

EIDESSTATTLICHE ERKLÄRUNG AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Datum / Date

Unterschrift / Signature

Kurzfassung

Systemberechnungen von Hallenrahmen mit Bauteilnachweisen nach Eurocode 3

Diese Arbeit beschäftigt sich mit den anerkannten, unterschiedlichen Nachweisverfahren zur Bauteilstabilität von Rahmentragwerken nach Eurocode 3 (EN 1993-1-1). Es werden anhand einer umfassender Parameterstudie für übliche Hallenrahmen sämtliche Schritte der einzelnen Nachweisverfahren analysiert und verglichen. Anhand dieser gewonnen Erkenntnisse bekommt man einen Einblick über den Aufwand der Berechnungen und den Ergebnisunterschieden der einzelnen Verfahren. Für das untersuchte System (Portalrahmen) stellt sich heraus, dass Effekte II. Ordnung in der Tragwerkshauptebene von relativ geringer Bedeutung sind.

Abstract

System calculation of portal frames with member buckling verification according to Eurocode 3

This thesis deals with the accepted, different methods of the stability analysis of frame structures according to Eurocode 3 (EN 1993-1-1). Based on a comprehensive parameter study where the individual steps of the different methods are presented and compared. Based on these results one gets an insight into the complexity of the calculation procedures and the differences in results of each method. For the analysed system (portal frame) it turns out that second degree effects on the main level of the supporting framework are of rather minor importance.

Danksagung

Meine Masterarbeit entstand am Institut für Stahlbau der Technischen Universität unter der Betreuung von Univ. Prof. DI Dr. Harald Unterweger und DI Dr. Andreas Taras, bei denen ich mich für die Hilfestellungen und Korrekturen sowie das angenehme Arbeitsklima bedanken möchte.

Ein herzlicher Dank gilt meinen beiden Eltern, die mich nicht nur finanziell, sondern auch moralisch unterstützt haben.

Großer Dank gebührt auch meiner Verlobten Anna, die während des letzten halben Jahres auf viel gemeinsame Zeit verzichten musste und stets ein offenes Ohr für mich hatte.

Inhaltsverzeichnis

1	Einführung	3
1.1	Einleitung	3
1.2	Umfang der Arbeit und untersuchte Systeme	5
1.2.1	Grundsätzliche Festlegungen für die untersuchten Systeme	5
1.2.2	Anlageverhältnisse zu den untersuchten Systemen	7
		_
2	Grundlagen zu den einzelnen Nachweisverfahren	9
2.1	Stabilitätsnachweise für Bauteile gemäß Eurocode EN 1993-1-1	9
2.1.1	Nachweisverfahren I: Globale 3D- Tragwerksberechnung	9
2.1.2	Nachweisverfahren II: Globale Tragwerksberechnung nach Theorie II. Ordnung mit allen Imperfektionen in Ebene und zusätzliche Bauteilnachweise aus der Ebene	der . 10
2.1.3	Nachweisverfahren III: Globale Tragwerksberechnung nach Theorie II. Ordnung und Nachweise herausgelösten Stab (BK _{yy} und BDK)	am . 10
2.1.4	Nachweisverfahren IV: Globale Nachweise am Ersatzstab	. 11
2.2	Theorie I. Ordnung / Theorie II. Ordnung	. 11
2.3	Imperfektionen in EN 1993-1-1	. 13
2.4	Erfassung der plastischen Tragreserven in EN 1993-1-1	. 14
2.5	α_{cr} - Vergrößerungsbeiwert der idealen Verzweigungslast	. 15
2.6	In dieser Arbeit angewandte Verfahren	. 16
3	Methodik und Vorgehensweise bei der Berechnung	17
3.1	Vorgehensweise	. 17
3.2	Hilfsmittel bei der Berechnung	. 17
3.3	Lasten und maßgebende Lastfallkombinationen	. 18
3.3.1	Lastaufstellung	. 18
3.3.2	Lastfallkombinationen	. 25
3.4	Aufbau und Beschreibung der Auswertungs-Tabellen	. 29
3.4.1	Querschnittswerte	. 29
3.4.2	Biegedrillknicken – Verfahren nach Anhang B - Alternative	. 29
3.4.3	Querschnittsnachweis	. 30
3.5	Beispiel System 1.2 Ort A	. 31
3.6	Berechnungsformeln in den Tabellen	. 34
3.6.1	Querschnittswiderstände	. 34
3.6.2	Stabilitätsnachweise für Bauteile, [6.3], EN 1993-1-1	. 34
3.6.3	Beanspruchbarkeit von Querschnitten, [6.2], EN 1993-1-1	. 39
3.7	RSTAB Analyse - Zusatzmodul RSKNICK	. 40
4	Vorbemessung – gewählte Systeme	42
4.1	Vorbemessung	. 42
4.1.1	Grenzzustand der Tragfähigkeit ULS	. 42
4.1.2	Grenzzustand der Gebrauchstauglichkeit SLS	. 43
4.1.3	Ergebnisse der Vorbemessung	. 43
4.2	Leicht modifizierte, endgültige Systeme	. 45
5	Zusammenfassende Ergebnisse	46
5.1	Maßgebende Lastfallkombinationen	. 46
5.1.1	Maßgebende Lastfallkombination – ULS	. 47
5.1.2	Maßgebende Lastfallkombination – SLS	. 48
5.2	Auslegung der Hallenrahmen – Einfluss der SLS - Nachweise	. 50
5.3	Bemessungsbestimmende Nachweise - ULS	. 52
5.4	Stabilitätsverhalten der Rahmen in der Ebene	. 54
5.5	Nachweisverfahren im Vergleich	. 55
6	Exemplarische Ergebnisdarstellung für einzelne Systeme	56

6.1	Aufbau des Auswertungsdokument						
6.2	Zusätzliche	58					
6.2.1	α _{cr} Vergröß	erungsbeiwert / β_y Knicklängenbeiwert	58				
6.2.2	Moment TH	H. II Ordnung	59				
6.3	System 1.1	Ort A					
6.4	System 2.3	3 Ort A	67				
6.5	System 3.1	Ort B					
6.6	System 3.2	2 Ort A					
0.7	System 4.3						
6.9	System 5.1 System 6.2	2 Ort B					
٨	Anhong (A Laston	100				
Α Δ 1		109					
A 1 1	Figengewig	sht	109				
	A.1.1.1	Dachkonstruktion leicht					
	A 1 1 O	Deebkonstruktion och vor	100				
A.1.2	Schneelast	bachkonstruktion schwer	109				
	A.1.2.1	Schneelast Ort A	110				
	A 1 2 2	Schnoolast Ort B	110				
A 1 3	Windlasten						
7.1.0	A 1 3 1	Windlast Ort A	111				
	A 1 3 2	Windlast Ort B	113				
	A 1 3 3	Geometrischen Pandhedingungen - Windeinwirkung auf die Breitseite	117				
	A.1.3.0	Geometrischen Pandbedingungen - Windeinwirkung auf die Längsseite					
	A.1.3.4	Zussemenfassung der Windeinwirkungen					
	A.1.3.5						
Δ 2	A.1.3.6	maisgebenden windlasten					
A 2 1	Systeme 1	& 2					
,	A 2 1 1	Traqueric Authou & Schoolast	162				
	A.2.1.1						
A 0 0	A.2.1.2	Windlasten					
A.2.2	Sveteme 3	_ 6					
A.2.5		Tranuaria Author & Cohneolast					
	A.2.3.1	Mindlaster					
	A.2.3.2						
۸ <u>۶</u>	A.2.3.3	Imperrektionsiastralle					
A.31	Lastfallkom	ibinationen Grenzzustände der Tradfähigkeit					
A.3.2	Lastfallkom	binationen Grenzzustände der Gebrauchstauglichkeit SLS					
A.3.3	Maßgeben	de Lastfallkombinationen	174				
	A.3.3.1	Systeme 1 & 2 maßgebende LK4 ULS	175				
	A.3.3.2	Systeme 3 -6 maßgebende LK2 ULS	175				
	A.3.3.3	Systeme 1 & 2 maßgebende LK SLS	176				
	A.3.3.4	Systeme 3 - 6 maßgebende LK SLS	177				
Anhar	ng B Auswo	ertung	178				
Verwe	eise		179				

1 Einführung

1.1 Einleitung

Diese Arbeit beschäftigt sich mit dem Systemverhalten von am Fußpunkt gelenkig gelagerten Rahmentragwerken ("Zweigelenkrahmen") und den zugehörigen Nachweisverfahren nach Eurocode EN 1993-1-1.

Sie untersucht die Unterschiede anhand einer vergleichenden Studie für übliche Rahmenabmessungen zwischen den in der Norm vorhandenen und möglichen Nachweisverfahren:

- Nachweisverfahren I: Globale 3D- Tragwerksberechnung II. Ordnung mit Imperfektionen inkl. Abbildung aller Tragfähigkeits- und Stabilitätseffekte (in dieser Arbeit nicht behandelt)
- Nachweisverfahren II: Tragwerksberechnung II. Ordnung mit äquivalenten Ersatzimperfektionen; Querschnittsnachweise für Knicken in der Ebene; Biegedrillknicknachweis aus der Ebene und Stabilitätsanalyse am Stab
- Nachweisverfahren III: Tragwerksberechnung II. Ordnung mit Systemschiefstellung; Knicknachweis in der Ebene am Einzelstab; Biegedrillknicknachweis aus der Ebene
- Nachweisverfahren IV: Tragwerksberechnung I. Ordnung; Knicken in der Ebene am Ersatzstab; Biegedrillknicknachweis aus der Ebene

Die in dieser Arbeit behandelten Nachweisverfahren II, III, IV beziehen sich alle auf das Knickversagen in der Rahmenebene. Aus der Ebene wird in allen Fällen ein zusätzlicher Biegedrillknicknachweis erforderlich.

Das am weitverbreitetste Haupttragsystem im Stahlhallenbau ist das Rahmentragwerk. Es unterscheidet sich zu den Tragstrukturen aus Stützen und gelenkig aufgelagerten Trägern durch die biegesteife Eckverbindung.

Die Stütze des Rahmens hat zusätzlich zur Normalkraftbeanspruchung Biegemomente aufzunehmen, dies führt zu erhöhten Steifigkeiten im der Rahmenebene. Aufgrund der biegesteifen Eckverbindung wird die freie Verdrehbarkeit des Trägers behindert, was zu einer Umlagerung des Biegemomentes im Feld zu den Rahmenecken führt. Bei der Ableitung horizontaler Kräfte (Wind) beteiligen sich Träger und Stütze gleichermaßen.

Ein besonderes konstruktives Augenmerk muss man auf die Ausbildung der Rahmenecken legen, da die Kraftumlenkung hohe lokale Spannungen hervorruft, denen man mit Vouten oder Steifen entgegenkommt.

In der Ebene aller Rahmen benötigen Rahmentragwerke keine zusätzliche Aussteifung, diese werden lediglich in Quer- bzw. Hallenlängsrichtung benötigt. Horizontal- und Vertikalverbände (in Dach- und Wandebene) in Form von K- oder Kreuzverbänden sind hierfür vorzusehen.

Der Systemberechnung von einschiffigen Rahmen bei Stahlhallen wird in der Literatur und im Normenwesen viel Beachtung gegeben, da dieser Hallentyp ein sehr gängiger ist und häufig zur Anwendung kommt.

Das reale Tragwerk wird im Rechenmodell durch ein statisches ebenes Ersatzsystem dargestellt, dessen Elemente (Stäbe, Knoten & Fundamente) spezifische Steifigkeiten und spezifische Tragfähigkeiten (M_{el} , M_{pl}) besitzen.

Die Berechnung der Schnittkräfte wird wie folgt beeinflusst:

- Je nach Systemverhalten (Verformungen) ist der Effekt der Theorie II. Ordnung (Stabilitätseffekte) zu vernachlässigen oder zu berücksichtigen
- Je nach Rotationskapazität der Stäbe und Anschlüsse kann die Schnittkraftberechnung auf elastischer oder plastischer Basis durchgeführt werden
 - in dieser Arbeit wird nur die elastische Systemberechnung untersucht
- Je nach Lastverformungsverhalten der Knoten und Anschlüsse kann deren Steifigkeit auf die Schnittkraftberechnung vernachlässigt werden oder ist zu berücksichtigen
 - in dieser Arbeit werden starre Anschlüsse vorausgesetzt

Die Ziele dieser Arbeit sind:

- 1. die Unterschiede der in der Norm EN 1993-1-1 gestatteten Nachweisverfahren anhand einer umfangreichen Parameterstudie für übliche Hallengeometrien zu analysieren und auszuwerten
- 2. wenn Unterschiede bestehen diese aufzuzeigen
- 3. und eine Empfehlung abzugeben, welches der genannten Nachweisverfahren II, III und IV für die praktische Anwendung am sinnvollsten ist.

1.2 Umfang der Arbeit und untersuchte Systeme

Nach einer kurzen Darstellung der zurzeit anerkannten Nachweisverfahren der aktuellen Norm Eurocode EN 1993-1-1 sowie deren Grundlagen, -Systemberechnung nach Theorie I. Ordnung bzw. II. Ordnung, -Vergrößerungsbeiwert für die Einwirkungen, -Systemverhalten von Tragwerken bzw. Querschnitten und -der Imperfektionen, wird die eigentliche Kernaufgabe der Vergleich für verschiedene Rahmentragwerke behandelt.

Das Kapitel 3 gibt einen Überblick über die Vorgehensweise der Berechnung und die eigens für diese Arbeit erstellten Auswertungstabellen für die Nachweisverfahren II, III & IV. Im Anschluss folgt die Auswertung sämtlicher Rechenschritte von der Vorbemessung und Schnittkraftermittlung, mit Hilfe des Programm RSTAB, bis hin zur Auswertung signifikanter Systeme.

Die detaillierte Lastaufstellung und Lastfallkombinationen aller Systeme, sowie deren Analyse finden sich in den Anhängen dieser Arbeit wieder. Der Anhang A beschäftigt sich mit den Lastaufstellungen und Lastfallkombinationen, im digitalen Anhang B werden sämtliche Systeme entsprechend den Nachweisverfahren ausgewertet.

1.2.1 Grundsätzliche Festlegungen für die untersuchten Systeme

Es werden zwei Systemtypen (Sattel- bzw. Flachdach) an zwei verschiedenen Standorten A & B, welche jeweils eine deutlich unterschiedliche Wind- und Schneebelastung aufweisen, betrachtet.

Die ersten beiden Systeme 1 & 2 sind Rahmentragwerke mit Satteldach und einem "leichten" Dachaufbau (Sandwichplatten auf Pfetten).

Die Flachdachsysteme 3 - 6 sind nochmals unterteilt in jene mit einem "leichten" (Systeme 3 & 4) und jene mit einen "schweren" Dachaufbau (Hohldielen & bekiestes Flachdach; System 5 & 6).

Weiters ist zu erwähnen, dass die Systeme mit den Nummern 1, 3 & 5 eine Stützenkopfhöhe [h] von 6,0m und die Systeme 2, 4 & 6 eine Höhe von 8,0m besitzen. (vgl. Bild 1.1)

Die in dieser Arbeit untersuchten Systeme besitzen eine Breite von b=12,0m, b=18,0m und b=24,0m. Dabei ist das Maß b ident zum Achsabstand der Stützen.

Für die Lastaufstellung der Windlasten wird angenommen, dass die Länge der Hallen dem 10 fachen der Höhe entspricht. Analysiert werden im Windlastfall die Rahmen in Hallenmitte.

Bild 1.1 allgemeine Systemskizzen

Einführung

Standort A: "geringe" Wind- und Schneelasten

Windlasten: EN 1991-1-4

Windgeschwindigkeit: 100km/h

Schneelasten: EN 1991-1-3

Schneelast: 1,0kN/m²

Standort B: "hohe" Wind- und Schneelasten

Windlasten: EN 1991-1-4

Windgeschwindigkeit: 125km/h

Schneelasten: EN 1991-1-3

Schneelast: 3,0kN/m²

Systemfestlegungen (vgl. Bild 1.1)

Stützweite [b] bzw. Achsabstand der Stützen: 12,0m, 18,0m, 24,0m

-zusätzliche seitliche Zwischenhalterung der Träger (für beide Gurte): b=12,0m in Trägermitte / b=18,0m in Trägermitte / b=24,0m 3 äquidistante Abstützungen

Stützenkopfhöhe bis Trägerachse [h]: 6,0m (Systeme 1, 3 & 5), 8,0m (Systeme 2, 4 & 6)

-keine seitliche Zwischenhalterung über die gesamte Höhe

Länge [l]: 10 * h

Dachneigung Satteldachsysteme: [α]: 15°

Achsabstand der Rahmen: $e_1 = 8,0m$ bzw. $e_2 = 6,0m$ (Lasteinflussbreite)

Stahlsorten: S235 bzw. S355

Eigengewichte:Wand bzw. Dach

Dachkonstruktion: "leicht": 0,5kN/m² (Systeme: 1 - 4) Dachkonstruktion: "schwer": 4,0kN/m² (Systeme: 5 & 6) Wandkonstruktion: 0,25kN/m² Träger: IPE / HEA / HEB Profile Stützen: HEB Profile

Anm.: Die Stegebene von Stützen und Träger liegen in der Rahmenebene, sodass für alle Bauteile eine Biegebeanspruchung M_y um die Starke Achse vorliegt. Das Knicken in der Rahmenebene stellt ebenfalls ein Knicken um die y-Achse dar.

Insgesamt ergeben diese Randbedingungen eine Anzahl von 36 verschiedenen Systemen, siehe nachfolgende Bilder.

1.2.2 Anlageverhältnisse zu den untersuchten Systemen

Bild 1.2 Systemskizzen Satteldach

Bild 1.3 Systemskizzen Flachdach

2 Grundlagen zu den einzelnen Nachweisverfahren

2.1 Stabilitätsnachweise für Bauteile gemäß Eurocode EN 1993-1-1

Der Eurocode EN 1993-1-1 bietet mehrere Möglichkeiten zur Stabilitätsanalyse von Tragwerken. Die Verfahren reichen von einer globalen Systemberechnung nach Theorie II. Ordnung bis hin zum Ersatzstabverfahren, das auf einer Systemberechnung nach Theorie I. Ordnung aufbaut.

"Die einzelnen Verfahren unterscheiden sich im Ausmaß, in dem die Effekte der Stabilität durch die Schnittkraftberechnung abgedeckt werden oder diese durch die Stabnachweise erfasst werden. Beim Verfahren I ist ersteres zur Gänze der Fall, bei Verfahren IV dagegen letzteres. Die Zwischenstufen decken die Stabilitätseffekte teilweise in der Systemberechnung und teilweise durch Stabnachweise."¹

2.1.1 Nachweisverfahren I: Globale 3D- Tragwerksberechnung

Räumliche Systemberechnung nach Theorie II. Ordnung inklusive aller Imperfektionen (auch der räumlichen Effekte). Als Nachweise sind nur mehr die Querschnittsnachweise an den maßgebenden Stellen zu führen. Aufgrund der genauen Modellierung des Systems sind keine ergänzenden Bauteilnachweise erforderlich.

Die Berechnung erfolgt über ein Rechenprogramm, welches auch die Wölbkrafttorsion erfasst und diese in den Querschnittsnachweisen berücksichtigt.

Der hohe Modellierungsaufwand und die Komplexität der Eingabeparameter setzt ein hochwertiges 3D-Finite Elemente Programm voraus.

Weiters ist es von Vorteil, vor Systemeingabe das endgültige System zu kennen, da nachträgliche Systemänderungen des Tragwerks einen hohen Änderungsaufwand besitzen.

GMNIA: geometrisch, materiell nichtlineare Systemberechnung mit Imperfektionen

Nachweis: ---- Ausnutzungsgrad

Theorie II. Ordnung räumlich inkl. BDK:

 $\label{eq:limber} \begin{array}{ll} \mbox{Imperfectionen: Systemschiefstellung } \varphi_y, \varphi_z \\ \mbox{Stabvorkrümmung } e_{0,y}, e_{0,z} \\ \mbox{Stabverdrillung } \varphi_x \end{array}$

Nachweis: QS mit My", Mz", Mx", N

Bild 2.1 Nachweisverfahren I²

¹ SKRIPTUM Stahlbau_VU Technische Universität Graz / Tragwerksberechnung – Stabilität von Systemen Seite 5-12 / Ausgabe: S-5-20-2008

² SKRIPTUM Stahlbau_VU Technische Universität Graz / Tragwerksberechnung – Stabilität von Systemen Seite 5-14 / Ausgabe: S-5-20-2008

2.1.2 Nachweisverfahren II: Globale Tragwerksberechnung nach Theorie II. Ordnung mit allen Imperfektionen in der Ebene und zusätzliche Bauteilnachweise aus der Ebene

Ebene Systemberechnung nach Theorie II. Ordnung inklusive aller Imperfektionen (globale Anfangsschiefstellung und Stabvorkrümmung in der Tragwerksebene). Der Nachweis in der Ebene erfolgt über einen Querschnittsnachweis mit M_y^{II} , aus der Ebene erfolgt der Stabilitätsnachweis mit der Knicklänge $L_{k,z}$ (Nachweis Biegedrillknicken – BDK) in Abhängigkeit der Lage von Abstützungen beider Gurte aus der Rahmenebene, mit dem Randmoment M_{VE}^{II} .

Die Systemeingabe erfordert einen viel geringeren Aufwand als beim Nachweisverfahren I, wodurch nachträgliche Änderungen schneller durchgeführt werden können.

Die Berechnung der Schnittkräfte kann über "2D-Statikprogramme" erfolgen, welche über die Eingabe von geometrischen Imperfektionen und Rechenmethoden nach Theorie II. Ordnung verfügen.

Bild 2.2 Nachweisverfahren II³

2.1.3 Nachweisverfahren III: Globale Tragwerksberechnung nach Theorie II. Ordnung und Nachweise am herausgelösten Stab (BK_{yy} und BDK)

Ebene Systemberechnung nach Theorie II. Ordnung inklusive entsprechender Imperfektionen (nur globale Anfangsschiefstellung). Der Nachweis in der Ebene erfolgt über einen Stabilitätsnachweis mit der Knicklänge $L_{k,y} = L$ und dem Randmoment M_{yE}^{II} , aus der Ebene (BDK) erfolgt der Stabilitätsnachweis mit der Knicklänge $L_{k,z}$ in Abhängigkeit allfälliger Zwischenhalterungen (Stützung aus der Rahmenebene) und dem Randmoment M_{yE}^{II} (BDK).

Der Vorteil dieser Methode ist die voneinander getrennte Betrachtung von Systemberechnung und Stabnachweisen (Festlegung von seitlichen Abstützungen).

Bild 2.3 Nachweisverfahren III⁴

³ SKRIPTUM Stahlbau_VU Technische Universität Graz / Tragwerksberechnung – Stabilität von Systemen Seite 5-15 / Ausgabe: S-5-20-2008

⁴ SKRIPTUM Stahlbau_VU Technische Universität Graz / Tragwerksberechnung – Stabilität von Systemen Seite 5-16 / Ausgabe: S-5-20-2008

2.1.4 Nachweisverfahren IV: Globale Nachweise am Ersatzstab

Ebene Systemberechnung nach Theorie I. Ordnung inklusive entsprechender Imperfektionen (nur globale Anfangsschiefstellung). Der Nachweis in der Ebene erfolgt über einen Stabilitätsnachweis mit der erhöhten Knicklänge $L_{k,y} = \beta^* L$ und dem Randmoment M_{yE}^{I} , aus der Ebene erfolgt der Stabilitätsnachweis mit der Knicklänge $L_{k,z}$ in Abhängigkeit allfälliger Zwischenhalterungen und dem Randmoment M_{yE}^{II} .

Bild 2.4 Nachweisverfahren IV⁵

2.2 Theorie I. Ordnung / Theorie II. Ordnung

Theorie I. Ordnung

Die Berechnung der Schnittkräfte an unverformten Tragwerken nennt man eine Berechnung nach Theorie I. Ordnung. Dies hat zur Folge, dass die Änderung der Geometrie des Tragwerks durch die Belastung vernachlässigt wird. Eine Berechnung nach Theorie I. Ordnung ist nur dann zulässig, wenn die Verformungen so klein sind, dass sie die Ergebnisse der Berechnung nicht beeinflussen.

<u>Beispiel Kragarm</u>: Am unverformten System dürfen die Grundgleichungen nach Theorie I. Ordnung aufgestellt werden. Die Horizontalverschiebung w_0 und das daraus entstehende Versatzmoment am Stützenfuß aus der Normalkraft P am Kragarmende hat keinen Einfluss auf den Momentenverlauf.

Bild 2.5 Beispiel Kragarm Theorie I. Ordnung⁶

⁵ SKRIPTUM Stahlbau_VU Technische Universität Graz / Tragwerksberechnung – Stabilität von Systemen Seite 5-17 / Ausgabe: S-5-20-2008

⁶ Grundlagen der Baustatik Modelle und Berechnungsmethoden für ebene Stabtragwerke Seite 277 / Dieter Dinkler / 2.Auflage 2012 / Springer Vieweg

Theorie II. Ordnung

Die Berechnung nach Theorie II. Ordnung beschreibt das Gleichgewicht am verformten System, meist unter Ansatz zusätzlicher geometrischer Ersatzimperfektionen (Schiefstellungen und Krümmungen).

Bei der Theorie II. Ordnung wird nach wie vor angenommen, dass die Verformungen eines Bauteils klein sind. Dies stellt im Bauwesen die Regel dar, denn große Verformungen führen dazu, dass die Gebrauchstauglichkeit nicht mehr gegeben ist. Aus der Annahme kleiner Verdrehungen (ϕ) folgen die Vereinfachungen zur Kinematik mit sin $\phi = \phi$ und cos $\phi = 1$.

<u>Beispiel Kragarm:</u> Gibt es Verformungen am Tragwerk, müssen die Grundgleichungen am verformten System aufgestellt werden.

Bild 2.6 Beispiel Kragarm Theorie II. Ordnung⁷

Last-Weg-Diagramme dienen zur Veranschaulichung des Tragverhaltens, da sie den Zusammenhang von Verformungen und Grenzlasten darstellen.

Bild 2.7 Geometrisch nichtlineares Tragverhalten von Knickstäben⁸

⁷ Grundlagen der Baustatik Modelle und Berechnungsmethoden für ebene Stabtragwerke Seite 277 / Dieter Dinkler / 2.Auflage 2012 / Springer Vieweg

⁸ Grundlagen der Baustatik Modelle und Berechnungsmethoden für ebene Stabtragwerke Seite 275 / Dieter Dinkler / 2.Auflage 2012 / Springer Vieweg

2.3 Imperfektionen in EN 1993-1-1

Der Herstellungsprozess von realen Stäben ist niemals perfekt, diese Toleranzen werden als geometrische Imperfektionen bezeichnet und sind in der EN 1090-2 (Ausführung von Stahltragwerken und Aluminiumtragwerken, Teil 2: Technische Regeln für die Ausführung von Stahltragwerken) geregelt.

Geometrische Ersatzimperfektionen können alle Arten von Imperfektionen abbilden:

- Eigenspannungen
- Geometrische Imperfektionen: Schiefstellungen und Abweichungen von der Geradheit
- Ebenheit und Passung
- Exzentrizität

In der Berechnung müssen diese realen Imperfektionen mittels äquivalenter Ersatzimperfektionen am Gesamtsystem oder an lokalen Bauteilen berücksichtigt werden.

- Folgende geometrischen Ersatzimperfektionen sind in der Regel anzusetzen:

Anfangsschiefstellungen:

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}_{o} * \boldsymbol{\alpha}_{h} * \boldsymbol{\alpha}_{m} \quad mit \quad \boldsymbol{\Phi}_{o} = \frac{1}{200} \quad ; \quad \boldsymbol{\alpha}_{h} = \frac{2}{\sqrt{h}} \quad ; \quad \boldsymbol{\alpha}_{m} = \sqrt{0.5 * \left(1 + \frac{1}{m}\right)} \quad [5.5]$$

 Φ_o der Ausgangswert

 α_h der Abminderungsfaktor für die Höhe h [m] von Stützen

 α_m der Abminderungsfaktor für die Anzahl m der Lastabtragenden Stützen in einer Reihe, die mehr als 50% der durchschnittlichen Stützenlast in vertikaler Richtung übernehmen

Vorkrümmung von Bauteilen:

 e_0/I dabei ist L die Bauteillänge [5.6]

Knicklinie	elastische Berechnung	plastische Berechnung		
hach Tabelle 6.1	$e_{0,d}/L$	$e_{0,d}/L$		
a ₀	1/350	1/300		
a	1/300	1/250		
b	1/250	1/200		
c	1/200	1/150		
d	1/150	1/100		

Tabelle 2.1

^[5.1] Bemessungswerte der Vorkrümmung e_{0,d}/L von Bauteilen⁹

⁹ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bernessung und Konstruktion von Stahlbauten Teil1-1: Allgemeine Bernessungsregeln und Regeln für den Hochbau Seite 36

2.4 Erfassung der plastischen Tragreserven in EN 1993-1-1

Die Schnittgrößen und Querschnittsbeanspruchbarkeiten dürfen entweder elastisch (E) oder plastisch (P) ermittelt werden, so die entsprechende Querschnittsklasse (QK) gegeben ist. Dies führt zu 4 verschiedenen Verfahren:

Bild 2.8 Berechnungsverfahren¹⁰

- 1. P-P: Plastische Berechnungen berücksichtigen die Einflüsse aus nichtlinearen Werkstoffverhalten und dürfen nur angewandt werden, wenn die Bauteile in der Lage sind genügend Rotationskapazität zu entwickeln, um eine Momentenumlagerung zu gewährleisten und die Stabilität der Bauteile an diesen Gelenken gesichert ist. [Profile QK 1]
- 2. E-P: Schnittgrößen werden elastisch ermittelt, auch wenn die Querschnittsbeanspruchbarkeiten plastisch ermittelt werden [Profile QK 1 & 2]
- 3. E-E: Schnittgrößen und Querschnittsbeanspruchbarkeiten werden elastisch ermittelt [Profile QK 1-3]
- 4. E-E_{eff}: Eine elastische Tragwerksberechnung darf auch für Querschnitte verwendet werden, deren Beanspruchbarkeit durch lokales Beulen begrenzt wird. Beim Querschnittsnachweis wird das Beulen berücksichtigt.

Da die Anforderungen an die Querschnitte je nach zugrunde gelegtem Verfahren sehr unterschiedlich sind, ist eine Zuordnung zum Berechnungsverfahren (elastische oder plastische Schnittkraftermittlung) und eine Einteilung in Querschnittsklassen notwendig.

Berechnungs	Querschnittsklasse								
-methode	1	2	3	4					
am SYSTEM	plastisch	elastisch	elastisch	elastisch					
am QUER- SCHNITT	-f _y +f _y plastisch	-fy +fy plastisch	$\frac{-f_y}{2} + f_y$ elastisch	f_y f_y f_y f_y f_y reduz. QS					
	b/t = 72 c/t _f = 9	83 10	124 14	<pre>> 124 > 124 > 14 } -> beff</pre>					
Verfahren	P-P	E-P	E-E	E - E Red					

Bild 2.9 Zuordnung der Berechnungsverfahren zur Querschnittsklasse; Beispiel für alleinige Biegung M_y und Baustahl S235¹¹ Anm.: In dieser Arbeit wird in der Regel das Verfahren E-P zugrunde gelegt.

¹⁰ SKRIPTUM Stahlbau_GL Technische Universität Graz / Querschnittsbemessung Seite 3a-5 / Ausgabe: S-5-36-2012

¹¹ SKRIPTUM Stahlbau_GL Technische Universität Graz / Querschnittsbemessung Seite 3a-6 / Ausgabe: S-5-36-2012

2.5 α_{cr}- Vergrößerungsbeiwert der idealen Verzweigungslast

Die Berechnung der Schnittkräfte werden im Allgemeinen entweder nach Theorie I. Ordnung, unter Ansatz der Ausgangsgeometrie des Tragwerks, oder nach Theorie II. Ordnung, unter Berücksichtigung des verformten Tragwerks, berechnet.

Mit dem Vergrößerungsfaktor α_{cr} können die Bemessungswerte der Belastung erhöht werden, um die ideale Verzweigungslast des Gesamttragwerks zu erreichen.

Der Vergrößerungsfaktor ist ein Indikator zur Bestimmung nach welcher Berechnungstheorie (Theorie I. Ordnung oder Theorie II. Ordnung) die Systemberechnung durchzuführen ist.

Eine Berechnung nach Theorie I. Ordnung ist nur dann zulässig, wenn die durch Verformungen herbeigeführten Erhöhungen der Systemschnittkräfte vernachlässigt werden können (Zunahme der Momente unter 10%), oder andere Änderungen des Tragverhalten vernachlässigbar klein sind. Diese Anforderung gilt als erfüllt, wenn:

$$\alpha_{cr} = \frac{F_{cr}}{F_{Ed}} \ge 10$$
 elastische Berechnung nach Theorie I. Ordnung zulässig

$$\alpha_{cr} = \frac{F_{cr}}{F_{Ed}} \ge 15$$
 plastische Berechnung nach Theorie I. Ordnung zulässig

 F_{cr} ist die ideale Verzweigungslast des Gesamttragwerks, bezogen auf die Gesamtbelastung F_{Ed} F_{Ed} ist die Gesamtbelastung der Einwirkungen (Bemessungswert) auf das Tragwerk

-

2.6 In dieser Arbeit angewandte Verfahren

Diese Arbeit beschäftigt sich mit den Nachweisverfahren II, III und IV hinsichtlich der Stabilität von Rahmen in der Rahmenebene. Auch im Verfahren IV werden Systemschiefstellungen in Rechnung gestellt (siehe. Abschnitt 2.3), da diese nie auszuschließen sind. Die Berechnung der Schnittkräfte erfolgt auf elastischer Ebene. Ebenfalls werden bei jedem Nachweisverfahren die plastischen Querschnittsnachweise nach EN 1993-1-1 geführt. Dies bedeutet, dass für alle Querschnitte Querschnittsklasse 2 vorliegt. Im Nachweisverfahren IV wird das Moment I. Ordnung mit dem Vergrößerungsfaktor α_{cr} erhöht, um M_y^{II} am Stützenkopf zu erhalten und damit den Nachweis aus der Ebene (Biegedrillknicken) zu führen.

Bei allen gewählten Systemen wurden wie schon erwähnt Querschnitte der Klasse 1 oder 2 gewählt, wodurch das das Verfahren E-P verwendet werden kann. Für eine wirtschaftliche Bemessung ist es von Vorteil die plastischen Tragreserven im Stahlbau auszunutzen.

Nachweisverfahren II

Berechnung nach Theorie II. Ordnung

Imperfektionen: Systemschiefstellung Φ

Stabvorkrümmung e_{0,d}/L (plastische Berechnung)

Berechnungsmethode: Schnittkräfte elastisch

- a.) Biegeknicken in der Ebene: Querschnittsnachweise plastisch
- b.) Biegedrillknicknachweise an den Einzelstäben (Stütze, Träger)

Nachweisverfahren III

Berechnung nach Theorie II. Ordnung

Imperfektionen: Systemschiefstellung Φ

Berechnungsmethode: Schnittkräfte elastisch

- a.) Biegeknicken in der Ebene: Nachweis am Einzelstab (Stütze)
- b.) Biegedrillknicknachweise an den Einzelstäben (Stütze, Träger)

Nachweisverfahren IV

Berechnung nach Theorie I. Ordnung

Imperfektionen: Systemschiefstellung Φ (werden in dieser Arbeit angesetzt)

Berechnungsmethode: Schnittkräfte elastisch

- a.) Biegeknicken in der Ebene: Ersatzstabverfahren für Stütze mit $l_{ky} = \beta * l$
- b.) Biegedrillknicknachweise an den Einzelstäben (Stütze, Träger) mit $M_y^{II} = M_y^I * \alpha_{cr}$

3 Methodik und Vorgehensweise bei der Berechnung

In diesem Kapitel wird die Vorgehensweise der Berechnungen näher erläutert. Außerdem gibt es einen Überblick der verwendeten Hilfsmittel bei der Berechnung und es beschreibt den Aufbau und die Rechenschritte der Auswertungstabellen.

3.1 Vorgehensweise

Für jedes System und jeden Standort wurden folgende Berechnungen bzw. Bemessungen durchgeführt:

- 1. Lastaufstellung abhängig von Standort, Schneelast, Windlast und Dachaufbau (detaillierte Lastaufstellung aller Systeme siehe Anhang A)
- 2. Vorbemessung (e=8,0m / S 235) & Optimierung (e₁=8,0m & e₂=6,0m / S235 & S355) mittels der Statik-Software RSTAB
- 3. Systemberechnungen der zu untersuchenden Nachweisverfahren (NWV II, III & IV) um Schnittkräfte, Verformungen, Knicklängen und Verzweigungslastfaktoren zu ermitteln mittels der Statik-Software RSTAB
- 4. Führen folgender Nachweise:

-Querschnittsnachweise (Stützenkopf; Träger im Feld und bei Stützenanschluss)

-Biegeknicknachweis Stütze in der Rahmenebene (NWV III, IV)

-Biegedrillknicknachweis Stütze (NWV II, III, IV) bzw. Träger

Excel- Auswertung der Ergebnisse der computergestützten Systemberechnungen des maßgebenden Bauteils für das jeweilige Nachweisverfahren (die detaillierte Auswertung aller Systeme findet sich im digitalen Anhang B)

3.2 Hilfsmittel bei der Berechnung

Zur Unterstützung der zeitaufwendigen Arbeitsschritte standen folgende Hilfsmittel in Form von Software bzw. Bemessungsbehelfen zur Verfügung:

- Die Berechnung der Systemschnittkräfte, Verformungen, Verzweigungslastfaktoren und Knicklängen erfolgte mit der Statik-Software "RSTAB 8"und dem Zusatzmodul "RSKNICK" der Firma Dlubal.
- "LTBeam" der Firma cticm zur Vergleichsrechnung des idealen Verzweigungsmomentes bei Biegedrillknicken
- Die Auswertung der Nachweisverfahren erfolgte mit einem eigens weiterentwickelten Excel-Blatt basierend auf einer Profiltabellenliste der Firma convex, nach der aktuellen "EN 1993-1-1" Bemessung und Konstruktion von Stahlbauten, Teil 1-1: Allgemeine Bemessungsregeln für den Hochbau
- Skripten: Stahlbau GL / VU der Technischen Universität Graz des Institut für Stahlbau
- Skript: Baustatik 2 der Technischen Universität Graz des Institut für Baustatik
- "Stahlbau Formeln und Tabellen" Gerald Luza, Michael Plaka

3.3 Lasten und maßgebende Lastfallkombinationen

Anhand des Systems 3.1_Ort A wird in diesem Abschnitt eine exemplarische Lastaufstellung und Lastfallkombination erstellt. Dieses Schema der Lastaufstellung ist auf alle anderen Systeme übertragbar. Die gesamte Lastaufstellung findet sich in Anhang A Lasten wieder.

Allgemein gilt für jede Lastaufstellung:

 $\dots, \dots kN/m^2 * e = \dots, \dots kN/m$

mit: e...Achsabstand der Hallenrahmen in [m]

3.3.1 Lastaufstellung

System 3.1:

Achsabstand e=8,0m

- Eigengewicht (A.1.1) ∑Gk

Tragwerk: wird in der Berechnung des Statikprogramms berücksichtigt Dachaufbau "leicht": $0.5kN/m^2 * 8m = 4$, 0kN/m Streckenlast am Träger Wandkonstruktion $0.25kN/m^2 * 8m = 2$, 0kN/m Vertikalkraft in der Stütze

- Schneelast nach EN 1991-1-3 (A.1.2)

Die Ermittlung der Schneelast gliedert sich im Anhang A in Schneelast Ort A und in Schneelast Ort B.

Ort:	A						
Lastzone:	2						
Dachneigung:	15°						
Umgebungskoeffizient:	c _e = 1,0						
Temperaturkoeffizient:	c _t = 1,0						
Formbeiwert für Schneelasten:	μ ₁ = 0,8						
Charakteristischer Wert:	s _{kA} = 1,25kN/m²						
$s_{Ak} = s_{kA} * c_e * c_t * \mu_1 = 1,25 * 1,0 * 1,0 * 0,8 = 1,00 \ kN/m^2 * 8,0m = 8kN/m^2$							
LF3: Schnee_LF 1							

Bild 3.1 maßgebende Schneelast, System 3.1.Ort A

- Windlast nach EN 1991-1-4 (A.1.3)

Die Windlasten werden für einen Rahmen in Hallenmitte ermittelt, da die Randbereiche gesondert betrachtet werden müssen.

Allgemein: IV Geländekategorie: $v_{h,0} = 27,78 \, m/s \, (100 km/h)$ Basiswindgeschwindigkeit: $q_{h,0} = 0,483 \, kN/m^2$ Basisdruck: Gebäudehöhen: 6.0m Windgeschwindigkeit und Geschwindigkeitsdruck: Basisgeschwindigkeitswerte: cdir und cseason sind It. österreichischen NAD 1,0 Bauhöhe: z < 15,0mGeländekategorie IV: $z_{min} = 15,0m$ $c_{e(z)} = \frac{q_p}{q_h} = 1,20 * \left(\frac{z}{10}\right)^{0,38} = 1,20 \left(\frac{15,0}{10}\right)^{0,38} = 1,40$ $c_{r(z)}^2 = 0,263 * \left(\frac{z}{10}\right)^{0,64} = 0,263 * \left(\frac{15,0}{10}\right)^{0,64} = 0,34$ Basisgeschwindigkeit $v_{h} = c_{dir} * c_{season} * v_{h,0} = 1,0 * 1,0 * 27,78 = 27,78m/s$ Basisdruck $q_b = c_{dir} * c_{season} * q_{b,0} = 1,0 * 1,0 * 0,483 = 0,483m/s$ Mittlerer Winddruck $q_{m(z)} = c_{r(z)}^2 * q_b = 0.34 * 0.483 = 0.165 kN/m^2$ **Böengeschwindigkeitsdruck** $q_{p(z)} = c_{e(z)} * q_b = 1,40 * 0,483 = 0,676 kN/m^2$

Außendruckbeiwert

$$A > 10m^2 \rightarrow cpe, 10$$

Geschwindigkeitsdruckverlauf

Konstanter Verlauf:

¹² EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 34

Bild 3.3 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 3.1¹³

h/b = 6,0/60,0 = 0,100d/b = 12,0/60,0 = 0,200

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich D	$C_{pe,10} = +0,80$

¹³ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für das Flachdach Breitseite

Neigungswinkel Dach: <5°

Anströmrichtung θ = 0° bzw. 180°

Attikaverhältnis: hp/h=0,05

e = b oder 2h (der kleinere Wert ist maßgebend)

Bild 3.4 Einteilung der Dachflächen bei Flachdächern_Breitseite¹⁴

Bereich F	C _{pe,10} [positiv] = -1,40	Bereich F	C _{pe,10} [negativ] = 1,40
Bereich G	C _{pe,10} [positiv] = -0,90	Bereich G	C _{pe,10} [negativ] = -0,90
Bereich H	C _{pe,10} [positiv] = -0,70	Bereich H	C _{pe,10} [negativ] = -0,70
Bereich I	C _{pe,10} [positiv] = +0,20	Bereich I	C _{pe,10} [negativ] = -0,20

Innendruckbeiwerte:

 $c_{p,i} = +0, 2 \ kN/m^2$ (nach außen gerichtet – Druck) $c_{p,i} = -0, 3kN/m^2$ (nach innen gerichtet – Sog)

¹⁴ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 37

Ergebnis der maßgebenden Windbelastung auf die Breitseite

Der Rechenwert der Windlasten für einen Rahmen in Hallenmitte ergibt sich wie folgt:

$$w_{(e;i)} = q_{p(ze;zi)} * c_{p(e,10;i)} * e = ..., ... kN/m$$

Innendruck										
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]						
Innensog	-0,30	0,676	8,0	-1,62						
Innendruck	0,20	0,676	8,0	1,08						
Wand-Windrichtung Breitseite										
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]						
D	0,80	0,676	8,0	4,33						
E	-0,25	0,676	8,0	-1,35						
Dach-Windrichtung Breitseite										
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]						
G	-0,90	0,676	8,0	-4,87						
Н	-0,70	0,676	8,0	-3,79						
I	-0,20 / +0,20	0,676	8,0	-1,08 / +1,08						
	W	and-Windrichtung	Längsseite							
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]						
С	-0,40	0,676	8,0	-2,16						
	Da	ach-Windrichtung	Längsseite							
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]						
	-0,20 / +0,20	0,676	8,0	-1,08 / +1,08						

Tabelle 3.1maßgebenden Windlasten, System 3.1 Ort A

In Summe ergeben sich bei den Flachdachsystemen 8 Windlastfälle welche unter Punkt A.2.2.2 abgebildet sind.

maßgebender Windlastfall auf die Breitseite

Die folgende Skizze ist der maßgebende Lastfall (LF2) für die Flachdachsysteme, bei den Satteldachsystemen ist der maßgebende Lastfall der LF4 (Siehe Anhang A.2.1.2)

Anm.: Vereinfacht erfolgte für alle untersuchten Systeme –unabhängig von der Dachträgerhöhe –die Annahme, dass die Dach-OK in der Höhe der Dachachse liegt (darüber hinausreichende Windlasten auf die Stütze werden vernachlässigt)

Bild 3.5 maßgebender Windlastfall, LF2 System 3.1 Ort A

 w_{ex} ...Wind auf Außenwand & Bereiche Dach außen (x= Zonenbez. Nach EN 1991-1-4) w_i ...Innendruck / Innensog & Bereich

- Imperfektionen nach EN 1993-1-1 (A.2.1 bzw. A.2.2)

Die Imperfektionen können in der Statiksoftware als eigenständiger Lastfall wie folgt eingegeben werden:

Imperfektion bea	rbeiten		X
Nr.: 1	Beziehen auf Stäbe Stabliste Stabsätze	An Stäben Nr.	$\alpha = 0^{\circ}$ $\alpha \neq 0^{\circ}$
Richtung	Parameter		
Lokale Oy Achse: Oz	Bezug:	● Relativ ◯ Absolut	z žv
Haupt- Ou achse: Ov	Schiefstellung φ ₀ :	282.84	[€] • →
	Vorkrümmung e _{0,d} /L :	200.00 (•)	
	Vorkrümmung Aktivierungskriterium:	Immer 🔻 🕤	wo
		[·] (1)	Por 1
Kommentar			x y/z
		- 🔁	ů/v
2			OK Abbrechen

Bild 3.6 Eingabemaske der Imperfektionen im Statikprogramm

Die gesamte Auflistung der Imperfektionen findet sich im Anhang A, der Satteldachsysteme in A.2.1.3 und der Flachdachsysteme in A.2.2.3 wieder.

Anfangsschiefstellung

Die Anfangsschiefstellung berechnet sich für jedes System nach EN 1993-1-1 wie folgt:

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}_o \ast \boldsymbol{\alpha}_h \ast \boldsymbol{\alpha}_m \quad mit \quad \boldsymbol{\Phi}_o = \frac{1}{200} \quad ; \quad \boldsymbol{\alpha}_h = \frac{2}{\sqrt{h}} \quad ; \quad \boldsymbol{\alpha}_m = \sqrt{0.5 \ast \left(1 + \frac{1}{m}\right)}$$

mit:

Stützenhöhe h=6,0m bzw. h=8,0m (Systeme: 1, 3 & 5 h=6,0m / Systeme: 2, 4 & 6 h=8,0m) und

m=2 ist die Anzahl der Stützen in einer Ebene, die mehr als 50% der durchschnittlichen Stützenlast in vertikaler Richtung übernehmen

für 6,0m:

Φ

$$= \frac{1}{200} * \frac{2}{\sqrt{6}} * \sqrt{0.5 * \left(1 + \frac{1}{2}\right)} = 282,84 \qquad \Phi = \frac{1}{200} * \frac{2}{\sqrt{8}} * \sqrt{0.5 * \left(1 + \frac{1}{2}\right)} = 326,60$$

für 8,0m:

Stabvorkrümmung

Aufgrund der plastischen Querschnittnachweise sind aus der Tabelle 3.2 die erhöhten Werte für die plastische Berechnung in Rechnung gestellt worden.

Knicklinie	elastische Berechnung	plastische Berechnung		
hach rabelle 6.1	$e_{0,d}/L$	$e_{0,d}/L$		
a ₀	1/350	1/300		
а	1/300	1/250		
b	1/250	1/200		
с	1/200	1/150		
d	1/150	1/100		

 Tabelle 3.2
 [5.1] Bemessungswert der Vorkrümmung e₀/L von Bauteilen ¹⁵

Lastbilder der Imperfektionen

Die Imperfektionen der Lastfälle 12 und 13 (siehe nachfolgendes Bild 3.7) werden für das Nachweisverfahren II benötigt, wobei der maßgebende Lastfall der LF 12 ist. Bei den Verfahren III & IV ist es jeweils der LF 14 (nur Schiefstellung)

LF12: Schiefstellung & Vorkrümmung_LF 1 LF

LF13: Schiefstellung & Vorkrümmung_LF 2

¹⁵ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 36

3.3.2 Lastfallkombinationen

Sämtliche Lastfallkombinationen wurden vor der Eingabe in das Statikprogramm in Tabellenform aufgestellt und per "Hand" (keine automatische Kombination der Lastfälle des Programms) eingegeben. Diese Auflistungen finden sich im Anhang A.3 wieder.

Die Bildung der Lastfallkombination erfolgt nach Eurocode 0 (EN 1990) in den Bereichen Grenzzustand der Tragfähigkeit (ULS: STR/GEO) und Grenzzustand der Gebrauchstauglichkeit (SLS: quasi ständige Kombination; Häufige Kombination und Charakteristische Kombination)

Bei der Bildung der Lastfallkombinationen wurde in Leiteinwirkungen und Begleiteinwirkungen unterschieden.

Die Imperfektionslastfälle sind von den jeweiligen Nachweisverfahren abhängig, das gerade geführt wird. In diesen Tabellen sind keine Imperfektionslastfälle enthalten, diese gehen mit einem Faktor von 1,0 in die Berechnung ein, je nach Nachweisverfahren kann die Anzahl der Lastfallkombinationen verdoppelt werden.

- LK Grenzzustand der Tragfähigkeit ULS:

Die dunkelgrau hinterlegte Lastfallkombination (Schnee LF1 / Wind LF2) ist die maßgebende Lastfallkombination für die Flachdachsysteme für den Grenzzustand der Tragfähigkeit. Dies ist in Bild 3.8 dargestellt.

SYSTEME 3 - 6 STR/GEO											
Schnee Leiteinwirkung											
Beschreibung	LK	G _k	S _{1k}	$\Psi_{0,i}^*W_{1k}$	$\Psi_{0,i}^*W_{2k}$	$\Psi_{0,i}^*W_{3k}$	$\Psi_{0,i}^*W_{4k}$	$\Psi_{0,i}^*W_{5k}$	$\Psi_{0,i}^*W_{6k}$	$\Psi_{0,i}^*W_{7k}$	Ψ _{0,i} *W _{8k}
Schnee LF1 / Wind LF1	LK1	1,35	1,50	0,60*1,50	-	_	_	-	_	_	_
Schnee LF1 / Wind LF2	LK2	1,35	1,50	-	0,60*1,50	_	_	-	_	_	_
Schnee LF1 / Wind LF3	LK3	1,35	1,50	-	-	0,60*1,50	_	-	_	_	_
Schnee LF1 / Wind LF4	LK4	1,35	1,50	-	-	_	0,60*1,50	-	_	_	_
Schnee LF1 / Wind LF5	LK5	1,35	1,50	-	-	_	_	0,60*1,50	_	_	_
Schnee LF1 / Wind LF6	LK6	1,35	1,50	_	_	_	_	_	0,60*1,50	_	_
Schnee LF1 / Wind LF7	LK7	1,35	1,50	_	_	_	_	_	_	0,60*1,50	_
Schnee LF1 / Wind LF8	LK8	1,35	1,50	_	_	_	_	_	_	_	0,60*1,50
Schnee LF1	LK25	1,35	1,50	-	-	_	_	-	_	_	_
Wind Leiteinwirkung											
Beschreibung	LK	G _k	W _{1k}	W _{2k}	W _{3k}	W _{4k}	W _{5k}	W _{6k}	W _{7k}	W _{8k}	$\Psi_{0,i}^* S_{1k}$
Wind LF1 / Schnee LF1	LK9	1,35	1,50	_	_	_	_	_	_	_	0,50*1,50
Wind LF2 / Schnee LF1	LK10	1,35	-	1,50	-	_	_	-	_	_	0,50*1,50
Wind LF3 / Schnee LF1	LK11	1,35	-	_	1,50	_	_	_	_	_	0,50*1,50
Wind LF4 / Schnee LF1	LK12	1,35	_	-	-	1,50	_	-	_	_	0,50*1,50
Wind LF5 / Schnee LF1	LK13	1,35	_	_	_	_	1,50	_	_	_	0,50*1,50
Wind LF6 / Schnee LF1	LK14	1,35	_	-	-	_	_	1,50	_	_	0,50*1,50
Wind LF7 / Schnee LF1	LK15	1,35	_	_	_	_	_	_	1,50	_	0,50*1,50
Wind LF8 / Schnee LF1	LK16	1,35	_	-	-	_	_	-	_	1,50	0,50*1,50
Wind LF1	LK17	1,35	1,50	_	_	_	-	_	_	_	_
Wind LF2	LK18	1,35	_	1,50	_	_	_	_	_	_	_
Wind LF3	LK19	1,35	_	_	1,50	_	_	_	_	_	_
Wind LF4	LK20	1,35	_	_	_	1,50	_	_	_	_	_
Wind LF5	LK21	1,35	_	-	-	_	1,50	-	_	_	_
Wind LF6	LK22	1,35	_	_	_	_	_	1,50	_	_	_
Wind LF7	LK23	1,35	_	_	_	_	_	_	1,50	_	_
Wind LF8	LK24	1,35	_	_	_	_	_	_	_	1,50	_

Tabelle 3.3

Lastfallkombinationen ULS STR/GEO, Systeme 3 - 6

maßgebende Lastfallkombination LK2 ULS

Folgende Beschriftungen wurden für die nachfolgenden Systemskizzen gewählt:

wex...Wind auf Außenwand & Bereiche Dach außen (x=Zonenbezeichnung nach EN 1991-1-4)

- wi...Innendruck / Innensog auf Außenwand und Dach
- S...Schneelast
- G...Eigengewicht / Aufbau
- e₀/L...Vorkrümmungen
- Φ...Schiefstellungen

In den Darstellungen sind ebenfalls die Teilsicherheitsbeiwerte γ und Kombinationsbeiwerte ψ der Leit- und Begleiteinwirkungen der jeweiligen Lastfallkombination angeführt.

Die Bezeichnungen der Lastfallkombinationen besitzen folgenden Aufbau:

Kombinationsnummer: Leiteinwirkung_Begleiteinwirkung_Imperfektionen

Bild 3.8 maßgebende Lastfallkombination Flachdachsysteme, LK2 ULS

Die maßgebende Lastfallkombination für einschiffige Portalrahmen mit Flach- oder Satteldach setzt sich aus den Belastungen des Eigengewichts, der führenden symmetrischen Schneelast, der begleitenden Windlast auf die Breitseite und den je nach Nachweisverfahren dazugehörigen Imperfektionen zusammen.

- LK Grenzzustand der Gebrauchstauglichkeit SLS:

Entgegen der Vorgehensweise nach EN 1990 wird, orientiert an der praktischen Vorgehensweise im Stahlbau der Vergangenheit, von der charakteristischen Lastkombination ausgegangen.

Die dunkelgrau hinterlegten Lastfallkombinationen sind die maßgebenden Lastfallkombinationen der Flachdachsysteme für den Grenzzustand der Gebrauchstauglichkeit.

Diese sind die maximale Horizontalverschiebung $[u_x]$ des Stützenkopfs und die maximale Durchbiegung $[u_z]$ des Trägers.

Anm.: für die beiliegenden Schneelasten wurde in dieser Arbeit von Standorten unter 1000m Seehöhe ausgegangen.

Quasi-ständige Kombination													
Systeme 3 - 6													
Beschreibung	LK	G _k	$\Psi_{2,i}{}^*S_{1k}$	$\Psi_{2,i}{}^*S_{2k}$	$\Psi_{2,i}{}^*S_{3k}$	$\Psi_{2,i}{}^{*}W_{1k}$	$\Psi_{2,i}^*W_{2k}$	$\Psi_{2,i}{}^{*}W_{3k}$	$\Psi_{2,i}{}^{*}W_{4k}$	$\Psi_{2,i}{}^{*}W_{5k}$	$\Psi_{2,i}{}^{*}W_{6k}$	$\Psi_{2,i}{}^{*}W_{7k}$	$\Psi_{2,i}{}^{*}W_{8k}$
Tragwerk / Schnee / Wind	LK46 / LK26	1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0

Tabelle 3.4

4

Lastfallkombinationen SLS Quasi-ständig Kombination, System 3 – 6

Häufige Kombination: Systeme 3 - 6											
Schnee Leiteinwirkung											
Beschreibung	LK	G _k	Ψ _{2,i} *S _{1k}	$\Psi_{2,i}^*S_{2k}$	$\Psi_{2,i}^*S_{3k}$	$\Psi_{2,i}^*W_{1k}$	$\Psi_{2,i}^*W_{2k}$	$\Psi_{2,i}^*W_{3k}$	$\Psi_{2,i}^*W_{4k}$	Ψ _{2,i} *₩ _{5k}	$\Psi_{2,i}^*W_{6k}$
Schnee LF1	LK27	1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,20*1,00	0,00*1,00	0,00*1,00
Wind Leiteinwirkung											
Beschreibung	LK	Gĸ	$\Psi_{1,i}^*W_{1k}$	$\Psi_{1,i}^*W_{2k}$	$\Psi_{1,i}^*W_{3k}$	$\Psi_{1,i}^*W_{4k}$	Ψ _{1,i} *W _{5k}	$\Psi_{1,i}^*W_{6k}$	$\Psi_{1,i}^*W_{7k}$	$\Psi_{1,i}^*W_{8k}$	$\Psi_{2,i}{}^*S_{1k}$
Wind LF1	LK28	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF2	LK29	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF3	LK30	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF4	LK31	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF5	LK32	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF6	LK33	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF7	LK34	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF8	LK35	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00

Tabelle 3.5

Lastfallkombinationen SLS Häufige Kombination, Systeme 3 – 6

Charakteristische (seltene) Kombination: Systeme 3 - 6											
Schnee Leiteinwirkung											
Beschreibung	LK	Gĸ	S _{1k}	$\Psi_{0,i}^*W_{1k}$	$\Psi_{0,i}^*W_{2k}$	$\Psi_{0,i}^{*}W_{3k}$	$\Psi_{0,i}^{*}W_{4k}$	$\Psi_{0,i}^*W_{5k}$	$\Psi_{0,i}^*W_{6k}$	$\Psi_{0,i}^*W_{7k}$	$\Psi_{0,i}^*W_{8k}$
Schnee LF1 / Wind LF1-8	LK36 - LK43	1,00	1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00
Wind Leiteinwirkung											
Beschreibung	LK	Gĸ	W _{1k}	W _{2k}	W _{3k}	W _{4k}	W _{5k}	W _{6k}	W _{7k}	W _{8k}	$\Psi_{0,i}^*S_{1k}$
Wind LF1-8 / Schnee LF1	LK44 - LK51	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,50*1,00

Tabelle 3.6

Lastfallkombinationen SLS Charakteristische Kombination, Systeme 3 - 6

Flachdachsysteme: siehe Anhang A.3

Die LK41: Volllast Schnee LF1 (Leiteinwirkung) & Wind auf die Längsseite LF6 (Begleiteinwirkung) ergibt den Maximalwert der Durchbiegung [u_z] des Trägers.

Die LK47: Wind von der Breitseite LF4 (Leiteinwirkung) & Volllast Schnee LF1 (Begleiteinwirkung) ergibt den Maximalwert der horizontalen Stützenkopfverschiebung [u_x].

Satteldachsysteme: siehe Anhang A.3

Die LK59: Volllast Schnee LF1 (Leiteinwirkung) & Wind von der Breitseite LF4 (Begleiteinwirkung) ergibt den Maximalwert der Durchbiegung [u_z] des Trägers.

Die LK83: Wind von der Breitseite LF4 (Leiteinwirkung) & antimetrischer Schnee LF2 (Begleiteinwirkung) ergibt den Maximalwert der horizontalen Stützenkopfverschiebung [u_x].
3.4 Aufbau und Beschreibung der Auswertungs-Tabellen

Auf den folgenden Seiten werden der Aufbau und die Auswertung der einzelnen Tabellen für das jeweilige Nachweisverfahren beschrieben. Als Grundlage der Auswertung dient der Eurocode 3, Bemessung und Konstruktion von Stahlbauten, Teil 1-1, Allgemeine Bemessungsregeln und Regeln für den Hochbau.

3.4.1 Querschnittswerte

Im ersten Teil der Tabelle befinden sich sämtliche Querschnittswerte, Teilsicherheitsbeiwerte und Werkstoffkennwerte für das ausgewählte Profil, welche für die nachfolgenden Berechnungen benötigt werden.

Die Streckgrenze f_y (gelb hinterlegtes Feld) ist händisch in kN/cm² einzugeben. Dies ermöglicht Berechnungen mit verschiedenen Werkstoffnormen.

Mittels Dropdownliste kann man das zu untersuchende Profil auswählen. Die Profildatenbank beinhaltet die Querschnittswerte der Dimensionen IPE (nach Euronorm 19-27 bzw. DIN 1025-5), HEA (nach Euronorm 53-62 DIN 1025-3), HEB (nach Euronorm 53-62 bzw. DIN 1025-2) & HEM (nach Euronorm 53-62 bzw. DIN 1025-4).

3.4.2 Biegedrillknicken – Verfahren nach Anhang B - Alternative

In den ersten drei gelb hinterlegten Eingabefeldern sind die Ergebnisse (Normalkraft [kN], Querkraft [kN] und Moment M_y [kNm]) der elastischen Systemberechnung einzugeben. Bei der Berechnung nach Nachweisverfahren IV ist ebenfalls das händisch ermittelte Moment nach Theorie II. Ordnung (aus $M^{I*}\alpha_{cr}$, wobei aus M^{I} nur die antimetrischen Momentenanteile des Rahmens vergrößert werden) einzutragen.

Die plastischen Querschnittswiderstände werden automatisch nach der Auswahl des Profils berechnet.

Bei der Berechnung der Knicklänge der zu bemessenden Stützen sind die Stützenkopfhöhe (h=6,0m / h=8,0m) und der Knicklängenbeiwert $\beta_{y;z}$ einzugeben: (Anm.: β_y für Knicken um y-Achse; β_z für Biegedrillknicken)

NWV II: $\beta_z = 1,0$ / NWV III: $\beta_{y,z} = 1,0$ / NWV IV: $\beta_y = \text{Knicklänge aus RSKNICK}; \beta_z = 1,0$

Die Imperfektionsbeiwerte α der Knicklinien und die Schlankheit zur Bestimmung des Schlankheitsgrads λ_1 werden nach der Auswahl des Profils automatisch angezeigt.

Die idealen Verzweigungslasten N_{cr(y;z)} werden ebenfalls bei der Auswahl des Profils berechnet.

Ebenfalls werden die Schlankheitsgrade $\overline{\lambda}_{y;z;LT}$, die Bestimmungsfunktionen $\Phi_{y;z;LT}$, die Abminderungsbeiwerte $\chi_{y;z;LT;LTmod}$ und die Beiwerte kp ; kc ; ψ ; f nach Auswahl des Profils automatisch berechnet.

Für die Nachweisverfahren II & III muss man zur Berechnung der Momentenbeiwerte $c_{my;z;LT}$ für die Stütze lediglich das Moment M_s in Stützenmitte eingeben. Der Verhältnisbeiwert ψ =0, da der Stützenfuß gelenkig gelagert ist. Anhand der Funktion M_s/M_h wird der Beiwert α_s berechnet.

Der Momentenbeiwert c_{my} für das Nachweisverfahren IV ist It. EN 1993-1-1, Anhang B, Tabelle B.3 mit $c_m = 0,90$ anzusetzen, der Momentenbeiwert c_{mLT} berechnet sich gleich wie oben angeführt.

Die Interaktionsbeiwerte k_{yy} und k_{zy} werden anhand der bereits eingegebenen Parameter nach EN 1993-1-1 Anhang B "Interaktionsbeiwerte für verdrehweiche Bauteile" für plastische Querschnittswerte der Klassen 1 & 2 ermittelt.

Der Nachweis der Stabilität erfolgt nach erfolgreicher oben angeführter Eingabe automatisch nach der im Eurocode 3 angeführten Berechnung "Auf Biegung und Druck beanspruchte gleichförmige Bauteile" und zeigt den Ausnutzungsgrad in der Ebene und aus der Ebene jeweils in % an.

3.4.3 Querschnittsnachweis

In den ersten drei gelb hinterlegten Eingabefeldern sind die Ergebnisse (Normalkraft [kN], Querkraft [kN] und Moment M_v [kNm]) der elastischen Systemberechnung für die Stütze einzugeben.

Die plastischen Querschnittswiderstände werden automatisch nach der Auswahl des Profils berechnet. Die Klasse 1- oder 2- Profile werden mittels der nichtlinearen plastischen N+M Interaktion bemessen.

Der Verhältnisbeiwert n berücksichtigt den Normalkraftanteil, a das Verhältnis der Stegfläche zur Bruttoquerschnittsfläche. Der Querkraftanteil wird über das Verhältnis $V_{Ed}/(V_{Rd}*0.5)$ ermittelt und zeigt mit "JA" oder "NEIN" an ob der Querkraftanteil berücksichtigt werden muss (Reduktion der Momententragfähigkeit). Falls der Anteil berücksichtigt werden muss, werden automatisch neue Querschnittswiderstände in Abhängigkeit der neuen reduzierten Fließgrenze $f_{y,Querkraft}$ für den Steg ermittelt. Bei der Anwendung zeigte sich, dass der Querkraftseinfluss nie maßgebend wird. Daraus berechnet sich die Momententragfähigkeit $M_{Ny,Rd}$.

Der Nachweis bei einachsiger Biegung berechnet sich aus dem Verhältnis von My,Ed/MNy,Rd

3.5 Beispiel System 1.2 Ort A

Auf den nachfolgenden Seiten wird das Analysedokument anhand eines Beispiels in einer "kurzen" Fassung für das Nachweisverfahren IV gezeigt, da die Vorgehensweise der anderen Verfahren gleich ist.

Bild 3.9 Beispiel, Systemskizze 1.2 Ort A

maßgebende Lastfallkombination LK4 [Lasten in kN/m]

Nachweisverfahren IV

Schnittkraftverlauf (Theorie I. Ordnung) Gesamtsystem und herausgelöster Stab 4, LK4

Bild 3.11 Beispiel, Schnittkraftverlauf NW IV System 1.2 Ort A

Moment TH II. Ordnung für Biegedrillknicknachweis

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{457,95 - 343,93}{2} = 57,01 \text{kNm}$$
$$\boldsymbol{\alpha}_{cr} = \mathbf{11}, \mathbf{423}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 57,01 * \frac{1}{1 - \frac{1}{11,423}} = 62,48 \text{kNm}$$
$$M^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{II} = \frac{457,95 + 343,93}{2} + 62,48 = \mathbf{463},\mathbf{42kNm}$$

	QS-WEF	RTE			
			γмо	γм1	γм2
Teilsicherheitsbeiwerte	γм	=	1,00	1,00	1,25 [-]
Streckgrenze S235 / S355	f _y	=	23,50	[kN/cm2]	
Elastizitätsmodul	E	=	21.000,00	[kN/cm2]	
Poissonsche Zahl	ν	=	0,30	[-]	
Schubmodul	G	=	8.076,92	[kN/cm2]	
Profilauswahl mittels Dropdown		_	HE-B 320	Profil	
Biegedrillknicken	ı - Verfahrei	n A	nhang B - A	Iternative	
Eingangswerte aus RSTAB			M	M	
	N _{Ed}	=	-195,84		[kN]
		=	77,00		[kN]
	IVI _{y,Ed}	=	457,95	463,42	[KNM]
plastische QS-widerstande	N _{pl,Rk}	=	3.790,55	[KN]	
	IVI _{y,pl,Rk}	=	505,02 701,92		
Ctützenkenfhähe	V _{Rd}	-	/01,82	[KN]	[m]
Knicklängenheiwert	n ß	=	8,000 2,726	1.0	[111]
Knicklangenberwert	Ч	=	2,720	1,0	[⁻]
Knicklänge	1	_	16 356	6 000	6 000 [m]
	-cr	_	v	7	LT
Knicklinien	α	=	0,34	0,49	0,34 [-]
Schlankheitsgradbeiwert	λ1	=	93,913	[-]	-,- []
Verzweigungslasten			, V	Z	
5 5	N _{cr}	=	2.387,95	5.317,99	[kN]
			У	z	
Schlankheitsgrade	λ	=	1,260	0,844	[-]
Funktion zu Abminderung von χ	Φ	=	1,474	1,014	[-]
Abminderungsbeiwert	χ	=	0,447	0,634	[-]
Beiwert	k _Ρ	=	0,732	[-]	
Verhältnisbeiwert	ψ	=	0,0	[-]	
Korrekturbeiwert	k _c	=	0,752	[-]	
Schlankheitsgrad	λ _{LT}	=	0,464	[-]	
Funktion zu Abminderung von χ	Φ_{LT}	=	0,592	[-]	
Abminderungsbeiwert	χιτ	=	0,975		
modif Abminderungsbeiwert	M . –	_	T 0 904	χ _{ιτ} 0 975	χ⊔Tmod [⁻]
Randmoment	<u>K</u> LImod M.	-	457.95	[kNm]	1,000 []
Noment in Stabmitte	M.	_	227.96	[kNm]	
Verhältnisheiwert	ivis ib	_	0.0	[-]	
Verhältnisbeiwert	τ α,	=	0.498	[-]	
			v	LT	
Momentenbeiwerte (NW IV c _{my} =0,90)	C _{my,LT}	=	0,900	0,598	[-]
Interaktionsbeiwerte	k _{yy}	=	0,983	[-]	
verdrehweiche plastische QS	k _{zy}	=	0,977	[-]	
Nachweis	У	=	100,7%	[-]	in der Ebene M ^I
	Z	=	97,8%	[-]	aus der Ebene M^{II}
QS-Nachweis in der	r Ebene M ^I (NN	/ I V) ; M ^{II} (I	NW II & II	I)
Eingangswerte aus RSTAB	N_{Ed}	=	-195,84	[kN]	
	V_{Ed}	=	77,00	[kN]	
	M _{y,Ed}	=	457,95	[kNm]	f _{y,QS-NW} :
plastische QS-Widerstände	N _{pl,Rd}	=	3.790,55	[kN]	1.481,00 [kN]
	M _{y,pl,Rd}	=	505,02	[kNm]	197,31 [kNm]
Vorbältnisbeiwert	V _{Rd}	=	/01,82	[KIN]	2/4,21 [KN]
Verhältnisbeiwert	n	=	0,052	[-] []	£
Verhaltnisbeiwert	a	=	0,237	[-] []	y,Querkraft
Querkraitkuntrolle Momententradäbigkoit		=	DETIN	L-] [kNm]	9,18 [KN/CM2]
	IVI _{Ny,Rd}	=	505,02 00.70/	[KINIII] [_]	
ivachweis			90,1%	L-]	

Tabelle 3.7

Beispieltabelle mit Erklärung NWV IV System 1.2 Ort A

3.6 Berechnungsformeln in den Tabellen

Auf den folgenden Seiten werden sämtliche Rechenschritte und Eingangswerte aus diverser Literatur, Norm und Statikprogramm angeführt. Die Reihenfolge entspricht der der Auswertungstabellen. (vgl. Tabelle 3.7)

3.6.1 Querschnittswiderstände

 $N_{pl,Rk} = A * f_y$ $V_{pl,Rk} = A * (f_y/\sqrt{3})$ $M_{y,pl,Rk} = w_{pl,y} * f_y$

3.6.2 Stabilitätsnachweise für Bauteile, [6.3], EN 1993-1-1

Knicklängen

<u>in der Ebene:</u> $Lcr, y = \beta * h$

 β -Wert aus RSTAB Modul: RSKNICK-Stabilitätsanalyse berechnet mit der maßgebenden Lastfallkombination (Systeme 1 & 2 LK4 / Systeme 3 – 6 LK2)

<u>aus der Ebene:</u> $Lcr, z = \beta * h$

β=1,0 d.h. keine Zwischenhalterung der Stütze

- Gleichförmige Bauteile mit planmäßig zentrischem Druck, [6.3.1], EN 1993-1-1

Imperfektionsbeiwert für die maßgebende Knicklinie a(v;z)

					Knic	klinie
	Querschnitt	B	egrenzungen	Ausweichen rechtwinklig zur Achse	S 235 S 275 S 355 S 420	S 460
e		• 1,2	$t_{\rm f} \le 40 \ {\rm mm}$	у-у z-z	a b	a ₀ a ₀
rschnit		< q 4	40 mm < $t_{\rm f} \le 100$	у-у z-z	b c	a a
alzte I-Que	h y y	: 1,2	$t_{\rm f} \le 100 \ {\rm mm}$	у-у z-z	b c	a a
gewa		≥dlh	<i>t</i> _f > 100 mm	у-у z-z	d d	с с

Tabelle 3.8

[6.2] Auswahl der Knicklinie eines Querschnitts¹⁶

Knicklinie	a ₀	а	b	с	d
Imperfektionsbeiwert α	0,13	0,21	0,34	0,49	0,76

Tabelle 3.9

[6.1] Imperfektionsbeiwerte der Knicklinien 17

¹⁶ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 64

¹⁷ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau Seite 63

Ideale Verzweigungslast für den maßgebenden Knickfall Ncr

$$N_{cr,(y;z)} = \frac{\pi^2 * E * I_{(y;z)}}{L_{cr(y;z)}^2}$$

Schlankheitsgrad für die maßgebende Knicklinie $\overline{\lambda(y_{zz})}$

$$\begin{split} \lambda_{1} &= \pi * \sqrt{\frac{E}{f_{y}}} \qquad i_{y} = \sqrt{\frac{I_{y}}{A}} \qquad i_{z} = \sqrt{\frac{I_{z}}{A}} \\ \overline{\lambda_{y}} &= \sqrt{\frac{A * f_{y}}{N_{cr,y}}} = \frac{L_{cr,y}}{\lambda_{1} * i_{y}} \quad \overline{\lambda_{z}} = \sqrt{\frac{A * f_{y}}{N_{cr,z}}} = \frac{L_{cr,z}}{\lambda_{1} * i_{z}} \quad f \text{ ür Querschnitte der Klasse 1, 2 und 3} \end{split}$$

Funktion zur Bestimmung des Abminderungsbeiwertes $\chi_{(y;z)}$

 $\Phi_{(y;z)} = 0.5 * \left[1 + \alpha_{(y;z)} * \left(\overline{\lambda_{(y;z)}} - 0.2\right) + \overline{\lambda_{y;z}}^2\right]$

Abminderungsbeiwert $\chi_{(v;z)}$

$$\chi_{(y;z)} = \frac{1}{\phi_{(y;z)} + \sqrt{\phi_{(y;z)}^2 - \overline{\lambda_{y;z}}^2}} \quad aber \quad \chi_{(y;z)} \le 1,0$$
[6.49]

- Biegedrillknicken gewalzter Querschnitte [6.3.2.3] EN 1993-1-1

Imperfektionsbeiwert für die maßgebende Knicklinie für das Biegedrillknicken aLT

Querschnitt	Grenzen	Biegedrillknicklinien
gowalztag Profil	$h/b \le 2$	b
gewaizies i-riolli	<i>h</i> / <i>b</i> > 2	С
accobwoißtos Profil	$h/b \le 2$	С
gescriwensies i-rioni	<i>h</i> / <i>b</i> > 2	d

Tabelle 3.10

[6.5] Empfohlene Biegedrillknicklinien nach Gleichung [6.57]¹⁸

Knicklinie	а	b	с	d
Imperfektionsbeiwert $\alpha_{ m LT}$	0,21	0,34	0,49	0,76

Tabelle 3.11 [6.3] Empfohlene Imperfektionsbeiwerte der Knicklinien für das Biegedrillknicken ¹⁹

¹⁸ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 69

¹⁹ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 68

Schlankheitsgrad $\overline{\lambda_{LT}}$ aus der maßgebenden Biegedrillknicklinie

In dieser Arbeit wurde ein kurzer Vergleich zur Bestimmung des Schlankheitsgrad $\overline{\lambda_{LT}}$ geführt; dafür wurden 3 Verfahren gegenübergestellt:

Verfahren 1: Programmunterstützte Berechnung von Mcr mittels "LTBeam"

Verfahren 2: Direkte Bestimmung der Schlankheit $\overline{\lambda_{LT}} = k_p * k_c * \overline{\lambda_z}$

Verfahren 3: Handrechnung von M_{cr}

Die Verfahren liefern ähnliche Ergebnisse, aber aufgrund Übersichtlichkeit und Klarheit der Programmierung der Tabelle hat das Verfahren 2 in dieser Arbeit den Vorzug bekommen.

Verfahren 2: Direkte Bestimmung der Schlankheit $\overline{\lambda_{LT}}$

Beiwert kp

$$k_p = \frac{0.9}{\left[1 + \frac{1}{20} * \left(\frac{\overline{\lambda_z} * \lambda_1}{h/t_f}\right)^2\right]^{0.25}}$$

Korrekturbeiwert zur Berücksichtigung der Momentenverteilung kc

 Tabelle 3.12
 [6.6] Empfohlene Korrekturbeiwerte kc ²⁰

Schlankheitsgrad für Biegedrillknicken $\overline{\lambda}_{LT}$

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{pl,y} * f_y}{M_{cr}}} = k_p * k_c * \overline{\lambda_z}$$

²⁰ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 69

Funktion zur Bestimmung des Abminderungsbeiwertes χ_{LT}

 $\Phi_{LT} = 0.5 * \left[1 + \alpha_{LT} * \left(\overline{\lambda_{LT}} - \overline{\lambda_{LT,0}}\right) + \beta * \overline{\lambda_{LT}}^2\right] \quad mit \quad \lambda_{LT,0} = 0.4 \quad \beta = 0.75$

Abminderungsbeiwert χ_{LT}

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \beta * \overline{\lambda_{LT}}^2}} \quad mit \ \beta = 0.75 \quad jedoch \quad \begin{cases} \chi_{LT} \le 1.0\\ \chi_{LT} \le \frac{1}{\overline{\lambda_{LT}}^2} \end{cases}$$
[6.57]

Modifikationsfaktor f (Erfassung Momentenverlauf)

 $f = 1 - 0.5 * (1 - k_c) * \left[1 - 2.0 * \left(\overline{\lambda_{LT}} - 0.8\right)^2\right]$ jedoch $f \le 1.0$

Modifizierter Abminderungsbeiwert für Biegedrillknicken $\chi_{LT,mod}$

 $\chi_{LT,mod} = \frac{\chi_{LT}}{f}$ jedoch $\chi_{LT,mod} \le 1.0$

- Interaktionsbeiwerte, [Anhang B], EN 1993-1-1

Zur Bestimmung der Interaktionsbeiwerte wurde der Anhang B, Verfahren 2, Interaktionsbeiwerte für verdrehweiche Bauteile für plastische Querschnittswerte der EN 1993-1-1, verwendet.

Momentenbeiwerte c_m

Momenterwer	auf	Ber	eich	C _{my} und C _r	nz und C _{mLT}
Montentenven	aur		acti	Gleichlast	Einzellast
м	ψM	–1≤	<i>ψ</i> ≤1	0,6 + 0,	4 <i>ψ</i> ≥ 0,4
k.		$0 \le \alpha_s \le 1$	$-1 \le \psi \le 1$	$0,2 + 0,8\alpha_{s} \ge 0,4$	$0,2 + 0,8\alpha_{s} \ge 0,4$
M _h M _s	∦ψM _b		0 ≤ <i>ψ</i> ≤ 1	$0,1-0,8\alpha_{s} \ge 0,4$	0,8 <i>α</i> _s ≥ 0,4
$\alpha_s = M_s/M_s$	ш I _h	–1 ≤ α _s < 0	$-1 \le \psi \le 0$	$0,1(1\text{-}\psi)-0,8\alpha_s\geq0,4$	$0,2(-\psi) - 0,8\alpha_{s} \ge 0,4$
	ΨM _b	$0 \le \alpha_h \le 1$	$-1 \le \psi \le 1$	0,95 + 0,05 <i>a</i> h	0,90 + 0,10 <i>a</i> _h
M _h M _s	,		0≤ <i>ψ</i> ≤1	0,95 + 0,05 <i>a</i> h	0,90 + 0,10 <i>a</i> _h
$\alpha_{\rm h} = M_{\rm h}/M$	I _s	$-1 \le \alpha_h \le 0$	$-1 \le \psi \le 0$	$0.95 \pm 0.05 \alpha_{\rm h}(1 \pm 2\psi)$	$0,90 - 0,10 \alpha_{\rm h} (1 + 2 \psi)$
Für Bauteile mit Knicken in Form seitlichen Ausweichens sollte der äquivalente Momentenbeiwert als $C_{my} = 0.9$ bzw. $C_{mz} = 0.9$ angenommen werden.					
Cmy, Cmz und Cm gebenden seitlich	LT sind gehalten	in der Regel u en Punkten w	unter Berücksi ie folgt zu erm	chtigung der Momentenver itteln:	teilung zwischen den maß-
Momenten- Bi beiwert	egeachs	se In der	Ebene gehalte	en	
Cmy y:	y	2-2			
Cmz z-	z	у-у			
CmLT y	v	<i>y-y</i>			

 Tabelle 3.13
 [B.3] Äquivalente Momentenbeiwerte Cm²¹

²¹ EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 89

Interaktionsbeiwerte für verdrehweiche Bauteile k_{ii}

Da es sich um eine plastische Bemessung handelt, wurde die Bemessungsannahme "Plastische Querschnittswerte der Klasse 1, Klasse 2" bei den Interaktionsbeiwerten gewählt.

$$k_{yy} = c_{my} * \left(1 + \left(\overline{\lambda_y} - 0, 2\right) * \frac{N_{Ed}}{\chi_y * N_{Rk}/\gamma_{M1}}\right) \le c_{my} * \left(1 + 0, 8 * \frac{N_{Ed}}{\chi_y * N_{Rk}/\gamma_{M1}}\right)$$

$$k_{zy} = \left[1 - \frac{0, 1 * \overline{\lambda_z}}{(c_{m,LT} - 0, 25)} * \frac{N_{Ed}}{\chi_z * N_{Rk}/\gamma_{M1}}\right] \ge \left[1 - \frac{0, 1}{(c_{m,LT} - 0, 25)} * \frac{N_{Ed}}{\chi_z * N_{Rk}/\gamma_{M1}}\right]$$

- Stabilitätsnachweise am Einzelstab

Die Stabilitätsnachweise wurden nach EN 1993-1-1 6.3.3 (4) "Auf Biegung und Druck beanspruchte gleichförmige Bauteile geführt"

Da es sich hierbei um eine Systemanalyse in der Ebene handelt, gehen nur die Normalkraftanteile N_{Ed} und die Momentenanteile $M_{y,Ed}$ in die Rechnung ein.

y-y-Achse: (Knicken in der Rahmenebene)

$$y - y = \frac{N_{Ed}}{\chi_y * N_{Rk}/\gamma_{m1}} + k_{yy} * \frac{M_{y,Ed}}{\chi_{LT} * M_{y,Rk}/\gamma_{m1}} \le 1,0$$
 [6.61]

z-z-Achse: (Biegedrillknicken)

$$z - z = \frac{N_{Ed}}{\chi_z * N_{Rk}/\gamma_{m1}} + k_{zy} * \frac{M_{y,Ed}}{\chi_{LT} * M_{y,Rk}/\gamma_{m1}} \le 1,0$$
 [6.62]

3.6.3 Beanspruchbarkeit von Querschnitten, [6.2], EN 1993-1-1

Der Bemessungswert der Beanspruchung darf in keinem Querschnitt den zugehörigen Bemessungswert der Beanspruchbarkeit überschreiten

- Beanspruchung aus Biegung und Normalkraft, [6.2.9 (5)], EN 1993-1-1

"Bei gleichzeitiger Beanspruchung durch Biegung und Normalkraft ist in der Regel der Einfluss der einwirkenden Normalkraft auf die plastische Momentenbeanspruchbarkeit zu berücksichtigen."²²

Querkraftanteil, [6.2.10], EN 1993-1-1

Wenn der Bemessungswert der einwirkenden Querkraft V_{Ed} die Hälfte der plastischen Querkrafttragfähigkeit $V_{pl,Rd}$ nicht überschreitet, braucht keine Abminderung der Momentenbeanspruchbarkeit durchgeführt werden.

Abminderung wenn:
$$V_{Ed} > \frac{V_{pl,Rd}}{2}$$
 dann $f_{y,Querkraft} = f_y * \left(1 - \left(\frac{2 * V_{Ed}}{V_{pl,Rd}} - 1\right)^2\right)$

- Reduktion des Steganteils am Mpl für die reduzierte Fließgrenze fy, Querkraft

Verhältnis von N_{Ed}/N_{pl,Rd}

 $n = \frac{N_{Ed}}{N_{pl,Rd}}$

Verhältnis der Stegfläche zur Bruttoquerschnittsfläche

$$a = \frac{\left(A - 2 * b * t_f\right)}{A} \le 0.5$$

Momententragfähigkeit M_{N,y,Rd}

$$M_{N,y,Rd} = \frac{M_{pl,y,Rd} * (1-n)}{(1-0.5 * a)} \quad jedoch \quad M_{N,y,Rd} \le M_{pl,y,Rd}$$
[6.36]

Nachweis

 $M_{y,Ed} \le M_{N,y,Rd} \tag{6.31}$

²² EN 1993-1-1 Ausgabe 2012-03-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 59

3.7 RSTAB Analyse - Zusatzmodul RSKNICK

<u>"Knicklänge L_{cr,y} / L_{cr,z}</u>

Die Knicklänge $L_{cr,y}$ beschreibt das Knickverhalten rechtwinklig zur "starken" Stabachse y, $L_{cr,z}$ entsprechend das Ausweichen rechtwinklig zur "schwachen" Stabachse z.

Die Knicklängen L_{cr} basieren auf den in Spalte I (Bild 3.12) ausgewiesenen stabspezifischen Knicklasten, die wiederum auf die Verzweigungslast des Gesamtmodells bezogen sind. Die Knicklängen sind somit auf das Verhältnis der Stabnormalkräfte zur Gesamtverzweigungslast bezogen. Für einfache Fälle sind die Knicklängen als EULER-Fälle 1 bis 4 bekannt.

Knicklängenbeiwert β

Die auf die lokalen Stabachsen y und z bezogenen Knicklängenbeiwerte beschreiben das Verhältnis zwischen Knick- und Stablänge.

$$\beta = \frac{L_{cr}}{L}$$

Knicklast N_{cr}

In dieser Spalte wird für jeden Stab die kritische Normalkraft N_{cr} ausgewiesen, die in Bezug auf die jeweilige Eigenform vorliegt. Die einzelnen Knicklasten und zugehörigen Knicklängen sind daher stets im Kontext der jeweiligen Gesamtsystem-Verzweigungslast zu betrachten.

<u>Verzweigungslastfaktor α_{cr}</u>

Für jeden Eigenwert wird der Lastverzweigungsfaktor angegeben. Bei Faktoren kleiner 1,00 ist das System instabil. Ein Verzweigungsfaktor größer 1,00 bedeutet, dass die Belastung aus den vorgegebenen Normalkräften multipliziert mit diesem Faktor zum Knickversagen des Systems führt.

Verzweigungslastfaktoren kleiner 10 erfordern gemäß DIN 18800 Teil 2 die Berechnung nach Theorie II. Ordnung."²³

²³ Auszüge aus Dlubal Programm-Beschreibung RSKNICK Knicklängen, Knickfiguren, Verzweigungslasten Seiten 17 & 20 / Fassung: März 2013

Vergrößerungsfaktor δ

Der Vergrößerungsfaktor ermittelt sich wie folgt:

$$\delta = \frac{1}{1 - \frac{1}{\alpha_{cr}}}$$

Der Vergrößerungsfaktor beschreibt die Beziehung zwischen den Momenten nach Theorie I. und II. Ordnung.

 $\Delta M^{II} = \Delta M^I * \delta$

mit ΔM^{I} "abtreibender", d.h. antimetrischer Anteil der Biegemomente

Moment nach Theorie II. Ordnung, siehe Kapitel 6.2.2

 $M^{II} = M^I_{sym} + \Delta M^{II}$

Ergebnismaske des Zusatzmoduls RSKNICK

Bild 3.12 RSKNICK Ergebnismaske (oben: Knicklängenbeiwerte; unten: Verzweigungslastfaktoren)

4 Vorbemessung – gewählte Systeme

4.1 Vorbemessung

Für die Vorbemessung wurden die Lastaufstellungen und Lastfallkombinationen aus dem Anhang A in die Statik-Software RSTAB eingegeben. Die Berechnung erfolgt nach Theorie I. Ordnung, dem Verfahren IV und einer geschätzten Knicklänge von 2,0*L (β =2,0) bzw. 2,5*L (β =2,5).

In der Vorbemessung werden die Kriterien der Tragfähigkeit und der Gebrauchstauglichkeit analysiert und in Tabellenform ausgewertet.

Die verwendeten Materialien Baustahl S235 & S355 entsprechen dem Regelwerk der EN 10025-2 und die Profile den Euronormen 19-27 / 53-62 bzw. DIN 1025-Teil 1 bis 5.

4.1.1 Grenzzustand der Tragfähigkeit ULS

Mittels des Zusatzmoduls Stahl EC3 – Bemessung nach Eurocode 3 wurden die Nachweise der Stabilitätsanalyse und Querschnittstragfähigkeit geführt.

Eingangswerte der Stabilitätsanalyse:

Knicken um die y-Achse mit den Knicklängenfaktoren β =2,0 für Systeme mit einer Stützenkopfhöhe mit 6,0m und β =2,5 bei einer Höhe von 8,0m.

Knicken um die z-Achse bzw. Biegedrillknicknachweis mit dem Faktor β=1,0 (Stützenhöhe)

Seitliche Zwischenhalterung am Träger It. Systemskizzen, Kapitel 1

maßgebende Lastfallkombination

Nach stabweiser Auswertung der Ergebnisse aller Systeme ergaben sich auch die maßgebenden Lastfallkombinationen für den Tragfähigkeitsnachweis folgendermaßen (immer die gleichen LK maßgebend).

Folgende Beschriftungen wurden für die nachfolgenden Systemskizzen gewählt:

wex...Wind auf Außenwand & Bereiche Dach außen (x=Zonenbezeichnung nach EN 1991-1-4)

 $w_i \hdots linear heat \hdots linear heat \hdots \hdots$

- S...Schneelast
- G...Eigengewicht / Aufbau

In den Darstellungen sind ebenfalls die Teilsicherheitsbeiwerte γ und Kombinationsbeiwerte ψ der Leit- und Begleiteinwirkungen der jeweiligen Lastfallkombination angeführt.

Kombinationsnummer: Leiteinwirkung_Begleiteinwirkung

Bild 4.1 maßgebende Lastfallkombinationen, ULS der Vorbemessung

4.1.2 Grenzzustand der Gebrauchstauglichkeit SLS

Für die Nachweise der Gebrauchstauglichkeit sind folgende Kriterien der Systemverformungen einzuhalten unter Grundlage der charakteristischen Kombination.

- max Horizontalverschiebung u_x=h/150 des Stützenkopfs
- max Durchbiegung uz=l/250 des Trägers

maßgebende Lastfallkombination

Systeme 1 & 2:

4.1.3 Ergebnisse der Vorbemessung

Die nachfolgende Tabelle 4.1 gibt einen Überblick der ausgewerteten Ergebnisse hinsichtlich der Vorbemessung für alle untersuchten Systeme.

Im ersten Teil der Tabelle (hellgrau hinterlegt) gibt es eine kurze Zusammenfassung des Systems, der Belastung, Systembezeichnung, Breite, Höhe, Stützenkopfhöhe, Achsabstand und Stahlgüte.

Der zweite Teil zeigt die ausgewählten Profile mit den dazugehörigen Nachweisen der Tragfähigkeit ULS und der Gebrauchstauglichkeit SLS nach EN 1993-1-1.

Auf den ersten Blick ist gleich ersichtlich, dass die Horizontalverschiebungen in Kombination mit dem Stabilitätsnachweis die maßgebenden Kriterien bei der Auswahl der Profile sind.

Es ergab sich in der Vorbemessung, dass immer die rechte Stütze: -beim Satteldachsystem ist dies Stab Nr.4 bzw. -beim Flachdachsystem ist dies Stab Nr.3 maßgebend sind!

							Ort A										
		Ś	ystem							Vorbe	messung						
	Dachaufbau	I leicht (Sys	steme 1.1-4.3)	1: 0,50kN/m ² ;					UL	S				SL	s		
	Dachaufbat M	u schwer (S /andkonstru	Systeme 5.1-6. uktion: 0,25kN	.3): 4,0kN/m²; /m²		Pr	ofile	EC3 Stabil β=2,0;	ität TH I. O β=2,5	OS-NW	TH LO	Horizon	alversch h/150	iebung	Durchb	iegung L	250
	Sch	nee 1,0kN/	'm ² ; Wind: 10(0km/h				Ausnutzu	[%] ui Bu	Ausnutzu	ng in [%]	des Sti	itzenkopl	fs [ux]	600	l agais l	41
Bezeichnung	Breite	Höhe	Stützenkopf	Achsabstand	Stahlgüte	Stützen	Träger	Stütze Achse B	Träger	Stütze Achse B	Träger	zul. [mm]	vor. [mm]	[%]	zul. [mm]	vor. [mm]	[%]
System 1.1	b=12,0m	H=7,6m	h=6,0m	e=8,0m	S 235	HEB 300	IPE 400	%09	86%	54%	74%	40,0	36,4	91,0%	48,0	24,5	51,0%
System 1.2	b=18,0m	H=8,4m	h=6,0m	e=8,0m	S 235	HEB 340	IPE 500	80%	100%	83%	87%	40,0	34,8	87,0%	72,0	54,1	75,1%
System 1.3	b=24,0m	H=9,2m	h=6,0m	e=6,0m	S 235	HEB 400	HEA 450	90%	85%	85%	85%	40,0	32,6	81,5%	96,0	77,3 8	30,5%
System 2.1	b=12,0m	H=9,6m	h=8,0m	e=8,0m	S 235	HEB 340	HEA 450	56%	37%	49%	37%	53,0	48,0	%9'06	48,0	14,4	30,0%
System 2.2	b=18,0m	H=10,4m	h=8,0m	e=8,0m	S 235	HEB 400	IPE 600	72%	98%	64%	58%	53,0	43,9	82,8%	72,0	38,2	53,1%
System 2.3	b=24,0m	H=11,2m	h=8,0m	e=6,0m	S 235	HEB 400	IPE 600	91%	82%	84%	77%	53,0	50,6	95,5%	96,0	76,6	79,8%
System 3.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 260	IPE 400	75%	%06	68%	%69	40,0	36,1	90,3%	48,0	39,1 8	31,5%
System 3.2	b=18,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 300	HEA 500	95%	65%	87%	62%	40,0	21,8	54,5%	72,0	64,5	39,6%
System 3.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 360	HEB 600	98%	59%	92%	59%	40,0	13,0	32,5%	96,0	86,9	90,5%
System 4.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 400	55%	41%	49%	41%	53,0	52,7	99,4%	48,0	23,2	18,3%
System 4.2	b=18,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 500	80%	66%	80%	64%	53,0	50,0	94,3%	72,0	66,4	32,2%
System 4.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 360	HEB 650	89%	63%	80%	59%	53,0	29,6	55,8%	96,0	84,7	38,2%
System 5.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 360	HEA 450	95%	92%	84%	82%	40,0	17,0	42,5%	48,0	43,2	90,0%
System 5.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 550	HEA 550	91%	100%	83%	100%	40,0	8,2	20,5%	72,0	65,8	91,4%
System 5.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 550	HEB 800	90%	64%	80%	52%	40,0	9,9	24,8%	96,0	90,3	34 ,1%
System 6.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 360	HEB 450	94%	%92	%64	76%	53,0	39,7	74,9%	48,0	41,7	36,9%
System 6.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 550	HEA 550	92%	97%	80%	97%	53,0	17,7	33,4%	72,0	71,9	99,9%
System 6.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 550	HEA 900	88%	70%	70%	54%	53,0	18,0	34,0%	96,0	90,1	33,9%
							Ort B										
		S	ystem							Vorbe	messung						
	Dachaufbau	I leicht (Sys	steme 1.1-4.3)	0,50kN/m ² ;					JU	Ś				SL	s		
	Dachaufbat	u schwer (S	Systeme 5.1-6.	3): 4,0kN/m ² ; /m ²		Pre	ofile	EC3 Stabil	ität TH I. O	DE MM	33 T 1 0	Horizon	alversch	iebung	Durchb	jegung L	/250
	Sch	nee 3,0kN/i	m ² ; Wind: 125	5km/h				Ausnutzu	c,2=q [%] ni gn	Ausnutzu	n [%] n [%]	des Sti	itzenkopt	fs [ux]	des	lrägers (L	z]
Bezeichnung	Breite	Höhe	Stützenkopf	Achsabstand	Stahlgüte	Stützen	Träger	Stütze Achse B	Träger	Stütze Achse B	Träger	zul. [mm]	vor. [mm]	[%]	zul. [mm]	vor.	[%]
System 1.1	b=12,0m	H=7,6m	h=6,0m	e=8,0m	S 235	HEB 400	HEA 400	81%	92%	73%	92%	40,0	38,2	95,5%	48,0	27,9	58,1%
System 1.2	b=18,0m	H=8,4m	h=6,0m	e=6,0m	S 235	HEB 450	HEA 450	89%	91%	91%	91%	40,0	31,2	78,0%	72,0	51,5	71,5%
System 1.3	b=24,0m	H=9,2m	h=6,0m	e=6,0m	S 355	HEB 500	HEA 600	89%	86%	81%	73%	40,0	38,1	95,3%	96,0	82,9	36,4%
System 2.1	b=12,0m	H=9,6m	h=8,0m	e=8,0m	S 235	HEB 500	HEA 500	67%	69%	57%	69%	53,0	52,2	98,5%	48,0	17,5	36,5%
System 2.2	D=18,0m	H=10,4m	n=8,0m	e=6,0m	S 235	HEB 500	HEA 550	91%	84%	80%	84%	53,0	50,4	95,1%	12,0	45,3	52,9%
System 2.3	b=24,0m	H=11,2m	n=8,0m	e=6,0m	S 355	HEB 600	HEB 600	92%	19%0	01%	61%	53,0	48,6	91,7%	96,0	0'11	50,2%
System 3.1	b=12,0m	H=6,0m	n=6,0m	e=8,0m	S 235	HEB 340	HEA 400	91%	81%	87%	81%	40,0	33,2	83,0%	48,0	43,0	59,6%
System 3.2	m0'91=0	H=0,0m	n=0,0m	e=6,0m	S 235	HEB 300		%00L	99.60	90%0	/1%	40,0	18,8	41,0%	0'2/	5/ 12	19,0%
Svetern 4.1	h=12.0m	H=8.0m	h=8.0m	e=0,011	S 235	HFR 450	HEA 450	71%	60%	60% 60%	04 % 60%	53.0	513	06.8%	30,U	26.0	54 2%
Svstem 4.2	b=18.0m	H=8.0m	h=8.0m	e=6.0m	S 235	HEB 500	HEA 600	85%	68%	74%	67%	53.0	29.1	54.9%	72.0	52.6	73.1%
System 4.3	b=24.0m	H=8,0m	h=8.0m	e=6.0m	S 355	HEB 550	HEA 800	82%	64%	67%	51%	53.0	23.0	43.4%	96.0	85.2	38,8%
System 5.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 450	HEA 550	98%	78%	85%	78%	40,0	16,5	41,3%	48,0	35,0	72,9%
System 5.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 450	HEB 700	80%	92%	79%	58%	40,0	14,7	36,8%	72,0	67,0	33,1%
System 5.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 800	HEA 900	%66	86%	76%	71%	40,0	6,4	16,0%	96,0	81,5	34,9%
System 6.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 500	HEA 500	97%	100%	82%	100%	53,0	42,0	79,2%	48,0	40,8	35,0%
System 6.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 550	HEB 650	86%	76%	68%	58%	53,0	25,7	48,5%	72,0	69,2	96,1%
System 6.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 900	HEB 900	100%	74%	62%	62%	53,0	11,0	20,8%	96,0	73,0	76,0%

Vorbemessung – gewählte Systeme

Tabelle 4.1

Ergebnistabelle der Vorbemessung

4.2 Leicht modifizierte, endgültige Systeme

In der Bemessung werden die gewonnen Daten der Vorbemessung einer genaueren Analyse unterzogen. Hierfür werden die Systeme der Vorbemessung mit Imperfektionen des jeweiligen Nachweisverfahrens kombiniert, optimiert und erneut ausgewertet. Die Optimierung ergab, dass in einigen Systemen noch Reserven vorhanden sind, sodass letztendlich kleiner Profile gewählt werden konnten

In der nachfolgenden Tabelle 4.2 werden nun alle untersuchten Systeme mit den endgültig gewählten Profilen angeführt.

			Ort A "gerin	ige" Lasten			
		Systembe	schreibungen			Pro	ofile
Bezeichnung	Breite	Höhe	Stützenkopf	Achsabstand	Stahlgüte	Stützen	Träger
System 1.1	b=12,0m	H=7,60m	h=6,0m	e=8,0m	S 235	HEB 280	HEA 340
System 1.2	b=18,0m	H=8,40m	h=6,0m	e=8,0m	S 235	HEB 320	HEA 400
System 1.3	b=24,0m	H=9,20m	h=6,0m	e=6,0m	S 235	HEB 400	HEA 450
System 2.1	b=12,0m	H=7,60m	h=8,0m	e=8,0m	S 235	HEB 340	HEA 450
System 2.2	b=18,0m	H=8,40m	h=8,0m	e=8,0m	S 235	HEB 400	HEA 450
System 2.3	b=24,0m	H=9,20m	h=8,0m	e=6,0m	S 235	HEB 400	HEA 500
System 3.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 260	HEA 300
System 3.2	b=18,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 300	HEA 500
System 3.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 320	HEA 650
System 4.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 400
System 4.2	b=18,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 500
System 4.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 360	HEA 650
System 5.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 300	HEA 500
System 5.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 400	HEB 700
System 5.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 450	HEB 900
System 6.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 360	HEA 500
System 6.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 400	HEB 700
System 6.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 450	HEB 900
			Ort B "hoh	ne" Lasten			
		Systembe	schreibungen			Pro	ofile
Rezeichnung			Children land	Achsabstand	Stahlgüte	Stützon	Träger
Dezelerinding	Breite	Hohe	Stutzenkopr	, tonoabotana	etanigate	Stutzen	Trager
System 1.1	Breite b=12,0m	Hohe H=7,60m	h=6,0m	e=8,0m	S 235	HEB 400	HEA 400
System 1.1 System 1.2	Breite b=12,0m b=18,0m	Hone H=7,60m H=8,40m	h=6,0m h=6,0m	e=8,0m e=6,0m	S 235 S 235	HEB 400 HEB 450	HEA 400 HEB 450
System 1.1 System 1.2 System 1.3	Breite b=12,0m b=18,0m b=24,0m	Hohe H=7,60m H=8,40m H=9,20m	h=6,0m h=6,0m h=6,0m	e=8,0m e=6,0m e=6,0m	S 235 S 235 S 355	HEB 400 HEB 450 HEB 500	HEA 400 HEB 450 HEA 600
System 1.1 System 1.2 System 1.3 System 2.1	Breite b=12,0m b=18,0m b=24,0m b=12,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m	h=6,0m h=6,0m h=6,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=8,0m	S 235 S 235 S 355 S 235	HEB 400 HEB 450 HEB 500 HEB 500	HEA 400 HEB 450 HEA 600 HEA 500
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2	Breite b=12,0m b=18,0m b=24,0m b=12,0m b=18,0m	Hohe H=7,60m H=8,40m H=9,20m H=7,60m H=8,40m	h=6,0m h=6,0m h=6,0m h=8,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=8,0m e=6,0m	S 235 S 235 S 355 S 235 S 235 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 500	HEA 400 HEB 450 HEA 600 HEA 500 HEB 500
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3	Breite b=12,0m b=18,0m b=24,0m b=12,0m b=18,0m b=24,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m H=8,40m H=9,20m	h=6,0m h=6,0m h=6,0m h=8,0m h=8,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 235 S 355 S 235 S 235 S 235 S 355	HEB 400 HEB 450 HEB 500 HEB 500 HEB 500 HEB 550	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEB 500 HEA 650
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1	Breite b=12,0m b=18,0m b=24,0m b=12,0m b=24,0m b=24,0m b=12,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m H=8,40m H=9,20m H=6,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=8,0m h=8,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=8,0m	S 235 S 235 S 355 S 235 S 235 S 235 S 355 S 235 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 550 HEB 320	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 650 HEA 450
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2	Breite b=12,0m b=18,0m b=24,0m b=12,0m b=24,0m b=12,0m b=18,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m H=8,40m H=9,20m H=6,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=8,0m e=6,0m	S 235 S 235 S 355 S 235 S 235 S 235 S 355 S 235 S 235 S 235 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 550 HEB 320 HEB 340	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700
System 1.1 System 1.2 System 1.3 System 2.1 System 2.3 System 3.1 System 3.2 System 3.3	Breite b=12,0m b=18,0m b=24,0m b=12,0m b=24,0m b=12,0m b=18,0m b=24,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m H=8,40m H=9,20m H=6,0m H=6,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=6,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 235 S 235 S 235 S 235 S 235 S 355 S 235 S 235 S 235 S 235 S 355	HEB 400 HEB 450 HEB 500 HEB 500 HEB 500 HEB 320 HEB 340 HEB 360	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEA 900
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1	Breite b=12,0m b=18,0m b=12,0m b=18,0m b=24,0m b=12,0m b=18,0m b=24,0m b=24,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m H=8,40m H=6,0m H=6,0m H=6,0m H=8,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=8,0m	S 235 S 355 S 235 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 500 HEB 320 HEB 340 HEB 360 HEB 450	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEA 900 HEB 450
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1 System 4.2	Breite b=12,0m b=18,0m b=12,0m b=18,0m b=24,0m b=12,0m b=18,0m b=12,0m b=12,0m	Hone H=7,60m H=8,40m H=9,20m H=8,40m H=9,20m H=6,0m H=6,0m H=6,0m H=8,0m H=8,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 500 HEB 320 HEB 340 HEB 360 HEB 450 HEB 400	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEB 450 HEA 650
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1 System 4.2 System 4.3	Breite b=12,0m b=18,0m b=12,0m b=18,0m b=24,0m b=12,0m b=18,0m b=24,0m b=12,0m b=18,0m b=24,0m	Hone H=7,60m H=8,40m H=9,20m H=8,40m H=9,20m H=6,0m H=6,0m H=6,0m H=8,0m H=8,0m H=8,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=8,0m h=8,0m h=8,0m h=8,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 550 HEB 320 HEB 340 HEB 360 HEB 450 HEB 400 HEB 400	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEA 900 HEA 650 HEA 650 HEA 900 HEA 650 HEA 650 HEB 450
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1 System 4.2 System 4.3 System 5.1	Breite b=12,0m b=18,0m b=12,0m b=18,0m b=24,0m b=12,0m b=12,0m b=12,0m b=12,0m b=24,0m b=24,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m H=8,40m H=9,20m H=6,0m H=6,0m H=6,0m H=8,0m H=8,0m H=8,0m H=6,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=8,0m h=8,0m h=8,0m h=8,0m h=8,0m h=8,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 550 HEB 320 HEB 340 HEB 360 HEB 450 HEB 400 HEB 450	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEA 900 HEA 650 HEA 650 HEA 500 HEA 500 HEA 500 HEA 500 HEA 500 HEA 650 HEB 900 HEA 500
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1 System 4.2 System 4.3 System 5.1 System 5.2	Breite b=12,0m b=18,0m b=12,0m b=18,0m b=24,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m	Hone H=7,60m H=8,40m H=9,20m H=7,60m H=8,0m H=6,0m H=6,0m H=8,0m H=8,0m H=8,0m H=6,0m H=6,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 235	HEB 400 HEB 400 HEB 500 HEB 500 HEB 500 HEB 300 HEB 320 HEB 340 HEB 340 HEB 450 HEB 450 HEB 450 HEB 450 HEB 400 HEB 450	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEA 900 HEB 450 HEA 650 HEA 500 HEA 500 HEA 700 HEA 500 HEB 450 HEA 650 HEB 700
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1 System 4.2 System 4.3 System 5.1 System 5.2 System 5.3	Breite b=12,0m b=18,0m b=12,0m b=18,0m b=24,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m	Hone H=7,60m H=8,40m H=9,20m H=8,40m H=8,0m H=6,0m H=8,0m H=8,0m H=8,0m H=6,0m H=6,0m H=6,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=8,0m h=6,0m h=6,0m h=6,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 355 S 355 S 355 S 355	HEB 400 HEB 400 HEB 500 HEB 500 HEB 500 HEB 500 HEB 320 HEB 340 HEB 340 HEB 450 HEB 450 HEB 450 HEB 400 HEB 450 HEB 400 HEB 700	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEA 900 HEB 450 HEA 650 HEA 650 HEA 700 HEB 450 HEA 650 HEB 900 HEA 500 HEB 700 HEB 900 HEB 900
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1 System 4.2 System 4.3 System 5.1 System 5.2 System 5.3 System 6.1	Breite b=12,0m b=18,0m b=12,0m b=18,0m b=24,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m	Hone H=7,60m H=8,40m H=9,20m H=8,40m H=8,0m H=6,0m H=6,0m H=8,0m H=8,0m H=6,0m H=6,0m H=6,0m H=6,0m H=6,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=8,0m	e=8,0m e=6,0m e=6,0m	S 235 S 355 S 235 S 355 S 355 S 355 S 235 S 355 S 235	HEB 400 HEB 400 HEB 500 HEB 500 HEB 500 HEB 500 HEB 320 HEB 340 HEB 340 HEB 450 HEB 450 HEB 450 HEB 450 HEB 400 HEB 400 HEB 400 HEB 400 HEB 700 HEB 700 HEB 450	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 700 HEA 900 HEB 450 HEA 650 HEA 700 HEA 900 HEB 450 HEB 450 HEB 900 HEB 500 HEB 500 HEB 500 HEB 500
System 1.1 System 1.2 System 1.3 System 2.1 System 2.2 System 2.3 System 3.1 System 3.2 System 3.3 System 4.1 System 4.2 System 5.1 System 5.2 System 5.3 System 6.1 System 6.2	Breite b=12,0m b=18,0m b=24,0m b=12,0m b=24,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m b=12,0m	Hone H=7,60m H=8,40m H=9,20m H=8,40m H=8,0m H=6,0m H=6,0m H=8,0m H=6,0m H=6,0m H=6,0m H=6,0m H=6,0m H=6,0m H=6,0m H=8,0m	Stutzenköpi h=6,0m h=6,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=8,0m h=6,0m h=8,0m h=8,0m h=8,0m h=8,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=6,0m h=8,0m h=8,0m h=8,0m h=8,0m	e=8,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m e=6,0m	S 235 S 355 S 235 S 355 S 235 S 355 S 235 S 355 S 235 S 355 S 235	HEB 400 HEB 450 HEB 500 HEB 500 HEB 500 HEB 300 HEB 320 HEB 320 HEB 340 HEB 450 HEB 400 HEB 400 HEB 400 HEB 450 HEB 450 HEB 450 HEB 450	Hager HEA 400 HEB 450 HEA 600 HEA 500 HEA 500 HEA 650 HEA 450 HEA 450 HEA 450 HEA 650 HEA 900 HEA 650 HEA 900 HEB 450 HEB 900 HEB 700 HEB 550 HEB 700

 Tabelle 4.2
 Profiltabelle der Bemessung

Anzumerken ist, dass mitunter sehr kräftige Stützen gewählt wurden. Hier wäre auch eine alternative Auslegung mit gedrungenen Stützen und höheren Dachträgern möglich. Für die Stützen werden in der Praxis auch sehr häufig HEA-Profile verwendet.

5 Zusammenfassende Ergebnisse

5.1 Maßgebende Lastfallkombinationen

Im folgenden Abschnitt werden die maßgebenden Lastfallkombinationen der Tragfähigkeit (ULS) und Gebrauchstauglichkeit (SLS, charakteristische Kombination) der gewählten Systeme dargestellt

Folgende Beschriftungen wurden für die nachfolgenden Systemskizzen gewählt:

wex...Wind auf Außenwand & Bereiche Dach außen (x=Zonenbezeichnung nach EN 1991-1-4)

wi...Innendruck / Innensog auf Außenwand und Dach

- S...Schneelast
- G...Eigengewicht / Aufbau

e₀/L...Vorkrümmungen (geom. Ersatzimperfektionen)

Φ...Schiefstellungen

In den Darstellungen sind ebenfalls die Teilsicherheitsbeiwerte γ und Kombinationsbeiwerte ψ der Leit- und Begleiteinwirkungen der jeweiligen Lastfallkombination angeführt.

Die Bezeichnung der Lastfallkombinationen besitzt folgenden Aufbau:

Kombinationsnummer: Eigengewicht_Leiteinwirkung_Begleiteinwirkung_Imperfektionen

5.1.1 Maßgebende Lastfallkombination – ULS

Die maßgebende Lastfallkombination für einschiffige Portalrahmen mit Flach- und Satteldach setzt sich aus den Belastungen des Eigengewichts, der führenden symmetrischen Schneelast, der begleitenden Windlast auf die Breitseite mit Sog im Halleninneren und den je nach Nachweisverfahren dazugehörigen Imperfektionen (Schiefstellung der Stützen Φ in Windrichtung) zusammen.

a.) Systeme 1 & 2 - Satteldach

LK4: Eigengewicht_Schnee LF1_Wind LF4_Imperfektionen

Bild 5.1 maßgebende Lastkombination, LK 4_Systeme 1 & 2 ULS

b.) Systeme 3 - 6 - Flachdach

LK2: Eigengewicht_Schnee LF1_Wind LF 2_Schiefstellung / Vorkrümmung

Bild 5.2 maßgebende Lastfallkombination, LK 2_Systeme 3 – 6

5.1.2 Maßgebende Lastfallkombination – SLS

- 1. Anm.: charakteristische Lastfallkombinationen, entsprechen der traditionellen nationalen Vorgehensweise.
- 2. Anm.: für die begleitende Schneelast wurde in dieser Arbeit von Standorten unter 1000m Seehöhe ausgegangen.

a.) Systeme 1 & 2 - Satteldach

maximale Durchbiegung [uz] des Trägers

LK59: Eigengewicht_Schnee LF1_Wind LF4 (auf die Breitseite)_Schiefstellung / Vorkrümmung

bild 5.5 maisgebende Lastiankombination Systeme 1 & 2, LK59 5L5 [t

maximale Horizontalverschiebung des Stützenkopfs [ux]

LK83: Eigengewicht_Wind LF4 (auf die Breitseite)_Schnee LF2 (antimetrisch)_Schiefstellung / Vorkrümmung

Bild 5.4 maßgebende Lastfallkombination Systeme 1 & 2, LK83 SLS [u_x]

b.) Systeme 3 - 6 - Flachdach

maximale Durchbiegung [uz] des Trägers

Bild 5.5 maßgebende Lastfallkombination Systeme 3 – 6, LK41 SLS [uz]

maximale Horizontalverschiebung des Stützenkopfs [ux]

LK47: Eigengewicht_Wind LF4 (auf die Breitseite)_Schnee LF1_Schiefstellung / Vorkrümmung

5.2 Auslegung der Hallenrahmen – Einfluss der SLS - Nachweise

Die folgende Tabelle 5.1 zeigt, dass die Gebrauchstauglichkeit generell ein wichtiges Kriterium bei der Bemessung von Hallenrahmen im Stahlbau ist. Bei den für diese Arbeit gewählten Profilen ist meistens die Horizontalverschiebung des Systems maßgebend.

Bei den Satteldachsystemen ist fast immer die Horizontalverschiebung des Stützenkopfes maßgebend, unabhängig von der Belastung.

Generell ist zu sagen, dass bei Systemen mit "geringen" vertikalen Belastungen der Gebrauchstauglichkeitsnachweis der Horizontalverschiebung maßgebend werden kann. Dies hat zur Folge, dass z.B. bei 12m breiten Systemen die Stützen ähnliche Dimensionen besitzen wie die Stützen der 18m breiten Systeme.

Bei den "schwer" belasteten Systemen (Dachaufbau schwer) ist unabhängig von der Hallenbreite entweder die Durchbiegung des Trägers oder der Biegedrillknicknachweis der rechten Stütze maßgebend.

Bei den "niedrigen" Stützenhöhen der Flachdachsysteme ist unabhängig von der Belastung meistens der Nachweis der Tragfähigkeit (Biegedrillknicken aus der Ebne) maßgebend. Hingegen kann bei den "hohen" Stützen wieder der Gebrauchstauglichkeitsnachweis der Horizontalverschiebung tragend werden.

						Ort A "g	eringe" Las	te							
		Ċ								Bel	nessur	B			
	and a second	Sy Iniche (Supe	stem	C EDIMINE .						SL	S			N SUU	WV II
	Dachaufhau	I Ielont (Syst	eme 1.1-4.3): steme 5 1-6 3	U, SUKINIM ² ;				Horizon	- alvared	hichung				rechte Stütze	Träger
	3 -	andkonstrul	tion: 0,25kN/i	11 ²		Po	offle	h/150 de	s Stütz	enkopfes	Durc des	hbiegun Γrägers	g L/250 uz [mm]	BDK	OS-NW
	1DC		1- ; vvina. 100.						mm] xu			•		aus der Ebene	
Bezeichnung	Breite	Firsthöhe	Stützenkopf	Achsabstand	Stahlgüte	Stützen	Träger	zul.	VOI.	[%]	zul.	VOI.	[%]	[%]	[%]
System 1.1	b=12,0m	H=7,60m	h=6,0m	e=8,0m	S 235	HEB 280	HEA 340	40,0	39,7	99,4%	48,0	25,8	53,8%	68,5%	52,0%
System 1.2	b=18,0m	H=8,40m	h=6,0m	e=8,0m	S 235	HEB 320	HEA 400	40,0	40,0	100,0%	72,0	63,2	87,8%	98,7%	81,0%
System 1.3	b=24,0m	H=9,20m	h=6,0m	e=6,0m	S 235	HEB 400	HEA 450	40,0	34,2	85,5%	96,0	78,7	82,0%	89,1%	88,0%
System 2.1	b=12,0m	H=7,60m	h=8,0m	e=8,0m	S 235	HEB 340	HEA 450	53,0	50,0	94,3%	48,0	14,5	30,2%	50,8%	38,0%
System 2.2	b=18,0m	H=8,40m	h=8,0m	e=8,0m	S 235	HEB 400	HEA 450	53,0	52,9	99,8%	72,0	48,3	67,1%	75,6%	71,0%
System 2.3	b=24,0m	H=9,20m	h=8,0m	e=6,0m	S 235	HEB 400	HEA 500	53,0	52,8	99,6%	96,0	83,0	86,5%	91,4%	74,0%
System 3.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 260	HEA 300	40,0	39,9	99,8%	48,0	46,9	97,7%	79,1%	67,0%
System 3.2	b=18,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 300	HEA 500	40,0	23,0	57,5%	72,0	64,9	90,1%	92,7%	64,0%
System 3.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 320	HEA 650	40,0	16,6	41,5%	96,0	86,8	90,4%	98,4%	61,0%
System 4.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 400	53,0	52,9	99,8%	48,0	23,8	49,6%	52,6%	42,0%
System 4.2	b=18,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 500	53,0	49,9	94,2%	72,0	67,2	93,3%	88,4%	65,0%
System 4.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 360	HEA 650	53,0	29,2	55,1%	96,0	85,2	88,8%	87,6%	60,0%
System 5.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 300	HEA 500	40,0	22,9	57,3%	48,0	43,0	93,5%	100,0%	85,0%
System 5.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 400	HEB 700	40,0	12,2	30,5%	72,0	53,7	74,6%	97,6%	68,0%
System 5.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 450	HEB 900	40,0	12,9	32,3%	96,0	90,2	97,0%	91,6%	54,0%
System 6.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 360	HEA 500	53,0	42,0	79,2%	48,0	40,1	83,5%	89,5%	80,0%
System 6.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 400	HEB 700	53,0	25,4	47,9%	72,0	58,3	81,0%	94,4%	73,0%
System 6.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 450	HEB 900	53,0	24,2	45,7%	96,0	96,0	100,0%	90,4%	57,0%
						Ort B "h	nohe" Laste	_		Ċ				l	
		S	stem				I	l	I	Del C	nessun	g	l	0.11	
	Dachaufbau	leicht (Svst	eme 1.1-4.3):	0.50kN/m ² :				I		0	0	I	I	OLO IN	
	Dachaufbau	schwer (S)	steme 5.1-6.3): 4,0kN/m ² ;		D	,file	Horizon	talverso	thiebung		nhiann	01/250	rechte Stütze	Träger
	≥ sho	andkonstrul	ktion: 0,25kN/i 2 - \//ind: 1251	m ²		-		h/150 de	s Stütz	enkopfes	des	l'rägers	uz [mm]	BDK BDK	QS-NW
	00		- , VVIIIU. 120						umj xu					aus der Ebene	
Bezeichnung	Breite	Firsthöhe	Stützenkopf	Achsabstand	Stahlgüte	Stützen	Träger	zul.	VOI.	[%]	zul.	VOI.	[%]	[%]	[%]
System 1.1	b=12,0m	H=7,60m	h=6,0m	e=8,0m	S 235	HEB 400	HEA 400	40,0	38,9	97,3%	48,0	28,0	58,3%	80,8%	96,0%
System 1.2	b=18,0m	H=8,40m	h=6,0m	e=6,0m	S 235	HEB 450	HEB 450	40,0	32,7	81,8%	72,0	52,3	72,6%	97,7%	94,0%
System 1.3	b=24,0m	H=9,20m	h=6,0m	e=6,0m	S 355	HEB 500	HEA 600	40,0	39,9	99,8%	96,0	84,5	88,0%	89,6%	76,0%
System 2.1	b=12,0m	H=7,60m	h=8,0m	e=8,0m	S 235	HEB 500	HEA 500	53,0	52,9	99,8%	48,0	17,7	36,9%	66,5%	72,0%
System 2.2	b=18,0m	H=8,40m	h=8,0m	e=6,0m	S 235	HEB 500	HEB 500	53,0	52,6	99,2%	72,0	47,3	65,7%	91,0%	84,0%
System 2.3	b=24,0m	H=9,20m	h=8,0m	e=6,0m	S 355	HEB 550	HEA 650	53,0	52,4	98,9%	96,0	84,0	87,5%	82,7%	70,0%
System 3.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 320	HEA 450	40,0	35,4	88,5%	48,0	37,4	77,9%	94,6%	74,0%
System 3.2	D=18,0m	H=6,0m	n=6,0m	e=6,0m	S 235	HEB 340	HEA /00	40,0	51,6	54,0%	12,0	53,0	/3,6%	100,0%	69,0% 50.0%
System 3.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 360	HEA 900	40,0	20,4	51,0%	96,0	91,8	95,6%	92,1%	56,0%
System 4.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 450	HEB 450	53,0	52,7	99,4%	48,0	26,6	55,4%	70,1%	63,0%
System 4.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 400	HEA 650	53,0	44,6	84,2%	72,0	58,6	81,4%	98,8%	73,0%
System 4.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 400	HEB 900	53,0	42,3	79,8%	96,0	83,9	87,4%	85,7%	51,0%
System 5.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 450	HEA 500	40,0	16,7	41,8%	48,0	36,1	75,2%	97,1%	79,0%
System 5.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 400	HEB 700	40,0	18,2	45,5%	72,0	72,0	100,0%	96,6%	64,0%
System 5.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 700	HEB 900	40,0	8,1	20,3%	96,0	83,5	87,0%	99,3%	58,0%
System 6.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 450	HEB 550	53,0	44,8	84,5%	48,0	34,6	72,1%	99,6%	79,0%
System 6.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 450	HEB 700	53,0	37,7	71,1%	72,0	72,0	100,0%	94,1%	63,0%
System 6.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 800	HEB 1000	53,0	12,9	24,34%	96,0	69,8	72,7%	98,2%	51,0%

Zusammenfassende Ergebnisse

Tabelle 5.1

Zu

Zusammenfassung der Ergebnisse der Gebrauchstauglichkeit

5.3 Bemessungsbestimmende Nachweise - ULS

Vorab ist zu erwähnen, dass die Bemessung bzw. der Nachweis der Tragfähigkeit des Trägers mittels des Statikprogramms RSTAB, nach allen drei Nachweisverfahren erfolgte. Da die drei untersuchten Nachweisverfahren primär Auswirkungen auf die Stützenbemessung haben, wurde in dieser Arbeit auf die Analyse des Trägers in den Auswertungstabellen verzichtet. Es ist zu erwähnen, dass für die Träger der Querschnittsnachweis der maßgebende Nachweis ist, in Ausnahmefällen erreicht der Biegedrillknicknachweis ähnliche Werte.

Bei den Nachweisverfahren II & III sind die Bauteilnachweise um die y-Achse in der Ebene der untersuchten Portalrahmen von untergeordneter Bedeutung, d.h., dass der maßgebende Nachweis der Tragfähigkeit der Stabilitätsnachweis der Stütze aus der Ebene (BDK) mit dem Moment nach Theorie II. Ordnung ist.

Anders sieht dies bei dem Nachweisverfahren IV aus, da aufgrund des fast doppelt so großen Momentenbeiwertes c_{my} =0,90 (Fixwert, lt. EN 1993-1-1, Anhang B, Tabelle B.3) die Ergebnisse der Nachweise in der Ebene und aus der Ebene (BDK) sich nur geringfügig voneinander unterscheiden.

Bei den gewählten Randbedingungen der Systeme -Gabellagerung am Stützenfuß bzw. Stützenkopf, keine seitliche Zwischenhalterung der Stütze, -ist immer der Biegedrillknicknachweis der rechten Stütze (Stab Nr.3, Achse B Flachdach bzw. Stab Nr.4, Achse B Satteldach) maßgebend.

							Ort A "ge	ringe" Laste							
		Ű								Bem	essung				
	Dachalifhan	i laicht (Sve	teme 1 1-4 3)	0 50kN/m ²							ULS: Stat	ze Achse B			
	Dachaufbau	a schwer (S)	vsteme 5 1-6 3	3). 4 0kN/m ²				Nachweisve	erfahren II	Nact	weisverfahre	en III	Nacl	hweisverfahre	n∣V
	N N	Vandkonstru	ktion: 0,25kN/I	m ²		Ĕ	ofile	BDK		Knicken	BDK		Knicken	BDK	
	Sch	nee 1,0kN/r	m ² ; Wind: 100	km/h				aus der Ebene	QS-NW	in der Ebene	aus der Ebene	QS-NW	in der Ebene	aus der Ebene	QS-NW
Bezeichnung	Breite	Firsthöhe	Stützenkopf	Achsabstand	Stahlgüte	Stützen	Träger	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
System 1.1	b=12,0m	H=7,60m	h=6,0m	e=8,0m	S 235	HEB 280	HEA 340	68,5%	62,5%	43,2%	68,4%	62,4%	%£'69	68,1%	80,9%
System 1.2	b=18,0m	H=8,40m	h=6,0m	e=8,0m	S 235	HEB 320	HEA 400	98,7%	92,7%	62,6%	98,7%	92,7%	100,7%	97,8%	90,7%
System 1.3	b=24,0m	H=9,20m	h=6,0m	e=6,0m	S 235	HEB 400	HEA 450	89,1%	84,2%	55,6%	89,0%	84,2%	88,0%	88,0%	82,7%
System 2.1	b=12,0m	H=7,60m	h=8,0m	e=8,0m	S 235	HEB 340	HEA 450	50,8%	44,1%	31,1%	50,8%	44,1%	49,5%	50,7%	42,8%
System 2.2	b=18,0m	H=8,40m	h=8,0m	e=8,0m	S 235	HEB 400	HEA 450	75,6%	68,6%	46,6%	75,5%	68,5%	74,6%	75,1%	67,0%
0 System 2.3	b=24,0m	H=9,20m	h=8,0m	e=6,0m	S 235	HEB 400	HEA 500	91,4%	86,5%	58,1%	93,1%	86,4%	92,2%	92,3%	84,6%
0 System 3.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 260	HEA 300	79,1%	72,4%	49,8%	78,7%	72,0%	81,0%	78,5%	70,2%
System 3.2	b=18,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 300	HEA 500	92,7%	85,9%	59,1%	92,3%	85,5%	93,1%	92,1%	84,4%
System 3.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 320	HEA 650	98,4%	91,8%	62,4%	97,8%	91,3%	97,2%	97,5%	90,5%
System 4.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 400	52,6%	46,1%	32,3%	52,4%	46,0%	51,8%	52,4%	44,7%
System 4.2	b=18,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 320	HEA 500	88,4%	79,5%	55,8%	88,0%	79,2%	%0'06	88,0%	77,4%
System 4.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 360	HEA 650	87,6%	79,2%	54,5%	87,2%	78,8%	86,6%	87,1%	77,9%
System 5.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 300	HEA 500	100,0%	87,6%	66,7%	%9'66	87,2%	107,5%	99,8%	86,0%
System 5.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 400	HEB 700	97,6%	87,5%	63,0%	97,1%	87,1%	95,5%	97,1%	86,8%
U System 5.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 450	HEB 900	91,6%	81,2%	57,7%	91,1%	80,8%	87,7%	90,8%	80,4%
Bystem 6.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 360	HEA 500	89,5%	74,6%	26,9%	88,9%	74,3%	92,8%	88,9%	72,3%
System 6.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 400	HEB 700	94,4%	80,3%	60,0%	93,9%	80,0%	94,4%	94,1%	79,2%
System 6.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 450	HEB 900	90,4%	72,3%	54,5%	89,9%	72,0%	87,0%	90,0%	71,6%
un								-							
ad							Ort B "h	ohe" Lasten				l	l	l	
er		Ś	vsterm							Bem	essung				
Er	Dachaufbau	u leicht (Svs	teme 1.1-4.3):	0,50kN/m ² ;								ze Acrise D			
qe	Dachaufbau	u schwer (S)	vsteme 5.1-6.3	3): 4.0kN/m2;		(ĩ	Nachweisv	ertahren II	Naci	weisverfahre	en III	Nac	nweisvertahre	NIV
bn	3	Vandkonstru	ktion: 0,25kN/i	m²		ĥ	otile	BDK		Knicken	BDK		Knicken	BDK	
isse	Sch	nee 3,0kN/r	m ² ; Wind: 125	km/h				aus der Fhene	QS-NW	in der Fhane	aus der Fhane	QS-NW	in der Fhene	aus der Fhana	QS-NW
D Bezeichnung	Breite	Firsthöhe	Stützenkopf	Achsabstand	Stahloüte	Stützen	Träger	١%]	١%]	١‰ا	[%]	[%]	1%]	[%]	[%]
System 1.1	b=12,0m	H=7,60m	h=6,0m	e=8,0m	S 235	HEB 400	HEA 400	80,8%	73,1%	51,2%	80,6%	73,0%	79,9%	80,1%	71,3%
System 1.2	b=18,0m	H=8,40m	h=6,0m	e=6,0m	S 235	HEB 450	HEB 450	97,7%	90,4%	61,7%	92,6%	90,3%	96,4%	96,8%	88,8%
System 1.3	b=24,0m	H=9,20m	h=6,0m	e=6,0m	S 355	HEB 500	HEA 600	89,6%	82,1%	55,5%	89,5%	82,1%	87,4%	88,4%	80,5%
System 2.1	b=12,0m	H=7,60m	h=8,0m	e=8,0m	S 235	HEB 500	HEA 500	66,5%	56,6%	40,4%	66,4%	56,6%	62,0%	66,1%	55,2%
System 2.2	b=18,0m	H=8,40m	h=8,0m	e=6,0m	S 235	HEB 500	HEB 500	91,0%	81,1%	56,1%	%6'06	81,1%	87,9%	90,3%	79,3%
Bystem 2.3	b=24,0m	H=9,20m	h=8,0m	e=6,0m	S 355	HEB 550	HEA 650	82,7%	75,1%	53,7%	90,0%	75,1%	85,7%	89,1%	73,5%
System 3.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 320	HEA 450	94,6%	85,2%	61,1%	94,2%	84,9%	96,2%	94,1%	83,1%
System 3.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 235	HEB 340	HEA 700	100,0%	90,4%	65,1%	%6*66	90,1%	101,1%	100,2%	89,1%
System 3.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 360	HEA 900	92,1%	81,1%	58,7%	91,7%	80,8%	92,6%	91,7%	80,1%
System 4.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 450	HEB 450	70,1%	60,3%	42,9%	%6'69	60,1%	65,9%	69,8%	58,6%
System 4.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 235	HEB 400	HEA 650	98,8%	87,6%	62,0%	98,3%	87,3%	96,5%	98,3%	85,5%
System 4.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 400	HEB 900	85,7%	69,6%	52,2%	85,3%	69,3%	83,2%	85,4%	68,1%
System 5.1	b=12,0m	H=6,0m	h=6,0m	e=8,0m	S 235	HEB 450	HEA 500	92,1%	85,5%	62,7%	96,7%	85,2%	%0'96	96,5%	84,2%
System 5.2	b=18,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 400	HEB 700	96,6%	84,7%	61,6%	96,1%	84,3%	96,2%	96,0%	83,6%
System 5.3	b=24,0m	H=6,0m	h=6,0m	e=6,0m	S 355	HEB 700	HEB 900	99,3%	84,7%	60,6%	98,5%	84,0%	90,8%	97,8%	83,2%
System 6.1	b=12,0m	H=8,0m	h=8,0m	e=8,0m	S 235	HEB 450	HEB 550	66%	83,3%	62,8%	99,1%	83,1%	96,9%	98,9%	80,8%
System 6.2	b=18,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 450	HEB 700	94,1%	75,1%	57,1%	93,9%	75,0%	90,9%	93,6%	73,5%
System 6.3	b=24,0m	H=8,0m	h=8,0m	e=6,0m	S 355	HEB 800	HEB 1000	98,2%	66,9%	56,3%	97,7%	66,5%	85,0%	97,4%	66,1%

Die folgende Tabelle 5.2 zeigt die Ergebnisse des Tragfähigkeitsnachweise für den maßgebenden Bauteil der rechten Stütze.

5.4 Stabilitätsverhalten der Rahmen in der Ebene

Bei den untersuchten Systemen ergeben sich α_{cr} –Werte nahe 10 bzw. 15 (weil sonst der SLS-Nachweis maßgebend wird), wodurch die Effekte nach Theorie II. Ordnung klein bleiben.

Der Faktor α_{cr} gibt an, wie empfindlich ein System gegenüber Verformungen nach Theorie II. Ordnung ist. Große Werte zeigen eine geringe Empfindlichkeit an, d.h. die Momente nach Theorie I. und II. Ordnung unterscheiden sich kaum.

Einen wesentlichen Einfluss auf den Vergrößerungsfaktor α_{cr} hat das Flächenträgheitsmoment I. Da das Flächenträgheitsmoment von der Geometrie des gewählten Querschnittes abhängig ist, besser gesagt von der Profilhöhe h, lässt sich somit der Wert von α_{cr} steuern.

$$I_{y} = \frac{h_{i}^{2} * b * t_{f}}{2} + \frac{t_{w} * h_{i}^{3}}{12} \quad vereinfachtes \ Flächenträgheitsmoment \ für \ I \ Profile$$

In dieser Arbeit wurde versucht die Stützen einheitlich mittels HEB-Profilen auszulegen, da z.B. ein HEB 300 die ähnlichen Eigenschaften wie ein HEA 340 besitzt, aber 3cm niedriger ist. Für eine Vielzahl der Systeme ergab diese Randbedingung sehr brauchbare Ergebnisse. Natürlich könnte man versuchen noch diverse Systeme mit HEA-Profilen zu optimieren, die generelle Aussage würde sich jedoch nicht ändern.

Einen weiteren Einfluss auf die Größe α_{cr} hat die eingeleitete Normalkraft F_{Ed} am Stützenkopf. Diesen Zusammenhang sieht man besonders gut bei den Systemen 5 & 6, die zusätzlich zu den Schnee und Windlasten einen schweren Dachaufbau mittels betonierten Hohldielen und Kiesschüttung besitzen.

In der Tabelle 5.3 sieht man nochmal den schon zuvor erwähnten sehr geringen Anstieg der Schnittkräfte bei Berücksichtigung des Gleichgewichts am verformten System (Verhältnis M^{II}/M^I) für die rechte Rahmenecke.

Es wird das Biegemoment bei Nachweisverfahren IV -dies entspricht Momenten I. Ordnung mit dem Nachweisverfahren II –dies entspricht Momenten II. Ordnung verglichen. In der Spalte "Erhöhungsfaktor" sieht man, dass die Erhöhung der Biegemomente für die gewählten Systeme zwischen den beiden Verfahren im Durchschnitt nur bei 2% liegt!

		Ort A "ge	eringe" Lasten				Ort B "	hohe" Lasten	
S	ystemdaten		Vergrößerungsbeiwert	Erhöhungsfaktor	S	ystemdaten		Vergrößerungsbeiwert	Erhöhungsfaktor
System	Pro	ofile	α _{cr} LK4: Satteldach LK2: Flachdach	M ^{II} M ^I	System	Pr	ofile	α _{cr} LK4: Satteldach LK2: Flachdach	M ^{II} M ^I
Bezeichnung	Stützen	Träger	Figur Nr. 1	[-]	Bezeichnung	Stützen	Träger	Figur Nr. 1	[-]
System 1.1	HEB 280	HEA 340	12,598	1,026	System 1.1	HEB 400	HEA 400	13,141	1,025
System 1.2	HEB 320	HEA 400	11,423	1,023	System 1.2	HEB 450	HEB 450	14,189	1,018
System 1.3	HEB 400	HEA 450	14,319	1,018	System 1.3	HEB 500	HEA 600	13,752	1,020
System 2.1	HEB 340	HEA 450	14,613	1,029	System 2.1	HEB 500	HEA 500	15,623	1,026
System 2.2	HEB 400	HEA 450	11,742	1,024	System 2.2	HEB 500	HEB 500	12,511	1,023
System 2.3	HEB 400	HEA 500	11,473	1,022	System 2.3	HEB 550	HEA 650	11,679	1,023
System 3.1	HEB 260	HEA 300	10,383	1,031	System 3.1	HEB 320	HEA 450	11,589	1,026
System 3.2	HEB 300	HEA 500	13,588	1,017	System 3.2	HEB 340	HEA 700	13,242	1,015
System 3.3	HEB 320	HEA 650	16,329	1,014	System 3.3	HEB 360	HEA 900	11,792	1,013
System 4.1	HEB 320	HEA 400	13,541	1,031	System 4.1	HEB 450	HEB 450	14,654	1,028
System 4.2	HEB 320	HEA 500	9,548	1,028	System 4.2	HEB 400	HEA 650	11,066	1,024
System 4.3	HEB 360	HEA 650	12,690	1,016	System 4.3	HEB 400	HEB 900	8,960	1,022
System 5.1	HEB 300	HEA 500	8,188	1,019	System 5.1	HEB 450	HEA 500	14,096	1,015
System 5.2	HEB 400	HEB 700	15,476	1,009	System 5.2	HEB 400	HEB 700	11,069	1,013
System 5.3	HEB 450	HEB 900	15,938	1,010	System 5.3	HEB 700	HEB 900	24,163	1,017
System 6.1	HEB 360	HEA 500	7,495	1,031	System 6.1	HEB 450	HEB 550	9,495	1,032
System 6.2	HEB 400	HEB 700	9,204	1,014	System 6.2	HEB 450	HEB 700	8,630	1,021
System 6.3	HEB 450	HEB 900	9,492	1,010	System 6.3	HEB 800	HEB 1000	21,392	1,012

Tabelle 5.3

Verhältnis der Ausnutzungsgrade der QS-Nachweise der Verfahren II und IV

Der Knicklängenbeiwert β ist ebenfalls von der Geometrie des Systems (Breite & Höhe) und den Flächenträgheitsmomenten von Stützen und Träger abhängig.

Da der Normalkraftverlauf in den Stützen nicht konstant ist, wird mit dem Mittelwert der Normalkraft gerechnet.

Mit der Kenntnis von α_{cr} kann die Größe N_{cr} für die maßgebende rechte Stütze ermittelt werden. Auf Basis von I_v dieser Stütze ergibt sich dann der Knicklängenbeiwert:

$$aus: N_{cr} = \frac{\pi^2 * E * I_y}{L_{cr}^2} \quad mit \quad L_{cr} = \beta * L \quad => \quad L_{cr} = \beta * L = \pi \sqrt{\frac{E * I_y}{N_{cr}}} \quad mit; \ L \dots St \ddot{u}t zenh\ddot{o}he$$

	C	Ort A "geri	nge" Lasten				Ort B "hoh	ne" Lasten	
S	Systemdaten		Vergrößerungsbeiw.	Knicklängenbeiw.	5	Systemdaten		Vergrößerungsbeiw.	Knicklängenbeiw.
System	Pro	ofile	α _{cr} LK4: Satteldach LK2: Flachdach	β _v Stab 4: Satteldach Stab 3: Flachdach	System	Pr	ofile	α _{cr} LK4: Satteldach LK2: Flachdach	β _v Stab 4: Satteldach Stab 3: Flachdach
Bezeichnung	Stützen	Träger	Figur Nr. 1	[-]	Bezeichnung	Stützen	Träger	Figur Nr. 1	[-]
System 1.1	HEB 280	HEA 340	12,598	2,458	System 1.1	HEB 400	HEA 400	13,141	2,825
System 1.2	HEB 320	HEA 400	11,423	2,726	System 1.2	HEB 450	HEB 450	14,189	3,034
System 1.3	HEB 400	HEA 450	14,319	3,301	System 1.3	HEB 500	HEA 600	13,752	3,117
System 2.1	HEB 340	HEA 450	14,613	2,247	System 2.1	HEB 500	HEA 500	15,623	2,547
System 2.2	HEB 400	HEA 450	11,742	2,682	System 2.2	HEB 500	HEB 500	12,511	2,743
System 2.3	HEB 400	HEA 500	11,473	2,701	System 2.3	HEB 550	HEA 650	11,679	2,818
System 3.1	HEB 260	HEA 300	10,383	2,436	System 3.1	HEB 320	HEA 450	11,589	2,236
System 3.2	HEB 300	HEA 500	13,588	2,246	System 3.2	HEB 340	HEA 700	13,242	2,129
System 3.3	HEB 320	HEA 650	16,329	2,215	System 3.3	HEB 360	HEA 900	11,792	2,113
System 4.1	HEB 320	HEA 400	13,541	2,224	System 4.1	HEB 450	HEB 450	14,654	2,349
System 4.2	HEB 320	HEA 500	9,548	2,196	System 4.2	HEB 400	HEA 650	11,066	2,17
System 4.3	HEB 360	HEA 650	12,690	2,207	System 4.3	HEB 400	HEB 900	8,960	2,068
System 5.1	HEB 300	HEA 500	8,188	2,177	System 5.1	HEB 450	HEA 500	14,096	2,459
System 5.2	HEB 400	HEB 700	15,476	2,228	System 5.2	HEB 400	HEB 700	11,069	2,213
System 5.3	HEB 450	HEB 900	15,938	2,230	System 5.3	HEB 700	HEB 900	24,163	2,726
System 6.1	HEB 360	HEA 500	7,495	2,216	System 6.1	HEB 450	HEB 550	9,495	2,226
System 6.2	HEB 400	HEB 700	9,204	2,155	System 6.2	HEB 450	HEB 700	8,630	2,197
System 6.3	HEB 450	HEB 900	9,492	2,158	System 6.3	HEB 800	HEB 1000	21,392	2,547

Tabelle 5.4

Systeme, Querschnitte, Vergrößerungsbeiwert und Knicklängenbeiwert

Hervorzuheben ist, dass der Knicklängenbeiwert nicht mit dem Vergrößerungsfaktor α_{cr} korreliert, da nur bei letzterem die aktuelle Belastungshöhe mit einfließt.

5.5 Nachweisverfahren im Vergleich

Auffällig ist, dass der Unterschied der Schnittkräfte (primär Momente My) der einzelnen Nachweisverfahren (NWV II, III & IV) sehr gering ausfällt. Dieser Umstand rührt auch daher, dass der Gebrauchstauglichkeitsnachweis (Horizontalverschiebung des Stützenkopfs) die Bemessung bestimmt und daher sehr steife Systeme vorliegen.

Dies führt zur Schlussfolgerung, dass das **Nachweisverfahren III** für die Praxis am sinnvollsten ist. Es beinhaltet alleine die Imperfektionen der Anfangsschiefstellungen und die Schnittkräfte werden nach Theorie II. Ordnung berechnet. Dies sind beides Kriterien, die für die heutige Statiksoftware kein Problem darstellen. Ein weiterer Punkt, der für dieses Verfahren spricht ist, dass die Unterschiede der Ergebnisse der Bauteilnachweise (Knicken um y-Achse bzw. BDK) gegenüber dem Nachweisverfahren II sehr gering ausfallen. Man kann sich also die aufwendigere Eingabe der Vorkrümmungen ersparen und bekommt trotzdem sehr ähnliche Ergebnisse.

6 Exemplarische Ergebnisdarstellung für einzelne Systeme

Auf den folgenden Seiten erfolgt die Auswertung ausgewählter Systeme die nach den Nachweisverfahren II, III und IV berechnet werden. Die Auswertung aller Systeme findet sich im digitalen Anhang B wieder.

Ausgewertet wird der maßgebende Bauteil der Systemberechnung. Dies ist immer die rechte Stütze; bei den Satteldachsystemen ist dies der Stab 4 (Achse B) und bei den Flachdachsystemen der Stab 3 (Achse B)!

Die folgenden Nachweise werden mit den berechneten Schnittkräften am Stützenkopf geführt (größtes Biegemoment in der Stütze + dazugehörige Normalkraft & Querkraft)!

Der für die Auswertung maßgebende Faktor der Systemberechnung ist der Vergrößerungsbeiwert α_{cr} , der bestimmt, ob eine Systemberechnung nach Theorie II. Ordnung gemacht werden muss.

Das Kriterium für elastische Berechnungen nach Theorie II. Ordnung ist laut EN 1993-1-1 wie folgt:

$$\alpha_{cr} = \frac{F_{cr}}{F_{Ed}} \le 10$$
 für elastische Berechnungen [5.1]

 F_{cr} ideale Verzweigungslast des Systems für Gesamtbelastung (ULS – Kombination)

F_{Ed} Gesamtbelastung des Systems

г

	"geringe" L	asten	Ort B "hohe" Lasten				
Sy	vstemdaten		Vergrößerungsbeiwert	Systemdaten			Vergrößerungsbeiwert
System	system Profile		α _{cr} LK4: Satteldach LK2: Flachdach	System		ofile	α _{cr} LK4: Satteldach LK2: Flachdach
Bezeichnung	Stützen	Träger	Figur Nr. 1	Bezeichnung	Stützen	Träger	Figur Nr. 1
System 1.1	HEB 280	HEA 340	12,598	System 1.1	HEB 400	HEA 400	13,141
System 1.2	HEB 320	HEA 400	11,423	System 1.2	HEB 450	HEB 450	14,189
System 1.3	HEB 400	HEA 450	14,319	System 1.3	HEB 500	HEA 600	13,752
System 2.1	HEB 340	HEA 450	14,613	System 2.1	HEB 500	HEA 500	15,623
System 2.2	HEB 400	HEA 450	11,742	System 2.2	HEB 500	HEB 500	12,511
System 2.3	HEB 400	HEA 500	11,473	System 2.3	HEB 550	HEA 650	11,679
System 3.1	HEB 260	HEA 300	10,383	System 3.1	HEB 320	HEA 450	11,589
System 3.2	HEB 300	HEA 500	13,588	System 3.2	HEB 340	HEA 700	13,242
System 3.3	HEB 320	HEA 650	16,329	System 3.3	HEB 360	HEA 900	11,792
System 4.1	HEB 320	HEA 400	13,541	System 4.1	HEB 450	HEB 450	14,654
System 4.2	HEB 320	HEA 500	9,548	System 4.2	HEB 400	HEA 650	11,066
System 4.3	HEB 360	HEA 650	12,690	System 4.3	HEB 400	HEB 900	8,960
System 5.1	HEB 300	HEA 500	8,188	System 5.1	HEB 450	HEA 500	14,096
System 5.2	HEB 400	HEB 700	15,476	System 5.2	HEB 400	HEB 700	11,069
System 5.3	HEB 450	HEB 900	15,938	System 5.3	HEB 700	HEB 900	24,163
System 6.1	HEB 360	HEA 500	7,495	System 6.1	HEB 450	HEB 550	9,495
System 6.2	HEB 400	HEB 700	9,204	System 6.2	HEB 450	HEB 700	8,630
System 6.3	HEB 450	HEB 900	9,492	System 6.3	HEB 800	HEB 1000	21,392

Tabelle 6.1

Zusammenfassung der Vergrößerungsbeiwerte

GRÜN hinterlegte Systeme entsprechen dem Kriterium α_{cr} <10

6.1 Aufbau des Auswertungsdokument

Das Auswertungsprotokoll für jedes System ist wie folgt aufgebaut und beinhaltet auf 7 Seiten alle Eingangsdaten und Nachweise der jeweiligen Verfahren.

1. Systembezeichnung

Beschreibung & Skizze

2. maßgebende Lastfallkombination (Lastbild)

Nachweisverfahren II Nachweisverfahren III & IV

3. Nachweisverfahren II

Momentenverlauf & Auflagerkräfte am Gesamtsystem

selektierter Schnittkraftverlauf für die jeweils rechte Stütze, d.h. den Stab 3 Achse B (Flachdachsysteme) bzw. Stab 4 Achse B (Satteldachsysteme)

Stabilitätsnachweise und Querschnittsnachweis Stab 3 bzw. Stab 4 (tabellarische Auswertung) mit den am Stützenkopf berechneten Schnittkräften

4. Nachweisverfahren III

Momentenverlauf & Auflagerkräfte am Gesamtsystem

selektierter Schnittkraftverlauf für die jeweils rechte Stütze, d.h. den Stab 3 Achse B (Flachdachsysteme) bzw. Stab 4 Achse B (Satteldachsysteme)

Stabilitätsnachweise und Querschnittsnachweis Stab 3 bzw. Stab 4 (tabellarische Auswertung) mit den am Stützenkopf berechneten Schnittkräften

5. Nachweisverfahren IV

Momentenverlauf & Auflagerkräfte am Gesamtsystem

selektierter Schnittkraftverlauf für die jeweils rechte Stütze, d.h. den Stab 3 Achse B (Flachdachsysteme) bzw. Stab 4 Achse B (Satteldachsysteme)

Berechnung des Momentes M^{II} , auf Basis des Faktors α_{cr}

Stabilitätsnachweise und Querschnittsnachweis Stab 3 bzw. Stab 4 (tabellarische Auswertung) mit den am Stützenkopf berechneten Schnittkräften

6.2 Zusätzliche Eingangswerte für das Nachweisverfahren IV

Für die Stabilitätsanalyse nach Nachweisverfahren IV werden noch zusätzliche Eingangswerte benötigt, die mittels der Statik-Software RSTAB berechnet werden.

6.2.1 α_{cr} Vergrößerungsbeiwert / β_y Knicklängenbeiwert

Der Vergrößerungsbeiwert α_{cr} für die ideale Verzweigungslast und der Knicklängenbeiwert β_y für die Bestimmung der Knicklänge in y-Richtung werden anhand des Zusatzmoduls RSKNICK-Stabilitätsanalyse ermittelt.

Als maßgebende Lastfallkombination der Tragfähigkeit dient bei den Satteldachsystemen die LK4 und bei den Flachdachsystemen die LK2.

Da der Normalkraftverlauf in den Stützen nicht konstant ist, wird mit dem Mittelwert der Normalkraft gerechnet.

Mit der Kenntnis von α_{cr} kann die Größe N_{cr} für die maßgebende rechte Stütze ermittelt werden. Auf Basis von I_v dieser Stütze ergibt sich:

$$aus: N_{cr} = \frac{\pi^2 * E * I_y}{L_{cr}^2} \quad mit \quad L_{cr} = \beta * L \quad => \quad L_{cr} = \beta * L = \pi \sqrt{\frac{E * I_y}{N_{cr}}} \quad mit; \ L \dots St \ddot{u}t zenh\ddot{o}he$$

Ort A "geringe" Lasten						Ort B "hohe" Lasten				
:	Systemdaten		Vergrößerungsbeiw.	Knicklängenbeiw.	Systemdaten			Vergrößerungsbeiw.	Knicklängenbeiw.	
System	stem Profile		α _{cr} LK4: Satteldach LK2: Flachdach	β _v Stab 4: Satteld. Stab 3: Flachd.	System	Profile		α _{cr} LK4: Satteldach LK2: Flachdach	β _v Stab 4: Satteld. Stab 3: Flachd.	
Bez.	Stützen	Träger	Figur Nr. 1	[-]	Bez.	Stützen	Träger	Figur Nr. 1	[-]	
System 1.1	HEB 280	HEA 340	12,598	2,458	System 1.1	HEB 400	HEA 400	13,141	2,825	
System 1.2	HEB 320	HEA 400	11,423	2,726	System 1.2	HEB 450	HEB 450	14,189	3,034	
System 1.3	HEB 400	HEA 450	14,319	3,301	System 1.3	HEB 500	HEA 600	13,752	3,117	
System 2.1	HEB 340	HEA 450	14,613	2,247	System 2.1	HEB 500	HEA 500	15,623	2,547	
System 2.2	HEB 400	HEA 450	11,742	2,682	System 2.2	HEB 500	HEB 500	12,511	2,743	
System 2.3	HEB 400	HEA 500	11,473	2,701	System 2.3	HEB 550	HEA 650	11,679	2,818	
System 3.1	HEB 260	HEA 300	10,383	2,436	System 3.1	HEB 320	HEA 450	11,589	2,236	
System 3.2	HEB 300	HEA 500	13,588	2,246	System 3.2	HEB 340	HEA 700	13,242	2,129	
System 3.3	HEB 320	HEA 650	16,329	2,215	System 3.3	HEB 360	HEA 900	11,792	2,113	
System 4.1	HEB 320	HEA 400	13,541	2,224	System 4.1	HEB 450	HEB 450	14,654	2,349	
System 4.2	HEB 320	HEA 500	9,548	2,196	System 4.2	HEB 400	HEA 650	11,066	2,17	
System 4.3	HEB 360	HEA 650	12,690	2,207	System 4.3	HEB 400	HEB 900	8,960	2,068	
System 5.1	HEB 300	HEA 500	8,188	2,177	System 5.1	HEB 450	HEA 500	14,096	2,459	
System 5.2	HEB 400	HEB 700	15,476	2,228	System 5.2	HEB 400	HEB 700	11,069	2,213	
System 5.3	HEB 450	HEB 900	15,938	2,230	System 5.3	HEB 700	HEB 900	24,163	2,726	
System 6.1	HEB 360	HEA 500	7,495	2,216	System 6.1	HEB 450	HEB 550	9,495	2,226	
System 6.2	HEB 400	HEB 700	9,204	2,155	System 6.2	HEB 450	HEB 700	8,630	2,197	
System 6.3	HEB 450	HEB 900	9,492	2,158	System 6.3	HEB 800	HEB 1000	21,392	2,547	

Tabelle 6.2

Systeme, Querschnitte und Vergrößerungsbeiwert & Knicklängenbeiwert

Bild 6.1 maßgebende Knickfigur des Vergrößerungsbeiwert α_{cr}

6.2.2 Moment TH. II Ordnung

Für den Stabilitätsnachweis aus der Ebene wird für das Nachweisverfahren IV das Moment nach Theorie II. Ordnung benötigt, obwohl die Systemberechnung für den Nachweis in der Ebene nach Theorie I. Ordnung durchgeführt wird.

Als praktische Näherung wird hierfür das ermittelte Moment der elastischen Systemberechnung nach Theorie I. Ordnung mit dem Vergrößerungsbeiwert α_{cr} wie folgt skaliert.

Bild 6.2 maßgebende Lastfallkombination Moment TH II. Ordnung

Berechnung des Momentes M^{II}

Das Moment zweiter Ordnung im Rahmeneck wird mittels des Dischinger-Faktors berechnet

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \dots kNm$$

$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = \dots kNm$$

$$\mathbf{M}^{\mathrm{II}} = \frac{\mathrm{M}_{\mathrm{Re}}^{\mathrm{I}} + \mathrm{M}_{\mathrm{Li}}^{\mathrm{I}}}{2} + \Delta \mathrm{M}^{\mathrm{II}} = \cdots, \dots \mathbf{kNm}$$

6.3 System 1.1 Ort A

Bild 6.3 Systemskizze 1.1 Ort A

maßgebende Lastfallkombination LK4 [Lasten in kN/m]

Nachweisverfahren II

Schnittkraftverlauf Stab 4 LK4

Bild 6.5 Schnittkraftverlauf NWV II System 1.1 Ort A

Stabilitätsnachweis und	Querschnittsnachweis	Stab	4
-------------------------	----------------------	------	---

QS-WERTE						
			γмо	γм1	Ύм2	
	γм	=	1,00	1,00	1,25 [-]	
	f _v	=	23,50	[kN/cm2]		
	Ē	=	21.000,00	[kN/cm2]		
	ν	=	0,30	[-]		
	G	=	8.076,92	[kN/cm2]		
			HE-B 280	Profil		
Biegedrillkr	nicken -	Ve	rfahren Anl	nang B - A	Iternative	
Eingangswerte	N _{Ed}	=	-134,47	[kN]		
5. 5	VEd	=	33.70	[kN]		
	Mura	=	225.16	[kNm]		
OS-Widerstände	N., pu	_	3 087 90			
QU Miderstande	M	_	360.49	[kNm]		
	V,pl,Rk	_	558.04			
Knicklängen	VRd	-	550,04	וייא <u>ן</u> דד		
KIIICKIAIIYEII		_	2 6 000	LI 6.000	[m]	
Knicklinion	Lcr	-	0,000	0,000	[111]	
KHICKIIIIIEII		_	0.40		r 1	
	ά	=	0,49	0,34	[-]	
Manager and a start	λ ₁	=	93,913			
Verzweigungslast	N _{crz}	=	3.796,34			
Schlankheitsgrade	λz	=	0,902	[-]		
	Φz	=	1,079	[-]		
	χz	=	0,599	[-]		
	k _Ρ	=	0,717	[-]		
	ψ	=	0,0	[-]		
	k _c	=	0,752	[-]		
	λιτ	=	0,486	[-]		
	Φ_{LT}	=	0,603	[-]		
	χ∟т	=	0,966	[-]		
			f	χιτ	χLTmod	
	χLTmod	=	0,900	0,966	1,000 [-]	
Momentenbeiwerte	M _h	=	225,16	[kNm]		
	Ms	=	117,73	[kNm]		
	ψ	=	0,0	[-]		
	αs	=	0,523	[-]		
	C _{mLT}	=	0,618	[-]		
Interaktionsbeiwerte	k _{zy}	=	0,9802	[-]		
Nachweis	z	=	68,5%	[-]	aus der Ebene	
	QS-Na	chv	veis - Stütz	enkopf		
Eingangswerte	NER	=	-134.47	[kN]		
<u>j</u> j		=	33 70	[kN]		
	• Eu M., c.,	=	225.16	[kNm]		
OS-Widerstände	N-1	=	3.087.90	[kN]		
	•-рі,ка М., - і р. і	=	360.49	[kNm]		
	V _n .	=	558.04	[kN]		
Faktoren	v Rd	=	0.044	[-]		
	-	_	0,044	L J [_]		
	a Ov	_	0,233	L ⁻ J [_]		
		_	240 40	[⁻]		
N h	WNy,Rd	=	360,49	נאווון		
Nachweis			62,5%	[-]		

Tabelle 6.3 Berechnur

Berechnungstabelle NWV II System 1.1 Ort A

Nachweisverfahren III

Schnittkraftverlauf Stab 4 LK4

Bild 6.6 Schnittkraftverlauf NWV III System 1.1 Ort A

Stabilitätsnachweis und	Querschnittsnachweis Stab 4
-------------------------	-----------------------------

QS-WERTE							
			γмо	Ύм1	Ύм2		
	γм	=	1,00	1,00	1,25 [-]		
	f _y	=	23,50	[kN/cm2]			
	E	=	21.000,00	[kN/cm2]			
	ν	=	0,30	[-]			
	G	=	8.076,92	[kN/cm2]			
			HE-B 280	Profil			
Biegedrillknic	ken - V	/erf	ahren Anha	ng B - Alte	rnative		
Eingangswerte	\mathbf{N}_{Ed}	=	-134,44	[kN]			
	V_{Ed}	=	36,64	[kN]			
	$M_{y,Ed}$	=	225,03	[kNm]			
QS-Widerstände	N _{pl,Rk}	=	3.087,90	[kN]			
1	M _{y,pl,Rk}	=	360,49	[kNm]			
	V _{Rd}	=	558,04	[kN]			
Knicklängen	h	=	6,000	[m]			
2	β	=	1,0	[-]			
	•		v	z	LT		
	L _{cr}	=	6,000	6,000	6,000 [m]		
Knicklinien			v	z	LT		
	α	=	0,34	0,49	0,34 [-]		
	λ1	=	93,913	[-]	, ,		
Verzweigungslasten			 V	Z			
	Ncr	=	11.093.68	3.796.34	[kN]		
Schlankheitsgrade	0.		v	Z			
, and the second s	λ	=	0.528	0,902	[-]		
	Φ	=	0 695	1 079	[-]		
	- v	=	0.872	0.599	[-]		
	k n	=	0 717	[-]			
		=	0.000	[-]			
	k.	=	0.752	[-]			
	 λιτ	=	0.486	[-]			
	 Ф. т	=	0.603	[-]			
	- Li Vi -	=	0.966	[-]			
	~ L1		f	Υι τ	γ I Tmod		
	γ I Tmod	=	0,900	0,966	1,000 [-]		
Momentenbeiwerte	Mh	=	225,03	[kNm]			
	Ms.	=	113,26	[kNm]			
	ψ	=	0,0	[-]			
	αs	=	0,503	[-]			
			y	LT			
	C _{my,LT}	=	0,603	0,603	[-]		
Interaktionsbeiwerte	k _{vv}	=	0,6125	[-]			
	k _{zy}	=	0,9794	[-]			
Nachweise	y	=	43,2%	[-]	in der Ebene		
	z	=	68,4%	[-]	aus der Ebene		
Q	S-Nacl	hwe	eis - Stützer	nkopf			
Eingangswerte	N _{Ed}	=	-134,44	[kN]			
	V_{Ed}	=	36,64	[kN]			
	$M_{y,Ed}$	=	225,03	[kNm]			
QS-Widerstände	N _{pl,Rd}	=	3.087,90	[kN]			
r i i i i i i i i i i i i i i i i i i i	M _{y,pl,Rd}	=	360,49	[kNm]			
	V _{Rd}	=	558,04	[kN]			
Faktoren	n	=	0,044	[-]			
	а	=	0,233	[-]			
Que	rkraft	=	NEIN	[-]			
	M _{Ny,Rd}	=	360,49	[kNm]			
Nachweis			62,4%	[-]			

Tabelle 6.4

Berechnungstabelle NWV III System 1.1 Ort A
Nachweisverfahren IV

Schnittkraftverlauf Stab 4 LK4

Bild 6.7 Schnittkraftverlauf NWV IV System 1.1 Ort A

Moment TH II O

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{219,54 - 112,33}{2} = 53,60 \text{kNm} \quad (4.11)$$
$$\boldsymbol{\alpha}_{cr} = \mathbf{12}, \mathbf{598}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 53,60 * \frac{1}{1 - \frac{1}{12,598}} = 58,22 \text{kNm} \quad (4.12)$$
$$\mathbf{1}^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{II} = \frac{219,54 + 112,33}{2} + 58,22 = \mathbf{224},\mathbf{15kNm} \quad (4.13)$$

M

Stabilitätsnachweis und	Querschnittsnachweis Stab 4
-------------------------	-----------------------------

		QS	-WERTE		
			γмо	γм1	Ύм2
	γм	=	1,00	1,00	1,25 [-]
	fy	=	23,50	[kN/cm2]	
	E	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 280	Profil	
Biegedrillk	knicken - V	erfa	ahren Anha	ing B - Alte	ernative
Eingangswerte			MI	MII	
	N _{Ed}	=	-133,52		[kN]
	V _{Ed}	=	37,32		[kN]
	M _{y,Ed}	=	219,54	224,15	[kNm]
QS-Widerstände	N _{pl,Rk}	=	3.087,90	[kN]	
	M _{y,pl,Rk}	=	360,49	[kNm]	
17	V _{Rd}	=	558,04	[KN]	r 1
кпіскіangen	n	=	6,000	1.0	[m]
	р	=	2,458	1,0	[-]
		_	y 14 749	ک	LI
Knicklinien	Lcr	=	14,748	0,000	
KIIICKIIIIIEII	~	_	y	0.49	0.34 [-]
	a 2.	_	0,34	0,49	0,34 [-]
Verzweigungslasten	^1	_	95,915	<u>[</u>]	
verzweigungslasten	N	_	y 1 836 17	3 796 34	[LN]
Schlankheitsgrade	∎∎cr		1.000,17 V	7	
Semannentograde	λ	=	1.297	0.902	[-]
	Φ	=	1.527	1.079	[-]
	γ	=	0,428	0,599	[-]
	к _Р	=	0,717	[-]	
	ψ	=	0,0	[-]	
	kc	=	0,752	[-]	
	λιτ	=	0,486	[-]	
	Φ_{LT}	=	0,603	[-]	
	χιτ	=	0,966		
			f	χιτ	χ LTmod [-]
	χLTmod	=	0,900	0,966	1,000 [-]
Momentenbeiwerte	M _h	=	219,54	[kNm]	
	Ms	=	108,69	[kNm]	
	ψ	=	0,0	[-]	
	αs	=	0,495	[-]	
			У	LT	
• · · · · · ·	C _{my,LT}	=	0,900	0,596	[-]
Interaktionsbeiwerte	K _{yy}	=	0,973	[-]	
Nashuusia	K _{zy}	=	0,979	[-]	in day Ebana MI
Nachweis	У	=	69,3%	[-]	
		=		[-]	
Fingangeworte		iwe		ГЕМП	
Eingangswerte		=	-133,52		
	V _{Ed}		37,32 210 54		
OS-Widerständo	NI	_	3 087 00		
	I™pl,Rd M	_	360 49	[kNm]	
	V _R .	=	558.04	[kN]	
Faktoren	n v	=	0.043	[-]	
	יי א	=	0.233	[-]	
	Querkraft	_	NEIN	[-]	
		=	360,49	[kNm]	
Nachweis	iey,nu		60,9%	[-]	

Tabelle 6.5 Berechnungstabelle NWV IV System 1.1 Ort A

maßgebende Lastfallkombination LK4 [Lasten in kN/m]

Nachweisverfahren II

Schnittkraftverlauf Stab 4 LK4

Bild 6.10 Schnittkraftverlauf NWV II System 2.3 Ort A

		C	S-WERTE		
			γмо	γм1	Ύм2
	γм	=	1,00	1,00	1,25 [-]
	f _v	=	23,50	[kN/cm2]	
	Ē	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 400	Profil	
Biegedrillknicke	en -	Ve	rfahren Anl	nang B - A	Iternative
Eingangswerte	N _{Ed}	=	-207,77	[kN]	
5 5	V _{Ed}	=	74,79	[kN]	
Μ		=	656,65	[kNm]	
OS-Widerstände N.		=	4,648,30	[kN]	
20 mao canac m		=	759.52	[kNm]	
y,		=	949 74	[kN]	
Knicklängen	· Ku		7	LT	
	Lar	=	6.000	6.000	[m]
Knicklinien	-0	-	7	I T	r]
	α	=	0.34	0.34	[-]
	λ	=	93.913	[-]	
Verzweigungslast	N	=	6 227 64		
Schlankheitsgrade	vcrz λ7	_	0.227,04	[_]	
Schlankheitsgräde	ΛL Φ	_	0,004	[-]	
	Ψz	_	0,900	[] [_]	
	χz	_	0,004	[-]	
	К Р 	_	0,740	[-]	
	Ψ	=	0,0	[-]	
	κ _c	=	0,752	[-]	
	^LT ≖	=	0,481	[-]	
	Φ_{LT}	=	0,600	[-]	
	χlt	=	0,908	[-]	
			T	χ ιτ	
χιτ	mod	=	0,901	0,968	1,000 [-]
Momentenbeiwerte	IVI _h	=	656,65	[KNM]	
	IVI _s	=	341,52	[KNM]	
	ψ	=	0,0	[-]	
-	αs	=	0,520	[-]	
C	mLT	=	0,616	[-]	
Interaktionsbeiwerte	k _{zy}	=	0,9822	[-]	
Nachweis	z	=	91,4%	[-]	aus der Ebene
QS	-Na	chv	veis - Stütz	enkopf	
Eingangswerte	N _{Ed}	=	-207,77	[kN]	
	V_{Ed}	=	74,79	[kN]	
M	y,Ed	=	656,65	[kNm]	
QS-Widerstände N	pl,Rd	=	4.648,30	[kN]	
M _{y,i}	pl,Rd	=	759,52	[kNm]	
	V_{Rd}	=	949,74	[kN]	
Faktoren	n	=	0,045	[-]	
	а	=	0,272	[-]	
	QK	=	NEIN	[-]	
M _N	ly,Rd	=	759,52	[kNm]	
Nachweis			86,5%	[-]	

Tabelle 6.6 Bere

Berechnungstabelle NWV II System 2.3 Ort A

Nachweisverfahren III

Schnittkraftverlauf Stab 4 LK4

Bild 6.11 Schnittkraftverlauf NWV III System 2.3 Ort A

		QS	S-WERTE		
			γмо	γ Μ1	γм2
	γм	=	1,00	1,00	1,25 [-]
	f _y	=	23,50	[kN/cm2]	
	E	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
		_	HE-B 400	Profil	
Biegedril	lknicken - V	/erf	ahren Anha	ng B - Alte	rnative
Eingangswerte	N _{Ed}	=	-207,75	[kN]	
	V _{Ed}	=	78,36	[kN]	
00.04// 1	M _{y,Ed}	=	656,21	[kNm]	
QS-Widerstände	N _{pl,Rk}	=	4.648,30	[kN]	
	M _{y,pl,Rk}	=	/59,52	[kNm]	
	V _{Rd}	=	949,74		
Knicklangen	h	=	8,000	[m]	
	ß	=	1,0	[-]	. –
			У	Z	LI
	L _{cr}	=	8,000	8,000	8,000 [m]
Knicklinien			y O Dí	Z	
	ά	=	0,21	0,34	0,34 [-]
., · · · ·	λ ₁	=	93,913	[-]	
verzweigungslasten			y	2 502 05	FLNI]
Schlapkhoitearado	N _{cr}	=	18.679,14	3.503,05	[KN]
Schlankheitsgrade	2	_	y	1 1 E 2	r 1
	۸	=	0,499	1,152	
	Ψ	_	0,000	1,325	[-]
	χ	_	0,923	0,505	[-]
	Kp uh	_	0,078	[-]	
	Ψ	_	0,000	[-]	
	N C	_	0,752	[-]	
	^Li ው	_	0,507	L J [-]	
	¥L1 1⁄1	_	0,001	[_]	
	λL1	_	0,525 f	L J 7/17	V I Tmod
	γ I Tmod	=	0.887	0.923	1.000 [-]
Momentenbeiwerte	<u> </u>	=	656.21	[kNm]	.,[]
	Me	=	334.04	[kNm]	
	ψ	=	0,0	[-]	
	αs	=	0,509	[-]	
			z	LT	
	C _{my,z,LT}	=	0,607	0,607	[-]
Interaktionsbeiwerte	k _{yy}	=	0,6160	[-]	
	k _{zy}	=	0,9752	[-]	
Nachweise	У	=	58,1%	[-]	in der Ebene
	Z	=	93,1%	[-]	aus der Ebene
	QS-Nac	hw	eis - Stützer	nkopf	
Eingangswerte	N _{Ed}	=	-207,75	[kN]	
	V_{Ed}	=	78,36	[kN]	
	$M_{y,Ed}$	=	656,21	[kNm]	
QS-Widerstände	N _{pl,Rd}	=	4.648,30	[kN]	
	$M_{y,pl,Rd}$	=	759,52	[kNm]	
	V_{Rd}	=	949,74	[kN]	
Faktoren	n	=	0,045	[-]	
	а	=	0,272	[-]	
	Querkraft	=	NEIN	[-]	
	$M_{Ny,Rd}$	=	759,52	[kNm]	
Nachweis			86,4%	[-]	

Stabilitätsnachweis und Querschnittsnachweis Stab 4

Tabelle 6.7

Berechnungstabelle NWV III System 2.3 Ort A

Nachweisverfahren IV

Schnittkraftverlauf Stab 4 LK4

Bild 6.12 Schnittkraftverlauf NWV IV System 2.3 Ort A

Moment TH II O

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{642,36 - 480,23}{2} = 81,06 \text{kNm} \quad (4.17)$$
$$\boldsymbol{\alpha}_{cr} = \mathbf{11}, \mathbf{473}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 81,65 * \frac{1}{1 - \frac{1}{11,473}} = 88,80 \text{kNm} \quad (4.18)$$
$$M^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{II} = \frac{642,36 + 480,23}{2} + 88,80 = \mathbf{650}, \mathbf{10kNm} \quad (4.19)$$

Stabilitätsnachweis und Querschnittsnachweis Stab 4

		QS	-WERTE		
			γмо	γ м1	γ м2
	γм	=	1,00	1,00	1,25 [-]
	fy	=	23,50	[kN/cm2]	
	E	=	21.000,00	[KN/CM2]	
	v	_	8 076 92	[⁻] [kN/cm2]	
	0	_	HE_B /00		
Biegedril	lknicken - V	erf	ahren Anha	ang B - Alte	rnative
Fingangswerte			MI	M ^{II}	
Enigungswerte	NEd	=	-206.62	PI	[kN]
	V _{Ed}	=	79,79		[kN]
	M _{y,Ed}	=	642,36	650,10	[kNm]
QS-Widerstände	N _{pl,Rk}	=	4.648,30	[kN]	
	M _{y,pl,Rk}	=	759,52	[kNm]	
	V_{Rd}	=	949,74	[kN]	
Knicklängen	h	=	8,000		[m]
	β	=	2,701	1,0	[-]
			у	Z	
Knicklinion	L _{cr}	=	21,608	8,000	8,000 [m]
Knicklinien		_	y	Z	
	α.	_	0,21	0,34	0,34 [-]
Verzweigungslasten	∧1	_	95,915	[⁻] 7	
Verzweigungslasten	Nor	=	2.560.40	3.503.05	[kN]
Schlankheitsgrade	- Cr		<u>v</u>	z	
e emanarente grade	λ	=	1,347	1,152	[-]
	Φ	=	1,528	1,325	[-]
	χ	=	0,445	0,505	[-]
	k _P	=	0,678	[-]	
	ψ	=	0,0	[-]	
	kc	=	0,752	[-]	
	λ _{LT}	=	0,587	[-]	
	Φ_{LT}	=	0,661	[-]	
	χlt	=	0,923 f	N	w [_]
	YI Tread	=	0.887	0.923	1 000 [-]
Momentenbeiwerte	<u></u>	=	642.36	[kNm]	.,
	Ms	=	322,19	[kNm]	
	Ψ	=	0,0	[-]	
	αs	=	0,502	[-]	
			У	LT	
	C _{my,LT}	=	0,900	0,601	[-]
Interaktionsbeiwerte	k _{yy}	=	0,9720	[-]	
	k _{zy}	=	0,9749	[-]	
Nachweis	У	=	92,2%	[-]	In der Ebene M ⁴
	Z	=	92,3%	[-]	aus der Ebene M**
Financeworth	US-Nacr	iwe			
Elligaligswerte		_	-206,62	[KN] [VN]	
	v Ed M – .	_	642.36	[kNm]	
OS-Widerstände	N	=	4,648.30	[kN]	
	M _{v.pl.Rd}	=	759,52	[kNm]	
	V _{Rd}	=	, 949,74	[kN]	
Faktoren	n	=	0,044	[-]	
	а	=	0,272	[-]	
	Querkraft	=	NEIN	[-]	
	$M_{Ny,Rd}$	=	759,52	[kNm]	
Nachweis			84,6%	[-]	

Tabelle 6.8 Berechnungstabelle NWV IV System 2.3 Ort A

maßgebende Lastfallkombination LK2 [Lasten in kN/m]

Nachweisverfahren II

Schnittkraftverlauf Stab 3 LK2

Bild 6.15 Schnittkraftverlauf NWV II System 3.1 Ort B

Stabilitätsnachweis	s und	Querschnittsnachweis	Stab	3
---------------------	-------	----------------------	------	---

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{split} & \gamma_{M} = & 1,00 & 1,00 & 1,25 & [-] \\ & f_{y} = & 23,50 & [kN/cm2] \\ & E & = & 21.000,00 & [kN/cm2] \\ & v & = & 0,30 & [-] \\ & 8.076,92 & [kN/cm2] \\ & HE-B 320 & Profil \\ \hline \\ $			γмо	γм1	γм2
	γ.	n =	1,00	1,00	1,25 [-]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f,	, =	23,50	[kN/cm2]	
$v =$ 0,30 [-] G = 8.076,92 [kN/cm2] HE-B 320 Profil Biegedrillknicken - V=rahren Anternative Eingangswerte N _{Ed} = -295,21 [kN] VEd = 62,93 [kN] QS-Widerstände N _{pl,Rk} = 3.790,55 [kN] My,el = 3.790,55 [kN] QS-Widerstände N _{pl,Rk} = 505,02 [kNm] VRd = 701,82 [kN] Knicklängen z LT Lcr = 6,000 6,000 [m] Knicklinien z LT $\Delta a =$ 0,49 0,34 [-] $\lambda_1 =$ 93,913 [-] Verzweigungslast N _{crz} = 5.317,99 [kN] Schlankheitsgrade $\lambda z =$ 0,844 [-] $\phi_z =$ 1,014 [-] $\chi_z =$ 0,634 [-] $\psi z =$ 0,732 [-] $\psi z =$ 0,00 [-]	E	=	21.000,00	[kN/cm2]	
$ \begin{array}{rcl} {\bf G} &=& 8.076,92 & [kN/cm2] \\ \hline \mbox{HE-B 320} & \mbox{Profil} \\ \hline \mbox{Biegedrillknicken - Vershren Ansage B - Alternative} \\ \hline \mbox{Biegedrillknicken - Vershren Ansage B - Alternative} \\ \hline \mbox{Biegedrillknicken - Vershren Ansage B - Alternative} \\ \hline \mbox{Biegedrillknicken - Vershren Ansage B - Alternative} \\ \hline \mbox{Ved} &=& -295,21 & [kN] \\ \hline \mbox{Ved} &=& 62,93 & [kN] \\ \hline \mbox{Ved} &=& 62,93 & [kN] \\ \hline \mbox{My,ed} &=& 430,18 & [kNm] \\ \hline \mbox{QS-Widerstände} & \mbox{N}_{pl,Rk} &=& 3.790,55 & [kN] \\ \hline \mbox{QS-Widerstände} & \mbox{N}_{pl,Rk} &=& 3.790,55 & [kN] \\ \hline \mbox{My,eld} &=& 701,82 & [kN] \\ \hline \mbox{Micklängen} & \mbox{Z} & \mbox{LT} \\ \hline \mbox{Micklängen} & \mbox{Z} & \mbox{LT} \\ \hline \mbox{Micklinien} & \mbox{Z} & \mbox{LT} \\ \hline \mbox{Verzweigungslast} & \mbox{N}_{crz} &=& \mbox{5.317,99} & [kN] \\ \hline \mbox{Schlankheitsgrade} & \mbox{Az} &=& \mbox{0,634} & [-] \\ \hline \mbox{Ag} &=& \mbox{0,732} & [-] \\ \hline \mbox{W} &=& \mbox{0,00} & [-] \\ \hline \mbox{W} &=& \mbox{0,00} & [-] \\ \hline \mbox{W} &=& \mbox{0,00} & [-] \\ \hline \mbox{Micklinien} & \mbox{Micklinien} & \mbox{Micklinien} \\ \hline \mbox{Micklinien} & \mbo$	١	/ =	0,30	[-]	
HE-B 320 Profil Biegedrillknicken - Verfahren Anhang B - Alternative Eingangswerte N_{Ed} = -295,21 [kN] V_{Ed} = 62,93 [kN] V_{Ed} = 430,18 [kNm] QS-Widerstände $N_{pl,Rk}$ = 3.790,55 [kN] $M_{y,pl,Rk}$ = 505,02 [kNm] V_{Rd} = 701,82 [kN] Knicklängen z LT L_{cr} = 6,000 6,000 [m] Knicklinien z LT Δ_{r} = 0,49 0,34 [-] λ_1 = 93,913 [-] Verzweigungslast N_{crz} = 0,844 [-] Φ_z = 1,014 [-] χ_z = 0,634 [-] k_P = 0,732 [-] ψ = 0,00 [-]	G	; =	8.076,92	[kN/cm2]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			HE-B 320	Profil	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Biegedrillknicken	- Ve	rfahren Anl	hang B - A	Iternative
$\begin{array}{rcl} V_{Ed} &=& 62,93 & [kN] \\ M_{y,Ed} &=& 430,18 & [kNm] \\ QS-Widerstände & N_{pl,Rk} &=& 3.790,55 & [kN] \\ M_{y,pl,Rk} &=& 505,02 & [kNm] \\ V_{Rd} &=& 701,82 & [kN] \\ \hline \\ Knicklängen & & z & LT \\ \hline \\ L_{cr} &=& 6,000 & 6,000 & [m] \\ \hline \\ Knicklinien & & z & LT \\ \hline \\ \alpha &=& 0,49 & 0,34 & [-] \\ \hline \\ \lambda_1 &=& 93,913 & [-] \\ \hline \\ Verzweigungslast & N_{crz} &=& 5.317,99 & [kN] \\ \hline \\ Schlankheitsgrade & \lambda z &=& 0,844 & [-] \\ \hline \\ \phi_z &=& 1,014 & [-] \\ \hline \\ \chi_z &=& 0,634 & [-] \\ \hline \\ k_P &=& 0,732 & [-] \\ \hline \\ \psi &=& 0,0 & [-] \\ \hline \end{array}$	igangswerte N _{Ec}	1 =	-295,21	[kN]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{Ec}	. =	62,93	[kN]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M _{v.Ec}	. =	430,18	[kNm]	
$M_{y,pl,Rk} = 505,02 [kNm]$ $M_{y,pl,Rk} = 701,82 [kN]$ Knicklängen $L_{cr} = 6,000 6,000 [m]$ Knicklinien $\alpha = 0,49 0,34 [-]$ $\lambda_1 = 93,913 [-]$ Verzweigungslast $N_{crz} = 5.317,99 [kN]$ Schlankheitsgrade $\lambda_z = 0,844 [-]$ $\Phi_z = 1,014 [-]$ $\chi_z = 0,634 [-]$ $k_p = 0,732 [-]$ $\psi = 0,0 [-]$	-Widerstände N _{n R}	, =	3,790,55	[kN]	
$\begin{split} V_{Rd} &= 701,82 \ [kN] \\ \hline V_{Rd} &= 701,82 \ [kN] \\ \hline Knicklängen & z \ LT \\ \hline L_{cr} &= 6,000 \ 6,000 \ [m] \\ \hline Knicklinien & z \ LT \\ \hline \alpha &= 0,49 \ 0,34 \ [-] \\ \hline \lambda_1 &= 93,913 \ [-] \\ \hline Verzweigungslast & N_{crz} &= 5.317,99 \ [kN] \\ \hline Schlankheitsgrade & \lambda z &= 0,844 \ [-] \\ \hline \phi_z &= 1,014 \ [-] \\ \hline \chi_z &= 0,634 \ [-] \\ \hline k_P &= 0,732 \ [-] \\ \hline \psi &= 0,0 \ [-] \\ \end{split}$	My pl Pl	. =	505.02	[kNm]	
Kit z LT Lor 6,000 [m] Knicklinien z LT α 0,49 0,34 [-] λ_1 93,913 [-] Verzweigungslast N _{crz} 5.317,99 [kN] Schlankheitsgrade λ_z 0,844 [-] χ_z 0,634 [-] χ_z 0,634 [-] ψ 0,732 [-] ψ 0,0 [-]	VPr	. =	701.82	[kN]	
$\begin{array}{cccc} L_{cr} & = & 6,000 & 6,000 & [m] \\ \hline Knicklinien & z & LT \\ & \alpha & = & 0,49 & 0,34 & [-] \\ & \lambda_1 & = & 93,913 & [-] \\ \hline Verzweigungslast & N_{crz} & = & 5.317,99 & [kN] \\ \hline Schlankheitsgrade & \lambda z & = & 0,844 & [-] \\ & \Phi_z & = & 1,014 & [-] \\ & \chi_z & = & 0,634 & [-] \\ & & k_P & = & 0,732 & [-] \\ & & \psi & = & 0,0 & [-] \end{array}$	icklängen	-	,,,,	LT	
Knicklinien z LT α 0,49 0,34 [-] λ_1 93,913 [-] Verzweigungslast N_{crz} 5.317,99 [kN] Schlankheitsgrade λz 0,844 [-] ϕ_z 1,014 [-] χ_z 0,634 [-] ψ 0,732 [-] ψ 0,0 [-]	La	r =	6,000	6,000	[m]
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	icklinien		Z	LT	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	c	ι =	0,49	0,34	[-]
Verzweigungslast N_{crz} 5.317,99 [kN] Schlankheitsgrade λz 0,844 [-] Φ_z 1,014 [-] χ_z 0,634 [-] k_P 0,732 [-] ψ 0,0 [-]	λ1	1 =	93,913	[-]	
Schlankheitsgrade λz 0,844 [-] Φ_z 1,014 [-] χ_z 0,634 [-] k_P 0,732 [-] ψ 0,0 [-]	rzweigungslast N _{cra}	, =	5.317,99	[kN]	
$\Phi_{z} = 1,014 [-]$ $\chi_{z} = 0,634 [-]$ $k_{p} = 0,732 [-]$ $\Psi = 0,0 [-]$	hlankheitsgrade λα	z =	0.844	[-]	
$\chi_z = 0,634$ [-] $k_P = 0,732$ [-] $\psi = 0,0$ [-]	Φ.	, =	1,014	[-]	
$k_{P} = 0,732 [-]$ $\psi = 0,0 [-]$, =	0,634	[-]	
$\Psi = 0,0 [-]$	k.	5 =	0,732	[-]	
· · · · · · · · · · · · · · · · · · ·	بل) =	0,0	[-]	
$k_{c} = 0.752$ [-]	k	. =	0,752	[-]	
$\lambda_{\rm IT} = 0.464$ [-]	λι	r =	0,464	[-]	
$\Phi_{\rm LT} = 0.592$ [-]	Φ	- - =	0,592	[-]	
$\gamma_{1T} = 0.975$ [-]	- L. Yı 1	- - =	0,975	[-]	
f χιτ χιτmod	70 -1	-	f	χ _{LT}	χLTmod
$\chi_{\text{LTmod}} = 0,904 0,975 1,000 [-]$	χrtmoc	. =	0,904	0,975	1,000 [-]
Momentenbeiwerte $M_{\rm h} = 430,18 [\rm kNm]$	mentenbeiwerte M _t	, =	430,18	[kNm]	
$M_s = \frac{226,73}{[kNm]}$	M.	. =	226,73	[kNm]	
$\Psi = 0.0$ [-]	ų.) =	0,0	[-]	
$\alpha_{\rm s} = 0,527$ [-]	α	s =	0,527	[-]	
$C_{mLT} = 0,622$ [-]	C _{mLT}	r =	0,622	[-]	
Interaktionsbeiwerte $k_{zy} = 0,9670$ [-]	eraktionsbeiwerte k _{zy}	, =	0,9670	[-]	
Nachweis z = 94,6% [-] aus der Ebene	chweis z	<u> </u>	94,6%	[-]	aus der Ebene
QS-Nachweis - Stützenkopf	QS-N	achv	veis - Stütz	enkopf	
Eingangswerte N _{Ed} = -295,21 [kN]	Igangswerte NF	4 =	-295,21	[kN]	
$V_{\text{Ed}} = \frac{62.93}{[\text{kN}]}$	V _E ,	. =	62,93	[kN]	
M _{v.Ed} = 430,18 [kNm]	M _{v Fr}	. =	430,18	[kNm]	
QS-Widerstände $N_{pl,Rd} = 3.790.55$ [kN]	-Widerstände Nour	4 =	3.790,55	[kN]	
$M_{y,pl,Rd} = 505,02 [kNm]$	My pl Re	. =	505,02	[kNm]	
$V_{Rd} = 701,82$ [kN]	V _{Rc}	а =	701,82	[kN]	
Faktoren n = 0,078 [-]	ktoren n	ו =	0,078	[-]	
a = 0,237 [-]		n =	0,237	[-]	
QK = NEIN [-]	а				
$M_{Ny,Rd} = 505,02$ [kNm]	a QK	. =	NEIN	[-]	
Nachweis 85,2% [-]	a QK M _{Nv.Rc}	1 =	NETN 505,02	[-] [kNm]	

Tabelle 6.9

Berechnungstabelle NWV II System 3.1 Ort B

Nachweisverfahren III

Schnittkraftverlauf Stab 3 LK2

Bild 6.16 Schnittkraftverlauf NWV III System 3.1 Ort B

Stabilitätsnachweis und	Querschnittsnachweis	Stab 3	3
-------------------------	----------------------	--------	---

		QS	S-WERTE		
			γмо	Υм1	Ύм2
	γм	=	1,00	1,00	1,25 [-]
	fy	=	23,50	[kN/cm2]	
	E	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 320	Profil	
Biegedrill	knicken - V	/erf	ahren Anha	ng B - Alte	rnative
Eingangswerte	N_{Ed}	=	-295,17	[kN]	
	V_{Ed}	=	68,97	[kN]	
	M _{y,Ed}	=	428,80	[kNm]	
QS-Widerstände	N _{pl,Rk}	=	3.790,55	[kN]	
	M _{y,pl,Rk}	=	505,02	[kNm]	
	V _{Rd}	=	701,82	[kN]	
Knicklängen	h	=	6,000	[m]	
	β	=	1,0	[-]	
			У	z	LT
	L _{cr}	=	6,000	6,000	6,000 [m]
Knicklinien			У	z	LT
	α	=	0,34	0,49	0,34 [-]
	λ1	=	93,913	[-]	
Verzweigungslasten			У	z	
	N _{cr}	=	17.745,06	5.317,99	[kN]
Schlankheitsgrade			У	z	
	λ	=	0,462	0,844	[-]
	Φ	=	0,651	1,014	[-]
	χ	=	0,901	0,634	[-]
	k _P	=	0,732	[-]	
	ψ	=	0,000	[-]	
	k _c	=	0,752	[-]	
	λιτ	=	0,464	[-]	
	Φ_{LT}	=	0,592	[-]	
	χ∟т	=	0,975	[-]	
			f	χιτ	χLTmod
	χLTmod	=	0,904	0,975	1,000 [-]
Momentenbeiwerte	M _h	=	428,80	[KNM]	
	IVI _s	=	216,67	[KNM]	
	Ψ	=	0,0	[-] []	
	αs	=	0,505	[⁻]	
	c	_	y	LI 0.404	[_]
Interaktionchoiworto	Umy,LT	_	0,604	[_]	LJ
Interactionspelwerte	К _{уу} Г	_	0,0179	[-]	
Nachweise	Nzy	_	61 1%	<u>ر</u> ا	in der Ebene
INACI INVEISE	У	_	9/ 2%	[-]	aus der Fhene
				konf	
Fingangsworth					
Lingangsweite	IN _{Ed}	_	-273,17		
	VEd M	_	428.80	[kNm]	
OS-Widerstände	NI	=	3 790 55	[kN]	
20 macistanae	v≊pl,Rd M	=	505.02	[kNm]	
	y,pl,Rd کونون Vrs	=	701.82	[kN]	
Faktoren	r Kq	=	0.079	[-]	
	וו פ	=	0,078	L J [-]	
	a Ouerkraft	=	NEIN	[-]	
	Maine	=	505.02	[kNm]	
Nachweis	••••Ny,Rd	_	84.9%	[-]	
Nuclivicia			04,770	L J	

Tabelle 6.10

Berechnungstabelle NWV III System 3.1 Ort B

Nachweisverfahren IV

Schnittkraftverlauf Stab 3 LK2

Bild 6.17 Schnittkraftverlauf NWV IV System 3.1 Ort B

Moment TH II O

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{419,47 - 217,30}{2} = 101,08 \text{kNm} \quad (4.20)$$
$$\boldsymbol{\alpha}_{cr} = \mathbf{11}, \mathbf{589}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 101,08 * \frac{1}{1 - \frac{1}{11,589}} = 110,63 \text{kNm} \quad (4.21)$$
$$M^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{II} = \frac{419,47 + 217,30}{2} + 110,63 = \mathbf{429}, \mathbf{01kNm} \quad (4.22)$$

Stabilitätsnachweis und	Querschnittsnachweis Stab 3
-------------------------	-----------------------------

		QS	-WERTE		
			γмо	γм1	Ύм2
	γм	=	1,00	1,00	1,25 [-]
	f _y	=	23,50	[kN/cm2]	
	E	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 320	Profil	
Biegedril	lknicken - V	erf	ahren Anha	ang B - Alte	ernative
Eingangswerte			MI	MII	
	N_{Ed}	=	-293,08		[kN]
	V_{Ed}	=	71,42		[kN]
	$M_{y,Ed}$	=	419,47	429,01	[kNm]
QS-Widerstände	N _{pl,Rk}	=	3.790,55	[kN]	
	M _{y,pl,Rk}	=	505,02	[kNm]	
	V_{Rd}	=	701,82	[kN]	
Knicklängen	h	=	6,000		[m]
	β	=	2,236	1,0	[-]
			У	z	LT
	L _{cr}	=	13,416	6,000	6,000 [m]
Knicklinien			У	z	LT
	α	=	0,34	0,49	0,34 [-]
	λ1	=	93,913	[-]	
Verzweigungslasten			У	z	
	N _{cr}	=	3.549,23	5.317,99	[kN]
Schlankheitsgrade			У	z	
	λ	=	1,033	0,844	[-]
	Φ	=	1,176	1,014	[-]
	χ	=	0,576	0,634	[-]
	k _Ρ	=	0,732	[-]	
	ψ	=	0,0	[-]	
	kc	=	0,752	[-]	
	λ_{LT}	=	0,464	[-]	
	Φ_{LT}	=	0,592	[-]	
	χιτ	=	0,975		
			f	χιτ	χ _{LTmod} [-]
	χLTmod	=	0,904	0,975	1,000 [-]
Momentenbeiwerte	M _h	=	419,47	[kNm]	
	Ms	=	207,56	[KNM]	
	Ψ	=	0,0	[-]	
	αs	=	0,495	[-] • •	
	C	_	y		Г 1
Interalctionchaiwarte	C _{my,LT}	_	0,900	0,596	[-]
Interactionsperwerte	K _{yy}	_	0,9967	[-] []	
Nachuraia	ĸzy	_	0,9848		in dar Ebana M ^I
Nachweis	У	_	90,2%	[-]	
		_	94,170	[[⁻]	
Finannanuorte		IVVE		Гила	
Eingangswerte	N _{Ed}	=	-293,08		
	VEd	_	/1,42		
OS Widorstände	IVI _{y,Ed}	-	2 700 EF		
25-widerstande	וN _{pl,Rd} אז	=	5.790,55	[KIN] [kNm]	
	IVI _{y,pl,Rd}	=	701.02		
Faktoron	V Rd	-	/01,02	נאוז <u>ן</u> רו	
Faktoren	n	=	0,077	[-] []	
	a	-		L ⁻ J [_]	
		_	FOE OD	[⁻]	
Nachwaic	IVI _{Ny,Rd}	-	92 10/	נגואוון	
wachweis			83,1%	[-]	

Tabelle 6.11 Berechnungstabelle NWV IV System 3.1 Ort B

6.6 System 3.2 Ort A

Bild 6.18 Systemskizze 3.2 Ort A

maßgebende Lastfallkombination LK2 [Lasten in kN/m]

Nachweisverfahren II

Schnittkraftverlauf Stab 3 LK2

Bild 6.20 Schnittkraftverlauf NWV II System 3.2 Ort A

QS-WERTE						
			γмо	γм1	γ M2	
	γм	=	1,00	1,00	1,25 [-]	
	f _v	=	23,50	[kN/cm2]		
	É	=	21.000,00	[kN/cm2]		
	ν	=	0,30	[-]		
	G	=	8.076,92	[kN/cm2]		
			HE-B 300	Profil		
Biegedrillkr	nicken -	Ve	rfahren Anl	hang B - A	Iternative	
Eingangswerte	N _{Ed}	=	-199,70	[kN]		
5 5	V _{Ed}	=	56,08	[kN]		
	M _{v Ed}	=	377,13	[kNm]		
OS-Widerstände		=	3.503.85	[kN]		
		=	439.22	[kNm]		
	V Dal	=	643 79	[kN]		
Knicklängen	• KO		7	T		
gen	I	=	6.000	6 000	[m]	
Knicklinien	∟cr	-	0,000	1.1	[,,,]	
	~	=	0 49	0.34	[-]	
	2.	_	0,45	[_]	LJ	
Vorzwojaupaclast		-	4 0 2 9 90			
Schlapkhoitearado	Ncrz	_	4.928,80			
Schlahkheitsgrade	Λ <u>Ζ</u>	_	1 012	[-]		
	Ψz	=	1,015	[-]		
	χz	=	0,635	[-]		
	К Р	=	0,734	[-]		
	Ψ.	=	0,0	[-]		
	Kc	=	0,752	[-]		
	λ_{LT}	=	0,465	[-]		
	Φ_{LT}	=	0,592	[-]		
	χlt	=	0,974	[-]		
			f	χ ιτ	χLTmod	
	χLTmod	=	0,904	0,974	1,000 [-]	
Momentenbeiwerte	Mh	=	377,13	[kNm]		
	Ms	=	196,79	[kNm]		
	ψ	=	0,0	[-]		
	αs	=	0,522	[-]		
	C _{mLT}	=	0,617	[-]		
Interaktionsbeiwerte	k _{zy}	=	0,9756	[-]		
Nachweis	z	=	92,7%	[-]	aus der Ebene	
	QS-Na	chv	veis - Stütz	enkopf		
Eingangswerte	N _{Ed}	=	-199,70	[kN]		
	V_{Ed}	=	56,08	[kN]		
	M _{v,Ed}	=	377,13	[kNm]		
QS-Widerstände	Npl.Rd	=	3.503,85	[kN]		
	M _{v.pl.Rd}	=	439,22	[kNm]		
	VRd	=	643,79	[kN]		
Faktoren	n	=	0.057	[-]		
	а	=	0.235	[-]		
	OK	=	NEIN	[-]		
	MN. D	=	439.22	[kNm]		
Nachweis	ivy,kd		85.9%	[-]		
Nachweis			03,9%	L_1		

Tabelle 6.12 Berechnungstabelle NWV II System 3.2 Ort A

Nachweisverfahren III

Schnittkraftverlauf Stab 3 LK2

Bild 6.21 Schnittkraftverlauf NWV III System 3.2 Ort A

QS-WERTE						
			γмо	ү м1	γм2	
	γм	=	1,00	1,00	1,25 [-]	
	fy	=	23,50	[kN/cm2]		
	E	=	21.000,00	[kN/cm2]		
	ν	=	0,30	[-]		
	G	=	8.076,92	[kN/cm2]		
			HE-B 300	Profil		
Biegedril	Iknicken - V	/erf	ahren Anha	ng B - Alte	rnative	
Eingangswerte	N_{Ed}	=	-199,71	[kN]		
	V_{Ed}	=	60,10	[kN]		
	$M_{y,Ed}$	=	375,37	[kNm]		
QS-Widerstände	N _{pl,Rk}	=	3.503,85	[kN]		
	M _{y,pl,Rk}	=	439,22	[kNm]		
	V_{Rd}	=	643,79	[kN]		
Knicklängen	h	=	6,000	[m]		
	β	=	1,0	[-]		
			У	z	LT	
	L _{cr}	=	6,000	6,000	6,000 [m]	
Knicklinien			У	z	LT	
	α	=	0,34	0,49	0,34 [-]	
	λ1	=	93,913	[-]		
Verzweigungslasten			У	z		
	N _{cr}	=	14.487,59	4.928,80	[kN]	
Schlankheitsgrade			У	z		
-	λ	=	0,492	0,843	[-]	
	Φ	=	0,671	1,013	[-]	
	X	=	0,888	0,635	[-]	
	K _P	=	0,734	[-]		
	ψ	=	0,000	[-]		
	Ka	=	0,752	[-]		
	λιτ	=	0,465	[-]		
	Φι τ	=	0,592	[-]		
	 χιτ	=	0,974	[-]		
	70 -1		f	χ _{LT}	X LTmod	
	χLTmod	=	0,904	0,974	1,000 [-]	
Momentenbeiwerte	Mh	=	375,37	[kNm]		
	Ms	=	190,16	[kNm]		
	ψ	=	0,0	[-]		
	αs	=	0,507	[-]		
			У	LT		
	C _{my,LT}	=	0,605	0,605	[-]	
Interaktionsbeiwerte	k _{vv}	=	0,6166	[-]		
	k _{zv}	=	0,9747	[-]		
Nachweise	у	=	59,1%	[-]	in der Ebene	
	z	=	92,3%	[-]	aus der Ebene	
	QS-Nac	hw	eis - Stützer	nkopf		
Eingangswerte	N _{Ed}	=	-199,71	[kN]		
	V_{Ed}	=	60,10	[kN]		
	M _{y,Ed}	=	375,37	[kNm]		
QS-Widerstände	N _{pl,Rd}	=	3.503,85	[kN]		
	M _{y,pl,Rd}	=	439,22	[kNm]		
	V _{Rd}	=	643,79	[kN]		
Faktoren	n	=	0,057	[-]		
	а	=	0,235	[-]		
	Querkraft	=	NEIN	[-]		
	M _{Nv,Rd}	=	439,22	[kNm]		
Nachweis	,		85,5%	[-]		
				-		

Stabilitätsnachweis und Querschnittsnachweis Stab 3

Tabelle 6.13

Berechnungstabelle NWV III System 3.2 Ort A

Nachweisverfahren IV

Schnittkraftverlauf Stab 3 LK2

Bild 6.22 Schnittkraftverlauf NWV IV System 3.2 Ort A

Moment TH II O

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{370,90 - 268,77}{2} = 51,06 \text{kNm} \quad (4.23)$$
$$\boldsymbol{\alpha}_{cr} = \mathbf{13}, \mathbf{588}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 50,86 * \frac{1}{1 - \frac{1}{13,588}} = 55,12 \text{kNm} \quad (4.24)$$
$$M^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{I} = \frac{370,90 + 268,77}{2} + 55,12 = \mathbf{374}, \mathbf{95kNm} \quad (4.25)$$

Stabilitätsnachweis und Querschnittsnachweis Stab 3

QS-WERTE							
			γмо	Ύм1	Ύм2		
	γΜ	=	1,00	1,00	1,25 [-]		
	f _y	=	23,50	[KN/CM2]			
	E	=	21.000,00				
	v G	_	8 076 92	[⁻] [kN/cm2]			
	0	_	HE-B 300				
Biegedril	lknicken - V	erf	ahren Anha	na B - Alte	ernative		
Fingangswerte	V V		MI	M ^{II}			
Enigungswerte	NEd	=	-198.61	1.1	[kN]		
	V _{Ed}	=	62,25		[kN]		
	M _{y,Ed}	=	370,90	374,95	[kNm]		
QS-Widerstände	N _{pl,Rk}	=	3.503,85	[kN]			
	M _{y,pl,Rk}	=	439,22	[kNm]			
	V_{Rd}	=	643,79	[kN]			
Knicklängen	h	=	6,000		[m]		
	β	=	2,246	1,0	[-]		
			10.47C	Z	LT		
Knicklinian	L _{cr}	=	13,476	6,000	6,000 [m]		
Knicklinien		_	y	Z			
	α.	_	0,34	0,49	0,34 [-]		
Verzweigungslasten	~1	-	95,915 V	[⁻] 7			
Verzweigungslasten	Nor	=	2.871.95	4.928.80	[kN]		
Schlankheitsgrade			<u>v</u>	Z	[]		
j	λ	=	1,105	0,843	[-]		
	Φ	=	1,264	1,013	[-]		
	χ	=	0,533	0,635	[-]		
	k _P	=	0,734	[-]			
	ψ	=	0,0	[-]			
	kc	=	0,752	[-]			
	λιτ	=	0,465	[-]			
	Φ_{LT}	=	0,592	[-]			
	χιτ	=	0,974 f		и [_]		
	or. – .	_	0 904	χ _{LT} 0 97/	(LTmod [-]		
Momentenbeiwerte	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	_	370.90	[kNm]	1,000 []		
	Ms	=	184,87	[kNm]			
	ψ	=	0,0	[-]			
	αs	=	0,498	[-]			
			У	C _{mLT}			
	C _{my,LT}	=	0,900	0,599	[-]		
Interaktionsbeiwerte	k _{yy}	=	0,9766	[-]			
	k _{zy}	=	0,9744	[-]			
Nachweis	У	=	93,1%	[-] 	In der Ebene M ¹		
	Z	=	92,1%	[[-]	aus der Ebene M ⁱⁿ		
QS-Nachweis - Stützenkopf							
Eingangswerte	N _{Ed}	=	-198,61				
	V _{Ed}	=	370.00	[kiv] [kNm]			
OS-Widerstände	N	=	3 503 85	[kN]			
	ישµו,Rd Mע הו ואס	=	439.22	[kNm]			
	у,рі,ка Vрл	=	643.79	[kN]			
Faktoren	n	=	0,057	[-]			
	а	=	0,235	[-]			
	Querkraft	=	NEIN	[-]			
	M _{Ny,Rd}	=	439,22	[kNm]			
Nachweis			84,4%	[-]			

Tabelle 6.14 Berechnungstabelle NWV IV System 3.2 Ort A

6.7 System 4.3 Ort B

maßgebende Lastfallkombination LK2 [Lasten in kN/m]

Nachweisverfahren II

Schnittkraftverlauf Stab 3 LK2

Bild 6.25 Schnittkraftverlauf NWV II System 4.3 Ort B

	QS-WERTE							
			γмо	γм1	γм2			
	γм	=	1,00	1,00	1,25 [-]			
	f _v	=	35,50	[kN/cm2]				
	É	=	21.000,00	[kN/cm2]				
	ν	=	0,30	[-]				
	G	=	8.076,92	[kN/cm2]				
			, HE-B 400	Profil				
Biegedrillkn	icken -	Ve	rfahren Anl	nang B - A	Iternative			
Fingangswerte	NEd	=	-473.82	[kN]				
gagoe.co	VEd	=	84.19	[kN]				
	M	_	798.09	[kNm]				
OS-Widerstände	N	-	7 021 90					
Q5 Widerstande	I¶pl,Rk	_	1 1/7 36					
	Wy,pl,Rk	_	1 /2/ 72					
Knicklängen	V Rd	-	1.404,72	ויאן				
KIIICKIdIIYEII		_	Z		[m]			
Knicklinian	Lcr	=	8,000	8,000	[111]			
KIIICKIIIIIEII	-	_	Z		r 1			
	ά	=	0,34	0,34	[-]			
	λ1	=	76,409	[-]				
Verzweigungslast	N _{crz}	=	3.503,05					
Schlankheitsgrade	λz	=	1,416	[-]				
	Φz	=	1,709	[-]				
	χz	=	0,375	[-]				
	k _Ρ	=	0,678	[-]				
	ψ	=	0,0	[-]				
	kc	=	0,752	[-]				
	λ_{LT}	=	0,722	[-]				
	Φ_{LT}	=	0,750	[-]				
	χιτ	=	0,859	[-]				
			f	χ∟т	χLTmod			
	χLTmod	=	0,877	0,859	0,979 [-]			
Momentenbeiwerte	Mh	=	798,09	[kNm]				
	Ms	=	423,37	[kNm]				
	ψ	=	0,0	[-]				
	αs	=	0,530	[-]				
	C _{mLT}	=	0,624	[-]				
Interaktionsbeiwerte	k _{zy}	=	0,9519	[-]				
Nachweis	z	=	85,7%	[-]	aus der Ebene			
	QS-Na	chv	veis - Stütz	enkopf				
Eingangswerte	Nea	=	-473.82	[kN]				
<u></u>	VE	=	84 19	[kN]				
	•⊾d M	=	798.09	[kNm]				
OS-Widerstände	N	=	7 021 90	[kN]				
	M	=	1 147 36	[kNm]				
	Vp.	=	1 434 72	[kN]				
Faktoren	v Rd	_	0.067	[-]				
		_	0,007	L J [-]				
	a Ov	_		L ⁻ J [_]				
		_	1147 24	L ⁻ J [kNm]				
N	WI _{Ny,Rd}	=	1147,36	נאווון				
Nachweis			69,6%	[[-]				

Tabelle 6.15 Berechnungstabelle NWV II System 4.3 Ort B

Nachweisverfahren III

Schnittkraftverlauf Stab 3 LK2

Bild 6.26 Schnittkraftverlauf NWV III System 4.3 Ort B

Stabilitätsnachweis und	Querschnittsnachweis	Stab 3	3
-------------------------	----------------------	--------	---

QS-WERTE							
			γмо	Υ Μ1	Ύм2		
	γм	=	1,00	1,00	1,25 [-]		
	f _y	=	35,50	[kN/cm2]			
	E	=	21.000,00	[kN/cm2]			
	ν	=	0,30	[-]			
	G	=	8.076,92	[kN/cm2]			
			HE-B 400	Profil			
Biegedrillknicken - Verfahren Anhang B - Alternative							
Eingangswerte	N_{Ed}	=	-473,81	[kN]			
	V_{Ed}	=	91,90	[kN]			
	$M_{y,Ed}$	=	795,43	[kNm]			
QS-Widerstände	N _{pl,Rk}	=	7.021,90	[kN]			
	M _{y,pl,Rk}	=	1.147,36	[kNm]			
	V _{Rd}	=	1.434,72	[kN]			
Knicklängen	h	=	8,000	[m]			
	β	=	1,0	[-]			
			У	z	LT		
	L _{cr}	=	8,000	8,000	8,000 [m]		
Knicklinien			У	z	LT		
	α	=	0,21	0,34	0,34 [-]		
	λ1	=	76,409	[-]			
Verzweigungslasten			У	z			
	N _{cr}	=	18.679,14	3.503,05	[kN]		
Schlankheitsgrade			У	z			
	λ	=	0,613	1,416	[-]		
	Φ	=	0,731	1,709	[-]		
	χ	=	0,885	0,375	[-]		
	k _Ρ	=	0,678	[-]			
	ψ	=	0,000	[-]			
	k _c	=	0,752	[-]			
	λιτ	=	0,722	[-]			
	Φ_{LT}	=	0,750	[-]			
	χιτ	=	0,859	[-]			
			f	χ ιτ	χLTmod		
	χLTmod	=	0,877	0,859	0,979 [-]		
Momentenbeiwerte	M _h	=	795,43	[kNm]			
	Ms	=	407,68	[kNm]			
	ψ	=	0,0	[-]			
	αs	=	0,513	[-] ·			
	~		У	LT	r 1		
Intorol/tionab - i	C _{my,LT}	=	0,610	0,610	[-]		
Interactionspelwerte	K _{yy}	=	0,6292	[-] []			
Nochurica	K _{zy}	=	0,9500	[-] []]	in day There		
wachweise	У	=	52,2%	[-] []			
	Z	=	85,3%	[[⁻]			
Fingangewert -	US-Nacl	nw	eis - Stutzer				
Eingangswerte	N _{Ed}	=	-4/3,81				
	V _{Ed}	=	91,90	[KIN] [kN==]			
OC Widerstärd-	IVI _{y,Ed}	=	7.95,43				
25-widerstande	N _{pl,Rd}	=	7.021,90				
	Wl _{y,pl,Rd}	=	1.14/,36	נגאט			
Falshawa:	V _{Rd}	=	1.434,72	נאואן			
raktoren	n	=	0,067	[-]			
	a	=	0,272	[-]			
		=		[-] [kNm]			
Neckurste	IVI _{Ny,Rd}	=	1147,36	נגואשן			
Nachweis			69,3%	[-]			

Tabelle 6.16

Berechnungstabelle NWV III System 4.3 Ort B

Nachweisverfahren IV

-780.84 -481.24 -481.24 -780.84 2061.56 95.14 Х 25.81 437.78 504.04 RSTAB8 0 7 <u>8 m</u> »S3» LK2: Schnee LF 1_Wind I & 2 Imperfection LF 3 8 Schnittgrößen - My -545.04 -466.78 702 -388.69 -623. My [kNm] -310.61 -232.70 0500-0520-0500-0521-[m] 155.13 -77.57 max min 0.000 780.84 RSTAB8 0_ 4 »S3» <u>8 m</u> LK2: Schnee LF 1_Wind LF 2 Imperfektion LF 3 Schnittgrößen - Vz x [m] Vz [kN] on year soo zea max0.000 98.58 min 97.80 97.61 97.41 97.22 96.83 96.63 98.58 88 ő 66 8 80 8. 97. 5. RSTAB8 Q. <u>8 m</u> »S3» LK2: Schnee LF 1_Wind I $\underline{\mathbb{G}}$ 2 Imperfection LF 3 ф 42 22 88 504.04 65 25 55 -480.95 Schnittgrößen - N 500. 484. -487. 490. -494. 497. 474 44 477 x [m] [kN] 0005 0.000 0.000max min 8.000 -504.04

Schnittkraftverlauf Stab 3 LK2

Bild 6.27 Schnittkraftverlauf NWV IV System 4.3 Ort B

Moment TH II O

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{780,84 - 481,24}{2} = 149,80 \text{ kNm} \quad (4.26)$$
$$\boldsymbol{\alpha}_{cr} = \mathbf{8}, \mathbf{960}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 149,80 * \frac{1}{1 - \frac{1}{8,960}} = 168,62 \text{ kNm} \quad (4.27)$$
$$M^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{II} = \frac{780,84 + 481,24}{2} + 168,62 = \mathbf{799}, \mathbf{66kNm} \quad (4.28)$$

Stabilitätsnachweis und	Querschnittsnachweis Stab 3
-------------------------	-----------------------------

QS-WERTE							
			γмо	γ _{M1}	Ύм2		
	γм	=	1,00	1,00	1,25 [-]		
	f _y	=	35,50	[kN/cm2]			
	E	=	21.000,00	[kN/cm2]			
	ν	=	0,30	[-]			
	G	=	8.076,92	[kN/cm2]			
			HE-B 400	Profil			
Biegedril	lknicken - V	erf	ahren Anha	ang B - Alte	ernative		
Eingangswerte			MI	M ^{II}			
	N_{Ed}	=	-471,06		[kN]		
	V _{Ed}	=	98,58		[kN]		
	M _{v.Ed}	=	780,84	799,60	[kNm]		
QS-Widerstände	N _{pl.Rk}	=	7.021,90	[kN]			
C	M _{v pl Rk}	=	1.147,36	[kNm]			
	V _{Rd}	=	1.434,72	[kN]			
Knicklängen	h	=	8,000		[m]		
5	β	=	2,068	1,0	[-]		
	•		v	z	LT		
	L _{cr}	=	16,544	8,000	8,000 [m]		
Knicklinien	0.		y	Z	LT		
	α	=	0,21	0,34	0,34 [-]		
	λ1	=	76,409	[-]			
Verzweigungslasten			У	z			
	N _{cr}	=	4.367,73	3.503,05	[kN]		
Schlankheitsgrade			У	z			
-	λ	=	1,268	1,416	[-]		
	Φ	=	1,416	1,709	[-]		
	χ	=	0,489	0,375	[-]		
	k _Ρ	=	0,678	[-]			
	ψ	=	0,0	[-]			
	kc	=	0,752	[-]			
	λ_{LT}	=	0,722	[-]			
	Φ_{LT}	=	0,750	[-]			
	χιτ	=	0,859				
			f	χι⊤	χ _{LTmod} [-]		
	χLTmod	=	0,877	0,859	0,979 [-]		
Momentenbeiwerte	M _h	=	780,84	[kNm]			
	Ms	=	388,69	[kNm]			
	ψ	=	0,0	[-]			
	αs	=	0,498	[-]			
	_		Y	LT			
	C _{my,LT}	=	0,900	0,598	[-]		
Interaktionsbeiwerte	k _{yy}	=	0,9988	[-]			
	K _{zy}	=	0,9486	[-]			
Nachweis	У	=	83,2%	[-]	in der Ebene M ¹		
	z	=	85,4%	[[-]	aus der Ebene M"		
QS-Nachweis - Stützenkopf							
Eingangswerte	N _{Ed}	=	-471,06	[kN]			
	V _{Ed}	=	98,58	[KN]			
OC Widerstär de	IVI _{y,Ed}	=	780,84				
25-widerstande	N _{pl,Rd}	=	1 1 47 20	[KIN] [kNm]			
	IVI _{y,pl,Rd}	_	1.147,30				
Faktoron	V _{Rd}	=	1.454,/2	[KIN] [_]			
Faktoren	n	=	0,067	[-] []			
	a	_		[-] [_]			
		_	11/7 24	L ⁻ J [kNm]			
Nachwois	IVINy,Rd	-	69 19/	[_]			
Nacriwels			00,1%	L_1			

Tabelle 6.17 Berechnungstabelle NWV IV System 4.3 Ort B

6.8 System 5.1 Ort A

Bild 6.28 Systemskizze 5.1 Ort A

maßgebende Lastfallkombination LK2 [Lasten in kN/m]

Nachweisverfahren II

Nachweisverfahren II

Schnittkraftverlauf Stab 3 LK2

Bild 6.30 Schnittkraftverlauf NWV II System 5.1 Ort A

QS-WERTE							
			γмо	γм1	γ M2		
	γм	=	1,00	1,00	1,25 [-]		
	f _v	=	23,50	[kN/cm2]			
	É	=	21.000,00	[kN/cm2]			
	ν	=	0,30	[-]			
	G	=	8.076,92	[kN/cm2]			
			HE-B 300	Profil			
Biegedrillk	nicken -	Ve	rfahren Anl	hang B - A	Iternative		
Eingangswerte	N_{Ed}	=	-362,68	[kN]			
	V_{Ed}	=	51,79	[kN]			
	M _{y,Ed}	=	384,82	[kNm]			
QS-Widerstände	N _{pl,Rk}	=	3.503,85	[kN]			
	M _{y,pl,Rk}	=	439,22	[kNm]			
	V _{Rd}	=	643,79	[kN]			
Knicklängen			z	LT			
-	L _{cr}	=	6,000	6,000	[m]		
Knicklinien			z	LT			
	α	=	0,49	0,34	[-]		
	λ1	=	93,913	[-]			
Verzweigungslast	N _{crz}	=	4.928,80	[kN]			
Schlankheitsgrade	λz	=	0,843	[-]			
5	Φz	=	1,013	[-]			
	Ϋ́z	=	0,635	[-]			
	k _P	=	0,734	[-]			
	ψ	=	0,0	[-]			
	k _c	=	0,752	[-]			
	λιτ	=	0,465	[-]			
	Φ_{LT}	=	0,592	[-]			
	χ ιτ	=	0,974	[-]			
			f	χιτ	χLTmod		
	χLTmod	=	0,904	0,974	1,000 [-]		
Momentenbeiwerte	Mh	=	384,82	[kNm]			
	Ms	=	208,50	[kNm]			
	ψ	=	0,0	[-]			
	αs	=	0,542	[-]			
	C _{mLT}	=	0,633	[-]			
Interaktionsbeiwerte	k _{zy}	=	0,9575	[-]			
Nachweis	z	=	100,0%	[-]	aus der Ebene		
	QS-Na	chv	veis - Stütz	enkopf			
Eingangswerte	NEd	=	-362,68	[kN]			
5 5	V _{Ed}	=	51,79	[kN]			
	M _{v Ed}	=	384,82	[kNm]			
QS-Widerstände		=	3.503,85	[kN]			
-		=	439,22	[kNm]			
	V _{Rd}	=	643,79	[kN]			
Faktoren	n	=	0,104	[-]			
	a	=	0,235	[-]			
	QK	=	NEIN	[-]			
	M _{Nv.Rd}	=	439,22	[kNm]			
Nachweis	- <i>j</i> ,u		87.6%	[-]			
			0.10.0				

Tabelle 6.18 Berechnungstabelle NWV II System 5.1 Ort A

Nachweisverfahren III

Schnittkraftverlauf Stab 3 LK2

Bild 6.31 Schnittkraftverlauf NWV III System 5.1 Ort A

QS-WERTE					
			γмо	γ Μ1	γм2
	γм	=	1,00	1,00	1,25 [-]
	f _y	=	23,50	[kN/cm2]	
	E	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 300	Profil	
Biegedrillknicken - Verfahren Anhang B - Alternative					
Eingangswerte	N _{Ed}	=	-362,59	[kN]	
	V_{Ed}	=	59,22	[kN]	
	$M_{y,Ed}$	=	383,19	[kNm]	
QS-Widerstände	N _{pl,Rk}	=	3.503,85	[kN]	
	M _{y,pl,Rk}	=	439,22	[kNm]	
	V _{Rd}	=	643,79	[kN]	
Knicklängen	h	=	6,000	[m]	
-	β	=	1,0	[-]	
			v	z	LT
	Ler	=	6,000	6,000	6,000 [m]
Knicklinien			v	Z	LT
	α	=	0.34	0.49	0,34 [-]
	λ.1	=	93.913	[-]	-,- LJ
Verzweigungslasten			V	7	
rei _in eigengelaeten	Ner	=	14.487.59	4.928.80	[kN]
Schlankheitsgrade	••0		v	7	
Semankheitsgrude	λ	=	0 492	0.843	[-]
	^ م	_	0,152	1 013	[_]
	*	_	0,888	0.635	[_]
	۲. ۲.	_	0 734	[_]	LJ
	ւթ	_	0,754	L J [_]	
	Ψ	_	0,000	[] [_]	
	к с Э. –	_	0,752	[] [_]	
	۸LT م	_	0,403	[-]	
	Ψ_{LT}	_	0,392	[-]	
	χlt	-	0,974	[-] *	M
	N . – .	_	0 904		1 000 [-]
Momontonhoiworto	χLTmod Μ	-	383 10		1,000 []
Momentenbeiwerte	IVI _h	_	104 55		
	IVI _S	_	190,55	[KINIII] [_]	
	Ψ	_	0,0	L J [_]	
	αs	-	0,513	[⁻]	
	C .	_	0 6 1 0	0.610	[-]
Interaktionshoiworto	Umy,LT	_	0 4 2 1 1	[_]	LJ
זוונכו מגנוטווסטפושפו נפ	Kyy ⊾	_	0.0511	L J [-]	
Nachwoiso	Nzy	_	6,7540	L J [_]	in der Ebono
Nachweise	у -	_	99.6%	L ⁻ J [_]	aus der Ebene
Fingangswerte	NI.		-362 50		
Lingungsweite		_	-302,39 50 22		
	¥Ed NЛ_	_	37,22	[kNm]	
OS-Widerstände	NI	-	3 503 85		
	µ∎pl,Rd עו	_	430,05	[kNm]	
	vi _{y,pl,Rd} ا	_	6/3 70		
Faktoren	v Rd	_	0 103	[_]	
		_	0,103	L J [-]	
	d Ouerkreft	_	0,230	L J [_]	
		_	120.22	L ⁻ J [kNm]	
Nachwaic	IVI _{Ny,Rd}	-	437,22	נגואוון ר ז	
wachweis			87,2%	[[-]	

Stabilitätsnachweis und Querschnittsnachweis Stab 3

Tabelle 6.19

Berechnungstabelle NWV III System 5.1 Ort A

Nachweisverfahren IV

Schnittkraftverlauf Stab 3 LK2

Bild 6.32 Schnittkraftverlauf NWV IV System 5.1 Ort A

Moment TH II O

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{377,54 - 270,35}{2} = 53,59 \text{kNm} \quad (4.29)$$
$$\boldsymbol{\alpha_{cr}} = \mathbf{8}, \mathbf{188}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 53,59 * \frac{1}{1 - \frac{1}{8,188}} = 61,04 \text{kNm} \quad (4.30)$$

$$M^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{II} = \frac{377,54 + 270,35}{2} + 61,04 = 384,98kNm \quad (4.31)$$
Stabilitätsnachweis und Querschnittsnachweis Stab 3

QS-WERTE					
			γмо	γм1	γ м2
	γм	=	1,00	1,00	1,25 [-]
	f _y	=	23,50	[kN/cm2]	
	E	=	21.000,00	[KN/Cm2]	
	v	=	0,30 8 076 02	[-] [kN/cm2]	
	9	_	HE_B 300		
Biegedril	Iknickon - V	orf	ahren Anha	pa B - Alte	rnativo
Fingangswerte				MII	
Elligangswerte	NEA	=	-360.67	1.1	[kN]
	V _{Ed}	=	63,65		[kN]
	M _{v,Ed}	=	377,54	384,98	[kNm]
QS-Widerstände	N _{pl,Rk}	=	3.503,85	[kN]	
	M _{y,pl,Rk}	=	439,22	[kNm]	
	V_{Rd}	=	643,79	[kN]	
Knicklängen	h	=	6,000		[m]
	β	=	2,177	1,0	[-]
			у	Z	LT
	L _{cr}	=	13,062	6,000	6,000 [m]
Knicklinien			y	Z	
	ά	=	0,34	0,49	0,34 [-]
Verzweigungslasten	۸1	-	93,913	[⁻] 7	
verzweigungslasten	Nor	=	3.056.89	4.928.80	[kN]
Schlankheitsgrade	• ℃ r		v.000,07	7	
e childhan child gi dde	λ	=	1.071	0,843	[-]
	Φ	=	1,221	1,013	[-]
	χ	=	0,553	0,635	[-]
	k _₽	=	0,734	[-]	
	ψ	=	0,0	[-]	
	kc	=	0,752	[-]	
	λιτ	=	0,465	[-]	
	Φ_{LT}	=	0,592	[-]	
	χιτ	=	0,974		
	X 1 - 1	_	0 904	χ _{ιτ} 0 974	%LTmod [-]
Momentenheiwerte	<u>λ</u> Limod M.	-	377 54	[kNm]	1,000 []
Tiomentenberwerte	M _n	=	187,72	[kNm]	
	ψ	=	0,0	[-]	
	αs	=	0,497	[-]	
			У	LT	
	C _{my,LT}	=	0,900	0,598	[-]
Interaktionsbeiwerte	k _{yy}	=	1,0340	[-]	
	k _{zy}	=	0,9534	[-]	
Nachweis	У	=	107,5%	[-]	in der Ebene M ¹
	z	=	99,8%	[[-]	aus der Ebene M ¹¹
QS-Nachweis - Stützenkopf					
Eingangswerte	N _{Ed}	=	-360,67		
		_	03,00 277 54	[KN] [kNm]	
OS-Widerstände	NI.	_	3 503 85	[kN]	
	pl,Rd™ Mע הי חי	=	439.22	[kNm]	
	V рл	=	643.79	[kN]	
Faktoren	n	=	0,103	[-]	
	а	=	0,235	[-]	
	Querkraft	=	NEIN	[-]	
	M _{Ny,Rd}	=	439,22	[kNm]	
Nachweis			86,0%	[-]	

Tabelle 6.20 Berechnungstabelle NWV IV System 5.1 Ort A

Bild 6.33 Systemskizze 6.2 Ort B

maßgebende Lastfallkombination LK2 [Lasten in kN/m]

Bernd Kraut, BSc

Nachweisverfahren II

Schnittkraftverlauf Stab 3 LK2

Bild 6.35 Schnittkraftverlauf NWV II System 6.2 Ort B

Stabilitätsnachweis	und	Querschnittsnachweis	Stab	3
---------------------	-----	----------------------	------	---

		C	S-WERTE		
			γмо	γм1	Ύм2
	γм	=	1,00	1,00	1,25 [-]
	f _v	=	35,50	[kN/cm2]	
	É	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 450	Profil	
Biegedrillkni	icken -	Ve	rfahren Anl	nang B - A	Iternative
Eingangswerte	N _{Ed}	=	-607,74	[kN]	
	V _{Ed}	=	113,65	[kN]	
	M _{v.Ed}	=	1.061,41	[kNm]	
OS-Widerstände		=	7,739,00	[kN]	
		=	1.413.61	[kNm]	
	Vва	=	1.633.12	[kN]	
Knicklängen	- KU		7	LT	
	Lcr	=	8,000	8.000	[m]
Knicklinien			Z	LT	
	α	=	0,34	0,34	[-]
	λ1	=	76.409	[-]	
Verzweigungslast	Nerz	=	3.795.48	[kN]	
Schlankheitsgrade	λ7	=	1 428	[-]	
Semanninensgrade	љ_	=	1 728	[-]	
	¥z v	_	0 370	[_]	
	λz k-	_	0.685	[] [_]	
	ւթ	_	0,005	[]	
	Ψ	_	0,0	[] []	
	κ _c	_	0,735	[] [_]	
	~LT 	_	0,755	[] [_]	
	Ψ_{LT}	_	0,700	[-]	
	λ L1	_	0,052 f	L J 20. –	N
	VI True of	=	0.877	0.852	0 971 [-]
Momentenheiwerte	χιτησα ΝΛ.	_	1061.41	[kNm]	
Homentenbeiwerte	M	_	564.07		
	1VIS 111	_	0.0	[_]	
	Ψ	_	0,0	[]	
	C	_	0,551	L J [-]	
Interaktionsheiwerte	V _{mL1}	_	0.9434	[_]	
Nachweis		_	9/ 1%	[_]	aus der Ebene
Nachweis		-	74,178		aus der Ebene
Fingangewerte	23-Na			ГЕМІ	
Lingangswerte	IN _{Ed}	=	-607,74		
	V _{Ed}	=	113,65		
00 10/6 do uno tria do	IVI _{y,Ed}	=	1.061,41		
25-widerstande	IN _{pl,Rd}	=	1,112,00		
	IVI _{y,pl,Rd}	=	1.413,61		
Falstavan	VRd	=	1.033,12	נאואן	
raktoren	n	=	0,079	[-]	
	a	=	0,284	[-]	
	QK	=	NEIN	[-] [[Alms]]	
	IVI _{Ny,Rd}	=	1413,61	נגואשן	
Nachweis			75,1%	[-]	

Tabelle 6.21 Berechnungstabelle NWV II System 6.2 Ort B

Nachweisverfahren III

Schnittkraftverlauf Stab 3 LK2

Bild 6.36 Schnittkraftverlauf NWV III System 6.2 Ort B

Stabilitätsnachweis und	Querschnittsnachweis	Stab 3	3
-------------------------	----------------------	--------	---

QS-WERTE					
			γмо	Ύм1	Ύм2
	γм	=	1,00	1,00	1,25 [-]
	fy	=	35,50	[kN/cm2]	
	E	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 450	Profil	
Biegedril	Iknicken - V	/erf	ahren Anha	ng B - Alte	rnative
Eingangswerte	N _{Ed}	=	-608,44	[kN]	
	V_{Ed}	=	123,48	[kN]	
	M _{y,Ed}	=	1.059,68	[kNm]	
QS-Widerstände	N _{pl,Rk}	=	7.739,00	[kN]	
	M _{y,pl,Rk}	=	1.413,61	[kNm]	
	V _{Rd}	=	1.633,12	[kN]	
Knicklängen	h	=	8,000	[m]	
	β	=	1,0	[-]	
			У	z	LT
	L _{cr}	=	8,000	8,000	8,000 [m]
Knicklinien			У	z	LT
	α	=	0,21	0,34	0,34 [-]
	λ1	=	76,409	[-]	
Verzweigungslasten			У	z	
	N _{cr}	=	25.870,79	3.795,48	[kN]
Schlankheitsgrade			У	z	
	λ	=	0,547	1,428	[-]
	Φ	=	0,686	1,728	[-]
	χ	=	0,909	0,370	[-]
	k _P	=	0,685	[-]	
	ψ	=	0,000	[-]	
	k _c	=	0,752	[-]	
	λιτ	=	0,735	[-]	
	Φ_{LT}	=	0,760	[-]	
	χιτ	=	0,852	[-]	
			f	χ ∟τ	χLTmod
	χLTmod	=	0,877	0,852	0,971 [-]
Momentenbeiwerte	M _h	=	1059,68	[kNm]	
	Ms	=	543,00	[kNm]	
	ψ	=	0,0	[-]	
	αs	=	0,512	[-] •	
	<u>^</u>	_	y		r 1
Intoral/tionabaimert-	C _{my,LT}	=	0,610	0,610	[-]
Interactionsperwerte	K _{yy}	=	0,6282	[-]	
Nachwaica	Kzy	-	57 494	[-]	in dor Ebono
wachweise	У	-	57,1% 02.0%	[_] [_]	
		-		konf	
Lingangsweite		_	-000,44		
	vEd M	_	1 059 69	[kNm]	
OS-Widerstände	NI	-	7 739 00		
ູວ່າທານຕາວເລາໃນປ	I¥pl,Rd M	_	1 413 61	[kNm]	
	V_	_	1 633 12	[kN]	
Faktoren	PS V	=	0.079	[-]	
	11	_	0,079	L J [-]	
	a Ouerkraft	_	NELN	L J [-]	
	MNUR	=	1413 61	[kNm]	
Nachweis	•••Ny,Rd		75.0%	[-]	
			10,078		

Tabelle 6.22

Berechnungstabelle NWV III System 6.2 Ort B

Nachweisverfahren IV

Bild 6.37 Schnittkraftverlauf NWV IV System 6.2 Ort B

Moment TH II O

$$\Delta M^{I} = \frac{M_{Re}^{I} - M_{Li}^{I}}{2} = \frac{1039,7 - 737,66}{2} = 151,02 \text{kNm} \quad (4.32)$$
$$\boldsymbol{\alpha_{cr}} = \mathbf{8}, \mathbf{630}$$
$$\Delta M^{II} = \Delta M^{I} * \frac{1}{1 - \frac{1}{\alpha_{cr}}} = 151,02 * \frac{1}{1 - \frac{1}{8,630}} = 170,81 \text{kNm} \quad (4.33)$$
$$M^{II} = \frac{M_{Re}^{I} + M_{Li}^{I}}{2} + \Delta M^{II} = \frac{1039,7 + 737,66}{2} + 170,81 = \mathbf{1059}, \mathbf{49kNm} \quad (4.34)$$

QS-WERTE					
			γмо	γ _{M1}	Ύм2
	γм	=	1,00	1,00	1,25 [-]
	f _y	=	35,50	[kN/cm2]	
	E	=	21.000,00	[kN/cm2]	
	ν	=	0,30	[-]	
	G	=	8.076,92	[kN/cm2]	
			HE-B 450	Profil	
Biegedrill	knicken - V	erf	ahren Anha	ang B - Alte	ernative
Eingangswerte			MI	M ^{II}	
	N _{Ed}	=	-603,66		[kN]
	V _{Ed}	=	131,44		[kN]
	M _{v.Ed}	=	1.039,70	1.059,49	[kNm]
QS-Widerstände	Npl.Rk	=	7.739,00	[kN]	
-	M _{v pl Rk}	=	1.413,61	[kNm]	
	V _{Rd}	=	1.633,12	[kN]	
Knicklängen	h	=	8,000		[m]
5	β	=	2,197	1,0	[-]
	•		v	z	LT
	L _{cr}	=	17,576	8,000	8,000 [m]
Knicklinien			y	z	LT
	α	=	0,21	0,34	0,34 [-]
	λ1	=	76,409	[-]	
Verzweigungslasten			У	z	
	N _{cr}	=	5.359,81	3.795,48	[kN]
Schlankheitsgrade			У	z	
-	λ	=	1,202	1,428	[-]
	Φ	=	1,327	1,728	[-]
	χ	=	0,529	0,370	[-]
	k _₽	=	0,685	[-]	
	ψ	=	0,0	[-]	
	k _c	=	0,752	[-]	
	λ_{LT}	=	0,735	[-]	
	Φ_{LT}	=	0,760	[-]	
	χιτ	=	0,852		
			f	χιτ	χ _{LTmod} [-]
	χ́LTmod	=	0,877	0,852	0,971 [-]
Momentenbeiwerte	M _h	=	1039,70	[kNm]	
	Ms	=	516,90	[kNm]	
	ψ	=	0,0	[-]	
	αs	=	0,497	[-]	
			У	LT	
	C _{my,LT}	=	0,900	0,598	[-]
Interaktionsbeiwerte	k _{yy}	=	1,0062	[-]	
	K _{zy}	=	0,9394	[-]	
Nachweis	У	=	90,9%	[-]	in der Ebene M ¹
	z	=	93,6%	[[-]	aus der Ebene M"
	QS-Nach	nwe	eis - Stütze	nkopf	
Eingangswerte	N _{Ed}	=	-603,66	[KN]	
		=	131,44	[KN]	
	M _{y,Ed}	=	1.039,70	[KINM]	
QS-Widerstande	N _{pl,Rd}	=	7.739,00	[KN]	
	IVI _{y,pl,Rd}	=	1.413,61		
Faktaraz	V _{Rd}	=	1.033,12	נאואן	
гакцогеп	n	=	0,078	[-] []	
	a	=	0,284	[-]	
		_	1412 41	[⁻]	
Nachwaic	IVI _{Ny,Rd}	-	72 59	נגואוון	
Nacriwels			13,5%	L_1	

Tabelle 6.23 Berechnungstabelle NWV IV System 6.2 Ort B

A Anhang A Lasten

Der folgende Anhang beschäftigt sich mit der Lastaufstellung der einzelnen Systeme. Dies beinhaltet: Eigengewichte, Standortabhängige Schneelasten bzw. Windlasten und Imperfektionen der entsprechenden Nachweisverfahren.

Im Anschluss werden die Lastfallkombinationen der Tragfähigkeit und Gebrauchstauglichkeit gebildet und in Tabellenform dargestellt. Diese dienten als Vorlage für die händische Lastfallkombination im Rechenprogramm.

Als letztes werden die maßgebenden Lastfallkombinationen die sich anhand der computergestützten Rechnung der verschiedenen Systeme ergeben dargestellt.

A.1 Lastaufstellung

A.1.1 Eigengewicht

A.1.1.1 Dachkonstruktion leicht

	0,50kN/m²*e [m]=,kN/m
Pfetten:	<u>0,145kN/m²</u>
Trapezblech: T 150.1 t _N =1,5mm	0,250kN/m²
Dampfsperre:	0,005kN/m²
Wärmedämmung:	0,038kN/m²
Trennlage:	0,002kN/m²
Abdichtungsoberlage:	0,06kN/m²

A.1.1.2Dachkonstruktion schwer

	4,00kN/m²*e[m]=…,kN/m
Hohldielen:	<u>3,75kN/m²</u>
Wärmedämmung t=5cm:	0,02kN/m²
2x Bituminöse Abdichtung:	0,08kN/m²
Kiesschüttung t=10cm:	0,15kN/m²

A.1.2 Schneelasten

Die Berechnung der Schneelasten erfolgt nach:

EN 1991-1-3 Eurocode 1-Einwirkungen auf Tragwerke

Teil 1-3: Allgemeine Einwirkungen, Schneelasten

Bei den Satteldachsystemen gibt es einen symmetrischen Lastfall und zwei antimetrische was zu einer Anzahl von drei Lastfällen (A.2.1.1) führt.

Die Flachdachsysteme besitzen lediglich einen Schnellastfall, den der Vollbelastung (A.2.2.1)

A.1.2.1Schneelast Ort A

Lastzone:	2
Dachneigung:	15°
Umgebungskoeffizient:	c _e = 1,0
Temperaturkoeffizient:	c _t = 1,0
Formbeiwert für Schneelasten:	$\mu_1 = 0.8$
Charakteristischer Wert:	s _{kA} = 1,25kN/m ²
$s_{Ak} = s_{kA} * c_e * c_t * \mu_1 =$	$1,25 * 1,0 * 1,0 * 0,8 = 1,00 \ kN/m^2 * e = \cdots, \ kN/m$

A.1.2.2Schneelast Ort B

Lastzone:	4
Dachneigung:	15°
Umgebungskoeffizient:	c _e = 1,0
Temperaturkoeffizient:	c _t = 1,0
Formbeiwert für Schneelasten:	μ ₁ = 0,8
Charakteristischer Wert:	s _{kB} = 3,75kN/m²
$s_{Bk} = s_{kB} * c_e * c_t * \mu_1 = 3$	$3,75 * 1,0 * 1,0 * 0,8 = 3,00 \ kN/m^2 * e = \cdots, \dots kN/m$

A.1.3 Windlasten

Die Berechnung der Windlasten erfolgt nach:

EN 1991-1-4 Eurocode 1–Einwirkungen auf Tragwerke Teil 1-4: Allgemeine Einwirkungen, Windlasten

A.1.3.1Windlast Ort A

Allgemein: IV Geländekategorie: $v_{b,0} = 27,78 m/s (100 km/h)$ Basiswindgeschwindigkeit: $q_{b,0} = 0,483 \ kN/m^2$ Basisdruck: Gebäudehöhen: System 1.1 7,60m System 1.2 8,40m System 1.3 9,20m System 2.1 9,60m System 2.2 10,40m System 2.3 11,20m Systeme 3 & 5 6,0m Systeme 4 & 6 8,0m

Windgeschwindigkeit und Geschwindigkeitsdruck:

Beiwerte:

Basisgeschwindigkeitswerte:	c_{dir} und c_{season} sind It. österreichischen NAD 1,0
Bauhöhe:	z < 15,0m
Geländekategorie IV:	$z_{min} = 15,0m$
$C_{e(Z)}$ =	$= \frac{q_p}{q_b} = 1,20 * \left(\frac{z}{10}\right)^{0,38} = 1,20 \left(\frac{15,0}{10}\right)^{0,38} = 1,40$
$c_{r(z)}^2$	$= 0,263 * \left(\frac{z}{10}\right)^{0,64} = 0,263 * \left(\frac{15,0}{10}\right)^{0,64} = 0,34$

Basisgeschwindigkeit:

 $v_b = c_{dir} * c_{season} * v_{b,0} = 1,0 * 1,0 * 27,78 = 27,78m/s$

Basisdruck:

$$q_b = c_{dir} * c_{season} * q_{b,0} = 1,0 * 1,0 * 0,483 = 0,483m/s$$

Mittlerer Winddruck:

$$q_{m(z)} = c_{r(z)}^2 * q_b = 0.34 * 0.483 = 0.165 kN/m^2$$

Böengeschwindigkeitsdruck:

$$q_{p(z)} = c_{e(z)} * q_b = 1,40 * 0,483 = 0,676 kN/m^2$$

Außendruckbeiwert:

$$A > 10m^2 \rightarrow cpe, 10$$

Geschwindigkeitsdruckverlauf:

Konstanter Verlauf:

$$h \le b$$
$$z_e = h$$

h

$$q_{b(z)} = q_{b(ze)}$$

Bild A.38 Bezugshöhe ze in Abhängigkeit von h und b und Winddruckverteilung_Ort A²⁴

²⁴ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 34

A.1.3.2Windlast Ort B

Allgemein:

Geländekategorie:		II
Basiswindgeschwind	ligkeit:	$v_{b,0} = 34,72 m/s (125km/h)$
Basisdruck:		$q_{b,0} = 0.753 k N/m^2$
Gebäudehöhen:	System 1.1	7,60m
	System 1.2	8,40m
	System 1.3	9,20m
	System 2.1	9,60m
	System 2.2	10,40m
	System 2.3	11,20m
	Systeme 3 & 5	6,0m
	Systeme 4 & 6	8,0m

Windgeschwindigkeit und Geschwindigkeitsdruck:

Beiwerte:

Basisgeschwindigkeits	werte:	c _{dir} und c _{seas}	_{ion} sind It	. österreichisch	en NAD	1,0
Basisgeschwindigkeit:						
	$v_b = c_{dir} * c_{sea}$	$son * v_{b,0} = 1$,0 * 1,0 *	34,72 = 34,72	m/s	

Basisdruck:

$$q_b = c_{dir} * c_{season} * q_{b,0} = 1,0 * 1,0 * 0,753 = 0,753m/s$$

Außendruckbeiwert:

 $A > 10m^2 \rightarrow cpe, 10$

Geschwindigkeitsdruckverlauf: Konstanter Verlauf:

Bild A.39 Bezugshöhe ze in Abhängigkeit von h und b und Winddruckverteilung_ORT B²⁵

²⁵ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 34

System 1.1 h=7,60m

Bauhöhe: z = 7,60mGeländekategorie IV: $z_{\min} = 5,0m$ $c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{7,60}{10}\right)^{0,24} = 1,97$ $c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0,30} = \left(\frac{7,60}{10}\right)^{0,30} = 0,92$

Mittlerer Winddruck:

$$q_{m(z)} = c_{r(z)}^2 * q_b = 0.92 * 0.753 = 0.694 kN/m^2$$

Böengeschwindigkeitsdruck:

$$q_{p(z)} = c_{e(z)} * q_b = 1,97 * 0,753 = 1,481 kN/m^2$$

System 1.2 h=8,40m

Geländekategorie IV:

Bauhöhe:

$$z = 8,40m$$

Selândekategorie IV:
$$z_{min} = 5,0m$$

$$c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{8,40}{10}\right)^{0,24} = 2,01$$
$$c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0,30} = \left(\frac{8,40}{10}\right)^{0,30} = 0,95$$

Mittlerer Winddruck:

$$q_{m(z)} = c_{r(z)}^2 * q_b = 0.95 * 0.753 = 0.715 kN/m^2$$

Böengeschwindigkeitsdruck:

$$q_{p(z)} = c_{e(z)} * q_b = 2,01 * 0,753 = 1,517 kN/m^2$$

System 1.3 h=9,20m

Bauhöhe: z = 9,20mGeländekategorie IV: $z_{\min} = 5,0m$ $c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{9,20}{10}\right)^{0,24} = 2,06$ $c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0,30} = \left(\frac{9,20}{10}\right)^{0,30} = 0,975$

Mittlerer Winddruck:

 $q_{m(z)} = c_{r(z)}^2 * q_b = 0,975 * 0,753 = 0,735 kN/m^2$

Böengeschwindigkeitsdruck:

 $q_{p(z)} = c_{e(z)} * q_b = 2,06 * 0,753 = 1,551 kN/m^2$

System 2.1 h=9,60m

Geländekategorie IV:

Bauhöhe:

$$z = 9,60m$$
$$z_{\min} = 5,0m$$

eländekategorie IV:
$$z_{min} = 5,0$$

$$c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{9,60}{10}\right)^{0,24} = 2,08$$
$$c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0,30} = \left(\frac{9,60}{10}\right)^{0,30} = 0,99$$

Mittlerer Winddruck:

$$q_{m(z)} = c_{r(z)}^2 * q_b = 0.99 * 0.753 = 0.744 kN/m^2$$

Böengeschwindigkeitsdruck:

$$q_{p(z)} = c_{e(z)} * q_b = 2,08 * 0,753 = 1,567 kN/m^2$$

System 2.2 h=10,40m

Bauhöhe: z = 10,40mGeländekategorie IV: $z_{min} = 5,0m$ $c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{10,40}{10}\right)^{0,24} = 2,12$

$$c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0.30} = \left(\frac{10,40}{10}\right)^{0.30} = 1,01$$

Mittlerer Winddruck:

 $q_{m(z)} = c_{r(z)}^2 * q_b = 1,01 * 0,753 = 0,762 kN/m^2$

Böengeschwindigkeitsdruck:

$$q_{p(z)} = c_{e(z)} * q_b = 2,12 * 0,753 = 1,597 kN/m^2$$

System 2.3 h=11,20m

Bauhöhe: z = 11,20mGeländekategorie IV: $z_{\min} = 5,0m$ $c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{11,20}{10}\right)^{0,24} = 2,16$ $c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0,30} = \left(\frac{11,20}{10}\right)^{0,30} = 1,03$

Mittlerer Winddruck:

 $q_{m(z)} = c_{r(z)}^2 * q_b = 1,03 * 0,753 = 0,779 kN/m^2$

Böengeschwindigkeitsdruck:

$$q_{p(z)} = c_{e(z)} * q_b = 2,16 * 0,753 = 1,626 kN/m^2$$

Systeme 3 & 5 h=6,0m

Bauhöhe: z = 6,0mGeländekategorie IV: $z_{\min} = 5,0m$ $c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{6,0}{10}\right)^{0,24} = 1,86$

$$c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0.30} = \left(\frac{6.0}{10}\right)^{0.30} = 0.86$$

Mittlerer Winddruck:

 $q_{m(z)} = c_{r(z)}^2 * q_b = 0,86 * 0,753 = 0,646 kN/m^2$

Böengeschwindigkeitsdruck:

 $q_{p(z)} = c_{e(z)} * q_b = 1,86 * 0,753 = 1,400 kN/m^2$

Systeme 4 & 6 h=8,0m

Bauhöhe: Geländekategorie IV:

$$z = 8,0m$$

 $z_{min} = 5,0m$

$$c_{e(z)} = \frac{q_p}{q_b} = 2,10 * \left(\frac{z}{10}\right)^{0,24} = 2,10 \left(\frac{8,0}{10}\right)^{0,24} = 1,99$$
$$c_{r(z)}^2 = \left(\frac{z}{10}\right)^{0,30} = \left(\frac{8,0}{10}\right)^{0,30} = 0,94$$

Mittlerer Winddruck:

$$q_{m(z)} = c_{r(z)}^2 * q_b = 0.94 * 0.753 = 0.705 kN/m^2$$

Böengeschwindigkeitsdruck:

$$q_{p(z)} = c_{e(z)} * q_b = 1,99 * 0,753 = 1,500 kN/m^2$$

A.1.3.3Geometrischen Randbedingungen - Windeinwirkung auf die Breitseite:

Innendruckbeiwerte:

$$c_{p,i} = +0, 2 \ kN/m^2$$
 (nach außen gerichtet – Druck)
 $c_{p,i} = -0, 3kN/m^2$ (nach innen gerichtet – Sog)

Außendruckbeiwerte für die Breitseite: System 1.1

E b

Bild A.40 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite System 1.1²⁶

$$h/b = 7,60/76,0 = 0,100$$

 $d/b = 12,0/76,0 = 0,158$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe 10} = -0.70$

	- pe, 10	-,
Bereich D	C _{pe,10} =	= +0,80

Bereich E	C _{pe,10}	= -0,25

h

²⁶ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 1.2

Bild A.41 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 1.2²⁷

$$h/b = 8,40/8,0 = 0,100$$

 $d/b = 18,0/8,0 = 0,214$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	C _{pe,10} = -0,253

²⁷ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 1.3

Bild A.42 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 1.3²⁸

$$h/b = 9,20/92,0 = 0,1005$$

 $d/b = 24,0/92,0 = 0,261$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,262$

²⁸ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 2.1

Bild A.43 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 2.129

$$h/b = 9,60/96,0 = 0,100$$

 $d/b = 12,0/96,0 = 0,125$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,25$

²⁹ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 2.2

Bild A.44 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 2.2³⁰

$$h/b = 10,40/104,0 = 0,103$$

 $d/b = 18,0/104,0 = 0,173$

Bereich A	C _{pe,10}	= -1,00

Bereich B	$C_{pe,10} = -0,70$
-----------	---------------------

Bereich D	$C_{pe,10} = +0,80$

Bereich E $C_{pe,10} = -0,25$

³⁰ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 2.3

e = b oder 2h (der kleinere Wert ist maßgebend)

Bild A.45 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 2.3³¹

$$h/b = 11,20/112,0 = 0,100$$

 $d/b = 24,0/112,0 = 0,214$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,253$

³¹ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 3.1 & 5.1

Bild A.46 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 3.1 & 5.1³²

$$h/b = 6,0/60,0 = 0,100$$

 $d/b = 12,0/60,0 = 0,200$

_{,10} = -1,00

Bereich B C	$C_{pe,10} = -0,70$	
-------------	---------------------	--

Bereich D	$C_{pe,10} = +0,80$

Bereich E $C_{pe,10} = -0,25$

³² EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 3.2 & 5.2

e = b oder 2h (der kleinere Wert ist maßgebend)

Bild A.47 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 3.2 & 5.2³³

$$h/b = 6,0/60,0 = 0,100$$

 $d/b = 18,0/60,0 = 0,300$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,270$

³³ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 3.3 & 5.3

Bild A.48 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 3.3 & 5.3³⁴

$$h/b = 6,0/60,0 = 0,100$$

 $d/b = 24,0/60,0 = 0,400$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,290$

³⁴ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 4.1 & 6.1

Bild A.49 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 4.1. & 6.1³⁵

$$h/b = 8,0/80,0 = 0,100$$

 $d/b = 12,0/80,0 = 0,150$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10}$ = -0,25

³⁵ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Breitseite: System 4.2 & 6.2

Bild A.50 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 4.2 & 6.2³⁶

$$h/b = 8,0/80,0 = 0,100$$

 $d/b = 18,0/80,0 = 0,225$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10}$ = -0,70
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,255$

³⁶ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Bild A.51 Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 4.3 & 6.3³⁷

$$h/b = 8,0/80,0 = 0,100$$

 $d/b = 24,0/80,0 = 0,300$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,70$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,270$

³⁷ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für das Satteldach Breitseite:

Neigungswinkel Dach:15°

Anströmrichtung θ = 0° bzw. 180°

e = b oder 2h (der kleinere Wert ist maßgebend)

Bild A.52 Einteilung der Dachflächen bei Sattel- und Trogächern_Breitseite³⁸

Bereich F	C _{pe,10} [positiv] = +0,20	Bereich F	$C_{pe,10}$ [negativ] = -0,90
Bereich G	C _{pe,10} [positiv] = +0,20	Bereich G	C _{pe,10} [negativ] = -0,80
Bereich H	C _{pe,10} [positiv] = +0,20	Bereich H	C _{pe,10} [negativ] = -0,30
Bereich I	$C_{pe,10}$ [positiv] = ±0,00	Bereich I	C _{pe,10} [negativ] = -0,40
Bereich J	$C_{pe,10}$ [positiv] = ±0,00	Bereich J	C _{pe,10} [negativ] = -1,00

³⁸ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 43

Außendruckbeiwerte für das Flachdach Breitseite:

Neigungswinkel Dach: <5°

Anströmrichtung θ = 0° bzw. 180°

Attika: hp/h=0,05

e = b oder 2h (der kleinere Wert ist maßgebend)

Bild A.53 Einteilung der Dachflächen bei Flachdächern_Breitseite³⁹

Bereich F	C _{pe,10} [positiv] = -1,40	Bereich F	$C_{pe,10}$ [negativ] = 1,40
Bereich G	C _{pe,10} [positiv] = -0,90	Bereich G	C _{pe,10} [negativ] = -0,90
Bereich H	C _{pe,10} [positiv] = -0,70	Bereich H	C _{pe,10} [negativ] = -0,70
Bereich I	C _{pe,10} [positiv] = +0,20	Bereich I	C _{pe,10} [negativ] = -0,20

A.1.3.4Geometrischen Randbedingungen - Windeinwirkung auf die Längsseite:

Innendruckbeiwerte:

$$c_{p,i} = +0, 2 \ kN/m^2$$
 (nach außen gerichtet – Druck)
 $c_{p,i} = -0, 3kN/m^2$ (nach innen gerichtet – Sog)

³⁹ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 37

Außendruckbeiwerte für die Längsseite: System 1.1

Bild A.54 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 1.1⁴⁰

$$h/b = 7,60/12,0 = 0,633$$

 $d/b = 76,0/12,0 = 6,33$

e,10 =	-1,00
)	,10 —

Bereich B	$C_{pe,10} = -0,70$
-----------	---------------------

Bereich C	$C_{pe,10} = -0,40$
	pe, . e ,

Bereich D	$C_{pe,10}$	= +0,80

⁴⁰ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 1.2

Bild A.55 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 1.2⁴¹

$$h/b = 8,40/18,0 = 0,467$$

 $d/b = 84,0/18,0 = 4,67$

$C_{pe,10} = -1,00$
$C_{pe,10} = -0,70$
$C_{pe,10} = -0,40$
$C_{pe,10} = +0,80$
C _{pe,10} = -0,15

⁴¹ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 1.3

Bild A.56 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 1.3⁴²

$$h/b = 9,20/24,0 = 0,383$$

 $d/b = 92,0/24,0 = 3,83$

Bereich A	C _{pe,10}	= -1,00

Bereich B	$C_{pe,10} = -0,70$
-----------	---------------------

$_{10} = -0,40$

Bereich D	C _{pe,10}	= +0,80

Bereich E $C_{pe,10} = -0,15$

⁴² EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 2.1

Bild A.57 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 2.143

$$h/b = 9,60/12,0 = 0,80$$

 $d/b = 96,0/12,0 = 8,00$

Bereich A	$C_{pe,10} = -1,02$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,15$

⁴³ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 2.2

Bild A.58 Einteilung der Wandflächen bei vertikalen Wänden: längsseite_System 2.244

$$h/b = 10,40/18,0 = 0,578$$

 $d/b = 104,0/18,0 = 5,78$

Bereich A	$C_{pe,10} = -1,00$
	po, i o ,

Bereich B	$C_{pe,10} = -0,70$
-----------	---------------------

Bereich C	$C_{pe,10} = -0,40$
	p0,10 ,

Bereich D	$C_{pe,10} = +0,80$
	$O_{pe,10} = 10,000$

⁴⁴ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35
Außendruckbeiwerte für die Längsseite: System 2.3

e = b oder 2h (der kleinere Wert ist maßgebend)

$$e = 22,40m$$

$$b = 24,0m$$

$$d = 112,0m$$

$$gewählte Ansicht: e < d \qquad \frac{e}{5} = 4,48m$$

Bild A.59 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 2.345

$$h/b = 11,20/24,0 = 0,467$$

 $d/b = 112.0/24,0 = 4.67$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	C _{pe,10} = -0,15

⁴⁵ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 3.1 & 5.1

Bild A.60 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 3.1 &5.146

$$h/b = 6,0/12,0 = 0,500$$

 $d/b = 60,0/12,0 = 5,00$

Bereich A	C _{pe,10}	= -1,00

Bereich B C	; _{pe,10} = -0,70	0
-------------	----------------------------	---

Bereich C	$C_{pe,10}$	= -0,40

Bere	eich	D	$C_{\text{pe},10}$	= +0,80
			-	

Bereich E $C_{pe,10} = -0,15$

⁴⁶ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 3.2 & 5.2

e = b oder 2h (der kleinere Wert ist maßgebend)

Bild A.61 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 3.2 & 5.247

$$h/b = 6,0/18,0 = 0,333$$

$$d/b = 60,0/18,0 = 3,33$$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,15$

⁴⁷ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 3.3 & 5.3

Bild A.62 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 3.3 & 5.3⁴⁸

$$h/b = 6,0/24,0 = 0,250$$

$$d/b = 60,0/24,0 = 2,50$$

Bereich A	۸.	$C_{pe,10}$	= -1,00

Bereich C	C _{pe,10}	= -0,40

- Bereich D $C_{pe,10} = +0,80$
- Bereich E $C_{pe,10} = -0,15$

⁴⁸ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 4.1 & 6.1

Bild A.63 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 4.1 & 6.149

$$h/b = 8,0/12,0 = 0,667$$

 $d/b = 80,0/12,0 = 6,67$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,15$

⁴⁹ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 4.2 & 6.2

Bild A.64 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 4.2 & 6.2⁵⁰

$$h/b = 8,0/18,0 = 0,444$$

 $d/b = 80,0/18,0 = 4,44$

Bereich A	$C_{pe,10} = -1,00$

Bereich B	$C_{pe,10} = -0,70$
-----------	---------------------

Bereich C	$C_{pe,10} = -0,40$
	,

Bereich D	$C_{pe,10}$	= +0,80

⁵⁰ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für die Längsseite: System 4.3 & 6.3

Bild A.65 Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 4.3 & 6.3⁵¹

$$h/b = 8,0/24,0 = 0,333$$

 $d/b = 80,0/24,0 = 3,33$

Bereich A	$C_{pe,10} = -1,00$
Bereich B	$C_{pe,10} = -0,70$
Bereich C	$C_{pe,10} = -0,40$
Bereich D	$C_{pe,10} = +0,80$
Bereich E	$C_{pe,10} = -0,15$

⁵¹ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für das Satteldach Längsseite:

Neigungswinkel Dach: 15°

Anströmrichtung θ = 90° bzw. 270°

e = b oder 2h (der kleinere Wert ist maßgebend)

(c) Anströmrichtung θ = 90°

Bild A.66 Einteilung der Dachflächen bei Sattel- und Trogächern_Längsseite⁵²

$C_{pe,10} = -1,30$
$C_{pe,10} = -1,30$
$C_{pe,10} = -0,60$
$C_{pe,10} = -0,50$

⁵² EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 43

Außendruckbeiwerte für das Flachdach Längsseite:

Neigungswinkel Dach: $<5^{\circ}$ Anströmrichtung θ = 90° bzw. 270° Attika: hp/h=0,05

e = b oder 2h (der kleinere Wert ist maßgebend)

(c) Anströmrichtung θ = 90°

Bild A.67 Einteilung der Dachflächen bei Flachdächern_Längsseite⁵³

Bereich F	C _{pe,10} [positiv] = -1,40	Bereich F	$C_{pe,10}$ [negativ] = -1,40
Bereich G	C _{pe,10} [positiv] = -0,90	Bereich G	$C_{pe,10}$ [negativ] = -0,90
Bereich H	C _{pe,10} [positiv] = -0,70	Bereich H	$C_{pe,10}$ [negativ] = -0,70
Bereich I	C _{pe,10} [positiv] = +0,20	Bereich I	$C_{pe,10}$ [negativ] = -0,20

⁵³ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 37

A.1.3.5Zusammenfassung der Windeinwirkungen:

Wind auf die Breitseite:

Bild A.68 Einteilung der Wandflächen bei vertikalen Wänden_Zusammenfassung_Breitseite⁵⁴

	System 1.1	System 1.2	System 1.3	System 2.1	System 2.2	System 2.3
Bereich A	-1,00	-1,00	-1,00	-1,00	-1,00	-1,00
Bereich B	-0,70	-0,70	-0,70	-0,70	-0,70	-0,70
Bereich C	-	-0,40	-0,40	-	-	-0,40
Bereich D	+0,80	+0,80	+0,80	+0,80	+0,80	+0,80
Bereich E	-0,25	-0,253	-0,262	-0,25	-0,25	-0,253
	System 3.1	System 3.2	System 3.3	System 4.1	System 4.2	System 4.3
	System 5.1	System 5.2	System 5.3	System 6.1	System 6.2	System 6.3
Bereich A	-1,00	-1,00	-1,00	-1,00	-1,00	-1,00
Bereich B	-0,70	-0,70	-0,70	-0,70	-0,70	-0,70
Bereich C	-	-0,40	-0,40	-	-	-
Bereich D	+0,80	+0,80	+0,80	+0,80	+0,80	+0,80
Bereich E	-0,25	-0,27	-0,29	-0,25	-0,255	-0,27

Tabelle A.24

A.24

Zusammenfassung der Einwirkungen auf die Längswände

⁵⁴ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für das Satteldach Breitseite:

Bild A.69 Einteilung der Dachflächen bei Sattel- und Trogdächern_Zusammenfassung_Breitseite⁵⁵

Bereich F	C _{pe,10} [positiv] = +0,20	Bereich F	C _{pe,10} [negativ] = -0,90
Bereich G	C _{pe,10} [positiv] = +0,20	Bereich G	C _{pe,10} [negativ] = -0,80
Bereich H	C _{pe,10} [positiv] = +0,20	Bereich H	C _{pe,10} [negativ] = -0,30
Bereich I	$C_{ m pe,10}$ [positiv] = $\pm 0,00$	Bereich I	C _{pe,10} [negativ] = -0,40
Bereich J	$C_{pe,10}$ [positiv] = $\pm 0,00$	Bereich J	C _{pe,10} [negativ] = -1,00

Außendruckbeiwerte für das Flachdach Breitseite:

Bild A.70 Einteilung der Dachflächen bei Flachdächern_Zusammenfassung_Breitseite⁵⁶

Bereich F	C _{pe,10} [positiv] = -1,40	Bereich F	C _{pe,10} [negativ] = -1,40
Bereich G	C _{pe,10} [positiv] = -0,90	Bereich G	C _{pe,10} [negativ] = -0,90
Bereich H	C _{pe,10} [positiv] = -0,70	Bereich H	C _{pe,10} [negativ] = -0,70
Bereich I	C _{pe,10} [positiv] = +0,20	Bereich I	C _{pe,10} [negativ] = -0,20

⁵⁵ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 43

⁵⁶ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 37

Wind auf die Längsseite:

Bild A.71 Einteilung der Wandflächen bei vertikalen Wänden_Zusammenfassung_Längsseite⁵⁷

	System 1.1	System 1.2	System 1.3	System 2.1	System 2.2	System 2.3
Bereich A	-1,00	-1,00	-1,00	-1,02	-1,01	-1,00
Bereich B	-0,70	-0,70	-0,70	-0,70	-0,70	-0,70
Bereich C	-0,40	-0,40	-0,40	-0,40	-0,40	-0,40
Bereich D	+0,80	+0,80	+0,80	+0,80	+0,80	+0,80
Bereich E	-0,15	-0,15	-0,15	-0,15	-0,15	-0,15
	System 3.1	System 3.2	System 3.3	System 4.1	System 4.2	System 4.3
	System 5.1	System 5.2	System 5.3	System 6.1	System 6.2	System 6.3
Bereich A	-1,01	-1,00	-1,00	-1,01	-1,00	-1,00
Bereich B	-0,70	-0,70	-0,70	-0,70	-0,70	-0,70
Bereich C	-0,40	-0,40	-0,40	-0,40	-0,40	-0,40
Bereich D	+0,80	+0,80	+0,80	+0,80	+0,80	+0,80
Bereich E	-0,15	-0,15	-0,15	-0,15	-0,15	-0,15

Tabelle A.25

Zusammenfassung der Einwirkungen auf die Breitwände

⁵⁷ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 35

Außendruckbeiwerte für das Satteldach Längsseite:

Bild A.72 Einteilung der Dachflächen bei Sattel- und Trogdächern_Zusammenfassung_Längsseite⁵⁸

Bereich I	C _{pe,10} = -0,50
Bereich H	$C_{pe,10}$ = -0,60
Bereich G	$C_{pe,10} = -1,30$
Bereich F	$C_{pe,10}$ = -1,30

Außendruckbeiwerte für das Flachdach Längsseite:

(c) Anströmrichtung θ = 90°

Bild A.73 Einteilung der Dachflächen bei Flachdächern_Zusammenfassung_Längsseite⁵⁹

Bereich I	C _{pe,10} [positiv] = +0,20	Bereich I	C _{pe,10} [negativ] = -0,20
Bereich H	C _{pe,10} [positiv] = -0,70	Bereich H	$C_{pe,10}$ [negativ] = ±0,00
Bereich G	C _{pe,10} [positiv] = -0,90	Bereich G	$C_{pe,10}$ [negativ] = ±0,00
Bereich F	C _{pe,10} [positiv] = -1,40	Bereich F	$C_{pe,10}$ [negativ] = ±0,00

⁵⁸ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 43

⁵⁹ EN 1991-1-4 Ausgabe 2011-05-15: Eurocode 1: Einwirkungen auf Tragwerke Teil1-4: Allgemeine Einwirkungen - Windlasten Seite 37

Innendruckbeiwerte:

 $c_{p,i} = +0, 2 \ kN/m^2$ (nach außen gerichtet – Druck) $c_{p,i} = -0, 3kN/m^2$ (nach innen gerichtet – Sog)

A.1.3.6maßgebenden Windlasten

Die nachfolgenden Tabellen zeigen für jedes System die errechneten Windbelastungen gegliedert in den Bereichen nach EN 1991-1-4.

Der Rechenwert der Windlasten für einen Rahmen in Hallenmitte jedes System ergibt sich wie folgt:

$$w_{(e;i)} = q_{p(ze;zi)} * c_{p(e,10;i)} * e = ..., ... kN/m$$

System 1.1 Ort A

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	8,0	-1,62	
Innendruck	0,20	0,676	8,0	1,08	
		Wand-Windrich	tung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	8,0	4,33	
E	-0,25	0,676	8,0	-1,35	
Dach-Windrichtung Breitseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,80	0,676	8,0	-4,33	
Н	-0,30	0,676	8,0	-1,62	
Ι	-0,40	0,676	8,0	-2,16	
J	-1,00	0,676	8,0	-5,41	
		Wand-Windricht	ung Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
C	-0,40	0,676	8,0	-2,16	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]	
I	-0,50	0,676	8,0	-2,70	

Tabelle A.26 Windlasten System 1.1 Ort A

System 1.1 Ort B

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,481	8,0	-3,56	
Innendruck	0,20	1,481	8,0	2,37	
		Wand-Windrich	tung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,481	8,0	9,48	
E	-0,25	1,481	8,0	-2,96	
Dach-Windrichtung Breitseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,80	1,481	8,0	-9,48	
Н	-0,30	1,481	8,0	-3,56	
	-0,40	1,481	8,0	-4,74	
J	-1,00	1,481	8,0	-11,85	
		Wand-Windricht	ung Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,481	8,0	-4,74	
Dach-Windrichtung Längsseite					
Bereich	Cpe,10 [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
	-0,50	1,481	8,0	-5,93	

Tabelle A.27Windlasten System 1.1 Ort B

System 1.2 Ort A

	Innendruck				
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	8,0	-1,62	
Innendruck	0,20	0,676	8,0	1,08	
		Wand-Windrich	tung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	8,0	4,33	
E	-0,253	0,676	8,0	-1,37	
		Dach-Windricht	tung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,80	0,676	8,0	-4,33	
Н	-0,30	0,676	8,0	-1,62	
I	-0,40	0,676	8,0	-2,16	
J	-1,00	0,676	8,0	-5,41	
		Wand-Windricht	ung Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	0,676	8,0	-2,16	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,50	0,676	8,0	-2,70	

Tabelle A.28Windlasten System 1.2 Ort A

System 1.2 Ort B

Innendruck				
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]
Innensog	-0,30	1,517	6,0	-2,73
Innendruck	0,20	1,517	6,0	1,82
		Wand-Windrich	ntung Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
D	0,80	1,517	6,0	7,28
E	-0,253	1,517	6,0	-2,30
Dach-Windrichtung Breitseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
G	-0,80	1,517	6,0	-7,28
Н	-0,30	1,517	6,0	-2,73
l	-0,40	1,517	6,0	-3,64
J	-1,00	1,517	6,0	-9,10
		Wand-Windrich	tung Längsseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
С	-0,40	1,517	6,0	-3,64
Dach-Windrichtung Längsseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
I	-0,50	1,517	6,0	-4,55

Tabelle A.29Windlasten System 2.1 Ort B

System 1.3 Ort A

Innendruck						
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]		
Innensog	-0,30	0,676	6,0	-1,22		
Innendruck	0,20	0,676	6,0	0,81		
		Wand-Windrich	tung Breitseite			
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]		
D	0,80	0,676	6,0	3,25		
E	-0,262	0,676	6,0	-1,06		
	Dach-Windrichtung Breitseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]		
G	-0,80	0,676	6,0	-3,25		
Н	-0,30	0,676	6,0	-1,22		
I	-0,40	0,676	6,0	-1,62		
J	-1,00	0,676	6,0	-4,06		
		Wand-Windricht	ung Längsseite			
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]		
С	-0,40	0,676	6,0	-1,62		
Dach-Windrichtung Längsseite						
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]		
I	-0,50	0,676	6,0	-2,03		

Tabelle A.30Windlasten System 1.3 Ort A

System 1.3 Ort B

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,551	6,0	-2,79	
Innendruck	0,20	1,551	6,0	1,86	
		Wand-Windrich	tung Breitseite	-	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,551	6,0	7,44	
E	-0,262	1,551	6,0	-2,44	
	Dach-Windrichtung Breitseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,80	1,551	6,0	-7,44	
Н	-0,30	1,551	6,0	-2,79	
	-0,40	1,551	6,0	-3,72	
J	-1,00	1,551	6,0	-9,31	
		Wand-Windricht	ung Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,551	6,0	-3,72	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,50	1,551	6,0	-4,65	

Tabelle A.31 Windlasten System 1.3 Ort B

System 2.1 Ort A

	Innendruck				
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	8,0	-1,62	
Innendruck	0,20	0,676	8,0	1,08	
		Wand-Windrich	tung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	8,0	4,33	
E	-0,25	0,676	8,0	-1,35	
		Dach-Windricht	ung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,80	0,676	8,0	-4,33	
Н	-0,30	0,676	8,0	-1,62	
I	-0,40	0,676	8,0	-2,16	
J	-1,00	0,670	8,0	-5,41	
		Wand-Windricht	ung Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	0,676	8,0	-2,16	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,50	0,676	8,0	-2,70	

Tabelle A.32Windlasten System 2.1 Ort A

System 2.1 Ort B

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,567	8,0	-3,76	
Innendruck	0,20	1,567	8,0	2,51	
		Wand-Windrich	tung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,567	8,0	10,03	
E	-0,25	1,567	8,0	-3,13	
Dach-Windrichtung Breitseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,80	1,567	8,0	-10,03	
Н	-0,30	1,567	8,0	-3,76	
Ι	-0,40	1,567	8,0	-5,01	
J	-1,00	1,567	8,0	-12,53	
		Wand-Windricht	ung Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,567	8,0	-5,01	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
l	-0,50	1,567	8,0	-6,27	

Tabelle A.33 Windlasten System 2.1 Ort B

System 2.2 Ort A

Innendruck				
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]
Innensog	-0,30	0,676	8,0	-1,62
Innendruck	0,20	0,676	8,0	1,08
		Wand-Windricht	tung Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
D	0,80	0,676	8,0	4,33
E	-0,25	0,676	8,0	-1,35
		Dach-Windricht	ung Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
G	-0,80	0,676	8,0	-4,33
Н	-0,30	0,676	8,0	-1,62
I	-0,40	0,676	8,0	-2,16
J	-1,00	0,676	8,0	-5,41
		Wand-Windrichtu	ung Längsseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]
С	-0,40	0,676	8,0	-2,16
Dach-Windrichtung Längsseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
	-0,50	0,676	8,0	-2,70

Tabelle A.34Windlasten System 2.2 Ort A

System 2.2 Ort B

	Innendruck				
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,597	6,0	-2,87	
Innendruck	0,20	1,597	6,0	1,92	
		Wand-Windrich	tung Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,597	6,0	7,67	
Ш	-0,25	1,597	6,0	-2,40	
	Dach-Windrichtung Breitseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,80	1,597	6,0	-7,67	
Н	-0,30	1,597	6,0	-2,87	
-	-0,40	1,597	6,0	-3,83	
J	-1,00	1,597	6,0	-9,58	
		Wand-Windricht	ung Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,597	6,0	-3,83	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]	
I	-0,50	1,597	6,0	-4,79	

Tabelle A.35 Windlasten System 2.2 Ort B

System 2.3 Ort A

Innendruck				
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]
Innensog	-0,30	0,676	6,0	-1,22
Innendruck	0,20	0,676	6,0	0,81
		Wand-Windrich	tung Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
D	0,80	0,676	6,0	3,25
E	-0,252	0,676	6,0	-1,03
		Dach-Windricht	tung Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
G	-0,80	0,676	6,0	-3,25
Н	-0,30	0,676	6,0	-1,22
I	-0,40	0,676	6,0	-1,62
J	-1,00	0,676	6,0	-4,06
		Wand-Windricht	ung Längsseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
С	-0,40	0,676	6,0	-1,62
Dach-Windrichtung Längsseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
I	-0,50	0,676	6,0	-2,03

Tabelle A.36Windlasten System 2.3 Ort A

System 2.3 Ort B

Innendruck				
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]
Innensog	-0,30	1,626	6,0	-2,93
Innendruck	0,20	1,626	6,0	1,95
		Wand-Windrich	tung Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
D	0,80	1,626	6,0	7,80
E	-0,252	1,626	6,0	-2,47
Dach-Windrichtung Breitseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
G	-0,80	1,626	6,0	-7,80
Н	-0,30	1,626	6,0	-2,93
	-0,40	1,626	6,0	-3,9
J	-1,00	1,626	6,0	-9,75
		Wand-Windricht	ung Längsseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
С	-0,40	1,626	6,0	-3,90
Dach-Windrichtung Längsseite				
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
I	-0,50	1,626	6,0	-4,88

Tabelle A.37 Windlasten System 2.3 Ort B

System 3.1 Ort A & System 5.1 Ort A

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	8,0	-1,62	
Innendruck	0,20	0,676	8,0	1,08	
	V	Vand-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	8,0	4,33	
E	-0,25	0,676	8,0	-1,35	
	E	Dach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	0,676	8,0	-4,87	
Н	-0,70	0,676	8,0	-3,79	
_	-0,20 / +0,20	0,676	8,0	-1,08 / +1,08	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	0,676	8,0	-2,16	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	0,676	8,0	-1,08 / +1,08	

Tabelle A.38 Windlasten System 3.1 Ort A & System 5.1 Ort A

System 3.1 Ort B & System 5.1 Ort B

Innendruck					
Bereich	С _{рі} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,400	8,0	-3,36	
Innendruck	0,20	1,400	8,0	2,24	
	V	Vand-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,400	8,0	8,96	
E	-0,25	1,400	8,0	-2,80	
Dach-Windrichtung Breitseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	1,400	8,0	-10,08	
Н	-0,70	1,400	8,0	7,84	
_	-0,20 / +0,20	1,400	8,0	-2,24 / +2,24	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,400	8,0	-4,48	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	1,400	8,0	-2,24 / +2,24	

Tabelle A.39

Windlasten System 3.1 Ort B & System 5.1 Ort B

System 3.2 Ort A

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	8,0	-1,62	
Innendruck	0,20	0,676	8,0	1,08	
	V	Vand-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	8,0	4,33	
E	-0,27	0,676	8,0	-1,46	
	Γ	Dach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	0,676	8,0	-4,87	
Н	-0,70	0,676	8,0	3,79	
I	-0,20 / +0,20	0,676	8,0	-1,08 / +1,08	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	0,676	8,0	-2,16	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m ²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	0,676	8,0	-1,08 / +1,08	

Tabelle A.40Windlasten System 3.2 Ort A

System 3.2 Ort B & System 5.2 Ort B

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,400	6,0	-2,52	
Innendruck	0,20	1,400	6,0	1,68	
	V	/and-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,400	6,0	6,72	
E	-0,27	1,400	6,0	-2,27	
	C	ach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	1,400	6,0	-7,56	
Н	-0,70	1,400	6,0	-5,88	
ļ	-0,20 / +0,20	1,400	6,0	-1,68 / +1,68	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,400	6,0	-3,36	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	1,400	6,0	-1,68 / +1,68	

Tabelle A.41

Windlasten System 3.2 Ort B & System 5.2 Ort B

System 3.3 Ort A & System 5.3 Ort A

Innendruck					
Bereich	С _{рі} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	6,0	-1,22	
Innendruck	0,20	0,676	6,0	0,81	
	١	Wand-Windrichtun	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	6,0	3,25	
E	-0,29	0,676	6,0	-1,18	
Dach-Windrichtung Breitseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	0,676	6,0	-3,65	
Н	-0,70	0,676	6,0	-2,84	
I	-0,20 / +0,20	0,676	6,0	-0,81/ +0,81	
	V	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	0,676	6,0	-1,62	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	0,676	6,0	-0,81/ +0,81	

Tabelle A.42 Windlasten System 3.3 Ort A & System 5.1 Ort A

System 3.3 Ort B & System 5.3 Ort B

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,400	6,0	-2,52	
Innendruck	0,20	1,400	6,0	1,68	
	V	Vand-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,400	6,0	6,72	
E	-0,29	1,400	6,0	-2,44	
	Γ	ach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	1,400	6,0	-7,56	
Н	-0,70	1,400	6,0	-5,88	
	-0,20 / +0,20	1,400	6,0	-1,68/ +1,68	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,400	6,0	-3,36	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	1,400	6,0	-1,68/ +1,68	

Tabelle A.43

Windlasten System 3.3 Ort B & System 5.3 Ort B

System 4.1 Ort A & System 6.1 Ort A

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	8,0	-1,62	
Innendruck	0,20	0,676	8,0	1,08	
	V	and-Windrichtung/	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	8,0	4,33	
E	-0,25	0,676	8,0	-1,35	
	E	ach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	0,676	8,0	-4,87	
Н	-0,70	0,676	8,0	-3,79	
_	-0,20 / +0,20	0,676	8,0	-1,08/ +1,08	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	0,676	8,0	-2,16	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	0,676	8,0	-1,08/ +1,08	

Tabelle A.44 Windlasten System 4.1 Ort A & System 6.1 Ort A

System 4.1 Ort B & System 6.1 Ort B

Innendruck					
Bereich	С _{рі} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,500	8,0	-3,60	
Innendruck	0,20	1,500	8,0	2,40	
	V	and-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,500	8,0	9,60	
E	-0,25	1,500	8,0	-3,00	
	C	ach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	1,500	8,0	-10,08	
H	-0,70	1,500	8,0	-8,4	
_	-0,20 / +0,20	1,500	8,0	-2,40/ +2,40	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,500	8,0	-4,80	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
I	-0,20 / +0,20	1,500	8,0	-2,40/ +2,40	

Tabelle A.45 Windl

Windlasten System 4.1 Ort B & System 6.1 Ort B

System 4.2 Ort A

	Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]		
Innensog	-0,30	0,676	8,0	-1,62		
Innendruck	0,20	0,676	8,0	1,08		
	V	Vand-Windrichtung	g Breitseite			
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]		
D	0,80	0,676	8,0	4,33		
E	-0,255	0,676	8,0	-1,38		
	Γ	Dach-Windrichtung	Breitseite			
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]		
G	-0,90	0,676	8,0	-4,87		
Н	-0,70	0,676	8,0	-3,79		
I	-0,20 / +0,20	0,676	8,0	-1,08/ +1,08		
	W	and-Windrichtung	Längsseite			
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]		
С	-0,40	0,676	8,0	-2,16		
Dach-Windrichtung Längsseite						
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]		
	-0,20 / +0,20	0,676	8,0	-1,08/ +1,08		

Tabelle A.46 Windlasten System 4.2 Ort A

System 4.2 Ort B & System 6.2 Ort B

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,500	6,0	-2,70	
Innendruck	0,20	1,500	6,0	1,80	
	1	Nand-Windrichtun	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,500	6,0	7,20	
E	-0,255	1,500	6,0	-2,29	
		Dach-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	1,500	6,0	-8,10	
Н	-0,70	1,500	6,0	-6,3	
I	-0,20 / +0,20	1,500	6,0	-1,80/ +1,80	
	V	and-Windrichtung	J Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,500	6,0	-3,60	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
	-0,20 / +0,20	1,500	6,0	-1,80/ +1,80	

Tabelle A.47

Windlasten System 4.2 Ort B & System 6.2 Ort B

System 4.3 Ort A & System 6.3 Ort A

Innendruck					
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	0,676	6,0	-1,22	
Innendruck	0,20	0,676	6,0	0,81	
	V	Vand-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	0,676	6,0	3,25	
E	-0,27	0,676	6,0	-1,10	
	C	ach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	0,676	6,0	-3,65	
Н	-0,70	0,676	6,0	-2,84	
_	-0,20 / +0,20	0,676	6,0	-0,81 / +0,81	
	W	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	0,676	6,0	-1,62	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
	-0,20 / +0,20	0,676	6,0	-0,81 / +0,81	

Tabelle A.48 Windlasten System 4.3 Ort A & System 6.3 Ort A

System 4.3 Ort B & System 6.3 Ort B

Innendruck					
Bereich	С _{рі} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]	
Innensog	-0,30	1,500	6,0	-2,70	
Innendruck	0,20	1,500	6,0	1,80	
	W	and-Windrichtung	g Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
D	0,80	1,500	6,0	7,20	
E	-0,27	1,500	6,0	-2,43	
	D	ach-Windrichtung	Breitseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
G	-0,90	1,500	6,0	-8,10	
Н	-0,70	1,500	6,0	-6,30	
_	-0,20 / +0,20	1,500	6,0	-1,80 / +1,80	
	Wa	and-Windrichtung	Längsseite		
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
С	-0,40	1,500	6,0	-3,60	
Dach-Windrichtung Längsseite					
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]	
	-0,20 / +0,20	1,500	6,0	-1,80 / +1,80	

Tabelle A.49

Windlasten System 4.3 Ort B & System 6.3 Ort B

System 5.2 Ort A

		Innendru	ck							
Bereich	C _{pi} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]						
Innensog	-0,30	0,676	6,0	-1,22						
Innendruck	0,20	0,676	6,0	0,81						
Wand-Windrichtung Breitseite										
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]						
D	0,80	0,676	6,0	3,25						
E	-0,27	0,676	6,0	-1,10						
		Dach-Windrichtung	g Breitseite							
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]						
G	-0,90	0,676	6,0	-3,65						
Н	-0,70	0,676	6,0	-2,84						
I	-0,20 / +0,20	0,676	6,0	-0,81 / +0,81						
	V	Vand-Windrichtung	g Längsseite							
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]						
С	-0,40	0,676	6,0	-1,62						
	[Dach-Windrichtung	Längsseite							
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]						
I	-0,20 / +0,20	0,676	6,0	-0,81 / +0,81						

Tabelle A.50 Windlasten System 5.2 Ort A

System 6.2 Ort A

	_	Innendru	ck	
Bereich	С _{рі} [-]	q _{p,zi} [kN/m²]	e [m]	w _i [kN/m]
Innensog	-0,30	0,676	6,0	-1,22
Innendruck	0,20	0,676	6,0	0,81
	1	Wand-Windrichtun	g Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
D	0,80	0,676	6,0	3,25
E	-0,255	0,676	6,0	-1,03
		Dach-Windrichtun	g Breitseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
G	-0,90	0,676	6,0	-3,65
Н	-0,70	0,676	6,0	-2,84
I	-0,20 / +0,20	0,676	6,0	-0,81 / +0,81
	V	Vand-Windrichtung	g Längsseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
С	-0,40	0,676	6,0	-1,62
	[Dach-Windrichtung	Längsseite	
Bereich	C _{pe,10} [-]	q _{p,ze} [kN/m²]	e [m]	w _e [kN/m]
	-0,20 / +0,20	0,676	6,0	-0,81 / +0,81

Tabelle A.51Windlasten System 6.2 Ort A

A.2 Lastfälle

Anbei die grafische Auflistung der eingegebenen Lastfälle der Systeme. In diesen Grafiken werden die Werte der Belastung nicht angezeigt, da diese je nach Standort und Systemgeometrie variieren. Die Bezeichnungen und Nummerierungen der einzelnen Lastfälle entsprechen den der Systemberechnungen mittels RSTAB.

A.2.1 Systeme 1 & 2

A.2.1.1 Tragwerk, Aufbau & Schneelast

LF1: Tragkonstruktion

LF2: Aufbau leicht

Bild A.74 Eigengewicht & Schneelast Systeme 1 & 2

A.2.1.2Windlasten

Folgende Beschriftungen wurden für die nachfolgenden Systemskizzen gewählt: w_{ex}...Wind auf Außenwand & Bereiche Dach außen (x=Zonenbez. nach EN 1991-1-4) w_i...Innendruck / Innensog auf Außenwand und Dach

LF8: Wind auf der Breitseite_LF3

LF9: Wind auf der Breitseite_LF4

LF11: Wind auf der Längsseite_LF6

LF10: Wind auf der Längsseite_LF5

A.2.2 Imperfektionslastfälle

Die Imperfektionen entsprechen den Vorgaben der EN 1993-1-1

Stabvorkrümmungen

Aufgrund der plastischen Stabilitätsnachweise und Querschnittnachweise sind aus der Tabelle die Werte für die plastische Berechnung in Rechnung gestellt worden.

Knicklinie	elastische Berechnung	plastische Berechnung
hach Tabelle 6.1	$e_{0,d}/L$	$e_{0,d}/L$
a ₀	1/350	1/300
a	1/300	1/250
b	1/250	1/200
c	1/200	1/150
d	1/150	1/100

Tabelle A.52	Bemessungswerte der Vorkrümmung e _{0.d} /L von Bauteilen	60
	0 0 1	

Anfansschiefstellung

$$\boldsymbol{\Phi} = \Phi_o \ast \alpha_h \ast \alpha_m \quad \text{mit} \quad \Phi_o = \frac{1}{200} \quad ; \quad \alpha_h = \frac{2}{\sqrt{h}} \quad ; \quad \alpha_m = \sqrt{0.5 \ast \left(1 + \frac{1}{m}\right)}$$

Stützenhöhe 6,0m

$$\boldsymbol{\Phi} = \frac{1}{200} * \frac{2}{\sqrt{6}} * \sqrt{0.5 * \left(1 + \frac{1}{2}\right)} = 1/282,84$$

Stützenhöhe 8,0m

$$\boldsymbol{\Phi} = \frac{1}{200} * \frac{2}{\sqrt{8}} * \sqrt{0.5 * \left(1 + \frac{1}{2}\right)} = 1/326, 60$$

Der Faktor m wird mit 2 angesetzt da beide Stäbe eine Vertikalbelastung größer 50% der durchschnittlichen Stützenlast in vertikaler Richtung übernehmen.

⁶⁰ EN 1993-1-1 Ausgabe 2006-10-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil1-1: Allgemeine Bemessungsregeln und Regeln f
ür den Hochbau Seite 36

Systemimperfektionen

Die Richtung der Imperfektionen wurde immer in ungünstiger Richtung angenommen, d.h. in Windrichtung bzw. in Richtung der Schwerkraft.

Ort A							Ort B						
S	Systemdaten Imperfektionen						Systemdaten Imperfektionen						
System	Pro	ofil	Schiefstellung $\Phi = \Phi_0^* \alpha_h^* \alpha_m$		Stabvorkrümmung e ₀ /L plastische Berechnung		System	Pi	ofil	Schiefst Φ=Φ₀*	ellung a _h *a _m	Stabvork e _c plast Berec	rümmung 5/L ische hnung
Bezeichnung	Stütze	Träger	Stütze	Träger	Stütze	Träger	Bezeichnung	Stütze	Träger	Stütze	Träger	Stütze	Träger
System 1.1	HEB 280	HEA 340	1/282,84	1/200	1/200	1/200	System 1.1	HEB 400	HEA 400	1/282,84	1/200	1/250	1/250
System 1.2	HEB 320	HEA 400	1/282,84	1/200	1/200	1/250	System 1.2	HEB 450	HEB 450	1/282,84	1/200	1/250	1/250
System 1.3	HEB 400	HEA 450	1/282,84	1/200	1/250	1/250	System 1.3	HEB 500	HEA 600	1/282,84	1/200	1/250	1/250
System 2.1	HEB 340	HEA 450	1/326,60	1/200	1/200	1/250	System 2.1	HEB 500	HEA 500	1/326,60	1/200	1/250	1/250
System 2.2	HEB 400	HEA 450	1/326,60	1/200	1/250	1/250	System 2.2	HEB 500	HEB 500	1/326,60	1/200	1/250	1/250
System 2.3	HEB 400	HEA 500	1/326,60	1/200	1/250	1/250	System 2.3	HEB 550	HEA 650	1/326,60	1/200	1/250	1/250

Tabelle A.53

Systemimperfektionen der Satteldachsysteme

Für das Nachweisverfahren II gelten die Lastfälle 12 und 13, wobei der LF12 der maßgebende

ist.

LF12: Schiefstellung & Vorkrümmung_LF 1 LF13: Schiefstellung & Vorkrümmung_LF 2

Für die Nachweisverfahren III & IV gilt der Lastfall14

LF14: Schiefstellung

Bild A.76 Imperfektionslastfälle Systeme 1 & 2

A.2.3 Systeme 3 – 6

Analog gelten die zuvor erwähnten Annahmen auch für die Systeme 3 – 6.

A.2.3.1Tragwerk, Aufbau & Schneelast

LF2: Aufbau leicht / schwer

LF3: Schnee_LF 1

Bild A.77 Eigengewicht & Schneelast Systeme 3 - 6

A.2.3.2Windlasten

w_{ex}...Wind auf Außenwand & Bereiche Dach außen (x=Zonenbez. nach EN 1991-1-4)

 $w_i \hdots linear heat \hdots linear heat \hdots \hdots$

A.2.3.3Imperfektionslastfälle

Die Imperfektionen entsprechen den Vorgaben der EN 1993-1-1

Stabvorkrümmungen

Aufgrund der plastischen Stabilitätsnachweise und Querschnittnachweise sind aus der Tabelle die Werte für die plastische Berechnung in Rechnung gestellt worden.

Knicklinie	elastische Berechnung	plastische Berechnung
hach rabelle 6.1	$e_{0,d}/L$	$e_{0,d}/L$
a ₀	1/350	1/300
a	1/300	1/250
ь	1/250	1/200
c	1/200	1/150
d	1/150	1/100

Tabelle A.54	
--------------	--

Bemessungswerte der Vorkrümmung e_{0,d}/L von Bauteilen⁶¹

Anfansschiefstellung

$$\Phi = \Phi_o * \alpha_h * \alpha_m \quad \text{mit} \quad \Phi_o = \frac{1}{200} \; ; \; \alpha_h = \frac{2}{\sqrt{h}} \; ; \; \alpha_m = \sqrt{0.5 * \left(1 + \frac{1}{m}\right)}$$

Stützenhöhe 6,0m

$$\boldsymbol{\Phi} = \frac{1}{200} * \frac{2}{\sqrt{6}} * \sqrt{0.5 * \left(1 + \frac{1}{2}\right)} = 1/282,84$$

Stützenhöhe 8,0m

$$\boldsymbol{\Phi} = \frac{1}{200} * \frac{2}{\sqrt{8}} * \sqrt{0.5 * \left(1 + \frac{1}{2}\right)} = 1/326, 60$$

Der Faktor m wird mit 2 angesetzt da beide Stäbe eine Vertikalbelastung größer 50% der durchschnittlichen Stützenlast in vertikaler Richtung übernehmen.

⁶¹ EN 1993-1-1 Ausgabe 2006-10-01: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau Seite 36

Systemimperfektionen

Die Richtung der Imperfektionen wurde immer in ungünstiger Richtung angenommen, d.h. in Windrichtung bzw. in Richtung der Schwerkraft.

Ort A							Ort B							
Sy	Systemdaten Imperfektionen					Systemdaten Imperfektionen								
System	Pro	ofil	Schiefstellung $\Phi = \Phi_0^* \alpha_h^* \alpha_m$		Stabvorkrümmung e ₀ /L plastische Berechnung		System	F	Profil	Schiefst Φ=Φ ₀ *	tellung α _h *α _m	Stabvork e _c plast Berec	rümmung /L ische hnung	
Bezeichnung	Stütze	Träger	Stütze	Träger	Stütze	Träger	Bezeichnung	Stütze	Träger	Stütze	Träger	Stütze	Träger	
System 3.1	HEB 260	HEA 300	1/282,84	-	1/200	1/200	System 3.1	HEB 320	HEA 450	1/282,84	-	1/200	1/250	
System 3.2	HEB 300	HEA 500	1/282,84	-	1/200	1/250	System 3.2	HEB 340	HEA 700	1/282,84	-	1/200	1/250	
System 3.3	HEB 320	HEA 650	1/282,84	-	1/200	1/250	System 3.3	HEB 360	HEA 900	1/282,84	-	1/250	1/250	
System 4.1	HEB 320	HEA 400	1/326,60	-	1/200	1/250	System 4.1	HEB 450	HEB 450	1/326,60	-	1/250	1/250	
System 4.2	HEB 320	HEA 500	1/326,60	-	1/200	1/250	System 4.2	HEB 400	HEA 650	1/326,60	-	1/250	1/250	
System 4.3	HEB 360	HEA 650	1/326,60	-	1/200	1/250	System 4.3	HEB 400	HEB 900	1/326,60	-	1/250	1/250	
System 5.1	HEB 300	HEA 500	1/282,84	-	1/200	1/250	System 5.1	HEB 450	HEA 500	1/282,84	-	1/250	1/250	
System 5.2	HEB 400	HEB 700	1/282,84	-	1/250	1/250	System 5.2	HEB 400	HEB 700	1/282,84	-	1/250	1/250	
System 5.3	HEB 450	HEB 900	1/282,84	-	1/250	1/250	System 5.3	HEB 700	HEB 900	1/282,84	-	1/250	1/250	
System 6.1	HEB 360	HEA 500	1/326,60	-	1/200	1/250	System 6.1	HEB 450	HEB 550	1/326,60	-	1/250	1/250	
System 6.2	HEB 400	HEB 700	1/326,60	-	1/250	1/250	System 6.2	HEB 450	HEB 700	1/326,60	-	1/250	1/250	
System 6.3	HEB 450	HEB 900	1/326,60	-	1/250	1/250	System 6.3	HEB 800	HEB 1000	1/326,60	-	1/200	1/200	

Tabelle A.55

Systemimperfektionen der Flachdachsysteme

Für das Nachweisverfahren II gelten die Lastfälle 12 und 13, wobei der LF12 der maßgebende ist.

LF12: Schiefstellung & Vorkrümmung_LF 1

LF13: Schiefstellung & Vorkrümmung_LF 2

Für die Nachweisverfahren III & IV gilt der Lastfall 14

LF14: Schiefstellung

Bild A.79 Imperfektionslastfälle Systeme 3 - 6

A.3 Lastfallkombinationen

Die folgenden Tabellen geben eine Übersicht, der für die RSTAB Berechnung verwendeten Lastfallkombinationen nach den Überlagerungsvorschriften des Eurocode 0 (EN 1990).

Gebildet werden die Lastfallkombinationen der Tragfähigkeit (ULS: STR/GEO) und der Gebrauchstauglichkeit (SLS: quasi ständige Kombination, häufige Kombination & charakteristische Kombination).

Die Imperfektionslastfälle und deren Anzahl ändern sich je nach Nachweisverfahren und sind deshalb hier nicht dargestellt. Sie werden mit einem Faktor von 1,0 in der Berechnung berücksichtigt. Dies hat zur Folge dass, sich je nach Nachweisverfahren die Lastfallkombination verdoppelt können z.B. im Nachweisverfahren II.

Die hier angeführten Lastfallkombinationsnummern LK entsprechen der Bezeichnung der RSTAB Berechnung.

				SY	STEME 3 -	6 STR/GE	0				
				S	Schnee Leit	einwirkung					
Beschreibung	LK	Gk	S1k	Ψ0,i*W1k	Ψ0,i*W2k	Ψ0,i*W3k	Ψ0,i*W4k	Ψ0,i*W5k	Ψ0,i*W6k	Ψ0,i*W7k	Ψ0,i*W8k
Schnee LF1 / Wind LF1	LK1	1,35	1,50	0,60*1,50	_	_	_	-	_	_	_
Schnee LF1 / Wind LF2	LK2	1,35	1,50	_	0,60*1,50	_	_	_	_	_	_
Schnee LF1 / Wind LF3	LK3	1,35	1,50	_	_	0,60*1,50	_	-	_	_	_
Schnee LF1 / Wind LF4	LK4	1,35	1,50	_	_	_	0,60*1,50	I	_	_	_
Schnee LF1 / Wind LF5	LK5	1,35	1,50	_	_	_	_	0,60*1,50	_	_	_
Schnee LF1 / Wind LF6	LK6	1,35	1,50	_	_	_	_	I	0,60*1,50	_	_
Schnee LF1 / Wind LF7	LK7	1,35	1,50	_	_	_	_	I	_	0,60*1,50	_
Schnee LF1 / Wind LF8	LK8	1,35	1,50	_	_	_	_	I	_	_	0,60*1,50
Schnee LF1	LK25	1,35	1,50	_	_	_	_	I	_	_	_
					Wind Leite	inwirkung					
Beschreibung	LK	Gk	W1k	W2k	W3k	W4k	W5k	W6k	W7k	W8k	Ψ0,i*S1k
Wind LF1 / Schnee LF1	LK9	1,35	1,50	_	_	-	_	_	_	_	0,50*1,50
Wind LF2 / Schnee LF1	LK10	1,35	_	1,50	_	_	_	_	_	_	0,50*1,50
Wind LF3 / Schnee LF1	LK11	1,35	_	_	1,50	_	_	I	_	_	0,50*1,50
Wind LF4 / Schnee LF1	LK12	1,35	_	_	_	1,50	_	I	_	_	0,50*1,50
Wind LF5 / Schnee LF1	LK13	1,35	_	_	_	_	1,50	-	_	_	0,50*1,50
Wind LF6 / Schnee LF1	LK14	1,35	_	_	_	_	_	1,50	_	_	0,50*1,50
Wind LF7 / Schnee LF1	LK15	1,35	_	_	_	_	_	-	1,50	_	0,50*1,50
Wind LF8 / Schnee LF1	LK16	1,35	_	_	_	_	_	-	_	1,50	0,50*1,50
Wind LF1	LK17	1,35	1,50	_	_	_	_	I	_	_	_
Wind LF2	LK18	1,35	_	1,50	_	_	_	I	_	_	_
Wind LF3	LK19	1,35	_	_	1,50	_	_	I	_	_	_
Wind LF4	LK20	1,35	_	_	_	1,50	_	-	_	_	_
Wind LF5	LK21	1,35	_	_	_	_	1,50	_	_	_	_
Wind LF6	LK22	1,35	_	_	_	_	_	1,50	_	_	_
Wind LF7	LK23	1,35	_	_	_	_	_	_	1,50	_	_
Wind LF8	LK24	1,35	_	_	_	_	_	-	_	1,50	_

A.3.1 Lastfallkombinationen Grenzzustände der Tragfähigkeit

Tabelle A.56

Lastfallkombinationen ULS STR/GEO Systeme 3 – 6

				SI	STEME 1	& 2 STR/0	GEO				
			Schn	ee Leite	inwirkung	/ Wind Beg	leiteinwirk	ung			
Beschreibung	LK	Gk	S1k	S2k	S3k	Ψ0,i*W1k	Ψ0,i*W2k	Ψ0,i*W3k	Ψ0,i*W4k	Ψ0,i*W5k	Ψ0,i*W6k
Schnee LF1 / Wind LF1	LK1	1,35	1,50	_	_	0,60*1,50	_	_	_	_	_
Schnee LF1 / Wind LF2	LK2	1,35	1,50	_	-	_	0,60*1,50	_	_	_	_
Schnee LF1 / Wind LF3	LK3	1,35	1,50	_	-	_	_	0,60*1,50	_	_	_
Schnee LF1 / Wind LF4	LK4	1,35	1,50	_	-	_	_	_	0,60*1,50	_	_
Schnee LF1 / Wind LF5	LK5	1,35	1,50	_	_	_	_	_	_	0,60*1,50	_
Schnee LF1 / Wind LF6	LK6	1,35	1,50	_	-	_	_	_	_	_	0,60*1,50
Schnee LF1 / Wind LF1	LK7	1,35	Ι	1,50	_	0,60*1,50	_	_	_	_	_
Schnee LF2 / Wind LF2	LK8	1,35	_	1,50	I	_	0,60*1,50	_	_	_	_
Schnee LF2 / Wind LF3	LK9	1,35	_	1,50	_	_	_	0,60*1,50	_	_	_
Schnee LF2 / Wind LF4	LK10	1,35	_	1,50	I	I	1	-	0,60*1,50	I	_
Schnee LF2 / Wind LF5	LK11	1,35	_	1,50	_	_	-	_	_	0,60*1,50	_
Schnee LF2 / Wind LF6	LK12	1,35	_	1,5	_	_	-	_	_	-	0,60*1,50
Schnee LF3 / Wind LF1	LK13	1,35	_	_	1,50	0,60*1,50			_	_	_
Schnee LF3 / Wind LF2	LK14	1,35	_	_	1,50	_	0,60*1,50	_	_	_	_
Schnee LF3 / Wind LF3	LK15	1,35	_	_	1,50	_	_	0,60*1,50		_	_
Schnee LF3 / Wind LF4	LK16	1,35	_	_	1,50		_	_	0,60*1,50		_
Schnee LF3 / Wind LF5	LK17	1,35	_	_	1,50		_	_	_	0,60*1,50	_
Schnee LF3 / Wind LF6	LK18	1,35	_		1,5	_	_			_	0,60*1,50
Schnee LF1	LK43	1,35	1,50								
Schnee LF2	LK44	1,35		1,50				_		_	
Schnee LF3	LK45	1,35	_		1,50			-		-	
		<u> </u>	 Wind	Leitein	virkung / S	- Schnee Bec	 leiteinwirk	ung –	_	_	_
Beechro!h		01	14/41	14/01	14/01	NA/41-	M/FL				III0 :*001-
Descrireibung	LFK	GK	W1K	W2K	W3K	VV4K	VV5K	VVOK	Ψ0,I*S1K	Ψ0,I^S2K	Ф0,І^ЅЗК
Wind LF1 / Schnee LF1	LFK LK19	Gк 1,35	W1K 1,50	w2k	- W3K			<u></u>	Ψ0,I*S1k 0,50*1,50	Ψ0,I^S2K	Ψ0,I^S3K
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1	LFK LK19 LK20	Gк 1,35 1,35	W1k 1,50	W2k 1,50					Ψ0,I*S1k 0,50*1,50 0,50*1,50	Ψ0,I^S2K 	Ψ0,I^S3K
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1	LFK LK19 LK20 LK21	бк 1,35 1,35 1,35	W1k 1,50 _	- 1,50	W3k 1,50		- - -		40,1*S1k 0,50*1,50 0,50*1,50 0,50*1,50	Ψ0,I^S2K 	Ψ0,I^S3K
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1	LFK LK19 LK20 LK21 LK22	1,35 1,35 1,35 1,35 1,35	w1к 1,50 _ _		W3K 1,50 				40,1*S1k 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	Ψ0,I^S2K 	
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1	LFK LK19 LK20 LK21 LK22 LK23	GK 1,35 1,35 1,35 1,35 1,35 1,35 1,35	W1k 1,50	W2k	W3K 1,50 	W4k 1,50	wэк 		40,1*S1k 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50		Ψ0,I°S3K
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1	LFK LK19 LK20 LK21 LK22 LK23 LK24	GK 1,35 1,35 1,35 1,35 1,35 1,35 1,35	W1k 1,50		wзк 1,50 				40,1°S1k 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50		
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF1 / Schnee LF2	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25	GK 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35	W1k 1,50 1,50				wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	40,1^52k	
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF1 / Schnee LF2 Wind LF2 / Schnee LF2	LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26	GK 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35	W1k 1,50	W2k	W3k 1,50		wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	 	Ψ0,I°S3K
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF2 Wind LF1 / Schnee LF2 Wind LF2 / Schnee LF2	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27	Gk 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35	W1k 1,50 1,50 1,50	w2k 	W3k	W4k	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	40,1°52k - - - - 0,50*1,50 0,50*1,50 0,50*1,50	Ψ0,I°S3K
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF1 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF4 / Schnee LF2	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28	Gk 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35	W1k 1,50 1,50	w2k 	W3k 	W4k 1,50 1,50	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	40,1^52k - - - - 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	Ψ0,I°S3K
beschreibung Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF1 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF5 / Schnee LF2	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK29	GK 1,35	W1k 1,50 1,50	w2k 	W3k	W4k _ _ 1,50 _ <td>wsк </td> <td></td> <td>Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 </td> <td>40,1^52k - - - 0,50*1,50 0,50*</td> <td>Ψ0,I°S3K</td>	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	40,1^52k - - - 0,50*1,50 0,50*	Ψ0,I°S3K
Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF4 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF5 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF5 / Schnee LF2	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK29 LK20 LK30	GK 1,35	W1k 1,50	W2k 1,50 1,50 1,50	W3k 	W4k _ _ 1,50 _ <td>wsк </td> <td></td> <td>Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 </td> <td>40,1^52k - - - - 0,50*1,50 0</td> <td>Ψ0,I°53K</td>	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	40,1^52k - - - - 0,50*1,50 0	Ψ0,I°53K
DescriptiongWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF3 / Schnee LF1Wind LF4 / Schnee LF1Wind LF5 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK29 LK20 LK30 LK31	GK 1,35	W1k 1,50	w2k 	W3k	W4k 1,50	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	40,1^52k - - - 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 - - - - - - - - -	
beschreibung Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF1 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF5 / Schnee LF2 Wind LF2 / Schnee LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK29 LK30 LK30 LK31 LK32	GK 1,35	W1k 1,50 1,50 1,50	w2k 	W3k	W4k _ _ _ 1,50 _ <td>wsк </td> <td></td> <td>Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 </td> <td>40,1°52k - - - 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 - - - - - - - - -</td> <td></td>	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	40,1°52k - - - 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 - - - - - - - - -	
beschreibung Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF3 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF1 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF5 / Schnee LF2 Wind LF5 / Schnee LF2 Wind LF6 / Schnee LF2 Wind LF6 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF5 / Schnee LF2 Wind LF4 / Schnee LF2 Wind LF5 / Schnee LF2 Wind LF3 / Schnee LF3 Wind LF3 / Schnee LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK29 LK30 LK31 LK31 LK32 LK31 LK32 LK31	Gk 1,35	W1k 1,50	w2k _ 1,50 _ _ 1,50 _ 1,50 _ 1,50 _ 1,50 _ 1,50	W3k	W4k _ _ 1,50 _ <td>wsк </td> <td></td> <td>Ψ0,I*S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 </td> <td>40,1^S2k </td> <td></td>	wsк 		Ψ0,I*S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 	40,1^S2k	
beschreibung Wind LF1 / Schnee LF1 Wind LF2 / Schnee LF1 Wind LF4 / Schnee LF1 Wind LF5 / Schnee LF1 Wind LF6 / Schnee LF1 Wind LF1 / Schnee LF2 Wind LF2 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF3 / Schnee LF2 Wind LF4 / Schnee LF3 Wind LF1 / Schnee LF3 Wind LF3 / Schnee LF3 Wind LF3 / Schnee LF3 Wind LF4 / Schnee LF3 Wind LF4 / Schnee LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK29 LK30 LK31 LK32 LK31 LK32 LK33 LK34	Gk 1,35	W1k 1,50	W2k	W3k	W4k 1,50	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	- -
DescriptiongWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF3 / Schnee LF1Wind LF5 / Schnee LF1Wind LF6 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF3Wind LF2 / Schnee LF3Wind LF4 / Schnee LF3Wind LF3 / Schnee LF3Wind LF3 / Schnee LF3Wind LF4 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK29 LK30 LK31 LK32 LK33 LK34 LK35	GK 1,35	W1k 1,50	w2k _ 1,50 _ _ _ 1,50 _ 1,50 _ 1,50 _ 1,50 _ 1,50 _ _ 1,50	W3k	W4k 1,50	wsк 		Ψ0,I*S1k 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	40,1°52k - - - - 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 - - - - - - - - -	
DescriptiongWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF3 / Schnee LF1Wind LF5 / Schnee LF1Wind LF6 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF2Wind LF4 / Schnee LF3Wind LF4 / Schnee LF3Wind LF3 / Schnee LF3Wind LF4 / Schnee LF3Wind LF4 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK27 LK28 LK29 LK30 LK31 LK32 LK34 LK34 LK34 LK35 LK34 LK35 LK34 LK35 LK34	Gk 1,35	W1k 1,50	W2k	W3k	W4k	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	40,1^52k	- -
DescriptiongWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF4 / Schnee LF1Wind LF5 / Schnee LF1Wind LF6 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF3Wind LF1 / Schnee LF3Wind LF3 / Schnee LF3Wind LF3 / Schnee LF3Wind LF3 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF6 / Schnee LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK26 LK27 LK28 LK30 LK31 LK32 LK33 LK34 LK35 LK35 LK36 LK37	Gk 1,35	W1k 1,50	W2k	W3k	W4k	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	40,1^52k	- -
DescriptiongWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF4 / Schnee LF1Wind LF5 / Schnee LF1Wind LF6 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF4 / Schnee LF3Wind LF4 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF6 / Schnee LF3Wind LF6 / Schnee LF3Wind LF5 / Schnee LF3Wind LF6 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF4 / Schnee LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK26 LK27 LK28 LK30 LK31 LK32 LK33 LK34 LK35 LK35 LK35 LK37 LK35 LK37 LK35 LK37 LK35	Gk 1,35	W1k 1,50	W2k	W3k	W4k	wsк 		Ψ0,I'S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	+0,1^S2k	
DescriptiongWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF3 / Schnee LF1Wind LF4 / Schnee LF1Wind LF6 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF4 / Schnee LF3Wind LF2 / Schnee LF3Wind LF3 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF6 / Schnee LF3Wind LF6 / Schnee LF3Wind LF6 / Schnee LF3Wind LF6 / Schnee LF3Wind LF1Wind LF3	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK26 LK27 LK28 LK20 LK31 LK31 LK32 LK33 LK34 LK35 LK35 LK35 LK36 LK37 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38	Gk 1,35	W1k 1,50	W2k	W3k	W4k 1,50	wsк 		Ψ0,I*S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	40,1^S2k	Ψ0,1°53 k
DescrifeibungWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF3 / Schnee LF1Wind LF5 / Schnee LF1Wind LF6 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF2Wind LF5 / Schnee LF2Wind LF6 / Schnee LF2Wind LF6 / Schnee LF3Wind LF3 / Schnee LF3Wind LF3 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF6 / Schnee LF3Wind LF6 / Schnee LF3Wind LF6 / Schnee LF3Wind LF6 / Schnee LF3Wind LF1Wind LF2Wind LF3Wind LF4	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK27 LK28 LK29 LK30 LK31 LK32 LK33 LK34 LK35 LK36 LK35 LK36 LK37 LK38 LK36 LK37 LK36 LK36 LK37 LK36 LK37 LK36 LK37 LK36 LK37 LK36 LK37 LK36 LK36 LK37 LK36 LK36 LK37 LK36 LK37 LK36 LK37 LK36 LK37 LK36 LK36 LK37 LK36 LK36 LK37 LK36 LK36 LK36 LK37 LK36 LK36 LK36 LK36 LK36 LK37 LK36	Gk 1,35	W1k 1,50	W2k	W3k	W4k	wsк 		Ψ0,I*S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 -	40,1^S2k	Ψ0,1°53 k
Descrive/bungWind LF1 / Schnee LF1Wind LF2 / Schnee LF1Wind LF3 / Schnee LF1Wind LF5 / Schnee LF1Wind LF6 / Schnee LF1Wind LF1 / Schnee LF2Wind LF2 / Schnee LF2Wind LF3 / Schnee LF2Wind LF3 / Schnee LF2Wind LF4 / Schnee LF2Wind LF4 / Schnee LF2Wind LF4 / Schnee LF2Wind LF4 / Schnee LF2Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF5 / Schnee LF3Wind LF6 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4 / Schnee LF3Wind LF5 / Schnee LF3Wind LF4Wind LF3Wind LF3Wind LF3Wind LF4Wind LF4	LFK LK19 LK20 LK21 LK22 LK23 LK24 LK25 LK26 LK27 LK28 LK26 LK27 LK28 LK30 LK31 LK32 LK33 LK34 LK35 LK36 LK37 LK38 LK36 LK37 LK38 LK36 LK37 LK38 LK36 LK37 LK38 LK37 LK38 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK37 LK38 LK	Gk 1,35	W1k 1,50	W2k	W3k	W4k	wsк 		Ψ0,I*S1K 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50 0,50*1,50	40,1^52k	Ψ0,1°53k

Tabelle A.57

Lastfallkombinationen ULS STR/GEO Systeme 1 & 2
A.3.2 Lastfallkombinationen Grenzzustände der Gebrauchstauglichkeit SLS

Quasi-ständige Kombination													
Systeme 1 - 6													
Beschreibung	LK	Gk	Ψ2,i*S1k	Ψ2,i*S2k	Ψ2,i*S3k	Ψ2,i*W1k	Ψ2,i*W2k	Ψ2,i*W3k	Ψ2,i*W4k	Ψ2,i*W5k	Ψ2,i*W6k	Ψ2,i*W7k	Ψ2,i*W8k
Tragwerk / Schnee / Wind	LK46 / LK26	1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0	0,00*1,0

Tabelle A.58

Lastfallkombinationen SLS Quasi-ständig Kombination Systeme 1 - 6

Häufige Kombination: Systeme 1 & 2											
Schnee Leiteinwirkung											
Beschreibung	LK	Gk	Ψ1,i*S1k	Ψ1,i*S2k	Ψ1,i*S3k	Ψ2,i*W1k	Ψ2,i*W2k	Ψ2,i*W3k	Ψ2,i*W4k	Ψ2,i*W5k	Ψ2,i*W6k
Schnee LF1	LK47	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Schnee LF2	LK48	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Schnee LF3	LK49	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Wind Leiteinwirkung											
Beschreibung	LK	Gk	Ψ1,i*W1k	Ψ1,i*W2k	Ψ1,i*W3k	Ψ1,i*W4k	Ψ1,i*W5k	Ψ1,i*W6k	Ψ2,i*S1k	Ψ2,i*S2k	Ψ2,i*S3k
Wind LF1	LK50	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Wind LF2	LK51	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Wind LF3	LK52	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Wind LF4	LK53	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Wind LF5	LK54	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00
Wind LF6	LK55	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00
			-	Häufig	e Kombinat	tion: Syster	ne 3 - 6		-		
				:	Schnee Lei	teinwirkung	9				
Beschreibung	LK	Gk	Ψ1,i*S1k	Ψ2,i*W1k	Ψ2,i*W2k	Ψ2,i*W3k	Ψ2,i*W4k	Ψ2,i*W5k	Ψ2,i*W6k	Ψ2,i*W7k	Ψ2,i*W8k
Schnee LF1	LK27	1,00	0,20*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,00*1,00	0,20*1,00	0,00*1,00	0,00*1,00
	-		-		Wind Leite	einwirkung			-		
Beschreibung	LK	Gk	Ψ1,i*W1k	Ψ1,i*W2k	Ψ1,i*W3k	Ψ1,i*W4k	Ψ1,i*W5k	Ψ1,i*W6k	Ψ1,i*W7k	Ψ1,i*W8k	Ψ2,i*S1k
Wind LF1	LK28	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF2	LK29	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF3	LK30	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF4	LK31	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF5	LK32	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF6	LK33	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF7	LK34	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00
Wind LF8	LK35	1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,20*1,00	0,00*1,00

Tabelle A.59

59 Lastfa

Lastfallkombinationen SLS Häufige Kombination Systeme 1 - 6

	Charakteristische (seltene) Kombination: Systeme 1 & 2										
Schnee Leiteinwirkung											
Beschreibung	LK	Gk	S1k	S2k	S3k	Ψ0,i*W1k	Ψ0,i*W2k	Ψ0,i*W3k	Ψ0,i*W4k	Ψ0,i*W5k	Ψ0,i*W6k
Schnee LF1 / Wind LF1-6	LK56 - LK61	1,00	1,00	1,00	1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00
Schnee LF2 / Wind LF1-6	LK62 - LK67	1,00	1,00	1,00	1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00
Schnee LF3 / Wind LF1-6	LK68 - LK73	1,00	1,00	1,00	1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00
Wind Leiteinwirkung											
Beschreibung	LK	Gk	W1k	W2k	W3k	W4k	W5k	W6k	Ψ0,i*S1k	Ψ0,i*S2k	Ψ0,i*S3k
Wind LF1-6 / Schnee LF1	LK74 - LK79	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,50*1,00	0,50*1,00	0,50*1,00
Wind LF1-6 /Schnee LF2	LK80 - LK85	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,50*1,00	0,50*1,00	0,50*1,00
Wind LF1-6 /Schnee LF3	LK86 - LK91	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,50*1,00	0,50*1,00	0,50*1,00
		С	harakteris	stische (sel	tene) Komb	oination: Sy	steme 3 - 6				
				Schne	e Leiteinwi	rkung					
Beschreibung	LK	Gk	S1k	Ψ0,i*W1k	Ψ0,i*W2k	Ψ0,i*W3k	Ψ0,i*W4k	Ψ0,i*W5k	Ψ0,i*W6k	Ψ0,i*W7k	Ψ0,i*W8k
Schnee LF1 / Wind LF1-8	LK36 - LK43	1,00	1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00	0,60*1,00
Wind Leiteinwirkung											
Beschreibung	LK	Gk	W1k	W2k	W3k	W4k	W5k	W6k	W7k	W8k	Ψ0,i*S1k
Wind LF1-8 / Schnee LF1	LK44 - LK51	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,50*1,00

Tabelle A.60

Lastfallkombinationen SLS Charakteristische Kombination Systeme 1 – 6

A.3.3 Maßgebende Lastfallkombinationen

Nach korrekter Eingabe und Auswertung der Systemschnittkräfte sind hier nun die maßgebenden Lastfallkombinationen für die Bemessung des Stab 4 (Satteldachsysteme) und des Stab 3 (Flachdachsysteme) grafisch dargestellt.

Im digitalen Anhang B sind für jede Systembeschreibung die Werte der dazugehörigen Belastung in kN/m angeführt.

Folgende Beschriftungen wurden für die nachfolgenden Systemskizzen gewählt:

- wex...Wind auf Außenwand & Bereiche Dach außen (x=Zonenbezeichnung nach EN 1993-1-4
- wi...Innendruck / Innensog auf Außenwand und Dach
- S...Schneelast
- G...Eigengewicht / Aufbau
- e₀/L...Vorkrümmungen (geometrische Ersatzimperfektionen)
- Φ...Schiefstellungen

In den Darstellungen sind ebenfalls die Teilsicherheitsbeiwerte y und Kombinationsbeiwerte u der Leit- und Begleiteinwirkungen der jeweiligen Lastfallkombination angeführt.

Die Bezeichnung der Lastfallkombinationen besitzt folgenden Aufbau:

Kombinationsnummer: Leiteinwirkung_Begleiteinwirkung_Imperfektionen

A.3.3.1Systeme 1 & 2 maßgebende LK4 ULS

LK4: Schnee LF1_Wind LF4_Imperfektionen

A.3.3.2Systeme 3 -6 maßgebende LK2 ULS

A.3.3.3Systeme 1 & 2 maßgebende LK SLS

maximale Durchbiegung [uz] des Trägers

LK59: Eigengewicht_Schnee LF1_Wind LF4_Schiefstellung / Vorkrümmung

maximale Horizontalverschiebung [ux]

LK83: Eigengewicht_Wind LF4_Schnee LF2_Schiefstellung / Vorkrümmung

A.3.3.4Systeme 3 - 6 maßgebende LK SLS

maximale Durchbiegung [uz] des Trägers

LK41: Eigengewicht_Schnee LF1_Wind LF6(Wind Längsseits)_Schiefstellung / Vorkrümmung

Bild A.84 maßgebende Lastfallkombination Systeme 3 – 6, LK41 SLS [uz]

maximale Horizontalverschiebung [ux] LK47

LK47: Eigengewicht_Wind LF4_Schnee LF1_Schiefstellung / Vorkrümmung

Anhang B Auswertung

Verweise

Literaturverzeichnis

- Eurocode 0: Grundlagen der Tragwerksplanung / Ausgabe 2003-03-01
- Eurocode 1: Einwirkungen aus Tragwerke Teil 1-3: Allgemeine Einwirkungen Schneelasten Ausgabe 2005-08-01
- Eurocode 1: Einwirkungen aus Tragwerke Teil 1-4: Allgemeine Einwirkungen Windlasten Ausgabe 2005-11-01
- Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau Ausgabe2012-03-01
- SKRIPTUM Stahlbau GL Technische Universität Graz Institut f
 ür Stahlbau Ausgabe: S-5-36-2012
- SKRIPTUM Stahlbau VU Technische Universität Graz Institut f
 ür Stahlbau Ausgabe: S-5-20-2008
- SKRIPTUM Baustatik 2 Technische Universität Graz Institut f
 ür Baustatik Ausgabe: S-5-20-2008
- Grundlagen der Baustatik Modelle und Berechnungsmethoden f
 ür ebene Stabtragwerke / Dieter Dinkler / 2.Auflage 2012 / Springer Vieweg
- Stahlbau Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten / Petersen Christian / 4. Auflage 2012 / Springer Vieweg
- Statik und Stabilität der Baukonstruktionen / Christian Petersen / 2. Auflage 1992
- Portal und Hallenrahmen Aufgabensammlung aus dem Gebiet der Statik/ 1. Auflage / 1967
- Bautabellen für Ingenieure / Schneider / 21. Auflage 2014
- Rahmentragwerke in Stahl / ÖSTV / Oktober 1987
- Rahmentragwerke und Durchlaufträger / Richard Guldan / 1959
- Programmbeschreibung der Firma Dlubal, Zusatzmodul RSKNICK / März 2013
- Profiltabelle der Firma convex

Abbildungsverzeichnis

Bild 1.1	allgemeine Systemskizzen	5
Bild 1.2	Systemskizzen Satteldach	7
Bild 1.3	Systemskizzen Flachdach	8
Bild 2.1	Nachweisverfahren I	9
Bild 2.2	Nachweisverfahren II	10
Bild 2.3	Nachweisverfahren III	10
Bild 2.4	Nachweisverfahren IV	11
Bild 2.5	Beispiel Kragarm Theorie I. Ordnung	11
Bild 2.6	Beispiel Kragarm Theorie II. Ordnung	12
Bild 2.7	Geometrisch nichtlineares Tragverhalten von Knickstäben	12
Bild 2.8	Berechnungsverfahren	14
Bild 2.9	Zuordnung der Berechnungsverfahren zur Querschnittsklasse; Beispiel für alleinige E Baustahl S235	liegung M _y und
Bild 3.1	maßgebende Schneelast, System 3.1.Ort A	18
Bild 3.2	Bezugshöhe ze in Abhängigkeit von h und b und Winddruckverteilung_Ort A	19
Bild 3.3	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 3.1	20
Bild 3.4	Einteilung der Dachflächen bei Flachdächern_Breitseite	21
Bild 3.5	maßgebender Windlastfall, LF2 System 3.1 Ort A	22
Bild 3.6	Eingabemaske der Imperfektionen im Statikprogramm	23
Bild 3.7	Imperfektionslastfälle, Systeme 3 - 6	24
Bild 3.8	maßgebende Lastfallkombination Flachdachsysteme, LK2 ULS	26
Bild 3.9	Beispiel, Systemskizze 1.2 Ort A	31
Bild 3.10	Beispiel, Lastfallkombinationen System 1.2 Ort A	31
Bild 3.11	Beispiel, Schnittkraftverlauf NW IV System 1.2 Ort A	32
Bild 3.12	RSKNICK Ergebnismaske (oben: Knicklängenbeiwerte; unten: Verzweigungslastfaktore	n) 41
Bild 4.1	maßgebende Lastfallkombinationen, ULS der Vorbemessung	42
Bild 4.2	maßgebende Lastfallkombinationen, SLS der Vorbemessung, System1 & 2	43
Bild 4.3	maßgebende Lastfallkombinationen, SLS der Vorbemessung, Systeme 3 - 6	43
Bild 5.1	maßgebende Lastkombination, LK 4_Systeme 1 & 2 ULS	47
Bild 5.2	maßgebende Lastfallkombination, LK 2_Systeme 3 – 6	47
Bild 5.3	maßgebende Lastfallkombination Systeme 1 & 2, LK59 SLS [uz]	48
Bild 5.4	maßgebende Lastfallkombination Systeme 1 & 2, LK83 SLS [ux]	48
Bild 5.5	maßgebende Lastfallkombination Systeme 3 – 6, LK41 SLS [uz]	49
Bild 5.6	maßgebende Lastfallkombination Systeme 3 – 6, LK47 SLS [ux]	49
Bild 6.1	maßgebende Knickfigur des Vergrößerungsbeiwert α_{cr}	58
Bild 6.2	maßgebende Lastfallkombination Moment TH II. Ordnung	59
Bild 6.3	Systemskizze 1.1 Ort A	60
Bild 6.4	Lastfallkombinationen System 1.1 Ort A	60
Bild 6.5	Schnittkraftverlauf NWV II System 1.1 Ort A	61
Bild 6.6	Schnittkraftverlauf NWV III System 1.1 Ort A	63
Bild 6.7	Schnittkraftverlauf NWV IV System 1.1 Ort A	65
Bild 6.8	Systemskizze 2.3 Ort A	67

Bild 6.9	Lastfallkombinationen System 2.3 Ort A	67
Bild 6.10	Schnittkraftverlauf NWV II System 2.3 Ort A	68
Bild 6.11	Schnittkraftverlauf NWV III System 2.3 Ort A	70
Bild 6.12	Schnittkraftverlauf NWV IV System 2.3 Ort A	72
Bild 6.13	Systemskizze 3.1 Ort B	74
Bild 6.14	Lastfallkombinationen System 3.1 Ort B	74
Bild 6.15	Schnittkraftverlauf NWV II System 3.1 Ort B	75
Bild 6.16	Schnittkraftverlauf NWV III System 3.1 Ort B	77
Bild 6.17	Schnittkraftverlauf NWV IV System 3.1 Ort B	79
Bild 6.18	Systemskizze 3.2 Ort A	81
Bild 6.19	Lastfallkombinationen System 3.2 Ort A	81
Bild 6.20	Schnittkraftverlauf NWV II System 3.2 Ort A	82
Bild 6.21	Schnittkraftverlauf NWV III System 3.2 Ort A	84
Bild 6.22	Schnittkraftverlauf NWV IV System 3.2 Ort A	86
Bild 6.23	Systemskizze 4.3 Ort B	88
Bild 6.24	Lastfallkombinationen System 4.3 Ort B	88
Bild 6.25	Schnittkraftverlauf NWV II System 4.3 Ort B	89
Bild 6.26	Schnittkraftverlauf NWV III System 4.3 Ort B	91
Bild 6.27	Schnittkraftverlauf NWV IV System 4.3 Ort B	93
Bild 6.28	Systemskizze 5.1 Ort A	95
Bild 6.29	Lastfallkombinationen System 5.1 Ort A	95
Bild 6.30	Schnittkraftverlauf NWV II System 5.1 Ort A	96
Bild 6.31	Schnittkraftverlauf NWV III System 5.1 Ort A	98
Bild 6.32	Schnittkraftverlauf NWV IV System 5.1 Ort A	100
Bild 6.33	Systemskizze 6.2 Ort B	102
Bild 6.34	Lastfallkombinationen System 6.2 Ort B	102
Bild 6.35	Schnittkraftverlauf NWV II System 6.2 Ort B	103
Bild 6.36	Schnittkraftverlauf NWV III System 6.2 Ort B	105
Bild 6.37	Schnittkraftverlauf NWV IV System 6.2 Ort B	107
Bild A.38	Bezugshöhe ze in Abhängigkeit von h und b und Winddruckverteilung_Ort A	112
Bild A.39	Bezugshöhe ze in Abhängigkeit von h und b und Winddruckverteilung_ORT B	113
Bild A.40	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite System 1.1	118
Bild A.41	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 1.2	119
Bild A.42	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 1.3	120
Bild A.43	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 2.1	121
Bild A.44	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 2.2	122
Bild A.45	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 2.3	123
Bild A.46	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_System 3.1 & 5.1	124
Bild A.47	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 3.2 & 5.2	125
Bild A.48	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 3.3 & 5.3	126
Bild A.49	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 4.1. & 6.1	127
Bild A.50	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 4.2 & 6.2	128
Bild A.51	Einteilung der Wandflächen bei vertikalen Wänden_Breitseite_Systeme 4.3 & 6.3	129

Bild A.52	Einteilung der Dachflächen bei Sattel- und Trogächern_Breitseite	130
Bild A.53	Einteilung der Dachflächen bei Flachdächern_Breitseite	131
Bild A.54	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 1.1	132
Bild A.55	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 1.2	133
Bild A.56	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 1.3	134
Bild A.57	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 2.1	135
Bild A.58	Einteilung der Wandflächen bei vertikalen Wänden: längsseite_System 2.2	136
Bild A.59	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_System 2.3	137
Bild A.60	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 3.1 &5.1	138
Bild A.61	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 3.2 & 5.2	139
Bild A.62	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 3.3 & 5.3	140
Bild A.63	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 4.1 & 6.1	141
Bild A.64	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 4.2 & 6.2	142
Bild A.65	Einteilung der Wandflächen bei vertikalen Wänden_Längsseite_Systeme 4.3 & 6.3	143
Bild A.66	Einteilung der Dachflächen bei Sattel- und Trogächern_Längsseite	144
Bild A.67	Einteilung der Dachflächen bei Flachdächern_Längsseite	145
Bild A.68	Einteilung der Wandflächen bei vertikalen Wänden_Zusammenfassung_Breitseite	146
Bild A.69	Einteilung der Dachflächen bei Sattel- und Trogdächern_Zusammenfassung_Breitseite	147
Bild A.70	Einteilung der Dachflächen bei Flachdächern_Zusammenfassung_Breitseite	147
Bild A.71	Einteilung der Wandflächen bei vertikalen Wänden_Zusammenfassung_Längsseite	148
Bild A.72	Einteilung der Dachflächen bei Sattel- und Trogdächern_Zusammenfassung_Längsseite	149
Bild A.73	Einteilung der Dachflächen bei Flachdächern_Zusammenfassung_Längsseite	149
Bild A.74	Eigengewicht & Schneelast Systeme 1 & 2	163
Bild A.75	Windlastfälle Systeme 1 & 2	164
Bild A.76	Imperfektionslastfälle Systeme 1 & 2	166
Bild A.77	Eigengewicht & Schneelast Systeme 3 - 6	167
Bild A.78	Windlastfälle Systeme 3 - 6	168
Bild A.79	Imperfektionslastfälle Systeme 3 - 6	170
Bild A.80	maßgebende Lastkombination, LK 4_Systeme 1 & 2 ULS	175
Bild A.81	maßgebende Lastfallkombination, LK 2_Systeme 3 - 6	175
Bild A.82	maßgebende Lastfallkombination Systeme 1 & 2, LK59 SLS [uz]	176
Bild A.83	maßgebende Lastfallkombination Systeme 1 & 2, LK83 SLS [ux]	176
Bild A.84	maßgebende Lastfallkombination Systeme 3 – 6, LK41 SLS [uz]	177
Bild A.85	maßgebende Lastfallkombination Systeme 3 – 6, LK47 SLS [ux]	177

Tabellenverzeichnis

Tabelle 2.1	[5.1] Bemessungswerte der Vorkrümmung e _{0,d} /L von Bauteilen	13
Tabelle 3.1	maßgebenden Windlasten, System 3.1 Ort A	22
Tabelle 3.2	[5.1] Bemessungswert der Vorkrümmung e0/L von Bauteilen	24
Tabelle 3.3	Lastfallkombinationen ULS STR/GEO, Systeme 3 - 6	25
Tabelle 3.4	Lastfallkombinationen SLS Quasi-ständig Kombination, System 3 – 6	27
Tabelle 3.5	Lastfallkombinationen SLS Häufige Kombination, Systeme 3 – 6	27
Tabelle 3.6	Lastfallkombinationen SLS Charakteristische Kombination, Systeme 3 - 6	28
Tabelle 3.7	Beispieltabelle mit Erklärung NWV IV System 1.2 Ort A	33
Tabelle 3.8	[6.2] Auswahl der Knicklinie eines Querschnitts	34
Tabelle 3.9	[6.1] Imperfektionsbeiwerte der Knicklinien	34
Tabelle 3.10	[6.5] Empfohlene Biegedrillknicklinien nach Gleichung [6.57]	35
Tabelle 3.11	[6.3] Empfohlene Imperfektionsbeiwerte der Knicklinien für das Biegedrillknicken	35
Tabelle 3.12	[6.6] Empfohlene Korrekturbeiwerte kc	36
Tabelle 3.13	[B.3] Äquivalente Momentenbeiwerte Cm	37
Tabelle 4.1	Ergebnistabelle der Vorbemessung	44
Tabelle 4.2	Profiltabelle der Bemessung	45
Tabelle 5.1	Zusammenfassung der Ergebnisse der Gebrauchstauglichkeit	51
Tabelle 5.2	Zusammenfassung der Ergebnisse der Tragfähigkeit	53
Tabelle 5.3	Verhältnis der Ausnutzungsgrade der QS-Nachweise der Verfahren II und IV	54
Tabelle 5.4	Systeme, Querschnitte, Vergrößerungsbeiwert und Knicklängenbeiwert	55
Tabelle 6.1	Zusammenfassung der Vergrößerungsbeiwerte	56
Tabelle 6.2	Systeme, Querschnitte und Vergrößerungsbeiwert & Knicklängenbeiwert	58
Tabelle 6.3	Berechnungstabelle NWV II System 1.1 Ort A	62
Tabelle 6.4	Berechnungstabelle NWV III System 1.1 Ort A	64
Tabelle 6.5	Berechnungstabelle NWV IV System 1.1 Ort A	66
Tabelle 6.6	Berechnungstabelle NWV II System 2.3 Ort A	69
Tabelle 6.7	Berechnungstabelle NWV III System 2.3 Ort A	71
Tabelle 6.8	Berechnungstabelle NWV IV System 2.3 Ort A	73
Tabelle 6.9	Berechnungstabelle NWV II System 3.1 Ort B	76
Tabelle 6.10	Berechnungstabelle NWV III System 3.1 Ort B	78
Tabelle 6.11	Berechnungstabelle NWV IV System 3.1 Ort B	80
Tabelle 6.12	Berechnungstabelle NWV II System 3.2 Ort A	83
Tabelle 6.13	Berechnungstabelle NWV III System 3.2 Ort A	85
Tabelle 6.14	Berechnungstabelle NWV IV System 3.2 Ort A	87
Tabelle 6.15	Berechnungstabelle NWV II System 4.3 Ort B	90
Tabelle 6.16	Berechnungstabelle NWV III System 4.3 Ort B	92
Tabelle 6.17	Berechnungstabelle NWV IV System 4.3 Ort B	94
Tabelle 6.18	Berechnungstabelle NWV II System 5.1 Ort A	97
Tabelle 6.19	Berechnungstabelle NWV III System 5.1 Ort A	99
Tabelle 6.20	Berechnungstabelle NWV IV System 5.1 Ort A	101
Tabelle 6.21	Berechnungstabelle NWV II System 6.2 Ort B	104

Tabelle 6.22	Berechnungstabelle NWV III System 6.2 Ort B	106
Tabelle 6.23	Berechnungstabelle NWV IV System 6.2 Ort B	108
Tabelle A.24	Zusammenfassung der Einwirkungen auf die Längswände	146
Tabelle A.25	Zusammenfassung der Einwirkungen auf die Breitwände	148
Tabelle A.26	Windlasten System 1.1 Ort A	
Tabelle A.27	Windlasten System 1.1 Ort B	150
Tabelle A.28	Windlasten System 1.2 Ort A	151
Tabelle A.29	Windlasten System 2.1 Ort B	151
Tabelle A.30	Windlasten System 1.3 Ort A	152
Tabelle A.31	Windlasten System 1.3 Ort B	
Tabelle A.32	Windlasten System 2.1 Ort A	153
Tabelle A.33	Windlasten System 2.1 Ort B	
Tabelle A.34	Windlasten System 2.2 Ort A	154
Tabelle A.35	Windlasten System 2.2 Ort B	154
Tabelle A.36	Windlasten System 2.3 Ort A	155
Tabelle A.37	Windlasten System 2.3 Ort B	155
Tabelle A.38	Windlasten System 3.1 Ort A & System 5.1 Ort A	
Tabelle A.39	Windlasten System 3.1 Ort B & System 5.1 Ort B	156
Tabelle A.40	Windlasten System 3.2 Ort A	157
Tabelle A.41	Windlasten System 3.2 Ort B & System 5.2 Ort B	157
Tabelle A.42	Windlasten System 3.3 Ort A & System 5.1 Ort A	158
Tabelle A.43	Windlasten System 3.3 Ort B & System 5.3 Ort B	158
Tabelle A.44	Windlasten System 4.1 Ort A & System 6.1 Ort A	159
Tabelle A.45	Windlasten System 4.1 Ort B & System 6.1 Ort B	159
Tabelle A.46	Windlasten System 4.2 Ort A	160
Tabelle A.47	Windlasten System 4.2 Ort B & System 6.2 Ort B	
Tabelle A.48	Windlasten System 4.3 Ort A & System 6.3 Ort A	
Tabelle A.49	Windlasten System 4.3 Ort B & System 6.3 Ort B	161
Tabelle A.50	Windlasten System 5.2 Ort A	162
Tabelle A.51	Windlasten System 6.2 Ort A	162
Tabelle A.52	Bemessungswerte der Vorkrümmung e _{0,d} /L von Bauteilen	165
Tabelle A.53	Systemimperfektionen der Satteldachsysteme	
Tabelle A.54	Bemessungswerte der Vorkrümmung e _{0,d} /L von Bauteilen	
Tabelle A.55	Systemimperfektionen der Flachdachsysteme	170
Tabelle A.56	Lastfallkombinationen ULS STR/GEO Systeme 3 – 6	171
Tabelle A.57	Lastfallkombinationen ULS STR/GEO Systeme 1 & 2	172
Tabelle A.58	Lastfallkombinationen SLS Quasi-ständig Kombination Systeme 1 - 6	173
Tabelle A.59	Lastfallkombinationen SLS Häufige Kombination Systeme 1 - 6	173
Tabelle A.60	Lastfallkombinationen SLS Charakteristische Kombination Systeme 1 – 6	