
Liquid Diagrams:

A Suite of Information Visualisation Gadgets

Dieter Ladenhauf

Liquid Diagrams:

A Suite of Information Visualisation Gadgets

Master’s Thesis

at

Graz University of Technology

submitted by

Dieter Ladenhauf

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

17th January 2012

© Copyright 2012 by Dieter Ladenhauf

Advisor: Ao.Univ.-Prof. Dr. Keith Andrews

Liquid Diagrams:

Eine Sammlung von Applikationen zur Informationsvisualisierung

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Dieter Ladenhauf

Institut für Informationssysteme und Computer Medien (IICM),
Technische Universität Graz

A-8010 Graz

17. Januar 2012

© Copyright 2012, Dieter Ladenhauf

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Ao.Univ.-Prof. Dr. Keith Andrews

Abstract

The field of information visualisation is no longer only a discipline for academics, but also increas-
ingly for a more general audience, who want to create computer-based visualisations of their own data.
Liquid Diagrams addresses this wider audience by providing twelve highly interactive visualisations,
which can be exported using high-quality raster (PNG) and vector graphics (SVG).

This thesis gives an overview of existing information visualisation solutions. In addition, it describes
the modifications and improvements made to the Liquid Diagrams framework and outlines version 2.0,
its current state. Enhancements over version 1.0 include extending the user interface, improving perfor-
mance, introducing 3d effects, and refactoring the architecture of the framework. Two new variants, a
standalone version and a gadget version using cookies, were also created.

Liquid Diagrams 2.0 contains the visualisations area chart, bar chart, line chart, pie chart, paral-
lel coordinates, star plot, bat’s wing diagram, polar area diagram, heatmap (choropleth map), treemap,
Voronoi treemap, and similarity map. The similarity map uses a force-directed placement algorithm to
place similar data entities close to one another. A special focus of this thesis is on 3d extensions to the
pie chart and heatmap gadgets.

Kurzfassung

Das Fachgebiet der Informationsvisualisierung ist mittlerweile nicht nur allein eine Disziplin von
Akademikern, sondern auch von einem breiten Publikum, das daran interessiert ist computerbasierte
Visualisierungen aus den eigenen Daten zu erstellen. Liquid Diagrams adressiert dieses breite Publikum
mittels zwölf in hohem Maße interaktiven Visualisierungen, die als qualitiv hochwertige Rastergrafiken
(PNG) und als Vektorgrafiken (SVG) exportiert werden können.

Die vorliegende Arbeit gibt einen Überblick über bereits existierende Lösungen der Informationsvi-
sualisierung. Zusätzlich werden die Veränderungen und Verbesserungen, die im Liquid Diagrams Fra-
mework gemacht wurden beschrieben und Version 2.0, der aktuelle Stand skizziert. Verbesserungen im
Vergleich zu Version 1.0 beinhalten die Erweiterung des Userinterfaces, die Optimierung der Effizienz,
die Einführung von 3-D Effekten und die Überarbeitung der Architektur des Frameworks. Zwei neue Va-
rianten, eine eigenständige Version und eine Gadget Version, die Cookies verwendet wurden zusätzlich
erstellt.

Liquid Diagrams 2.0 enthält die Visualisierungen Flächen Diagramm, Balken Diagramm, Linien
Diagramm, Torten Diagramm, Paralelle Koordinaten, Star Plot, Bat’s Wing Diagramm, Polar Area Dia-
gramm, Heatmap (Choropleth Map), Treemap, Voronoi Treemap und Similarity Map. Die Similarity
Map benutzt einen Force-Directed Placement Algorithmus, um ähnliche Datenelemente dicht beieinan-
der zu platzieren. Ein spezieller Fokus dieser Arbeit liegt auf den 3-D Erweiterungen des Torten Dia-
gramms und der Heatmap.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally
or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommene
Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Contents

Contents ii

List of Figures v

List of Tables vii

Acknowledgements ix

Credits xi

1 Introduction 1

2 Information Visualisation 3
2.1 Origins and Historical Examples . 3
2.2 Definition . 5
2.3 Visualisations . 7

3 Technologies 21
3.1 HTML and AJAX . 21
3.2 Adobe Flash . 23
3.3 Adobe Flex . 23
3.4 Adobe Integrated Runtime (AIR) . 25
3.5 Microsoft Silverlight . 25
3.6 Java . 26
3.7 JavaFX . 26
3.8 Scalable Vector Graphics (SVG) . 27

4 Information Visualisation Software and Tools 31
4.1 Online Services . 31
4.2 Standalone Software . 36
4.3 Libraries and Toolkits . 40

5 Liquid Diagrams Framework Version 2.0 45
5.1 Data Formats . 45
5.2 LD Gadget Version . 48
5.3 LD Standalone Version . 50
5.4 LD Cookie Version . 56
5.5 Components Shared Between Visualisations . 58
5.6 3D Functionality . 66

i

6 Liquid Diagrams Visualisations 75
6.1 Line Chart . 75

6.2 Bar Chart . 77

6.3 Pie Chart . 77

6.4 Area Chart . 79

6.5 Star Plot . 79

6.6 Parallel Coordinates . 79

6.7 Bat’s Wing Diagram . 82

6.8 Polar Area Diagram . 82

6.9 Heatmap (Choropleth Map) . 84

6.10 Treemap . 93

6.11 Voronoi Treemap . 93

6.12 Similarity Map . 93

7 Changes to the Framework 97
7.1 Structure . 97

7.2 Fonts . 100

8 Selected Details of the Implementation 105
8.1 General Structure and Initialisation Process . 105

8.2 Cookies and Project Files . 106

8.3 3D Functionality . 112

9 Outlook And Future Work 123

10 Concluding Remarks 125

Bibliography 135

ii

List of Figures

1.1 Plot of Anscombe’s Quartet . 2

2.1 Cholera Map Created by John Snow . 4

2.2 Diagram of Napoleon’s Russian Campaign . 4

2.3 Spence’s Process of Information Visualisation . 5

2.4 Preattentive Processing . 6

2.5 Creation Process of Visualisations . 6

2.6 Examples of Line Charts . 8

2.7 Examples of Bar Charts . 8

2.8 Examples of Pie Charts . 9

2.9 Examples of Area Charts . 10

2.10 Examples of Star Plots . 11

2.11 Example of Parallel Coordinates . 12

2.12 Example of a Scatterplot . 13

2.13 Florence Nightingale’s Bat’s Wing Diagram . 14

2.14 Polar Area Diagrams . 16

2.15 Early Examples of Choropleth Maps . 17

2.16 Early Example of a Treemap . 18

2.17 InfoSky Visual Explorer . 19

2.18 Example of a Voronoi Treemap . 20

3.1 Plugin Statistics . 22

3.2 A Simple Adobe Flex Application . 24

3.3 Architecture of Adobe AIR . 25

3.4 Architecture of the Java Platform . 26

3.5 Scalable Vector Graphics (SVG) Example . 29

4.1 Examples of Visualisations in Many Eyes . 32

4.2 OECD Explorer . 33

4.3 Gapminder World . 34

4.4 Example of Google Image Charts . 35

4.5 Examples of Visualisations Created with Tableau . 37

4.6 Statistics eXplorer Desktop Version . 38

4.7 Examples of Visualisations Created with Microsoft Excel and OpenOffice Calc 39

iii

4.8 Examples of Visualisations Created with Protovis . 41
4.9 Examples of Visualisations Created with D3 . 42
4.10 GAV Flash Toolkit . 42
4.11 Examples of Visualisations Created with the JavaScript InfoVis Toolkit 43
4.12 A Stock Chart in amCharts . 44
4.13 Examples of Visualisations Created with Axiis . 44

5.1 Standalone Main Window with Open Area Chart Window 51
5.2 Old Options Panel . 59
5.3 New Options Panel with Vertical Tabs . 59
5.4 Import, Export and Print Buttons . 60
5.5 Slider Component . 63
5.6 Colour Picker . 65
5.7 CSV Data Import Dialogue . 66
5.8 ODS and XLS Data Import Dialogue . 67
5.9 About Panel . 68
5.10 3D Options . 69
5.11 Three-Dimensional Pie Chart . 71
5.12 Extruded Three-Dimensional Pie Chart . 71
5.13 Animation Sequence of Rotation Effect . 72
5.14 Animation Sequence of Extrusion Effect . 73
5.15 Three-Dimensional Heatmap . 74
5.16 Prism Map . 74

6.1 Liquid Diagrams Line Chart . 76
6.2 Liquid Diagrams Bar Chart . 77
6.3 Liquid Diagrams Pie Chart . 78
6.4 Liquid Diagrams Area Chart . 80
6.5 Liquid Diagrams Star Plot . 81
6.6 Liquid Diagrams Parallel Coordinates . 82
6.7 Liquid Diagrams Bat’s Wing Diagram . 83
6.8 Liquid Diagrams Polar Area Diagram . 84
6.9 Construction Process of Heatmap . 85
6.10 Liquid Diagrams Heatmap . 86
6.11 Categories Example . 88
6.12 Heatmap Gadget with Tree Component . 89
6.13 Example of Old Heatmap Drawing Procedure . 91
6.14 Transformation of Paths . 92
6.15 Liquid Diagrams Treemap . 94
6.16 Liquid Diagrams Voronoi Treemap . 95
6.17 Liquid Diagrams Similarity Map . 96

7.1 Initial Project Structure of the Liquid Diagrams Framework 98
7.2 Encapsulating the Initialisation Process with the Help of the Strategy Pattern 99

iv

7.3 General Project Structure of the Liquid Diagrams Framework 101

7.4 Font Component . 102

7.5 Pie Chart Visualisation with Applied Font Options . 103

8.1 Legend of UML Class Diagrams . 106

8.2 Class Diagram Showing the Initialisation Architecture 110

8.3 Class Diagram Showing the Cookies and Project Files Architecture 113

8.4 Class Diagram showing the 3D Effect Architecture . 114

8.5 Class Diagram showing the 3D IPath Architecture . 116

8.6 Rotation of a Object . 119

8.7 One Point Perspective Projection . 120

v

vi

List of Tables

1.1 Anscombe’s Quartet . 2

5.1 Data Formats of the Framework . 46

5.2 LD Chart Data Format . 46

5.3 LD Pie Data Format . 47

5.4 LD Nightingale Data Format . 47

5.5 LD Multidimensional Data Format . 47

5.6 LD Hierarchical Data Format . 48

5.7 LD One-Column Geo Data Format . 49

5.8 LD Two-Column Geo Data Format . 49

5.9 Options Panel Menu Component Tabs . 58

6.1 Axes and Legend Distribution . 76

6.2 Example of Informations and Categories . 87

6.3 Available Maps in the Heatmap Gadget . 91

vii

viii

Acknowledgements

First of all, I want to thank my advisor Keith Andrews for giving me the opportunity to work on such an
interesting project. In addition, I want to thank him for correcting the draft versions of this thesis.

I wish to thank my parents Alois Ladenhauf and Waltraud Sommer for constantly supporting me
during my study. Without their support, this thesis would not exist. This is why I want to dedicate this
work to them. Additionally, I want to thank:

• my sister Eva,

• my girlfriend Jenny,

• and my friends Admir, Johannes, Markus, Michi, Michi, Susi, and Volli

for their support. Last but not least, I wish to thank my friends Florian, Christian, Patrick, and
Thomas from Graz University of Technology for their help and presence for successfully completing
countless courses at the university.

Thank You.

Dieter Ladenhauf
Graz, Austria, January 2012

ix

x

Credits

I would like to thank the following individuals and organisations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews, 2011c].

• The photograph in Figure 2.13a is used with kind permission of Keith Andrews.

• Figure 6.9 is used with kind permission of Martin Lessacher [2010].

The following are used under the terms of the ACM Copyright Notice (see page xi):

• Figures 2.16a and 2.16b are extracted from the Journal ACM Transactions on Graphics, volume
11 [Shneiderman, 1992].

• Figure 8.7 is adapted from Carlbom and Paciorek [1979], published in ACM Computing Surveys,
volume 11.

ACM Copyright Notice

Copyright © by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permis-
sions@acm.org.

For further information, see the ACM Copyright Policy.

xi

xii

Chapter 1

Introduction

“Data expands to fill the space available for storage”. This corollary of Parkinson’s law (“Work expands
so as to fill the time available for its completion” [Parkinson, 1955]) is indicative of the massive amount
of data produced every day. According to Hilbert and López [2011], the amount of data created in the
world in 2000 was 54.5 exabytes (54.5 * 1018 bytes). In 2007 on the contrary, it increased to 295 ex-
abytes. This amount could be stored using 404 billion CD-ROMs. Piling up the CD-ROMs would result
in a stack with a height of 1 1

4 times the distance from the earth to the moon.

This explosion of data makes the derivation of information a highly difficult task. The field of infor-
mation visualisation attempts to simplify this procedure by taking the human visual perception system
into account. Under the right conditions, a visual representation of data can be more meaningful than the
data contained within a table. Tufte [2001, pages 13–14] uses Anscombe’s quartet [Anscombe, 1973]
(shown in Table 1.1) to emphasise this statement. The data of all four datasets in Anscombe’s quartet
have equal statistical properties (mean and standard deviation), but if they are plotted (seen in Figure 1.1),
an entirely different perception is established.

The use of the field of information visualisation is no longer limited to academics, due to the fact
that the interest of the general public is constantly expanding. Nowadays, people want to visualise their
own data and share it with others, in order to discuss and collaboratively explore the data. Therefore,
appropriate visualisation tools have to be developed. Liquid Diagrams aims to satisfy some of this need
by providing twelve highly interactive visualisations. The underlying Liquid Diagrams framework was
implemented by Martin Lessacher [2009] in 2009 and extended in 2010 [Andrews and Lessacher, 2010;
Lessacher, 2010] under the supervision of Keith Andrews.

This thesis is about the further development of the Liquid Diagrams framework. Chapter 2 de-
scribes the field of information visualisation and gives examples of its history and its corresponding
visualisations. Currently existing information visualisation solutions are discussed in Chapter 4. Here, a
distinction between online services, standalone software, and libraries and toolkits is made. The focus of
Chapter 3 is on technologies such as HTML, JavaScript, Flash, and Java which can be used to build infor-
mation visualisation systems. Chapter 5 describes version 2.0, the current state of the Liquid Diagrams
framework and points out improvements and modifications made during the present work. The visual-
isations of the framework are introduced in Chapter 6 and specific changes made to the framework are
discussed in Chapter 7. The technical aspect of the implementation is explained in Chapter 8, Chapter 9
gives an outlook and lists possible future extensions and finally, Chapter 10 concludes this thesis.

1

2 1. Introduction

Statistical Properties I II III IV
X Y X Y X Y X Y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.5

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Mean 9 7.50 9 7.50 9 7.50 9 7.50
Standard Deviation 10 2.03 10 2.03 10 2.03 10 2.03

Table 1.1: Anscombe’s quartet [Anscombe, 1973]. The four datasets have identical statistical prop-
erties, mean and standard deviation. How they differ is only revealed by plotting the
data, as seen in Figure 1.1.

Figure 1.1: A plot of Anscombe’s quartet, shown in Table 1.1. Here, the difference between the
four datasets can be easily seen. This image is extracted from Wikimedia Commons
[Wikipedia, 2011e].

Chapter 2

Information Visualisation

“ Graphics reveal data. Indeed graphics can be more precise and revealing than conven-
tional statistical computations. ”

[Edward R. Tufte, The Visual Display of Quantitative Information, 2001.]

2.1 Origins and Historical Examples

According to Tufte [2001, page 32], one of the inventors of modern graphical designs is the political
economist William Playfair. Many modern visualisations such as line charts (see Section 2.3.1), bar
charts (discussed in Section 2.3.2), and pie charts (see Section 2.3.3) date back to Playfair [1786, 1801].
Florence Nightingale, a British nurse invented the bat’s wing diagram (introduced in Section 2.3.8), and
polar area diagrams (see Section 2.3.9) in order to visualise how death rates during the Crimean War
(1853–1856) were reduced because of improvements in hygiene.

A popular historical example is the cholera map by John Snow, shown in Figure 2.1. According to
Tufte [1997, pages 27–37], an outbreak of cholera happened in the Broad Street area of central London
on August 31, 1854. Dr. John Snow was able to discover the cause of the outbreak, a water pump in
Broad Street and showed that cholera is in fact a disease transmitted by water. Snow created a dot map
of central London, displaying each individual death. Tufte [1997] states that Snow was able to identify
the cause of the outbreak using this map. However, more recent research has found that Snow’s map was
drawn after the cause of the outbreak was determined [Brody et al., 2000].

Tufte [2001, pages 40–41] states that Charles Joseph Minard showed the first graphic with added
spatial dimensions such as time and temperature. In 1896 Minard visualised the march of Napoleon’s
Russian campaign of 1812, using the graphic shown in Figure 2.2. It displays the fate of Napoleon’s
army, being decimated from 422,000 to 10,000 solders. According to Tufte [2001, page 40], this graphic
may be the best statistical diagram ever drawn.

Jacques Bertin tried to identify all graphical elements which can be used to express data in his book
“Semiology of Graphics” Bertin [1967, 1983]. Semiology, also known as semiotics is the study of
symbols and their relations. Bertin also built a mechanical matrix permutation device called Domino.
He showed that the understanding of a matrix can be improved dramatically by permuting its rows and
columns [Henry, 2008, page 78].

3

4 2. Information Visualisation

Figure 2.1: John Snow plotted the deaths of the cholera outbreak in London in 1854 on a map.
Each death is expressed as a small black bar. This image is extracted from Wikimedia
Commons [Wikipedia, 2011b].

Figure 2.2: Minard’s map displaying the decimation of solders in Napoleon’s Russian campaign in
1812. The amount of solders is represented by the widths of the coloured areas. The
march to Moscow is expressed with a grey shading and the return path of the rest of the
army is shaded black. At the bottom, a line indicates the fall of the temperature after
the army left Moscow. This image is taken from Wikimedia Commons [Wikipedia,
2011c].

2.2. Definition 5

Data

Germany

Bayern

Niedersachsen

Baden-Württemberg Nordrhein-Westfalen Brandenburg

Hessen

Sachsen-Anhalt

Rheinland-Pfalz

Sachsen

Thüringen

Saarland

Austria

Niederösterreich Steiermark

Tirol

Oberösterreich

Kärnten

Salzburg

Switzerland

Bern

Valais

Vaud

Tessin

Uri

Information Visualisation

Ah HA!!
We look at
that picture

And gain
insight

Figure 2.3: Spence’s process of information visualisation. This figure is adapted from Spence
[2007, page 5].

2.2 Definition

[Spence, 2007, page 5] defines the term “visualisation” by citing a dictionary and concludes that visual-
isation is a cognitive activity human beings engage in, following the approach of Ware [2004]. Spence
[2007, page 5] emphasises that this activity has nothing to do with computers and need not involve a vi-
sual experience, because of the presence of other sensory influences such as sound. Nevertheless, Ward
et al. [2010, page 3] states that sight is one of the key senses of information understanding. The activity
of information visualisation is explained by Spence [2007, page 5] using Figure 2.3. It illustrates the
moment when a graphical explanation causes a “Ah HA!” reaction, describing the act of finally under-
standing the visual representation. Mazza [2009, page 8] states that the term “Information Visualisation”
was coined at the end of the 1980s by researchers at Xerox PARC, and was intended to distinguish the
new field of creating visual solutions by considering the human cognition.

According to Ware [2004, page 2], the role of visualisations is important in cognitive systems. The
human brain has the remarkable ability to provide an adaptive pattern-finding mechanism, coupled with
a flexible decision-making apparatus. It is accompanied by almost unlimited information resources such
as the World Wide Web, provided by computer systems. Interactive visualisations play an important
role in building the interface between those two individual systems. Ware [2004, page 2] states that the
performance of the entire system can be enhanced by improving these interfaces. A simplified model of
the human visual perception system, using three stages, is described by Ware [2004, pages 20–22]:

Stage 1: Billions of neurons in the eye and the primary visual cortex at the back of the brain simultane-
ously extract features of the visual field. This are features such as orientation, colour, texture, and
movement.

Stage 2: Here, the visual field is divided into regions and simple patterns such as regions sharing the same
texture or colour. This process involves both working memory and long-term memory and is
performed using slow serial processing.

Stage 3: In this stage, only a few objects at a time are held in the visual working memory. A sequence of
visual queries can be triggered in order to be answered using visual search strategies. An example
for this procedure would be the task of finding a route on a map. Here, the a search for thick,
connected lines, representing streets will be triggered.

According to Ware [2004, pages 149–154], certain simple shapes or colours can be identified in a
short amount of time because they “pop out” from their environment. The mechanism behind this effect

6 2. Information Visualisation

890546850695068182901280301067
806876097650978650961200960876
549675968538596854996885976191
899271973054860950586597897970

(a) To count the number of occurrences of the digit
3, it is necessary to scan all lines sequentially.

890546850695068182901280301067
806876097650978650961200960876
549675968538596854996885976191
899271973054860950586597897970

(b) Here, the 3s can be found immediately by notic-
ing the red digits. Colour can be preattentively
processed.

Figure 2.4: An example of preattentive processing, adapted from Ware [2004, page 150].

Raw
data

Selection Encoding Presentation

Viewer

Author

(a) The creation of an image in the pre-computer age.

Raw
data

Selection Encoding Presentation

Viewer

Visualisation tool designer

(b) The creation and use of an interactive visualisation
system.

Figure 2.5: The creation process of a visualisation in the (a) pre-computer and (b) post-computer
ages, adapted from Spence [2007].

is called preattentive processing. It specifies which visual elements immediately attract one’s attention.
Figure 2.4 illustrates preattentive processing. In order to find all 3s in Figure 2.4a, it is necessary to
sequentially scan all lines, whereas the 3s can be immediately identified in Figure 2.4b, because here,
only the red digits have to be scanned. These “pop out” features, which are preattentively processed, fall
into the categories colour, form, motion, and spatial position.

Spence [2007, page 12] argues that information visualisation is related to the field of scientific vi-
sualisation, which visualises data related to physical entities such as air flowing around the wing of an
aeroplane. Information visualisation on the contrary, is based on abstract information structures, and
therefore appropriate visualisations have to be invented [Andrews, 2011b]. There is no natural geometry
inherent in the data.

According to Spence [2005], the creation process of a visualisation has changed significantly in re-
cent years. This process is visualised in Figure 2.5. In the pre-computer age, an author created an image,
performing the tasks selection, representation, and presentation of content. The resulting image was then
presented to a viewer, an entirely different person. Now on the contrary, powerful computers enable the
creation of interactive visualisation systems, controllable by users. The user is here in some extent the
author, using interaction techniques to modify the resulting presentation. Andrews [2011b] states that
interaction support is just as important as the underlying visual representation.

Seven basic tasks of user interaction in information visualisation systems are identified by Ben Shnei-
derman [1996]:

2.3. Visualisations 7

• Overview: Gain an overview of the entire collection.

• Zoom: Zoom in on items of interest.

• Filter: Filter out uninteresting items.

• Details-on-demand: Select an item or group and get details when needed.

• Relate: View relationships among items.

• History: Keep a history of actions to support undo, replay, and progressive refinement.

• Extract: Allow extraction of sub-collections and of the query parameters.

The first four of them (“Overview first, zoom and filter, then details-on-demand”) are known as
Shneiderman’s “Visual Information Seeking Mantra”.

Tufte [2001, page 51] lists several principles of graphical excellence, a set of guidelines for creating
effective graphical representations. According to Tufte, a good graphic is well-designed, represents
interesting data, and combines substance, statistics, and design. It is an efficient, precise, and clear
representation of a complex idea and tells the truth about the data. “Graphical excellence is that which
gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest
space” [Tufte, 2001, page 51].

2.3 Visualisations

There are many different types of visualisations. For example, Steele and Iliinsky [2011, pages 4–7] make
a distinction between the terms infographics and data visualisations (or information visualisations):

• An infographic is a manually drawn, aesthetically rich visual representation of data. Since it is
drawn manually, the amount of data contained in the graphic tends to be limited. In addition, an
infographic is difficult to change or update and it is hard to recreate with different data.

• Data visualisations and information visualisations on the contrary, are algorithmically drawn graph-
ics, which are easy to recreate with different data. Normally, these visualisations are initially drawn
by a human, before their drawing process is automated using an algorithm.

This section describes visualisations contained in the latter category.

2.3.1 Line Chart

A line chart is a visualisation in which data entities are expressed as lines, connecting data points of the
corresponding entity. Line charts are used to display trends over time, which is why they are commonly
used for financial data. The fist line chart, shown in Figure 2.6a, was created by William Playfair [1786]
in 1786. It displays the imports and exports to and from Norway and Denmark from 1700 to 1780. A
modern version of a line chart can be seen in Figure 2.6b.

2.3.2 Bar Chart

A data entity in a bar chart is expressed by vertical or horizontal bars, in which the height, or in the case
of horizontal bars the length, indicates the value of the data entity. Bar charts simplify the comparison of
multiple data entities. The first bar chart was also created by William Playfair [1786] in 1786. Figure 2.7a
shows Playfair’s first bar chart, illustrating the imports and exports of Scotland. Figure 2.7b shows the
exports of Scotland in 2009.

8 2. Information Visualisation

(a) The first line chart by Playfair [1786] showing
the exports and imports to and from Denmark and
Norway from 1700 to 1780. (This image is ex-
tracted from Wikimedia Commons [Wikipedia,
2011f]).

Imports Exports

2006 2007 2008 2009 2010

200,000

180,000

160,000

140,000

120,000

100,000

Years

M
io

 E
u

ro

(b) This graphic shows a modern line chart. It dis-
plays the exports and imports of Denmark and
Norway from 2006 to 2010. It was produced
using data from EC [2011] (given in Euro) and
DST [2011] (given in Danish crown). The num-
bers were calculated using the currency rate of
one Danish crown equalling 0.134442778 Euros.

Figure 2.6: Two examples of line charts. (a) shows William Playfair’s first hand-drawn line chart
[Playfair, 1786] and (b) displays a modern computer-generated line chart.

(a) William Playfair’s first bar chart displaying the
imports and exports of Scotland [Playfair, 1786].
(The image is taken from Wikimedia Commons
[Wikipedia, 2011g].)

European Union 27

Rest of Europe

N
orth Am

erica

Central and South Am
erica

M
iddle East

Asia
Africa

Australasia

Unallocable

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

M
io

 P
o
u

n
d

s

Exports of Scotland

(b) A modern bar chart visualising the exports
of Scotland. The data for this example was
extracted from the Global Connections Survey
[GCS, 2011].

Figure 2.7: Two examples of bar charts: (a) shows the first bar chart by Playfair [1786], (b) shows
a modern bar chart.

2.3. Visualisations 9

(a) One of William Playfair’s first pie charts [Play-
fair, 1801], showing the proportion of the Asiatic,
European, and African land masses of the Turk-
ish Empire [Spence, 2005]. (This image is ex-
tracted from Wikimedia Commons [Wikipedia,
2011d].)

Africa Asia Europe Middle East

North America Latin America Oceania

Africa

955,206,348

Asia

3,776,181,949

Europe

800,401,065

Middle East

197,090,443

North America

337,167,248

Latin America

576,091,673

Oceania

33,981,562

(b) A modern pie chart displaying the world’s pop-
ulation by region.

Figure 2.8: Pie charts (a) original by William Playfair [1801] and (b) a modern computer-generated
version.

2.3.3 Pie Chart

A pie chart uses a circle divided into sectors. The size of each sector expresses the proportional signif-
icance of the corresponding data entity. Pie charts are a popular chart type. However, there are disad-
vantages of pie charts. If the sectors of a pie chart are of roughly equal size, it is difficult to distinguish
them. In addition, a comparison of data across different pie charts is highly problematic. There are many
variants of pie charts, such as doughnut charts, three-dimensional pie charts, and multi-level pie charts.
Figure 2.8 shows two examples of pie charts.

The pie chart also dates back to William Playfair [1801]. Playfair used pie charts as a part of larger
figures, illustrating the areas, populations, and revenues of European states [Spence, 2005]. One of the
first pie charts, displaying the Asiatic, European, and African land masses of the Turkish Empire is shown
in Figure 2.8a.

2.3.4 Area Chart

Area charts are similar to line charts and are also used to display trends over time. Like in line charts, data
points of a corresponding data entity are connected with a line. However, the difference between area
charts and line charts is that the area beneath a line in the area chart is filled. There are several variants
of area charts such as stacked area charts and overlay area charts. They are illustrated in Figure 2.9.

10 2. Information Visualisation

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Lena

Leonie

Anna

SarahSarahSarah

LeonieLeonie

(a) A stacked area chart visualising the number of
occurrences of newborn forenames from 1997 to
2007. The areas are drawn on top of each other.

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

LeonieAnna
Sarah

Leonie

158
242

453

661

851
966 942

822

(b) An overlay area chart displaying the same data.
Here, the areas overlap each other. For visibility
purposes the areas are drawn using transparency.

Figure 2.9: Area charts. (a) a stacked area chart and (b) an overlay area chart.

2.3.5 Star Plot

Star plots are used to display multivariate data. A star plot consists of axes which are equally spaced
around a circle, originating from the centre. Each of the axes represents a different variable, ranging from
the smallest to the largest value. The specific value of a data entity is expressed as the length from the
centre of the circle to a point on the axis belonging the corresponding variable. The name star plot comes
from the circumstance that the values of neighbouring axes are sometimes connected by a line, resulting
in a star-like shape. Star plots date back to Georg von Mayr [1877] and the first ever star plot can be seen
in Figure 2.10a. A modern version of a star plot, visualising the same data is shown in Figure 2.10b.

The lowest value of an axis is typically located in the centre. However, star plots are most useful
when the axes are created so that good values are on the outside regardless of whether high or low means
good. For example, Chambers et al. [1983] used star plots to visualise the well-known cars dataset, in
which the axis displaying the price of a car was inverted in order to make sure that lower prices are found
on the outside of the plot (are considered good). The cars in this example, adapted in Figure 2.10d, are
presented using a star plot matrix, multiple small star plots, one for each car. The corresponding legend,
showing the assignment of variables for the displayed axes can be seen in Figure 2.10c.

2.3.6 Parallel Coordinates

Parallel coordinates are a visualisation method for displaying multidimensional data. They consist of
several vertical axes, each representing one data dimension. Here, the ends of the axes represent the low-
est and the highest values of the corresponding dimensions. A data entity consists of several data points,
each located on one of the axes. Its position is determined in relation to the lowest and highest value
of the corresponding dimension. An entity is visualised by connecting each data point on neighbouring
axes. An example of parallel coordinates can be seen in Figure 2.11.

Parallel coordinates date back to Maurice d’Ocagne [1885] in 1885. Later, they were independently
re-invented by Alfred Inselberg in 1959 [Inselberg, 1985, 2009]. Parallel coordinates allow the compari-
son of data entities and dimensions, and are useful for detecting patterns in the data.

2.3. Visualisations 11

(a) “Linien-Diagramm im Kreise”, the first star plot
from Mayr [1877] showing four different vari-
ants, including an inverted star plot.

January February

M
arch

A
p
ril

M
ay

Jun
e

July

August

Septem
ber

O
cto

b
e
r

N
ov
em

be
r

De
ce
mb

er

(b) A modern star plot visualising the same data
used in (a).

1
9

7
8

 R
e
p

a
ir R

e
co

rd

19
77

 R
ep

ai
r
Re

co
rd

Neg. Tu
rning Diameter

Neg. Gear Ratio

Displacement

Length

W
e
ig

h
t

Tr
un

k
Sp

ac
eRear S

eat

Headroom

Mileage

N
eg. Price

(c) Legend: the assignment of
the dimensions (such as length,
weight, and mileage) of the star
plots in (d).

Chevette Dodge Colt Fiat Strada VW Dasher Toyota Corolla

Merc. Marquis Dodge St. Regis Linc. Versailles Dodge Magnum XE Buick Riviera

Cad. Eldorado Olds Tornado Olds 98 Merc Cougar Buick Electra

(d) A star plot matrix, adapted from Chambers et al. [1983], visualis-
ing the well-known cars dataset. Here, the cars are represented by
multiple small star plots, each for one car, arranged next to each
other. The assignment of the used dimensions can be seen in (c).

Figure 2.10: Star plots. The first ever star plot by Mayr [1877] is shown in (a) and a modern version
of the same star plot in (b). (d) displays star plots visualising high-dimensional data.
The corresponding assignment of the used dimensions can be seen in (c). The images
shown in (c), and (d) are adapted from Chambers et al. [1983].

12 2. Information Visualisation

Cars Dataset

mpg

46.6

9

cyl

8

3

disp

455

68

hp

46

100

lbs

5,140

1,613

Accel

24.8

8

Year

1,982

1,970

Origin

3

1

Figure 2.11: The cars dataset visualised with parallel coordinates. Each data dimension is repre-
sented by a vertical axis, ranging from the lowest to the highest value of the dimen-
sion. Neighbouring data points of a entity (car) are connected. Cars with similar
characteristics are represented by polylines with similar shapes. The cars dataset was
created by Ramos and Donoho [2011].

2.3. Visualisations 13

Carinthia

Lower Austria

Upper Austria

Salzburg

Tyrol

Vorarlberg

Vienna

Styria

Burgenland
400,000

0

800,000

1,200,000

1,600,000

Po
p
u
la

ti
o
n

5,000 10,000 15,000 20,000 25,0000

Area (m2)

Figure 2.12: The regions of Austria visualised with a scatterplot. The x-axis shows the area and
the y-axis the population of the displayed regions. Using a scatterplot, patterns or
outliners (such as Vienna in this figure) can be easily spotted.

2.3.7 Scatterplot

A scatterplot is a diagram, displaying two different, independent variables by plotting data entities onto a
coordinate grid defined by a vertical and a horizontal axis. According to Friendly and Denis [2005] “the
humble scatterplot may be considered the most versatile, polymorphic, and generally useful invention in
the entire history of statistical graphics”. A scatterplot is a highly intuitive visualisation method, useful
to reveal relationships between two variables or to detect patterns in the data. An example of a scatterplot
can be seen in Figure 2.12.

2.3.8 Bat’s Wing Diagram

The bat’s wing diagram dates back to Florence Nightingale, an English nurse, who invented it in 1858.
According to Small [1998], Nightingale used the bat’s wing diagram to display the death rate from
causes such as wounds and disease during the Crimean War (1853–1856). The diagrams visualised how
the death rates were reduced because of improvements in hygiene.

The bat’s wing diagram consists of twelve axes, originating from the same center. Each axis clock-
wise represents one month. A data value is represented by the length of a radial line, starting at the center.
The ends of the radial lines on neighbouring axes are connected. This leads to a major disadvantage of
the bat’s wing diagram: the assumption that the data is expressed using areas [Small, 1998]. This is the
reason why Nightingale replaced the bat’s wing diagram with the polar area diagram (see Section 2.3.9)
in later publications. A modern version of the original diagram can be seen in Figure 2.13.

2.3.9 Polar Area Diagram

The polar area diagram (or wedge diagram) is Florence Nightingale’s improvement of the bat’s wing di-
agram, addressing the problem mentioned in Section 2.3.8. The data of a polar area diagram is expressed
using its areas. Like the bats’s wing diagram it is divided into twelve equal sectors, each representing

14 2. Information Visualisation

(a) Florence Nightingale’s bat’s wing diagram from 1858. Photograph copyright Keith Andrews, used
with kind permission.

Wounds Other Wounds Disease

Apr 1854 - Mar 1855

A
p

r 1
8

5
4

M
ay

 1
85

4

Jun 1854
Jul 1854 Aug 1854

Sep 1854

O
ct

 1
8

5
4

N
ov

 1
85

4

Dec 1
854

Jan 1855

Feb 1855

M
ar 1855

(b) The number of deaths from various causes from
April 1854 to March 1855.

Wounds Other Wounds Disease

Apr 1855 - Mar 1856

A
p

r 1
8

5
5

M
ay

 1
85

5

Jun 1855
Jul 1855 Aug 1855

Sep 1855

O
ct

 1
8

5
5

N
ov

 1
85

5

Dec 1
855

Jan 1856

Feb 1856

M
ar 1856

(c) The death rate from various causes from April
1855 to March 1856. The number of deaths from
disease decreased significantly during this times-
pan.

Figure 2.13: Bat’s wing diagrams. (a) displays Florence Nightingale’s original bat’s wing diagram
and (b) and (c) show modern, computer-generated bat’s wing diagrams. The diagrams
display the death rate from three different causes during the Crimean War (1853–
1856).

2.3. Visualisations 15

one month. A data value is drawn as a wedge, reaching from the start to the end of a sector. Here, the
area of the wedge is proportional to the data value expressed by it. Polar area diagrams are often incor-
rectly referred to as “coxcomb” diagrams [Small, 1998]. The original polar area diagram can be seen in
Figure 2.14a and modern versions are shown in 2.14b and 2.14c.

2.3.10 Geographic Heatmap

A heatmap is a graphical representation of data in which coloured, two-dimensional areas are used to ex-
press the value for each data entity. A geographic heatmap, also known as choropleth map, is a heatmap
with cartographic areas. An area of a heatmap is shaded in proportion to the data value assigned to it.
Choropleth maps are designed to simplify the analysis of geographic data such as statistical or economic
data. The name choropleth map was introduced by the american geographer John Wright [1938] in 1938.

According to Friendly and Denis [2011], the first choropleth map was by Baron Pierre Charles Dupin
in 1826. The map, which can be seen in Figure 2.15a, shows the distribution and intensity of illiteracy
in France [Dupin, 1826]. Three years later, Balbi and Guerry [1829] created the first comparative choro-
pleth maps, several choropleth maps next to each other, each with a different variable [Friendly, 2007].
This enables the viewer to perform a direct comparison of the displayed variables. The maps illus-
trated crimes against persons and against property, in relation to the level of education by departments in
France. They are shown in Figure 2.15b.

A prism map is a special version of a choropleth map. In addition to the shading, the cartographic
areas are extruded, the height of the extrusion indicating a second variable. In this way, two variables
can be displayed using the same map.

2.3.11 Treemap

Treemaps were invented by Ben Shneiderman in 1991, to visualise the space on hard disks, in order to
find large files that could be deleted and to display the amount of shared space used per person [Shnei-
derman, 2009]. The algorithm in its original version [Shneiderman, 1992] was published in 1992. A
treemap uses a two-dimensional space filling approach for visualising hierarchical tree structures [John-
son and Shneiderman, 1991]. It iteratively divides the available space into nested rectangles, in which
the elements contained within a hierarchy level share the space of their parent. Figure 2.16 shows two
representation methods of the same hierarchy, a traditional node-link drawing and a treemap.

2.3.12 Voronoi Treemap

A Voronoi diagram uses a Voronoi tesselation to partition the available space by applying the nearest-
neighbour rule [Aichholzer and Aurenhammer, 2002]. The first person to introduce the concept is
believed to be George Voronoi, a Russian mathematician. René Descartes [1644] published the first
Voronoi-like diagram in 1644, displaying the arrangement of matter in the solar system.

The first implementation of Voronoi diagrams in the context of information visualisation, the InfoSky
visual explorer [Andrews et al., 2002; Granitzer et al., 2004] was performed in 2002. InfoSky, shown in
Figure 2.17 enables the interactive exploration of large, hierarchically structured document collections.
It uses modified, weighted Voronoi diagrams for area partitioning, in which the size of each polygon is
related to the number of documents in the corresponding collection. A demo version of InfoSky can be
obtained from the Know-Center [2011].

16 2. Information Visualisation

(a) Florence Nightingale’s polar area diagram from 1858. (Image from Wikimedia Commons [Wikipedia, 2011a])

Wounds Other Wounds Disease

Apr 1854 - Mar 1855

A
p
r

1
8
5
4

M
ay

 1
85

4

Jun 1854 Jul 1854
Aug 1854

S
e
p
 1

8
5
4

O
ct

 1
8
5
4

Nov
 1

85
4

Dec 1854Jan 1855

Feb 1855

M
a
r 1

8
5
5

(b) The the number of deaths from various causes
during the first year of the Crimean War (1853–
1856), visualised with a modern polar area dia-
gram.

Wounds Other Wounds Disease

Apr 1855 - Mar 1856

A
p
r

1
8
5
5

M
ay

 1
85

5

Jun 1855 Jul 1855
Aug 1855

S
e
p
 1

8
5
5

O
ct

 1
8
5
5

Nov
 1

85
5

Dec 1855Jan 1856

Feb 1856

M
a
r 1

8
5
6

(c) A computer-generated polar area diagram illus-
trating the death rate from various causes such as
wounds and disease during the second year of the
war.

Figure 2.14: Polar area diagrams. (a) shows Florence Nightingale’s original polar area diagram
and (b) and (c) display modern, computer-generated polar area diagrams.

2.3. Visualisations 17

(a) The first choropleth map showing the levels of
illiteracy in France [Dupin, 1826].

(b) The first comparative choropleth maps from
Balbi and Guerry [1829]. The map at the top left
shows crimes against persons, the map at the top
right crimes against property, and the map at the
bottom the level of education. A darker shade
signifies worse values (more crimes or less edu-
cation).

Figure 2.15: Early examples of geographic heatmaps (choropleth maps). (a) shows the first choro-
pleth map and (b) displays the first juxtaposed choropleth maps, allowing direct com-
parison. The images are extracted from Friendly and Denis [2011].

18 2. Information Visualisation

(a) The traditional node-link drawing for represent-
ing tree structures, visualising a file structure
consisting of directories (rectangles) and files
(circles). The numbers inside the files indicate
their sizes. Image from Shneiderman [1992].

(b) A treemap visualising the same directory struc-
ture shown in (a). Image from Shneiderman
[1992].

14,900 17,996,000 Colour: Population

Size: Area

Germany

Bayern

Niedersachsen

Baden-Württemberg Nordrhein-Westfalen Brandenburg

Hessen

Sachsen-Anhalt

Rheinland-Pfalz

Sachsen

Thüringen

Schleswig-Holstein

Austria

Niederösterreich Steiermark

Tirol

Oberösterreich

Kärnten

Salzburg

Switzerland

Bern

Valais

Vaud

Tessin

Uri

(c) A modern treemap visualising the population and area of regions in Austria, Germany, and Switzerland. The
area of a region is expressed as the area of the corresponding rectangle and the absolute population of a region
is indicated by its colour.

Figure 2.16: Treemaps are used to visualise hierarchies. (a) shows a 3-level tree structure in the
form of a traditional node-link drawing. (b) shows the same tree in a squarified
treemap. (c) shows a modern treemap.

2.3. Visualisations 19

Figure 2.17: The InfoSky visual explorer, a system for interactively exploring hierarchically struc-
tured document collections, uses Voronoi treemaps for area partitioning [Andrews et
al., 2002; Granitzer et al., 2004]. It is the first implementation of Voronoi treemaps in
the context of information visualisation.

In 2005, the name Voronoi treemap was used by Balzer and Deussen [2005] to describe the same idea.
Voronoi treemaps use subdivisions into arbitrary polygons instead of the traditional approach of treemaps
of splitting the available space into rectangles. This procedure has the advantage of a better visibility of
the hierarchical structure in the resulting layout. Additionally, it is possible to create treemap layouts
within circles, triangles (see Figure 2.18), and other polygonal outer structures [Balzer et al., 2005].

20 2. Information Visualisation

14,900 17,996,000 Colour: Population

Size: Area

Graubünden

Bern

Valais
Vaud

Tessin

Glarus

Zürich
St. Gallen

AargauUri Thurgau

Luzern

Freiburg

Schwyz

NeuchatelBasel-Land
NidwaldenSchaffhausen

Jura

GenfSolothurn

Obwalden
Appenzell Ausserrhoden

Zug

Appenzell Innerrhoden

Basel-Stadt

Tirol

Kärnten

Niederösterreich

Oberösterreich

Salzburg

Steiermark

Burgenland

Vorarlberg

Wien

Bayern

Niedersachsen

Nordrhein-Westfalen

Schleswig-Holstein

Baden-Württemberg

Sachsen

Brandenburg

Rheinland-Pfalz

Mecklenburg-Vorpommern

Hessen

Sachsen-Anhalt

Thüringen

Saarland

Berlin

Hamburg

Bremen

Figure 2.18: A Voronoi treemap displaying the population and area of regions in Austria, Germany,
and Switzerland. The area of a region is expressed as the area of the corresponding
polygon and the shading of a polygon indicates the population.

Chapter 3

Technologies

“ All you need is trust and a little bit of pixie dust. ”

[James Matthew Barrie, Peter Pan, or The Boy Who Wouldn’t Grow Up, 1904.]

This chapter gives an overview of technologies which can be used to create visualisations. In addi-
tion, the prevalence of certain technologies is compared. This is a challenging task, because distribution
statistics of internet technologies depend highly on the collecting criteria, varying from studies consist-
ing of a number of surveys to automatic data collection via a script embedded on a web site. In order to
provide a more objective view, Figure 3.1 shows the distribution statistics from three different sources:
RIAStats [2011], STATOWL [2011], and Millward Brown [2011].

3.1 HTML and AJAX

The main publishing language of the World Wide Web is the HyperText Markup Language (HTML)
[W3C, 2011d], invented by Tim Berners-Lee in 1991. HTML in its version 4.01 is the current recom-
mendation of the World Wide Web Consortium (W3C). HTML describes the structure of web sites using
elements such as tables, lists, paragraphs, and so forth. Cascading Style Sheets (CSS) [W3C, 2011b],
in contrast, are used to define the style of web pages using fonts, layouts, and colours. The structure
(HTML) and the style (CSS) of web pages are separated in order to provide better maintainability. This
mechanism is often referred to as the separation of content from presentation. Since HTML is designed
for static content, it is not suited to provide complex user interactions.

The eXtensible HyperText Markup Language (XHTML), a variant of HTML, is an application of the
Extensible Markup Language (XML). It includes the same elements as HTML, but the syntax is slightly
different. Due to the fact that XHTML is an application of XML, it is possible to use XML tools such as
Extensible Stylesheet Language Transformations (XSLT), a declarative language for XML transforma-
tion.

JavaScript, a scripting language allows the extension of HTML with complex user interaction sup-
port, such as user-triggered events [W3C, 2011f]. JavaScript code is executed on the client-side by the
web browser. It allows dynamic access to and manipulation of the Document Object Model (DOM)
[W3C, 2011c] of web pages. The DOM describes all elements of a web page. The term dynamic HTML
(DHTML) is used for the combination of HTML, CSS, and JavaScript.

Using the XMLHttpRequest object, JavaScript provides the possibility to asynchronously send and
retrieve data from a web server. This is called Asynchronous JavaScript and XML (AJAX). Using AJAX,

21

22 3. Technologies

Adobe Flash

Installed
96.60%

Not Installed
3.40%

(a) Statistics from RIAStats
[2011]. The proportion of
users with Adobe Flash Player
installed.

Microsoft Silverlight

Installed
76.76%

Not Installed
23.24%

(b) Statistics from [RIAStats,
2011]. The proportion of users
with Microsoft Silverlight
installed.

Java

Installed
63.03%

Not Installed
36.97%

(c) Statistics from [RIAStats,
2011]. The proportion of
users with the Java Runtime
Environment (JRE) installed.

Adobe Flash

Installed
95.37%

Not Installed
4.63%

(d) Statistics from STATOWL
[2011]. The proportion of users
with Adobe Flash Player in-
stalled.

Microsoft Silverlight

Installed
67.36%

Not Installed
32.64%

(e) Statistics from [STATOWL,
2011]. The proportion of users
with Microsoft Silverlight in-
stalled.

Java

Installed
76.57%

Not Installed
23.43%

(f) Statistics from [STATOWL,
2011]. The proportion of users
with the Java Runtime Environ-
ment (JRE) installed.

Adobe Flash

Installed
99.00%

Not Installed
1.00%

(g) Statistics from Millward
Brown [2011]. The proportion
of users with Adobe Flash
Player installed.

Java

Installed
73.00%

Not Installed
27.00%

(h) Statistics from [Millward
Brown, 2011]. The proportion
of users with the Java Runtime
Environment (JRE) installed.

Figure 3.1: The distribution of the Adobe Flash plug-in, the Microsoft Silverlight runtime envi-
ronment, and the Java Runtime Environment (JRE) visualised by pie charts. (a), (b),
and (c) display statistics from RIAStats [2011]. The statistics for (d), (e), and (f) are
taken from STATOWL [2011]. The statistics in (g), and (h) are from Millward Brown
[2011].

3.2. Adobe Flash 23

it is possible to request only specific data and avoid the web page being fully reloaded. The advantage
of this approach is that no additional software, such as a runtime environment, or a plug-in has to be
installed. Only a web browser with JavaScript enabled has to be available in order to use AJAX.

3.2 Adobe Flash

Adobe Flash is a tool for creating Rich Internet Applications (RIAs) [Adobe, 2011c]. It adds anima-
tion and interactive functionality to web sites and is frequently used for games and advertising pur-
poses. Raster and vector graphics are manipulated by Flash and its attached scripting language Action-
Script. ActionScript is an object-oriented programming language with similar semantics and syntax to
JavaScript. It is currently available in version 3.0. Flash uses the file format SWF (Shockwave Flash)
with its corresponding file extension .swf to display its content. Typically SWF files are embedded in
a HTML file. Flash needs the Adobe Flash Player, a browser plug-in, in order to display its content.
The distribution of the Adobe Flash Player can be seen in Figure 3.1. The statistics are taken from three
different sources (RIAStats [2011], STATOWL [2011], and Millward Brown [2011]), in order to provide
a broad range of statistics.

Adobe Flash originated from SmartSketch, drawing software developed by Jonathan Gay. In 1996
animation functionality was added and the software and it was released by FutureWave Software with the
name FutureSplash Animator. The company FutureWave Software was bought by Macromedia in De-
cember 1996, and the FutureSplash Animator became Macromedia Flash 1.0. Flash is currently owned
by Adobe, after the acquisition of Macromedia in 2005. [Gay, 2011]

3.3 Adobe Flex

Adobe Flex is an open source framework for developing rich internet applications [Adobe, 2011d]. It
was first released by Macromedia in 2004 and the product was integrated in Adobe’s product portfolio
soon after Adobe acquired Macromedia in 2005. Adobe Flex is partly based on Flash and like in Flash,
applications are compiled into SWF files. For this reason Flex needs the Adobe Flash Player to display
its content. The difference between Adobe’s Flash and Flex is that Flash is intended for designers, using
animations together with a timeline concept. Flex targets developers, using a programming model to
create applications.

According to Noble et al. [2010, page 1], a Flex application consists of two main parts: ActionScript
and MXML. ActionScript is the object-oriented programming language also used in Flash and MXML
is a markup language based on the Extensible Markup Language (XML). Graphical components can
be created using both ActionScript and MXML. Listing 3.1 shows the ActionScript code necessary to
create a button. The same task is performed using MXML in Listing 3.2. The major difference between
these two approaches is that the ActionScript code only produces the button object, the MXML version
in contrast creates the object and adds it automatically to its parent container.

In Flex, it is possible to save separate MXML and ActionScript files. MXML files, which have
the extension .mxml can include ActionScript code within a <fx:Script> tag. Listing 3.3 shows a
simple example of a Flex application. The resulting application can be seen in Figure 3.2.

24 3. Technologies

1 var myButton:Button = new Button();
2
3 myButton.label = "My Button";
4 myButton.width = 200;
5 myButton.height = 100;

Listing 3.1: The ActionScript code necessary to create a button in Adobe Flex. This example
produces the same output as the MXML code shown in Listing 3.2.

1 <mx:Button id="myButton" label="My Button" width="200" height="100" />

Listing 3.2: MXML code producing a button component. This code is equivalent to the
ActionScript code in Listing 3.1.

1 <?xml version="1.0" encoding="utf-8"?>
2 <s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
3 xmlns:s="library://ns.adobe.com/flex/spark"
4 xmlns:mx="library://ns.adobe.com/flex/mx"
5 minWidth="400" minHeight="300" applicationComplete="init()">
6 <fx:Script>
7 <![CDATA[
8
9 public function init() : void {

10 myButton.addEventListener(MouseEvent.CLICK, setHelloWorld);
11 }
12
13 private function setHelloWorld(event:MouseEvent) : void {
14 var text:String = myButton.selected ? "Hello World!" : "";
15 myText.text = text;
16 }
17
18]]>
19 </fx:Script>
20
21 <mx:VBox verticalAlign="middle" horizontalAlign="center">
22 <mx:Button id="myButton" label="Hello World" toggle="true"
23 width="200" height="100" />
24 <mx:Label id="myText" fontWeight="bold" fontSize="20"/>
25 </mx:VBox>
26 </s:Application>

Listing 3.3: A simple Flex application demonstrating the interaction of MXML components with
ActionScript code. The resulting application can be seen in Figure 3.2.

Figure 3.2: The simple application generated by the code in Listing 3.3. A click on the button fires
an event causing the textual content of the label to be set.

3.4. Adobe Integrated Runtime (AIR) 25

Operating System

Cross-operating
system application

Integrated rendering
Integrated DOMs and
scripting

Adobe AIR APIs

HTML Flash

File system
access

Network
detection Notifications

Application
update

Drag and
drop

Local
database

...

Flash

PDF

HTML

PDF

HTML
JavaScript
XML
CSS
Ajax

Flex
ActionScript
XML
Audio
Video

Adobe AIR application stack

Figure 3.3: The architecture of Adobe AIR. This image is adapted from Adobe [2011b].

3.4 Adobe Integrated Runtime (AIR)

Adobe Integrated Runtime (Adobe AIR) is a cross-operating system runtime [Adobe, 2011a]. It en-
ables developers to deploy rich internet applications (RIAs) on various operating systems using HTML,
JavaScript, Adobe Flash, and Adobe Flex. Adobe AIR supports the desktop operating systems Microsoft
Windows, and Apple Macintosh. The support for Linux was discontinued after version 2.6. On the mo-
bile device sector Adobe AIR supports operating systems such as Google’s Android and Apple’s iOS. A
set of Adobe AIR APIs, which can be seen in Figure 3.3, enable the use of functionality, such as local
file access and storage, network detection, system notifications, drag-and-drop support, database access,
and more.

Applications for Adobe AIR have to be installed in order to be executed. For this, the Adobe AIR
runtime is needed. An Adobe AIR application can be developed with the use of a simple text editor
together with the AIR software development kit (SDK). However, it is recommended to use the Adobe
Flash Builder, an integrated development environment (IDE) for AIR development.

3.5 Microsoft Silverlight

Microsoft Silverlight is a tool for developing rich internet applications (RIAs) [Microsoft, 2011c]. It is
Microsoft’s answer to Adobe’s Flash and Flex and its features are very similar to those of Adobe’s prod-
ucts. The first release of Silverlight was in April 2007 and its current version is Silverlight 4. The release
of version 5 is scheduled for the second half of 2011. Silverlight is available for Microsoft Windows
and Apple Macintosh. Unix systems are supported by Moonlight, a free software implementation of Sil-
verlight, developed by Novell [2011]. The distribution of Microsoft Silverlight can be seen in Figure 3.1.

Silverlight applications need the Silverlight runtime environment, a browser plug-in, in order to be
executed. These applications typically run within the web browser. However, it is possible to install them
on the desktop as well. This functionality, called out-of-browser (OOB), is Microsoft’s answer to Adobe
AIR. The main benefit of OOB applications is the ability to be launched from the desktop, without the
need of an active internet connection.

Microsoft Silverlight uses the declarative language Extensible Application Markup Language (XAML)
to create user interface (UI) elements, such as text or buttons. This language is based on XML and can

26 3. Technologies

Int'l Support I/OBeans JNI MathJMX

Std. Override
Mechanism

SecurityNetworking Extension
Mechanism

XML JAXPSerialization

Collections Concurrency
Utilities

Lang & Util Logging ManagementJAR

Ref Objects ReflectionPreferences Versioning ZipRegular
Expressions

New I/O

IDL JDBC JNDI RMI RMI-IIOP

Drag and Drop Input MethodsAccessibility Print Service SoundImage I/O

Solaris Windows Linux Other

Java Hotspot Server CompilerJava Hotspot Client Compiler

Deployment

AWT

Java Web Start

Swing

Java Plug-in

Java 2D

Security Int'l RMI IDL Deploy Monitoring Trouble-
Shooting

JVM TI

OtherJPDAjavapjaraptjavadocjavacjava

Java LanguageJava Language

Development
Tools & APIs

Deployment
Technologies

User Interface
Toolkits

Integration
Libraries

Other Base
Libraries

lang & util
Base Libraries

Java Virtual
Machine

Platforms

JDK

JRE

Java SE
API

Java Platform Standard Edition

Figure 3.4: The architecture of the Java Standard Edition (SE) platform, showing that the Java
Runtime Environment (JRE) sits on top of the underlying operating system. The image
is adapted from Oracle [2011c].

be compared to Adobe’s MXML. It allows a clean separation of the user interface elements and the
code of an application. The major benefit of Silverlight applications is the ability to be fully indexed by
search engines. This is possible because the textual content of an application is not compiled and thus is
indexable.

3.6 Java

Java is an object-oriented programming language, which originated from a small group of Sun Microsys-
tems engineers led by James Gosling in 1991 [Oracle, 2011a,b]. The Java technology was incorporated
into the web browser Netscape Navigator in 1995. The credo of Java is “write once, run everywhere”
(WORA), meaning that the execution of Java programs is independent from any operating system. This
is achieved by compiling the Java code into Java byte code which is then interpreted by the Java virtual
machine (JVM), a software loaded on top of the underlying operating system. Java is a licensed product,
having the advantage that its specification looks the same on every execution environment.

A disadvantage of Java is that the execution of a Java program is considered slower, with more mem-
ory consumption, than the execution of a program written in native code. Another downside concerns the
Java Runtime Environment (JRE). In order to display Java content, the JRE has to be installed previously.
The distribution of the JRE can be seen in Figure 3.1. The architecture of the Java platform is shown in
Figure 3.4.

3.7 JavaFX

JavaFX is a platform which evolved from the Java platform and enables developers to create rich inter-
net applications (RIAs) [Oracle, 2011d]. It is Sun Microsystems answer to Adobe Flex and Microsoft
Silverlight. JavaFX was first released in 2007 by Sun Microsystems. After Oracle acquired Sun Mi-
crosystems, it was announced that the support for the JavaFX Script language will be discontinued and

3.8. Scalable Vector Graphics (SVG) 27

the corresponding Script APIs will be ported to Java. JavaFX is currently available in version 2.0.

JavaFX allows the creation of applications, using two programming languages: Java and FXML.
FXML is similar to Adobe’s MXML and Microsoft’s XAML. It is an, XML-based declarative language
for creating user interface elements.

3.8 Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is a language which enables the description of two-dimensional graph-
ics in XML [W3C, 2011a,e]. It is an open standard developed by the SVG working group at the World
Wide Web Consortium (W3C). The working group was chartered after the submission of six competing
proposals for vector graphic specifications in 1998 [W3C, 2011g]. The first specification of SVG was
released in September 2001. In contrast to raster graphics, Scalable Vector Graphics are completely scal-
able without loss of quality.

The SVG specification in its version 1.1 is a W3C recommendation. It is the most recent version of
the full specification. SVG tiny 1.2, another W3C recommendation targets mobile devices. The SVG
working group is currently working on the specification for SVG 2.0 which will add new features to SVG.

Elements in SVG can be easily grouped, transformed, and styled. In addition, it is possible to create
interactive, and dynamic SVG drawings by using animations. Through a scripting language, the SVG
Document Object Model (DOM) can be accessed and its elements, attributes, and properties can be
modified. Any graphical object can be extended with event handlers like onmouseover and onclick.

There are various types of elements in SVG: [W3C, 2011e]

• Paths: An outline of a shape is represented by a path in SVG. It can be filled, stroked, and used as
a clipping path. The drawing procedure makes use of the concept of the current point in addition
to several drawing commands such as move to, line to, or curve to.

• Basic Shapes: These are basic elements like lines, rectangles, circles, ellipses, and polygons.

• Text: The text element is rendered as part of a SVG document fragment. It causes a single textual
line to be rendered. Automatic line breaks are not supported.

• Filling, Stroking and Marker Symbols: Filling and stroking can be applied to the text and path

elements and the basic shapes. Additionally, some elements such as path, polygon, and line can
have marker symbols drawn on top of their vertices.

• Colour: The colour property has to be specified using the sRGB colour space and it is used to
provide a value for properties like fill or stroke.

• Gradients and Patterns: The filling or stroking of elements can also be achieved using gradients
and patterns. Gradients can be linear or radial and patterns can be provided from a vector or image
source.

• Filter Effects: Scalable Vector graphics support filter effects. These are a series of operations
which can be applied to any graphical element in order to modify the original element.

• Interactivity: The execution of animations and scripts can be triggered in SVG in response to
user-performed actions.

28 3. Technologies

• Linking: In Scalable Vector Graphics it is possible to include links to any Internationalized Re-
source Identifiers (IRIs). These are more generalised counterparts to Uniform Resource Identifiers
(URIs).

• Scripting: Using the script element, scripts can be inserted into a Scalable Vector Graphic. It is
equivalent to the script element in HTML.

• Animation: A Scalable Vector Graphic can change its content over time using animations. Effects
like fade-in, fade-out, growing or shrinking objects, or colour change can be applied in this way.

• Fonts: In order to provide designers the ability to customise text in Scalable Vector Graphics,
fonts can be inserted using the fonts element. This mechanism ensures that the image is displayed
equally on all platforms, even if a certain font is not installed on the user’s computer.

• Metadata: Data about an SVG file can be inserted using the metadata element.

Scalable Vector Graphics can be created using a simple text editor. Here, the SVG tags have to
be typed into the editor and saved as an SVG file. However, a more convenient approach to create
SVG files is using a graphical editor such as Adobe Illustrator [Adobe, 2011e], Corel Draw [Corel,
2011], Microsoft Expression Design [Microsoft, 2011a], the freely available Inkscape [Inkscape, 2011],
or online solutions like Google Docs [Google, 2011c]. An example of a Scalable Vector Graphic file can
be seen in Listing 3.4. Figure 3.5 shows the corresponding image.

3.8. Scalable Vector Graphics (SVG) 29

1 <?xml version="1.0" standalone="no"?>
2 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
3 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
4 <svg width="4in" height="2in"
5 viewBox="0 0 4000 2000" version="1.1"
6 xmlns="http://www.w3.org/2000/svg">
7
8 <!-- Define a triangle as an arrowhead -->
9 <defs>

10 <marker id="Triangle"
11 viewBox="0 0 10 10" refX="0" refY="5"
12 markerUnits="strokeWidth"
13 markerWidth="4" markerHeight="3"
14 orient="auto">
15 <path d="M 0 0 L 10 5 L 0 10 z" />
16 </marker>
17 </defs>
18
19 <!-- outer frame -->
20 <rect x="10" y="10" width="3980" height="1980"
21 fill="none" stroke="blue" stroke-width="10" />
22
23 <path d="M 1000 750 L 2000 750 L 2500 1250"
24 fill="none" stroke="black" stroke-width="100"
25 marker-end="url(#Triangle)" />
26
27 <circle cx="2900" cy="1700" r="100"
28 fill="red" stroke="blue" stroke-width="10" />
29
30 </svg>

Listing 3.4: An example of a Scalable Vector Graphics file. It specifies a marker in the shape of a
triangle and contains a rectangle, a path and a circle. The resulting image can be seen
in Figure 3.5.

Figure 3.5: This figure shows the resulting SVG image from Listing 3.4.

30 3. Technologies

Chapter 4

Information Visualisation Software and
Tools

4.1 Online Services

This chapter focuses on services, which are available on the internet and can be accessed using a web
browser. Online services have the major benefit of user collaboration. In most cases, users have the pos-
sibility to share data or visualisations with each other. They can collaborate during the creation process
and can comment on the resulting visualisations. In this way, new insights into the visualised data can
be gained.

There are several drawbacks with online services: depending on the speed of the internet connection,
online services can be quite slow. If the server crashes, the service can no longer be reached. In most
cases, online services are programmed by using a technology such as Adobe Flex or Java, which requires
a browser plug-in or in the case of Java, the Java Runtime Environment (JRE), to display its content. If
the necessary component is not installed, the service cannot be used. Another disadvantage of online
services is that there may be no possibility to keep the uploaded data and the created visualisations
private. Several online visualisation services require that any uploaded data and resultant visualisations
are visible to all.

4.1.1 Many Eyes

Martin Wattenberg, the founder of IBM’s Visual Communication Lab and Fernanda Viégas created Many
Eyes in 2007 [Viégas et al., 2007; IBM, 2011a,b]. The service combines information visualisation with
social software. It gives users the possibility to collaboratively explore and discuss visualisations. Ac-
cording to Viégas et al. [2007], the goal of Many Eyes is to “[...] not only serve as a discovery tool for
individuals but also as a medium to spur discussion among users.” Many Eyes visualisations are imple-
mented using Java. There are many visualisations such as scatter plots, matrix charts, network diagrams,
bar charts, bubble charts, line charts, pie charts, treemaps, choropleth maps, and many more. Figure 4.1
shows examples of visualisations in Many Eyes.

In Many Eyes, users can upload their own data and create visualisations. The user has to perform
three steps to create a visualisation. The first step is to choose a dataset. This can be done by using an
existing dataset, or by uploading a dataset prepared as a tab separated table. The second step is to choose
a visualisation type, used to visualise the previously chosen dataset. In the last step, the user has the
possibility to customise the look of the visualisation.

31

32 4. Information Visualisation Software and Tools

(a) Part of the World Map visualisation in Many
Eyes, displaying the percentage change of in-
fant mortality of each country in the world. The
colour blue expresses falling infant mortality,
whereas its rising is indicated using a yellow
shading.

(b) A treemap containing each state of the United
States. Its shading expresses the number of alien
sightings per state. The number of inhabitants is
encoded using its areas.

Figure 4.1: Examples of visualisations in Many Eyes.

The major benefit of Many Eyes is the social aspect. Users can take snapshots of visualisations and
insert comments. This enables users to point out interesting findings and collaboratively explore the
visualised data. On the other hand, it is not possible to upload a dataset and to create a visualisation
without making it public. Another drawback of the service is the limited export functionality: only the
possibility to export the visualisation as a pixel graphic.

4.1.2 Statistics eXplorer

Statistics eXplorer is a tool for interactively analysing statistical data [NCVA, 2011d]. It is customised
for use by statistics bureaus and gives users the possibility to explore trends over time while using mul-
tiple, synchronised, highly interactive visualisations.

The tool was first released in November 2008 on the OECD [2011] web site and is developed by
the The National Center for Visual Analytics (NCVA), a Swedish national research lab, located at the
Department of Science and Technology of Linköping University [NCVA, 2011b]. The OECD eXplorer
can be seen in Figure 4.2. According to Jern [2009], the OECD eXplorer was developed using GAV
Flash (see Section 4.3.3). In 2009, the Open Statistics eXplorer with a research and educational license
for non-commercial use was created. This generic platform enables the customisation of the Statistics
eXplorer application using the “eXplorer Wizard” [NCVA, 2011c]. Norrköping Communicative Visual
Analytics (NComVA), a spin-off company of the NCVA, was founded in June 2010 for commercial de-
ployment of the Statistics eXplorer [NCVA, 2011d; NComVA, 2011a].

Statistics eXplorer starts with various preloaded datasets. To load new data, there are two possibili-
ties. The first possibility is to load data from the attached statistics database. The available data can be
browsed and selected, and a particular timespan (if available) can be loaded. The second possibility is to
load one’s own data from a local source. For that, the data has to match the expected format.

4.1. Online Services 33

Figure 4.2: Aging statistics in Europe, visualised by OECD eXplorer. At the left side a choropleth
map allows comparison of the districts of each country and at the right side the cor-
responding data is visualised using a scatter plot. A parallel coordinates visualisation
can be seen at the bottom.

A very useful feature is the possibility to create stories in Statistics eXplorer. Upon pressing the
Create button on the right side, the Story Editor appears. With this editor it is possible to report find-
ings together with metadata. The resulting story can be exported as an XML file or published using a
“Vislet”. A Vislet is an embeddable interactive visual representation of the created story. Saved stories
can be imported using the Import button.

Statistics eXplorer is written using Flex and offers many different synchronised visualisations in-
cluding scatter plots, table lenses, histograms, parallel coordinates, time graphs, and choropleth maps.
Each of them offers highly interactive, intuitive handling.

4.1.3 Gapminder

Gapminder [2011] World is a service which allows the exploration of statistical data using animated
time series. It evolved in 2006 from the Trendalyzer software and it is developed by the Gapminder
Foundataion, which was founded by Ola Rosling, Anna Rosling Rönnlund, and Hans Rosling in 2005.
Unfortunately, Gapminder does not allow the uploading of one’s own data. However, there are many
predefined datasets available which can be visualised.

Gapminder World can be seen in Figure 4.3. It consists of a scatterplot, displaying different data
dimensions on each axis. The colours of the circles, representing the countries, indicate the country’s
geographic region. Additionally, the circle size can be used to express another data dimension. Using
the slider component at the bottom enables users to follow changes in the data over time.

In 2007, the Trendalyzer software and its development team was acquired by Google. Google now
offers a gadget called Motion Chart in Google Docs. It is very similar to Gapminder and has the advan-
tage that one’s own data can be visualised. It is integrated within the Google Visualization API and can
be included into a web site using JavaScript [Google, 2011e]. See Section 4.1.5.

34 4. Information Visualisation Software and Tools

Figure 4.3: Gapminder World visualising CO2 emission statistics. The scatterplot currently dis-
plays the CO2 emissions for each country on its y axis and the income per person on
its x axis. The colours of the circles indicate the country’s geographic region and the
size of each circle indicates the country’s total CO2 emissions for the displayed year.
The slider at the bottom allows the exploration of changes in the data over time.

4.1.4 Google Image Charts

The service Google Image Charts [Google, 2011d] uses the Goolge Chart API to dynamically generate
different kinds of charts from URL strings. Both the data and the formatting arguments are included
within a long URL. The tool sends a PNG image back, which can be embedded into a web site. The
arguments have to fulfill certain requirements, in order to obtain the expected output from the service.
Before the tool was opened up for web developers, it was originally built as an internal service for rapid
chart embedding. It includes several chart and visualisation types, like bar charts, box charts, candle-
stick charts, compound charts, dynamic icons, formulas, Google-O-Meter charts, GraphViz charts, line
charts, pie charts, QR codes, radar charts, scatterplots, venn charts, and map charts. Figure 4.4 shows an
example of a visualisation created with Google Image Charts. The corresponding URL can be seen in
Listing 4.1.

4.1. Online Services 35

1 https://chart.googleapis.com/chart?
2 cht=map:fixed=-60,0,80,-35&
3 chs=600x400&
4 chld=CA-BC|CN|IT|GR|US-UT&
5 chdl=Vancouver|Beijing|Torino|Athens|Salt+Lake+City&
6 chco=B3BCC0|5781AE|FF0000|FFC726|885E80|518274&
7 chtt=Last+Five+Olympic+Host&
8 schm=f2010+Winter,000000,0,0,10
9 f2008+Summer,000000,0,1,10

10 f2008+Winter,000000,0,2,10,1,:-5:10
11 f2004+Summer,000000,0,3,10
12 f2004+Summer,000000,0,4,10&
13 chma=0,110,0,0

Listing 4.1: The URL used to create Figure 4.4. It is broken into separate lines for display
purposes.

Figure 4.4: The last five olympic host countries visualised with Google Image Charts. This figure
was created using the URL in Listing 4.1.

36 4. Information Visualisation Software and Tools

4.1.5 Google Docs

Google Docs is a free web-based service that offers the possibility to create, upload, edit, and share
documents [Google, 2011a]. It includes word processor, presentation, spreadsheet, form, and drawing
applications. In addition, users can upload all kinds of documents and share them with other users. The
service allows collaboration among users in real-time, paired with a revision history system.

When using the spreadsheet service, users have the possibility to insert a gadget to visualise their
data. A gadget is a simple JavaScript and HTML application that can be embedded into the spreadsheet.
Using the Google Gadgets API, users can also create and submit their own gadgets [Google, 2011b]. Up
to now, the following gadget types are submitted by companies and individuals:

• Pie Chart and Doughnut Chart: InfoSoft Global (P) Ltd. contributed this Flash-based visual-
isation which can be displayed in both 2D and 3D. The appearance of the visualisations can be
changed by using the settings panel of the gadgets. Multiple options such as labelling, font, and
number options are available. Sadly, there is no export functionality included. The only possibility
to save the resulting visualisation is to make a screenshot.

• Funnel Gadget: This gadget was also submitted by InfoSoft Global (P) Ltd. It has the same
characteristics as the pie and doughnut chart.

• Pyramid Gadget: This is the third gadget contributed by InfoSoft Global (P) Ltd. Unfortunately,
there is also no export functionality included.

• Star Plot A star plot gadget was submitted by Greg Marra. Unfortunately, it has little functionality.
The only available option included within the gadget settings is the ability to change the appearance
of the legend.

• Treemap A treemap is contributed by Yaar Schnittman. It is a squarified treemap, offering two
different layout and labelling options. In addition, it is possible to define two colours for the colour
range.

• Event Timeline: David Huynh and Timeline Fans submitted a gadget displaying a timeline of
events.

• Gantt Chart: Viewpath [2011] offers the possibility to create a Gantt chart, displaying task sched-
ules.

Besides the possibility for companies and individuals to submit their own gadgets, most of the avail-
able gadgets are developed by Google itself. This includes pie charts, bar charts, area charts, scatter
charts, motion charts, line charts, and many more.

4.2 Standalone Software

This section describes standalone software for creating visualisations. These solutions have to be down-
loaded and installed locally on a computer in order to use them. The major benefit of this procedure is
that the user does not need to subscribe to an online account or to upload or publish their data. Stan-
dalone software typically runs faster than an online service and does not require an active connection to
the internet. However, a negative aspect of the use of standalone software is the lack of possibilities to
share data and visualisations and to collaborate with other users.

4.2. Standalone Software 37

(a) A bubble chart visualising fund flows in the
technological sector before, during, and after the
dot.com bubble.

(b) A visualisation displaying the real estate prices
in counties around Seattle.

Figure 4.5: Two examples of visualisations created with Tableau. The images are extracted from
Tableau [2011b].

4.2.1 Tableau

Tableau is a family of data visualisation software originating from academic research at Stanford Uni-
versity. Pat Hanrahan, Chris Stolte, and Christian Chabot founded the company Tableau Software in
2003 [Tableau, 2011b; Bloomberg, 2011]. The software family consists of the products Tableau Desk-
top, Tableau Server, Tableau Digital, and Tableau Public. Apart from Tableau Public, which has limited
storage space and a limit of data rows that can be visualised, the other products are not free [Tableau,
2011a]. However, Tableau offers a free 30-day trial version for these software products. Tableau Public
is a service allowing users to create and share visualisations on the web. A disadvantage of this product
is that these visualisations and the corresponding data are always public. Tableau Digital is the premium
version of Tableau Public and allows visualisations and data to be kept private.

In order to create a visualisation, Tableau first has to be connected to a data source. Data sources
such as Microsoft Excel, Microsoft Access, MYSQL, PostgreSQL, and many more are available. In the
second step, a view containing a visualisation can be created. This is done by dragging and dropping
fields onto shelves. Figure 4.5 shows two visualisations created with Tableau.

4.2.2 Statistics eXplorer Desktop Version

Besides the online version of Statistics eXplorer (see Section 4.1.2), NcomVA offers a standalone version
as well [NComVA, 2011c]. It can be installed locally on the user’s computer and it is available in the
versions Sweden eXplorer, Europe eXplorer, and World eXplorer. In addition to the functionality offered
by the online version, the desktop version contains an improved GUI layout. It moves commonly used
functionality to a new menu bar at the top of the application. Additionally, this version includes new
functionality such as a region filter, region highlighting, different line styles, categories and an indicator
filter. Figure 4.6 shows a screenshot of the online demo version of the Sweden eXplorer. Sadly, no free
version of the desktop version of Statistics eXplorer is available. Only a yearly licence can be purchased.

38 4. Information Visualisation Software and Tools

Figure 4.6: The Sweden eXplorer displaying the total population of Sweden. On the left side, a
map displays the provinces of Sweden. A table lens can be seen on the top right and a
time graph is shown on the bottom right.

4.2.3 Microsoft Excel and OpenOffice Calc

Microsoft Excel is a standalone spreadsheet application included within Microsoft Office [Microsoft,
2011b]. It is available for Windows and Mac and its latest version for Windows is Microsoft Excel 2010.
Excel offers advanced functionality with regard to the import, manipulation, and export of data. In addi-
tion, various different charts can be produced and inserted into a spreadsheet. Microsoft Excel offers ten
different chart types, which can be inserted by selecting a data range on the spreadsheet together with
choosing the desired chart type. Unfortunately, the export functionality of charts is limited: there exists
only the possibility to export charts using a PDF printer. Figure 4.7a shows an example of a chart created
with Microsoft Excel.

The charting functionality of Microsoft Excel can be extended by installing add-ins or templates.
An example of an Excel add-in is VisuLab [2011], a project of Hans Hinterberger at the Institute of
Computational Science at Swiss Federal Institute of Technology Zurich. With VisuLab it is possible to
visualise multidimensional data using parallel coordinates (see Figure 4.7b), Andrew’s curves, scatter-
plot matrices, and permutation matrices. Another extension which can be used to enhance the charting
functionality of Microsoft Excel is the open-source template NodeXL [2011], a project of the Social
Media Research Foundation. Using NodeXL, it is possible to create network graphs such as the graph in
Figure 4.7c.

A free alternative to Microsoft Excel is OpenOffice Calc, which offers similar functionality for im-
porting, creating, and modifying data [Apache, 2011]. Like in Microsoft Excel, users can create charts
such as bar charts, pie charts, area charts, line charts, scatterplots, bubble charts, and star plots. Unfortu-
nately, the offered charts are not interactive and there is no export functionality. An example of a chart
created with OpenOffice Calc is shown in Figure 4.7d.

4.2. Standalone Software 39

(a) An area chart created with Microsoft Excel dis-
playing the percentage of female forenames from
1997 to 2007.

(b) Parallel coordinates visualisation created with
the Excel add-in VisuLab. This image is ex-
tracted from VisuLab [2011].

(c) The graph K3,3 created with the Excel template
NodeXL.

(d) A bar chart created with OpenOffice Calc. It
displays the population of the World’s regions in
relation to the number of internet users.

Figure 4.7: Examples of visualisations created with Microsoft Excel and OpenOffice Calc.

40 4. Information Visualisation Software and Tools

1 var vis = new pv.Panel()
2 .width(150)
3 .height(150);
4
5 vis.add(pv.Rule)
6 .data(pv.range(0, 2, .5))
7 .bottom(function(d) d * 80 + .5)
8 .add(pv.Label);
9

10 vis.add(pv.Bar)
11 .data([1, 1.2, 1.7, 1.5, .7])
12 .width(20)
13 .height(function(d) d * 80)
14 .bottom(0)
15 .left(function() this.index * 25 + 25)
16 .anchor("bottom").add(pv.Label);
17
18 vis.render();

Listing 4.2: Protivis code used to produce the bar chart shown in Figure 4.8a. This example is
taken from Protovis [2011].

4.3 Libraries and Toolkits

Libraries and packages give users the possibility to embed a visualisation into a web site or application.
The solutions are typically developed by a third party and require developer knowledge in order to set
them up.

4.3.1 Protovis

According to Bostock and Heer [2009], Protovis [2011] is an embedded domain-specific language, al-
lowing the creation of visualisations by hierarchically composing graphical primitives (called marks). It
is a project of the Stanford Visualization Group led by Mike Bostock and Jeff Heer and it is implemented
in JavaScript. Protovis was created to close the gap between charting software which allows the creation
of predefined charts and vector-based drawing programs. The development team already released a final
version of Protovis (v3.3.1) and is now developing the visualisation library D3 (see Section 4.3.2).

In Protovis, visualisations can be created by composing marks. Marks are graphical primitives such
as bars, lines, and labels. They are associated with data and visual properties such as colour and position.
Data can be added using the JavaScript Object Notation and transformations can be applied to it. Event
handlers can be registered in order to add interactivity to marks. In addition, Protovis offers HTML5,
SVG, and Flash rendering support. Listing 4.2 shows an example of Protovis code used to create the bar
chart in Figure 4.8a. A redrawn version of Playfair’s wheat chart [Playfair, 1801] is shown in Figure 4.8b.

4.3.2 D3

D3 (or d3.js) is a JavaScript library developed by the Stanford Visualization Group [Bostock et al., 2011;
Bostock, 2011]. It binds data to the Document Object Model (DOM) and provides various data-driven
transformations. Unlike traditional graphics libraries, D3 does not encapsulate the Document Object
Model (DOM) of web sites in order to provide the possibility to directly manipulate it. Developing
DHTML typically includes debugging of the code, using tools to inspect the scene graph of a document.

4.3. Libraries and Toolkits 41

(a) A bar chart created with the
Protovis code shown in List-
ing 4.2.

(b) A redrawn version of Playfairs wheat chart, produced with Proto-
vis. It displays the price of wheat, weekly wages, and the reigning
monarch from 1565 to 1821 [Playfair, 1801].

Figure 4.8: Two visualisations created with Protovis. The examples are extracted from Protovis
[2011].

Using D3, this procedure is still possible, because data is bound to arbitrary document elements. Ac-
cording to Bostock et al. [2011], in D3 “the document is the scene graph”. Two examples created with
D3 can be seen in Figure 4.9.

D3 can be compared to other document transformers such as jQuery, CSS, and XSLT. It is more a
visualisation “kernel” than a framework. D3 is closely related to Protovis (see Section 4.3.1), a previous
project of the Stanford Visualization Group. However, the difference is that the focus of Protovis is on a
declaration of static scenes, whereas D3 creates dynamic content using transformations. [Bostock et al.,
2011]

4.3.3 GAV Flash Toolkit

The GAV Flash Toolkit is an interactive visualisation framework, allowing developers to integrate a
broad range of visualisations into their applications [NComVA, 2011b; NCVA, 2011a]. GAV Flash is
programmed using Adobe Flex and includes the same components used in the Statistics eXplorer (see
Section 4.1.2). These components are: choropleth maps, colour legends, data grids, distribution plots,
histograms, parallel coordinates, scatter plots, scatter matrices, table lenses, and time graphs. The gen-
eral architecture of all components used by a GAV Flash application can be seen in Figure 4.10. The
toolkit supports various data sources, such as unicode text files (.txt), Microsoft Excel files, the World
Bank Database API, and partly PC-Axis, and SDMX files. One of statistics eXplorer’s main features,
the story-telling functionality, is also included within GAV Flash. Using this functionality enables users
to report interesting findings to other users.

Unfortunately, the GAV Flash Toolkit cannot be downloaded from the NComVA’s web site and there-
fore cannot be tested.

4.3.4 JavaScript InfoVis Toolkit (JIT)

The JavaScript InfoVis Toolkit [SenchaLabs, 2011] is a open source project by Nicolas Garcia Belmonte.
Using the toolkit enables developers to create highly interactive data visualisations. It implements multi-
ple visualisations used in the field of information visualisation such as area charts, pie charts, treemaps,

42 4. Information Visualisation Software and Tools

(a) A scatterplot matrix displaying the
well-known Iris flower dataset col-
lected by the botanist Edgar Ander-
son in 1935 and introduced by Fisher
[1936].

(b) A Voronoi diagram created with D3.

Figure 4.9: Visualisations created with the JavaScript library D3. The examples and the corre-
sponding images are taken from Bostock [2011].

Figure 4.10: The general architecture of the components Adobe Flash, Adobe Flex, GAV Flash,
and a GAV Flash application. This image is taken from NCVA [2011a].

4.3. Libraries and Toolkits 43

(a) A squarified treemap displaying CDs from vari-
ous interprets.

(b) A stacked area chart created using random data.

Figure 4.11: Examples of visualisations created with the JavaScript InfoVis Toolkit (JIT). The
images are extracted from SenchaLabs [2011].

force-directed graphs, and many more. Examples of visualisations created with the JavaScript InfoVis
Toolkit can be seen in Figure 4.11.

According to Nicolas Garcia Belmonte [2011], the JavaScript InfoVis Toolkit was acquired in 2010
by the Sencha Labs Foundation. However, the project remains open source and is still maintained by
Nicolas Garcia Belmonte.

4.3.5 amCharts

amCharts [2011] offers a set of charts written in JavaScript and Flash. Currently, two different prod-
ucts are available: the amCharts bundle, and stock charts. The amCharts bundle consists of multiple
visualisations such as bar charts, line charts, area charts, candlestick charts, pie charts, star plots, and
many more. In addition, the amCharts bundle offers a number of visualisations written in Flash and Flex.
However, amCharts has discontinued the development of its Flash-based charts. The second product, the
stock charts, display time-based data such as financial data. An example of a stock chart can be seen in
Figure 4.12.

The use of amCharts is free and all products can be downloaded from the corresponding web site.
However, the products contain a small link to the amCharts’ web site at the top left corner of each
visualisation. In order to obtain a version without links, a commercial license has to be purchased.

4.3.6 Axiis

Axiis [2011] is a data visualisation framework written in Flex. It is built upon the Degrafa [2011] graph-
ics framework and includes both pre-built visualisation components and classes which enable developers
to create their own visualisations. Axiis is an open source project maintained by Tom Gonzalez, and
Michael VanDaniker. The project started in 2009 with the aim to provide developers a framework for
creating complex, interactive data visualisations.

Axiis is designed with its focus on enabling developers to write elegant code. Additionally, Axiis
reduces the amount of code using inline Flex Binding. It is a granular framework which gives developers
the possibility to combine building blocks in order to produce complex output.

44 4. Information Visualisation Software and Tools

Figure 4.12: A stock chart created with amCharts. It displays time-based data and consists of
several visualisation types such as a bar chart, a line chart, and a candlestick chart.
The red area displays a selection.

(a) A treemap visualising the number of lines
in each file within the Axiis framework.

(b) This figure shows a HCluster Column visualising the
number of medals per nation in the 2008 Olympics. A
HCluster Column is a bar chart which shows an addi-
tional histogram.

Figure 4.13: Examples created with Axiis. The images are taken from Axiis [2011].

Chapter 5

Liquid Diagrams Framework Version 2.0

Liquid Diagrams (LD) is a suite of information visualisation gadgets, developed using Flex [Andrews
and Lessacher, 2010]. The Liquid Diagrams framework offers a set of functions for creating highly in-
teractive visualisations. The functionality is carefully designed in order to not contain any visualisation
logic. Instead, simple functionality such as functions for drawing lines, axes, legends, and data points
is provided. The Liquid Diagrams framework was conceived by Keith Andrews and implemented by
Martin Lessacher in a course at Graz University of Technology in 2009 [Lessacher, 2009]. Further de-
velopment was performed in Lessacher’s Master’s thesis in 2010 [Lessacher, 2010].

Version 2.0 denotes the current state of the Liquid Diagrams framework. Version 1.0 denotes the state
of the framework after the work of Lessacher [2010] was finished. Currently, there are three variants of
the Liquid Diagrams framework:

1. Gadget version: The gadget version consists of gadgets which can be embedded into a spreadsheet
on Google Docs [Google, 2011c]. It uses the Google Visualization API to retrieve the data from a
spreadsheet. More details about the online version of the Liquid Diagrams framework can be seen
in Section 5.2.

2. Standalone version: The standalone version allows the local execution of every gadget in the
framework. Here, the visualisations are installed locally on the user’s computer. No active internet
connection is needed. The standalone version is covered in Section 5.3.

3. Cookie version: This version of the Liquid Diagrams framework works exactly like the gadget
version. The difference between both versions is that the cookie version does not retrieve and save
its settings using the Google gadget settings. Instead, the settings are saved using cookies (see
Section 5.4).

5.1 Data Formats

Each visualisation in the framework requires its data to be specified according to certain criteria, in order
to display it properly. Here, a distinction between five different data formats is made. The only data
format which was modified in version 2.0 of the framework is the geo data format. The others remain as
described by Lessacher [2010]. Table 5.1 summarises which data format is used by which visualisation.

5.1.1 LD Chart Data Format

The chart data format is used in the visualisations line chart, bar chart, and area chart. Here, the first
column specifies the values shown on the x-axis. The first row contains the name of each data entity. An

45

46 5. Liquid Diagrams Framework Version 2.0

Visualisation Chart Pie Data Nightingale Multidimensional Hierarchical Geo Data
Data Format Format Data Format Data Format Data Format Format

Line Chart
√

Bar Chart
√

Area Chart
√

Pie Chart
√

Polar Area Diagram
√

Bat’s Wing Diagram
√

Parallel Coordinates
√

Star Plot
√

Similarity Map
√

Treemap
√

Voronoi Treemap
√

Heatmap
√

Table 5.1: A summary of the data formats used by the visualisations of the framework.

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Lena 376 449 512 554 566 677 745 791 911 960 843
Leonie 0 0 0 158 242 453 661 851 966 942 822
Anna 973 1057 968 1042 1003 1016 923 916 883 871 821
Sarah 1063 925 958 1014 929 996 965 879 848 935 804
Julia 1491 1431 1322 1239 1020 934 809 835 815 760 748

Table 5.2: The LD chart data format. The first row specifies the x-axis ticks and the first column
contains the names of the data entities.

example of this data format is shown in Table 5.2.

5.1.2 LD Pie Data Format

The pie chart visualisation uses the pie data format. An example of it can be seen in Table 5.3. Here, the
name of the data entities are specified using the first column and the rest of the columns, starting with the
second column contain data values visualised within the visualisation. The first row contains the names
of the dimensions.

5.1.3 LD Nightingale Data Format

The data format used by the bat’s wing diagram and the polar area diagram is similar to the pie data
format. However, both diagrams are designed to display changes in the data over time. To adapt the
pie data format to represent time, it is simply necessary to insert date values into the first column. An
example of this data format can be seen in Table 5.4.

5.1.4 LD Multidimensional Data Format

The visualisations star plot, parallel coordinates, and similarity map use the multidimensional data for-
mat, shown in Table 5.5. The first column contains the names of the data entities. The names of the
data dimensions are specified in the first row. In the star plot and parallel coordinates visualisations, the
data dimensions are represented using axes. The values for attributes can be specified using numbers or
strings.

5.1. Data Formats 47

World Regions Population Internet Users Usage Growth
Africa 955206348 4514400 1031.2%
Asia 3776181949 114304000 406.1%
Europe 800401065 105096093 266.0%
Middle East 197090443 3284800 1176.8%
North America 337167248 108096800 129.6%
Latin America 576091673 18068919 669.3%
Oceania 33981562 7620480 165.1%

Table 5.3: The pie data format used by the pie chart visualisation.

Period Other Causes Wounds Disease
1854-04-01 30 0 30
1854-05-01 20 0 30
1854-06-01 10 0 20
1854-07-01 20 0 100
1854-08-01 30 0 350
1854-09-01 60 30 330
1854-10-01 100 95 300
1854-11-01 90 180 350
1854-12-01 100 90 500
1855-01-01 200 80 800
1855-02-01 220 60 550
1855-03-01 120 40 300

Table 5.4: The Nightingale data format used by the bat’s wing diagram and the polar area diagram.

Name Manufacturer Type Calories Protein (g)
100% Bran N cold 70 4
Almond Delight R cold 110 2
Apple Cinnamon Cheerios G cold 110 2
Apple Jacks K cold 110 2
Cap’n’Crunch Q cold 120 1
Cheerios G cold 110 6
Cream of Wheat (Quick) N hot 100 3

Table 5.5: Part of the well-known cereal dataset [StatLib, 2011] as an example of the multidimen-
sional data format.

48 5. Liquid Diagrams Framework Version 2.0

District Province Area (ha) Population Density (per ha) Foreigners
Eisenstadt Burgenland 4284.34 12744 3.0 1037
Klagenfurt Carinthia 12003.16 93478 7.8 9411
Salzburg Salzburg 6563.63 147732 22.5 30191
Graz Styria 12748.16 253994 19.9 36145
Graz-Umgebung Styria 110292.57 141226 1.3 6292
Wien Wien 41464.84 1687271 40.7 339134

Table 5.6: An example of the hierarchical data format. The first column specifies the names of the
data entities, the second column contains the name of the parent of each data item.

5.1.5 LD Hierarchical Data Format

The hierarchical data format shown in Table 5.6 is required by the visualisations treemap and Voronoi
treemap. This data format specifies a data entity in each row. The first row contains the names of the data
dimensions. The first column contains the names of the data entities. The second column specifies the
name of the parent for each data entity. If a field in the second column is left blank, the gadget assumes
that this entity is a top-level entity and therefore it is added to the root of the hierarchy. All further
columns, starting with the third column are value columns, displayable within the visualisation.

5.1.6 LD Geo Data Format

The data for the heatmap gadget has to be specified, using the geo data format. Examples of this format
can be seen in Table 5.8 and 5.7. It underwent some modifications in version 2.0 of the Liquid Diagrams
framework. With this data format, a geographic area can be specified in two ways. First, in the one-
column data format, the area is identified using the ISO-3166 ALPHA-2 code [ISO, 2011] of the parent
area, followed by a dash (“-”) and the ISO-3166 ALPHA-2 code of the child area. An example of this
data format can be seen in Table 5.7.

The second data format is the two-column data format. An example can be seen in Table 5.8. Here,
the areas are identified by the first column, specifying the ISO-3166 ALPHA-2 code of the parent, to-
gether with the second column, specifying the ISO-3166 ALPHA-2 code of the child. In order to be
recognised as the two-column input format, the value in the first row of the second column must be
named “ld-Child”. Otherwise, the gadget assumes that the one-column input format is being used.

The second modification concerns the names of areas within the visualisation. The possibility was
created to change the displayed name of an area within the visualisation. Normally, these names come
from the loaded SVG shape files. They can be changed by inserting a data column, specifying the
names. Here, the first value of the column must be “ld-Name” in order for it to be recognised properly.
This modification is available in both data formats.

5.2 LD Gadget Version

A visualisation in the gadget version of Liquid Diagrams consists of a SWF file (containing the main
body of the visualisation), an XML config file, some JavaScript code, and a data source. Currently, the
only implemented data source is Google Spreadsheets. However, Liquid Diagrams is designed to be
able to support various data sources. The only available limitation concerns the use of JavaScript, which
needs to be supported by the data source.

5.2. LD Gadget Version 49

Region Code ld-Name Car Registration Prefix Population
AT-6-FB Feldbach FB 67,234.00
AT-6-G Graz G 257,328.00
AT-6-RA Radkersburg RA 23,044.00
AT-6-LB Leibnitz LB 77,135.00
AT-6-DL Deutschlandsberg DL 60,920.00
AT-6-VO Voitsberg VO 52,471.00
AT-6-GU Graz Umgebung GU 141,977.00
AT-6-WZ Weiz WZ 87,190.00

Table 5.7: The One-Column Geo Data Format. This data format is used by the heatmap visualisa-
tion. The areas are specified by only one column. A dash (“-”) combines the ISO-3166
ALPHA-2 code [ISO, 2011] of the parent and the corresponding code of the child.

Region Code ld-Child ld-Name Car Registration Prefix Population
AT-6 FB Feldbach FB 67,234.00
AT-6 G Graz G 257,328.00
AT-6 RA Radkersburg RA 23,044.00
AT-6 LB Leibnitz LB 77,135.00
AT-6 DL Deutschlandsberg DL 60,920.00
AT-6 VO Voitsberg VO 52,471.00
AT-6 GU Graz Umgebung GU 141,977.00
AT-6 WZ Weiz WZ 87,190.00

Table 5.8: The Two-Column Geo Data Format. One of the two Geo Data Formats used by the
heatmap gadget. Geographical areas are specified using the two-column format. In
this case the first column specifies the parent and the second the child. The name of
the second column must be “ld-Child”. The third column with the name “ld-Name”
specifies the names of the corresponding areas. This column is optional.

50 5. Liquid Diagrams Framework Version 2.0

Google Spreadsheets is Goolge’s answer to Microsoft Excel. It is an online spreadsheet application
which allows the embedding of charts and gadgets to visualise one’s own data. A gadget is a sim-
ple JavaScript and HTML application which can be created using the Google Gadgets API. The online
version of Liquid Diagrams currently implements twelve different google gadgets, one for each visu-
alisation. A gadget consists of an XML file, containing the gadget’s preferences, its content and user
preferences. Liquid Diagrams inserts a visualisation within the content section of the corresponding gad-
get’s XML file using JavaScript. In addition, the data in the spreadsheet is retrieved using JavaScript,
over the Google Visualization API. It is delivered to the visualisation after the visualisation is created.
The visualisation is displayed inside a Google spreadsheet, visualising its data. The code to perform
these actions was written by Martin Lessacher. A detailed description of the architecture can be found in
Lessacher [2010].

Using Google Spreadsheets has the advantage of user collaboration. This works, because Google
provides the functionality to share spreadsheets among users. This includes gadgets, previously submit-
ted to and approved by Google. In this way, users can collaboratively explore the visualised data.

5.3 LD Standalone Version

An important extension to the Liquid Diagrams framework is the implementation of a standalone version
of the framework. For the execution of this version, no internet connection is needed, because it runs
as an independent application on the computer of the user. Section 7.1.2 explains how the standalone
version was implemented by extending the debug version of the framework and how the architecture
changed in comparison to the initial state.

The standalone version was implemented using Adobe AIR. This technology was already discussed
in Section 3.4. It enhances the framework with advanced file import functionality and the possibility to
specify and register file types in the operation system.

5.3.1 Applications

In contrast to the online version, the visualisations of the standalone version have to be installed in order
be executed. Therefore, the decision was made to create several different applications, which can be
launched from the user’s desktop. The standalone version of the Liquid Diagrams framework consists
the twelve individual visualisations currently implemented, as described in Chapter 6. They work exactly
like in the online version, except for the additional data import functionality.

Unfortunately, Adobe AIR does not support multiple applications within one installer and therefore
it was not possible install the whole framework at once. As a consequence of this circumstance, the
decision was made to create a 13th application named liquiddiagrams. It is a wrapper for all twelve indi-
vidual visualisations. A screenshot of it can be seen in Figure 5.1. The main window of this application
consists of twelve buttons enabling the user to launch each individual visualisation in the framework. By
clicking on one of these buttons, a new window appears containing the corresponding visualisation. By
default, the window’s width is 800 pixels and its height is 600 pixels. The application allows the user to
open as many visualisations as needed. Even two ore more visualisations of the same type are possible.
This feature enables users to display the same data in different visualisations and with different options
in each of them. The only limitation concerns the different data formats (see Table 5.1 in Section 5.1),
which have to be followed in order to display the imported data properly.

5.3. LD Standalone Version 51

Figure 5.1: In the background the main window of the standalone version and the open area chart
gadget in the front.

5.3.2 Visualisation Settings

In the gadget version of Liquid Diagrams, the settings of a visualisation come from the user preferences
of the corresponding Google gadget. These are defined via the UserPref attributes in the XML file of
the gadget. They can by reached and changed via the gadget menu, or if the gadget is moved to its own
sheet via, the Edit Settings button on the upper right corner of the gadget.

For standalone version, a comfortable solution for managing the user settings was needed. An early
solution was to include static default settings in the code of each visualisation. This was not a very satis-
fying approach, because there was no chance of changing the included settings without recompiling the
visualisations.

To solve this problem, an XML file, containing the default settings of a gadget was written. This file
is loaded at runtime during the initialisation process of the visualisation, at which point the corresponding
settings are parsed and applied to it. In order to retrieve the settings properly, it was defined that the file
which contains the default settings for a visualisation must have the name settings.xml. It has to be
located in the corresponding resource folder of the visualisation. For example, the default settings for
the bar chart visualisation can be found in ./res/barchart/settings.xml. An example of a settings
file can be seen in Listing 5.1. It shows the settings.xml file of the bar chart visualisation.

5.3.3 Data Import

In order to work properly, a standalone visualisation has to retrieve and subsequently visualise the re-
trieved data. Therefore, the fundamental question of an adequate data import functionality was raised. In
the gadget version of the framework, data is retrieved from the spreadsheet via the Google Visualization

52 5. Liquid Diagrams Framework Version 2.0

1 <data>
2 <settings id="settings">
3 <setting id="x_title" value="X Title"/>
4 <setting id="title" value="Diagram Title"/>
5 <setting id="number_display_format" value="1,000.00"/>
6 <setting id="line_break_signs" value=":-/"/>
7 <setting id="shorten_factor_x" value="1"/>
8 <setting id="dynamic_y_axis" value="true"/>
9 <setting id="legend" value="No Legend"/>

10 <setting id="y_title" value="Y Title"/>
11 <setting id="show_title" value="true"/>
12 <setting id="show_x_title" value="true"/>
13 <setting id="show_y_title" value="true"/>
14 <setting id="use_ratio" value="false"/>
15 <setting id="x_ratio" value="1"/>
16 <setting id="y_ratio" value="1"/>
17 <setting id="shorten_factor" value="1"/>
18 <setting id="min_bar_width" value="10"/>
19 <setting id="x_axis_label_style" value="45 Degrees"/>
20 <setting id="color_scheme" value="Many"/>
21 <setting id="date_display_format" value="2000-01-30"/>
22 </settings>
23 </data>

Listing 5.1: The settings.xml file of the bar chart visualisation. It contains the visualisation’s
default settings loaded during its initialisation process. After the loading, the settings
are applied to the visualisation.

API using JavaScript. The next step is the preprocessing of the data and finally the data is transferred to
the gadget by a callback method. Lessacher [2010] explains this procedure in more detail.

In contrast to the gadget version, the data of the standalone version has to be imported using the im-
port buttons at the left side of the visualisation, or when the liquiddiagrams application is launched using
the file menu of an open window. A file chooser dialogue appears. When the user selects a data file, it
is loaded and parsed by the framework. As a last step, the data import dialogue appears, where the user
is able to modify parsing options before the final data is sent to the visualisation. More about the data
import dialogue can be found in Section 5.5.8.

The import functionality currently supports the file formats .csv, .xls and .ods. By implement-
ing this functionality, the focus was on extensibility with respect to the insertion of new file formats. In
order to implement the import functionality for the file types .xls and .ods, two external libraries
providing necessary functionality were used:

1. as3xls: The ActionScript library as3xls [2011] is used for parsing .xls files. Due to the fact that
the original version of the library did not handle the parsing process correctly, a modified version
by Wilson [2011] was used.

2. FZip: This library was used to extract the zipped content from .ods files in order to parse it.
FZip was written by Wahlers and Herkender [2011].

In addition, there was a demand for sharing visualisations and settings among users like in the gadget
version of the framework. To meet this demand, the import and export of project files was implemented.

5.3. LD Standalone Version 53

5.3.4 Project File Import and Export

In the gadget version of the framework, visualisations can be shared among users by sharing a spreadsheet
in Goolge Docs. Thereby, all the options are saved within the Google gadget settings. This mechanism
enables any modified options to be restored when a gadget is loaded. When implementing the standalone
version the decision was made that a similar functionality should be available in this version as well.
That means that users should be able to save the current state of a visualisation with its corresponding
settings and restore it later on. In this way, visualisations can be shared among users as well.

To meet this demand, the decision was made to implement the import and export of project files. A
project file has the file extension .ld and is basically a .zip file, containing three files:

1. context: This file contains the context of the project file. Currently it just contains the name of
the visualisation which is saved. In the future it could be extended to hold the version of the
application or similar options.

2. data.csv: The data of the visualisation is saved within this file. It contains the filtered data cur-
rently displayed exactly when the project file was saved. For example, if some filtering options
like hiding columns or rows were applied when the original data was loaded, only the filtered data
values are saved in this file.

3. settings.xml: This file contains the settings which are active in the visualisation at the moment
when the project file was exported. More about the visualisation settings can be found in Sec-
tion 5.3.2.

There are two different ways to open a project file. The first is to select the option “Import Project
File” in the file menu of the liquiddiagrams application. The second way is to simply open a previously
exported project file from the file system. This is possible because the file type “Liquid Diagrams Project
File” with its corresponding file extension (.ld) is registered with the operating system when the the
standalone version of the Liquid Diagrams framework is installed. Adobe AIR makes this possible with
an entry in the application’s XML settings file. Listing 5.2 shows the XML item which has to be specified
in the file, in order to register a file type for an application. A detailed discussion of the implementation
of this functionality can be found in Section 8.2.

5.3.5 Release

Adobe AIR applications can be installed on the desktop. To create an AIR application installer, a produc-
tion build of the AIR project has to be performed. It produces a digitally signed AIR installer, enabling
the application to be installed. The production build can be performed using the internal release build
functionality of Adobe Flash Builder, or by using Apache ANT. Liquid Diagrams uses Apache ANT.
This has the advantage that the installers of all applications can be created by a simple double-click.

The functionality for creating an installer consists of two XML files, containing the ANT content
and a Windows .bat file. The first XML file (shown in Listing 5.3) is responsible for all cleaning
actions performed before the building process starts. It deletes the folder containing the installers built in
a previous release, and recreates it again. The second XML file, seen in Listing 5.4, creates an installer.
This is done using a self-signed certificate. Additionally, the file ensures that all necessary files needed
by the application are included within the installer. To simplify the procedure of calling this files, a
Windows .bat file was created. Instead of manually using the command console, this file offers the
possibility of executing the files by performing a simple double-click. The .bat file can be seen in
Listing 5.5. In order to create the installers for all applications of the framework at once, an additional
.bat file (shown in Listing 5.6) is available. It executes the ANT files of all applications.

54 5. Liquid Diagrams Framework Version 2.0

1 [...]
2
3 <fileTypes>
4 <fileType>
5 <name>ld.project.file</name>
6 <extension>ld</extension>
7 <!-- <description></description> -->
8 <contentType>application/zip</contentType>
9 <icon>

10 <image16x16>areachart/icons/icon-areachart-16.png</image16x16>
11 <image32x32>areachart/icons/icon-areachart-32.png</image32x32>
12 <image48x48>areachart/icons/icon-areachart-48.png</image48x48>
13 <image128x128>areachart/icons/icon-areachart-128.png</image128x128>
14 </icon>
15
16 </fileType>
17 </fileTypes>
18
19 [...]

Listing 5.2: This listing shows an entry in the XML settings file of an Adobe AIR application. It
is responsible for registering a file type on the operation system.

1 <project>
2
3 <!-- SDK properties -->
4 <property name="SDK_HOME" value="C:/Program Files/Adobe/Adobe Flash Builder 4/

sdks/4.1.0/"/>
5 <property name="ADL" value="${SDK_HOME}/bin/adl.exe"/>
6 <property name="ADT.JAR" value="${SDK_HOME}/lib/adt.jar"/>
7
8 <!-- Project properties -->
9 <property name="PROJ_ROOT_DIR" value=".."/>

10 <property name="release" location="${PROJ_ROOT_DIR}/release"/>
11
12 <target name="clean" description="clean up">
13 <delete dir="${release}"/>
14 </target>
15
16 <target name="init" depends="clean">
17 <mkdir dir="${release}"/>
18 </target>
19
20 </project>

Listing 5.3: This XML file is responsible for cleaning up the release folder. This is done using
Apache ANT.

5.3. LD Standalone Version 55

1 <project>
2 <!-- SDK properties -->
3 <property name="SDK_HOME" value="C:/Program Files/Adobe/Adobe Flash Builder 4/

sdks/4.1.0/"/>
4 <property name="ADL" value="${SDK_HOME}/bin/adl.exe"/>
5 <property name="ADT.JAR" value="${SDK_HOME}/lib/adt.jar"/>
6
7 <!-- Project properties -->
8 <property name="PROJ_ROOT_DIR" value=".."/>
9 <property name="APP_NAME" value="liquiddiagrams"/>

10 <property name="APP_ROOT_DIR" value="${PROJ_ROOT_DIR}/src"/>
11 <property name="APP_ROOT_FILE" value="${APP_NAME}.mxml"/>
12 <property name="APP_DESCRIPTOR" value="${APP_ROOT_DIR}/${APP_NAME}-app.xml"/>
13 <property name="AIR_NAME" value="${APP_NAME}.air"/>
14 <property name="release" location="${PROJ_ROOT_DIR}/release"/>
15 <property name="assets" location="${PROJ_ROOT_DIR}/res"/>
16 <property name="STORETYPE" value="pkcs12"/>
17 <property name="KEYSTORE" value="${PROJ_ROOT_DIR}/certificate.p12"/>
18 <property name="STOREPASS" value="not-the-real-password"/>
19 <property name="BUILD_DIR" location="${PROJ_ROOT_DIR}/bin-debug"/>
20 <property name="APP_BUILD_FILE" value="${APP_NAME}.swf"/>
21
22 <target name="test">
23 <exec executable="${ADL}">
24 <arg value="${APP_DESCRIPTOR}"/>
25 <arg value="${APP_ROOT_DIR}"/>
26 </exec>
27 </target>
28
29 <target name="package">
30 <java jar="${ADT.JAR}" fork="true" failonerror="true">
31 <arg value="-package"/>
32 <arg value="-tsa"/>
33 <arg value="none"/>
34 <arg value="-storetype"/>
35 <arg value="${STORETYPE}"/>
36 <arg value="-keystore"/>
37 <arg value="${KEYSTORE}"/>
38 <arg value="-storepass"/>
39 <arg value="${STOREPASS}"/>
40 <arg value="${release}/${AIR_NAME}"/>
41 <arg value="${APP_DESCRIPTOR}"/>
42 <arg value="-C"/>
43 <arg value="${BUILD_DIR}"/>
44 <arg value="${APP_BUILD_FILE}"/>
45 <arg value="-C"/>
46 <arg value="${assets}"/>
47 <arg value="/"/>
48 </java>
49 </target>
50 </project>

Listing 5.4: This file creates the installer for the liquiddiagrams application. It signs the installer
with a certificate and includes all necessary files for the execution of the application
within the installer.

56 5. Liquid Diagrams Framework Version 2.0

1 CALL ant -f ant/common.xml init
2 CALL ant -f ant/build-liquiddiagrams.xml package
3 PAUSE

Listing 5.5: This Windows .bat file executes the files shown in Listings 5.3 and 5.4.

1 CALL ant -f ant/common.xml init
2 CALL ant -f ant/build-areachart.xml package
3 CALL ant -f ant/build-barchart.xml package
4 CALL ant -f ant/build-batswing.xml package
5 CALL ant -f ant/build-heatmap.xml package
6 CALL ant -f ant/build-linechart.xml package
7 CALL ant -f ant/build-parcoord.xml package
8 CALL ant -f ant/build-piechart.xml package
9 CALL ant -f ant/build-polararea.xml package

10 CALL ant -f ant/build-simmap.xml package
11 CALL ant -f ant/build-starplot.xml package
12 CALL ant -f ant/build-treemap.xml package
13 CALL ant -f ant/build-voronoi.xml package
14 CALL ant -f ant/build-liquiddiagrams.xml package
15 PAUSE

Listing 5.6: This Windows .bat file creates the installers of all applications of Liquid Diagrams.
This is done by executing the corresponding Apache ANT files.

5.4 LD Cookie Version

According to Barth [2011] cookies are used for a web server to send state information to a user’s browser
and for the browser to return it to the originating server again. With the help of cookies, it is possible to
preserve user-related data during navigation or across multiple visits of a website. This mechanism can
be used to save data related to visualisations in the Liquid Diagrams framework.

As mentioned before in Section 5.3.2 the gadget version of the framework offers an instrument for
saving visualisation-related data in the Google gadgets settings. However, there are some negative as-
pects of this approach:

• The only way to save the options of a visualisation is to open the Google gadget settings window to
manually change the settings. This causes a reload of the gadget, whereupon the visualisation loads
with the changed settings. It is not possible to directly modify the Google gadget settings from the
visualisation. This causes a major disadvantage regarding the user experience while working with
a visualisation. The user constantly has to switch to the gadget settings and wait for the gadget to
load. A user might find this procedure annoying and frustrating.

• Some dynamic settings of a visualisation can not be saved by the Google gadget settings. These
are mainly settings which result from the visualised data. An example of such a setting would be
the colour of a specific data entity or different filtering options for diverse data entities. The reason
why these settings cannot be saved by the Google gadget settings, is because it is impossible
to pre-estimate how many data entities and data values are contained in the data. This would
be necessary because the Google gadget settings consist of a predefined number of static XML
elements, contained in the gadget’s XML file.

To ameliorate this situation, the decision was made to implement a version of Liquid Diagrams which

5.4. LD Cookie Version 57

saves the settings of a visualisation as a cookie. By doing that, users do not have to constantly switch to
the Google gadget settings any more and it is possible to save dynamic settings.

In the cookies version, the options are saved in a cookie within the user’s browser with the help of
JavaScript. The SWF file calls JavaScript methods via the ActionScript interface ExternalInterface and
specifies callback methods which can be called in return. The JavaScript code consists of five main
methods:

1. storeCookieSettings(application, id, cookieSettings): This function stores all the settings for
an application. The type of the visualisation is defined by the parameter application and the
id specifies the cookie identifier which is necessary in order to retrieve the correct settings. The
existence of this identifier is a necessary evil, because otherwise it would not be possible to differ-
entiate between two different visualisations of the same type. This identifier has to be set in the
Google gadget settings.

2. storeSingleCookieSetting(application, id, name, value): Stores a single setting for a visualisa-
tion. If this setting already existed, its value is overridden with the new one.

3. deleteSingleCookieSetting(application, id, name): This function deletes a single setting from
the cookie. This is done by setting the expiration date of the cookie to the past. It is automatically
deleted by the user’s browser.

4. deleteCookieForApplication(application, id): Deletes all the entries of an application. When
this procedure is finished the call getFlexApp(application).applicationCookiesDeleted()
is triggered.

5. getCookieSettings(application, id): This function returns all the settings for a specified appli-
cation. If settings are found, it returns an array containing the settings via the call getFlexApp(
application).recieveCookieSettings(vis.settings). Otherwise, the gadget is notified by
the JavaScript call getFlexApp(application).noCookieFound().

In order to work properly, a gadget in the cookies version has to retrieve factory default settings on
first startup. Therefore, the settings mechanism described in Section 5.3.2 was used. More about the
implementation of the cookies version can be found in Section 8.2.

Unfortunately, this approach has some disadvantages as well. The first concerns the size of a cookie.
According to the RFC standard, cookies have a limited size of at least 4096 bytes [Barth, 2011] which
means that if the cookie option is used with multiple visualisations it could happen that the size of the
cookie is exceeded. The reason for that is because all the gadgets of the online version of the framework
run on the same host and therefore share the same cookie. If the size of the cookie is exceeded, the new
entries will replace the oldest ones. Another disadvantage is that cookies are not shareable among users
or browsers. This makes collaboration between users on a shared visualisation almost impossible and
therefore one of the main features of the Liquid Diagrams framework is no longer accessible.

Both the cookies version of a gadget and the version where the options are saved in the Google
gadget settings are available in parallel. This was done by creating two different Google gadget XML
files. One is for the old version and the other one for the cookies version. If one of them is inserted
in a spreadsheet on Google docs the same SWF file, containing the visualisation is loaded. The only
difference of this procedure is that the initial options for the Flash file contain a cookie flag which is set
in the cookies version. Using this flag in the ActionScript code, it can be easily differentiated between
the two versions. The name of the XML file for the cookies version differs from the name of the XML

58 5. Liquid Diagrams Framework Version 2.0

Visualisation General Fonts Labels Axes 3D Interaction Map Drawing Algorithm
Area Chart

√ √ √ √

Bar Chart
√ √ √

Bat’s Wing Diagram
√ √ √ √ √

Heatmap
√ √ √ √ √

Line Chart
√ √ √

Parallel Coordinates
√ √ √ √ √

Pie Chart
√ √ √ √

Polar Area Diagram
√ √ √ √

Similarity Map
√ √ √ √ √

Star Plot
√ √ √ √ √

Treemap
√ √ √ √

Voronoi Treemap
√ √ √

Table 5.9: The tabs included in the Options Panel of each visualisation.

file of the old version by the additional suffix -cookies. For example, the name of the XML file for the
voronoi treemap visualisation would be voronoi-cookies.xml. In this way, the users can decide which
version to insert into their spreadsheet.

5.5 Components Shared Between Visualisations

This section denotes both newly created components added to the framework, and components which
already existed in version 1.0, which underwent major modifications. This includes components such
as the improved version of the Options Panel, Import, Export and Print buttons, the Import Dialogue, and the
About Panel.

5.5.1 Options Panel Menu Component

The new menu component is one of the most important changes in the Liquid Diagrams framework with
regard to the user interface. In the previous version of the framework, Lessacher [2010] implemented
the options in a way that they do not require much space when they are not currently needed. This was
realised by adding a panel on the left side of each gadget. When this panel is clicked, it opens atop the
visualisation, and options appear inside of the resized panel. An example of this implementation can be
seen in Figure 5.2. It shows the resized Options Panel of the polar area diagram.

However, Figure 5.2 reveals a disadvantage of this approach. If too many different options are avail-
able for the visualisation, a scrollbar appears and consequently users have to scroll to reach the options at
the bottom of the Options Panel. To overcome this issue, the decision was made to integrate vertical tabs
into the Options Panel. These tabs group the option elements into categories which differ from gadget to
gadget. In this way, it is ensured that the number of visible options does not overfill the available space.
Figure 5.3 shows the Options Panel in the polar area diagram after the modifications were done.

Available tabs are General, Fonts, Labels, Axes, 3D, Interaction, Map, Drawing, and Algorithm. Table 5.9
shows which visualisation includes which tabs in its menu component. As can be seen, the tabs General
and Fonts are included within every visualisation.

5.5. Components Shared Between Visualisations 59

Figure 5.2: The old Options Panel displaying the options of the polar area diagram. Unfortu-
nately, the window size is too small to display all the options, and a scrollbar is
shown at the right side of the visualisation.

Figure 5.3: The improved Options Panel displaying the General tab of the polar area diagram.
The use of tabs ensures that the user interface elements do not overfill the avail-
able space.

60 5. Liquid Diagrams Framework Version 2.0

(a) The Import button on the top,
the Print button in the middle
and the Export button on the
bottom.

(b) The Import button in its ex-
panded state. Users can de-
cide which file type to import.

(c) The expanded state of the Export
button. The available export
file types are SVG and PNG.

Figure 5.4: The new Import, Print, and Export buttons. Figure (a) shows the buttons in their
normal state, (b) displays the data import formats and (c) shows the export
formats.

5.5.2 Import, Export and Print Buttons

In version 1.0 of the Liquid Diagrams framework, the export and print functionality was accessible via
the Options Panel. It was included at the bottom of the user interface elements. Due to the fact that the
number of options in the Options Panel often exceeded the available space, users had to scroll to access
the export and print functionality. As a consequence, users may not notice the buttons. This functionality
was moved from the Options Panel and integrated into several independent buttons.

The Export and Print buttons are available in every gadget and can be found on the left side below
the Options button. In addition, the standalone version includes an Import button in every visualisation as
well. As the names indicate, the buttons trigger the import, export and print functionality respectively.
Figure 5.4 shows the three user interface elements:

• Import:
The Import button is only available in the standalone version. A click on the button opens a file
dialogue where the user can select the desired file. The default file type which can be imported is
.csv. To switch the file type, the user has to click on the right side of the button. By doing that,
a drop down menu with the entries Import CSV, Import ODS and Import XLS appears. Figure 5.4b
shows the button in its expanded state.

• Print:
The visualisation can be printed via the Print button. In Figure 5.4a it is the button in the middle
between the Import and Export button. In order to print the visualisation, a printer has to be installed
on the computer.

• Export:
The export button is responsible for exporting the visualisation. SVG and PNG are the available
export file types. They can be seen in Figure 5.4c, which shows the expanded state of the button.

5.5. Components Shared Between Visualisations 61

5.5.3 Axes

The Liquid Diagrams framework supports two different types of axes implemented by Lessacher [2010]:

1. Normal Axes: This is the normal axis type used in the visualisations line chart, bar chart, and area
chart. It includes an x-axis and a y-axis. Their corresponding titles can by changed by clicking on
the labels and changing the text within the appearing input field. The labels of the x-axis can be
displayed using four different label styles:

(a) Centered: The label is displayed horizontally centred.

(b) Line Break: This option enables the use of characters to split the label. If the label text is
for example “20.10.2011” and the specified line break sign is a point (“.”) the resulting label
is split twice, resulting in a label consisting of three lines.

(c) Vertical: Labels are rotated by 90◦in order to provide more space for more labels.

(d) 45 Degrees: Labels are rotated by 45◦.

2. Slider Axes: This axes type is used in the visualisations parallel coordinates, star plot, and bat’s
wing diagram. Its functionality differs from the normal axes type by including more interactive
elements, such as drag and drop support and axis inversion. Additionally, it can be created using
a star shape, used for the star plot and the bat’s wing diagram or with parallel positioning of its
axes used in the parallel coordinates visualisation. The additional functionality for this axes type
includes:

(a) Drag and Drop: The ordering of the axes can be changed by dragging an axis to a different
location. This functionality is useful to detect correlations between data items whose axes
are not positioned next to each other on start-up.

(b) Inversion: This axes type supports the functionality to invert axes. It can be done by clicking
the small arrow at the end of an axis. Upon that, the axis switches the positions of its highest
and lowest values, resulting in an inverted axis.

(c) Filtering: Data entities can be filtered using the filtering mechanism of Slider axes. Filtering
can be accessed by checking the filtering option on the Axes tab of the Options Panel. The
filter handles on each axis can be dragged to select a range.

5.5.4 Legend

Lessacher [2010] implemented two different types of legend:

1. Normal Legend: This legend type is used in visualisations where a specific colour is assigned to
each data entity. Here, the legend displays a rectangle, filled with the corresponding colour for
each entity. On the right side of the rectangles, the name of the data entities are written. Some
visualisations such as line charts and parallel coordinates support displaying of data points. Using
this option, a data point is displayed between the rectangle and the name of the entity.

2. Colour Legend: The colour legend is used by the visualisations heatmap, treemap, and Voronoi
treemap. Here, no specific colours are assigned to data entities. Instead, the varying intensity of
a main colour is used to express the values of data entities. The assignment of colours can be
changed by selecting a different intensity distribution method:

(a) Uniform Distribution: Here, the span between the highest and the lowest value is split into
several uniform pieces, each representing a colour bin.

62 5. Liquid Diagrams Framework Version 2.0

(b) Continuous Distribution: This distribution does not show any colour bins. Instead, a colour
gradient is used.

(c) Quantile Distribution: An equal number of data entities are assigned to each colour bin.
This means that the intensity of the colour bins is still uniformly distributed, but the underly-
ing data ranges represented by the bins are distorted.

5.5.5 Text Input

The standard TextInput class of Flex was extended to support a time delay before applying the inserted
values. This usability extension was made because of two problems with the standard TextInput class:

1. The standard TextInput component supports a number of events which can be triggered. These
events are change, dataChange, enter and textInput. Using the enter event, the changed con-
tent of the input field is passed to a defined function when the user presses the enter button on the
keyboard. However, observations have shown that users sometimes forget to press enter. In that
case the inserted values will not be set and therefore not applied to the visualisation.

2. Using the events change or textInput, the inserted values will be submitted on every content
change. That means if the user types for example “100”, the defined function will be triggered
three times. The first the event will contain “1”, the second time “10”, and finally the third time
“100”. This behaviour results in redrawing the visualisation three times as well.

To overcome these problems, a class named MenuTextInput was implemented using a timer to trigger
a delayed call of the given function. The implementation of this class can be seen in Listing 5.7, an
MXML declaration of it is shown in Listing 5.8 and the corresponding function which will be triggered
after the delay can be seen in Listing 5.9.

The delayed call of a defined function addresses the first problem because the user does not have to
press the enter button any more to submit the inserted values to the function. In addition, the second
problem is solved as well because the timer of the MenuTextInput is reset every time the user continues to
provide further input. This means if the user inserts new content or changes the original content of the
input field before the defined timespan of 750 milliseconds is over, the timer starts again with its original
timespan. As a result, the visualisation is redrawn only once.

5.5.6 Slider

The framework was extended by combining the standard Adobe Flex slider component with the Menu
TextInput component described in Section 5.5.5. This was done for every text input field with fixed and
predefined minimal and maximal input values. For example, in the pie chart visualisation, an input field
specifies the radius of the labels in percent in relation to the radius of the pie pieces. The corresponding
range is defined to extend from 0% to 200%. Using a slider component has the advantage that the user
immediately sees the available range and does not have to insert several values into a single input field to
test which value is still possible. In addition, when the slider component is combined with an input field,
the user can insert a desired value directly by typing it. The slider for the previously mentioned example
can be seen in Figure 5.5.

5.5.7 Colour Picker

As described in Lessacher [2010], the Liquid Diagrams framework does not use the standard colour
picker form the Adobe Flex framework. Instead, a colour picker written by Nuzha [2010] is used. As

5.5. Components Shared Between Visualisations 63

1 <?xml version="1.0" encoding="utf-8"?>
2 <mx:TextInput xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:martin="martin.

diagram.controls.*">
3 <mx:Script>
4 <![CDATA[
5
6 private const DELAY:Number = 750;
7 private var timer:Timer = new Timer(DELAY);
8
9 public function timed(listener:Function) : void {

10
11 if (!timer.running) {
12 timer.addEventListener(TimerEvent.TIMER, listener);
13 timer.start();
14 }
15 else {
16 timer.reset();
17 timer.start();
18 }
19 }
20
21 public function getTimer() : Timer {
22 return timer;
23 }
24
25]]>
26 </mx:Script>
27 </mx:TextInput>

Listing 5.7: The implementation of the text field which adds a timer to the standard text
input component. The delay before the passed function is triggered is set to 750
milliseconds. Listing 5.8 shows a declaration of this component.

1 <menu:MenuTextInput id="width_ratio" width="30" text="1" enabled="false"
2 change="width_ratio.timed(widthRatioKeyPressed);" />

Listing 5.8: The MXML statement to insert a text field with a timed function. In this case, the
name of the function is widthRatioKeyPressed. It can be seen in Listing 5.9.

Figure 5.5: The slider component used for defining the label radius in the pie chart visualisation.

64 5. Liquid Diagrams Framework Version 2.0

1 private function widthRatioKeyPressed(event:Event) : void {
2
3 if ((event is KeyboardEvent && KeyboardEvent(event).charCode == 13) ||
4 (event is TimerEvent)) {
5
6 if (isNaN(Number(width_ratio.text)) || Number(width_ratio) < 0.01) {
7 Alert.show("Please enter a valid number!");
8 width_ratio.text = "1";
9 }

10
11 onRedraw();
12 width_ratio.getTimer().stop();
13 }
14 }

Listing 5.9: The implementation of a function which will be called after a short delay. If the user
enters something in the input field with the id width_ratio, the timer will trigger a
delayed call of this function. Executing this function will cause the timer to stop and
a redraw of the visualisation will be triggered.

part of this work, it was extended in various ways. The original state of the colour picker can be seen in
Figure 5.6a and the modified version is shown in Figure 5.6b.

The main modification is the addition of several coloured squares at the bottom of the component.
These make certain important colours directly available in a predefined palette. By pressing one of these,
the colour of the square will be set within the picker. The available colours are red, green, blue, cyan,
magenta, yellow, black, white, and three shades of grey.

Another enhancement is the improving of the usability of the component. This was done by adding
the possibility of pressing the enter button when the input field on the right side of the component is used.
When enter is pressed, the colour which is currently set is automatically applied and the colour picker
window is closed. In addition, the possibility of entering three textual hexadecimal digits instead of six
was implemented as well. If the user inserts for example the digits FFF into the input field and presses
enter, the colour #FFFFFF (white) is applied.

5.5.8 Import Dialogue

The import dialogue component appears when users import a data file in the standalone version of the
framework. Its first purpose is to give users feedback about the data which is about to be loaded. The
second purpose is to give the user the opportunity to modify the data before it is visualised.

To fulfil the first purpose, a scrollable table, containing the data is shown. In the header of each
column, a drop-down box shows which data type the system identified for the data in the corresponding
column. The available data types are String, Number, Date and Percent. In the case of a false iden-
tification of a data type, the user is able to set the right one by changing the data type manually. This
can happen, for example, in the heatmap visualisation when a column which contains numbers should
be interpreted as additional information for the areas and not as a variable mapped in the visualisation.
When the user selects a data type which cannot be assigned to the column, the data type changes back to
String. In addition, the drop-down box contains the option Hide which is in fact not really a data type.
When the user selects it, the whole column will be excluded from the data when the import is performed.
That means that the visualisation does not display the data contained in this column.

5.5. Components Shared Between Visualisations 65

(a) The appearance of the old colour picker, imple-
mented by Nuzha [2010].

(b) The colour picker after the modifications were
done. Several coloured rectangles at the bottom
of the component were added. The user can di-
rectly select colours from this set of predefined
primary colours and shades of grey.

Figure 5.6: The colour picker component. (a) the picker in its original state and (b) after improve-
ments were implemented.

The import dialogue includes different possibilities to modify the imported data. Therefore, a distinc-
tion between a .csv file import and a .ods or .xls file import has to be made. A .csv file import,
which can be seen in Figure 5.7, includes several check boxes defining which textual elements separate
the data values from each other. The predefined textual elements are Tab (→), Comma (,), Semicolon
(;), Space, and Other. By checking the option Other a text field is enabled, which can be used to define
a custom separator. In addition, the user can check the check-box Merge Delimiter. This option enables
the merging of the selected and defined separators. Merging means that if two or more separating textual
elements are in succession without another element in between, the separators are handled as one separa-
tor. For example if the check boxes Comma and Semicolon are checked and the data input is "A",;"B"
the result would be two data values “A” and “B”. If this option were not selected, it would contain a
third empty data value. Due to the fact that textual data values in a .csv file are contained within a text
delimiter (“’” or “"”), a drop-down box containing these options was added to the import dialogue. In
an attempt to make the handling of the dialogue for the user as easy as possible, the loaded data is anal-
ysed for the available separators before the dialogue is displayed to the user. By so doing, it is possible
to check the check box of the most frequent separator in advance. This is done with the most frequent
textual delimiter as well.

When loading an .ods or an .xls file, none of the above mentioned options are necessary, because
these file types have a different structure and are not parsed by the mentioned delimiters. An example
of an .ods import dialogue can be seen in Figure 5.8. However, there are some options which the two
import dialogues have in common. One of these options is the functionality to transpose the loaded
data. Transposing means switching the rows and columns of the data. This means, for example, that the
third value in the second column becomes the second value in the third column. Another option is to
exclude rows from the data file. This can be done using the user interface elements First Row and Last
Row at the upper right side of the dialogue. The First Row input field specifies the first data row, at which
the check-box indicates if the first row should be interpreted as header. This makes sense, because the
first row normally contains the column headers and most of the gadgets need them for displaying the
data. With the Last Row input field rows can be removed at the end of the data file. Using one of these

66 5. Liquid Diagrams Framework Version 2.0

Figure 5.7: The data import dialogue which appears when importing a .csv file into the standalone
version of the framework. The user can choose the data separator and the text delimiter,
exclude specific rows, transpose the data, and change the data type.

options, the table at the bottom of the dialogue changes immediately according to the performed actions
and thus gives instant feedback to the user. Like hidden columns, removed lines will not be delivered to
the visualisation and for this reason not visualised.

5.5.9 About Panel

The About Panel is a pop-up window which contains information about the Liquid Diagrams project. It is
derived from the standard Flex Panel class and can be accessed via a button, displaying a question mark
at the lower left corner of each gadget or in the standalone version by clicking on the help tab in the
gadget specific menu. The graphic for the question mark on the button comes from the icon theme from
the Elementary Project [2011]. A screenshot of the About Panel can be seen in Figure 5.9.

5.6 3D Functionality

The added 3D functionality is one of the largest modifications to the framework. The 3D functionality
is currently used in the visualisations pie chart and heatmap, but could in pronciple be applied to other
visualisations as well. There are two forms of 3D:

1. 3D View: The first state simply displays a three-dimensional view of the visualisation. This is done

5.6. 3D Functionality 67

Figure 5.8: The data import dialogue when loading an .ods file. The option to choose the data
separator and the text delimiter is disabled because the structure of the .ods file does
not contain these options. The rest of the functionality can be performed like in the
.csv data import dialogue.

by adding a height to the items in addition to performing a rotation along the x-axis. Examples of
3D views can be seen in Figures 5.11 and 5.15.

2. 3D Extrusion: The normal 3D view is used as a starting point and by using the height, an addi-
tional data dimension is added for the visualised data items. Examples of 3D extrusions can be
seen in Figures 5.12 and 5.16.

The circumstance that each data entity can be split into several connected points is used by the 3D
extension. Under the hood, the functionality saves the points of each data entity and transforms them
according to the specified rotations. In the next step, a perspective projection is used to project the
points from 3D space into 2D. The drawing sequence is determined with the help of a visible surface
determination algorithm. Here, the painters algorithm is used. More about the implementation and the
mathematical background of this functionality can be found in Section 8.3.

The 3D functionality can be modified via an additional tab in the Options Panel menu component.
Figure 5.10 shows the 3D options tab. It includes the following user interface elements:

• Enable 3D: This user interface element is a check-box which enables the three-dimensional draw-
ing. Its checking enables all user interface elements, except the “Extrusion Height”.

• Enable Extrusion: The extruded version of the visualisation is drawn if this check box is checked.
In addition, it causes the slider component “Extrusion Height” to be enabled as well.

• Show Edges: This option determines whether the areas are separated with visible edges.

68 5. Liquid Diagrams Framework Version 2.0

Figure 5.9: The About Panel: a pop-up window that contains information about the Liquid Dia-
grams project.

5.6. 3D Functionality 69

Figure 5.10: The 3D options tab of the menu component. The options determine the rota-
tions, heights, and visibility of edges.

• Base Height: The base height determines the height of the three-dimensional objects. It can range
from 0% to 100% and its default value is 100%. For this user interface element, a modified slider
component (see Section 5.5.6) is used.

• Extrusion Height: This control sets the maximal additional height of data items when an extrusion
is performed. This means that the extrusion height of the data item with the highest data value is
set according to the percentage value defined by this control. The extrusion height of the other
data items is set in relation to the value of this item. The final height of a data item is calculated
by adding its extrusion height to its corresponding base height. The minimum value is 0%, its
maximum is 200% and its factory default value is 100%.

• X Rotation: This option sets the rotation of the data items along the x-axis. The range which can
be applied ranges from 0◦to 90◦. The default value is 45◦.

• Y Rotation: The rotation in the y-direction. The possible values range from -45◦to 45◦and the
factory default value is zero degree.

• Z Rotation: The rotation along the z-axis. By specifying a minimum value of -180◦and a max-
imum of 180◦the whole range of 360◦is available for the rotation. This user interface element is
only displayed if its usage makes sense with respect to the visualisation it is contained in. This is,
for example, not the case in the heatmap visualisation, because a rotation along the z-axis would
mean changing the geographic direction of the map.

The pie chart was the first visualisation where the 3D extension was added. By using it, it is possible
to display the areas of the chart in 3D. An example can be seen in Figure 5.11, which displays the popu-
lation of the Word’s regions.

The pie chart visualisation implements two moving effects: firstly visualising the rotation from the
two-dimensional to the three-dimensional view (see Figure 5.13) and secondly the transition from the
normal three-dimensional view to its extruded pendant (see Figure 5.14). The effects take about two
seconds and the visualisation is drawn as often as it can during the effect. This means that if the visual-
isation is more complex and it takes for this reason more time to draw it, it is automatically drawn less

70 5. Liquid Diagrams Framework Version 2.0

often than a simpler one. The classes PathDrawingEffect and PathDrawingEffectInstance in the package
extension3d are responsible for performing the effects.

The second visualisation in which the three-dimensional extension is used is the heatmap. The draw-
ing process of this gadget is more complicated and thus more time consuming than the drawing process
of the pie chart. For this reason, no drawing effect was implemented. When a three-dimensional heatmap
is drawn, the drawing-progress is shown by refreshing the visualisation every time 100 vertical areas are
drawn. In this way, users immediately see progress as content appears on the screen.

The Liquid Diagrams framework allows the creation of prism maps using the Show Extrusion check-
box in the 3D tab of the Options Panel. Figure 5.16 shows an example of a prism map, displaying the
population of the districts of Lower Austria in both dimensions.

5.6. 3D Functionality 71

Africa

Asia

Europe

Middle East

North America

Latin America

Oceania

World's Regions

Africa

955,206,348

Asia

3,776,181,949

Europe

800,401,065

Middle East

197,090,443

North America

337,167,248

Latin America

576,091,673

Oceania

33,981,562

Figure 5.11: A three-dimensional pie chart visualising the population of the World’s regions.

Africa

955,206,348

Asia

3,776,181,949

Europe

800,401,065

Middle East

197,090,443

North America

337,167,248

Latin America

576,091,673

Oceania

33,981,562

Figure 5.12: An extruded three-dimensional pie chart displaying the World’s regions. Population
data is expressed using the areas of the chart and its height encodes the number of
internet users.

72 5. Liquid Diagrams Framework Version 2.0

(a) Effect started (x-rotation: 0◦, y-rotation: 0◦). (b) Effect progress: 20% (x-rotation: 10◦, y-
rotation: −20◦).

(c) Effect progress: 40% (x-rotation: 20◦, y-
rotation: −40◦).

(d) Effect progress: 60% (x-rotation: 30◦, y-
rotation: −60◦).

(e) Effect progress: 80% (x-rotation: 40◦, y-
rotation: −80◦).

(f) Effect finished (x-rotation: 50◦, y-rotation:
−100◦).

Figure 5.13: The animation sequence of the rotation effect visualising the rotation from the two-
dimensional to the three-dimensional view. The same data as in Figure 5.11 is used.

5.6. 3D Functionality 73

(a) Effect started (extrusion height: 0%). (b) Effect progress: 20% (extrusion height: 20%).

(c) Effect progress: 40% (extrusion height: 40%). (d) Effect progress: 60% (extrusion height: 60%).

(e) Effect progress: 80% (extrusion height: 80%). (f) Effect finished (extrusion height: 100%).

Figure 5.14: The animation sequence of the extrusion effect visualising the transition from the
normal three-dimensional view to its extruded pendant. Population data is expressed
using the areas of the chart and its height encodes the number of internet users in
December 2000.

74 5. Liquid Diagrams Framework Version 2.0

82,400,996

401,880

Colour: Population (2007 Est.)

Map: Europe

Figure 5.15: A three-dimensional heatmap displaying the number of internet users per country on
the map of Europe. Only the EU27 are shown.

10 - 13

15 - 16

18 - 19

21 - 21

23 - 24

26 - 27

29 - 30

32 - 34

Colour: Foreigners (in %)

Map: Vienna

Figure 5.16: A prism map (heatmap with 3D extrusion), visualising the percentage of foreigners
of the districs of Vienna with its shading. The height of the areas of the prism map is
proportional to the number of inhabitants.

Chapter 6

Liquid Diagrams Visualisations

The Liquid Diagrams framework currently contains twelve different visualisations. Each of them is
highly interactive and supports various methods of customisation. In general, one can differentiate be-
tween functionality only included in specific gadgets and features which are included in multiple gadgets.
All gadgets support the following functionality implemented by Lessacher [2010]:

• Colour Scheme: Besides manually changing the colours of data entities, the possibility to use
colour schemes is provided. Using a colour scheme results in a colour change to all data entities.
If there are more data entities than colours available, the colours are repeated for the remaining
data entities. The colour schemes were extracted from COLOURlovers [2011]. This functionality
is not available in visualisations using the colour legend, as described in Section 5.5.4.

• Aspect Ratio: Every visualisation offers the functionality to manually set the aspect ratio (the
width and the height) of the chart display area.

• Number Display Format: Three different display formats for numbers are available: “1.000,00”,
“1,000.00”, and the option of no number formatting (“1000.00”).

In addition, visualisations which are able to display time-based data, offer the functionality to change
the date display format. As described in Section 5.5.3 and 5.5.4, the Liquid Diagrams framework offers
several axis and legend types. Table 6.1 shows which visualisations make use of which axis and legend
types.

6.1 Line Chart

The LD line chart visualisation was implemented by Martin Lessacher [2010] and is used to display
trends over time (see Section 2.3.1). An example of a line chart can be seen in Figure 6.1. The line chart
offers the possibility to display data points for each data entity and uses the normal x-, and y-axis of the
ChartPanel. Additionally, the standard legend described in Section 5.5.4 can be used.

The data displayed by the visualisations line chart (and bar chart, pie chart, and area chart in the
following sections) is taken from StatCounter [2011] and illustrates the market share of mobile web
browsers from December 2008 to October 2011.

75

76 6. Liquid Diagrams Visualisations

Visualisation Normal Axes Slider Axes Normal Legend Colour Legend
Line Chart

√ √

Bar Chart
√ √

Area Chart
√ √

Polar Area Diagram
√

Bat’s Wing Diagram
√ √

Pie Chart
√

Parallel Coordinates
√ √

Star Plot
√ √

Similarity Map
√

Treemap
√

Voronoi Treemap
√

Heatmap
√

Table 6.1: The axis and legend types used by the different Liquid Diagrams visualisations.

BlackBerry Android iPhone Nokia browser Opera Mini Other

2009-11

2009-12

2010-01

2010-02

2010-03

2010-04

2010-05

2010-06

2010-07

2010-08

2010-09

2010-10

2010-11

2010-12

2011-01

2011-02

2011-03

2011-04

2011-05

2011-06

2011-07

2011-08

2011-09

2011-10

50

45

40

35

30

25

20

15

10

5

0

Month

Pe
rc

e
n
t

Mobile Web Browser Market Share

Figure 6.1: A Liquid Diagrams line chart visualising the market share of mobile browsers from
December 2008 to October 2010. The data entities “Android” and “iPhone” make use
of the functionality to display individual data points.

6.2. Bar Chart 77

BlackBerry Android iPhone Nokia browser Opera Mini Other

2011-04 2011-05 2011-06 2011-07 2011-08 2011-09 2011-10

50

45

40

35

30

25

20

15

10

5

0

Month

Pe
rc

e
n

t
Mobile Web Browser Market Share

Figure 6.2: A bar chart created with the Liquid Diagrams framework displaying the market share
of mobile browsers from April to October 2011. Using bar charts enables easy com-
parison of data entities.

6.2 Bar Chart

As described in Section 2.3.2, bar charts simplify the procedure of comparing multiple data entities.
The LD bar chart visualisation, which can be seen in Figure 6.2, was developed by Lessacher [2010].
It provides a mechanism for ensuring a minimum number of pixels for each single bar. Using this
functionality, it could happen that all data entities cannot be displayed in the available space. In this case,
the overlapping bars are cut off and a warning appears at the right side of the visualisation.

6.3 Pie Chart

The original Liquid Diagrams pie chart visualisation was implemented by Lessacher [2010]. The pie
chart offers a scaling mechanism and three different labelling options which can be independently turned
on and off. Additionally, it gives users the possibility to break out individual pie sectors in order to draw
one’s attention to a specific data entity.

Based on Lessacher’s work, a three-dimensional extension (see Section 5.6) was added to the pie
chart. This extension enables the visualisation to be displayed as a three-dimensional pie chart. In
addition, a mechanism for extruding areas (depth of the pie slices) was added, creating the possibility to
display two different variables at once. The pie chart implements two effects, displaying the transitions
between the different diagram states. The first effect shows the transition between the normal view and
the three-dimensional view and the second effect displays the progress of the extruding functionality.

78 6. Liquid Diagrams Visualisations

Election in Austria - 2008

SPÖ
1,430,206

29.26%

ÖVP
1,269,656

25.98%

Grüne
509,936

10.43%

FPÖ
857,029

17.54%

BZÖ
522,933

10.70%

Other
297,549

6.09%

(a) The result of the 2008 Great Election in Austria. The advanced label
options of the pie chart are enabled, displaying the data and the corre-
sponding percentage of each sector. The green sector is broken out for
emphasis.

BlackBerry Android iPhone

Nokia browser Opera Mini Other

(b) The market share of mobile web browsers in De-
cember 2008 visualised with a three-dimensional
pie chart.

BlackBerry Android iPhone

Nokia browser Opera Mini Other

(c) An extruded version of the pie chart in (b). The
size of the slices encodes the market share of mo-
bile web browsers in December 2008 and their
heights encode the market share of mobile web
browsers in October 2011.

Figure 6.3: Three examples of pie charts. (a) standard pie chart with advanced label options, (b)
three-dimensional pie chart and (c) extruded pie chart.

6.4. Area Chart 79

6.4 Area Chart

Like line charts, area charts are used to reveal trends over time (see Section 2.3.4). The Liquid Diagrams
implementation of area charts, shown in Figure 6.4, was developed by Lessacher [2010]. It includes two
versions of area charts:

• Stacked Area Chart: In this version, the areas are drawn on top of each other. An example of
a stacked area chart can be seen in Figure 6.4a. An additional option, enabling the areas to be
displayed according to their percentage, can be switched on using the Percent check-box on the
General tab of the Options Panel. This option achieves better usage of the available space. An area
chart using this functionality is shown in Figure 6.4b.

• Overlay Area Chart: Here, the areas of the chart overlap each other, resulting in an area chart
such as that displayed in Figure 6.4c. In order that those data entities which are drawn first remain
visible, transparency is applied to all areas.

6.5 Star Plot

The star plot (Section 2.3.5) displays multidimensional data and dates back to Georg von Mayr [1877]
in 1877. It consists of multiple axes, originating from the same center. The resulting shape looks like a
star, giving the visualisation its name. Additionally, data points of the same entity on neighbouring axes
are connected. An example of a star plot can be seen in Figure 6.5.

Liquid Diagram’s star plot visualisation was implemented by Lessacher [2010]. It uses the slider
axes (see Section 5.5.3). Therefore the functionality of rearranging axes by drag and drop, advanced
filtering options, and the inversion of axes is available. Additional features include:

• Inner Radius Offset: Normally the axes are created originating from the same point in the center
of the visualisation. This functionality enables users to define an offset for the starting point of the
axes, enabling better visibility of values close to the center of the star plot.

• Starting of Axes at Zero: A check-box on the General tab of the Options Panel gives users the
possibility to decide whether the axes start at zero, or at the lowest value mapped on it. This
functionality concerns only axes which map numerical values.

• Area Filling: Areas formed by the lines of data entities can be filled using this functionality. It
can only be enabled if no inner radius offset is specified.

6.6 Parallel Coordinates

Like star plots, parallel coordinates are also used to visualise multidimensional data. The axes of this
visualisation are arranged vertically, parallel to each other. Each of them represents a different data di-
mension. The data values are displayed by connecting lines between data points on neighbouring axes
(see Section 2.3.6). The implementation included in the Liquid Diagrams framework was implemented
by Martin Lessacher [2010] and based on Lessacher’s work minor changes and bug fixes were performed.
An example of the parallel coordinates visualisation can be seen in Figure 6.6. It displays the cereals
dataset, filtered by the amount of sugar.

80 6. Liquid Diagrams Visualisations

2
0
1
0
-0
6

2
0
1
0
-0
7

2
0
1
0
-0
8

2
0
1
0
-0
9

2
0
1
0
-1
0

2
0
1
0
-1
1

2
0
1
0
-1
2

2
0
1
1
-0
1

2
0
1
1
-0
2

2
0
1
1
-0
3

2
0
1
1
-0
4

2
0
1
1
-0
5

2
0
1
1
-0
6

2
0
1
1
-0
7

2
0
1
1
-0
8

2
0
1
1
-0
9

2
0
1
1
-1
0

50

45

40

35

30

25

20

15

10

5

0

Month

Pe
rc
e
n
t

Mobile Web Browser Market Share

BlackBerry

Android

iPhone

AndroidAndroid

BlackBerryBlackBerry

(a) A stacked area chart.

2
0
1
0
-0
6

2
0
1
0
-0
7

2
0
1
0
-0
8

2
0
1
0
-0
9

2
0
1
0
-1
0

2
0
1
0
-1
1

2
0
1
0
-1
2

2
0
1
1
-0
1

2
0
1
1
-0
2

2
0
1
1
-0
3

2
0
1
1
-0
4

2
0
1
1
-0
5

2
0
1
1
-0
6

2
0
1
1
-0
7

2
0
1
1
-0
8

2
0
1
1
-0
9

2
0
1
1
-1
0

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Month

Pe
rc
e
n
t

Mobile Web Browser Market Share

BlackBerry

Android

iPhone

(b) A stacked area chart with the percentage option
enabled.

2010-06

2010-07

2010-08

2010-09

2010-10

2010-11

2010-12

2011-01

2011-02

2011-03

2011-04

2011-05

2011-06

2011-07

2011-08

2011-09

2011-10

50

40

30

20

10

0

Month

Pe
rc
e
n
t

BlackBerry Android

(c) An overlay area chart displaying the market share of two mobile web browsers from June 2010 to October 2011.

Figure 6.4: Area charts: (a) stacked area chart, (b) stacked area chart with enabled percentage
option, and (c) overlay area chart.

6.6. Parallel Coordinates 81

Cereals

Manufacturer [A to R]

Type [cold to hot]

Calories [0 to 160]

Protein (g) [0 to 6]

Fat (g) [0 to 5]

Sodium (mg) [0 to 320]

Fibre (g) [0 to 14]

Carbo (g) [0 to 23]

Sugar (g) [0 to 15]

Shelf [0 to 3]

Potassium (mg) [0 to 330]

Vitamins [0 to 100]

Weight (oz) [0 to 1.5]

Cups [0 to 1.5]

Figure 6.5: A star plot visualising the well-known cereals dataset. The axis containing the attribute
sugar is filtered. This action results in a star plot excluding cereals with a high level of
sugar.

82 6. Liquid Diagrams Visualisations

Cereals

R

A

hot

cold

160

50

6

1

5

1

320

15

14

1

23

5

15

1

3

1

330

15

100

25

1.5

.5

1.5

.25

Figure 6.6: The cereals dataset visualised by the parallel coordinates gadget. Again, the axis repre-
senting the dimension “amount of sugar” was filtered in order to exclude cereals with
a high sugar value. The filtered data entities are displayed using a high transparency.

The parallel coordinates visualisation uses the ChartPanel, a class containing the drawing functionality
to create slider axes (see Section 5.5.3). Slider axes enable users to perform filtering actions and to
rearrange and invert axes.

6.7 Bat’s Wing Diagram

The bat’s wing diagram was introduced by Florence Nightingale in 1858 (see Section 2.3.8). Its imple-
mentation in the Liquid Diagrams framework originates from Fernitz et al. [2010], a group of students at
Graz University of Technology. It was created during a project in the course “Information Visualisation”
in the summer term of 2010 [Andrews, 2011a]. Later, it was completely reimplemented and integrated
into the Liquid Diagrams framework by Lessacher [2010].

The implementation of the bat’s wing diagram is similar to the implementation of the star plot.
However, the main difference is that in the bat’s wing diagram all axes display the same dimension and
scale, reaching from zero to the highest data value. It is not possible to display multivariate data using
the bat’s wing diagram. Examples of bat’s wing diagrams can be seen in Figure 6.7, in the form of
redrawings of Florence Nightingale’s original diagrams.

6.8 Polar Area Diagram

Like the bat’s wing diagram, the polar area diagram (or wedge diagram) was invented by Florence
Nightingale in 1859. It replaced the bat’s wing diagram in Nightingale’s later publications, because
of the circumstance that the bat’s wing diagram could be easily misinterpreted [Small, 1998]. The polar

6.8. Polar Area Diagram 83

Wounds Other Wounds Disease

Apr 1854 - Mar 1855

A
p

r 1
8

5
4

M
ay

 1
85

4

Jun 1854
Jul 1854 Aug 1854

Sep 1854

O
ct

 1
8

5
4

N
ov

 1
85

4

Dec 1
854

Jan 1855

Feb 1855

M
ar 1855

(a) The number of deaths from various causes from
April 1854 to March 1855.

Wounds Other Wounds Disease

Apr 1855 - Mar 1856

A
p

r 1
8

5
5

M
ay

 1
85

5
Jun 1855

Jul 1855 Aug 1855

Sep 1855

O
ct

 1
8

5
5

N
ov

 1
85

5
Dec 1

855

Jan 1856

Feb 1856

M
ar 1856

(b) The number of deaths from various causes from
April 1855 to March 1856.

Figure 6.7: Modern versions of Florence Nightingale’s original bat’s wing diagrams. (a) shows the
death rate from three different causes during the first year of the Crimean War (1853–
1856) (b) shows the second year. A data value is represented by the length of a radial
line, starting at the centre.

84 6. Liquid Diagrams Visualisations

Wounds Other Wounds Disease

Apr 1854 - Mar 1855

A
p
r

1
8
5
4

M
ay

 1
85

4

Jun 1854 Jul 1854
Aug 1854

S
e
p
 1

8
5
4

O
ct

 1
8
5
4

Nov
 1

85
4

Dec 1854Jan 1855

Feb 1855

M
a
r 1

8
5
5

(a) The death rate from various causes from April
1854 to March 1855.

Wounds Other Wounds Disease

Apr 1855 - Mar 1856

A
p
r

1
8
5
5

M
ay

 1
85

5

Jun 1855 Jul 1855
Aug 1855

S
e
p
 1

8
5
5

O
ct

 1
8
5
5

Nov
 1

85
5

Dec 1855Jan 1856

Feb 1856

M
a
r 1

8
5
6

(b) The death rate from various causes from April
1855 to March 1856.

Figure 6.8: Florence Nightingale’s polar area diagrams, redrawn using Liquid Diagrams. The data
values in a polar area diagram are proportional to the areas of its wedges.

area diagram corrects this downside, because, the values are expressed as areas instead of radial lines
(see Section 2.3.9). A redrawing of Nightingale’s original polar area diagrams can be seen in Figure 6.8.

The implementation of the polar area diagram contained in Liquid Diagrams was originally devel-
oped by Fernitz et al. [2010] during the same project mentioned in Section 6.7. Like the bat’s wing
diagram it was also completely reimplemented and integrated into the Liquid Diagrams framework by
Lessacher [2010].

6.9 Heatmap (Choropleth Map)

As described in Section 2.3.10, a geographic heatmap, also known as choropleth map, is a heatmap with
underlying cartographic areas. Its areas are shaded in proportion to the data values assigned to it. A
geographic heatmap with extruded areas is called a prism map. Geographic heatmaps date back to Pierre
Charles Dupin, who used choropleth maps to show the distribution and intensity of illiteracy in France
in 1826 [Dupin, 1826].

The heatmap gadget of the Liquid Diagrams framework was implemented by Lessacher [2010]. It
uses SVG maps of cartographic areas to display a heatmap of the specified areas. Here, the areas are
described using the geo data format (see Section 5.1.6). Building on Lessacher’s work, the heatmap
gadget underwent many changes and improvements. However, the main processing sequence of the
heatmap visualisation remain unchanged. This sequence can be seen in Figure 6.9. The steps to create a
heatmap visualisation are:

1. First, the heatmap gadget retrieves the specified data.

6.9. Heatmap (Choropleth Map) 85

Figure 6.9: The steps to create a heatmap visualisation. This image is extracted from Lessacher
[2010].

2. The ISO codes in the data are used to look up the countries and regions in the lookup file and to
retrieve the corresponding region relationships.

3. A hierarchical data structure is created using this information.

4. The shape files for the corresponding regions are obtained from the lookup file.

5. The SVG map obtained in the previous step is loaded.

6. Finally, the visualisation is created.

Examples of choropleth maps, created with the heatmap gadget can be seen in Figure 6.10. In version
2.0 of Liquid Diagrams, the heatmap gadget includes the 3D extension described in Section 5.6.

6.9.1 Categories

In version 1.0 of the Liquid Diagrams framework it was not possible to display non-numeric values in a
heatmap. This circumstance was changed in version 2.0. In order to display the distribution of textual
attributes of areas in a map, functionality to visualise categories was implemented. This functionality
distinguishes between two kinds of textual attributes, which can occur in the data:

1. Informations: A data column is interpreted as additional information, if none of its values appears
twice. The third column (Capital) in Table 6.2 is an example of a column containing information.
The information strings are displayed in the complex tool-tip of the corresponding areas of the
heatmap visualisation. They cannot be mapped onto areas of the map.

2. Categories: Categories represent textual values, which can be mapped onto areas of the map. A
data column contains categories if it contains textual values and if one of the values is repeated
more than once within the column. The fourth column (Governing Party) in Table 6.2 is an example
of a data column containing categories. The column lists the governing parties of the specified
areas. Due to the fact that the parties SPÖ and ÖVP occur more than once, the textual values of

86 6. Liquid Diagrams Visualisations

14,900 - 162,862

162,864 - 310,825

310,826 - 458,787

458,789 - 606,750

606,751 - 754,712

754,714 - 902,675

902,676 - 1,050,637

1,050,639 - 1,198,600

Colour: Population

Map: Switzerland

(a) A choropleth map displaying the population of Switzerland. It uses uniform
colour distribution.

54,449

1,878

Colour: Population

Map: Burgenland

Oberpullendorf

Rust
Eisenstadt

Mattersburg

Neusiedl am See

Oberwart

Güssing

Jennersdorf

Eisenstadt-Umgebung

(b) A three-dimensional heatmap visualising the
districts of Burgenland, a region in Austria. Con-
tinuous colour distribution is used.

Spanish

Portuguese

English

French

Dutch

Colour: Language

Map: Latin America

(c) A prism map of South America using the 3D ex-
tension of the framework. The colour expresses
the official language of each country and the
height is proportional to the population density
per km2.

Figure 6.10: The heatmap gadget allows the creation of choropleth maps, including three-
dimensional choropleth maps.

6.9. Heatmap (Choropleth Map) 87

Region Population Capital Governing Party
AT-1 281190 Eisenstadt SPÖ
AT-2 561094 Klagenfurt FPK
AT-3 1597240 Sankt Pölten ÖVP
AT-4 1408165 Linz ÖVP
AT-5 530576 Salzburg SPÖ
AT-6 1205909 Graz SPÖ
AT-7 703512 Innsbruck ÖVP
AT-8 366377 Bregenz ÖVP
AT-9 1677867 Wien SPÖ

Table 6.2: Visualising categories in the heatmap gadget. The third column (Capital) specifies addi-
tional information, because none of the textual data values occurs twice. The data values
of the fourth column (Governing Party), on the other hand are interpreted as categories,
because some of the strings occur more than once. The resulting heatmap can be seen
in Figure 6.11.

the column are interpreted as categories. Consequently, the values of this column can be mapped
onto the areas of the loaded map. The result of this mapping can be seen in Figure 6.11.

To visualise categories in a map, the desired data column has to be chosen from the drop-down box,
listing the displayable columns. This drop-down box can be found in the Options Panel’s General tab, or
within the legend. By selecting a categories column, the colour distribution buttons in the legend are
disabled, and two additional label options become available in the Label tab of the Options Panel.

However, there is a limitation of the categories functionality. By displaying categories, it is not
possible to sum up the values of an area if a hierarchy exists. Normally, when numerical data is visualised
on the map and multiple areas, for example countries are displayed, the value of a country is calculated by
summing up the values of the regions of the country, if no explicit value for the country is specified. This
procedure cannot be adapted to categories, because it is not possible to sum up two or more categories.

6.9.2 Tree Component

Hierarchically structured data can be visualised with the help of the heatmap gadget. For instance, it is
possible to load the districts of multiple countries at once. In this case the map displaying the common
parent of the districts is loaded. This would be the map containing all corresponding countries of the
districts. The value for each of the countries is calculated by summing up the values of the correspond-
ing districts. By clicking on one of the countries, a new map, containing the districts of that country is
loaded and visualised by the heatmap gadget.

However, in order to improve the user experience, a tree component, showing the data hierarchy is
also displayed. In this way, users immediately see the available hierarchy and are able to use it to nav-
igate purposes. The tree component is only displayed, if a hierarchy is detected in the data. Otherwise
the Show Tree Component check-box is disabled in the General tab of the Options Panel. It is the same tree
component, available in the treemap and the Voronoi treemap gadget. Figure 6.12 shows this component
inside the heatmap gadget.

If no “ld-Name”-column specifies the area names, the names inside the tree component remain empty
on start-up. This is because the names of the areas normally come from the loaded SVG map. The
heatmap gadget only loads maps if they are needed. This means that the heatmap gadget waits with the

88 6. Liquid Diagrams Visualisations

SPÖ

ÖVP

FPK

Colour: Governing Party

Map: Austria

Governing Political Parties in Austrian Provinces

SPÖ

ÖVP

ÖVP

SPÖ
SPÖ

ÖVPÖVP

SPÖ

FPK

Figure 6.11: A heatmap with categories from the data in Table 6.2, showing governing political
parties of the provinces of Austria.

loading of maps, until the user clicks on an area with an underlying hierarchy. The names of areas on
lower level in the hierarchy only become known when the maps are loaded by the gadget.

6.9.3 SVG Maps

In version 2.0 of the Liquid Diagrams framework several modifications were made to the format of the
Scalable Vector Graphics (SVG) maps used by the heatmap gadget. This includes the modification of
the Document Type Definition (DTD) of the SVG files, the including of style information for each path,
and the addition of several new attributes of the path element.

The DTD defines legal building blocks of a document [w3schools, 2011]. These specify the legal
elements and attributes which define the document structure. The SVG maps used in the heatmap gadget
underwent modifications regarding the addition of several new attributes of the path element. The DTD
of the SVG files [W3C, 2011h] was extended. Otherwise the map files would have an invalid document
structure and their validation would fail. Listing 6.1 shows an example of an SVG map using the new
attributes. The new attributes of the path element are:

• name: The name of the region. This string is displayed inside of the tool-tip of the corresponding
path. If the displayed data contains an “ld-Name” data column, the gadget does not use the name
attribute. Instead, it visualises the names from the data column. The name attribute originates from
Lessacher [2010].

• center: Lessacher [2010] introduced a “center” attribute for a path, indicating the position of a
label. If no “center” attribute is given, the centre of the bounding box of the path is used for the
label position.

• viewbox: This attribute specifies the bounding box of the path. It is used, amongst other things, to
calculate a smaller view-box, if the option Draw Complete Map in the Map tab of the Options Panel is

6.9. Heatmap (Choropleth Map) 89

Figure 6.12: Austria, Germany, France and Switzerland visualised in the heatmap gadget. The
hierarchy of the loaded data can be seen at the right side contained within the tree
component.

disabled.

• fips: The paths of the SVG map of the United States contain this attribute. It specifies the Federal
Information Processing Standard (FIPS) code of each path [NIST, 2011]. This code uniquely
identifies each state of the United States.

In version 2.0 of the Liquid Diagrams framework, the number of available SVG maps increased
significantly. Table 6.3 shows a summary of the SVG maps available within the heatmap gadget. The
new maps added in version 2.0 of Liquid Diagrams are displayed in bold.

6.9.4 Drawing Process

Version 1.0 of the Liquid Diagrams framework introduced a component named ScalableContentPanel. As
the name indicates this is a drawing container, which is fully scalable. It was used in the following way.
First, the content of an SVG map was drawn within it. During the drawing process, the bounding box
of every available region was collected and in the last step, the regions which had to be displayed were
resized, using their combined bounding boxes as the new viewing area. However, this approach had one
disadvantage: due to the fact, that the content was drawn first and resized later, elements such as outlines
and text were resized and distorted as well, sometimes leading to disproportional large text or outlines.
An example of this behaviour can be seen in Figure 6.13.

To overcome this problem, the ScalableContentPanel was replaced with a coordinate transformation
mechanism. This mechanism takes the x and y coordinates of points in a SVG command as input and
transforms them to screen coordinates. This is done using the combined bounding boxes of the paths
to be displayed. For this reason the decision was made to include bounding boxes of SVG paths within
each SVG file rather than having to calculate them on the fly. The procedure of this transformation is
illustrated in Figure 6.14. Equations 6.1 and 6.2 are used to map a point P to screen coordinates.

90 6. Liquid Diagrams Visualisations

1 <?xml version="1.0" encoding="utf-8" standalone="no"?>
2 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
3 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd" [
4 <!ATTLIST path
5 name CDATA #IMPLIED
6 center CDATA #IMPLIED
7 viewbox CDATA #IMPLIED
8 fips CDATA #IMPLIED>
9]>

10 <svg version=’1.1’ id=’AT_6’ xmlns=’http://www.w3.org/2000/svg’
11 width=’900’ height=’618’ viewBox=’0 0 900 618’>
12
13 <path
14 id="AT_6_GU"
15 name="Graz-Umgebung"
16 style="fill:#FFFFFF;stroke:#000000;stroke-width:1;stroke-opacity:1"
17 viewbox="514.4063 245.8438 233.1563 235.3125"
18 center="599 311"
19 d="M 646.7500, 245.8438 ... Z"
20 />
21
22 <path
23 id="AT_6_G"
24 name="Graz"
25 style="fill:#FFFFFF;stroke:#000000;stroke-width:1;stroke-opacity:1"
26 viewbox="619.3243 354.0494 58.4617 58.8524"
27 d="M 656.5880, 411.0413 ... Z"
28 />
29
30 <path
31 id="AT_6_LB"
32 name="Leibnitz"
33 style="fill:#FFFFFF;stroke:#000000;stroke-width:1;stroke-opacity:1"
34 viewbox="609.3381 409.8089 128.8120 201.0005"
35 center="680 522"
36 d="M 664.7519, 610.3091 ... Z"
37 />
38
39 ...
40
41 </svg>

Listing 6.1: An SVG map of the region of Styria in Austria. The DTD is extended to support
the additional attributes “name”, “center”, “viewbox”, and “fips” (see lines 4-8). For
simplicity, the SVG commands for the path element have been shortened and not all
paths for the regions of Styria are printed.

6.9. Heatmap (Choropleth Map) 91

World Continents Countries Provinces
World Africa Austria (AT) Burgenland

Asia Belgium (AT) Carinthia
Europe France (AT) Lower Austria
Latin America Germany (AT) Upper Austria
North America Swizerland (AT) Salzburg
Oceania United States (AT) Styria

(AT) Tyrol
(AT) Vorarlberg
(AT) Vienna

Table 6.3: The SVG maps available in the heatmap gadget. The new maps added in version 2.0 of
Liquid Diagrams are given in bold.

Figure 6.13: The disadvantage of the ScalableContentPanel. By scaling the available content to the
screen dimensions, it could happen that borders and text become disproportionally
large.

92 6. Liquid Diagrams Visualisations

width

he
ig
ht

P

widthb

he
ig
ht
b

(a) The original state of an SVG path. The bound-
ing box of the path is contained within its corre-
sponding SVG file.

width

he
ig
ht

P

(b) The path is transformed to screen coordinates,
using its bounding box.

Figure 6.14: The transformation of a path. (a) shows the original path and (b) shows the path after
transformation.

Px The x coordinate of the point which is about to be transformed.

Py The y coordinate of the point.

x0 The horizontal starting point (left) of the bounding box.

y0 The vertical starting point (top) of the bounding box.

widthb The width of the bounding box.

heightb The height of the bounding box.

width The width of the diagram area.

height The height of the area reserved for the diagram.

x =
(Px − x0)
widthb

∗ width (6.1)

y =
(Py − y0)
heightb

∗ height (6.2)

The architecture of the coordinate transformation mechanism was carefully designed to be easily
extendible. It could be extended to simultaneously display areas of different hierarchies. An example
of this behaviour would be a map, displaying countries together with districts. This functionality was
mostly already implemented within the heatmap gadget. However, the downside of this approach is that
the underlying cartographic material has to be very accurate in order to support the visualisation of areas
of multiple hierarchies at once. Sadly, the SVG maps of the heatmap gadget come from different sources
and in most cases the borders of countries contained within different SVG maps do not match exactly,
even if the countries share the same border in reality. Tofix this, the cartographic SVG material would
need to be cleaned and matched (see Chapter 9).

6.10. Treemap 93

6.10 Treemap

As described in Section 2.3.11, the treemap visualisation was invented by Ben Shneiderman in 1991
[Johnson and Shneiderman, 1991]. A treemap iteratively divides the available space into nested rectan-
gles. Since the invention of this visualisation, various algorithms for creating treemaps were developed.
Shneiderman [2009] lists various algorithms and discusses their strengths and weaknesses.

The treemap gadget of the Liquid Diagrams framework was developed by Lessacher [2010]. It
implements the following algorithms:

• Slice-and-Dice: This is the original algorithm published by Johnson and Shneiderman [1991].
It alternates the splitting direction, using parallel horizontal and vertical lines. In this way the
ordering of the data is preserved. However, the resulting aspect ratios can be quite high, resulting
in very narrow horizontal or vertical strips.

• Squarified: This algorithm was introduced by Bruls et al. [2000] in 1999. Here, the ordering
of items is relaxed in order to create a layout where the rectangles approximate squares. This
procedure results in aspect ratios near 1:1.

In the LD treemap visualisation, the algorithm can be exchanged using the drop-down box located in
the General tab of the Options Panel. Examples of the treemap visualisation are shown in Figure 6.15.

6.11 Voronoi Treemap

The Voronoi treemap uses Voronoi tesselation, a mathematical concept for dividing the available space
according to the nearest-neighbour rule (see Section 2.3.12). The Voronoi treemap contained in the
Liquid Diagrams framework was implemented by Martin Lessacher. A detailed discussion about the
mathematical concept and its implementation can be found in Lessacher [2010].

Liquid Diagram’s Voronoi treemap can be seen in Figure 6.16. It contains the following features:

• Shapes: Several outer shapes containing the polygons created by the algorithm can be chosen.
This includes rectangles, triangles, and regular polygons (where the number of sides can be cho-
sen).

• Algorithm Options: Many algorithmic options can be changed in order to produce different out-
put. The options are: the maximum number of iterations for the parent and the child, the area error
tolerance, the number of retries, and the minimum area size for each child.

6.12 Similarity Map

In version 2.0 of the Liquid Diagrams framework a new visualisation, the similarity map, was added. It
was developed by Bajramovic et al. [2011] in the course “Information Visualisation” [Andrews, 2011a]
during the summer term 2011 at Graz University of Technology. The similarity map calculates the sim-
ilarity between multidimensional data items and places items according to a force-directed placement
algorithm. An example similarity map can be seen in Figure 6.17.

A force-directed placement algorithm determines the positions of nodes in a graph in an aesthetically
pleasing way. This is done by assigning forces to each node in order to iteratively determine the position

94 6. Liquid Diagrams Visualisations

0 30 Colour: Points/Game

Size: Minutes/Game

Central Division

Atlanta Hawks

Terry Wright Maloney Kukoc

Milwaukee Bucks

Allen Hunter Cassell Robinson Thomas Caffey Ham

Toronto Raptors

Williams Clark Davis Oakley Childs Carter

Charlotte Hornets

Davis Wesley Brown Campbell Mashburn Burrell

Indiana Pacers

Miller O'Neal Best Rose

Detroit Pistons

Atkins Stackhouse Wallace Smith Curry

Cleveland Cavaliers

Miller Murray Knight

Chicago Bulls

Artest Brand Hoiberg Fizer Mercer Miller Drew

(a) Slice-and-Dice treemap visualising players in teams
of the Central Division of the NBA.

0 30 Colour: Points/Game

Size: Minutes/Game

Miller

Weatherspoon

Jackson

Harpring Murray Knight

Ilgauskas

Gatling

Person

Mihm Henderson

Traylor

Langdon

Coles Brown

Reid

Mercer

Brand

Artest

Hoiberg Drew

Miller Fizer Ruffin

Guyton

El-Amin

Crawford Tarlac

Goodrich

Voskuhl

Mashburn

Davis

Wesley

Brown Campbell

Burrell

Coleman

Robinson Magloire

Thorpe

Hawkins

Nailon

Allen

Robinson

Cassell

Thomas Hunter

Johnson

Caffey

Williams Ham

Pope

Kersey

Hart

Alston

Rose

Miller

O'Neal Best Harrington

Croshere

Foster

Perkins

McKey

Tabak Edney

Sundov

Bender

Mills

Terry

Kukoc

Wright

Mohammed

Maloney

Henderson Crawford

Robinson Johnson

Glover

Mottola

Smith

Stackhouse

Wallace

Williamson Atkins Smith

Curry

Barros

Owens

Cleaves

Moore Wallace

Cardinal

David

Carter

Oakley

Davis Williams Childs

Peterson

Clark

Williams

Curry

Murray

Corbin

(b) Squarified treemap of the same data.

Figure 6.15: Treemaps created using two different algorithms. The area of each rectangle rep-
resents the minutes per game a player played and its shading expresses the points
per game a player achieved. The statistics are taken from the example data with the
treemap software from HCIL [2011].

6.12. Similarity Map 95

0 30
Colour: Points/Game

Size: Minutes/Game

(a) A Voronoi treemap visualising players in teams of the Central Division of the NBA.

0 - 3

5 - 7

9 - 11

13 - 14

16 - 18

20 - 22

24 - 26

28 - 30

Colour: Points/Game

Size: Minutes/Game

(b) A Voronoi treemap shaped as a regular 20-sided polygon displaying the same data.

Figure 6.16: Voronoi treemaps displaying NBA statistics, created with Liquid Diagrams. The area
of each polygon represents the minutes per game a player played and its shading
expresses the points per game a player achieved. The statistics are extracted from the
sample data provided with the treemap software from HCIL [2011].

96 6. Liquid Diagrams Visualisations

Figure 6.17: A similarity map, displaying 30 cereals from the well-known cereals dataset [StatLib,
2011]. Cereals with similar attributes will be placed closer to one another.

of a node. The algorithm takes a similarity matrix as input and the iterations are performed as long as
the positions of the nodes change. Force-directed placement was invented by Eades [1984] in 1984.
Further improvements to this field were made amongst others by Kamada and Kawai [1989] in 1989 and
by Fruchterman and Reingold [1991] in 1991. Fruchterman and Reingold [1991] also coined the term
“force-directed placement”.

Bajramovic et al. [2011] implemented two different force-directed placement algorithms:

1. Brute-Force Algorithm: This is the original algorithm from Eades [1984]. It calculates all forces
for all nodes. This results in a complexity of O(n3).

2. Chalmers ’96 Algorithm: This algorithm is an implementation of Chalmer’s force-diected place-
ment algorithm, published in 1996 [Chalmers, 1996]. It reduces the complexity of the iteration
time toO(n) and results in an overall complexity ofO(n2). Due to this fact, this algorithm should
be preferred for larger datasets.

To determine the similarity of the nodes, a similarity metric has to be used. Three different metrics,
Euclidean distance, normalised Euclidean distance, and the cosine metric were implemented. The algo-
rithm and the similarity metric can be chosen by selecting it from two drop-down boxes in the Algorithm
tab of the Options Panel. The default algorithm is the Chalmers ’96 algorithm and the default similar-
ity metric is normalised Euclidean distance. The source code of this visualisation can be found in the
package simmap.

Chapter 7

Changes to the Framework

When implementing version 2.0 of the Liquid Diagrams framework, it was necessary to make changes
to pre-existing parts of the framework. This chapter is about these changes. Since most of the mentioned
changes are deeply integrated within the framework, they were carefully designed and encapsulated in
order to make further modifications as easy as possible.

First, the structure of the framework and its changes in comparison to its original structure will be
discussed. Here, UML component and class diagrams will be used. Secondly, new features regarding
the fonts of the Liquid Diagrams framework are shown and discussed. One of the major improvements
is the loading of fonts at runtime.

7.1 Structure

7.1.1 Initial Structure

The structure of Liquid Diagrams framework version 1.0 can be seen in Figure 7.1. It displays the main
Application files of the project LDFramework in a UML component diagram. For simplicity, only the files
of the visualisations area chart, bar chart and bat’s wing diagram are drawn. There are two MXML files
for each visualisation:

1. The first file contains the code for the gadget version of the visualisation. In the initialisation
process, the data of the spreadsheet and the settings for the visualisation are passed to the gadget
via a callback method by using JavaScript. The detailed process of this procedure can be found in
Lessacher [2010]. After this step is performed, the data is drawn by the visualisation.

2. The second file displays the same visualisation as the first file. However, the initialisation process
is slightly different. The data and the options are no longer passed to the gadget via a JavaScript
call. Instead, they are included statically within the code of the file. As a result, the gadget can be
executed offline using a web browser and used for offline debugging purposes. This enables the
developer to instantly test changes to the code.

The reason Lessacher [2010] created this debugging mechanism was the enormous amount of work
which had to be invested to test new or changed code in the gadget version of a visualisation. The
procedure of testing the gadget online includes the insertion of trace() statements in the code
and the manual upload of the changed SWF file to a web space. When this is done, the gadget
can be tested with the help of Google Docs and a Flash debug and message tracing mechanism
like Flashbug [Mariani and Efstathiou, 2011] for the Mozilla Firefox extension FireBug [Mozilla,
2011].

97

98 7. Changes to the Framework

<<project>>

LDFramework

<<MXML>>

areachart

<<MXML>>

batswing

<<Application>>

areachartdebug

<<Application>>

barchartdebug

<<Application>>

batswingdebug

<<MXML>>

barchart

...

Figure 7.1: The project structure of the Liquid Diagrams framework version 1.0. The project LDFr
amework contains two MXML files for each visualisation. Both are of type Application
and can be executed. The file with the suffix “debug” in its name contains static data
and is intended for debugging purposes. The other file represents the gadget version
of the visualisation. For simplicity, the files of only three different visualisations are
drawn.

Apart from the different initialisation process of the debug file, the remaining code is the same in
both the gadget and debug versions of each visualisation.

The existence of two files, which only differ in their initialisation process, leads to a major problem.
As described above, the rest of the code in the two files is identical in order to provide and execute the
same visualisation in the online version and in the offline version. This means that if the code in one
file is changed, it has to be copied into the other file as well, in order to maintain the integrity of the
visualisation. This procedure is extremely time-consuming and error-prone.

7.1.2 Current Structure

An early refactoring approach was the elimination of the debug file for each visualisation. This was done
by encapsulating the initialisation part into separate classes. Here, the strategy pattern [Gamma et al.,
1995, pages 315–324] was used. The strategy pattern is a design pattern defining a family of encapsu-
lated algorithms which are interchangeable at runtime.

In addition, a debug flag in the class ChartPanel was defined. This enables the loading of a different
initialisation strategy at startup. The ChartPanel is the perfect choice for locating the debug flag, because it
represents the drawing area included in all visualisations. Figure 7.2 shows a class diagram of this proce-
dure. For simplicity, only the classes of two visualisations (area chart and bar chart) are shown. The visu-
alisations in Figure 7.2 have a member variable (initializationStrategy) which is a concrete instance
of an implementation of the interface IInitializationStrategy. At startup, the debug flag is used to determine
which IInitializationStrategy has to be instantiated. For example, if the area chart visualisation is started,
an instance of AreaChartDebugInitStrategy is created if the call chartPanel.isStandaloneCompiling()
returns true, and an instance of DefaultInitStrategy is instantiated if it returns false. This mechanism allows
separate compilation of the debug and the gadget versions of a visualisation and solves the previously
mentioned problem.

The next step in changing the framework structure was the integration of a separate standalone ver-
sion of Liquid Diagrams. Here, the debug version of the framework was extended in various ways. Since
a standalone version needs a different data source to the gadget version, a mechanism for loading a data

7.1. Structure 99

BarChartDebugInitStrategy DefaultInitStrategy

IInitializationStrategy

+ init() : void
+ getDataHeaders() : Array
+ getDataValues() : Array
+ getDataColors() : String
+ getDataOptions() : Array
+ getColourSchemes() : ColourSchemes

LDareachart
- chartPanel : ChartPanel
- initializationStrategy : IInitializationStrategy
+ init() : void
+ drawVisualization() : void

LDbarchart
- chartPanel : ChartPanel
- initializationStrategy : IInitializationStrategy
+ init() : void
+ drawVisualization() : void

ChartPanel
- standloneCompiling : boolean
+ isStandaloneCompiling() : boolean

AreachartDebugInitStrategy

Figure 7.2: The first modification to the structure of Liquid Diagrams framework. Each visualisa-
tion has a concrete instance of a implementation of the interface IInitializationStrategy. A
debug flag in the class ChartPanel decides which implementation of IInitializationStrategy
is instantiated on startup. This is an implementation of the strategy pattern [Gamma
et al., 1995, pages 315–324]. For simplicity, only the visualisations area chart and bar
chart are drawn.

file was implemented. The original version of this mechanism was implemented by Haintz et al. [2011]
in the course “Information Visualization” [Andrews, 2011a] during the summer term 2011 at Graz Uni-
versity of Technology. This extension resulted in many redundancies regarding the previously mentioned
debug initialisation strategies, including static data and static options for each visualisation which were
no longer needed.

The integration of Adobe AIR into the standalone version caused extensive changes to the structure
of the framework as well, because in order to create a clean implementation, the project LDFramework
(see in Figure 7.1) had to be divided into three different Adobe Flash Builder projects:

1. LDFramework: This project contains most of the code from the old project and works as a
common codebase for the other two projects. In addition, it defines the interface IInitializationStrat
egy which is implemented in the other two projects.

2. LDFrameworkGadget: The gadget version of the Liquid Diagrams framework. It includes a link
to the code of the project LDFramework and implements the interface IInitializationStrategy. The
main files of this project are of type Application and work as a wrapper for the main visualisation
file, located in LDFramework. When this project is compiled, it outputs an SWF file for each
visualisation which can be used as gadgets with Google Docs.

3. LDFrameworkAIR: This project contains the framework-specific code for the standalone version
of Liquid Diagrams. This includes data import and data storage functionality. Like the project LD

100 7. Changes to the Framework

FrameworkGadget it contains a link to the common codebase (LDFrameworkGadget) and implements
the interface IInitializationStrategy. It defines a WindowedApplication, which is in fact a wrapper for
the main file of every visualisation. Additionally, the WindowedApplication liquiddiagrams contains
all visualisations at once. When this project is compiled, installers for standalone applications (see
Section 5.3.5) can be created.

The original idea for this approach was taken from an article in the Adobe Developer Center [Prekaski,
2011]. All three projects and their interactions are illustrated in Figure 7.3. Details about the implemen-
tation can be found in Section 8.1.

7.2 Fonts

The font handling mechanism in the Liquid Diagrams framework underwent major improvement. Be-
sides the restructuring and improving of the user interface elements, fonts are now loaded at runtime.
This section describes which changes were made and why they were necessary. In addition, it is ex-
plained how to add new fonts to the framework.

The initial situation before refactoring the framework included a Font button in the Options Panel. A
font chooser pop-up window appeared, where the user was able to select a font type and a font size for a
specific font category. Six font categories (diagram title, axis title, axis label, legend, tool tip, and chart
text) were available. By changing one of the settings a preview of the selected font in the chosen size
appeared at the bottom of the pop-up window. A click on the OK-button closed the window and the font
settings were adopted by the visualisation. Figure 7.4a shows the appearance of the initial font chooser
in version 1.0 of Liquid Diagrams.

While modifying the Options Panel (as described in Section 5.5.1) a new Fonts tab was created, con-
taining the font options. Besides the original functionality, four buttons were added to the font chooser
component. The first button allows changing the font colour of the specified font category. By clicking
it, a colour chooser pop-up window appears. After pressing the OK-button of the window, the selected
colour is applied to the font category in the visualisation. As feedback, the button changes colour as
well. The last three buttons give the user the possibility to change the font weight, font style and the text
decoration of the corresponding font category. The font weight changes the font to bold, the font style
to italic, and the text decoration to underline. With the bold and italic options the whole font family of
the chosen font type can be selected. A screenshot of the new font dialogue can be seen in Figure 7.4b.
Figure 7.5 shows the font options from Figure 7.4b applied to the pie chart visualisation.

Unfortunately, the new font options involved new problems which had to be solved. In Adobe Flex,
fonts have to be embedded in order to be displayed properly. By adding the options to change the font
weight and the font style (bold and italic) of a font, Flex was not able to display the fonts correctly in
some situations. The problem occurred when the bold, italic or bold and italic text was rotated. This was
the case in visualisations which included a horizontal axis (x-axis). The x-axis label styles included in
the Liquid Diagrams framework contain an option whereby the label of the x-axis ticks can be rotated by
45◦. When this option was selected, the label disappeared. The reason for this behaviour was that just
one font of the whole font family was embedded into the code. Embedding the rest of the fonts would
have meant increasing the size of the compiled flash file dramatically. For this reason, the decision was
made to dynamically load selected fonts at runtime. The loading of fonts is done by the class FontLoader
in package common.fonts.

7.2. Fonts 101

<<project>>

LDFrameworkAIR

<<project>>

LDFramework

<<project>>

LDFrameworkGadget

<<Application>>

barchart

<<Canvas>>

LDbarchart

<<Application>>

areachart

<<Canvas>>

LDareachart

<<Application>>

batswing

<<Canvas>>

LDbatswingIIn
iti

al
iz

at
io

nS
tra

te
gy

<<contain>> <<contain>>

<<contain>>

<<contain>>

<<contain>> <<contain>><<use>>

<<use>>

<<WindowedApplication>>

areachart

<<WindowedApplication>><<WindowedApplication>>

barchart liquiddiagrams

<<WindowedApplication>>

batswing

Figure 7.3: The general structure of the Liquid Diagrams framework version 2.0 in a UML com-
ponent diagram. The framework is split into three different projects. The project in
the middle (LDFramework) contains the resources which are referenced by the other
two projects (LDFrameworkAIR and LDFrameworkGadget). It defines an interface for the
initialisation process. The concrete implementations of this interface are included in
the other projects. LDFrameworkAIR compiles the files for the standalone version of the
framework and LDFrameworkGadget the ones for the gadget version. For simplicity, the
diagram does not contain all application components.

102 7. Changes to the Framework

(a) The original font chooser pop-up window version 1.0.

(b) The redesigned font chooser menu component in the opened Options Panel. It adds
buttons for font colour, font style (italic), font weight (bold) and text decoration
(underline).

Figure 7.4: The font component in the Liquid Diagrams Framework. (a) shows the initial state at
version 1.0 (b) shows the font component after modification in version 2.0.

7.2. Fonts 103

Usage Growth

Africa

1,031.2

26.83%

Asia

406.1

10.56%

Europe

266

6.92%

Middle East

1,176.8

30.61%

North America

129.6

3.37%

Latin America

669.3

17.41%

Oceania

165.1

4.29%

Figure 7.5: The Liquid Diagrams pie chart visualisation showing the font options from Figure 7.4b
applied to the title (Diagram Title) and the slice labels (Axis Title and Chart Text).

Additionally, the text displayed in the visualisations was modified to support a coloured label back-
ground. This background can be enabled in various visualisations using the user interface controls in the
Labels tab of the Options Panel. The background can be set to any transparency from 0% to 100%.

All these features are implemented in the newly created class ChartText. This class is derived from
the standard Flex class Text and supports the automatic centering and the setting of the font style and
background settings of the corresponding label. In addition, it automatically generates the SVG string
used when exporting the visualisation as an SVG file.

Before refactoring the font component, the selected default font for text was Tahoma. Tahoma was
designed as a two font typeface by Matthew Carter and Tom Rickner, as a system font for the operating
system Windows95. [Will-Harris, 2003] The problem with Tahoma as the default font is that by includ-
ing the option to set the font style of a font this option could not be applied to Tahoma because as a two
font typeface it does not support italic or bold-italic. For this reason, the decision was made to set the
default typeface of the visualisations to Verdana. The Verdana typeface is embedded into each visualisa-
tion in its normal form and the rest of Verdana’s font family and the rest of the available font families are
loaded at runtime if they are selected by the user. By default, the following fonts are currently available:
Arial, Courier New, Georgia, Tahoma, Times New Roman and Verdana.

In order to import fonts at runtime into the main application, the font has to be pre-compiled into
a Flash file. This task can be achieved using the code in Listing 7.1 inside an ActionScript project in
Adobe Flash Builder. The Fonts are then available as SWF files.

The loading of fonts at runtime has the advantage that the file size of the main SWF file decreases,
because most fonts are no longer embedded into the code. In numbers, the file size decreased from 2.1
megabytes (MB) to approximately 1.4 megabytes, an improvement of about 33%.

104 7. Changes to the Framework

1 package {
2
3 import flash .display .Sprite ;
4
5 p u b l i c c l a s s Arial ex tends Sprite {
6
7 [Embed (source= ’font /arial .ttf ’ ,
8 embedAsCFF= ’ f a l s e ’ ,
9 fontFamily= ’Arial ’ ,

10 fontName= ’Arial ’ ,
11 fontWeight= ’normal ’ ,
12 fontStyle= ’normal ’ ,
13 mimeType= ’application /x−font ’ ,
14 advancedAntiAliasing= ’ true ’
15)]
16 p u b l i c s t a t i c var Arial :Class ;
17 }
18 }

Listing 7.1: The code necessary to embed a font in ActionScript. This code can be compiled into
a SWF file, which can be loaded on runtime in order to access the embedded font in
the main application.

Chapter 8

Selected Details of the Implementation

“ Words have been interchanged enough,
Let me at last see action too. ”

[Johann Wolfgang von Goethe, Faust: the first part of the tragedy, 1808.]

This chapter describes some of the finicky little details, which take a great deal of time to get right
and which deserve to be explained in their own right. This includes the framework’s general structure and
initialisation process, the import and export of project files, and its 3D functionality. In the following,
UML class diagrams are used to explain the structure of the described details. A legend explaining
elements used in these class diagrams can be seen in Figure 8.1.

8.1 General Structure and Initialisation Process

In Section 7.1, it was described how the structure of the Liquid Diagrams framework changed compared
to its initial state. Three different projects enable the creation of the gadget version of the framework
and its standalone pendant. The idea for this approach was taken from an article in the Adobe Developer
Center written by Prekaski [2011]. The article describes the building of Adobe Flex and Adobe AIR
applications from the same code base. The focus of this section is on how the general idea of this article
was applied to the Liquid Diagrams framework.

As written in Section 7.1, the workspace of the Liquid Diagrams framework consists of three dif-
ferent projects: LDFramework, LDFrameworkGadget, and LDFrameworkAIR. The project LDFramework
works as a common codebase for the other two projects and it contains all the shared code for all visu-
alisations. The projects LDFrameworkAIR and LDFrameworkGadget reference the common codebase and
output the final SWF files when they are compiled. There exists no link between LDFrameworkAIR and
LDFrameworkGadget in order to strictly separate the different implementations.

In the following, the detailed initialisation process of a visualisation is described. The architecture
involved can be seen in Figure 8.2. The project LDFramework contains the main files of the visualisations.
These are MXML files which extend the Flex class Canvas and whose file names start with the prefix
“LD”. In Figure 8.2, only two of them (LDareachart and LDbarchart) are displayed. Each of the files
is contained within a corresponding MXML file from the project LDFrameworkAIR. One of these files
can be seen in Listing 8.1. The project LDFrameworkGadget is not shown, because it includes mainly
the same classes and relations as the project LDFrameworkAIR. The only difference is that the class
StandaloneDefaultInitStrategy would be replaced by DefaultInitStrategy as the concrete implementation of

105

106 8. Selected Details of the Implementation

Project

(a) UML Fragments are used to illustrate Adobe
Flash Builder projects.

Interface

+ interfaceMethodA() : void
+ interfaceMethodB()

(b) An example of an interface.

Figure 8.1: Legend of UML class diagram elements. (a) shows an example of an Adobe Flash
Builder project (b) illustrates the appearance of an interface.

the interface IInitializationStrategy.

At the beginning of the initialisation process of every application, the function init() from the main
file of the included visualisation is called. This function can be seen in Listing 8.2. The context of the
current application is determined by calling the function chartPanel.isStandaloneCompiling(). The
implementation of this function can be seen in Listing 8.3. If it returns true, the application’s context is an
Adobe AIR project (LDFrameworkAIR) otherwise it is a gadget project (LDFrameworkGadget). The member
variable initializationStrategy is retrieved by the class InitStrategyFactory. This is an implementation
of the factory method pattern [Gamma et al., 1995, pages 107–116] and can be seen in Figure 8.4. Its
purpose is the instantiation of a concrete type of the interface IInitializationStrategy without knowing the
type. This is done using the Flex class ApplicationDomain, together with the textual representation of the
concrete class.

This procedure is the main feature of the initialisation process. It enables the two projects LDFram
eworkGadget and LDFrameworkAIR to coexist without knowing of their mutual co-existence. The shared
codebase LDFramework does not need to know about the two projects which use it.

Since Adobe Flash Builder tries optimise the output when a project is compiled, it does not include
code which is not referenced into the final SWF output. For that reason, the main file of an application
has to include the concrete implementation of the interface IInitializationStrategy. This can be seen in List-
ing 8.1 line 16 where the member variable onlyForCompilationInit is declared, but only instantiated
as a null reference.

8.2 Cookies and Project Files

In Section 5.4 it was described how cookies are used to store the options of a visualisation in the newly
created cookies version of the Liquid Diagrams framework. The architecture invoked in this process
was carefully designed in order to be extensible for various other storing methods. The ability to store
project files, described in Section 5.3.4, is one of these methods. In the following, this architecture and
its corresponding code are described. Figure 8.3 shows a diagram of the involved classes. As can be
seen, the architecture makes use of the technique described in Section 8.1 of instantiating classes without
knowing the concrete type.

The starting point of the export of settings is the main file of a visualisation. In Figure 8.3, this
is the class LDvoronoi. It has a member variable settingsHandler of type SettingsHandler. In every
other programming language, this class would be abstract but due to the fact that ActionScript does not

8.2. Cookies and Project Files 107

1 <?xml version="1.0" encoding="utf-8"?>
2 <mx:WindowedApplication
3 xmlns:mx="http://www.adobe.com/2006/mxml"
4 layout="vertical" verticalAlign="top" horizontalAlign="left"
5 xmlns:local="*" applicationComplete="init()"
6 xmlns:s="library://ns.adobe.com/flex/spark" width="800" height="600"
7 paddingLeft="0" paddingRight="0" paddingBottom="0" paddingTop="0"
8 backgroundColor="0x7a909b" resize="onResize()"
9 title="Liquid Diagrams - Polar Area Diagram">

10
11 <mx:Script>
12 <![CDATA[
13 import diagram.init.StandaloneDefaultInitStrategy;
14 import diagram.settings.StandaloneSettingsStorageProvider;
15
16 private static const onlyForCompilationInit:StandaloneDefaultInitStrategy =

null;
17 private static const

onlyForCompilationSettings:StandaloneSettingsStorageProvider = null;
18
19 private var application:LDpolararea;
20
21 private function init() : void {
22
23 this.application = new LDpolararea();
24 this.application.width = this.width - 5;
25 this.application.height = this.height - 20;
26
27 addChild(this.application);
28 }
29
30 private function onResize() : void {
31
32 if (application != null) {
33 application.width = this.width - 5;
34 application.height = this.height - 20;
35 application.onResize();
36 }
37 }
38
39]]>
40 </mx:Script>
41
42 </mx:WindowedApplication>

Listing 8.1: The main code of the polar area diagram in the project LDFrameworkAIR. Compilation
outputs the SWF file for the standalone version of the Liquid Diagrams framework and
instantiates and includes an instance of the class LDpolararea. In line 16, the member
variable onlyForCompilationInit is included in this MXML file, because otherwise
the Flash Builder would not include the code for the class StandaloneDefaultInitStrategy in
the compiled output. This is because the class InitStrategyFactory (shown in Listing 8.4)
does not know the type of the class it is instantiating.

108 8. Selected Details of the Implementation

1 /**
2 * init() is called after the initialisation process is finished
3 * (= first function to be run)
4 */
5 public function init():void {
6
7 if (initializationStrategy == null) {
8 initializeFonts();
9

10 var initFactory:InitStrategyFactory = new InitStrategyFactory(
chartPanel.isStandaloneCompiling());

11
12 initializationStrategy = initFactory.getInitInstance();
13 initializationStrategy.setApplication(this);
14 initializationStrategy.setStandaloneDefaultOptions(

STANDALONE_DEFAULT_DATA_OPTIONS);
15 initializationStrategy.init();
16 }
17 }

Listing 8.2: The function init() is called at the beginning of the initialisation process of every
visualisation. The concrete instance of the interface IInitializationStrategy is retrieved
in line 10 by calling the function getInitInstance() of an InitStrategyFactory. The
visualisation itself does not know in which context it is running and therefore does not
know which instance of IInitializationStrategy is instantiated. The ChartPanel’s function
isStandaloneCompiling() can be seen in Listing 8.3 and the InitStrategyFactory is
shown in Listing 8.4.

1 public function isStandaloneCompiling() : Boolean {
2 return Security.sandboxType.toString() == "application" ? true : false;
3 }

Listing 8.3: The function isStandaloneCompiling() in the class ChartPanel is responsible for
determining in which context the current application runs. If this function returns true,
the context is an Adobe AIR application, otherwise it is a gadget application.

8.2. Cookies and Project Files 109

1 package martin.diagram.init
2 {
3 import flash.system.ApplicationDomain;
4 import flash.utils.getDefinitionByName;
5
6 public class InitStrategyFactory
7 {
8 private var isAir:Boolean;
9

10 public function InitStrategyFactory(isAir:Boolean) {
11 this.isAir = isAir;
12 }
13
14 private function getClassToCreate(className:String) : Object {
15
16 var someClass:Object = null;
17 someClass = ApplicationDomain.currentDomain.getDefinition(

className);
18 return someClass;
19 }
20
21 public function getInitInstance() : IInitialisationStrategy {
22
23 var strategy:IInitialisationStrategy;
24 var cls:String = (isAir ? "diagram.init.

StandaloneDefaultInitStrategy" :
25 "diagram.init.DefaultInitStrategy");
26 var clsToCreate:Object = getClassToCreate(cls);
27 strategy = new clsToCreate();
28 return strategy;
29 }
30 }
31 }

Listing 8.4: The class InitStrategyFactory is an implementation of the factory method pattern
[Gamma et al., 1995]. It instantiates objects of type IInitializationStrategy without
knowing the concrete type. This is done using the Flex class ApplicationDomain,
together with the name of the concrete class. If this code runs in an Adobe AIR
application, the instantiated class is of type StandaloneDefaultInitStrategy, otherwise it is
DefaultInitStrategy.

110 8. Selected Details of the Implementation

LDFrameworkAIR

LDFramework

InitStrategyFactory
- isAIR : Boolean
+ getInitInstance() : IInitializationStrategy
- getClassToCreate() : Object

IInitializationStrategy

+ init() : void
+ getDataHeaders() : Array
+ getDataValues() : Array
+ getDataColors() : String
+ getDataOptions() : Array
+ getColourSchemes() : ColourSchemes

LDareachart
- chartPanel : ChartPanel
- initializationStrategy : IInitializationStrategy
+ init() : void
+ drawVisualization() : void

LDbarchart
- chartPanel : ChartPanel
- initializationStrategy : IInitializationStrategy
+ init() : void
+ drawVisualization() : void

Canvas

ChartPanel

- standloneCompiling : boolean
+ isStandaloneCompiling() : boolean

...

barchart
- application : LDbarchart
- onlyForCompilation : StandaloneDefaultInitStrategy
+ init() : void
+ onResize() : void

StandaloneDefaultInitStrategy

...

areachart
- application : LDareachart
- onlyForCompilation : StandaloneDefaultInitStrategy
+ init() : void
+ onResize() : void

WindowedApplication

Figure 8.2: The classes involved in the initialisation process of two applications of the Liquid
Diagrams framework. For simplicity, the files of only two applications (area chart and
bar chart) are shown. The implementation of the main parts of the code can be seen
in Listings 8.1, 8.2, 8.3, and 8.4. The project LDFrameworkGadget is not shown in this
class diagram, because its classes and relations are almost the same as in the project
LDFrameworkAIR.

8.2. Cookies and Project Files 111

allow setting methods as abstract, it is a normal class.The SettingsHandler has a reference to itself which
makes it possible to create a chain of SettingsHandler objects. This is an implementation of the chain of
responsibility pattern [Gamma et al., 1995, pages 223–232]. It allows the creation of an object structure
which is able to sequentially process an event. In this case, the event is about storing and deleting
settings from the storing mechanism. The SettingsHandler has a number of classes derived from it. The
classes OptionsSettingsHandler, FontSettingsHandler and DataItemSettingsHandler are shown in Figure 8.3.
In addition, the class LegendSettingsHandler is also available. Each of these classes has the following
purpose:

• OptionsSettingsHandler: This class handles the settings for the standard options in each visu-
alisation. The standard options mapping consists of an array options, several integer constants,
and an array containing the textual representation of the settings in each visualisation. The integer
constant specifies the position (index) in the array at which a certain setting and its textual name
can be found.

• FontSettingsHandler: This SettingsHandler is responsible for the font options of each gadget. The
font options can be found in the Options Panel by clicking on the Fonts tab. The FontSettingsHandler
stores all the initial font settings and checks if one of the current settings differ from the default
settings. Since the Liquid Diagrams framework supports runtime font loading, this class contains
a reference to the FontLoader. More about fonts can be found in Section 7.2.

• DataItemSettingsHandler: In many of the visualisations in the Liquid Diagrams framework,
users have the option to change the colour of a certain data entity. Options like this can be saved
with the DataItemSettingsHandler. Currently, only the colour of a data entity is handled. However,
the saving of options like selection and visibility could be integrated within this class as well.

• LegendSettingsHandler: This class saves the settings of the colour legend. This legend type
is only available in the heatmap, treemap, and Voronoi treemap visualisations and computes the
colour of each entity according to its specific data value and the data distribution type. The Legend
SettingsHandler saves the distribution type, the data range, and the main colour of the legend.

The reason why the chain of responsibility pattern was used to implement of this functionality is
because the visualisations in the framework have different requirements regarding the availability of
settings. For example, the Voronoi treemap forms a SettingsHandler chain consisting of the classes
OptionsSettingsHandler, FontSettingsHandler, and LegendSettingsHandler, on the contrary the area chart’s
chain consists of the classes OptionsSettingsHandler, DataItemSettingsHandler, and FontSettingsHandler.

In the next step of the storage procedure, the member variable factory comes into play. This variable
is of the interface type ISettingsStorageFactory and its concrete implementation DefaultSettingsStorageFa
ctory is responsible for creating a concrete ISettingsStorageProvider. This implementation of the factory
method pattern [Gamma et al., 1995, pages 107–116] makes use of the already mentioned technique
of creating class instances without knowing the concrete type. The implementations of the interface
ISettingsStorageProvider (StandaloneSettingsStorageProvider and CookieSettingsStorageProvider) can be
found in the projects LDFrameworkAIR and LDFrameworkGadget. The purpose of these two classes are:

• StandaloneSettingsStorageProvider: This ISettingsStorageProvider stores the settings of a visu-
alisation in its member variables. This is done because in the standalone version of the frame-
work, an instant storage mechanism like in the cookies version is not needed. The settings in the
StandaloneSettingsStorageProvider are only used if a project is exported. Since the application
liquiddiagrams in the standalone version of the framework allows the launch of multiple visuali-
sations at the same time, a single instance of StandaloneSettingsStorageProvider is not enough.

112 8. Selected Details of the Implementation

That is why the class SettingsStorageProviderPool was created. It handles the administration of
ISettingsStorageProvider instances by returning the correct instance for a particular visualisation.

• CookieSettingsStorageProvider: This class is responsible for saving settings to and from a
cookie. The Flex class ExternalInterface is used to call the JavaScript functions described in
Section 5.4.

8.3 3D Functionality

In order to present the class architecture of the 3D functionality in a structured way, a distinction is made
between the starting procedure and its drawing process. Figure 8.4 displays the class diagram of all com-
ponents engaged in the 3D starting procedure. The architecture of the final drawing process is shown in
Figure 8.5.

If a user checks the Enable 3D check-box in the 3D tab of the Options Panel, the visualisation triggers
a process involving the classes in Figure 8.4. Here, a distinction between a visualisation implementing
effects (pie chart) and a visualisation without effects (heatmap) has to be made (see Section 5.6). An
effect in Flex is basically a timer, which updates a target multiple times within a defined duration.

The pie chart uses the code in Listing 8.5 to set up its member variable rotation3DEffect and
call the function play(). Setting up this attribute means setting a duration for the effect and defin-
ing its target, modified in each effect update. This target is the member variable pathContainer. The
rotation3DEffect is of type PathDrawingEffect, a subclass of the Flex class TweenEffect. It is responsible
for performing an effect, in which an implementation of the interface IEffectInstance is automatically
updated, calling its function onTweenUpdate(). The concrete implementation of the interface, the class
PathDrawingEffectInstance is responsible for updating the attribute percentageFinished of its target. In
addition, it notifies an instance of the interface DrawingStrategy. The DrawingStrategy has two concrete
implementations: Rotation3DDrawingStrategy and Extrusion3DDrawingStrategy, representing the two 3D
states. Again, this is an implementation of the strategy pattern [Gamma et al., 1995, pages 315–324].
The concrete implementation of DrawingStrategy uses the attribute percentageFinished of the target of
the effect, an object of type PathContainer, to apply transformations to concrete implementations of the
interface IPath. An IPath represents a transformable data entity. The PathContainer stores an array of IPath
objects and provides access to it, so the DrawingStrategy can perform its transformations.

The heatmap does not include any effects due to the fact that an IPath in this visualisation may consist
of hundreds or thousands of points and transforming them would take too long. This is why the class
LDHeatmap directly accesses the concrete implementation of the interface DrawingStrategy in order to start
the 3D procedure.

The architecture involved in the transformation of data entities, represented by concrete instances
of the interface IPath and the perspective projection, can be seen in Figure 8.5. For simplicity, multi-
ple attributes and operations are excluded from the diagram. The interface IPath is implemented by the
classes Path and PathDecorator. Path provides a default implementation of the methods defined in IPath.
The class PathDecorator is the core element of the implemented decorator pattern [Gamma et al., 1995,
pages 175–184]. This design pattern enables the dynamic addition of behaviour to classes by wrapping
them. The PathDecorator wraps an implementation of IPath and its subclasses HeatMapPathDecorator and
PieChartPathDecorator use this attribute to invoke the default implementation of the class Path in addition
to their own implementation of certain functions.

8.3. 3D Functionality 113

LDFramework

LDFrameworkAIR LDFrameworkGadget

DefaultSettingsStorageFactory

- isAir : Boolean

- getClassToCreate(className : String) : Object

Canvas

Application voronoi

- application : LDvoronoi

SettingsHandler

application : Object
next : SettingsHandler
factory : ISettingsStorageFactory

+ storeChanges() : void
+ storeSettings() : void
+ retrieveSettings(settings : Array) : void

voronoi

- application : LDvoronoi

ISettingsStorageProvider

+ storeSettings(applicationName : String, id : String, settings : Array) : void
+ storeSingleSetting(applicationName : String, id : String, mapping : String, value : Object) : void
+ deleteSingleSetting(applicationName : String, id : String, settingName : String) : void

ISettingsStorageFactory

+ getStorageProviderInstance(application : Object) : ISettingsStorageProvider

LDvoronoi

- settingsHandler : SettingsHandler

WindowedApplication

OptionsSettingsHandler

DataItemSettingsHandler

CookieSettingsStorageProvider

FontSettingsHandler

StandaloneSettingsStorageProvider

- settings : Array
- settingNames : Array

+ toXML() : String

SettingsStorageProviderPool

- instance : SettingsStorageProviderPool
- applications : Array
- storageProviders : Array

+ getInstance() : SettingsStorageProviderPool
+ storePair(application : Object,

+ getSettingsStorageProvider(application : Object) :
ISettingsStorageProvider

storageProvider : ISettingsStorageProvider) : void

Figure 8.3: The classes involved in the storage procedure for settings in cookies and project files.
Cookies are stored in the cookies version and project files can be created in the stan-
dalone version of the Liquid Diagrams framework.

114 8. Selected Details of the Implementation

PathDrawingEffect

- drawingStrategy : DrawingStrategy

- playReverse : Boolean

- isActive : Boolean

+ getAffectedProperties() : Array

+ initInstance(inst : IEffectInstance)

Rotation3DDrawingStrategy

PathContainer

- paths : Array

- percentageFinished : Number

+ addPath(path : IPath, index : Number) : void

+ getPath(index : Number) : IPath

+ getNumPaths() : Number

TweenEffectInstance

IEffectInstance

Extrusion3DDrawingStrategy

DrawingStrategy

+ onEffectStart() : void

+ onEffectUpdate() : void

+ onEffectEnd() : void

+ applyTransformations() : void

+ draw() : void

PathDrawingEffectInstance

- playReverse : Boolean

- isActive : Boolean

- drawingStrategy : DrawingStrategy

+ play() : void

+ onTweenUpdate(val : Object) : void

+ onTweenEnd(val : Object) : void

LDPiechart

- rotation3DEffect : PathDrawingEffect

- extrusionEffect : PathDrawingEffect

- rotation3DStrategy : Rotation3DDrawingStrategy

- extrusion3DStrategy : Extrusion3DDrawingStrategy

IPath

TweenEffect

1 *

Figure 8.4: Classes involved in the 3D starting procedure. The diagram includes all classes en-
gaged in performing the drawing effects in the pie chart visualisation.

8.3. 3D Functionality 115

1 private function play3DRotationEffect(reverse:Boolean = false) : void {
2
3 setUpRotationStrategy();
4
5 rotation3DEffect.drawingStrategy = rotation3DStrategy;
6 rotation3DEffect.duration = 1500;
7 rotation3DEffect.playReverse = reverse;
8 rotation3DEffect.target = pathContainer;
9 rotation3DEffect.play();

10 }
11
12 private function playExtrusionEffect(reverse:Boolean = false) : void {
13
14 setUpExtrusionStrategy();
15
16 extrusion3DStrategy.setMatrix(rotation3DStrategy.getMatrix());
17
18 extrusionEffect.drawingStrategy = extrusion3DStrategy;
19 extrusionEffect.duration = 2000;
20 extrusionEffect.startDelay = 500;
21 extrusionEffect.playReverse = reverse;
22 extrusionEffect.target = pathContainer;
23 extrusionEffect.play();
24 }

Listing 8.5: This listing shows the functions triggering the start of the rotation and extrusion effects
in the pie chart visualisation. In each function, the implementation of the interface
DrawingStrategy (rotation3Deffect or extrusionEffect) is initialised and the effect
is started.

An example of the use of the decorator pattern is the implementation of the function addPoint()

in class PieChartPathDecorator. The PieChartPathDecorator is responsible for all instances of IPath con-
taining sectors in the pie chart gadget. Since sectors of a pie chart are parts of a circle, each outer line
is curved. The curvature is defined by the start point, the end point, and a control point. However, the
default implementation of a Path does not contain any functionality regarding the creation and saving of
control points. For this reason, the addPoint() function within the PieChartPathDecorator creates and
stores its own control points. In addition, it delegates the saving procedure of the start point and the end
point (which is in fact the start point of the next pie sector) to the default implementation.

8.3.1 Rotation

The code implementing the rotation of IPaths can be seen in Listings 8.6, 8.7, and 8.8. The function
prepareTransformationMatrix() within the class Rotation3DDrawingStrategy (shown in Listing 8.6)
prepares the rotation matrices in addition to the translation parameters. these variables are then passed
to the function performTransformation() (seen in Listing 8.7) in the class Path. It calls the function
Utils3D.transformVector() for each point within the Path. Finally, the points are transformed using
the class Utils3D. This functionality can be seen in Listing 8.8.

The mathematical calculation of a rotation is encapsulated in Flex in order to make its use more
comfortable. Following Foley et al. [1990, page 215], the mathematical calculation of a rotation using
matrices is shown in Equation 8.1. Here, one of the rotation matrices seen in the Equations 8.2, 8.3, and
8.4 have to be inserted. An important issue with rotations is that the object has to be translated to the

116 8. Selected Details of the Implementation

SVGPathDrawer

HeatMapPathDecorator

- svgCommands : Array

+ getCurrentPathParameters(i : Number, front : Boolean) : Array

IPath

addPoint(x : Number, y : Number) : void

drawPath(exportXML : Boolean) : void

drawVerticalArea(index1 : Number, index2 : Number, container : UIComponent) : void

perform3DProjection() : void

performTransformation(matrix : Matrix3D) : void

transformPath(matrix : Matrix3D, points : Array) : void

Path

- points2DFront : Array

- points2DBack : Array

- points3DFront : Array

- points3DBack : Array

- labelPosition2D : Point

- labelPosition3D : Vector3D

- visSurfDetStrategy : IVisibleSurfaceDeterminationStrategy

PieChartPathDecorator

- controlPoints2DFront : Array

- controlPoints3DFront : Array

- controlPoints2DBack : Array

- controlPoints3DBack : Array

- calculateControlPoint(x : Number, y : Number, center : Vector3D, start : Vector3D) : Vector3D

- drawXMLPieSector() : void

PathDecorator

decoratedPath : IPath

Utils3D

+ transformVector(matrix : Matrix3D, vector : Vector3D) : Vector3D

+ perform3DProjection(vector : Vector3D, result : Point) : void

Figure 8.5: Classes involved in the final 3D drawing process. This involves the transformation and
perspective projection of data entities.

8.3. 3D Functionality 117

1 private function prepareTransformationMatrix() : void {
2
3 matrix = new Array();
4
5 var matrix_z:Matrix3D = new Matrix3D();
6 matrix_z.prependRotation(pathContainer.percentageFinished / 100 * rotationZ,

Vector3D.Z_AXIS);
7
8 matrix[0] = new Array();
9 matrix[0].matrix = matrix_z;

10 matrix[0].translationX = chartPanel.getDiagramOriginX();
11 matrix[0].translationY = chartPanel.getDiagramOriginY();
12 matrix[0].translationZ = 0;
13
14 var matrix_y:Matrix3D = new Matrix3D();
15 matrix_y.prependRotation(pathContainer.percentageFinished / 100 * rotationY,

Vector3D.Y_AXIS);
16
17 matrix[1] = new Array();
18 matrix[1].matrix = matrix_y;
19 matrix[1].translationX = chartPanel.getDiagramOriginX();
20 matrix[1].translationY = chartPanel.getDiagramOriginY();
21 matrix[1].translationZ = 0;
22
23 var matrix_x:Matrix3D = new Matrix3D();
24 matrix_x.prependRotation(pathContainer.percentageFinished / 100 * rotationX,

Vector3D.X_AXIS);
25
26 matrix[2] = new Array();
27 matrix[2].matrix = matrix_x;
28 matrix[2].translationX = pathContainer.getBiggestXCoord();
29 matrix[2].translationY = pathContainer.getBiggestYCoord();
30 matrix[2].translationZ = pathContainer.getPath(0).getZCoordinateBack();
31 }

Listing 8.6: The function prepareTransformationMatrix() is located in the class Rotation3DDraw
ingStrategy and prepares the parameters necessary for a rotation and transition. The
Flex framework encapsulates the mathematical background of this task. The direction
of a rotation is specified using the constants Vector3D.X_AXIS, Vector3D.Y_AXIS, and
Vector3D.Z_AXIS.

118 8. Selected Details of the Implementation

1 public function performTransformation(matrix:Matrix3D, translationX:Number = 0,
2 translationY:Number = 0, translationZ:Number = 0) : void {
3
4 points3DFront = transformPath(matrix, points3DFront, translationX,
5 translationY, translationZ);
6 points3DBack = transformPath(matrix, points3DBack, translationX,
7 translationY, translationZ);
8
9 // Label handling:

10 labelPosition3D = Utils3D.transformVector(matrix, labelPosition3D,
11 translationX, translationY, translationZ);
12 }
13
14 public function transformPath(matrix:Matrix3D, points:Array,
15 translationX:Number = 0, translationY:Number = 0,
16 translationZ:Number = 0) : Array {
17
18 for (var i:Number = 0; i < points.length; i++) {
19 points[i] = Utils3D.transformVector(matrix, points[i], translationX,
20 translationY, translationZ);
21 }
22
23 return points;
24 }

Listing 8.7: This two functions represent the default implementation of transformations, located
in the class Path. Here, the function Utils3D.transformVector() is called. It can be
seen in Listing 8.8.

1 public static function transformVector(matrix:Matrix3D, vector:Vector3D,
2 translationX:Number = 0, translationY:Number = 0,
3 translationZ:Number = 0) : Vector3D {
4
5 vector.x -= translationX;
6 vector.y -= translationY;
7 vector.z -= translationZ;
8
9 vector = matrix.transformVector(vector);

10
11 vector.x += translationX;
12 vector.y += translationY;
13 vector.z += translationZ;
14
15 return vector;
16 }

Listing 8.8: A vector can be transformed using this function.

8.3. 3D Functionality 119

x

y

P1

(a) The original house.

x

y

(b) The point P1 is trans-
lated to the origin.

x

y

0

(c) The rotation is per-
formed using the angle
θ.

x

y

P1

(d) P1 is translated back
to its original position.

Figure 8.6: The rotation of an object. An object is first translated to the origin, rotated, then trans-
lated back to its original position. This figure is adapted from Foley et al. [1990,
page 207].

origin, before the rotation is performed. This procedure can be seen in Figure 8.6.


x′

y′

z′

1

 = R(θ) ∗


x
y
z
1

 (8.1)

Rx(θ) =


1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 (8.2)

Ry(θ) =


cos(θ) 0 sin(θ) 0

0 1 0 0
−sin(θ) 0 cos(θ) 0

0 0 0 1

 (8.3)

Rz(θ) =


cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 (8.4)

8.3.2 Perspective Projection

After the rotation of each point within an IPath, the points are still defined using three dimensions. In or-
der to map the points to the two-dimensional display space, a perspective projection has to be performed.
Liquid Diagrams uses a one-point perspective projection, as shown in Figure 8.7. The mathematical
formula of a perspective projection can be seen in Equation 8.8. The terms R(θx), R(θy), and R(θz),
defined using the Equations 8.5, 8.6, and 8.7 specify the rotation of the camera. The assignment of the
variables used in the equations is:

θ: The rotation of the camera.

120 8. Selected Details of the Implementation

x

y

z

center of
projection

projection
plane

(a) Each point of a cube is mapped onto a plane cutting the
z-axis.

yp

zp

xp

(b) The resulting projection of the cube.

Figure 8.7: A one-point perspective projection. This image is adapted from Carlbom and Paciorek
[1979, page 486].

a: The point in 3D space.

c: The position of the camera.

e: The position of the viewer.

b: The point in 2D space.

R(θx) =

 1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)

 (8.5)

R(θy) =

 cos(θy) 0 sin(θy)
0 1 0

−sin(θy) 0 cos(θy)

 (8.6)

R(θz) =

 cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 (8.7)

 dx
dy
dz

 = R(θx)R(θy)R(θz)


 ax
ay
az

−
 cx
cy
cz


 (8.8)

Since no camera rotation is performed in the 3D extension of the Liquid Diagrams framework, the ro-
tation matrices R(θx), R(θy), and R(θz) are equal to the identity matrix (see Equation 8.9) and therefore
a perspective projection can be performed using Equation 8.10.

8.3. 3D Functionality 121

1 public static function perform3DProjection(vector:Vector3D, result:Point) : void {
2
3 // Point in 3D space
4 var ax:Number = vector.x;
5 var ay:Number = vector.y;
6 var az:Number = vector.z;
7
8 var dx:Number;
9 var dy:Number;

10 var dz:Number;
11
12 var tmp1:Number;
13 var tmp2:Number;
14
15 with (Math) {
16
17 // In case the camera rotation is not 0 some day in the future:
18 // tmp1 = (cos(angleY) * (az - cz) + sin(angleY) *
19 // (sin(angleZ) * (ay - cy) + cos(angleZ) * (ax - cx)));
20 // tmp2 = (cos(angleZ) * (ay - cy) - sin(angleZ) * (ax - cx));
21 //
22 // dx = cos(angleY) * (sin(angleZ) * (ay - cy) + cos(angleZ) *
23 // (ax - cx)) - sin(angleY) * (az - cz);
24 // dy = sin(angleX) * tmp1 + cos(angleX) * tmp2;
25 // dz = cos(angleX) * tmp1 - sin(angleX) * tmp2;
26
27 dx = ax - cx;
28 dy = ay - cy;
29 dz = az - cz;
30 }
31
32 result.x = ((dx - ex) * (ez / dz)) + cx;
33 result.y = ((dy - ey) * (ez / dz)) + cy;
34 }

Listing 8.9: The function perform3DProjection(), located in class U t i l s3D, implements
perspective projection.

R(θx) = R(θy) = R(θz) =

 1 0 0
0 1 0
0 0 1

 (8.9)

 dx
dy
dz

 =


 ax
ay
az

−
 cx
cy
cz


 (8.10)

In the last step, the transformed points have to be mapped onto a two-dimensional plane. Here,
Equations 8.11 and 8.12 are used. The implementation of this functionality can be seen in Listing 8.9.

bx = (dx − ex)(
ez
dz

) (8.11)

by = (dy − ey)(
ez
dz

) (8.12)

122 8. Selected Details of the Implementation

8.3.3 Visible Surface Determination

In order to draw the polygons of the IPaths in a correct order, a strategy concerning the determination
of visible surfaces had to be implemented. Here, the Liquid Diagrams framework uses the depth-sort
algorithm, introduced by Newell et al. [1972] in 1972. The depth-sort algorithm sorts the polygons
according to their distance from the camera and draws them in order of decreasing distance. This means
that polygons which are further away from the camera are drawn before polygons which are closer to the
camera. This algorithm is also known as the painter’s algorithm. [Foley et al., 1990, pages 673–675]

Chapter 9

Outlook And Future Work

Version 2.0 of the Liquid Diagrams framework makes a variety of improvements to the overall user
experience and the availability of new functionality over version 1.0. However, there are still many
aspects and features which could be improved or added in the future:

• Support for mobile devices: Since the structure of the framework was refactored by implementing
the standalone version of the Liquid Diagrams framework, it could be easily extended to output a
separate version targeted for use with mobile devices, such as mobile phones or tablets. This is
possible because Adobe Flex add support for these devices in version 4.5.

• Recreation of the cartographic material: Section 6.9.4 described that it would be possible to
display areas of different hierarchies within a single map in the heatmap visualisation. This func-
tionality is mostly already implemented, but the downside of this approach is that the underlying
SVG maps have to be very accurate in order to support this functionality. Unfortunately, this is
not the case with the current SVG maps. For this reason, the SVG maps might be edited and made
consistent.

• An application for creating SVG maps: Currently, the insertion of new SVG maps into the
Liquid Diagrams framework is non-trivial. A graphical application which automates most of the
tasks during the creation process of SVG maps could be created. The user could load SVG files
into the application, make modifications (such as setting the name for a region), immediately see
the resulting map, and save them back to the file system. This would be an enormous improvement
regarding the map creation process.

Additionally, the following suggestions concerning future work were proposed by Lessacher [2010]
and are still relevant:

• Web Site: A web site with spreadsheet functionality would mean an online version of Liquid
Diagrams which could be independent from Google Docs. It could be similar to Many Eyes
(described in Section 4.1.1), in enabling users to share visualisations among each other and to
collaboratively explore and discuss data.

• Scatterplot: A scatterplot visualisation would be a useful extension to the framework because
Liquid Diagrams currently does not support this visualisation type.

• Time element: A slider component could be implemented, enabling the functionality to look at
changes in the data over time, similar to that in Gapminder (Motion Chart), discussed in Sec-
tion 4.1.3.

123

124 9. Outlook And Future Work

Chapter 10

Concluding Remarks

This thesis began with an overview of the field of information visualisation, already existing information
visualisation systems, and technologies which can be used to develop such systems. The main part of
this thesis discussed and outlined the current version 2.0 of the Liquid Diagrams framework, a collection
of gadgets enabling users to create highly interactive visualisations. Each visualisation can be exported
as both raster graphics (PNG) and vector graphics (SVG).

It was argued that the amount of data produced every year reaches ever-higher dimensions. To
process this amount of data and to extract information is highly difficult. However, the field of infor-
mation visualisation takes the human visual perception system into account in order to present data in
a well-structured and understandable manner. Interest in the field of information visualisation has been
continuously expanding over recent years. It can be assumed that this trend will continue in the foresee-
able future. Nowadays, people want to create visualisations using their own data and want to share them
with others. This allows users to collaboratively explore data and gain new insights.

The work described in this thesis implements many new features regarding the user interface of Liq-
uid Diagrams in order to improve the general user experience. In addition, advanced functionality such
as the 3D extension was added. The Liquid Diagrams framework has now reached sufficient maturity
that it can be released to a wider audience.

125

126 10. Concluding Remarks

Bibliography

Adobe [2011a]. Adobe AIR. Adobe Systems. http://www.adobe.com/products/air.html.
(Cited on page 25.)

Adobe [2011b]. Adobe AIR - Deliver Rich Internet Applications on the Desktop. Adobe Systems.
wwwimages.adobe.com/www.adobe.com/products/air/pdfs/air_flex_datasheet.

pdf. (Cited on page 25.)

Adobe [2011c]. Adobe Flash Platform. Adobe Systems. http://www.adobe.com/

flashplatform/. (Cited on page 23.)

Adobe [2011d]. Adobe Flex. Adobe Systems. http://www.adobe.com/products/flex.html.
(Cited on page 23.)

Adobe [2011e]. Adobe Illustrator CS5. Adobe Systems. http://www.adobe.com/products/

illustrator.html. (Cited on page 28.)

Aichholzer, Oswin and Franz Aurenhammer [2002]. Voronoi Diagrams - Computational Geometry’s
Favorite. In Special Issue on Foundations of Information Processing of TELEMATIK, volume 1,
pages 7–11. Institute for Theoretical Computer Science, Graz University of Technology. http://

www.igi.tugraz.at/auren/psfiles/aa-vdcgf-02.ps.gz. (Cited on page 15.)

amCharts [2011]. amCharts. http://www.amcharts.com/. (Cited on page 43.)

Andrews, Keith [2011a]. Information Visualisation. Institute for Information Systems and Computer
Media at Graz University of Technology. http://courses.iicm.tugraz.at/ivis/. Course
Web Site. (Cited on pages 82, 93 and 99.)

Andrews, Keith [2011b]. Information Visualisation, Course Notes. http://courses.iicm.tugraz.
at/ivis/ivis.pdf. (Cited on page 6.)

Andrews, Keith [2011c]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer
Science. Graz University of Technology, Austria. http://ftp.iicm.edu/pub/keith/thesis/.
(Cited on page xi.)

Andrews, Keith, Wolfgang Kienreich, Vedran Sabol, Jutta Becker, Georg Droschl, Frank Kappe, Michael
Granitzer, Peter Auer, and Klaus Tochtermann [2002]. The InfoSky Visual Explorer: Exploiting Hi-
erarchical Structure and Document Similarities. Information Visualization, 1, pages 166–181. ISSN

1473-8716. doi:10.1057/palgrave.ivs.9500023. (Cited on pages 15 and 19.)

Andrews, Keith and Martin Lessacher [2010]. Liquid Diagrams: Information Visualisation Gadgets. In
Proc. 14th International Conference Information Visualisation (IV’10), pages 104–109. IEEE Com-
puter Society, Washington, DC, USA. ISBN 0769541658. doi:10.1109/IV.2010.100. (Cited on pages 1
and 45.)

127

http://www.adobe.com/products/air.html
wwwimages.adobe.com/www.adobe.com/products/air/pdfs/air_flex_datasheet.pdf
wwwimages.adobe.com/www.adobe.com/products/air/pdfs/air_flex_datasheet.pdf
http://www.adobe.com/flashplatform/
http://www.adobe.com/flashplatform/
http://www.adobe.com/products/flex.html
http://www.adobe.com/products/illustrator.html
http://www.adobe.com/products/illustrator.html
http://www.igi.tugraz.at/auren/psfiles/aa-vdcgf-02.ps.gz
http://www.igi.tugraz.at/auren/psfiles/aa-vdcgf-02.ps.gz
http://www.amcharts.com/
http://courses.iicm.tugraz.at/ivis/
http://courses.iicm.tugraz.at/ivis/ivis.pdf
http://courses.iicm.tugraz.at/ivis/ivis.pdf
http://ftp.iicm.edu/pub/keith/thesis/
http://worldcatlibraries.org/wcpa/issn/1473-8716
http://dx.doi.org/10.1057/palgrave.ivs.9500023
http://www.amazon.com/exec/obidos/ASIN/0769541658/keithandrewshcic
http://dx.doi.org/10.1109/IV.2010.100

128 Bibliography

Anscombe, Francis John [1973]. Graphs in Statistical Analysis. The American Statistician, 27(1), pages
17–21. http://www.jstor.org/pss/2682899. (Cited on pages 1 and 2.)

Apache [2011]. OpenOffice Calc. Apache Software Foundation (ASF). http://www.openoffice.
org/product/calc.html. (Cited on page 38.)

as3xls [2011]. as3xls - Read and Write Excel Files in Flex. Google. http://code.google.com/p/
as3xls/. (Cited on page 52.)

Axiis [2011]. Axiis. http://www.axiis.org/index.html. (Cited on pages 43 and 44.)

Bajramovic, Faruk, Arne Tauber, Ralph Woezelka, and Ferdinand Wörister [2011]. Project Report -
G05 - Force Directed Placement. Graz University of Technology. Project Report. (Cited on pages 93
and 96.)

Balbi, Adriano and André-Michel Guerry [1829]. Statistique comparée de l’état de l’instruction et du
nombre des crimes dans les divers arrondissements des Académies et des Cours Royales de France.
Jules Renouard, Paris. BL:Tab.597.b.(38); BNF: Ge C 9014. (Cited on pages 15 and 17.)

Balzer, Michael and Oliver Deussen [2005]. Voronoi Treemaps. Proc. IEEE Symposium on In-
formation Visualization (InfoVis 2005), pages 49–56. ISSN 1522-404x. doi:10.1109/INFOVIS.
2005.40. http://kops.ub.uni-konstanz.de/xmlui/bitstream/handle/urn:nbn:de:

bsz:352-opus-27261/Voronoi_Treemaps.pdf. (Cited on page 19.)

Balzer, Michael, Oliver Deussen, and Claus Lewerentz [2005]. Voronoi Treemaps for the Visual-
ization of Software Metrics. In Proc. ACM Symposium on Software Visualization (SoftVis’05),
pages 165–172. ACM, New York, NY, USA. ISBN 1595930736. doi:10.1145/1056018.1056041.
http://kops.ub.uni-konstanz.de/xmlui/bitstream/handle/urn:nbn:de:bsz:

352-opus-24173/Voronoi_Treemaps_for_the_Visualization_of_Software_

Metrics_2005.pdf. (Cited on page 19.)

Barth, Adam [2011]. HTTP State Management Mechanism. RFC 6265 (Proposed Standard). http:

//www.ietf.org/rfc/rfc6265.txt. (Cited on pages 56 and 57.)

Bertin, Jacques [1967]. Sémiologie graphique: Les diagrammes - Les réseaux - Les cartes. Editions de
l’Ecole des Hautes Etudes en Sciences. ISBN 2713212774. (Cited on page 3.)

Bertin, Jacques [1983]. Semiology of Graphics. University of Wisconsin Press. ISBN 0299090604. (Cited
on page 3.)

Bloomberg [2011]. Tableau Software, Inc. Bloomberg Businessweek. http://investing.

businessweek.com/businessweek/research/stocks/private/snapshot.asp?

privcapId=11421199. (Cited on page 37.)

Bostock, Michael [2011]. d3.js. http://mbostock.github.com/d3/. (Cited on pages 40 and 42.)

Bostock, Michael and Jeffrey Heer [2009]. Protovis: A Graphical Toolkit for Visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 15, pages 1121 – 1128. ISSN 1077-2626. doi:10.
1109/TVCG.2009.174. http://vis.stanford.edu/files/2009-Protovis-InfoVis.pdf.
(Cited on page 40.)

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer [2011]. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17, pages 2301–2309. ISSN 1077-2626.
doi:10.1109/TVCG.2011.185. http://vis.stanford.edu/files/2011-D3-InfoVis.pdf.
(Cited on pages 40 and 41.)

http://www.jstor.org/pss/2682899
http://www.openoffice.org/product/calc.html
http://www.openoffice.org/product/calc.html
http://code.google.com/p/as3xls/
http://code.google.com/p/as3xls/
http://www.axiis.org/index.html
http://worldcatlibraries.org/wcpa/issn/1522-404x
http://dx.doi.org/10.1109/INFOVIS.2005.40
http://dx.doi.org/10.1109/INFOVIS.2005.40
http://kops.ub.uni-konstanz.de/xmlui/bitstream/handle/urn:nbn:de:bsz:352-opus-27261/Voronoi_Treemaps.pdf
http://kops.ub.uni-konstanz.de/xmlui/bitstream/handle/urn:nbn:de:bsz:352-opus-27261/Voronoi_Treemaps.pdf
http://www.amazon.com/exec/obidos/ASIN/1595930736/keithandrewshcic
http://dx.doi.org/10.1145/1056018.1056041
http://kops.ub.uni-konstanz.de/xmlui/bitstream/handle/urn:nbn:de:bsz:352-opus-24173/Voronoi_Treemaps_for_the_Visualization_of_Software_Metrics_2005.pdf
http://kops.ub.uni-konstanz.de/xmlui/bitstream/handle/urn:nbn:de:bsz:352-opus-24173/Voronoi_Treemaps_for_the_Visualization_of_Software_Metrics_2005.pdf
http://kops.ub.uni-konstanz.de/xmlui/bitstream/handle/urn:nbn:de:bsz:352-opus-24173/Voronoi_Treemaps_for_the_Visualization_of_Software_Metrics_2005.pdf
http://www.ietf.org/rfc/rfc6265.txt
http://www.ietf.org/rfc/rfc6265.txt
http://www.amazon.com/exec/obidos/ASIN/2713212774/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/0299090604/keithandrewshcic
http://investing.businessweek.com/businessweek/research/stocks/private/snapshot.asp?privcapId=11421199
http://investing.businessweek.com/businessweek/research/stocks/private/snapshot.asp?privcapId=11421199
http://investing.businessweek.com/businessweek/research/stocks/private/snapshot.asp?privcapId=11421199
http://mbostock.github.com/d3/
http://worldcatlibraries.org/wcpa/issn/1077-2626
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2009.174
http://vis.stanford.edu/files/2009-Protovis-InfoVis.pdf
http://worldcatlibraries.org/wcpa/issn/1077-2626
http://dx.doi.org/10.1109/TVCG.2011.185
http://vis.stanford.edu/files/2011-D3-InfoVis.pdf

Bibliography 129

Brody, Howard, Michael R. Rip, Peter Vinten-Johansen, Nigel Paneth, and Stephen Rachman [2000].
Map-Making and Myth-Making in Broad Street: The London Cholera Epidemic, 1854. The Lancet,
356(9223), pages 64–68. doi:10.1016/S0140-6736(00)02442-9. http://www.casa.ucl.ac.uk/
martin/msc_gis/map_making_myth_making.pdf. (Cited on page 3.)

Bruls, Mark, Kees Huizing, and Jarke van Wijk [2000]. Squarified Treemaps. In de Leeuw, W. and R. van
Liere (Editors), Proc. 2000 Joint Eurographics and IEEE TCVG Symposium on Visualization (Vis-
Sym’00), pages 33–42. Eurographics Association, Amsterdam, The Netherlands. ISBN 3211835156.
ISSN 1727-5296. http://www.win.tue.nl/˜vanwijk/stm.pdf. (Cited on page 93.)

Carlbom, Ingrid and Joseph Paciorek [1979]. Geometric Projection and Viewing Transformations. ACM
Computing Surveys, 11, pages 280–. ISSN 0360-0300. doi:10.1145/356778.356788. http://cs.

uns.edu.ar/cg/clasespdf/p465carlbom.pdf. (Cited on pages xi and 120.)

Chalmers, Matthew [1996]. A Linear Iteration Time Layout Algorithm for Visualising High-Dimensional
Data. In Proc. 7th Conference on Visualization ’96 (VIS’96), pages 127–131. IEEE Computer Society
Press, Los Alamitos, CA, USA. ISBN 0897918649. www.dcs.gla.ac.uk/˜matthew/papers/

vis96.pdf. (Cited on page 96.)

Chambers, John M., William S. Cleveland, Paul A. Tukey, and Beat Kleiner [1983]. Graphical Methods
for Data Analysis. Duxbury Press. ISBN 053498052X. (Cited on pages 10 and 11.)

COLOURlovers [2011]. COLOURlovers. http://www.colourlovers.com/. (Cited on page 75.)

Corel [2011]. CorelDRAW Graphics Suite X5. Corel Corporation. http://www.corel.com/

servlet/Satellite/us/en/Product/1191272117978. (Cited on page 28.)

Degrafa [2011]. Degrafa. http://www.degrafa.org/. (Cited on page 43.)

Descartes, René [1644]. Le Monde de Mr Descartes, ou Le Trait de la Lumière. (Cited on page 15.)

d’Ocagne, Maurice [1885]. Coordonnées parallèles & axiales: méthode de transformation géométrique
et procédé nouveau de calcul graphique déduits de la considération des coordonnées parallèles. Cor-
nell University Library. ISBN 1429700971. (Cited on page 10.)

DST [2011]. Imports and Exports. Statistics Denmark. http://www.dst.dk/HomeUK/Statistics/
Key_indicators/ExtTrade/ImpExp.aspx. (Cited on page 8.)

Dupin, Charles [1826]. Carte figurative de l’instruction populaire de la France. Jobard. (Cited on
pages 15, 17 and 84.)

Eades, Peter [1984]. A Heuristic for Graph Drawing. Congressus Numerantium, 42, pages 149 – 160.
www.cs.usyd.edu.au/˜peter/old_spring_paper.pdf. (Cited on page 96.)

EC [2011]. Bilateral Relations - Statistics. European Commission. http://ec.europa.eu/trade/
creating-opportunities/bilateral-relations/statistics/. (Cited on page 8.)

Elementary Project [2011]. elementary Icons 2.4. http://elementaryos.org/. (Cited on page 66.)

Fernitz, Gernot, Dieter Ladenhauf, Christian Partl, and Patrick Plaschzug [2010]. Implementation of
the Bat’s Wing Diagram and the Polar Area Diagram as Google Docs Gadget. Graz University of
Technology. Project Report. (Cited on pages 82 and 84.)

Fisher, Ronald Aylmer [1936]. The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics, 7(7), pages 179–188. ISSN 1469-1809. doi:10.1111/j.1469-1809.
1936.tb02137.x. http://digital.library.adelaide.edu.au/dspace/bitstream/2440/

15227/1/138.pdf. (Cited on page 42.)

http://dx.doi.org/10.1016/S0140-6736(00)02442-9
http://www.casa.ucl.ac.uk/martin/msc_gis/map_making_myth_making.pdf
http://www.casa.ucl.ac.uk/martin/msc_gis/map_making_myth_making.pdf
http://www.amazon.com/exec/obidos/ASIN/3211835156/keithandrewshcic
http://worldcatlibraries.org/wcpa/issn/1727-5296
http://www.win.tue.nl/~vanwijk/stm.pdf
http://worldcatlibraries.org/wcpa/issn/0360-0300
http://dx.doi.org/10.1145/356778.356788
http://cs.uns.edu.ar/cg/clasespdf/p465carlbom.pdf
http://cs.uns.edu.ar/cg/clasespdf/p465carlbom.pdf
http://www.amazon.com/exec/obidos/ASIN/0897918649/keithandrewshcic
www.dcs.gla.ac.uk/~matthew/papers/vis96.pdf
www.dcs.gla.ac.uk/~matthew/papers/vis96.pdf
http://www.amazon.com/exec/obidos/ASIN/053498052X/keithandrewshcic
http://www.colourlovers.com/
http://www.corel.com/servlet/Satellite/us/en/Product/1191272117978
http://www.corel.com/servlet/Satellite/us/en/Product/1191272117978
http://www.degrafa.org/
http://www.amazon.com/exec/obidos/ASIN/1429700971/keithandrewshcic
http://www.dst.dk/HomeUK/Statistics/Key_indicators/ExtTrade/ImpExp.aspx
http://www.dst.dk/HomeUK/Statistics/Key_indicators/ExtTrade/ImpExp.aspx
www.cs.usyd.edu.au/~peter/old_spring_paper.pdf
http://ec.europa.eu/trade/creating-opportunities/bilateral-relations/statistics/
http://ec.europa.eu/trade/creating-opportunities/bilateral-relations/statistics/
http://elementaryos.org/
http://worldcatlibraries.org/wcpa/issn/1469-1809
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://digital.library.adelaide.edu.au/dspace/bitstream/2440/15227/1/138.pdf
http://digital.library.adelaide.edu.au/dspace/bitstream/2440/15227/1/138.pdf

130 Bibliography

Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes [1990]. Computer Graphics:
Principles and Practice, Second Edition. Addison-Wesley Professional. ISBN 0201848406. (Cited on
pages 115, 119 and 122.)

Friendly, Michael [2007]. A.-M. Guerry’s Moral Statistics of France: Challenges for Multivariable Spa-
tial Analysis. Statistical Science, 22(3), pages 368–399. doi:10.1214/07-STS241. www.datavis.

ca/papers/guerry-STS241.pdf. (Cited on page 15.)

Friendly, Michael and Daniel Denis [2005]. The Early Origins and Development of the Scatterplot.
Journal of the History of the Behavioral Sciences, 41(2), pages 103–130. ISSN 1520-6696. doi:10.
1002/jhbs.20078. http://www.datavis.ca/papers/friendly-scat.pdf. (Cited on page 13.)

Friendly, Michael and Daniel J. Denis [2011]. Milestones in the History of Thematic Cartography,
Statistical Graphics, and Data Visualization. http://www.datavis.ca/milestones/. (Cited on
pages 15 and 17.)

Fruchterman, Thomas M. J. and Edward M. Reingold [1991]. Graph Drawing by Force-Directed
Placement. Software: Practice and Experience, 21, pages 1129–1164. ISSN 0038-0644. doi:10.
1002/spe.4380211102. http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.

13.8444&rep=rep1&type=pdf. (Cited on page 96.)

Gamma, Erich, Richard Helm, Ralph E. Johnson, and John Vlissides [1995]. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA. ISBN 0201633612. (Cited on
pages 98, 99, 106, 109, 111 and 112.)

Gapminder [2011]. About Gapminder. http://www.gapminder.org/about-gapminder/. (Cited
on page 33.)

Garcia Belmonte, Nicolas [2011]. Sencha Acquires the JavaScript InfoVis Toolkit. http://blog.

thejit.org/2010/11/06/sencha-acquires-the-javascript-infovis-toolkit/.
(Cited on page 43.)

Gay, Jonathan [2011]. The History of Flash. Adobe Systems. http://www.adobe.com/

macromedia/events/john_gay/index.html. (Cited on page 23.)

GCS [2011]. Scottish Export Statistics - Global Connections Survey. Scottish Global Connections
Survey. http://www.scotland.gov.uk/Topics/Statistics/Browse/Economy/Exports/
GCSData. (Cited on page 8.)

Google [2011a]. About Google Docs. http://docs.google.com/support/bin/answer.py?

answer=49008. (Cited on page 36.)

Google [2011b]. About Google Gadgets. http://code.google.com/apis/gadgets/. (Cited on
page 36.)

Google [2011c]. Google Docs. http://docs.google.com. (Cited on pages 28 and 45.)

Google [2011d]. Google Image Charts. http://code.google.com/apis/chart/image/. (Cited
on page 34.)

Google [2011e]. Motion Chart. http://code.google.com/apis/chart/interactive/docs/

gallery/motionchart.html. (Cited on page 33.)

Granitzer, Michael, Wolfgang Kienreich, Vedran Sabol, Keith Andrews, and Werner Klieber [2004].
Evaluating a System for Interactive Exploration of Large, Hierarchically Structured Document Repos-
itories. In Proc. 10th IEEE Symposium on Information Visualization (InfoVis 2004), pages 127–134.
ISSN 1522-404X. doi:10.1109/INFVIS.2004.19. (Cited on pages 15 and 19.)

http://www.amazon.com/exec/obidos/ASIN/0201848406/keithandrewshcic
http://dx.doi.org/10.1214/07-STS241
www.datavis.ca/papers/guerry-STS241.pdf
www.datavis.ca/papers/guerry-STS241.pdf
http://worldcatlibraries.org/wcpa/issn/1520-6696
http://dx.doi.org/10.1002/jhbs.20078
http://dx.doi.org/10.1002/jhbs.20078
http://www.datavis.ca/papers/friendly-scat.pdf
http://www.datavis.ca/milestones/
http://worldcatlibraries.org/wcpa/issn/0038-0644
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1002/spe.4380211102
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.13.8444&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.13.8444&rep=rep1&type=pdf
http://www.amazon.com/exec/obidos/ASIN/0201633612/keithandrewshcic
http://www.gapminder.org/about-gapminder/
http://blog.thejit.org/2010/11/06/sencha-acquires-the-javascript-infovis-toolkit/
http://blog.thejit.org/2010/11/06/sencha-acquires-the-javascript-infovis-toolkit/
http://www.adobe.com/macromedia/events/john_gay/index.html
http://www.adobe.com/macromedia/events/john_gay/index.html
http://www.scotland.gov.uk/Topics/Statistics/Browse/Economy/Exports/GCSData
http://www.scotland.gov.uk/Topics/Statistics/Browse/Economy/Exports/GCSData
http://docs.google.com/support/bin/answer.py?answer=49008
http://docs.google.com/support/bin/answer.py?answer=49008
http://code.google.com/apis/gadgets/
http://docs.google.com
http://code.google.com/apis/chart/image/
http://code.google.com/apis/chart/interactive/docs/gallery/motionchart.html
http://code.google.com/apis/chart/interactive/docs/gallery/motionchart.html
http://worldcatlibraries.org/wcpa/issn/1522-404X
http://dx.doi.org/10.1109/INFVIS.2004.19

Bibliography 131

Haintz, Christian, Stephan Moser, Michael Musenbrock, and Karin Pichler [2011]. Flash/Flex Stan-
dalone Gadget - Liquid Diagrams. Graz University of Technology. Project Report. (Cited on page 99.)

HCIL [2011]. Treemap. Human-Computer Interaction Lab. http://www.cs.umd.edu/hcil/

treemap/index.shtml. (Cited on pages 94 and 95.)

Henry, Nathalie [2008]. Exploring Social Networks with Matrix-based Representations. PhD Thesis,
Universite Paris Sud. http://research.microsoft.com/en-us/um/people/nath/docs/

Henry_thesis_oct08.pdf. (Cited on page 3.)

Hilbert, Martin and Priscila López [2011]. The World’s Technological Capacity to Store, Communi-
cate, and Compute Information. Science, 332(6025), pages 60–65. ISSN 1095-9203. doi:10.1126/
science.1200970. http://www.sciencemag.org/content/332/6025/60.full.pdf. (Cited
on page 1.)

IBM [2011a]. Fernanda B. Viégas. http://www.research.ibm.com/visual/fernanda.html.
(Cited on page 31.)

IBM [2011b]. Many Eyes. http://many-eyes.com/. (Cited on page 31.)

Inkscape [2011]. Inkscape. http://inkscape.org/. (Cited on page 28.)

Inselberg, Alfred [1985]. The Plane with Parallel Coordinates. The Visual Computer, 1(2), pages 69–91.
ISSN 0178-2789. doi:10.1007/BF01898350. (Cited on page 10.)

Inselberg, Alfred [2009]. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications.
Springer-Verlag New York, Inc., Secaucus, NJ, USA. ISBN 0387215077. (Cited on page 10.)

ISO [2011]. Country Names and Code Elements. International Organization for Standard-
ization. http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_

names_and_code_elements.htm. (Cited on pages 48 and 49.)

Jern, Mikael [2009]. Collaborative Web-Enabled Geoanalytics Applied to OECD Regional Data.
In Proc. 6th International Conference on Cooperative Design, Visualization, and Engineering
(CDVE’09), pages 32–43. Springer-Verlag, Berlin, Heidelberg. ISBN 3642042643. http://books.
google.com/books?id=Z35Z49MHUmYC&pg=PA32. (Cited on page 32.)

Johnson, Brian and Ben Shneiderman [1991]. Tree-Maps: A Space-Filling Approach to the Visualization
of Hierarchical Information Structures. In Proc. 2nd Conference on Visualization (VIS’91), pages
284–291. IEEE Computer Society Press, Los Alamitos, CA, USA. ISBN 0818622458. http://

drum.lib.umd.edu/bitstream/1903/370/2/CS-TR-2657.pdf. (Cited on pages 15 and 93.)

Kamada, Tomihisa and Satoru Kawai [1989]. An Algorithm for Drawing General Undirected
Graphs. Information Processing Letters, 31(1), pages 7 – 15. ISSN 0020-0190. doi:10.1016/
0020-0190(89)90102-6. http://cs.wellesley.edu/˜cs315/Papers/Kamada-Graphpdf.
(Cited on page 96.)

Know-Center [2011]. InfoSky Demo. http://knowminer.know-center.tugraz.at/

infosky-demo. (Cited on page 15.)

Lessacher, Martin [2009]. Liquid Diagrams: Visual Information Gadgets in Flex. Graz University of
Technology. Project Report. (Cited on pages 1 and 45.)

Lessacher, Martin [2010]. Liquid Diagrams – A Suite of Visual Information Gadgets. Master’s Thesis,
Graz University of Technology, Austria. http://www.iicm.tugraz.at/thesis/MA_Martin_

Lessacher.pdf. (Cited on pages xi, 1, 45, 50, 52, 58, 61, 62, 75, 77, 79, 82, 84, 85, 88, 93, 97
and 123.)

http://www.cs.umd.edu/hcil/treemap/index.shtml
http://www.cs.umd.edu/hcil/treemap/index.shtml
http://research.microsoft.com/en-us/um/people/nath/docs/Henry_thesis_oct08.pdf
http://research.microsoft.com/en-us/um/people/nath/docs/Henry_thesis_oct08.pdf
http://worldcatlibraries.org/wcpa/issn/1095-9203
http://dx.doi.org/10.1126/science.1200970
http://dx.doi.org/10.1126/science.1200970
http://www.sciencemag.org/content/332/6025/60.full.pdf
http://www.research.ibm.com/visual/fernanda.html
http://many-eyes.com/
http://inkscape.org/
http://worldcatlibraries.org/wcpa/issn/0178-2789
http://dx.doi.org/10.1007/BF01898350
http://www.amazon.com/exec/obidos/ASIN/0387215077/keithandrewshcic
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://www.amazon.com/exec/obidos/ASIN/3642042643/keithandrewshcic
http://books.google.com/books?id=Z35Z49MHUmYC&pg=PA32
http://books.google.com/books?id=Z35Z49MHUmYC&pg=PA32
http://www.amazon.com/exec/obidos/ASIN/0818622458/keithandrewshcic
http://drum.lib.umd.edu/bitstream/1903/370/2/CS-TR-2657.pdf
http://drum.lib.umd.edu/bitstream/1903/370/2/CS-TR-2657.pdf
http://worldcatlibraries.org/wcpa/issn/0020-0190
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://cs.wellesley.edu/~cs315/Papers/Kamada-Graphpdf
http://knowminer.know-center.tugraz.at/infosky-demo
http://knowminer.know-center.tugraz.at/infosky-demo
http://www.iicm.tugraz.at/thesis/MA_Martin_Lessacher.pdf
http://www.iicm.tugraz.at/thesis/MA_Martin_Lessacher.pdf

132 Bibliography

Mariani, Gabriel and James Efstathiou [2011]. Flashbug - An Extension for Firebug. http://blog.

coursevector.com/flashbug. (Cited on page 97.)

Mayr, Georg von [1877]. Die Gesetzmässigkeit im Gesellschaftsleben, Statistische Studien. R. Old-
enbourg. http://ia700208.us.archive.org/18/items/diegesetzmssig00mayruoft/

diegesetzmssig00mayruoft.pdf. (Cited on pages 10, 11 and 79.)

Mazza, Riccardo [2009]. Introduction to Information Visualization. Springer. ISBN 1848002181. (Cited
on page 5.)

Microsoft [2011a]. Expression Design 4. http://www.microsoft.com/expression/products/
Design_Overview.aspx. (Cited on page 28.)

Microsoft [2011b]. Microsoft Excel. http://office.microsoft.com/excel/. (Cited on page 38.)

Microsoft [2011c]. Microsoft Silverlight. http://www.microsoft.com/silverlight/. (Cited on
page 25.)

Millward Brown [2011]. Statistics : PC Penetration. Adobe Systems Incorporated. http://www.

adobe.com/products/flashplatformruntimes/statistics.html. (Cited on pages 21, 22
and 23.)

Mozilla [2011]. FireBug - Web Development Evolved. http://getfirebug.com/. (Cited on page 97.)

NComVA [2011a]. About Norrköping Communicative Visual Analytics. http://www.ncomva.com/
?page_id=59. (Cited on page 32.)

NComVA [2011b]. GAV Flash Toolkit. http://www.ncomva.com/?page_id=1106. (Cited on
page 41.)

NComVA [2011c]. Statistics eXplorer Desktop Versions. http://www.ncomva.se/desktop/. (Cited
on page 37.)

NCVA [2011a]. GAV Flash Tools. http://ncva.itn.liu.se/tools. (Cited on pages 41 and 42.)

NCVA [2011b]. National Center for Visual Analytics. http://ncva.itn.liu.se/ncva?l=en.
(Cited on page 32.)

NCVA [2011c]. Open Statistics eXplorer. http://ncva.itn.liu.se/explorer/openexp?l=en.
(Cited on page 32.)

NCVA [2011d]. Statistics eXplorer for Advanced Interactive Statistical Visualization. http://ncva.
itn.liu.se/explorer?l=en. (Cited on page 32.)

Newell, M. E., R. G. Newell, and T. L. Sancha [1972]. A Solution to the Hidden Surface Problem. In
Proc. ACM Annual Conference - Volume 1 (ACM’72), pages 443–450. ACM, New York, NY, USA.
doi:10.1145/800193.569954. (Cited on page 122.)

NIST [2011]. FIPS PUB 6-4 - Country Names and Codes of the US. National Institute of Standards and
Technology. http://www.itl.nist.gov/fipspubs/fip6-4.htm. (Cited on page 89.)

Noble, Joshua, Todd Anderson, Garth Braithwaite, Marco Casario, and Rich Tretola [2010]. Flex 4
Cookbook. O’Reilly Media. ISBN 0596805616. (Cited on page 23.)

NodeXL [2011]. NodeXL. http://nodexl.codeplex.com/. (Cited on page 38.)

Novell [2011]. Moonlight. Novell, Inc. http://www.go-mono.com/moonlight/. (Cited on
page 25.)

http://blog.coursevector.com/flashbug
http://blog.coursevector.com/flashbug
http://ia700208.us.archive.org/18/items/diegesetzmssig00mayruoft/diegesetzmssig00mayruoft.pdf
http://ia700208.us.archive.org/18/items/diegesetzmssig00mayruoft/diegesetzmssig00mayruoft.pdf
http://www.amazon.com/exec/obidos/ASIN/1848002181/keithandrewshcic
http://www.microsoft.com/expression/products/Design_Overview.aspx
http://www.microsoft.com/expression/products/Design_Overview.aspx
http://office.microsoft.com/excel/
http://www.microsoft.com/silverlight/
http://www.adobe.com/products/flashplatformruntimes/statistics.html
http://www.adobe.com/products/flashplatformruntimes/statistics.html
http://getfirebug.com/
http://www.ncomva.com/?page_id=59
http://www.ncomva.com/?page_id=59
http://www.ncomva.com/?page_id=1106
http://www.ncomva.se/desktop/
http://ncva.itn.liu.se/tools
http://ncva.itn.liu.se/ncva?l=en
http://ncva.itn.liu.se/explorer/openexp?l=en
http://ncva.itn.liu.se/explorer?l=en
http://ncva.itn.liu.se/explorer?l=en
http://dx.doi.org/10.1145/800193.569954
http://www.itl.nist.gov/fipspubs/fip6-4.htm
http://www.amazon.com/exec/obidos/ASIN/0596805616/keithandrewshcic
http://nodexl.codeplex.com/
http://www.go-mono.com/moonlight/

Bibliography 133

Nuzha, Vasiliy [2010]. Korax ColorPicker Control. http://kss.korax.ru/flex/cp/index.html.
(Cited on pages 62 and 65.)

OECD [2011]. OECD Regional Statistics. Organisation for Economic Co-operation and Development.
http://stats.oecd.org/OECDregionalstatistics/. (Cited on page 32.)

Oracle [2011a]. The History of Java Technology. Oracle Corporation. http://www.oracle.

com/technetwork/java/javase/overview/javahistory-index-198355.html. (Cited on
page 26.)

Oracle [2011b]. Java. Oracle Corporation. http://www.oracle.com/us/technologies/java/.
(Cited on page 26.)

Oracle [2011c]. The Java HotSpot Performance Engine Architecture. Oracle Corporation. http:

//java.sun.com/products/hotspot/whitepaper.html. (Cited on page 26.)

Oracle [2011d]. JavaFX. Oracle Corporation. http://javafx.com/. (Cited on page 26.)

Parkinson, Cyril Northcote [1955]. Parkinson’s Law. The Economist. http://www.economist.com/
node/14116121?story_id=14116121. (Cited on page 1.)

Playfair, William [1786]. The Commercial and Political Atlas: Representing, by Means of Stained
Copper-Plate Charts, the Progress of the Commerce, Revenues, Expenditure and Debts of England
During the Whole of the Eighteenth Century. T. Burton. ISBN 0521855543. http://books.

google.com/books?id=lOWzGauOzSYC. (Cited on pages 3, 7 and 8.)

Playfair, William [1801]. The Statistical Breviary; Shewing the Resources of Every State and Kingdom
in Europe. T. Bensley, London. ISBN 0521855543. http://books.google.com/books?id=

Y4wBAAAAQAAJ. (Cited on pages 3, 9, 40 and 41.)

Prekaski, Todd [2011]. Building Flex and Adobe AIR Applications from the Same Code Base. Adobe Sys-
tems. http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html.
(Cited on pages 100 and 105.)

Protovis [2011]. Protovis. Stanford Visualization Group. http://mbostock.github.com/

protovis/. (Cited on pages 40 and 41.)

Ramos, Ernesto and David Donoho [2011]. Car Dataset. http://stat-computing.org/

dataexpo/1983.html. (Cited on page 12.)

RIAStats [2011]. Rich Internet Application Statistics. DreamingWell. http://www.riastats.com/.
(Cited on pages 21, 22 and 23.)

SenchaLabs [2011]. JavaScript InfoVis Toolkit. http://thejit.org/. (Cited on pages 41 and 43.)

Shneiderman, Ben [1992]. Tree Visualization with Tree-Maps: 2-D Space-Filling Approach. ACM
Transactions on Graphics, 11, pages 92–99. ISSN 0730-0301. doi:10.1145/102377.115768. http:
//hcil.cs.umd.edu/trs/91-03/91-03.html. (Cited on pages xi, 15 and 18.)

Shneiderman, Ben [1996]. The Eyes Have It: A Task by Data Type Taxonomy for Information Visual-
izations. In Proc. 1996 IEEE Symposium on Visual Languages (VL’96), pages 336–. IEEE Computer
Society, Washington, DC, USA. ISBN 0-8186-7508-X. http://www.cs.ubc.ca/˜tmm/courses/
cs533c-02/readings/shneiderman96eyes.pdf. (Cited on page 6.)

Shneiderman, Ben [2009]. Treemaps for Space-Constrained Visualization of Hierarchies. http://

www.cs.umd.edu/hcil/treemap-history/index.shtml. (Cited on pages 15 and 93.)

http://kss.korax.ru/flex/cp/index.html
http://stats.oecd.org/OECDregionalstatistics/
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://www.oracle.com/us/technologies/java/
http://java.sun.com/products/hotspot/whitepaper.html
http://java.sun.com/products/hotspot/whitepaper.html
http://javafx.com/
http://www.economist.com/node/14116121?story_id=14116121
http://www.economist.com/node/14116121?story_id=14116121
http://www.amazon.com/exec/obidos/ASIN/0521855543/keithandrewshcic
http://books.google.com/books?id=lOWzGauOzSYC
http://books.google.com/books?id=lOWzGauOzSYC
http://www.amazon.com/exec/obidos/ASIN/0521855543/keithandrewshcic
http://books.google.com/books?id=Y4wBAAAAQAAJ
http://books.google.com/books?id=Y4wBAAAAQAAJ
http://www.adobe.com/devnet/air/flex/articles/flex_air_codebase.html
http://mbostock.github.com/protovis/
http://mbostock.github.com/protovis/
http://stat-computing.org/dataexpo/1983.html
http://stat-computing.org/dataexpo/1983.html
http://www.riastats.com/
http://thejit.org/
http://worldcatlibraries.org/wcpa/issn/0730-0301
http://dx.doi.org/10.1145/102377.115768
http://hcil.cs.umd.edu/trs/91-03/91-03.html
http://hcil.cs.umd.edu/trs/91-03/91-03.html
http://www.amazon.com/exec/obidos/ASIN/0-8186-7508-X/keithandrewshcic
http://www.cs.ubc.ca/~tmm/courses/cs533c-02/readings/shneiderman96eyes.pdf
http://www.cs.ubc.ca/~tmm/courses/cs533c-02/readings/shneiderman96eyes.pdf
http://www.cs.umd.edu/hcil/treemap-history/index.shtml
http://www.cs.umd.edu/hcil/treemap-history/index.shtml

134 Bibliography

Small, Hugh [1998]. Florence Nightingale’s Statistical Diagrams. In Stats and Lamps Research Con-
ference. Florence Nightingale Museum. http://www.york.ac.uk/depts/maths/histstat/

small.htm. (Cited on pages 13, 15 and 82.)

Spence, Ian [2005]. No Humble Pie: The Origins and Usage of a Statistical Chart. Journal of
Educational and Behavioral Statistics, 30(4), pages 353–368. doi:10.3102/10769986030004353.
http://www.psych.utoronto.ca/users/spence/Spence%202005.pdf. (Cited on pages 6
and 9.)

Spence, Robert [2007]. Information Visualization: Design for Interaction. 2nd Edition. Prentice-Hall,
Upper Saddle River, NJ, USA. ISBN 0132065509. (Cited on pages 5 and 6.)

StatCounter [2011]. Top 9 Mobile Browsers. http://gs.statcounter.com/#mobile_

browser-ww-monthly-200812-201112. (Cited on page 75.)

StatLib [2011]. Cereal Dataset. http://lib.stat.cmu.edu/datasets/1993.expo/. (Cited on
pages 47 and 96.)

STATOWL [2011]. Web Browser Plugin Market Share. http://www.statowl.com/plugin_

overview.php. (Cited on pages 21, 22 and 23.)

Steele, Julie and Noah Iliinsky [2011]. Designing Data Visualizations: Intentional Communication from
Data to Display. O’Reilly Media. ISBN 1449312284. (Cited on page 7.)

Tableau [2011a]. Tableau Public. Tableau Software. http://www.tableausoftware.com/

products/public. (Cited on page 37.)

Tableau [2011b]. Who We Are. Tableau Software. http://www.tableausoftware.com/about/

who-we-are. (Cited on page 37.)

Tufte, Edward R. [1997]. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics
Press. ISBN 0961392126. (Cited on page 3.)

Tufte, Edward R. [2001]. The Visual Display of Quantitative Information. 2nd Edition. Graphics Press,
Cheshire, CT, USA. ISBN 0961392142. (Cited on pages 1, 3 and 7.)

Viégas, Fernanda B., Martin Wattenberg, Frank van Ham, Jesse Kriss, and Matt McKeon [2007].
ManyEyes: A Site for Visualization at Internet Scale. IEEE Transactions on Visualization and Com-
puter Graphics, 13, pages 1121–1128. ISSN 1077-2626. doi:10.1109/TVCG.2007.70577. http:

//www.research.ibm.com/visual/papers/viegasinfovis07.pdf. (Cited on page 31.)

Viewpath [2011]. Viewpath. http://www.viewpath.com/. (Cited on page 36.)

VisuLab [2011]. VisuLab - Interactive Data Visualisation in Microsoft Excel. Swiss Federal Institute
of Technology Zurich. http://www.inf.ethz.ch/personal/hinterbe/Visulab/. (Cited on
pages 38 and 39.)

W3C [2011a]. About SVG. World Wide Web Consortium. http://www.w3.org/Graphics/SVG/

About.html. (Cited on page 27.)

W3C [2011b]. Cascading Style Sheets. World Wide Web Consortium. http://www.w3.org/Style/
CSS/. (Cited on page 21.)

W3C [2011c]. Document Object Model (DOM). World Wide Web Consortium. http://www.w3.org/
DOM/. (Cited on page 21.)

http://www.york.ac.uk/depts/maths/histstat/small.htm
http://www.york.ac.uk/depts/maths/histstat/small.htm
http://dx.doi.org/10.3102/10769986030004353
http://www.psych.utoronto.ca/users/spence/Spence%202005.pdf
http://www.amazon.com/exec/obidos/ASIN/0132065509/keithandrewshcic
http://gs.statcounter.com/#mobile_browser-ww-monthly-200812-201112
http://gs.statcounter.com/#mobile_browser-ww-monthly-200812-201112
http://lib.stat.cmu.edu/datasets/1993.expo/
http://www.statowl.com/plugin_overview.php
http://www.statowl.com/plugin_overview.php
http://www.amazon.com/exec/obidos/ASIN/1449312284/keithandrewshcic
http://www.tableausoftware.com/products/public
http://www.tableausoftware.com/products/public
http://www.tableausoftware.com/about/who-we-are
http://www.tableausoftware.com/about/who-we-are
http://www.amazon.com/exec/obidos/ASIN/0961392126/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/0961392142/keithandrewshcic
http://worldcatlibraries.org/wcpa/issn/1077-2626
http://dx.doi.org/10.1109/TVCG.2007.70577
http://www.research.ibm.com/visual/papers/viegasinfovis07.pdf
http://www.research.ibm.com/visual/papers/viegasinfovis07.pdf
http://www.viewpath.com/
http://www.inf.ethz.ch/personal/hinterbe/Visulab/
http://www.w3.org/Graphics/SVG/About.html
http://www.w3.org/Graphics/SVG/About.html
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://www.w3.org/DOM/
http://www.w3.org/DOM/

Bibliography 135

W3C [2011d]. HTML. World Wide Web Consortium. http://www.w3.org/wiki/HTML. (Cited on
page 21.)

W3C [2011e]. Scalable Vector Graphics (SVG) 1.1 (Second Edition). World Wide Web Consortium.
http://www.w3.org/TR/SVG11/. (Cited on page 27.)

W3C [2011f]. Scripting and AJAX. World Wide Web Consortium. http://www.w3.org/standards/
webdesign/script.html. (Cited on page 21.)

W3C [2011g]. The Secret Origin of SVG. World Wide Web Consortium. http://www.w3.org/

Graphics/SVG/WG/wiki/Secret_Origin_of_SVG. (Cited on page 27.)

W3C [2011h]. SVG 1.1 (Second Edition): Document Type Definition. World Wide Web Consortium.
http://www.w3.org/TR/SVG/svgdtd.html. (Cited on page 88.)

w3schools [2011]. DTD Tutorial. Refsnes Data. http://www.w3schools.com/DTD/default.asp.
(Cited on page 88.)

Wahlers, Claus and Max Herkender [2011]. FZip. http://codeazur.com.br/lab/fzip/. (Cited
on page 52.)

Ward, Matthew O., Georges Grinstein, and Daniel Keim [2010]. Interactive Data Visualization: Foun-
dations, Techniques, and Applications. A K Peters. ISBN 1568814739. (Cited on page 5.)

Ware, Colin [2004]. Information Visualization: Perception for Design. 2nd Edition. Morgan Kaufmann,
San Francisco, CA, USA. ISBN 1558608192. (Cited on pages 5 and 6.)

Wikipedia [2011a]. Diagram of the Causes of Mortality in the Army in the East. Wikimedia Commons.
http://en.wikipedia.org/wiki/File:Nightingale-mortality.jpg. (Cited on page 16.)

Wikipedia [2011b]. John Snow’s Cholera Map. Wikimedia Commons. http://en.wikipedia.org/
wiki/File:Snow-cholera-map-1.jpg. (Cited on page 4.)

Wikipedia [2011c]. Minard’s Map. Wikimedia Commons. http://en.wikipedia.org/wiki/

File:Minard.png. (Cited on page 4.)

Wikipedia [2011d]. One of William Playfair’s First Pie Charts. Wikimedia Commons. http://en.

wikipedia.org/wiki/File:Playfair-piechart.jpg. (Cited on page 9.)

Wikipedia [2011e]. Plot of Anscombe’s Quartet. Wikimedia Commons. http://en.wikipedia.

org/wiki/File:Anscombe%27s_quartet_3.svg. (Cited on page 2.)

Wikipedia [2011f]. Time Series of Exports and Imports of Denmark and Norway. Wikimedia Commons.
http://en.wikipedia.org/wiki/File:Playfair_TimeSeries-2.png. (Cited on page 8.)

Wikipedia [2011g]. William Playfair’s First Bar Chart. Wikimedia Commons. http://en.

wikipedia.org/wiki/File:Playfair_Barchart.gif. (Cited on page 8.)

Will-Harris, Daniel [2003]. Georgia & Verdana – Typefaces Designed for the Screen (Finally). http:
//www.will-harris.com/verdana-georgia.htm. (Cited on page 103.)

Wilson, Dan [2011]. Fork of as3xls With Bugfixes. GitHub Inc. https://github.com/djw/as3xls/.
(Cited on page 52.)

Wright, John Kirtland [1938]. Problems in Population Mapping. Notes on Statistical Mapping with
Special Reference to the Mapping of Population Phenomena. American Geographical Society, New
York. (Cited on page 15.)

http://www.w3.org/wiki/HTML
http://www.w3.org/TR/SVG11/
http://www.w3.org/standards/webdesign/script.html
http://www.w3.org/standards/webdesign/script.html
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/TR/SVG/svgdtd.html
http://www.w3schools.com/DTD/default.asp
http://codeazur.com.br/lab/fzip/
http://www.amazon.com/exec/obidos/ASIN/1568814739/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/1558608192/keithandrewshcic
http://en.wikipedia.org/wiki/File:Nightingale-mortality.jpg
http://en.wikipedia.org/wiki/File:Snow-cholera-map-1.jpg
http://en.wikipedia.org/wiki/File:Snow-cholera-map-1.jpg
http://en.wikipedia.org/wiki/File:Minard.png
http://en.wikipedia.org/wiki/File:Minard.png
http://en.wikipedia.org/wiki/File:Playfair-piechart.jpg
http://en.wikipedia.org/wiki/File:Playfair-piechart.jpg
http://en.wikipedia.org/wiki/File:Anscombe%27s_quartet_3.svg
http://en.wikipedia.org/wiki/File:Anscombe%27s_quartet_3.svg
http://en.wikipedia.org/wiki/File:Playfair_TimeSeries-2.png
http://en.wikipedia.org/wiki/File:Playfair_Barchart.gif
http://en.wikipedia.org/wiki/File:Playfair_Barchart.gif
http://www.will-harris.com/verdana-georgia.htm
http://www.will-harris.com/verdana-georgia.htm
https://github.com/djw/as3xls/

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Credits
	1 Introduction
	2 Information Visualisation
	2.1 Origins and Historical Examples
	2.2 Definition
	2.3 Visualisations

	3 Technologies
	3.1 HTML and AJAX
	3.2 Adobe Flash
	3.3 Adobe Flex
	3.4 Adobe Integrated Runtime (AIR)
	3.5 Microsoft Silverlight
	3.6 Java
	3.7 JavaFX
	3.8 Scalable Vector Graphics (SVG)

	4 Information Visualisation Software and Tools
	4.1 Online Services
	4.2 Standalone Software
	4.3 Libraries and Toolkits

	5 Liquid Diagrams Framework Version 2.0
	5.1 Data Formats
	5.2 LD Gadget Version
	5.3 LD Standalone Version
	5.4 LD Cookie Version
	5.5 Components Shared Between Visualisations
	5.6 3D Functionality

	6 Liquid Diagrams Visualisations
	6.1 Line Chart
	6.2 Bar Chart
	6.3 Pie Chart
	6.4 Area Chart
	6.5 Star Plot
	6.6 Parallel Coordinates
	6.7 Bat's Wing Diagram
	6.8 Polar Area Diagram
	6.9 Heatmap (Choropleth Map)
	6.10 Treemap
	6.11 Voronoi Treemap
	6.12 Similarity Map

	7 Changes to the Framework
	7.1 Structure
	7.2 Fonts

	8 Selected Details of the Implementation
	8.1 General Structure and Initialisation Process
	8.2 Cookies and Project Files
	8.3 3D Functionality

	9 Outlook And Future Work
	10 Concluding Remarks
	Bibliography

