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Abstract

Exemplar-based inpainting is a common patch-based method for the purpose of object

removal in natural images. In order to adapt this method for video sequences, correspon-

dences between the frames have to be determined to enable time-consistent inpainting and

tracking of the unwanted object. To conquer the issue of the increased amount of data to

be processed, an optimization scheme is necessary as well.

In our work, we present a local approach based on optical flow estimation, which

extends the basic exemplar-based inpainting approach for video sequences under uncon-

strained camera motions. Our method is able to perform time-consistent inpainting by

using only two frames at a time and thus, making the frame-by-frame run-time inde-

pendent from the total number of frames in the sequence. In order to achieve a higher

performance, the crucial parts of the algorithm are evaluated in parallel on the GPU.

An evaluation performed on various sequences, taken from motion pictures, shows our

promising results.

Keywords. video inpainting, video reconstruction, exemplar-based inpainting, optical

flow, object removal
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Introduction
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1.1 Motivation

Over the last few decades the field of digital image processing has gained a lot of im-

portance. Since more and more common hand-held devices offer built-in cameras (e.g.

mobile phones, MP3-players, ...) it is very easy to obtain images in every day situations.

Currently available smart phones are capable of taking pictures with almost the same

quality as state-of-the-art compact digital cameras did just a few years ago. The rapid

development of image recording devices made the design of efficient algorithms necessary,

to cope with the increasing amount of data. The combination of enhanced hardware and

increasing availability of image processing toolboxes, has made its contributions to many

breakthroughs in industrial- as well as in personal applications.

While it is possible to take good photos with affordable and compact devices for many

years now, the acquisition of high quality videos is a more complex task. The obvious

reason is the significantly greater amount of data, since common video standards usually

use a minimum of 25 frames per second (fps). The addition of audio data increases the

complexity once more. However, the development of video recording devices will most

certainly lead to an increased need of high performance algorithms as well.

Two of the main problems for video processing algorithms are:

1



2 Chapter 1. Introduction

• How to cope with the huge amount of data?

• How to maintain the temporal continuity present?

Both problems are strongly related. The inter frame dependencies, which result from

the temporal continuity, may lead to a significant data reduction for some tasks. This is

because the video frames are not independent from each other (within the same scene),

but usually offer a high overlap in the data contained. Thus, for many applications it is not

necessary to process every frame as a single image. If only a part of the video sequence has

to be edited, it is important to make all changes with respect to the temporal continuity,

to prevent visible artifacts.

Relevant video processing tasks include the need to delete unwanted objects. This can

be necessary due to many reasons, such as privacy restrictions (e.g. people do not want to

appear in this video) or error correction in motion picture production were reshots would

be impossible or too expensive. For still images a widely known technique to replace

certain areas is inpainting.

1.2 Object Removal Through Inpainting

Inpainting has its origins in the restoration of paintings and describes the reconstruction of

missing or damaged areas. The same concept can be used to remove objects from images,

since these objects can be seen as a missing image part as well.

The easiest way of image inpainting would be a simple image interpolation, propagated

from the border of the missing region to it’s center. This concept only works for very small

image regions (e.g. small scratches), since it would introduce a certain amount of blur

increasing with the size of the missing region. In order to create reasonable results even

for larger regions, many approaches have been presented over the years.

An earlier method, presented by Hirani et al. [HT96], uses frequency and spatial do-

main information to reconstruct a user specified part of an image. The algorithm is based

on texture synthesis and requires the user to select both, the region to be reconstructed and

the texture used for this purpose. Hence, it is only applicable for image regions which have

only one texture. Regardless of it’s limitations, the proposed algorithm creates visually

pleasant results (see Figure 1.1).

In order to extend digital inpainting to handle more complex objects, Bertalmio et

al. [BSCB00] presented an approach based on structure propagation (often referred to as

structural inpainting). Their method only requires the user to specify the region to be
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(a) Input images

(b) Output images

Figure 1.1: Two examples created using the approach by Hirani et al. [HT96]. As one
can see, the missing part of the images is reconstructed in a plausible way. [Images taken
from [HT96]]

removed, the rest is done fully automatic. They try to complete isophote lines arriving

at the border of the missing region to reconstruct the underlying image structure, using

third order partial differential equations (PDE). The color information is propagated into

the missing part of the image using a diffusion process. Example results can be seen in

Figure 1.2.

The capabilities of structural inpainting led to many publications in this field. The

same group of authors developed a similar approach using navier-stokes equations for

fluid dynamics [BBS01]. They define the image intensity as a stream function for a two-

dimensional flow, in order to transport information into the missing region. Similar to their

previous work, the proposed algorithm is designed to complete isophotes to reconstruct

structural information. The method was further modified using joint interpolation of the

gray level image and it’s gradient directions [BBC+01]. The interpolation is achieved by

solving the variational problem using gradient descent flow. In order to find the solution,

they have to solve a set of linked second order partial differential equations. The principles

presented in these three publications are very similar, since the authors are part of the

same research group and the results do not vary strongly.
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(a) Input images

(b) Output images

Figure 1.2: Two examples created using structural inpainting. [Images taken from
[BSCB00]]

Another way to approach inpainting is through disocclusion algorithms, by simply

defining the region to be reconstructed as an occluding object. Nitzberg et al. [NMS93]

presented an algorithm based on elastica minimizing curves which is able to handle simple

plain-colored objects only. The concept was extended by Masnou et al. [MM98] to a

variational inpainting model. A proper reconstruction is achieved using level lines, which

are capable of handling stronger discontinuities than PDE-based approaches. The fact

that level lines can not intersect within the missing region, allows them to make use of

dynamic programming. To obtain a solution, geodesic paths to join compatible level lines

across the missing part of the image are computed. To reconstruct the missing region, they

perform a geodesic propagation of the intensity values of the restored level lines within

the occluded area. Chan et al. [CKS02] developed the mathematical foundation for this

approach and a corresponding computational scheme based on numerical PDEs. In the

same year, Masnou [Mas02] published a paper containing the theoretical justification for
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the earlier approach in [MM98], along with a more detailed description of the algorithm.

For example results see Figure 1.3.

Figure 1.3: Inpainting result using variational inpainting. The corrupted parts of the
original image have been completely removed and the result looks very natural. [Images
taken from [Mas02]]

A more recent approach, based on [MM98], was presented in 2006 by Marcelo Bertalmio

[Ber06], where inpainting is defined as an image interpolation problem. The reconstruction

of the missing region is achieved by propagating level lines and solving a third-order partial

differential equation, which is derived using taylor-series expansion. The algorithm allows

the reconstruction of thin structures over long distances and is contrast invariant.

The main drawback of all inpainting approaches based on structure propagation is that

they introduce a certain amount of blur due to the color smoothing process (see Figure

1.4). Textural information is not taken into account during reconstruction. Therefore,

these methods are only capable of handling very thin target regions (e.g. scratches or

superimposed text) or untextured scenes.

In contrast to structural inpainting, textural inpainting methods focus on textural

information rather than structure (similar to [HT96], mentioned above). These methods

profit from the large amount of texture synthesis methods available. Texture synthesis

allows us to replicate texture (and therefore perform image completion) to an indefinite

size, based on a small sample from outside the missing region. Pixel-based methods tend to

replicate texture pixel-by-pixel by copying similar pixels from the sample texture, based on

their spatial neighborhood [HB95, HJO+01, EL99]. In order to increase the performance,

patch-based texture synthesis algorithms use square-sized texture patches rather than

single pixels for texture replication [Ash01, EF01, KSE+03]. Texture patches at various
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Figure 1.4: Structural inpainting provides reasonable results for untextured objects, but
introduces a noticeable amount of blur when dealing with more complex structures. [Im-
ages taken from [Ber06]]

offsets within the sample texture are simply stitched together creating the desired result.

Since these methods do not use structural information, the results on photographs

are quite unsatisfying. Natural edges, which are often the boundaries between separate

textures, become distorted or vanish completely.

To conquer this issue Bertalmio et al. [BVSO03] developed a method which uses a si-

multaneous filling-in of texture and structure. Therefore, they divide the input image into

two different functions (corresponding to structure and texture respectively). Structure

propagation is performed using common image inpainting algorithms [BSCB00, BBS01],

while the missing texture is recovered using texture synthesis methods. Experimen-

tal results showed that the proposed method delivers more accurate results than using

structural- or textural inpainting alone (see Figure 1.5).

Criminisi et al. [CPT03] presented a different approach combining structural- and

textural inpainting called exemplar-based inpainting. The proposed method is based on

textural inpainting and uses small patches to complete the missing region from the outside.

The core novelty is the priority scheme which defines the order in which the target region

is completed. Patches which contain edges into the target region and are closer to the

source region are favored by the algorithm. Similar to [BVSO03], linear structures are

propagated into the target region without introducing notable blur (for a comparison

between [CPT03] and [BVSO03] see Figure 1.6).

A more recent approach uses automatic semantic scene matching in very large image

databases to find an appropriate match for the target region [HE07]. This method is not

patch-based and produces many different results from which the user can choose the most

accurate by himself. It has been shown that this approach is capable of filling large gaps
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(a) (b) (c) (d)

Figure 1.5: (a) Input image with missing region (white). (b) Inpainting result using pure
structural inpainting. The edges have been reconstructed correctly but there is clearly
notable blur. (c) Textural inpainting yields less blur but fails to reconstruct the edges
properly. (d) A combination of textural and structural inpainting leads to significantly
improved results. [Images taken from [BVSO03]]

in still images. Since it produces different results, which have to be evaluated by the user,

it is not easily adjustable for video inpainting due to the huge amount of frames.

Some approaches also try to refine the inpainting result by an advanced target area

selection process [NN05, SYJS05]. The user’s knowledge and visual perception are incor-

porated in the inpainting process to manually select a source area from which the hole is

completed, or to define the characteristic salient structure of the image before the texture

synthesis step. It has been shown that the integration of human intelligence can improve

the results significantly.

In 2009, Barnes et al. presented a novel algorithm to achieve a fast nearest-neighbor

search for image patches called PatchMatch [BSFG09]. Their method is based on the

assumption that a few good matches might be found using random sampling, while the

natural coherence of an image enables the propagation of such matches to concentric

neighborhoods. The authors report their algorithm to be 20 − 100× as fast as previous

state-of-the-art methods. Combined with the global approach presented by Wexler et

al. [WSI04] (originally proposed for video completion), the resulting inpainting method
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(a) Input image

(b) Results using [BVSO03] and [CPT03]

Figure 1.6: Both algorithms create a visually pleasant result. Though, [CPT03] (right)
delivers slightly sharper edges compared to [BVSO03] (left). [Images taken from [CPT03]]

outperforms previous algorithms in both quality and speed (see Figure 1.7). Similar to

[NN05, SYJS05], the user can further improve the inpainting result by specifying guidelines

for the algorithm (e.g. selecting similar structures beforehand).

Recently, He et al. [HS12] proposed a statistical approach to image inpainting. They

analyze the distribution of offsets between similar patches within images and find it to be

sparsely distributed in the general case. They perform image reconstruction by combining

a shifted set of images (obtained by using the most common offsets) via an optimization

scheme based on markov random fields. This works well especially for images containing

repetitive structures. For an illustration see Figure 1.8. Note that this method outperforms

state-of-the-art approaches not only in terms of quality, but also in terms of efficiency.

However, the algorithm may fail to compute a proper result when the desired offsets do

not form peaks in the patch offset statistic.

Another recent approach was presented by Le Meur et al. [LMG12] and is based on
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Figure 1.7: The region to be inpainted is shown in blue, while the green and red lines are
user specified guidelines in order to achieve a correct reconstruction of similar structures.
In this case, this is necessary to reconstruct the middle vertical part of the fence, which
is almost completely covered by the occluding object. The reconstructed image shows an
almost perfect inpainting result, in terms of structure as well as texture. [Images taken
from [BSFG09]]

Figure 1.8: This figure shows a comparison between the statistical approach by [HS12]
(middle) and PatchMatch [BSFG09] (right). As we can see, the result is significantly better
when incorporating statistics into the reconstruction process, compared to randomized
patch sampling. The white arrow highlights the most severe inpainting failure for this
example. [Images taken from [HS12]]

the algorithm by Criminisi et al. [CPT03]. The proposed algorithm uses a hierarchical

approach where at first a low-resolution version of the input image is reconstructed using

a k nearest neighbors (KNN) exemplar-based method. The correspondences between the

low- and high-resolution patches are learned and stored in a dictionary. After the low-

resolution version is inpainted, the final result is obtained using image super resolution via

the learned correspondences. An evaluation by the authors revealed that their approach

outperforms the traditional exemplar-based method.

We use [CPT03] as a basis for our video inpainting approach, since it is easily im-

plementable and forms the basis of many state-of-the-art video inpainting systems (see

Chapter 4). In the following chapter we will give a detailed overview over our slightly

modified exemplar-based inpainting algorithm before we continue to the task of video

inpainting.
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2.1 Overview

The core of our video inpainting method is a slightly modified exemplar-based inpainting

approach as introduced by Criminisi et al. [CPT03]. The advantage of this algorithm

lies in the combination of both texture and structure synthesis to create a visually plau-

sible result, even when removing large objects. Figure 2.1 demonstrates the abilities of

exemplar-based inpainting. As one can see, both structure and texture have been recon-

structed correctly, resulting in natural looking output images.

The core of exemplar-based inpainting is an iterative patch-based scheme, where we

achieve the reconstruction of the missing region by taking small patches from the border of

this region, which are then completed using color information from similar patches located

outside the missing region. This is repeated until the image is completely reconstructed.

We give a detailed description of the original algorithm and our modifications in the

following section.

11
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(a) Input images

(b) Output images

Figure 2.1: Two example images and the corresponding inpainting results. Note that the
foreground objects have been removed and the background has been reconstructed in a
plausible way.

2.2 Algorithm

Before we explain the algorithm in detail, we have to introduce the notation which is used

in a similar way in many publications about this topic. The input color image is denoted

as I : [1,M ]× [1, N ] 7→ R3, having M rows and N columns ([1,M ]× [1, N ] ⊂ N×N). I(q)

stands for the color value at position q = (xq, yq), where xq and yq are the corresponding

coordinates in image space in x and y direction. I is divided into a source region Φ and

a target region Ω, so that Φ = I \ Ω. The latter defines the object to be removed and is

defined by a user specified binary mask M (see Figure 2.2). The border between target

and source region is called fill front and denoted as δΩ (for an illustration see Figure

2.3). A pixel is part of the fill front if it is located within the source region, but has at

least one direct neighbor (4 neighborhood) which is located within the target region. To

incrementally fill the target region, we select a square-sized patch Ψp with side length ρs
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(typical patch sizes are 3× 3 to 11× 11), centered at position p ∈ δΩ. Then we search for

a good match in the source region (using some similarity measure) and the corresponding

color values of this new found patch are copied into the target region (see Figure 2.4).

The fill front moves inwards and the patch selection and matching process starts again,

until the fill front finally vanishes.

(a) Binary foreground masks.

Figure 2.2: The binary foreground masks for the examples in Figure 2.1. Black defines
the object to be removed (target region) and white the source region for the inpainting
process.

This very simple concept may or may not yield good results, highly depending on

the fill order of the contour patches. A core feature of exemplar-based inpainting is the

definition of a deterministic priority scheme, which ensures good structure propagation as

well as accurate texture synthesis.

2.2.1 Priority Computation

The proposed priority map P assigns each contour pixel p a priority based on two separate

terms, the confidence term and the data term.

The confidence term defines how sure we are that the color values in the current patch

Ψp do actually belong to this part of the image. The confidence map C is initialized with

the binary mask M :

C(q) =

1, if q ∈ Φ

0, otherwise
(2.1)

During each iteration the confidence term for a contour pixel p is defined as follows:
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(a) Input image and foreground mask.

(b) Parts of the image.

Figure 2.3: The binary foreground mask defines the relevant image regions: the source
region Φ, the target region Ω and the fill front δΩ.

C(p) =

∑
q∈Ψp

C(q)

|Ψp|
, p ∈ δΩ (2.2)

where |Ψp| is the total number of pixels in the patch Ψp. Since the number of pixels

in the patch having a confidence greater than zero is less or equal to the total number of

pixels, and the confidence term is only computed for contour pixels, it has to be less than

one.

The data term is necessary for structure propagation. It is computed using the inner

product of the isophote direction dp and the normal vector of the fill front np, at the
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(a) Input image with target region in black. The
current patch (red) and some candidate patches
(blue) are shown.

(b) The current patch Ψp̂, raw and reconstructed.

(c) The missing color values are copied and the
target region gets smaller.

Figure 2.4: This Figure illustrates the reconstruction of a specific patch highlighted in red
in the top image. Some possible candidate patches are shown in blue. After the best match
is found, the missing color values are reconstructed and copied into the target region. In
the next iteration, the algorithm proceeds with the new target region. This is done until
the image is reconstructed completely.
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contour pixel p. The isophote can be seen as an edge which is leading into the target

region. Since it is desirable that such edges are propagated correctly through the missing

region, it is useful to assign a higher priority to contour pixels which are a part of such

edges, than to those which lie within homogeneous regions. Since there is no definite

instruction how to compute the isophotes in the original paper, we decided to compute

them as follows:

dp =

(
−∇yp
∇xp

)
(2.3)

where ∇xp and ∇yp denote the image gradients in x and y direction respectively.

We compute the gradients on the gray level version of the input image I, by simply

calculating the finite differences between the contour pixel and its nearest neighbor in

x and y direction. The mask defines which neighbor to use, because usually only one

in each direction is located in the source region and therefore can be used for gradient

computation. We compute the normal vector of the fill front in a similar manner, using a

binary contour image Λ (see Figure 2.5). The contour image is defined as follows:

Λ(q) =

1, if q ∈ δΩ

0, otherwise
(2.4)

The components of the contour normal vector are computed using central differences:

np =

(
2Λ(p)−Λ(px−1)−Λ(px+1)

2
2Λ(p)−Λ(py−1)−Λ(py+1)

2

)
(2.5)

where px−1 and px+1 (py−1 and py+1) denote the left and right (top and bottom)

neighboring pixels of p. Note that these pixels do not necessarily have to be part of the

contour as well. An example can be seen in Figure 2.6.

The resulting data term is defined as:

D(p) = |〈dp, np〉| (2.6)

where 〈· , · 〉 is the scalar product. Finally, we can define the priority of the contour

pixel p as follows:

P (p) = C(p)D(p) (2.7)
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(a) Input image and binary mask M .

(b) Initial contour image Λ.

Figure 2.5: The contour image Λ is defined via the fill front δΩ (shown in white in the
bottom image).

(a) The computation of the data term.

Figure 2.6: The current patch Ψp is highlighted in the gray scale image. The vectors dp
and np are shown in the enlarged version of Ψp.
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Using both the confidence and the data term is crucial in order to get good results.

Figure 2.7 demonstrates what happens if only one of the terms is used to compute the

priority map.

(a) Priority computation using only D(p) or C(p) respectively.

(b) Zoomed view of the horizon.

(c) Result using both, D(p) and C(p).

Figure 2.7: When only the data term (top left) or the confidence term (top right) is used
for priority computation, the inpainting algorithm usually fails to produce an accurate
result. Especially the horizon is not reconstructed properly. Using both terms, the result
looks very natural (bottom).
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After the priorities are computed, the contour pixel p̂ with the highest priority is

selected. To recover the missing parts of Ψp̂ the nearest neighbor of the patch has to be

found in the source region. Therefore, an appropriate distance function is necessary.

2.2.2 Nearest Neighbor Search

To reconstruct the pixels in Ψp̂, which are located within the target region, we have to

find the most similar patch Ψ∗q in the source region. The similarity has to be measured

using only those pixels in Ψp̂, which lie within the source region. We have to compare

them to the corresponding pixels in every possible patch in the source region, to find Ψ∗q .

Technically, not all patches in the source region Φ are possible matches for Ψp̂. This is

because those patches with a center pixel close to the image border or the target region,

may not be located completely within the source region (with respect to the selected

patch size). Hence, the nearest neighbor search space (Φ̂) is slightly smaller than the

source region itself. A preprocessing step to separate the valid source patches from the

invalid ones, is useful to speed up the nearest neighbor search during each iteration (since

the patch size does not vary during the inpainting process).

The nearest neighbor search can be written as follows:

Ψ∗q = argmin
Ψq ,q∈Φ̂

d(Ψp̂,Ψq) (2.8)

There are numerous possible distance functions to compare two equal sized image

patches (e.g. normalized cross correlation (NCC), sum of absolute differences (SAD), sum

of squared differences (SSD), ...). We decided to use SSD in the CIE Lab color space, as

suggested in [CPT03]. The Lab color space is used because of its perceptual uniformity.

The usage of RGB colors often fails to produce an accurate inpainting result (see Figure

2.8).

For a source patch Ψq, the distance to Ψp̂ is defined as follows:

d(Ψp̂,Ψq) =
∑

p̂i∈(Ψp̂∩Φ)

(
|p̂iL − qiL|+ |p̂ia − qia|+ |p̂ib − qib|

)2
(2.9)

where p̂i defines an arbitrary pixel in Ψp̂∩Φ and qi its counterpart in Ψq. The subscripts

L, a and b stand for the corresponding values of the three dimensional Lab vector of p̂i

and qi respectively.

After Ψ∗q is found, we have to reconstruct the missing pixels of Ψp̂ and update the
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(a) Inpainting results using the Lab and the RGB color space.

(b) Close-up view.

Figure 2.8: The selection of the right color space is important in order to get a good
inpainting result. The left image uses the Lab color space, while the right image uses
RGB colors. Note that the horizon cannot be reconstructed properly using RGB colors.

confidence map accordingly. The updating process is explained in the following section.

2.2.3 Update Images

In the original paper [CPT03], the updating step is straightforward. The pixels of Ψ∗q

which correspond to non existing pixels in Ψp̂ (according to the mask), are simply copied

into the corresponding target region, to complete Ψp̂. The image updating process can be

written as follows:

I(i)
i∈Ψp̂∩Ω

= Ψ∗q(i) (2.10)

To complete the current iteration we have to update the mask M and the confidence

map C as well:

M(i) = 1, i ∈ Ψp̂ (2.11)
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C(i) = C(p̂), i ∈ Ψp̂ (2.12)

After the updating step, the current iteration is finished and the algorithm resumes

with computing the new priorities to reconstruct the next patch on the contour. This

proceeds until the target region is filled completely.

2.3 Modifications

As presented by [STJN09] it can be useful to increase the patch size by ρd (patch delta)

in every direction during the nearest neighbor search to get better matching results. Note

that this is only done during the searching process. When we reconstruct the missing

pixels the patch size is reduced to its original value and therefore, only the inner part of

Ψ∗q is used for this purpose. Figure 2.9 shows example results for two different values of

ρd.

Although the original exemplar-based approach produces reasonable results, the patch-

wise reconstruction often introduces mosaic artifacts, especially for large and highly struc-

tured target regions. To conquer this issue, we decided to extend the inpainting process to

the whole patch (not only the missing part) and perform a gaussian blending operation.

Note that we do not use the extended version of Ψp̂ (using ρd), but the original version

with the size of ρs × ρs for this purpose. The modified updating process can be written

as follows:

I(i)
i∈Ψp̂

=

Ψ∗q(i), if i ∈ Ω

αΨ∗q(i) + (1− α)Ψp̂(i), otherwise
(2.13)

using the weighting factor α:

α = e
− ‖p̂−i‖√

2h (2.14)

where ‖p̂− i‖ denotes the euclidian distance between the center pixel p̂ and the current

pixel i and h = 0.5(ρs + 2ρd). The usage of this gaussian weighting function prevents

too much blurring during the blending process, while simultaneously creating a smooth

transition between the original and the inpainted region. An example with and without

blending can be seen in Figure 2.10.

These modifications are necessary in order to adapt exemplar-based inpainting for
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(a) Input image.

(b) Results for ρd = 0 (left) and ρd = 2 (right).

Figure 2.9: Increasing the patch size during the search process usually leads to better
inpainting results, due to the bigger area for SSD computation. Note that without using
ρd, parts of the other ships are used for the reconstruction of the sky (ρs = 9 for both
examples).

video processing. The main problem is not the occurrence of mosaic artifacts in the

frames, but rather the dissimilarity between them. In many cases, the artifacts would

be barely visible when one frame is viewed as a single image, but the slight differences

between consecutive frames would result in severe flickering effects when viewed as a video.

A pseudo-code description of the complete inpainting process is illustrated in Algo-

rithm 1.

2.4 Results

Generally, exemplar-based inpainting performs very well for different kinds of images.

Figure 2.11 shows some more examples where an almost perfect reconstruction is achieved.
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(a) Inpainting result with (left) and without (right) gaussian blending.

(b) Close-up view of the examples above.

Figure 2.10: This example illustrates how the usage of a gaussian blending function can
improve the inpainting result. The artifacts are gone while there are no visible blurring
effects.

Algorithm 1 Description of the Exemplar-based Inpainting Algorithm.

Require: I,M, ρs, ρd
1: I ← rgbToLAB(I);
2: C ←M ;
3: Φ̂← findSourceRegion(I,M, ρs, ρd);
4: while sizeTargetRegion(M) > 0 do
5: Λ← computeContour(M);
6: P ← computePriorities(C,Λ, Igray);
7: p̂← findMaxPriority(P );
8: Ψq∗ ← findNearestNeighbor(I,Ψp̂, Φ̂);
9: [I,M,C]← updateImages(I,M,C,Ψp̂,Ψq∗);

10: end while
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However, there are also cases where the algorithm fails. This happens especially when there

is too much structure or a repetitive pattern in the background. Figure 2.12 shows some

incorrectly reconstructed images.

(a) Input images

(b) Output images

Figure 2.11: Three examples where an almost perfect background reconstruction is
achieved.

Exemplar based inpainting can also be used to reconstruct broken images or to remove



2.4. Results 25

(a) Input images

(b) Output images

Figure 2.12: Three examples where the algorithm fails to reconstruct the background
properly.

superimposed captions etc., instead of object removal. Figure 2.13 shows an example

where an overlaid text is removed from an image.

Performing the proposed exemplar-based inpainting procedure is very time consuming,

even for small images (640× 480 pixels). Small patch sizes usually produce better results

but increase the computational time, due to the higher number of iterations necessary.

A naive implementation using OpenCV ∗ and C++ takes too long (several minutes) to

reconstruct a single image. Hence, a significant performance increase is necessary to even

∗http://opencv.willowgarage.com
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(a) Broken image.

(b) Reconstructed image.

Figure 2.13: The super-imposed caption is being removed by the examplar-based inpaint-
ing algorithm. The overall result looks very natural even though some blur is visible.
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think of video inpainting. In the following chapter, we present some ideas how to increase

the performance to finally proceed to the task of video inpainting.
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3.1 Bottlenecks

Exemplar-based inpainting is an iterative procedure, which completes a missing image

region patch by patch. The most time consuming operations during the process are the

priority computation and the nearest neighbor search. Since the quality of the result

highly depends on the priority computation, this step has to be performed during each

iteration. Fortunately, most of the previously computed priorities remain valid after the

completion of the current patch (namely those who do not belong to contour pixels near or

in the reconstructed patch). Therefore, the main goal is to speed up the nearest neighbor

search.

There are numerous approaches regarding the matching of two image patches available,

e.g. PatchMatch [BSFG09] (as introduced in Section 1.2). Since PatchMatch uses a

certain amount of randomization the algorithm is not deterministic. In order to achieve

consistent results while simultaneously increasing the performance, we decided to evaluate

two different approaches.

The first one is to limit the number of candidate patches during the nearest neighbor

search to a minimum by rejecting patches with a large dissimilarity before the SSD com-
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putation. The second one is to take the original algorithm and move it to the GPU in

order to evaluate the crucial tasks in parallel. In the following sections we will explain

both methods in detail.

3.2 Modified Nearest Neighbor Search

Sum of squared differences is a good measure to evaluate patch similarity, but is also quite

time consuming. Thus, a method to reject bad fitting patches before evaluating the SSD

would be desirable. At this point, a simple observation comes in mind: patches who are

very similar will most probably have a similar filter response using correlation with an

arbitrary filter kernel (we use a gaussian kernel). Therefore, filtering the source region

with such a kernel and only evaluating the SSD for patches which have the most similar

filter response to the current patch, will probably lead to good results in a faster way

(the maximum number of candidates is specified by a parameter t). The main problem

is that the correlation has to be reevaluated for every patch. This is because the masked

and unmasked pixels are different for every patch and masked pixels cannot be taken into

account for the correlation. To conquer this issue we divide the filter kernel into four

quarters overlapping by one pixel (see Figure 3.1) and filter the source region with each

kernel individually. We use the assumption that every patch Ψp̂ has at least one quarter

which is completely located within the source region (usually it is exactly one quarter; see

Figure 3.2). We then correlate Ψp̂ with the corresponding filter kernel and use only those

patches from the source region having a similar filter response, to compute the SSD. Since

the filter responses for the newly defined filter kernels can be pre-computed, the filtering

of the source region has to be performed only once for all patches. Thus, the performance

is increased significantly.

To justify our assumption, an example result for different values of t can be seen in

Figure 3.3. Using t = 1000 is almost 8 times faster than the brute-force method, while

delivering almost identical results than the original algorithm. Other tests showed similar

results. However, since not all images are equivalently difficult (regarding the inpainting

procedure) it is not trivial to choose t in order to achieve a good compromise between

performance and quality.

To create good inpainting results without the need of an additional parameter t, we

decided to return to the traditional nearest neighbor search (with some restrictions) while

transporting the algorithm to the GPU. Since most of the tasks (priority computation,

contour detection, SSD) can be computed in parallel, we will show that using this kind of
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(a) The gaussian filter kernels for pre-processing (ρs = 9, ρd = 2).

Figure 3.1: The gaussian filter kernel is divided into four parts to compute the filter
response of the source region separately for each kernel.

(a) The input image with the current patch high-
lighted.

(b) The current patch and the corresponding filter kernel.

Figure 3.2: Since the existing pixels are located in the upper left quarter of the patch,
the corresponding quarter of the original gaussian filter kernel has to be used. We only
consider those t patches for SSD computation which have the minimal distance to the
current patch, regarding their filter response using this specific kernel.
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architecture leads to a massive performance increase.

(a) Input image, the binary mask and the inpainting result with the default
inpainting procedure.

(b) Example results using the modified nearest neighbor search (t = 1000,
t = 10000 and t = 50000).

Figure 3.3: The top row shows the input data and the result of the default inpainting
procedure when all possible patches are evaluated (189 sec). The bottom row images
(from left to right) use the modified nearest neighbor search with t = 1000 (24 sec),

t = 10000 (30 sec) and t = 50000 (58 sec). The tests were run on a Intel R© Core i5
TM

2×2.67GHz. Note that the results do not suffer largely from the restriction of the search
space.

3.3 Using The GPU

Since the development of General Purpose Computation on Graphics Processing Unit

(GPGPU), many applications especially in the field of scientific computation have been
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presented. The high amount of processing units available on modern graphics cards allows

high speed execution of algorithms which can be scheduled in parallel (e.g. multiplication

of large matrices). Since there are many such algorithms in the field of computer vision,

the usage of the GPU lies at hand. For example, a convolution with a filter kernel can

easily be parallelized, since for every pixel in the image the output value does not depend

on the output values of other pixels but only on the local neighborhood of the pixel in the

input image.

There are several methods of using the GPU for high performance computing. Two

common ones are using OpenCL
TM∗ or CUDA

TM†. The former is not bound to a certain

graphics card manufacturer and one can use CPU and GPU simultaneously (to a certain

extend) in one single framework, while the latter is developed by nVidia R© and therefore

runs only on nVidia hardware. In our approach we decided to use CUDA.

When developing with CUDA, one has to be familiar with the concept of a computing

grid and kernel functions. For image processing, the input image can be seen as a two di-

mensional computing grid where every pixel has to be processed exactly once by one single

thread. The pixels are grouped into non-overlapping blocks, which are then evaluated in

parallel before the computation moves one to another block. Practically more than one

block is executed at a time on modern graphics cards. The typical block size is 16 × 16

pixels, which means 256 threads are running simultaneously within one block. How many

threads are actually executed at a time depends on the capabilities of the GPU, namely on

the number of available CUDA cores. The number of CUDA cores is basically the number

of available stream processing units and equivalent to the number of threads running at

a time. Figure 3.4 illustrates the computing grid for an image (640 × 480 pixels) with a

block size of 16× 16 pixels.

Since the image is located in the GPU memory, it has to be accessed via kernel func-

tions. A kernel function is a C-like piece of code which defines the operations for each

thread during the evaluation of the grid. It is important to know that this kernel function

has to be identical for every thread in the grid (Single Instruction Multiple Data concept).

The position of the thread within the grid can be calculated in the kernel function and

therefore, every thread is able to determine which data to read and where to store the

result. Note that every thread is allowed to read and write data at every position in the

grid, which may lead to caching problems and slows down the computation unnecessarily.

In order to realize image processing tasks on the GPU, it is necessary to have a toolkit

∗Open Computing Language; http://www.khronos.org/opencl/
†Compute Unified Device Architecture; http://www.nvidia.com/object/cuda home new.html
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Figure 3.4: This Figure illustrates a CUDA computing grid for an example image (640×
480). The red lines define the borders of the blocks (16× 16). Note that it is usually not
possible to define in what order the blocks are being executed.

which offers some basic features like image reading or writing. We use the ImageUtilities

(IU)‡ library to handle basic I/O operations as well as transferring the image data to the

GPU memory. The library is open source and freely available. It offers a wide range of

image processing functions, such as edge detection or gaussian filtering. In the following

section we will describe the relocation of the algorithm to the GPU and the performance

increase which is achieved.

3.4 GPU Implementation

To realize exemplar based inpainting on the GPU, all parts of the algorithm have to

be implemented as kernel functions. Since most of the processing steps are purely local

operations, this can be done easily. In fact, all processing steps can be realized as kernel

functions except for the following two:

• Maximum priority search

• Minimum SSD search

‡ImageUtilities; http://gitorious.org/imageutilities/
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Those two are the only global operations in the algorithm. Fortunately, the IU offers

built-in functions which are able to solve this problem in an efficient way.

In order to keep the computational efforts low, we reduce the size of the computing grid

as much as possible. Since the fill front δΩ can only move inwards it is useful to determine

the minimal bounding box of the target region and use it as grid for contour detection

and priority computation. Additionally, the nearest neighbor search region Φ̂ can also be

restricted to a certain radius around the target region. Experiments showed that the best

matches for contour patches are usually located near the target region. Therefore, we limit

the search area to 50 pixels in each direction of the target region bounding box. Figure

3.5 illustrates the modified grid dimensions. This procedure often reduces the amounts of

necessary thread executions significantly, while delivering equally good results (see Figure

3.6).

Figure 3.5: The computing time can be significantly reduced when the grid is adapted to
the size of the target region. The modified grid (black) for contour detection and priority
computation covers only 20% of the original grid (red), while the limited nearest neighbor
search space (blue) covers about 46%.

Table 3.1 shows a performance evaluation between CPU and GPU for three testcases

with small, medium and large target regions. The corresponding images can be seen in

Figure 3.7.

As we can see, the relocation of the algorithm to the GPU increases the performance

significantly. Even though real-time computation is still out of reach, the computing times

of a few seconds per image allow us to continue to the task of video inpainting. In the next
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(a) Inpainting results with (2.3 sec) and without (6.9 sec) grid adaption.

(b) Inpainting results with (6.8 sec) and without (16.5 sec) grid adaption.

Figure 3.6: The inpainting results do not differ much using the modified computing grids,
in comparison to the original version. Though, the computational effort is reduced to less
than 50% for both testcases. Both images have a size of 640× 425 pixels. The tests were
performed on a mid-range graphics card (nVidia GeForce GTX 560).

Testcase CPU time (sec) GPU time (sec) ρs ρd
GRASS 13.5 1.0 9 2
LAKE 35.8 4.6 9 2
FLOWERS 64.9 13.2 11 2

Table 3.1: The comparison between CPU and GPU shows a significant difference in com-
puting time, in favor of the GPU (more than 10 times faster for small target regions). All

experiments were performed on an Intel R© Core i5
TM

2×2.67GHz and a nVidia GeForce
GTX 560 respectively. The maximum number of candidates (t) for the CPU version is set
to 1000 (see Section 3.2).
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(a) GRASS: Input (left), CPU result (middle) and GPU result
(right).

(b) LAKE: Input (left), CPU result (middle) and GPU result
(right).

(c) FLOWERS: Input (left), CPU result (middle) and GPU
result (right).

Figure 3.7: This Figure shows a comparison between CPU and GPU implementation for
three testcases. The quality of the inpainting results is very similar, but the computational
time differs highly. The corresponding performance evaluation can be seen in Table 3.1.
For the CPU version t has been set to 1000.
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chapter, we will describe how this algorithm can be extended to handle image sequences,

such as videos.
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Video Inpainting
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4.1 From Image To Video

The development of a video inpainting algorithm basically raises three important ques-

tions:

• How to identify the unwanted object in every frame were it is visible?

• How to complete the resulting holes?

• How to maintain the temporal continuity?

To conquer the first issue, common tracking algorithms come in mind. Since the object

may change its appearance over time or move in front of a similar textured background,

this is definitely not a trivial step. The chosen technique hast to ensure that the object

never pops out of the target area. The second and the third issue are strongly related. For

the image completion step we can use exemplar-based inpainting, but small differences

39
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in the image completion in consecutive frames will create a visible flickering effect, which

makes the resulting output video completely useless. Unfortunately, even small changes

in the target area selection may create a completely different inpainting result. This is

even more critical in video processing, since it is very unlikely that the exact same region

is selected from one frame to the next (with respect to the transformation between the

two frames).

In the last few years, a lot of different video inpainting approaches have been presented.

Most of them build up on exemplar-based inpainting [CPT03]. In the following section

we will give an overview over the field of video inpainting, before we introduce our own

algorithm.

4.2 Related Work

Video inpainting evolved from the need of an automatic scheme to repair historical video

material. Many videos contain unpleasant artifacts commonly known as dirt and sparkle.

Some of the earlier techniques use interpolation based on 3-dimensional autoregressive

models to repair corrupted parts of the video frames [KMFR95, KG97]. Since these

approaches are designed to repair quasi-random errors and do not include tracking, they

are not directly applicable for the purpose of object removal.

One of the earlier video inpainting approaches, which focused more on object removal,

introduced the concept of space-time video completion [WSI04]. The video completion

process is formulated as a global optimization problem, which preserves the temporal

continuity. Inpainting is done using small patches sampled from the whole video. Thus,

an intensive space-time search is necessary which is computationally too expensive for

larger video sequences.

In the same year, a different approach was presented by Jia et al. [JTPYWCK04].

The proposed algorithm is capable of handling moving foreground objects and static back-

ground without an extensive patch search in the whole input video. To maintain temporal

continuity, homography blending is used. As mentioned in the paper, the algorithm can

be extended to handle constrained camera motions as well. The main drawback of this

approach is that there is the assumption of a constant foreground motion, which may

not be the case in real world examples. Additionally, the authors report the occurrence

of ghost shadow artifacts due to illumination changes and shadows in some of their re-

sults. In 2006, Jia et al. proposed an extended version of their algorithm, which is able

to handle more severe illumination changes [JYWTPCK06]. They split color and illumi-
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nation information in the video and use tensor voting to maintain the spatio-temporal

consistency. The proposed method uses the assumption of cyclic foreground motion and

restricted camera motion, which limits its application.

In 2007, Patwardhan et al. [PSB07] proposed an algorithm based on constrained

camera motion which is able to handle arbitrary target regions. During preprocessing, they

divide each frame into foreground and background using optical flow to achieve consistent

inpainting results and to increase the performance. Afterwards, two video inpainting

steps are performed to reconstruct moving foreground objects and to fill in the remaining

holes. They use a modified exemplar-based inpainting scheme to repair the foreground, by

selecting patches which are similar to the target patch with respect to its color values and

optical flow vectors. Although this method is less restricted than previous approaches, it

is still limited to certain camera motions and produces visible artifacts especially when

dealing with large target regions.

In 2009, Shih et al. [STJN09] presented an exemplar-based approach which is capable

of removing static or moving objects under more general camera motions. They first

compute a motion field throughout the whole video, which is then used to track a user

defined target object in every frame. They also make use of this motion field during

the inpainting step, to maintain the temporal continuity. Thus, a candidate patch has

to be similar to the current target patch, as well as to the corresponding patch in the

previous frame. Evaluation showed that their method is able to remove many artifacts and

provides visually pleasant results. However, most of their real-world examples show moving

foreground objects in front of a non-moving planar background scenery. The authors

also report problems when the camera motion is more complex than simple panning and

zooming.

Ling et al. [CHCWCW+11] proposed an approach based on virtual contours for object

completion. It is capable of reconstructing occluded objects while simultaneously remov-

ing the occluding objects. However, they assume that both objects have been detected

and extracted by some object segmentation algorithm beforehand. Afterwards, they con-

struct a virtual contour for the object and try to estimate the objects’ trajectory during

occlusions. They use a synthetic posture generation scheme to repair missing parts of

the object. Although the proposed method produces reasonable results also for very large

occlusions, it can not handle illumination changes during the scene. Also the synthetic

posture generation may fail for objects performing very complex motion.

Most of the discussed methods perform very well in a well defined constrained environ-
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ment. Even though there has been some research going on over the last few years, there

is currently no optimal solution for the general case available. Since video inpainting is a

very complex task, which involves several non trivial steps (e.g. foreground/background

segmentation, optical flow computation, object tracking, ...) it is very unlikely that there

will be an almost perfect solution in the near future. Therefore, there is a lot of room for

improvements in this area.

As in most computer vision tasks, there is always the issue of performance versus

quality. High-quality inpainting results require extensive computational efforts. Although

many of the proposed methods have increased the performance to a certain extend, it is

still a computationally very expensive task. Therefore, most authors only evaluate on low

resolution videos (ca. 320 × 240 pixels). Enlarging the input video by a factor of two in

every direction (640 × 480 pixels) increases the number of pixels four times. Thus, the

number of patches to be inpainted and their potential matches usually increase in the same

way (assuming a constant patch size). One can estimate that this leads to a quadratic time

complexity for most patch based state-of-the-art approaches. Since many video inpainting

methods require extensive preprocessing of the whole video volume, not only computing

time but also memory has to be considered. A long video sequence is most probably too

large to store all of its frames in the main memory and extensive memory transfer from

hard disk to main memory will decrease the performance significantly.

Since it has already been shown that it is possible to create visually pleasant video in-

painting results for constricted scenarios, it has yet to be shown that space-time consistent

results can be produced using an efficient algorithm which is independent from the length

of the video. In the following section, we will introduce our modified exemplar-based video

inpainting approach, which uses only two frames at a time to complete the missing region.

The proposed method is not restricted to certain camera motions and produces reasonable

results using the optical flow as sole clue.

4.3 Problem Statement

As we have seen, exemplar-based inpainting is very effective for image reconstruction even

for complex background structures. Assuming that a segmentation mask is available for

every frame in a video sequence, a naive approach would be to perform inpainting on every

frame individually. Since exemplar-based inpainting is sensitive to slight modifications of

the segmentation mask, the inpainting result will probably not be similar between two

consecutive frames (see Figure 4.1). Thus, when the reconstructed scene is viewed as a
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video there will be clearly visible flickering artifacts, even if the reconstructed frames look

natural when viewed individually.

Since we can not assume that segmentation masks for every frame in the sequence

are available, we have to find a way to compute them from one single selection by the

user in the first frame. To achieve this, some sort of tracking algorithm has to be used.

It is important that the target is always contained completely within the segmentation

mask, in order to get a satisfying inpainting result. Since object tracking is a very active

field of research, there is a wide range of tracking algorithms available. Though, many of

these approaches only provide a bounding box around the selected object which sometimes

fails to enclose the target object completely. After the target regions for every frame are

available, we can define the necessary tasks for video inpainting as follows:

• Reconstruct the target region in every frame

• Maintain the temporal consistency

In order to reconstruct a given frame correctly, we need to know how the missing

background is supposed to look based on its appearance in other parts of the sequence,

where it is not occluded. The possibility of reconstructing the target region using more

than one single frame, is something we do not have when dealing with image inpainting.

However, this information plus can only be used when we know the dependencies and pixel

movements between consecutive frames.

In order to solve these two problems we make use of the optical flow between neigh-

boring frames. The information which is provided by the optical flow can be used to track

the segmentation mask, as well as to construct time consistent inpainting results.

4.4 Optical Flow

The basic concept of optical flow was first presented by psychologist James J. Gibson

[Gib50] in 1950 and has its origins in the field of biological motion perception. Details

about motion perception and its relevance for the field of computer science can be taken

from [LHP80] and [AB85].

In computer vision applications for the processing of image sequences we usually have

to deal with the pixel’s apparent motion. This describes the perceived motion when the

images of the sequence are shown one after another, using a relatively small time frame

per image. Without the temporal information, motion estimation is not possible.
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(a) Input images

(b) Output images

Figure 4.1: Applying exemplar-based inpainting on two consecutive video frames individ-
ually leads to flickering artifacts when viewed as a video. The dissimilarity between the
two frames is clearly visible. [The input images are taken from the movie Jurassic Park
III, 2001 c© Universal Pictures]

The optical flow is one way to model the apparent motion between consecutive images.

It basically describes moving brightness patterns within a specific scene over time in the

form of flow vectors (see Figure 4.2). In case of image sequences (or videos) these flow

vectors can be used to determine the movement of a specific pixel from one frame to

another. Thus, having a good flow estimation we can propagate the current target region

between consecutive frames.

It is important to distinguish optical flow from object motion. It is possible to observe

motion in the brightness patterns while no object is actually performing any movements,

e.g. due to illumination changes. Therefore, the occurrence of optical flow does not

necessarily imply a non-static scene.

In order to compute the optical flow, it is common to make use of the brightness

constancy constraint:

I(p)(t) = I((xp + ∆xp, yp + ∆yp))
(t+1) (4.1)



4.4. Optical Flow 45

(a) Two consecutive frames

(b) The optical flow between the two frames

Figure 4.2: The two images in (a) show a plane in the sky which does not change its
position in the two frames, while the background moves from right to left. The optical
flow in (b) illustrates this, using the color red for right-to-left and the color white for
constant flow (see Figure 4.3). [The input images are taken from the movie Jurassic Park
III, 2001 c© Universal Pictures]

where I(p)(t) describes the intensity at position p = (xp, yp)
T and time t and I((xp +

∆xp, yp + ∆yp))
(t+1) the intensity of the same pixel at time t+ 1, which has been moved

to position (xp + ∆xp, yp + ∆yp) by the flow vector vp = (∆xp,∆yp)
T .

For small movements, it is possible to rewrite the above equation as follows using taylor

series approximation:

I((xp + ∆xp, yp + ∆yp))
(t+1) = I(p)(t) +

∂I

∂xp
∆xp +

∂I

∂yp
∆yp +

∂I

∂t
+ ... (4.2)

where the higher order terms have been neglected. It follows that:

∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0 (4.3)
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where vx and vy define the x and y components of the flow vectors between I(t) and

I(t+1).

This leads to the equation which ultimately has to be solved to obtain the optical flow:

Ixvx + Iyvy = −It (4.4)

where Ix, Iy and It are the image derivatives in x direction, y direction and time

respectively.

Unfortunately this equation is ill-posed, since both vx and vy are unknown (aperture

problem). Therefore, we need additional constraints in order to obtain the desired result.

There are numerous proposed solutions on how to estimate optical flow under various

conditions. Basically, they can be divided into local and global approaches. The first

local approach was presented in 1981 by Lucas and Kanade [LK81]. They estimate optical

flow using small spatial neighborhoods under the assumption of similar flow vectors for

neighboring pixels. Since local methods may not always deliver the desired result (e.g.

for homogeneous regions), global approaches make use of a smoothness term in order to

propagate the flow field from well-posed parts of an image to regions where no correct

estimation can be achieved. The first global method was presented by Horn and Schunck

in 1981 [HS81], where they formulated optical flow estimation as an optimization problem.

Barron et al. [Bar94] performed an evaluation over state-of-the-art optical flow estima-

tion approaches, back in 1994. The test sequences used by them have become widely used

for the evaluation of new approaches in the later years. They reported the local methods

by Lucas and Kanade [LK81] and Fleet et al. [FJ90] to be the most reliable. They further

emphasized the importance of robust confidence measures at various stages during the

optical flow computation, in order to detect and discard invalid measurements as early as

possible. Furthermore, they found the usage of proper numerical differentiation techniques

as well as spatio-temporal smoothing crucial for the quality of the results. Overall they

favored local over global models.

In the following year, Beauchemin et al. [BB95] published a survey where they ex-

plored the capabilities of current optical flow estimation methods by performing a detailed

analysis of the assumptions and hypotheses on which they are built. They reinforced the

necessity of spatio-temporal smoothing in order to obtain reliable results, as already stated

by [Bar94]. They pointed out the need of commonly available testsets including valid flow

vectors as a ground truth, in order to compare future methods to existing approaches.

In the year 2000, Aubert et al. [ADK00] published a detailed review of existing vari-
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ational approaches, which are mostly build on the global approach by Horn and Schunck

[HS81]. They revealed the lack of theoretical foundations on optical flow, despite the large

number of available publications about this topic. They further introduced a new model

based on bounded variations, which allows a robust regularization of the velocity field

while simultaneously preserving its discontinuities. The resulting method outperforms the

traditional approaches by Lucas and Kanade [LK81] and Horn and Schunck [HS81] in

terms of accuracy.

Another approach to optical flow estimation is to use gradient-based methods. A de-

tailed introduction to this topic is given by Fleet et al. [FW06]. The authors concluded

their paper by pointing out the need for future methods which do not rely on brightness

constancy and smoothness. They suggest tracking of occlusion boundaries and the incor-

poration of prior knowledge of the scene (e.g. reflectance or lighting conditions), in order

to achieve a more accurate and robust flow estimation.

One of the most recent surveys on the current state-of-the-art regarding optical flow

computation was presented by Baker et al. [BSL+11] in 2011. They give an excellent

overview over the significant developments since the earlier survey by Barron et al. [Bar94].

They especially emphasize the changing of the evaluation datasets, from rather simple

synthetic examples to complex natural scenes with nonrigid motion, sensor noise, as well

as strong motion discontinuities. Therefore, they enforce the usage of more complex

benchmarks for the future generation of optical flow algorithms∗, as well as a color-based

flow visualization method, which assigns flow vectors a certain color by encoding direction

and intensity of the flow (see Figure 4.3). Statistical analysis of current optical flow

estimation methods showed, that there is no method available which outperforms other

approaches for every kind of test scenario. Therefore, there is still room for improvements

especially when dealing with real-world scenarios.

The vast number of excellent publications on this topic presented over the years, con-

firms the importance of optical flow for the field of computer vision. For further reading,

we recommend the paper by Brox et al. [BBPW04], which introduces coarse-to-fine warp-

ing in order to allow estimation of larger displacements. They proposed a global approach

which enforces gradient constancy as a data term, which makes the approach invariant

to additive illumination changes but increases noise sensitivity. Furthermore, we want to

refer to Zach et al. [ZPB07] presenting a minimization approach using a TV-L1 energy

functional for optical flow estimation. This paper forms the basis of the framework we

∗http://vision.middlebury.edu/flow/
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Figure 4.3: This example shows two consecutive frames of an image sequence and the
color-coded flow vectors (middle right). The semantics of the colors can be seen in the
rightmost image. A certain color defines the direction of the flow, while the intensity of
the color increases with the length of the flow vector. [Images taken from [BSL+11]]

use in our video inpainting approach. A good overview over the field of optical flow com-

putation, especially convex approaches, is given in the dissertation of Manuel Werlberger

[Wer12]. For details on numerical optimization we refer to [CP10].

We use a GPU-based software library called FlowLib† [Wer12], which offers a fast set

of functions for the purpose of flow computation and a wide variety of possible settings.

Additionally, the IU provides a remapping function, which allows us to map frame n onto

frame n + 1 using the calculated flow field between them. This function basically moves

each pixel to its new position (according to the corresponding flow vector).

The provided remapping feature is the core of our modified nearest neighbor search,

where we use a volume consisting of the current and the remapped previous frame instead

of a single image.

4.5 Volume Patch Matching For Time Consistent Inpaint-

ing

In order to achieve consistent inpainting results we need additional information about the

target region. The idea is to use the previous (already reconstructed) frame and the flow

field during the nearest neighbor search, to find an appropriate match. The best match

has to be similar to the current patch Ψ
(n)
p̂ in frame n, as well as to the corresponding

patch Ψ
(n−1)
p̂ in the previous frame. In order to perform a fast nearest neighbor search

without using the flow vectors directly for every patch, we map the previous frame onto

the current frame and construct a volume I(n−1,n). Due to the remapping, the two images

have to be almost identical (outside the target region). Since the previous frame is already

†FlowLib: http://www.gpu4vision.org/
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reconstructed, information about the part which is missing in the current frame is now

available (see Figure 4.4).

An image patch Ψ
(n)
p in frame n is therefore transformed to a volume patch Ψ

(n−1,n)
p :

Ψ(n−1,n)
p = {Ψ(n−1)

p ,Ψ(n)
p } (4.5)

Then we modify the distance function from Algorithm 2.9 accordingly:

d(Ψ
(n−1,n)
p̂ ,Ψ(n−1,n)

q ) = λdn−1(Ψ
(n−1)
p̂ ,Ψ(n−1)

q ) + (1− λ)dn(Ψ
(n)
p̂ ,Ψ(n)

q ) (4.6)

dn−1(Ψp̂,Ψq) =
∑

p̂i∈Ψp̂

(
|p̂iL − qiL|+ |p̂ia − qia|+ |p̂ib − qib|

)2
(4.7)

dn(Ψp̂,Ψq) =
∑

p̂i∈(Ψp̂∩Φ)

(
|p̂iL − qiL|+ |p̂ia − qia|+ |p̂ib − qib|

)2
(4.8)

where λ ∈ [0, 1] controls the influence of the previous frame. When λ is set to zero,

traditional inpainting is performed and the previous frame is not taken into account at

all. Evaluation using various different testcases shows, that setting λ = 0.5 leads to the

best results. Lower values for λ lead to flickering artifacts, while higher values propagate

possibly existing errors from previous frames into the current frame (see Figure 4.5). The

difference between the two functions dn−1 and dn is, that for the previous frame we are able

to compute the SSD over the whole patch and not only the part which overlaps with the

source region, since frame n − 1 is already reconstructed completely. After the distances

are computed, the nearest neighbor is found to be the volume patch with the minimal

distance, similar to Equation 2.8. Then, the missing pixels of Ψ
(n)
p̂ are reconstructed

using the information in Ψ
(n)
q∗ using Equation 2.13. Note that even though the nearest

neighbor distance is computed using both frames, the color values are only copied from

the corresponding region in the current frame.

This simple adaption enables the algorithm to create time consistent inpainting results

using the additional information provided by the optical flow. Up to now we have assumed

that we have the flow vectors available to create the correct mapping from the previous to

the current frame. This is usually not the case, since we have to compute the optical flow

using the unmodified input frames with the foreground object. Therefore, the resulting

flow vectors also contain the foreground motion (see Figure 4.2). If foreground and back-

ground moves equally (e.g. static scene and moving camera) we are able to use the flow
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(a) The current frame n and the remapped previous frame n− 1.

(b) The remapped previous frame superimposed onto the cur-
rent frame.

(c) The volume patch Ψ
(n−1,n)
p .

Figure 4.4: (a) The left image shows the current frame n with the target region (black) and
the current patch highlighted in red. The right image shows the previous frame n−1 which
has been mapped onto the current frame using the optical flow vectors. The corresponding
patch (which has to be at the same position, due to the remapping) has been highlighted
as well. (b) When we superimpose the remapped previous frame onto the current frame,
we can visualize the image volume I(n−1,n). As we can see, the information provided by
the previous frame fits to the missing part of the current frame. (c) The bottom image
shows the construction of the volume patch based on the two corresponding image patches.
[The input images are taken from the movie Pirates of the Caribbean: Dead Man’s Chest,
2006 c© Walt Disney Pictures]
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(a) Input frames.

(b) λ = 0

(c) λ = 0.5

Figure 4.5: This Figure shows the influence of λ on the inpainting result. Using λ = 0 (b)
leads to severe flickering effects and is equivalent to performing inpainting on the frames
individually. Using λ = 0.5 (c) creates a smooth inpainting result, because the previous
and the current frame are considered equally important. This leads to a good compromise
between time consistency (previous frame) and inpainting quality (current frame). [The
input images are taken from the movie School of Rock, 2003 c© Paramount Pictures]
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vectors for remapping even if the foreground object has already been removed. But when

this is not the case (e.g. static background and moving object), we have to modify the

flow field accordingly by reevaluating the flow vectors within the target region. Since we

cannot generally assume a global background motion, the reconstruction of the missing

flow vectors is a complex issue by itself. To simplify the problem we make the assumption

that similar patches will most probably have a similar motion. Therefore, we also copy

the flow vectors from the best fitting patch into the target region during the inpainting

process, in addition to the color values. We also perform the same blending operation as

for the intensity values, to create a smooth transition between source and target region.

Figure 4.6 shows the reconstructed flow field for the example in Figure 4.2. The rest of

the inpainting algorithm remains completely unchanged (e.g. contour detection, priority

computation, ...).

(a) The original and the reconstructed flow field.

Figure 4.6: This Figure illustrates the flow reconstruction for the example in Figure 4.2.
In addition to the color values, the flow vectors are copied as well during the inpainting
process. This removes the foreground motion and creates a new flow field, which can be
used to map the reconstructed frame onto the next frame for time consistent inpainting.

The modified inpainting algorithm allows us to create consistent inpainting results for

image sequences or videos. Though, up to now it would only work for static objects which

stay at the same position in every frame and therefore, only one segmentation mask is

necessary. In order to perform video inpainting for non-static objects, we need some sort

of tracking algorithm to compute the segmentation mask for every frame. In the following

section, we will describe our flow based tracking method in detail.
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4.6 Tracking Of The Target Region

Since one second of video usually contains at least 25 frames, it is not possible to define

the target region for every frame manually. It is necessary to provide an algorithm which

is able to track the foreground object throughout the whole sequence, once it has been

selected by the user in one single frame.

Since inpainting is already a very time consuming operation, we need a fast tracking

method which is able to function properly without an expensive initialization or learning

phase. Most state-of-the-art trackers are either trained to find objects belonging to a

certain category (e.g. humans), or require object samples which they learn during ini-

tialization. Another point is, that most tracking algorithms only provide a bounding box

around the tracked object, which does not always guarantee that the object is located

completely within the box.

To avoid the implementation and evaluation of available tracking software, we decided

to use a simpler approach based on color and flow vector differences between the input and

the reconstructed frame to detect and propagate the foreground. Once we have determined

our foreground hypothesis, we can use the remap function provided by the IU to move the

target region from the current frame to the next, using the unmodified flow vectors. Since

these flow vectors were originally computed with the foreground object, they point to the

position were it is located in the next frame.

Simply applying the remapping on the current mask would not lead to the correct

result, since the target region is usually bigger than the foreground object itself. Therefore,

not all of the pixels within the mask have to be propagated. Remapping the whole target

region would lead to a mutating mask, because some pixels would be remapped correctly

(foreground) while some would be mapped according to the background flow. The result

would be a mask which is getting larger and larger during the inpainting process. Hence,

we have to determine what is foreground and background within the masked area.

To detect the foreground pixels in the current frame within the target region Ω we

need to perform the following steps:

• Compute the differential images (RGB, Lab and flow difference)

• Create the combined differential image

• Apply a thresholding operation

• Perform a filter step (optional)
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To create the differential images DRGB, DLab and Dv we use the original version I

and the reconstructed version Ĩ of the frame, as well as the original flow field v and the

reconstructed flow field ṽ. The differences are computed in the following way:

DRGB(p) =

‖IRGB(p)− ĨRGB(p)‖, if p ∈ Ω

0, otherwise
(4.9)

DLab(p) =

‖ILab(p)− ĨLab(p)‖, if p ∈ Ω

0, otherwise
(4.10)

Dv(p) =

‖v(p)− ṽ(p)‖, if p ∈ Ω

0, otherwise
(4.11)

where IRGB(p) (ĨRGB(p)) and ILab(p) (ĨLab(p)) denote the three-dimensional color

vectors of pixel p in RGB and Lab color space, while v(p) and ṽ(p) define the two-

dimensional vectors containing the x and y components of the original and reconstructed

flow vectors. Afterwards the differential images are normalized to [0, 1]. An example can

be seen in Figure 4.7.

Then, the combined differential image D is retrieved as follows:

D(p) = 1− e−[DRGB(p)+DLab(p)+fw·Dv(p)] (4.12)

where fw ∈ [0, 1] is a weighting factor controlling the influence of the flow difference on

the result. Since the flow vectors tend to be inaccurate in some cases, we cannot always use

the flow difference for foreground detection. Therefore, the weighting factor is necessary

(see Chapter 5).

Afterwards, D is normalized to [0, 1] in the following way:

DNORM (p) =
tanh

(
4·D(p)
maxD

− 2
)

+ 1

2
(4.13)

were maxD is the maximum value in D. The tanh() function is used to decrease

differences lower than and strengthen differences higher than maxD/2, creating a bet-

ter segmentation result. Afterwards a simple binary threshold is applied to create the

foreground hypothesis F :
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(a) RGB: input frame, reconstructed frame and differential image.

(b) Lab: input frame, reconstructed frame and differential image.

(c) Flow: original flow, reconstructed flow and differential image.

Figure 4.7: This figure illustrates the computation of the differential images (RGB, Lab
and optical flow) for foreground detection. Note that stronger differences (white) cor-
respond to the actual foreground object while the background shows weaker differences
(black). [The input images are taken from the movie Jurassic Park III, 2001 c© Universal
Pictures]

F (p) =

0, if DNORM (p) ≥ tFG

1, otherwise
(4.14)

were tFG defines the user specified threshold. Since DNORM has been normalized using

the tanh() function, using tFG = 0.5 is a good choice for most testcases.

An example can be seen in Figure 4.8.

Since it is unlikely that this process will generate a perfect segmentation result, it is

possible that the resulting mask will contain a certain amount of noise. This happens

especially when object and background have similar colors. Therefore, an optional filter
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(a) Combined differential image and resulting foreground hypothesis.

Figure 4.8: This Figure shows the combined differential image and the resulting foreground
hypothesis (tFG = 0.75) for the example in Figure 4.7.

step can be performed. This procedure is similar to morphological opening and closing :

Fopen(p) =

0, if Nall(p) = true

1, otherwise
(4.15)

Fclose(p) =

0, if Nany(p) = true

1, otherwise
(4.16)

where Nall(p) returns true if and only if p and all of its neighbors (8 neighborhood)

are already considered foreground pixels. In a similar way, Nany(p) returns true if and

only if at least one neighbor of p is part of the foreground mask. This step deletes small

isolated regions and single outliers (see Figure 4.9).

(a) The foreground hypothesis without filtering, after the opening and after the closing step.

Figure 4.9: The optional denoising procedure removes some of the outliers and creates a
more robust segmentation result. This is necessary in order to prevent the target region
from getting distorted during the remapping process.

In order to propagate the foreground hypothesis to the next frame, the generated mask

is remapped using the original and unmodified flow vectors. To prevail the binary mask,
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a nearest neighbor interpolation is used instead of bilinear. After the remapping step, we

have to enlarge the mask. This has to be done to ensure that the whole object is located

within the mask. Since the foreground detection process usually yields a hypothesis which

is slightly smaller than the actual object, the enlargement procedure is necessary in most

cases. Typically the target region is enlarged by 5 to 10 pixels in our setup. An example

tracking result can be seen in Figure 4.10.

(a) The user specified mask superim-
posed on the first frame.

(b) The propagated target region superimposed on the next frame before (left) and
after (right) the enlargement.

Figure 4.10: This Figure illustrates the mask propagation process. Note that the remapped
foreground hypothesis does not contain the target object completely, which makes the mask
enlargement process necessary. The mask has been enlarged by 10 pixels for this example.
[The input images are taken from the movie Jurassic Park III, 2001 c© Universal Pictures]

The modified volume based patch matching procedure, described in Section 4.5, com-

bined with the proposed optical flow based tracking step enables us to perform time

consistent video inpainting with minimal user input. But there is one problem remaining.

We can only achieve correct inpainting results when we already have a reconstructed ver-

sion of the previous frame available. Hence, we cannot apply our algorithm on the first

frame in the sequence. If the object has the same movement as the background, ordinary

exemplar-based inpainting can be performed on the first frame. Since the target remains
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on the same relative position regarding foreground and background, the real background

behind the object will never be visible.

If the object has a different movement than the background, the previously hidden

background segment will be visible at some point during the sequence. The reconstruction

of this segment, in those frames where it is located in the target region, will most certainly

be different than the actual segment (since it has been computed with no information about

the actual appearance). To conquer this issue, one can treat the first frame special and

develop an algorithm which computes the correct result using the whole video. Since there

is no guarantee that the whole region will be completely visible at some point during the

sequence, this may lead to an exhaustive search which still leaves missing pixels. In order to

avoid this issue, we simply perform ordinary exemplar-based inpainting on the first frame

and use a MASK_MOVEMENT parameter, which specifies whether the object moves differently

than the background or not. If so, the initial target region is set invalid and tracked as

well, resulting in two target regions as long as the tracked initial target region is visible in

the scene. To propagate the initial target region we simply remap the corresponding mask

using the reconstructed flow vectors (belonging to the background). We do not perform

any other preprocessing steps, in contrast to the tracking of the foreground mask. Figure

4.11 shows an example with activated MASK_MOVEMENT.

(a) The first and the 14th frame of the sequence with superimposed target regions.

Figure 4.11: For moving objects the initial target region has to be reconstructed in every
frame were it is visible. This is necessary because the first frame is computed without prior
knowledge and therefore the reconstruction of the user specified mask might be inconsistent
with its true appearance. [The input images are taken from the movie Jurassic Park III,
2001 c© Universal Pictures]

In order to evaluate quality and performance of our proposed video inpainting system,

we have performed several test runs using various sequences. The results of this evaluation

can be seen in the following chapter.
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5.1 Test Environment

In order to evaluate performance and quality of our approach, we have created various

testcases. All of them are short video sequences taken from movies or television shows.

The videos are compressed and scaled and contain motion blur and compression artifacts.

We do not make any assumptions about the camera motion. The only restriction is that

the foreground object has to be completely visible in the first frame and does not suffer

from severe occlusions throughout the sequence. This is because our tracking algorithm

is not capable of such cases.

59
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Test System

CPU AMD Phenom X4, 4×2.5GHz

GPU nVidia Geforce GTX 560, 336 CUDA cores

RAM 2GB Kingston DDR3-SDRAM

Table 5.1: Hardware information of the test system. The GPU is the most important
component, since the crucial parts of the algorithm are implemented in CUDA. Note that
using a high-performance graphics card would increase the performance significantly.

Optical Flow Parameters (FlowLib)

MODEL FAST_HL1_TENSOR

ITERATIONS 50

WARPS 10

SCALE_FACTOR 0.8

INTERPOLATION_METHOD LINEAR

LAMBDA 25.0

GAMMA_C 0.01

EPSILON_U 0.01

EPSILON_C 0.01

Table 5.2: The parameter setup for optical flow estimation using FlowLib.

All tests have been performed on the same system, using a nVidia Geforce GTX 560

mid-range graphics card with 336 CUDA cores. Detailed information about the test system

can be taken from Table 5.1.

The parameters for the optical flow computation remain unaltered during all tests. In

order to perform a fast flow estimation, we use the FAST_HL1_TENSOR as model parameter.

We also tried the more complex, but also more noise sensitive, HQUADFIT_TENSOR model

parameter, using SAD3 (sum of absolute differences using patches of 3×3 pixels) and NCC3

(normalized cross correlation using patches of 3×3 pixels) dataterms. The results were

similar and therefore we decided to stick with the FAST_HL1_TENSOR (see [Hub73] and

[WTP+09] for further information). All necessary parameters are listed in Table 5.2.

In the following sections we will give an overview over some of our testcases and show

a performance evaluation for each of them.

5.2 Testcase: PIRATES

This testcase demonstrates the ability of video inpainting for a static object in front of an

almost entirely homogeneous background. The prevailing camera motion is zooming and

panning. Details about the sequence and the parameter setup can be seen in Table 5.3.
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Testcase: PIRATES

Frame Size 608× 256

Number of Frames 43

ρs 3

ρd 2

λ 0.5

fw 1.0

tFG 0.5

FG_FILTERING true

MASK_MOVEMENT false

Table 5.3: Testcase PIRATES: Information and parameter settings.

Since the predominant part of the background is untextured, the focus lies on completing

the grass area at the bottom of the frame. Note that the source region for the grass patches

gets smaller during the sequence. Though, the algorithm manages to create a plausible

and consistent result (see Figure 5.1).

Even though the contrast between the foreground object and the background looks

very sharp for the human eye, the foreground detection algorithm fails to deliver a good

segmentation result when only color information is considered. Hence, it is necessary to

set fw = 1.0 for this example. The additional information provided by the flow vector

differences helps to achieve the desired segmentation result and therefore enables the

correct tracking of the target region.

5.3 Testcase: PIRATES II

This example contains almost no camera motion, and shows a mostly static background

and moving foreground objects. There are two objects moving in a similar manner and one

of them is being removed. Even though this testcase seems to be fairly easy, there is one

difficulty. Due to the mostly untextured background and the small gap separating the two

objects, optical flow estimation is not correct for the region between the two foreground

objects (see Figure 5.2). Therefore, the flow reconstruction is not accurate and the flow

vectors can not be used for foreground segmentation during the target region tracking

process. Fortunately, the color difference between foreground and background is sufficient

to track the target region throughout the sequence.

Another problem is that most of the foreground object is a very thin structure. There-

fore, no filter step during foreground detection can be performed without the possibility
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Figure 5.1: Example inpainting result for the PIRATES testcase. Note that the recon-
struction of the grass at the bottom of the frames is almost identical in every frames. [The
input images are taken from the movie Pirates of the Caribbean: Dead Man’s Chest, 2006
c© Walt Disney Pictures]
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Testcase: PIRATES II

Frame Size 608× 256

Number of Frames 47

ρs 5

ρd 2

λ 0.5

fw 0.0

tFG 0.3

FG_FILTERING false

MASK_MOVEMENT false

Table 5.4: Testcase PIRATES II: Information and parameter settings.

of destroying the target region. Even though the foreground object is moving, we can not

set the MASK_MOVEMENT parameter for this example, because of the imprecise flow estima-

tion. Our experiments show that this is not a big issue for this testcase, due to the simple

background. Exemplar results can be seen in Figure 5.3. The parameter setup is listed in

Table 5.4.

(a) Testcase PIRATES II: Two consecutive frames.

(b) Testcase PIRATES II: Optical flow.

Figure 5.2: The optical flow is not correctly estimated for the region between the two ob-
jects. Therefore, this example is difficult to reconstruct even with a static and mostly
untextured background. [The input images are taken from the movie Pirates of the
Caribbean: Dead Man’s Chest, 2006 c© Walt Disney Pictures]
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Figure 5.3: Example inpainting result for the PIRATES II testcase. [The input images are
taken from the movie Pirates of the Caribbean: Dead Man’s Chest, 2006 c© Walt Disney
Pictures]
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Testcase: PLANE

Frame Size 720× 400

Number of Frames 54

ρs 3

ρd 2

λ 0.5

fw 1.0

tFG 0.5

FG_FILTERING true

MASK_MOVEMENT true

Table 5.5: Testcase PLANE: Information and parameter settings.

5.4 Testcase: PLANE

This example shows a plane in a cloudy sky. The camera keeps the frame centered in the

frame while the background moves from right to left. The main difficulty of this testcase

is the color similarity between the plane and the clouds. Therefore, using the flow vector

differences is absolutely necessary in order to get a correct foreground estimation. Since

the flow vectors are very accurate in every frame, the tracking of the target region is

performed successfully.

Another notable point is that the plane changes its appearance throughout the se-

quence, due to steering movements. Although the plane is visible from various viewangles

at the beginning of the sequence compared to the end, the flow based tracking algorithm

is able to detect the plane in every frame correctly. Also a certain scale change is tackled

by the tracking process. Since the foreground moves differently than the background, the

MASK_MOVEMENT parameter is set to true for this example. Inpainting results can be seen

in Figure 5.4, while the parameter setup is listed in Table 5.5.

5.5 Testcase: PLANE II

This sequence is more complex than the previous testcases. It shows a plane which moves

in front of a changing background (water, mountain and combined). The plane also

undergoes steering movements and massive scale changes during the end of the sequence.

The parameter settings are listed in Table 5.6.

While the tracking works fine throughout the whole process, the inpainting results are

not satisfactory in some of the frames. Especially the borders of the mountain, which are

visible in the middle of the sequence, are not estimated correctly (see Figure 5.5). Since
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Figure 5.4: Example inpainting result for the PLANE testcase. [The input images are
taken from the movie Jurassic Park III, 2001 c© Universal Pictures]
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Testcase: PLANE II

Frame Size 720× 400

Number of Frames 140

ρs 5

ρd 2

λ 0.5

fw 1.0

tFG 0.75

FG_FILTERING true

MASK_MOVEMENT true

Table 5.6: Testcase PLANE II: Information and parameter settings.

we only use the current frame as source region for the inpainting process, it may happen

that no similar patch can be found. This happens when the background region, which is

under the mask, is unique in the current frame and therefore no correct reconstruction can

be achieved (since only patches outside the target region are possible sources). Figure 5.6

shows an example for this case. Another problem is that the foreground detection is not

accurate in some of the frames and therefore the mask becomes too large. Fortunately, the

mask recovers in the following frames and the inpainting procedure continues as desired.

Although there are some defective regions in the reconstructed sequence, the overall

result looks acceptable (see Figure 5.7).

5.6 Testcase: WATER

This example shows two children in the water. The camera is static and the foreground

objects perform only slight motions by turning their heads. The main challenge for this

testcase is the strongly changing background, due to the waves in the water. The complex

and unstable motion of the water makes optical flow estimation very difficult. Therefore,

consistent inpainting results are hard to achieve. Also the foreground segmentation is a

complex task, especially for the parts of the kids which are located under water. In order

to perform a correct target region tracking, the foreground threshold tFG has to be fairly

low, compared to other testcases. The parameter settings are listed in Table 5.7.

The constantly changing and untextured background is rather objectionable for flow

estimation, but on the other hand, it allows us to compute reasonable inpainting results

without accurate flow vectors. Especially due to the performed blending operation during

the hole filling process, inconsistent patches do not affect the overall inpainting result
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(a) Testcase PLANE II: Input frames.

(b) Testcase PLANE II: Incorrectly reconstructed output frames.

Figure 5.5: Incorrect inpainting results for the PLANE II testcase. Note that for the first
example the defective region is not aligned with the plane. This is due to a mutating mask
which results from a wrong foreground detection. [The input images are taken from the
movie Jurassic Park III, 2001 c© Universal Pictures]

Testcase: WATER

Frame Size 640× 272

Number of Frames 45

ρs 7

ρd 2

λ 0.5

fw 1.0

tFG 0.3

FG_FILTERING true

MASK_MOVEMENT false

Table 5.7: Testcase WATER: Information and parameter settings.

strongly. Figure 5.8 shows results for this sequence.
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(a) Testcase PLANE II: Input frames.

(b) Testcase PLANE II: Incorrectly reconstructed output frames.

Figure 5.6: Incorrect inpainting results for the PLANE II testcase. Note that the rock
in the water is not reconstructed consistently due to the lack of fitting source patches in
the current frame. [The input images are taken from the movie Jurassic Park III, 2001 c©
Universal Pictures]

5.7 Testcase: CAR

This example shows a static view of a street with a car driving from the right to the

left. The car approaches the camera and therefore the target region grows bigger during

the sequence. Since the camera is static, the flow vectors can be used to identify the

foreground accurately. This is necessary, because the car and the background have similar

colors. Due to the static scenario, the remapping procedure could be avoided and the

reconstructed previous frame could be used directly. Since we do not want to assume a

certain camera motion and therefore do not provide this information for our algorithm,

we use the remapping process as usual. The parameter list is shown in Table 5.8.

Example frames can be seen in Figure 5.9. Since the background is static, we set

λ = 0.75 to give more weight to the previous frame during reconstruction.
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Figure 5.7: Example inpainting result for the PLANE II testcase. [The input images are
taken from the movie Jurassic Park III, 2001 c© Universal Pictures]
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Figure 5.8: Inpainting results for the WATER testcase. Due to the constantly changing
background, inconsistencies in the inpainting results due not affect the overall result as
much as in other sequences. [The input images are taken from the movie Jaws, 1975 c©
Universal Pictures]
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Figure 5.9: Inpainting results for the CAR testcase. The static scene enables very accurate
inpainting results. Note that the street borders have been reconstructed correctly in both
cases. [The input images are taken from the movie The Bourne Identity, 2002 c© Universal
Pictures]
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Testcase: CAR

Frame Size 640× 272

Number of Frames 58

ρs 3

ρd 2

λ 0.75

fw 1.0

tFG 0.75

FG_FILTERING true

MASK_MOVEMENT true

Table 5.8: Testcase CAR: Information and parameter settings.

Testcase: EXPLOSION

Frame Size 656× 272

Number of Frames 30

ρs 3

ρd 2

λ 0.50

fw 1.0

tFG 0.50

FG_FILTERING true

MASK_MOVEMENT false

Table 5.9: Testcase EXPLOSION: Information and parameter settings.

5.8 Testcase: EXPLOSION

This scene shows a person jumping from a balcony while there is an explosion in the

background. Since parts of the person are reflected in a nearby window and therefore

visible, we use two target regions at once. Our tracking algorithm uses all pixels within

the masked area for foreground segmentation and does not require a connected target

region. Therefore, we do not have to make any modifications in order to process this

example. The parameter settings are listed in Table 5.9.

Even though there is a lot of motion going on in the background due to swirling

wreckage, the algorithm manages to reconstruct the background in a plausible way. Similar

to the WATER testcase, inconsistently matched patches due to wrong flow vectors are less

severe, because of the fire-like background scenario and the performed blending operation.

Also, tracking of the target region is succeeded for both cases. Example results can be

seen in Figure 5.10.
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Figure 5.10: Inpainting results for the EXPLOSION testcase. Note that both target
regions, the person itself and the reflection in the window, have been reconstructed in a
plausible way. [The input images are taken from the movie Hitman, 2007 c© 20th Century
Fox]



5.9. Testcase: NOISE 75

Testcase: NOISE

Frame Size 512× 384

Number of Frames 51

ρs 3

ρd 2

λ 0.5

fw unused

tFG unused

FG_FILTERING unused

MASK_MOVEMENT unused

Table 5.10: Testcase NOISE: Information and parameter settings.

5.9 Testcase: NOISE

This is an experimental testcase, in order to determine if this approach can be used to

reconstruct corrupted frames rather than removing objects. We simulate a hair on the

camera lens, by using a static target region throughout the whole sequence. Therefore, no

tracking is necessary. The parameter setup can be taken from Table 5.10.

Since we do not want to remove a specific object, but reconstruct an arbitrary part of

the scene, the inpainting procedure becomes more complicated. The target region often

runs across several objects which have to be correctly estimated simultaneously. Example

results can be seen in Figure 5.11. The overall result looks plausible in most of the frames,

but shows some flickering artifacts at various positions throughout the sequence.

5.10 Performance Evaluation

In order to evaluate the performance of our approach, we also measure the processing time

for each of the test sequences. Although we have computed several outputs using different

parameters (especially ρs, tFG and fw) for each testcase, we only include the performance

results belonging to the parameters listed in the previous sections in our final evaluation.

The detailed performance evaluation results are listed in Table 5.11.

As we can see, the average processing time per frame varies strongly. This is because of

the different sizes of the video sequences, the different sizes of the foreground objects and

the variations of the patch size ρs. Generally, for a certain sequence choosing a small patch

size of 3 or 5 pixels yields better results than using larger values, while the computational

time is increased. This is due to the fact that smaller patches imply a larger amount

of iterations, since during each iteration step only a small part of the target region is
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(a) Testcase NOISE: Input frames with constant target region superimposed.

(b) Testcase NOISE: Output frames.

Figure 5.11: Inpainting results for the experimental NOISE testcase. The reconstruction
contains inconsistencies, for example on the golden badge on the mans shirt and on the
right arm. Note that our algorithm was not explicitly designed to handle such cases. [The
input images are taken from the TV show King of Queens, 1998-2007 c© Sony Pictures
Television Distribution]

filled. When ρs is increased beyond 11 pixels, the performance drops again, because the

evaluation of the SSD between the patches takes longer than the performance gained by

a faster target region filling. For our examples (images as well as videos), the usage of

patch sizes larger than 11 pixels is not recommended, since the reconstruction of smaller

structures may get inaccurate. Though, performing exemplar-based inpainting on larger

images than 640× 480 pixels might benefit from larger patch sizes.

The evaluation reveals that the bottleneck for video inpainting is the inpainting pro-

cedure itself, which takes up 90.7% of the computational time in average. The necessary

preprocessing steps, like optical flow computation and image remapping do not affect the
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Performance Evaluation

Testcase # frames total time time/frame IP time/frame ρs/ρd
PIRATES 43 856.6 19.92 19.25 3/2

PIRATES II 47 189.9 4.04 3.40 5/2

PLANE 54 502.2 9.30 8.22 3/2

PLANE II 140 1416.8 10.12 9.08 5/2

WATER 45 1750.6 38.91 38.21 7/2

CAR 58 215.8 3.72 3.00 3/2

EXPLOSION 30 649.2 21.64 20.93 3/2

NOISE 51 250.4 4.91 3.67 3/2

Table 5.11: Performance evaluation for our testcases (all time values are in seconds). IP
time/frame denotes the average time for the inpainting process, without flow computation
and remapping. Note that inpainting alone takes 90.7% of the processing time in average.

overall performance significantly. With computing times of several seconds per image, we

are far from real-time computation. Even though also high-end graphics adapters avail-

able for private customers (e.g. nVidia GeForce GTX680 with 1536 CUDA cores) might

not be able to perform video inpainting in real-time, the performance will be increased

significantly. A short evaluation using a nVidia GeForce GTX580 with 512 CUDA cores

(compared to our nVidia GeForce GTX560 with 336 CUDA cores) and a higher core and

memory frequency already revealed performance increases of up to 50%.

While there are existing video inpainting approaches available which report inpainting

times of less than 1 second per frame ([STJN09]), this has to be viewed in context with the

video sequences used. Usually, the frame size is about 320×240 pixels in these evaluations,

while we use a frame size of at least 512 × 384 pixels. As already mentioned in Section

4.2, the complexity of exemplar-based inpainting is quadratic compared to the image size.

Reducing the frame size of the CAR testcase to 320 × 136 pixels, reduces the average

processing time per frame from 3.72 to 0.59 seconds (3.00 to 0.27 seconds for inpainting

only), showing similar performance than state-of-the-art approaches.

To conclude our work, a brief discussion of our algorithm and the produced results

is given in the following section, where we also want to introduce some ideas for further

improvements.
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Conclusion

We have presented a novel video inpainting approach, which extends exemplar-based in-

painting by using the optical flow between consecutive frames as sole clue. Our algorithm

is capable of removing a user specified target region in the first frame throughout the whole

sequence automatically. The unwanted part of the sequence is tracked using an optical

flow based tracking algorithm, which is fast and sufficient for most cases. We conquer the

issue of maintaining the temporal consistency during the inpainting process by extending

the patch matching procedure from the current frame to a volume consisting of the current

and the remapped previous frame. The remapping is hereby achieved using the modified

flow vectors between the previous and the current frame.

Evaluation showed that our system is capable of handling different kinds of video

sequences under unconstrained camera motions. Since we do not make any assumptions

about the movement of the foreground objects or the camera, our method is more flexible

than previous approaches. However, since we use the optical flow as only additional

information compared to simple frame by frame inpainting, the quality of our results

depends highly on the accuracy of the flow field. If the flow vectors cannot be estimated

correctly, our system fails to create time consistent inpainting results or is unable to track

the target region. Since most of the video inpainting systems available also use some sort

of flow estimation, this restriction applies to other approaches as well.

One point that has to be discussed is the impossibility of handling occlusions of the

foreground object. Since we do not use a tracking algorithm which learns the object’s

appearance, it cannot be relocated once it is partially or completely occluded in one

frame. This limits the applicability to scenes where the object is visible the whole time.

The usage of a state-of-the-art tracking system might solve this issue, but it has to be
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assured that the whole object is contained within the target region in every frame. Since

flow based tracking is sufficient for many cases, a combination of a learning algorithm for

appearance based tracking and the optical flow might be a good solution for more complex

inpainting problems. If occlusion handling is not necessary due to the application, one way

to make the foreground segmentation more robust is to use a state-of-the-art segmentation

algorithm (e.g. the grab cut algorithm [RKB04]), where our proposed foreground detection

method could be used as initialization.

The biggest drawback of our approach is the usage of only the current frame as in-

painting source. While this procedure allows us to perform fast inpainting regardless of

the number of frames in the sequence, there is the possibility that the current frame does

not provide source patches to complete the hole in a consistent manner. This happens

when the background covered by the target region is unique and therefore, no similar

patches exist in the source region. In this case, no accurate inpainting result is possible.

Other approaches solve this problem by using the whole sequence as source region. This

results in an increased computational complexity but generally delivers more accurate re-

sults. Another possibility of decreasing the probability of false reconstructions is to use a

constant number of frames as source region, instead of only the current frame. This would

result in a longer inpainting time, which would still be independent from the total video

length.

An issue which is characteristic for inpainting in general, is the high computational

complexity. As seen in Section 5.10, real-time video inpainting even for medium sized

sequences is out of reach for midrange hardware, how it is common in home computers.

Nevertheless, especially when performing video inpainting on the GPU, the achieved per-

formance increase by using upper class graphics cards is immensely. Since the enormous

computational power increase of modern graphics cards in recent years and the ongo-

ing development in this sector, affordable hardware which enables sufficiently fast video

inpainting, will definitely be available for a reasonable price in the near future.

To sum up, the key to successful video inpainting lies in the understanding of the

spatio-temporal dependencies, which are embedded in the sequence. Current optical flow

algorithms provide a good estimate, but are often to imprecise to provide the necessary

information. In order to increase the accuracy of the inpainting results, the focus lies on

the refinement of optical flow estimation. If it is possible to generate better flow fields,

video inpainting will certainly improve as well.
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[KSE+03] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut tex-

tures: image and video synthesis using graph cuts. ACM Transactions

on Graphics, 22(3):277–286, 07 2003.

[LHP80] H.C. Longuet-Higgins and K. Prazdny. The interpretation of a moving

retinal image. Proceedings of the Royal Society B: Biological Sciences,

208:385–397, 1980.

[LK81] B.D. Lucas and T. Kanade. An iterative image registration technique

with an application to stereo vision. In Proceedings of the 7th inter-

national joint conference on Artificial intelligence, pages 674–679, San

Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[LMG12] O. Le Meur and C. Guillemot. Super-resolution-based inpainting. Pro-

ceedings of the European Conference on Computer Vision, 10 2012.

[Mas02] S. Masnou. Disocclusion: a variational approach using level lines. In

IEEE Transactions on Image Processing, pages 68–76, 02 2002.



BIBLIOGRAPHY 85

[MM98] S. Masnou and J.M. Morel. Level lines based disocclusion. In Proceedings

of the International Conference on Image Processing, pages 259–263, 10

1998.

[NMS93] M. Nitzberg, D. Mumford, and T. Shiota. Filtering, Segmentation, and

Depth. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1993.

[NN05] F. Nielsen and R. Nock. Clickremoval: interactive pinpoint image object

removal. In Proceedings of the 13th annual ACM international confer-

ence on Multimedia, pages 315–318, New York, NY, USA, 2005. ACM.

[PSB07] K.A. Patwardhan, G. Sapiro, and M. Bertalmio. Video inpainting under

constrained camera motion. IEEE Transactions on Image Processing,

16(2):545–553, 02 2007.

[RKB04] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive fore-

ground extraction using iterated graph cuts. ACM Transactions on

Graphics, 23(3):309–314, 08 2004.

[ROF92] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation noise re-

moval algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 1992.

[STJN09] T.K. Shih, N.C. Tang, and H. Jenq-Neng. Exemplar-based video in-

painting without ghost shadow artifacts by maintaining temporal conti-

nuity. IEEE Transactions on Circuits and Systems for Video Technology,

19(3):347–360, 03 2009.

[SYJS05] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion with struc-

ture propagation. ACM Transactions on Graphics, 24(3):861–868, 07

2005.

[VP86] A. Verri and T. Poggio. Motion Field and Optical Flow: Qualitative

Properties. AI memo. Defense Technical Information Center, 1986.

[Wer12] M. Werlberger. Convex Approaches for High Performance Video Pro-

cessing. PhD thesis, Institute for Computer Graphics and Vision, Graz

University of Technology, Graz, Austria, 06 2012.

[WL00] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured

vector quantization. In Proceedings of the 27th annual conference on



86

Computer graphics and interactive techniques, pages 479–488, New York,

NY, USA, 2000. ACM.

[WSI04] Y. Wexler, E. Shechtman, and M. Irani. Space-time video completion.

In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, volume 1, pages 120–127, 06 2004.

[WTP+09] M. Werlberger, W. Trobin, T. Pock, A. Wendel, D. Cremers, and

H. Bischof. Anisotropic Huber-L1 optical flow. In Proceedings of the

British Machine Vision Conference, London, UK, 09 2009.

[ZPB07] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime

tv-l1 optical flow. In Pattern Recognition (Proc. DAGM), pages 214–223,

Heidelberg, Germany, 2007.


	Introduction
	Motivation
	Object Removal Through Inpainting

	Exemplar-based Inpainting
	Overview
	Algorithm
	Priority Computation
	Nearest Neighbor Search
	Update Images

	Modifications
	Results

	Performance Boost
	Bottlenecks
	Modified Nearest Neighbor Search
	Using The GPU
	GPU Implementation

	Video Inpainting
	From Image To Video
	Related Work
	Problem Statement
	Optical Flow
	Volume Patch Matching For Time Consistent Inpainting
	Tracking Of The Target Region

	Evaluation
	Test Environment
	Testcase: PIRATES
	Testcase: PIRATES II
	Testcase: PLANE
	Testcase: PLANE II
	Testcase: WATER
	Testcase: CAR
	Testcase: EXPLOSION
	Testcase: NOISE
	Performance Evaluation

	Conclusion
	Bibliography

