively.

This concept can be extended to coupled multi-body-systems: Here, the one dimen-
sional displacement u and force F are replaced by vectors of generalized coordi-
nates for all degrees of freedom, u and f . The scalar factors K, D and M become
matrices K, D and M. Their diagonal elements describe local quantities and the
off-diagonal elements quantify the coupling strength. For distributed masses (rigid-
body-systems), also the mass matrix will contain off-diagonal terms. The system of
equations corresponding to (1.2) is

f =
(
−ω2M + iωD + K

)
u . (1.6)

Note, that only the variables f and u are frequency dependent in this model. In the
more general case, the linear factor is replaced by a frequency-dependent dynamic
stiffness Kdyn(ω) with

f = Kdynu . (1.7)

This relation can be used to characterize an arbitrary discrete linear mechanical
system in the frequency domain. We have to keep in mind, that all discrete approx-
imations for continuous vibro-acoustic problems can be interpreted as a discrete
network of masses, springs and dampers.

1.2 Linear acoustics

The theory of linear acoustics describes the relationship of a pressure field and a
corresponding velocity field in every point of a region in space.

The wave-like behavior of the pressure and velocity fields can be derived from fluid
mechanics. For a non-viscous fluid model we use the continuity equation for the
density ρ and the flow velocity v,

∂ρ

∂t
+ ∇ · (ρv) =

∂m

∂t
. (1.8)

The right side is a source term that describes an externally introduced mass density
fluctuation. Newton’s second law of motion yields a momentum change due to the

7



pressure gradient,

ρ

(
∂v

∂t
+ (v ·∇)v

)
+ ∇p = 0 . (1.9)

These equations are the Euler equations [Landau and Lifshitz, 1987]1, which contain
quadratic velocity terms and are thus nonlinear in general. In acoustics, a small
perturbation from equilibrium (ρ0 + ρ(x, t), p0 + p(x, t), v0 + v(x, t)) is assumed.
The zeroth-order terms do not depend on space or time. If we neglect quadratic and
higher terms of the perturbation terms, (1.8) and (1.9) can be simplified to

∂ρ

∂t
+ ρ0∇ · v =

∂m

∂t
(1.10)

ρ0
∂v

∂t
+ ∇p = 0 . (1.11)

If we assume adiabatic conditions and near equilibrium, the thermodynamic equa-
tions of state yield a linear relationship between p and ρ,

∂p

∂ρ
= c2

We apply a time derivative to (1.10) and a ∇-operator to (1.11) to eliminate v and
obtain

∆p− 1

c2

∂2p

∂t2
= −ρ0

∂q

∂t
(1.12)

q = 1
ρ0
∂m
∂t is the volumetric flow rate of mass density ρ0 that is introduced by sound

sources. Damping in the system can be modeled as in (1.1) by introducing an equiv-
alent damping factor ε on a first time derivative of the pressure and the damped
version of (1.12) is written as

∆p− 2
ε

c2

∂p

∂t
− 1

c2

∂2p

∂t2
= −ρ0

∂q

∂t
(1.13)

By transformation to the frequency domain, the equation is transformed into the
damped acoustic Helmholtz equation,

4p− 2iε
ω

c2
p+

ω2

c2
p = −iωρq (1.14)

with the wave number k = ω
c . The wavelength λ = 2π

k becomes shorter as the
frequency increases, which is shown in Figure 1.2.

1More generally, the right side of the second equation contains also external forces that lead to
dipole sound sources [Fahy, 2001]. We are only considering monopole sources here, so it is assumed
to be zero.

8



10−2

10−1

100

101

102

101 102 103 104

λ
[m

]

f[Hz]

water (c = 1484 m/s)
helium (c = 972 m/s)

air (c = 343 m/s)

Figure 1.2: Acoustic wavelengths in media with different speed of sound

Pressure and particle velocity in the fluid are related by (1.10) and (1.11),

∇ · v = −iω
1

c2ρ0
p = −i

k

Zc
p (1.15)

∇p = −iωρ0v = −ik Zcv. (1.16)

Zc = ρ0c is the characteristic impedance of the fluid.

1.3 Linear elastodynamics

In elastic solids, also shear forces play a role, opposed to fluids, where only compres-
sion is relevant. Therefore, instead of the pressure p, the forces onto an infinitesimal
volume of the solid are expressed by a stress tensor σij , whose diagonal Cartesian
components describe pressures in the three space directions. The off-diagonal ele-
ments describe shear forces in direction i, applied to the normal face in direction j.
Traditionally, the displacements u are used to describe the solid motion instead of
the velocities v = ∂u

∂t .

For small perturbations from equilibrium, the equations of motion become linear as
in 1.2. For isotropic elastic solids, the relationship between stresses and displace-
ments can be derived using fundamental spring constants K (bulk modulus) and G
(shear modulus). According to Landau and Lifshitz [1986], the stress-strain relation

9



is given by

σij = δij

(
K − 2

3
G

)
∇ · u +G

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.17)

Using the balance of dynamic forces (in analogy to 1.11),

∇ · σij = ρ
∂2u

∂t2
+ fext,

the elastic wave equations in the time domain are given by

G∆u +

(
K − 2

3
G

)
∇ · (∇ · u) = ρ

∂2u

∂t2
+ fext

and in the frequency domain by

G∆u +

(
K − 2

3
G

)
∇ · (∇ · u) + ρω2u = fext . (1.18)

There are now two types of waves with different wave numbers:

• Longitudinal waves with

cl =

√
K + 4G/3

ρ

• Transversal waves with

ct =

√
G

ρ

Using this notation, the Eigenvalue problem for (1.18) without excitation forces can
be written as

c 2
t ∆u +

(
c 2
l − c 2

t

)
∇ · (∇ · u) + ω2u = 0 ,

where u = ul + ut is a combination of longitudinal and transversal displacement
that satisfy

∆ul +
ω2

c 2
l

ul = 0 , ∆ut +
ω2

c 2
t

ut = 0 .

1.4 Thin plate dynamics

A plate with a small thickness h in z-direction is extremely stiff to compression but
able to bend away from its equilibrium plane. Therefore, the elastic equations can
be simplified to describe just the bending motion and neglect the in-plane motion.
Landau and Lifshitz [1986] give a derivation of this thin-plate model commonly
known as the Kirchhoff-Love plate. The model assumptions are the following:

10



• The displacement components parallel to the xy-plane, ux and uy, can be ne-
glected if the bending is small enough. The remaining quantity is the out-of-
plane displacement uz =: u .

• External forces result in bending motion with large in-plane stresses. There-
fore the out-of-plane stresses σxz, σyz, σzz can be neglected.

Several transformations of the original elastic equations (1.17) results in the balance
of forces in the z direction,

D42u− f = 0

where the plate bending stiffness D is given by

D =
Eh3

12(1− ν2)
.

In the dynamic case, the out-of-plane force f is given by the inertia and the external
forces fext,

f = ρ · h · ∂
2u

∂t2
+ fext .

In the frequency domain, we obtain the fourth-order equivalent to (1.14),

D42u+ ρhω2u = fext .

The relationship between k and ω is no more linear, the dispersion relation is given
by

k = 4

√
ρh

D

√
ω

which leads to a frequency-dependent wave propagation speed,

c(ω) = 4

√
D

ρh

√
ω .

In comparison to fluids (Figure 1.2), the wavelength in plates (Figure 1.3) decreases
only with the square root of the frequency. When a plate is radiating into a fluid, the
wavelength of the compression wave and the bending wave matches at some point.
For this so-called coincidence frequency the radiation efficiency reaches its maxi-
mum. The relevant frequencies for this work are below the coincidence frequency,
which is ≈ 6000 Hz with a wavelength of 5.6 cm for a 2 mm steel plate in air.
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Figure 1.3: Bending wavelength for steel plates of different thickness and coinci-
dence with acoustic waves in air

1.5 Porous materials

A phenomenological model based on statistical analysis of fibrous materials has been
proposed by Delany and Bazley [1970]. Here, the model for a poroelastic material
is an equivalent fluid with characteristic impedance and complex wave number

Zc = ρ0c0

(
1 + 0.057X−0.754 − i 0.087X−0.732

)
(1.19)

k =
ω

c0

(
1 + 0.0978X−0.700 − i 0.189X−0.595

)
. (1.20)

The quantity X = ρ0f
σ depends only on the fluid parameters and the flow resistivity

σ. The coefficients and exponents have been obtained by a linear regression of ex-
perimental data for a multitude of samples with different σ. Allard and Atalla [2009]
state that the predictions by this model will have the correct order of magnitude for
0.01 < X < 1.

More complex models take microscopic parameters into account. Pride et al. [1993]
give a detailed derivation of a model for the drag forces in variable-width flow chan-
nels. By asymptotic analysis for the low- and high-frequency domain and interpolat-
ing over the mid-frequency region, the frequency-dependent effective density and
stiffness of the fluid can be derived.

Since the equivalent fluid of Delany and Bazley [1970] yields very good agreement
with measurements for the materials investigated in this work, it is not necessary to
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discuss more complicated models in this context.

1.6 Green’s functions

1.6.1 Derivation of Green’s functions

The definition of a Green’s function G(r, r′) is usually given as a function that satis-
fies a partial differential equation with a point source.

For of the Helmholtz equation (1.14), G(r, r′) it is given by

4G(r, r′)− 2iε
ω

c2
G(r, r′) +

ω2

c2
G(r, r′) = −iωρδ(r− r′) . (1.21)

Let us consider a solution G for the point-excitation case and an unknown solution
p. We apply the identity

∇(f∇g) = ∇f ·∇g − f∆g ,

to obtain

∇(G∇p)−∇(p∇G) = p∆G−G∆p

= −iωρ
(
δ(r− r′)p− qG

)
.

Integration and application of the divergence theorem yields an expression for the
solution,

p(r) =
i

ωρ

ˆ
∂Ω

(
G(r, r′)

∂p(r′)

∂n
− ∂G(r, r′)

∂n
p(r′)

)
dS′ +

ˆ
Ω
G(r, r′)q(r′)dV .

(1.22)

Since the normal derivative of p is proportional to the particle velocity v (1.16), we
can also write

p(r) =

ˆ
∂Ω

(
G(r, r′)vn(r′)− i

ωρ

∂G(r, r′)

∂n
p(r′)

)
dS′ +

ˆ
Ω
G(r, r′)q(r′)dV ,

where vn(r′) is the normal velocity on the boundary.

1.6.2 Modal superposition

To find a solution for G(r, r′), we will first consider the homogenous problem of
(1.14) (q = 0). Here, the equation becomes an eigenvalue problem at frequency ωi,

4p(r) +
ω2
i

c2
p(r) = 0 . (1.23)

A solution of (1.23) is called a mode φi(r) of the system. If there is no damping
inside the system, there will be a singularity in the solution for an excitation with

13



the eigenfrequency ωi of the mode. It can be shown [Polyanin, 2002], that any
sufficiently regular function compatible with the boundary conditions can be written
as a superposition of modes,

f(r) =
∑
i

fiφi(r) . (1.24)

Furthermore, the modes fulfill an orthogonality relation
ˆ

Ω
φi(r)φj(r)dV = δij (1.25)

In the physical sense this means, that all time-harmonic movements of an arbitrarily
excited elastic system can be represented by the stationary vibration modes of the
system without excitations - for example the harmonics of a string.

For the Green’s function we use the ansatz

G(r, r′) =
∑
i, j

gijφi(r)φj(r
′) .

Using the orthogonality (1.25) we multiply (1.21) by the mode φi(r′) and integrate
over r′ to obtain

gii

(
−ω

2
i

c2
φi(r)− 2iε

ω

c2
φi(r) +

ω2

c2
φi(r)

)
= −iωρφi(r) .

Consequently,

gii =
iωρc2

ω2
i − ω2 + 2iεω

,

gij = 0 for i 6= j .

The Green’s function can thus be derived by finding the modes of the equation and
summing up the contributions between excitation at r′ and receiving position r.
In numeric calculations, we will have to truncate the series above the maximum
frequency of interest ωmax. An obvious consequence of the modal summation is the
reciprocity of Green’s functions:

G(r, r′) = G(r′, r) (1.26)

.
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Chapter 2

Coupling of Subdomains

With the knowledge of the mathematical formulation of vibro-acoustic systems we
are now going to couple different domains. The coupling method should allow both
experimental and numerical characterization of subdomains. Since the information
on the boundary should be sufficient and placing sensors inside a domain is not
always possible, a non-overlapping coupling method should be suited best. One
example for such a method is the Patch Transfer Function (PTF) approach, which
will be used in this thesis. The PTF coupling scheme has been originally introduced
as a tool to couple different domains with numerical methods such as the Finite
Element Method (A.1.2). It has been proposed by Ouisse et al. [2005], where a
review of the method including numerical examples can be found. Examples for
applications have been given by Pavic [2010] for acoustic coupling, Aucejo et al.
[2010] for a plate-cavity system and Chazot and Guyader [2007] for a multi-layered
transmission-loss problem.

The idea of the PTF is, that the coupling behavior of any linear acoustic or elastic
system can be characterized solely by a linear relationship on the surface. Each
system is described by a surface impedance or mobility, defined on a coarse grid
of patches. The aim is to speed up calculation time, while retaining results of ac-
ceptable accuracy. In terms of domain decomposition methods, the PTF method
is a Schur complement method (A.6). The discretization of the coupling surfaces
is coarser than the original FEM grid and the shape functions are of zeroth order
(uniform values over one patch).

While the approach was intended for numerical calculations, it is extended by pro-
posals for experimental procedures to obtain the patch transfer functions for the
components of a coupled vibro-acoustic system with damping material. The numer-
ically assembled coupled system are validated by reference measurements.

2.1 Surface impedances in 1D

As described in chapter 1, a central feature of vibroacoustics is the response of a
system due to a forced excitation. It does not make a difference, if we choose either
u, v or a as our movement quantity, since they are proportional in the frequency
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domain. As a convention we will use the velocity v as the main variable.

If we move the boundary of a one-dimensional system, it responds with a surface
pressure p that depends on the overall characteristics of the system and the fre-
quency. The relation between the quantities p and v on the surface is called the
surface impedance and can be written as a linear law,

p = Z v . (2.1)

The inverse of Z is called the mobility Y .

2.2 Boundary value problems in 3D

Let us now extend the concept of surface impedances from 2.1 to 3-dimensional
systems with 2-dimensional surfaces. The solution of homogenous problems for
partial differential equations like (1.14) is uniquely given by imposing boundary
conditions [Polyanin, 2002]. This can be easily understood in a physical way: If
a mechanical system is only excited on its surface, the response in the interior is
uniquely given by this excitation. We are going to consider the following cases:

1. Imposed pressure (Dirichlet boundary condition):

p(x)|x∈S = pS(x)

2. Imposed normal velocities (Neumann boundary condition):

∂p(x)

∂n

∣∣∣∣
x∈S

= iωρvS(x)

Since we assume a second order equation for p(x), only one of the two boundary
conditions can be imposed in a specific position on the boundary. The physical
interpretation of this is that there is always a response of the system, so we cannot
impose both, a forced surface pressure and velocity, at the same time. The second
variable on each point in the domain (including the surface) can be obtained by the
relations:

1. Mobility relation for imposed pressures

v(x) =

ˆ
S
Y (x, x′) pS(x′) dS′ . (2.2)

2. Impedance relation for imposed velocities

p(x) =

ˆ
S
Z(x, x′) vS(x′) dS′ . (2.3)

Z(x, x′) and Y (x, x′) can be principally derived from the model equations (1.6). If
both x and x′ are on the surface, they are called surface impedance / mobility. In
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the theory of elliptic partial differential equations they are known as the Dirichlet-to-
Neumann map, a special case of a Poincaré-Steklov-Operator. In the one-dimensional
case, (2.3) reduces again to (2.1).

2.3 Averaging over patches

pS(x)
pS1 pS2 pS3 pS4
pS5 pS6 pS7 pS8

Figure 2.1: Discrete approximation of the surface pressure values pS(x) by pSi

In measurements and simulations, the integrals (2.2) and (2.3) cannot be evaluated
exactly. They can be approximated in a straightforward way by splitting the bound-
ary surface into patches and assuming averaged constant values for the quantities
over one patch (Figure 2.1),

pS(x)|x in Patch i ≈
1

Si

ˆ
Si

pS(x) dS =: pSi

vS(x)|x in Patch i ≈
1

Si

ˆ
Si

vS(x) dS =: vSi .

The transfer functions from patch i to position x are then given by

Y T
i (x) :=

ˆ
Si

Y (x, x′) dS′ (2.4)

ZTi (x) :=

ˆ
Si

Z(x, x′) dS′ (2.5)

and the transfer functions between patches i and j by

Y S
ij :=

ˆ
Si

ˆ
Sj

Y (x, x′) dS′dS (2.6)

ZSij :=

ˆ
Si

ˆ
Sj

Z(x, x′) dS′dS . (2.7)

The integral equations (2.2) and (2.3) on the surface become matrix equations

vSi = Y S
ij pj (2.8)

pSi = ZSijvj , (2.9)

where the mobility matrix YS is an approximation for the inverse of the impedance
matrix ZS ,

YS ≈
(
ZS
)−1

. (2.10)

The patch values can be obtained by averaging over measured or simulated quanti-
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ties inside a patch.1

2.3.1 Condensed transfer functions

As mentioned in (A.6), the degrees of freedom of a system that are not excited di-
rectly can be eliminated in the matrix equation. A physical interpretation of this
equation is the lumping together of several masses, springs and dampers in (1.7) to
a single "black box" defined by its stiffness matrix between the excitation positions.
Firstly, all homogenous systems can be reduced to the surface, which corresponds to
(2.2) - (2.9). But even for more complicated boundary conditions, we can go a step
further. All sections of the boundary that are neither excited directly nor coupled to
a subsystems of interest can be eliminated in the equation. The resulting condensed
impedance relation will only include these sections and contain the full informa-
tion about the system response including the remaining boundary conditions. The
following transfer functions will all be of this kind.

2.4 Coupling procedure

In this section, we will use the relations (2.9) and (2.8) to couple systems on their
common interface. The approach is based on the superposition principle (See Bo-
brovnitskii [2001] for a detailed analysis): The coupled response of one subsystem
is given the sum of two (virtual) configurations. For a fluid subsystem this is

1. The pressure response due to internal sources ṽA if the coupled interface is
blocked (ṽS = 0).

2. The pressure response due to the (yet unknown) interface velocity vS of the
coupled system, when the internal sources are switched off.

For a structural subsystem it is given by

1. The velocity response due to internal sources p̃F if the coupled interface is
free (p̃S = 0).

2. The velocity response due to the (yet unknown) interface pressure pS of the
coupled system, when the internal sources are switched off.

In the following sections, an internal excitation of one subsystem is assumed to be
independent from the other subsystems (no back-action to the source itself), so we
denote internal sources by vA ≈ ṽA, pF ≈ p̃F .

1The approach is however not limited to patches, since (2.8), (2.9) hold for any finite approxima-
tion of the boundary values.
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2.4.1 Coupling two fluid domains

For an uncoupled system, let ZS1 and ZS2 be the surface impedances of the two
respective domains on their common interface. We introduce velocity sources vA in
system number 1 and the respective transfer functions ZAS to the coupling surface.
We denote the surface pressures and velocities by pS and vS . The quantities are
then related by the system impedances,

pS1 = ZS1 vS1 + ZAS1 vA1

pS2 = ZS1 vS2 .

ZASvA are the surface pressures p̃S1 in the first system with a blocked interface
(ṽS1 = 0) due to the internal sources vA.

vS pS

vA

pB

⇔

vS
pS

pB

ZT2

ZS2

vA

−vS

pS

ZT1

ZS1

(2)

(1)

(2)

(1)

Figure 2.2: Coupled fluid cavities. Pressures pS and velocities vS on the interface
have to match. Source vS , Receiver pB. Surface/Transfer Impedances: ZS , ZT

When the two systems are coupled (Fig. 2.2), the pressures and the velocities on
the surface have to match on the interface,

pS = pS1 = pS2

vS = −vS1 = vS2 .

In this case, the direction of the normal velocity is defined as pointing into the inside
of the domain. The pressures at the coupling surface are given by the relation

pS = −ZS1vS + ZASvA = ZS2 vS

and we obtain an equation for the surface velocities(
ZS1 + ZS2

)
vS = −ZASvA . (2.11)

For the receiving pressures pB with the corresponding transfer functions ZSB, we
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obtain

pB = ZSBvS .

2.4.2 Coupling an elastic plate and a fluid domain

Let Y denote the elastic plate mobility and ZS the cavity’s surface impedance with

ve = Y
(
pSe + pFe

)
(2.12)

pSf = ZS vSf . (2.13)

vS pS

pF

pB

vS

pF pS
Y

Y

⇔
vS

pS

pB

ZT

ZS

Figure 2.3: Elastic plate coupled to a fluid cavity. Pressures pS and velocities vS on
the interface have to match. Source pF , Receiver pB. Mobility: Y. Surface/Transfer
Impedances: ZS , ZT

YpF = ṽe would be the plate’s response to the force in vacuo (pSe = 0). The
continuity conditions for the coupled case (Fig. 2.3) are

pS = pSe = pSf

vS = vSe = vSf .

From (2.13) we obtain

pS = ZS vS .

The mobility relation (2.12) yields

vS = Y
(
pF + pS

)
= Y

(
pF + ZS vS

)
,

which results in (
I−YZS

)
vS = YpF . (2.14)
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The receiving point pressures are again

pB = ZSBvS

2.4.3 Coupling an elastic plate with two fluid layers

Combining the two coupling cases defined above (fig. 2.4), we can now couple an
elastic plate (0) with two acoustic layers (1), (2) with the continuity conditions on
two surfaces S1 and S2,

pS0 = pS0
0 = pS0

1

vS0 = vS0
0 = vS0

1

pS1 = pS1
1 = pS1

2

vS1 = −vS1
1 = vS1

2 .

The impedance relations follow as

vS0 = Y
(
pS0 + pF

)
(2.15)

pS0 = ZS0
1 vS0 − ZS1S0

1 vS1 (2.16)

pS1 = ZS0S1
1 vS0 − ZS1

1 vS1 (2.17)

pS1 = ZS1
2 vS1 , (2.18)

where vSi are the velocities on the coupling surface i, pSi the surface pressures,
pF the source term, Y the plate mobility and ZSi

k , Z
SiSj

k the respective surface and
transfer impedances between surfaces i and j in the fluid domain k.

S0

pF

pB

S1

pS0 ,vS0

pS1 ,vS1

ZS1S0
1

ZS1
1 ,ZS1

2

Y,ZS0
1

ZS1B
2

(2)

(1)

Figure 2.4: Coupled plate-fluid-fluid system. Pressures pS and velocities vS on the
respective interfaces match. Source pF , Receiver pB
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The matrix form reads I −ZS0
1 ZS1S0

1V

−Y I 0

0 −ZS0S1
1 ZS1

1 + ZS1
2


 pS0

vS0

vS1

 =

 0

YpF

0

 .

2.5 Characterization of subsystems

2.5.1 Direct method

According to the matrix equations (2.9), (2.8) we can directly obtain the matrix
elements of either ZS or its inverse YS by the following direct methods:

1. To determine YS , we excite with a surface pressure (force) pSk at patch k and
leave all the other patches free with pSj 6=k = 0. The i-th row of YS is given by
the ratio of all surface velocities vSi to the single pressure pSk ,

Y S
ik =

vSi
pSk

∣∣∣∣
pSj 6=k=0

. (2.19)

2. To obtain ZS , we excite with a surface velocity vSk at a certain patch k and
block all other patches so that vSj 6=k = 0. Then the i-th row of ZS is given by
the ratio of all surface pressures pSi to the single velocity vSk ,

ZSik =
pSi
vSk

∣∣∣∣
vSj 6=k=0

. (2.20)

The first case will be the natural method for elastic domains, the second one for
acoustic domains. In the numerical model, we can just successively apply these
boundary conditions and obtain the blocked pressures or free velocities on the sur-
face. In principle this can also be done experimentally, as we will see in the next
chapter (4.1).

Another method, that is only possible in the numerical model is the condensation of
the stiffness matrix to obtain the Schur complement system (A.1.3) on the boundary.
Since detailed information is not needed, the condensed matrix is then interpolated
to a coarser patch grid. For large patches, the direct method described above should
be significantly faster.

2.5.2 Indirect method

The characterization of subsystems is not limited to the direct reading of the matrix
elements. In general, to obtain an accurate values for Y or Z on N patches, at
least N independent configurations of different pS and vS have to be found. The
impedance or admittance of the system can be reconstructed from (2.9) and (2.8)
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by solving the respective inverse problem pS11 pS12 . . .

pS21 pS22 . . .
...

...
. . .

 = Z

 vS11 vS12 . . .

vS21 vS22 . . .
...

...
. . .

 ,

 vS11 vS12 . . .

vS21 vS22 . . .
...

...
. . .

 = Y

 pS11 pS12 . . .

pS21 pS22 . . .
...

...
. . .

 .

The columns of the matrices

P :=

 pS11 pS12 . . .

pS21 pS22 . . .
...

...
. . .


and

V :=

 vS11 vS12 . . .

vS21 vS22 . . .
...

...
. . .


are the vectors of the patch values for each single configuration. If the matrices are
square, the solution is

Y = VP−1

or

Z = PV−1

respectively. For the special direct cases defined in (4.1), either P or V are diagonal
matrices filled with the excitation pressures or velocities for each single patch. Their
inversion leads to (2.19) and (2.20) respectively. If more measurement configura-
tions than the number of patches are made, the system is overdetermined and may
lead to better accuracy. It can be solved by using statistical methods.

2.6 Numerical results

For the numerical implementation and validation of the approach, Finite Element
solvers were implemented in the open source software FreeFEM++ [Hecht et al.,
2007]. The patch transfer matrices were obtained by successive blocking and itera-
tion over the patches of the relevant surfaces as described in 4.1.

An FEM simulation for an acoustic domain (Equation (1.14)) was implemented. The
surface and transfer impedance for a rectangular cavity (0.7 × 0.3 × 1.0 m) and for
one with one half of the height (0.7 × 0.3 × 0.5 m) were determined with a patch
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size of 0.1× 0.1 m. To ensure that all modes in the frequency range up to 1 kHz are
represented accurately, tetrahedral elements on a grid with a spacing of 0.05 m and
quadratic Lagrangian shape functions (P2) were used.

2.6.1 Coupling two acoustic domains

The transfer functions from two small cavities coupled with the scheme described in
2.4.1 were compared to the the full cavity (Figure 2.5).

(2)

(1)

Z(2,1),(5,2)

ZT1

ZT2

ZS

1
2

3
1 2 3 4 5 6 7

⇔
ZS1

ZS2

0.7 m

1.0 m

0.3 m

0.5 m

0.5 m

Figure 2.5: Test problem of a rigid cavity split in halves. The patch coordinates are
labeled with (x, y) and the transfer functions are denoted by Z

The results of the calculation are shown in Figure 2.6. The curves show near per-
fect match up to 1 kHz, which is in agreement with the half-wavelength criterion
described by Ouisse et al. [2005].
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Figure 2.6: Comparison of the response of two patch-coupled rigid-walled rectan-
gular air cavities. The graph shows a logarithmic plot of the transfer function, LZ
between the two patches (2, 1) and (5, 2) (see Figure 2.5)
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Chapter 3

Test Case and Numerical Models

To evaluate the performance of the PTF coupling procedure and to develop experi-
mental characterization methods, a simplified vibroacoustic system was chosen as a
test rig. The system consists of a rigid air cavity, backed by a steel plate. Addition-
ally, the plate is treated with an absorptive poroelastic foam layer. The components
of the system are modeled using the Finite Element Method [Hecht et al., 2007] and
analytic solutions.

3.1 Test rig parameters

Figure 3.1 shows the dimensions of the setup. The coupling surfaces are split into 8
patches of 40×40 cm. Since the front plate is clamped, it is assumed that the gaps of
50 mm at the left and right side do not contribute significantly to the response and
can be neglected.

1 2 3 4

5 6 7 8

Plate Trim

Cavity

1700 mm

800 mm

1000 mm
42 mm

y

xz

Figure 3.1: Vibroacoustic test rig with a steel plate (2 mm thickness, clamped rim),
a damping layer and an air cavity.

To compare the system coupled by PTF with the physically assembled structure,
three microphone positions are defined inside the cavity, as shown in Figure 3.2.
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mic 1 (1460, 285, 680)

y

x

z

x

mic 2 (270, 525, 495)
mic 3 (870, 365, 425)

Figure 3.2: Microphone positions inside the cavity (dimensions in mm).

3.2 Air cavity

The air cavity of the test setup is backed by painted concrete walls to minimize
absorption. Because of the rectangular symmetry and the quasi-rigid walls, it was
assumed that it behaves like an ideal fluid cavity as defined in section 1.2. The
numerical cavity characterization was therefore realized only in a numerical model
which is described below. The model for the air cavity was realized in both, a modal
superposition calculation (1.6.2) and an FEM model.

3.2.1 Numerical model: Modal superposition

For the rectangular rigid cavity of dimensions Lx, Ly andLz, the eigenmodes of the
Helmholtz equation (1.23) are cosine functions,

φi(r) =
ζi√

LxLyLz
cos

(
mx,iπx

Lx

)
cos

(
my,iπy

Ly

)
cos

(
mz,iπz

Lz

)
where mx,i, my,i, mz,i

ζi =
√

2s , s = sgn(mx,i) + sgn(my,i) + sgn(mz,i) .

The Eigenfrequencies are given by

ωi =
π

c

√(
mx,i

Lx

)2

+

(
my,i

Ly

)2

+

(
mz,i

Lz

)2

.

The resulting patch transfer functions can be obtained by integrating the modal con-
tributions across a patch according to (2.3). The analytic expression for a patch-to-point
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Figure 3.3: Interior of the air cavity for the PTF validation measurements. Micro-
phones 1, 2 and 3 are visible.

transfer function on the xy surface of a rectangular cavity is given by Pavic [2010]
as

ZT (r, r′) = iωρc2 φi(r)φi(r
′)

ω2
i − ω2 + 2iεω

sinc

(
mx,iπ∆x′

Lx

)
sinc

(
my,iπ∆y′

Ly

)
.

r = (x, y, z) denotes the point position inside the domain and r′ = (x′, y′, 0) are the
coordinates of the center of the patch. ∆x′ and ∆y′ are the dimensions of the patch.
The patch-to-patch impedance between two patches of size ∆x, ∆y and ∆x′, ∆y′

centered at r and r′ respectively, is given by

ZS(r, r′) = iωρc2 φi(r)φi(r
′)

ω2
i − ω2 + 2iεω

sinc

(
mx,iπ∆x

Lx

)
sinc

(
my,iπ∆y

Ly

)
sinc

(
mx,iπ∆x′

Lx

)
sinc

(
my,iπ∆y′

Ly

)
.

The equivalent damping ε due to a small wall absorption coefficient α� 1 (≈ 0.5%

for the given cavity) is given by

ε = αc(
1

Lx
+

1

Ly
+

1

2Lz
) . (3.1)

This formula is based on the following simplification: The amplitude of a wave prop-
agating with c is assumed to be reduced by αwhen traveling across the cavity length.
In the z-direction the damping is only half of the values in the other directions, since
one xy surface is used for the coupling. This surface is blocked per definition and
therefore rigid without any damping.
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3.2.2 Numerical model: Finite element method

For more complex geometries, the analytical treatment of the acoustic equation is
not possible anymore. Also, the equivalent damping assumption (3.1) fails if the
wall absorption is high. For this reason, another model based on the finite element
method (A.1.2) was developed. In such a model, it is possible to apply an impedance
boundary condition

pS(x) = ZSvS(x)

on the walls. The well-known surface impedance for a reflection factor r = 1− α is
given by

ZS = ρ0c0
1 + r

1− r
.

For the model, tetrahedral elements of second order with a grid spacing of 5 cm have
been used. A comparison between the analytic modal solution and the FEM model
results is shown in Figure 3.4. The FEM model accuracy deteriorates with higher
frequencies but is still in the acceptable range. The equivalent damping assumption
for the modal solution matches the wall absorption model of the FEM.

3.3 Backing plate

3.3.1 Numerical model

For the steel plate, a model of the Kirchhoff-Love thin plate formulation (see (1.4))
was implemented. Its density was estimated to ρ = 7850 kg/m3 and the E-modulus
of standard steel, E = 2.05·1011 N/m2 was assumed in the simulation. For the fourth
order plate equation, standard finite element interpolations perform poorly or fail.
One of the simplest elements that yield satisfactionary results for this type of equa-
tion are non-conforming elements of second order as described by Morley [1968].
A fine element size of 1 cm compared to the wavelength of λ ≈ 13 cm at f = 1000 Hz

was chosen, since Morley elements tend to underestimate the eigenfrequencies of
the plate equation [Rannacher, 1979].

3.4 Porous layer

To introduce damping to the system, a layer of an open-cell foam (“Basotect TG”)
was inserted between the plate and the cavity. The open-cell foam was modeled with
the Delany-Bazley method (section 1.5) using the flow-resistivity of 11350 N m−4 s

measured by the manufacturer. The Young modulus is given by E = 144393 N/m2.
An FEM calculation was performed to obtain a numerical characterization of the
terms of the impedance matrix.

29



-180

-90 0 90

180

0
100

200
300

400
500

600
700

800
900

φ [o]

f[H
z]

-20 0 20 40 60 80

0
100

200
300

400
500

600
700

800
900

L [dB]

Figure
3.4:

C
om

parison
betw

een
the

analytic
m

odal
superposition

(3.2.1,
red)

and
the

FEM
solution

(3.2.2
black)

for
the

transfer
function

from
patch

5
to

m
icrophone

2.

30



Figure 3.5: Front view of the test rig with the attached steel plate. For measurements
of the component PTF of the plate, the opposite surface of the cavity can be removed
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Chapter 4

Experimental Subsystem
Characterization

A characterization method for a system only has to measure the transfer functions
over the relevant boundaries and the excitation positions. If the remaining bound-
ary conditions are not changed, this will yield the matrix that corresponds to the
condensed Y or Z matrix as specified in (2.3.1). In the experimental characteri-
zation it has to be ensured that the only transfer path from the excitation position
to the system interior is through the characterized surface. Only in this case, the
assumption of condensed transfer functions (2.3.1) holds.

In this section, several component characterization methods based on the principal
developments in section 2.5 are proposed. Experimental data for the characteriza-
tion and validation measurements were provided by Giorgio Veronesi of the Virtual
Vehicle Competence Center [Nijman et al., 2012].

4.1 Structural surface mobility

The direct method to obtain the surface mobility of a structure has been briefly de-
scribed for numerical calculations (2.5.1). To obtain the mobility of a structural
surface, the surface pressures have to be close to zero except for the excitation. A
patchwise pressure excitation is not easy to realize on a structure from the experi-
mental point of view. However, a superposition of point forces should converge to
a uniform pressure excitation for a large number Ni of excitation positions on the
source patch i. On the receiving patch j, the average velocity is meaured by Nj

sensors. The real mobility term is then given by

Yij =
vj
pi
≈ 1

NiNj

Nj∑
k=1

Nj∑
l=1

vjkl
pikl

=
1

NiNj

Nj∑
k=1

Nj∑
l=1

Yijkl . (4.1)

The patch mobility Yij is therefore given by the linear average of the transfer func-
tions Yijkl for each excitation point k on patch i and receiving point l on patch j.

In the experimental realization, one patch is excited with an impulse hammer at sev-
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eral positions and the response is measured on the receiving patch. If the average
transfer function Yij does not change anymore when adding new hammer blows, we
can assume that convergence has been reached. A numerical test for this behavior is
shown in Figure 4.1. The approximated patch mobilities by excitation on a regular
grid with equidistant points in x and y direction and random excitation configura-
tions are compared to a patch-wise uniform pressure excitation. The excitation is
performed on patch 1 and the average velocity is measured on patch 3.

From the numerical results we can draw the conclusion that for the specified test
case, a regular grid of 16 (4×4) excitation positions is sufficient for a good approxi-
mation of the patch mobility up to a frequency of f ≈ 800 Hz. Random positioning
of the points leads to a larger error, even for more excitation positions. This result
could be caused by the non-optimal area coverage by independent random posi-
tions. For the regular grid, there are no large gaps between the grid nodes. Due to
reciprocity (1.26) the same assumption holds for sensor positions on the receiving
patch.

There are two possibilities to measure the receiving patch velocity:

Firstly, we can measure the structural velocity directly by attaching accelerometers
to the surface. The other option is to measure the velocity of the air close to the sur-
face. This can be realized by using an array of particle velocity sensors as described
by de Bree et al. [1996].

For the measurements of the plate defined in (3.1) a grid of 16 accelerometers
was installed on each receiving patch. A comparison between the simulated plate
mobility and the experimental data can be found in Figure 4.2. The overestimation
of the transfer mobilities at 400 Hz and above 800 Hz corresponds to the numerical
test in Figure 4.1. At 400 Hz, the wavelength in the plate is approximately 20 cm,
which is half of the patch width (see also 5.2). Therefore a uniform pressure leads
to a strong cancellation of waves propagating from the excitation position. At high
frequencies and lower wavelengths, more and more plate modes are cancelled inside
the uniform patch but not by the point grid.
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4.1.1 Influence of the environment

We use the direct method to measure the mobility Y of an elastic structure embed-
ded into a fluid with surface impedance Z0. From the coupled equation of structure
and surrounding fluid (2.14), we obtain

(I−YZ0)vS = YpF .

The experimentally measured mobility Ŷ is influenced by the reaction forces from
the coupled fluid. It describes the ratio between the surface velocity vS of the im-
mersed structure and the force excitation pF ,

vS = ŶpF .

Therefore, it fulfills the equation

Ŷ = (I−YZ0)−1 Y . (4.2)

For small values of YZ0 with respect to unity, the measured mobilityŶ matches the
real mobility Y. Otherwise the measurement has to be corrected with the impedance
of the environment. The exact result is

Y =
(
Ŷ−1 + Z0

)−1
.

Morse and Ingard [1986] provide an approximation for the radiation impedance of
a rectangular piston of dimensions a× b in an open air space,

Zr =
k2(a2 + b2)

16
− 8i(a2 + ab+ b2)

9π(a+ b)
.

For the 2mm steel plate defined in the test case no siginificant effect was observed by
loading the plate with the additional radiation impedance. However, when the plate
is coupled to the cavity, there are some changes at specific resonance frequencies of
the cavity. The results of a numerical test case can be found in Figure 4.3.

If the transfer mobility of the plate is low, the transfer path via the reflections in-
side the air cavity dominates and leads to a higher effective mobility. This behavior
is limited to few cavity resonances around 10 Hz, 170 Hz, 500 Hz and 900 Hz. Ad-
ditional damping material in the cavity could reduce these effects. All in all, the
fluid loading plays a minor role for the characterization of structures with mobilities
similar to the test plate.

4.2 Fluids and porous materials

In principle, the surface impedance of a fluid (this includes porous materials seen as
fluids) can be characterized in a direct way: The surface velocity vS has to be set to
zero by blocking the boundary with a rigid surface. In the characterization proce-
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Figure 4.3: Comparison of the term Y13 of the effective mobility of the plate coupled
to the air cavity (blue) with the one from the free plate (red).

dure, this surface should be moved patch-wise and the corresponding pressures are
measured on the receiving patches.

There are several criteria for the blocking surface. It should have a sufficiently
high impedance while being able to be moved patch-wise and have its first modes
above the characterized frequency range. Otherwise the assumption of a uniform
excitation does not hold. It is, however, questionable, if a uniform excitation is really
needed. If the dimension of the patches is much smaller than half a wavelength, only
the mean value of the excitation should play a role. Only when the frequency limit of
the method is reached (see 5.2), a well-defined spatial distribution of the excitation
becomes important.

4.2.1 Indirect method

In experiments, it is often not possible to set vS to zero by blocking the surface. If
this is the case, the indirect method described in (2.5.2) can be applied. A layer of
porous material is placed in an air environment. If the cross-terms of impedance
matrix between the front and the back surface should be characterized, the sample
can be mounted hanging . If just the surface terms are needed, it is sufficient to
place it on a rigid floor.

Since both surface pressure and surface velocity have to be obtained, an array of PU
probes [de Bree et al., 1996] is the ideal sensor for this method of measurement.

37



4.2.2 Simplifications

For highly damped porous materials the waves decay very fast when propagating
inside. As a result, the terms of the impedance matrix for patches far away from
each other are small. If the material is assumed to be locally reacting, only the input
terms Zii, describing the response on the excitation patch itself, are considered.
Adding next-neighbor terms (for example Z12) or terms for patches that are further
away (e.g. Z13), not only the accuracy of the description but also the number of
required measurements will increase. In this case, the result will be a banded matrix
describing the most important terms for the non-local behavior of the material.

For the trim described in (3.1), an FEM calculation shows that the decay of the ex-
citation is very fast (Fig. 4.4). Even the transfer impedance between the diagonally
adjacent patches can be neglected (see Fig. 3.1 for the patch configuration). The
impedance depends mainly on the relative position between the patches (Z11 ≈ Z22,
Z12 ≈ Z23, ...). Therefore it is possible to simplify the problem to two patches in
the middle of the foam and use the results for all patches. The input and transfer
impedance between the two patches has to be measured while the remaining surface
is blocked.

The second simplification is valid for thin material layers: If the thickness of the
layer is small compared to the wavelength and the decay distance in the material,
the blocked pressures on both sides is nearly equal. As a result, the matrix elements
connecting the two sides, ZS1S0

ij (see Fig. 2.4) will be the the same as the ones
on one surface, ZS0

ij . In this case, the material is quasi-two-dimensional and it is
sufficient to construct the matrix for one side.

The trim described in (3.1) is 42 mm thick. Numerical results show, that in here the
impedance terms connecting the two sides are a good approximation to the terms
on one side (Fig. 4.5) up to f = 500 Hz. The results deteriorate at high frequencies.
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4.2.3 Measurements and results

For the considered trim material, both direct (Figure 4.6) and indirect (Figure 4.7)
characterization were performed. The direct method was applied to a piece of 40×
80 cm and the indirect method on two neighboring patches in the center of the
full foam sample. The blocking of the patches for the direct method was realized
with steel plates of dimensions 200 × 200 × 22 mm. Their high mass and their first
eigenfrequencies above 2 kHz provide a good blocking condition. Both methods
yield similar results to the numerical model (3.4), which is shown in Figure 4.8 -
4.11. The agreement below f = 100 Hz is poor, which can be explained by the
following reasons:

• For the direct method, the plates were lying on top of the foam, so a mass-
spring resonance at 22 Hz limits the validity of the low-frequency results.

• For the indirect method, noise starts to appear at f < 100 Hz and the Delany-
Bazley model is not valid at low frequencies due to the non-rigidity of the
structure [Delany and Bazley, 1970].

The higher transfer impedance of the direct method is likely the result of the smaller
sample size in comparison to the model for the simulated transfer functions. Further
investigations are needed to clarify this topic in detail.

Figure 4.6: Direct foam characterization method. The steel patches are excited with
an impact hammer and the pressure underneath is measured by microphones
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Figure 4.7: Indirect foam characterization method. The patches are excited by a
loudspeaker and the surface pressures and velocities are measured with a PU probe
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pared to simulated input impedances
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Chapter 5

Limitations of the Method

The approximation of space-dependent physical or numerical functions by uniform
patch averages reaches its limit when the fluctuation pattern within a patch cannot
be captured by the coarse resolution of the patch grid. In this case, assumption
2.10 that the discretized surface mobility is approximately equal to the inverse of
the discretized surface impedance, does not hold anymore. If this is the case, the
approximation is not consistent anymore and should fail. In this chapter, we are
going to analyze these effects to gain a better understanding of the limitations of
the method.

5.1 Conceptual analysis of averaging errors

To illustrate the method limitations for heterogenous media, let us take a general
example (Figure 5.1) of a patch average over two parallel systems with impedances

Z1 = F1/v1 = Y −1
1 and

Z2 = F2/v2 = Y −1
2 .

Z1 Z2

Figure 5.1: System of two springs with impedance average taken on the top surface.

The idea is, that for a velocity excitation, the reaction force (or pressure) will be
given mainly by the system with the higher impedance. On the other hand, if we
excite with a force, the system with the high mobility will move more and increase
the average velocity. Let us take a look at the two cases of direct impedance and
direct mobility measurements.
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Case 1: Direct impedance measurement (velocity excitation)

The system is excited with a common velocity,

v = v1 = v2 ,

and responds with the sum of the two force responses,

F = F1 + F2

= Z1v + Z2v .

The measured combined impedance is therefore given by the sum of the two impedances,

Z = F/v = Z1 + Z2 . (5.1)

Case 2: Direct mobility measurement (force excitation)

The system is excited with a common pressure. If we assume, that each spring covers
half the patch, each spring feels half of the force,

F1 = F2 =
1

2
F .

The response is an average velocity,

v = 〈v1, v2〉 =
1

2
(v1 + v2)

=
1

2
(Y1F1 + Y2F2)

=
1

4
(Y1 + Y2)F

The measured combined mobility is therefore given by the average mobility,

Y = v/F =
1

4
(Y1 + Y2) . (5.2)

Comparison of the cases

The inverse of (5.2) yields

Y −1 =
4

Y1 + Y2
=

4

Z−1
1 + Z−1

2

. (5.3)

We note, that this is two times the harmonic mean of the impedances opposed to
twice the arithmetic mean Z as defined in (5.1). They are only equal if Z1 = Z2.
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Otherwise, the ratio of the two is given by

R =
Z

Y −1
=

1

4
(Z1 + Z2)

(
Z−1

1 + Z−1
2

)
=

1

2
+

1

4
(Z1/Z2 + Z2/Z1)

=
1

2
+

1

4

(
X +X−1

)
,

Where X = Z2/Z1. This ratio becomes one for Z1 = Z2 and therefore Z = Y −1 =

2Z1. The discrepancy between positive and negative real factors X is shown in
Figure 5.2.

For poro-elastic damping layers, this conceptual feature can be important: If a mate-
rial consists of a skeleton and a fluid with different impedances and low coupling, it
may be modeled as a parallel system of different impedances. In this case, it makes
a difference, if it is coupled to a structure or to a fluid domain. The characterization
procedure has to take this into account by exciting in a similar way as in the coupled
system:

The indirect method (2.5.2) should yield better results on the surface that is later
coupled to the fluid. In this case, the air in the pores is excited more efficiently than
the skeleton. For the surface that is coupled to the structure, a forced velocity excita-
tion using the direct method (2.5.1) is closer to the final boundary conditions. How-
ever, to find a definite answer to the problem of the right characterization method
for heterogenous media, further investigations are required.

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Z2/Z1

Z
/Y

−
1

 

 

R=Z/Y
−1

1/4 X

1/4 X
−1

Figure 5.2: Patch impedance ratio R = Z/Y −1 between v and F excitation.
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5.2 Limitations due to the patch size

When the wavelength becomes smaller than two patches, the grid resolution is not
sufficient anymore to capture the wave shape and aliasing will occur. As a compar-
ison, the general rule for FEM with linear shape functions is the λ/6 criterion for
the element size [Zienkievicz and Taylor, 2000]. There is, however, a notable dif-
ference: PTF is based either on measurements or on a reasonably fine FEM model.
From this accurate solution, the surface is then discretized with a coarse grid of
patches. Therefore, the positions of the eigenfrequencies of each subsystem will not
shift as it would be the case in the FEM due to element stiffening.

λ = 2h

λ < 2h

Figure 5.3: Patch size limit at the spatial Nyquist frequency.

The main limitation of PTF is that modes with a transverse wavelength below the di-
ameter of two patches are missed (Figure 5.3). In this case, the patch grid is not able
to represent the wave shape according to the Nyquist theorem and aliasing effects
occur. This behavior has been verified by Ouisse et al. [2005] and a numerical test
case is shown in Figure 5.4. The results suggest a λ/2 rule as a patch size criterion.
The missed modes in the higher frequency range lead to an underestimation of the
system response.

In the case of a structure with a short wavelength radiating into a fluid with longer
wavelength, the frequency limit is given by the long fluid wavelength. This is ex-
plained in the following section 6.1.

47



0 20 40 60 80

100

0
200

400
600

800
1000

L [dB]
f[H

z]

Patch
size:

16
cm

0 20 40 60 80

100

0
200

400
600

800
1000

L [dB]

f[H
z]

λ
/
2

Patch
size:

20
cm

0 20 40 60 80

100

0
200

400
600

800
1000

L [dB]

λ
/
2

Patch
size:

40
cm

0 20 40 60 80

100

0
200

400
600

800
1000

L [dB]
λ
/
2

Patch
size:

80
cm

Figure
5.4:

Transfer
function

betw
een

the
points

(1.36,
0
.29,

0.32)
and

(0.76,
0.37

,
0
.58)

inside
a

rigid
cavity

of
1
.6
×

0.8
×

1
.0

m
intersected

by
a

PTF
plane

at
z

=
0.4

(dim
ensions

in
m

).
C

om
parison

ofPTF
(black)

to
fullcavity

(red)
solution.

48



Chapter 6

Results for the Assembled System

6.1 Bare plate + cavity

To evaluate the performance of the coupling method, the test rig was assembled
without the porous layer (untrimmed). The resulting plate-cavity system was cou-
pled with the PTF method according to (2.4.2). For the purely numerical model,
also a finer grid of 20×20 cm was used on the coupling surface. The coupled system
with 40× 40 cm patches was realized both for the simulated and experimental plate
characterization.

The plate was excited by 16 phased point forces on patch 5 of 40 × 40 cm and the
response pressure inside the cavity was measured with microphones. Figures 6.1-6.3
show the results of this investigation.

A higher accuracy of the results should be expected when using a finer patch grid.
For a patch dimension of 40 cm, the λ/2 limit for the wavelength in air is located at
f = 430 Hz. For an infinite steel plate, the Nyquist limit is however already reached
at f = 30 Hz. The clamped boundary condition leads to an effective stiffening of the
plate, but the first modes already appear around 20 Hz (section 4.1).

The results of the investigation are shown in Figures 6.1 - 6.3. Figure 6.1 contains
the results of a numerical prediction with a finer patch grid of 20 cm. The results for
40 cm PTF coupling of numerical and experimental plate to the cavity can be found
in 6.2 and 6.3, respectively.
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Figure 6.1: Comparison of the predicted transfer function to mic 1 with a simulated
plate and a simulated cavity (black) with the reference measurement (red). (20 cm
PTF)
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Figure 6.2: Comparison of the predicted transfer function to mic 1 with a simulated
plate and a simulated cavity (blue) with the reference measurement (red). (40 cm
PTF)
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Figure 6.3: Comparison of the predicted transfer function to mic 1 with an experi-
mental plate and a simulated cavity (green) with the reference measurement (red)
at microphone position 1. (40 cm PTF)

Even with the coarse patch grid, the comparison yields good agreement with the
measurements (Figs. 6.2 and 6.3) up to the λ/2 limit for the cavity rather than for
the plate. This could be explained in the following way:

When plate bending waves radiate into an air cavity below the coincidence fre-
quency, they are cancelled in the nearfield of the plate due to acoustical shorcuts.
This is the case, because the wavelength in air is still much larger than the bending
wavelength. The contribution to the cavity modes depends mainly on long-wave
phenomena on the plate, which can be described by a coarse grid.

This can explain, why the results are still valid above the plate wavelength limit at
30 Hz. But it does not tell us, why the results of the 40 cm patches above the air
limit of 430 Hz are still nearly as good as for the 20 cm patches. There is, however,
another specific simplification in our test case:

The excitation of the plate has been performed on a whole 40 × 40 cm patch and
not by a single point force. Since the propagation of short wavelengths inside the
plate are canceled by the uniform excitation, the main driver for the radiation is the
exciting patch. The excitation of cavity modes with a transverse wavelength smaller
than 80 cm is therefore not very efficient. Thus, there is not a big difference, if the
interface resolution is increased, because the excitation is still performed on a larger
length scale.
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6.2 Bare plate + two cavities

Before including porous damping materials, the accuracy of the method with more
layers was tested. For this purpose, a virtual cut of the cavity was performed at
the position of the upper surface of the porous layer. Thus, the air cavity from
(6.1) is replaced by a coupled system of a thin air layer of the foam dimensions
and the remaining cavity. In the ideal case, this should yield the same results as the
plate-cavity system. A comparison of this plate-cavity-cavity system to the original
plate-cavity system (6.1) can be found in Figure 6.4.
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Figure 6.4: Comparison of the transfer function to mic 1 of a simulated plate coupled
to two air layers (blue) and the untrimmed system 6.1 with a single air cavity (red).
(40 cm PTF)

The inclusion of the additional air layer provides a very accurate reconstruction
until the λ/2 limit of 400 Hz for 40 cm PTF. For higher frequencies, the method
only reproduces some specific modes that are not influenced by the patch size (see
section 5.2). Similar results should be expected when the thin air layer is replaced
by a porous foam layer.
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6.3 Plate + foam + cavity

The final test case for the coupling scheme consists of a plate, a foam layer and
an air cavity (trimmed system). The foam introduces damping into the system -
the resonance peaks will be lower and wider. The response to a uniform pressure
excitation on plate patch no. 5 has been reconstructed by application of the PTF
coupling scheme. Both numerical and experimental characterization schemes for
the plate and the foam layer were considered. For the foam, the results from the
indirect method (4.2.1) were used. The resulting transfer functions to a reference
microphone position can be found in Figures 6.5-6.8.

All configurations yield good agreement in the valid frequency range of f < 400 Hz.
A comparison between the average results over 1/3 octave bands is shown in Figures
6.9 and 6.11.

The simulated foam layer yields more accurate results, which may be related to
uncertainties in the measurement. Especially, the errors in the third-octave band
around 100 Hz, that are visible in Figure 6.11, are most likely a result of measure-
ment noise in the characterization procedure (Figure 4.10 and 4.10). Smoothing
the terms of the foam transfer matrix in the low frequency range could improve the
results. The simplifications for the foam layer described in 4.2 have no negative
effect, as the comparison of the numerical results in 6.9 and 6.10 shows. In the lat-
ter case, the matrix has been reduced to the quasi-two-dimensional, next-neighbor
simplification as in the experimental characterization.
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Figure 6.5: Comparison of the transfer function to mic 1 of the trimmed system
with simulated plate, simulated foam and simulated cavity (blue) with the reference
measurement (red). (40 cm PTF)
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Figure 6.6: Comparison of the transfer function to mic 1 of the trimmed system with
experimental plate, simulated foam and simulated cavity (green) with the reference
measurement (red). (40 cm PTF)
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Figure 6.7: Comparison of the transfer function to mic 1 of the trimmed system with
simulated plate, experimental foam and simulated cavity (blue) with the reference
measurement (red). (40 cm PTF)
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Figure 6.8: Comparison of the transfer function to mic 1 of the trimmed system
with experimental plate, experimental foam and simulated cavity (green) with the
reference measurement (red). (40 cm PTF)
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Figure 6.9: 1/3 octave band transfer function to mic 1 of the trimmed system with
simulated, full foam compared to a reference measurement. (40 cm PTF)
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Figure 6.10: 1/3 octave band transfer function to mic 1 of the trimmed system with
simulated, reduced foam compared to a reference measurement. (40 cm PTF)
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Figure 6.11: 1/3 octave band transfer function to mic 1 of the trimmed system with
experimental, reduced foam compared to a reference measurement. (40 cm PTF)
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Conclusion and Outlook

In this thesis, a hybrid method for the characterization and coupling of different
vibro-acoustic components was presented. The method was applied to well-known
systems that have been modeled numerically. Based on the results of these investiga-
tions, proposals for possible experimental characterization procedures were made.
Experimental results based on these approaches were compared to the output of nu-
merical models. Finally, the full system was assembled using different combinations
of numerically and experimentally characterized components. The response of the
coupled system was compared to the results of a validation measurement.

Even though the method yields good agreement with the validation within its fre-
quency limits, there are still many open questions: Is the number of measurements
to construct full matrices feasible in applications? Is the method suited for more
complex geometries and materials? Can the accuracy and frequency range be in-
creased by using different basis functions than homogenous patches?

However, the most important aspect of the procedure is the possibility to combine
simulated and experimental results. Therefore, the goal should be to apply it to
systems that lack an accurate numerical description but allow an experimental char-
acterization of their vibro-acoustic behavior. One example for such systems is the
air cavity in the interior of a car, including the whole damping treatment on non-
coupling surfaces. Multi-layered trim materials pose a special challenge, since it is
not yet clear how to treat the added weight to the structure and the inconsistency
between impedance and mobility picture if a material consists of both a fluid and an
elastic skeleton.
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Appendix A

Mathematical Background

A.1 Elliptic Boundary value problems of second order

The hyperbolic wave equations that are obtained from vibroacoustic problems be-
come elliptic when transformed to the frequency domain [Polyanin, 2002]. Conse-
quently, their result depends solely on the boundary conditions. The most general
form of the boundary value problem for a function u(r) is given by two equations
with linear differential operators for the interior Ω and the boundary ∂Ω,

Lu = f in Ω (A.1)

Mu = t on ∂Ω . (A.2)

The most simple (local) boundary conditions for a subsection S of ∂Ω are:

1. Dirichlet or essential boundary condition with imposed values:

u(r)|r∈S = uS(r)

2. Neumann or natural boundary condition with imposed normal derivatives:

∂ui(r)

∂n

∣∣∣∣
r∈S

= wSi (r)

3. Robin or impedance boundary condition:

ai ui(r)|r∈S + bi
∂ui(r)

∂n

∣∣∣∣
r∈S

= ci

If there are several sections with different boundary conditions of the mentioned
types, they are called mixed boundary conditions.

A.1.1 Weak form and variational formulation

Let a function u(r) satisfy the linear partial differential equation (A.1). We apply a
scalar product with an arbitrary test function δu(r) and integrate over the volume
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inside the boundaries,
ˆ

Ω
[δu · Lu− δu · f ] dV+

ˆ
∂Ω

[δu ·Mu− δu · t] dS = 0 . (A.3)

This expression is called the weak form of (A.1). Since the test function δu(r) can
be arbitrarily chosen, it can be proven [Zienkievicz and Taylor, 2000], that the weak
form is equivalent to the original form of the equation.

A.1.2 Numerical solution using the finite element method

The finite element method (FEM) was initially used in mechanical engineering for
predictions of the static and dynamic response of solid structures. Over the last 50
years it has been generalized to a general tool for solving a high number of classes
of partial differential equations. The book of Zienkievicz and Taylor [2000] provides
an extensive overview over the method and its applications. In this work we limit
ourselves to linear boundary value problems exclusively. The process of the numeric
calculation with the commonly used Galerkin weighted residual approach consists
of the following steps:

1. Discretize the equation domain to a finite mesh

2. Choose a finite set {φi(r)} of shape functions that are locally defined on a
specific mesh element and zero otherwise. Consequently, they fulfill an or-
thogonality relation,

ˆ
Ω
φi(r)φj(r) dV =

{
1 (i = j)

0 (i 6= j)
. (A.4)

3. Discretize the weak form (A.3) of the problem by approximating all terms as
linear combinations of the shape functions,

u(r) ≈
N∑
i=0

uiφi(r)

Lu(r) ≈
N∑
i=0

uiLφi(r) .

In the Galerkin approach, the shape functions φi are chosen as the test func-
tions δu.

4. Apply continuity conditions on the boundaries of adjacent elements and bound-
ary conditions on the domain boundary.

5. Solve the resulting (weakly populated) linear system of equations.

Kijuj = bi (A.5)
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With reference to solid mechanics (1.7) K is called the stiffness matrix of the
system and the coefficients correspond to the degrees of freedom.

In this work, the open-source code FreeFEM++ [Hecht et al., 2007] has been used.
It provides triangular (2D) and tetrahedral (3D) elements with polynomial shape
functions of up to the 4th order and Morley elements of the first order [Morley,
1968] for plate-bending problems.

A.1.3 Schur complement system

The right side of (A.5) will be only nonzero for regions with an excitation term
(f 6= 0 in (A.1) for region 1). In the remaining region, the equations shall be
homogenous. The equations will then be of the form(

K11 K12

K21 K22

)(
u1

u2

)
=

(
b1

0

)
.

We can eliminate the homogenous part u2 = −K−1
22 K21u1 and obtain a reduced

system with (
K11 −K12K

−1
22 K21

)
u1 = b1 . (A.6)

This system is called the Schur complement or condensed system. If only the
boundary of the domain is excited, the reduced matrix it is an approximation for
the Poincaré-Steklov-Operator, that defines the whole PDE by a (strongly nonlocal)
equation on the boundary [Toselli and Widlund, 2005].
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