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Abstract

Steel manufacturing is a rather old business. Nevertheless, steel as a raw material

is needed more than ever. Due to its importance, lots of projects investigate how to

enhance the steel-making processes.

This thesis is part of a project called APO (Automatische Pflegeprogrammoptimierung)

conducted by RHI AG, one of the world’s leading refractory material manufacturer. The

aim of APO is to optimize production processes in a steel-plant. Maintenance procedures

should be automatized by developing an autonomous robot to relieve the workload of a

steelworker in front of a very hot basic oxygen furnace (BOF) converter. Before develop-

ing a robot tremendous basic analyses have to be made. On the one hand, the refractory

wear impacts on a BOF converter and its relationships to production process parameters

have to be found. On the other hand, maintenance proposals have to be defined with

respect to the amount, area and duration of a maintenance.

This thesis is concerned with the former part of APO that is, the automatic extraction

of the relationships between production process parameters and refractory wear of a

BOF converter. In order to achieve this, different machine learning approaches are in-

vestigated which analyse the data sets provided by the cooperating steel-plant HKM in

Duisburg, Germany. Basically, this thesis tries to find relationships using linear methods

as well as non-linear methods by applying supervised learning approaches. Particularly,

regression analyses are performed starting with the simple Linear Regression in advance

of investigating non-linear Support Vector Regression as well as applying Gaussian Pro-

cesses.

Different areas of a BOF converter are analysed separately to determine whether or

not suitable relationships between production process parameters and refractory wear

can be observed. Moreover, this thesis evaluates the quality of the found relationships

to detect the most suitable approach in terms of APO using statistical testing techniques.

Finally, investigations are made to determine the influence of the most important pro-

duction process parameters on the refractory wear. Performance analyses show the de-

pendency of prediction quality for different converter areas and data set size. In general,

Gaussian Processes perform slightly better than Linear Regression, while both outper-

form Support Vector Regression approaches.





Zusammenfassung

Die Stahlbranche ist eine sehr alte Branche. Trotzdem ist Stahl als Rohmaterial ge-

fragter denn je. Aufgrund des großen Einflusses von Stahl investieren viele Firmen in

Projekte zur Verbesserung der Stahlerzeugungsprozesse.

Diese Masterarbeit fungiert als Teil des Projektes APO (Automatische Pflegeprogram-

moptimierung) das von der Firma RHI AG ins Leben gerufen wurde. Die RHI AG ist einer

der führenden Feuerfestmaterialhersteller der Welt. Das Ziel von APO ist es Pflegerouti-

nen zu optimieren und zu automatisieren. Aus diesem Grund soll ein Roboter entwickelt

werden, der den optimalen Pflegezeitpunkt vorschlägt und die Pflege bei Bedarf auch

selbst direkt durchführt. Dadurch sollen die gesundheitlichen Risiken der Stahlarbeiter,

die bei der Pflege direkt vor dem über 1000◦ Celsius heißen Stahlkessel auftreten, mi-

nimiert werden. Um so einen Roboter entwickeln zu können, ist es zuvor notwendig,

die Zusammenhänge des Stahlerzeugungsprozesses zu erlernen um Pflegeprogramme

automatisiert erstellen zu können.

Das Erkennen der Zusammenhänge zwischen Produktionsparametern und dem Feuer-

festverschleiß ist die Hauptaufgabe dieser Masterarbeit. Verschiedene Ansätze aus dem

Bereich des maschinellen Lernens werden betrachtet. Als Basis dienen die Datensätze

die von dem Stahlwerk HKM aus Duisburg, Deutschland zur Verfügung gestellt werden.

Basierend auf dem Prinzip des überwachten Lernens werden lineare als auch nicht li-

neare Methoden betrachtet. Diese Masterarbeit versucht Zusammenhänge durch die ge-

zielte Anwendung von Linearer Regression, Support Vector Regression oder Gaußschen

Prozessen zu erlernen.

Im Detail werden verschiedene Bereiche eines Stahlkonverters separat analysiert,

um etwaige Zusammenhänge zwischen Produktionsparametern und Feuerfestverschleiß

herauszufinden. Die Qualität der gefunden Zusammenhänge wird durch statistische Tests

evaluiert, um die am besten funktionierende Methode zu bestimmen. Schlussendlich wer-

den die Einflüsse der einzelnen Produktionsparameter auf den Feuerfestverschleiß noch

gesondert betrachtet und extrahiert. Die Ergebnisse der Analysen zeigen, dass die Vor-

hersagegenauigkeit sehr stark von der betrachteten Region im Konverter sowie der zur

Verfügung stehen Datenmenge abhängt. Im Allgemeinen liefern Gaußsche Prozesse das

beste Ergebnis. Die lineare Regression funktioniert zumeist nahezu ähnlich gut. Die Sup-

port Vector Regression Ansätze liefern das schlechteste Ergebnis.
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1 Introduction

Contents

1.1. Steel-making process . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4. Involved companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

This chapter explains the basic facts of a steel-making process, focusses on the moti-

vation of this thesis, defines some terminology used in steel-making and introduces the

involved companies briefly. Chapter 2 deals with the theoretical background of the app-

lied approaches and focusses on past researches using similar approaches. The analysed

data set and necessary data pre-processing steps are introduced in Chapter 3. Moreover,

the approaches applied in this thesis are covered, particularly. Chapter 4 focusses on the

implementation of data pre-processing and approaches. The analyses results and perfor-

mance evaluations are discussed in Chapter 5. Finally, Chapter 6 concludes this thesis

and provides outlook for future work.

1.1. Steel-making process

From hot metal to steel. In the steel-making process liquid hot metal delivered from

blast furnace and metal scrap is charged into a huge vessel called converter. Then the

Linz-Donawitz (LD) process also called basic oxygen furnace process (BOF) is applied.

Using lances, oxygen is blown onto the liquid melt arising some chemical reactions. Cor-

rectly applied oxygen blowing extracts several disturbing elements from the hot metal/s-

crap melt. A complete pass starting from filling the converter with hot metal and scrap

until the pouring out of clean steel lasts approximately 45 minutes. Specialists call such

a pass heat. Once a heat is completed, the liquid crude steel is tapped into a ladle where

it is de-oxidised and pre-alloyed ahead of transporting it to secondary metallurgy using a

steel ladle. The secondary metallurgy processes the steel to its desired chemical analysis.

Figure 1.1 sketches a general overview of a typical steel-making process from

5
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the raw material to different high-quality end products mentioning blast furnace steel-

making as well as electric arc furnace steel-making. Moreover, applications of different

steel end products are shown.

Temperatures challenge converters. Different setups during a heat cause different

temperature levels. Temperatures can reach peak values up to 1800◦ Celsius during a

steel-making process. Such high temperatures challenge a steel converter. For this rea-

son, vessels are lined with refractory material. Figure 1.3(a) shows a lined steel conver-

ter. However, refractory wears out as well as time goes by. In fact, refractory wear differs

in speed and amount from area to area of a converter. Thus, almost every steel-plant in-

vests time and money in converter maintenance.

Maintenance improves costs of steel making process. Maintenance draws steel-

works attention in terms of optimizing their steel-making process. Today steelworkers

can apply a various range of repair methods that mainly differ in terms of speed and

applicability. Among others, gunning repair is one of the most important maintenance

methods. Maintenance approaches will be covered in Section 1.2 in detail.

Figure 1.2.: Schematic visualization of BOF oxygen blowing process. The oxygen lance is launched on top
of the hot and liquid slag/metal mixture ahead of starting the BOF blowing process. (Source:
[Bolbrinker and Verein Deutscher Eisenhüttenleute, 1992])

Summing up, a huge amount of steps have to be passed through starting from the raw

material arch to finally end up with the high-quality steel product.

1.2. Terminology

The steel-making principle was introduced in Section 1.1. This section explains the most

important terminologies covered in this thesis.
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Converter. One of the main parts of a steel-making process is the converter. In general,

converters are vessels in which the basic oxygen furnace (BOF) process is applied. Figu-

re 1.2 shows a schematic visualisation of the BOF blowing process. Converters differ in

shape and size from steel-plant to steel-plant. Their height varies from 5 up to more than

11 meters. Moreover, the converter volume differs as well. Capacities from 60 to 400

tons/heat exist. During a BOF process very high temperatures arise. The steel shell and

the permanent lining is too weak to survive such conditions. Thus, a converter is additio-

nally bricked with refractory material. These bricks are products varying in shape, size

and quality. Different bricks are used for different areas inside a converter. This specific

brick arrangement, called balanced lining, is planned in advance by refractory specialists

in a so-called BOF lining concept. It is a continuous process in order to achieve the op-

timal lining in terms of costs and performance. Moreover, different bricks and different

stresses through a heat results in different refractory behaviour. For this reason, areas

showing similar refractory wear characteristics are grouped. Figure 1.3(a) shows a typi-

cal converter and indicates characteristic refractory wear areas as well [RHI AG, 2011a].

(a) Converter lined with refractory material. Cha-
racteristic converter areas indicated.

(b) Steelworker performing gunning maintenance
by manually controlling a robot.

Figure 1.3.: Exemplary converter shape and maintenance procedure (Source: [RHI AG, 2011a])

Campaigns consist of many heats. Once a new converter lining is commissioned the

initial heat is performed. Hot metal and scrap are charged and a lance is used to blow

oxygen onto the melt inferring chemical reactions. The affinity of the melt to oxygen

causes extraction of disturbing elements. The crude steel finally is poured out through

a taphole into a steel ladle. This process is called tapping and is done by tilting the

converter. During a tapping process the crude steel is pre-alloyed. The procedure of

8
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tilting the converter and pouring out the crude steel into a steel ladle lasts from 8 to 4

minutes depending on the taphole age. This time is called run-out-time. The steel ladle is

used to transport the crude steel to the secondary metallurgy, processing it to its desired

final chemical analysis. The whole procedure from one tapping to the next is called a

heat and lasts approximately 45 minutes. Heats are joined together to define a campaign.

Depending on the steelworks strategy campaigns comprises 400 to 5000 heats in Europe

and more than 10000 heats in America or Asia. By definition, a campaign starts with a

new converter lining and ends just ahead of the next lining [Jandl, 2011].

Maintenance objectives. Looking at Figure 1.4 one can see that thermal, chemical

as well as mechanical stresses influence the refractory wear of a converter. Since the

different challenges to a converter and its refractory material are known, maintenance

automatically draws the attention. Converter maintenance objectives faced of steel pro-

ducers are

• reduced specific brick wear

• increasing breakout safety

• repair of areas subject to premature wear

• longer and predictable lining lifetime

• observance of scheduled lining cycles.

Figure 1.4.: BOF wear influences adapted from [Jandl, 2011]

In general, lining maintenance varies from almost zero to quite intensive repair after

each heat from steel-plant to steel-plant. Several maintenance approaches are available.
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1.2. Terminology 1. Introduction

No matter which approach is applied - the price/performance ratio and usability are the

prime factors of an maintenance approach application [RHI AG, 2011b].

Various maintenance approaches exist. Generally speaking, BOF maintenance can

be separated in two main categories

(1) maintenance using refractory products

(2) slag maintenance.

Standard gunning approaches using hand lance, the use of self-flowing mixes or mani-

pulator gunning using a shooter belong to (1) and approaches like splashing, washing

or forming can be assigned to (2). In fact, each steel-plant is interested to minimize the

human influence during refractory maintenance and the reduction of physical stress on

operators [RHI AG, 2011b].

In the following few typical BOF maintenance methods will be explained. One of the

most used maintenance methods is manual or manipulator gunning. It uses special basic

gunning mixes which are targeted on preworn converter areas to extend vessel lining.

Nowadays, the parameters regarding time, amount and area of the gunning maintenance

are mainly based on experience and laser scans. Concerning the experience-based main-

tenance, on the one hand, necessary repair processes can be missed and on the other

hand, time/money is wasted due to senseless maintenance. Figure 1.3(b) shows a mani-

pulator gunning application. As a matter of fact, maintenance reduces production time.

Increasing the maintenance speed is one solution. Automatic gunning has the advantage

of increased mix throughputs as well as improved gunning precision [RHI AG, 2011b]. A

fully automatic maintenance robot performing automatic gunning is a future aim of the

APO project, introduced later in this section.

Another approach is slag splashing developed 1982 in the United States. Once a con-

verter is tapped, the remaining slag in the vessel is used for maintenance. The slag

is splashed using high-pressure nitrogen jet to different converter areas within 2 to

5 minutes. The remaining excess slag after splashing is poured out before charging

[RHI AG, 2011b].

Various other maintenance methods exist. [RHI AG, 2011b] explains many of them in

detail.

Different converter areas require different maintenance methods. Experts in

[RHI AG, 2011b] evaluated different maintenance methods for common refractory wear

areas of a converter. The analysis results are shown in Table 1.1. Appropriate methods

are indicated with (+), good methods with (++) and ideal methods with (+++). Blank

cells indicate areas which cannot be maintained by the specific method.

Summing up, analysis results show that no method is ideal for all requirements. Thus,

each steel-plant uses a combination of different maintenance approaches.
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Slag splashing High None + ++ + +++ ++ ++ ++

Slag washing None None ++ ++ + ++ ++ +

Slag foaming None None + ++ + ++ ++ + +
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ct
s Hand gunning Low High +++ + + + + + + +++ + +

Manipulator gunning Medium Medium ++ ++ ++ ++ ++ + ++ ++ ++ ++

Automated gunning High Low ++ +++ +++ +++ ++ ++ +++ ++ +++ +++

Hot repair mix None Low + +++ ++ + +++ ++ +

Patching with bricks None Low + +++ ++ + + +

Table 1.1.: BOF maintenance matrix. (Source: [RHI AG, 2011b])

1.3. Motivation

As everywhere but especially in the steel-working business it holds: time is money. Thus,

RHI AG is interested in optimizing the maintenance program by developing a new main-

tenance robot. In doing so, it is required to know the exact refractory wear of each

converter area in advance. Based on these predictions an optimized maintenance sche-

dule can be proposed and applied by the maintenance robot fully automatically. RHI AG

calls this project ’Automatische Pflegeprogrammoptimierung’ (APO) which stands for in-

telligent maintenance optimization.

Even though, refractory researches are aware of the steel industry trends

• Maximum production

• Improving steel quality (e.g. clean steel)

• Minimization of specific refractory costs per ton steel [Jandl, 2011].

Aim of this thesis. One of the key features of APO is the refractory wear knowledge in

advance. This thesis investigates different machine learning methods to achieve refrac-

tory wear knowledge. The main goal is to find relationships between the refractory wear

and production process parameters. Starting with easy Linear Regression (LR) analy-

ses, even more complex non-linear regression analyses using Support Vector Regression

(SVR) or Gaussian Processes (GP) is applied and evaluated.
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1.4. Involved companies 1. Introduction

Since refractory wear differs for different converter areas and different plants, the

converter will be analysed separately for each area subjected to similar wear characteri-

stics. Moreover, more than 100 production process parameters control the steel-making

process. For simplicity, the subset that has the most influence and can easily be changed

will be chosen to perform regression analyses. Further on, the different areas will be

analysed in detail using several approaches to construct a model of the process. The goal

is to achieve a sense-full model resulting in proper predictions of future converter beha-

viour. Particularly, the refractory lining wear or in other words the converter evolution

should be predicted.

Having a model providing the described predictions leads to various benefits like

• designing best fitting lining and maintenance concepts for every individual vessel

• real time system to assure optimum lining maintenance and targeted lining lifetime

• using scientific conclusions as a basis for refractory development.

Basically, all mentioned analyses are done on a data set comprising laser measuring da-

ta of the remaining converter lining thickness, on the one hand, and production process

data, on the other hand. This data set will be provided from the cooperating steel-plant

HKM introduced in Section 1.4. Section 3.1 introduces the specific APO approaches more

detailed.

1.4. Involved companies

RHI AG. RHI AG is world leader in refractory technology. Refractory materials are in-

dispensable for industrial processes exceeding 1200◦ Celsius to protect production units

against thermal, mechanical and chemical stress. RHI AG is a global provider of high-

quality refractory products including shaped products (refractory bricks) as well as un-

shaped products (refractory mixes). Approximately 50% of their products are based on

captive materials like magnesite and dolomite. RHI AG has over 8000 employees at 33

production sites and more than 70 sales offices in four continents. Moreover, RHI AG

produces approximately 2 million tons of refractory bricks and mixes as well as other

refractory materials per year. Revenues of ¤ 1,280.8 million have been recorded in the

first three quarters of 2011. Their headquarters is located in Vienna [RHI AG, 2012]. In

this thesis RHI AG acts as purchaser and is the founder of the whole project APO.

HKM. HKM is an abbreviation of Hüttenwerke Krupp Mannesmann. It is a steel-plant

located in Duisburg in the Ruhr region, known as steel-making heart of Germany. HKM

has been founded in January 1990 by Krupp Stahl AG and Mannesmannröhren-Werke

AG [Hüttenwerke Krupp Mannesmann, 2002]. HKM has more than 3000 employees and
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1. Introduction 1.4. Involved companies

produces approximately 5.6 million tons crude steel shipping capacity per year1. From

an infrastructural point of view, HKM has two blowing stands and uses three change

vessels. Thus, two converter vessels are used for production purposes whilst one vessel

is equipped with a new refractory lining. Each converter has a capacity of 280 tons. In

this thesis HKM acts as steel-plant supporting the thesis with their production process

data and laser measurements.

Ferrotron. Ferrotron®, a division of MINTEQ International GmbH has been success-

fully developing laser technology since 1985. Nowadays, Ferrotron® is one of the mar-

ket leaders. Among other systems, Ferrotron® develops a measurement system for non-

contact measurement of refractory linings in metallurgical vessels. Principally, a laser

scanner performing rapid scanning of the vessel using a pulsed laser beam which is

deflected by a rotating mirror system. As a result, a three dimensional model for the ob-

ject’s inner surface is achieved. In other words, it is a kind of Laser Camera giving the

measurement system the name LaCam®. Ferrotron® produces fixed as well as mobile

LaCam® systems [MINTEQ International GmbH - FERROTRON Division, 2009]. In this

thesis Ferrotron® provides products to perform laser measurements at the steel-plant

HKM based on which analyses are investigated. HKM is equipped with fixed LaCam®

measurement units.

1http://www.hkm.de/english/the-enterprise/hkm-overview.php (Date: 20.01.2012)
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This chapter presents former researches using the same methods we are about to use.

Moreover, researches from similar as well as completely different domains are investiga-

ted. In order to understand the used concepts the theoretical background will be covered

firstly.

2.1. Theoretical background

Before looking at former applications of

• Linear Regression (LR)

• Support Vector Regression (SVR)

• Gaussian Processes (GP)

the theoretic principles will be explained briefly. Sections 2.1.3, 2.1.4 and 2.1.5 introdu-

ce the most important facts about these methods. Firstly, some general characteristics

relevant to all applied methods will be explained.
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2.1.1. Supervised learning

In general, all methods covered in this thesis are supervised learning methods. In contra-

ry to unsupervised learning methods, a supervised learning approach consists of training

examples where each example is a pair of input and desired output/target.

Properties and characteristics. A very general characteristic of learning based pat-

tern recognition is used. Thereby, the learning approach is split in two phases, namely

(1) training phase

(2) testing phase.

The main goal of the training phase is to find the optimal model-parameters. In other

words to find the optimal weight vector w. A simple approach to the problem of determi-

ning the model-parameters is to minimize the sum-squared error function Ew(L) shown

in Equation 2.2 [Bishop, 2007]. The training set L comprises a set of input vectors xn

where n = 1, . . . , N together with a corresponding set of target vectors tn

L = 〈〈x1, t1〉, 〈x2, t2〉, . . . , 〈xN , tN 〉〉. (2.1)

Given this training set L, one approach is to minimize an error function such as the

sum-squared error function

Ew(L) =
1

2

N∑
n=1

‖y(xn,w)− tn‖2 . (2.2)

In other words, for each input, the output of the used approach should be as close as

possible to the corresponding target. Finally, the weight vector w is found by solving the

optimization problem.

Once the optimal model-parameters (weights) to represent the function of interest

are found one moves on to the testing phase. This is the actual domain of interest or

application part. Thus, the trained model is applied to a set of test data and results in a

hopefully proper solution of the task.

Underfitting and Overfitting. Generally, statistic learning methods can suffer from

either underfitting or overfitting. On the one hand, a model which is not sufficiently com-

plex to fully represent the target function leads to underfitting. On the other hand, a too

complex model may for instance also fit to noise, not just to the signal of interest, leads

to overfitting. The overfitting problem is also well known as generalization problem. This

effect is illustrated in Figure 2.1 where a too complex model is used in a regression task

to fit a line. Since overfitting can easily lead to bad predictions it should be avoided. The

best way to avoid overfitting is to use lots of training data.
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Figure 2.1.: Learning methods can suffer from either under- or overfitting. Not sufficiently complex models
lead to underfitting. This plot shows the effect of overfitting where a too complex model is
applied [Maass, 2008].

2.1.2. Classification vs. Regression

Recently introduced supervised learning approaches can be used to solve classification

tasks as well as for regression problems.

The aim of a classification task is to separate objects into classes or categories. Objects

having the same properties or characteristics will be collected to one class. In other

words classification is the process of finding the correct classes for new feature vectors.

On the other hand in a regression task, one attempts to determine the relationship

between dependent variables and a series of other changing variables. Regression is the

supervised learning approach applied in this thesis.

2.1.3. Linear Regression

Linear Regression (LR) is one of the simplest approaches of regression and a widely

used method. Some background information and the theoretical principle of LR will be

introduced in the following.

Theoretical principle. The prediction of the value of one or more continuous target

variables based on the given value of a D-dimensional vector x of input variables is the

main goal of regression as stated in [Bishop, 2007].

One of the simplest approaches for regression is LR . LR involves a linear combination

of the input variables and leads to a straight line y as an output like

y = w0 + w1x (2.3)

where w0 is the intercept and w1 the slope. Assuming the difference between the target
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y and the straight line is denoted as an error ε, a more plausible model is

y = w0 + w1x+ ε. (2.4)

Equation 2.4 is called a LR model [Montgomery and Peck, 1992]. A Linear Regression

model like

y(x,w) = w0 + w1x1 + . . .+ wDxD where x = (x1, . . . , xD)T (2.5)

with more than one model-parameter is called a Multiple Linear Regression (MLR) model

estimating a plane-shaped target.

As for the LR the model-parameter vector w comprises the intercept w0 and the slo-

pes w1, . . . , wD are usually called regression coefficients. These model-parameters are

assumed to have zero mean and an unknown variance σ2. Additionally it is assumed that

the regression coefficients are uncorrelated [Montgomery and Peck, 1992].

This model has one important key property, namely, it is a linear function of the model-

parameters w0, . . . , wD. As stated in [Bishop, 2007] the fact that it is a linear function

of the input variables x as well imposes significant limitations to the model. For this

reason, the model will be extended by considering linear combinations of fixed non-linear

functions of input variables later in Section 2.1.4.

Model-parameter estimation. As in all supervised learning tasks, an important ob-

jective is to estimate the unknown model-parameters. In literature, this process is often

called fitting the model to the data [Montgomery and Peck, 1992]. In LR a very common

method is least-squares estimation on sample data. Supposing one has pairs of data as

defined in Equation 2.1 comprising a set of observations xn where n = 1, . . . , N together

with corresponding target values tn. The least-squares method estimates the model-

parameters w such that the sum of the squares of the differences between the targets ti

and the straight line or plane respectively is a minimum. [Montgomery and Peck, 1992]

covers the detailed mathematical derivation of the least-squares model-parameter esti-

mation method.

Model adequacy checking. Once the model-parameters are found and the model is

created, the fitting quality of the model has to be evaluated. Such analyses determine

the usefulness of the regression model. An outcome of this adequacy checking indicates

either a reasonable model or signifies that the model must be modified.

Most of the time the regression equation is only an approximation of the true relation-

ship between the parameters and the data. Figure 2.2(a) sketches a relatively complex

function which is very well approximated by Linear Regression. A Linear Regression not

always leads to satisfying results. One sometimes investigates so-called piecewise linear

regression models shown in Figure 2.2(b) [Montgomery and Peck, 1992].
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(a) LR approximation (b) LR piecewise approximation

Figure 2.2.: Examples for Linear Regression approximation and piecewise Linear Regression approximation
adapted from [Montgomery and Peck, 1992]. (a) shows a relatively complex function very well
fitted by Linear Regression and (b) depicts a piecewise Linear Regression approach sometimes
used when basic Linear Regression does not lead to a satisfying result.

Finally, the importance of data set quality should be taken into account. The drawbacks

of either Linear Regression or Multiple Linear Regression analyses are conditional on

the data set. Good data sets usually lead to simplified analyses and a more generally

applicable model. In conclusion, representative data collection of the system studied is

important to end up with proper results.

2.1.4. Support Vector Regression

Generally, the support vector algorithm or support vector machine (SVM) is based on

the research done by Vapnik and Chervonenkis in 1964 in Russia. The SVM was inven-

ted by Vladimir Vapnik while the current standard soft margin approach was proposed

by [Cortes and Vapnik, 1995]. SVM are supervised learning methods to analyse data and

recognize patterns. This approach is currently used for classification as well as for re-

gression analyses as already stated earlier in Section 2.1.2.

Theoretical Principle. As for all supervised learning methods first one needs to train

the SVM using a training data set ahead of applying the SVM to the test data set. The

interesting application of support vector machines for our task is Support Vector Regres-

sion (SVR) .

In SVR the basic idea is to find a function f(x) that has at most ε deviation from

the actually obtained targets for all training data, and at the same time is as smooth

as possible [Smola and Schölkopf, 2004]. In other words one does not care about errors

as long as they are in a certain ε-range, but deviations larger then ε are not permitted.
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Consider for example a linear function

f(x) =

D∑
i=1

wixi + b. (2.6)

We want to find a w such that for a training set denoted in Equation 2.1 all errors are

at most of size ε, i.e., |f(xi − ti)| ≤ ε. To achieve good generalization, it is known that

small parameter vectors should be preferred. We therefore want to achieve this with a

parameter vectorw with minimal norm ‖w‖2. In other words, we generally want to solve

the following optimization problem:

minimize
1

2
‖w‖2

subject to |f(xi)− ti| ≤ ε.
(2.7)

Clearly, it will not always be possible to guarantee a maximum error of size ε. There-

fore, instead of hard constraints, one tries to minimize a soft margin loss function which

penalizes errors linearly that exceed ε. Analogously to the soft margin loss function some

slack variables ξi, ξ
∗
i can be introduced to provide the ability for the optimization problem

stated in Equation 2.7 for errors exceeding ε. Thus, the formulation can be rewritten like

minimize
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )

subject to

f(xi)− ti ≤ ε+ ξ∗i

ti − f(xi) ≤ ε+ ξi

(2.8)

for ξi, ξ
∗
i ≥ 0 and C > 0. As stated in [Smola and Schölkopf, 2004] the soft margin para-

meter C symbolizes the trade-off between the amount up to which deviation larger than

ε are tolerated and the flatness of the function.

Figure 2.3 shows the described soft margin loss function graphically. Points inside

the shaded area are accepted as they are whereas points outside the shaded area with

a larger deviation than ε are penalized in a linear fashion using the soft margin loss

function shown on the right hand side. For instance point ζ on the left hand side gets

linearly penalized as shown on the right hand side.

Dual optimization problem. The optimization problem described in Equation 2.8 can

be solved in most cases in its dual formulation. Note that this is true if the dimensionality

of the parameter vectorw is much higher than the number of observations. The key idea

of this dual formulation is to construct a Lagrange function by introducing a dual set

of variables. Solving the Lagrange function as described in [Smola and Schölkopf, 2004]
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Figure 2.3.: Functionality of the soft margin loss function for a linear SVM. Points inside the shaded area
are accepted whereas points outside the area get linearly penalized using the soft margin loss
function on the right hand side [Smola and Schölkopf, 2004].

and [Chang and Lin, 2011] yields to the following dual optimization problem

minimize
α,α∗

1

2
(α−α∗)Tx(α−α∗) + ε

N∑
i=1

(αi + α∗i ) +
N∑
i=1

ti(αi − α∗i )

subject to eT (α−α∗) = 0

(2.9)

where 0 ≤ αi, α
∗
i ≤ C and i = 1, . . . , N . Solving the dual optimization problem in Equa-

tion 2.9 one ends up with the so-called support vector expansion. Equation 2.10 shows

this approximation function

f(x) =
l∑

i=1

(αi − α∗i )〈xi, x〉+ b (2.10)

where 〈·, ·〉 denotes the inner product, which bases on the explicit solution for w

w =
N∑
i=1

(αi − α∗i )xi. (2.11)

Analysing Equation 2.11 one can see that w can be completely described as a linear

combination of the training patterns xi. Moreover, the algorithm can be described in

terms of dot products between the data. Thus, in order to calculate f(x) it is not ne-

cessary to compute w explicitly which will come in handy for the non-linear formulation

of SVR [Smola and Schölkopf, 2004].

Computing parameter b. Before making the algorithm non-linear the calculation of

the missing parameter b in Equation 2.10 will be covered briefly. The most famous solu-

tion to obtain b are the so-called Karush-Kuhn-Tucker (KKT) conditions. The KKT condi-

tions predicate that the product between the dual variables and the constraints has to

vanish at the point of the solution. Knowing these fact allows one to make several con-
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clusions. These conclusions and further details about the computation of parameter b are

shown in [Smola and Schölkopf, 2004].

Non-linear mapping. The next step is to make the SVM non-linear in order to apply

the algorithm to non-linear problems. This can be achieved by pre-processing the training

patterns xi by a map φ : X → F into some high dimensional feature space F and use

a linear model in feature space. In fact, the algorithm can be rewritten such that the

transformation φ(x) does not have to be computed explicitly. Instead, one only needs to

compute products in feature space implicitly [Smola and Schölkopf, 2004].

Hence, it suffices to know

K(xi, xj) := 〈φ(xi), φ(xj)〉 (2.12)

rather than φ explicitly where 〈·, ·〉 denotes the inner product. K is called the kernel. This

so-called kernel trick is needed in order to make the feature expansion computationally

feasible [Gunn, 1998]. One popular example for non-linear modelling is provided by the

polynomial mapping using a kernel like

K(xi, xj) := 〈xi, xj〉d (2.13)

where d denotes the degree of the polynomial. Other kernels are Gaussian or exponential

radial basis functions (RBF) as well as Fourier Series or Splines.

Rewriting the support vector expansion shown in Equation 2.10 for the non-linear

approach one results in

f(x) =
l∑

i=1

(αi − α∗i )K(xi,x) + b. (2.14)

Once the SVR is trained well on the training data set, one is able to apply it to the test

data set and evaluates a prediction based on the model-parameters learned during the

training-phase.

SVR properties. The main advantages of SVM are

• finding the optimal separation hyperplane

• dealing with very high dimensional data

• less input hyper-parameter during training

• usually work very well

whereas the disadvantages can be addressed like

24



2. Related Work 2.1. Theoretical background

• require both positive and negative examples

• need to select a good kernel function

• require lots of memory and CPU time.

All together, SVM and in detail SVR is a technique worth trying out to solve the task we

are working on.

2.1.5. Gaussian Processes

Theoretical Principle. A GP is used to describe a probability distribution of functions.

These probability distribution is specified by the distribution of any two arbitrary points

in a function. In case of GP the variance of these two arbitrary points are normally

distributed. For instance, the two arbitrary data points can be normally distributed in

dependency of the distance between the two points as shown in Equation 2.17. Thus,

adjacent points are similar whereas the variance is big for two points located far from

each other. For this reason, the covariance of two points close to each other is bigger

than the one of two points located far from each other.

Formally, [Rasmussen and Williams, 2006] defines a GP as follows:

Definition 2.1.1. A Gaussian Process is a collection of random variables, any finite num-

ber of which have a joint Gaussian distribution.

In fact, a GP is completely specified by its mean and its covariance function, which is

one of the main properties of GP . The mean function m(x) and the covariance function

cov(x,x′) of a real process f(x) are given as

m(x) = E
[
f(x)

]
cov(x,x′) = E

[
(f(x)−m(x))(f(x′)−m(x′))

] (2.15)

where cov(x,x′) = k(x,x′) and k(x,x′) is known as the kernel function in literature

[Rasmussen and Williams, 2006], [Bishop, 2007].

Formally, a Gaussian Process will be written as

f(x) ∼ GP
(
m(x), cov(x,x′)

)
. (2.16)

Most applications do not provide prior knowledge about the mean m(x) and so by

symmetry it is common to set it to zero.

In general, a kernel k(x, x′) describes variance behaviour for arbitrary points x and

x′. A kernel function can be defined directly. One possible choice is the Gaussian kernel

defined as

k(x,x′) = exp

(
−||(x− x

′)||2

2σ2

)
(2.17)
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while another choice can be the exponential kernel given by

k(x, x′) = exp
(
−θ|(x− x′)|

)
. (2.18)

σ and θ in Equation 2.17 and 2.18 are so-called hyper-parameters, described in detail

later on, defining the shape of the kernel.

Figure 2.4 shows samples of functions drawn from two GPs with different kernels.

Caused by the shape of the kernel function the Gaussian kernel in Figure 2.4(a) appears

to smoother whereas the exponential kernel Figure 2.4(b) drops and rises faster and

steeper, thus it is fluctuating more compared to a Gaussian kernel.

(a) Gaussian kernel (b) Exponential kernel

Figure 2.4.: Samples from GP with different kernel functions. The Gaussian kernel causes smoother be-
haviour in (a) whereas the exponential kernel leads to a more fluctuating shape in (b) (Sour-
ce: [Bishop, 2007]).

Application of Gaussian Processes. GP can be used to solve both supervised lear-

ning tasks, either classification or regression problems introduced in section 2.1.2.

However, considering our task only the regression application of GP draws our attenti-

on. Hence, the classification task will be skipped and in the following the regression will

be reflected upon briefly.

Gaussian Processes for regression. In Gaussian Process regression tasks one es-

teems a set of functions to be probable. Using the training data and the set of functions

the hyper-parameters defining the kernel functions can be learned. These kernel functi-

on define the appearance of the distribution. In other words, based on the trainings data

and the set of functions assumed to be probable some supporting points of the function

can be found.

In general, as introduced in [Rasmussen and Williams, 2006] GP regression can be
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viewed from two ways. On the one hand, the weight-space view and on the other hand

the function-space view. In this thesis the function-space view is applied.

For modelling more realistic models one does not have access to function values di-

rectly, but only to their noisy versions formally noted as

tn = yn + εn (2.19)

where εn is a random noise variable independently chosen for each observation and

yn = f(xn). Considering the noise process having a Gaussian distribution leads to an

isotropic Gaussian of the form

p(t|y) = N (t|y, β−1IN ) (2.20)

where IN denotes a N ×N unit matrix. β represents the precision of the noise.

As shown in [Bishop, 2007] the marginal distribution p(t) can be found by integrating

over y. This leads to

p(t) =

∫
p(t|y)p(y)dy = N (t|0,C) (2.21)

where the mean is set to zero and the covariance matrix is defined as

C(xn, xm) = k(xn, xm) + β−1δnm (2.22)

where δnm denotes a unit vector with the restriction that the kernel matrix k(xn, xm)

must be positive semi-definite.

The goal in regression is to consider new inputs (test points) and make proper predic-

tions of the target values. Based on the learned shape of the GP the function value of

a test point can be non-linearly interpolated or the distribution can be predicted. More

formally, supposing a training set comprising of tN = (t1, . . . , tN )T corresponding to in-

put values xN = (x1, . . . , xN )T our goal is to predict the target variable tN+1 for a new

input vector xN+1. In order to do so we are interested in p(tN+1|tN ). From 2.21 the joint

distribution over t1, . . . , tN+1 is given by

p(tN+1) = N (tN+1|0,CN+1) (2.23)

with the covariance matrix CN+1 defined as

CN+1 =

(
CN k

k c

)
(2.24)

whereCN is the N×N covariance matrix with elements stated in Equation 2.22 and the

vector k = k(xn,xN+1) for n,m = 1, . . . , N . Finally, the scalar c represents the newly
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added input as

c = k(xN+1,xN+1) + β−1. (2.25)

Putting everything together as shown in [Bishop, 2007] one can see that the conditio-

nal distribution p(tN+1|t) can be seen as a Gaussian distribution with mean and cova-

riance given by

m(xN+1) = kTC−1N t

σ2(xN+1) = c− kTC−1N t
(2.26)

where CN is the N × N covariance matrix and k is the kernel vector k = k(xn,xN+1)

for n = 1, . . . , N . Vector t represents the training set of noisy function values of size N .

Finally, the scalar c represents the newly added input. These equations completely define

GP for regression.

Figure 2.5 shows an example of GP regression applied to a sinusoidal data set. The

green curve represents the sinus from which the data points in blue are drawn by samp-

ling and adding Gaussian noise. The mean of the GP predictive distribution is reflected

by the red line while the shaded region corresponds to ± two standard deviations. Mo-

reover, one recognizes the increasing uncertainty for the very right of the data points.

Figure 2.5.: GP regression example applied on a sinusoidal data set. (Source: [Bishop, 2007]). Green curve
shows the sinusoidal function while blue points are the obtained data points. The red line shows
the mean of the GP and the shaded area corresponds to plus and minus two standard deviations.

Learning the hyper-parameters. The prediction quality of a GP depends on the choi-

ce of the covariance function. Typically the covariance function will have some free pa-

rameters. Usually, free parameters will be called hyper-parameters and denoted as θ in

this thesis [Rasmussen and Williams, 2006]. The hyper-parameters can be either fixed
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or learned by using a family of parametric functions and inferring the hyper-parameter

values from the data. Length scale of the correlations and noise precision are gover-

ned by these hyper-parameters which correspond to the hyper-parameters in a standard

parametric model. A common technique to learn hyper-parameters is the log likelihood

maximization like

∂

∂θi
ln p(t|θ) = −1

2
Tr

(
C−1

N

∂CN

∂θi]

)
+

1

2
tTC−1

N

∂CN

∂θi]
C−1

N t (2.27)

where CN is the N × N covariance matrix with elements stated in Equation 2.22 and

Tr denotes the trace of a matrix formally defined as Tr(A) =
∑N

i=1 aii. This can be

done efficiently by applying optimization algorithms such as conjugate gradients (CG)

[Bishop, 2007].

From a computational point of view the inversion of matrix C is very intensive and

requires O(N3) computations. In fact, this is a large drawback particularly for the ap-

plication on large data sets. However, the computational costs drop to O(N2) once the

inversion of the covariance matrix C is known [Farrell and Correa, 2007].

Detailed influences of the hyper-parameter choice can be found in Chapter 2.3 in

[Rasmussen and Williams, 2006].

GP automatic relevance determination (GP ARD). [Rasmussen and Williams, 2006]

extended the hyper-parameter learning approach mentioned in the previous section by

introducing a separate hyper-parameter for each input variable. As a result, the optimi-

zation of the hyper-parameters by maximum likelihood allows a inference to the relative

importance of different inputs.

For simplicity, consider a GP with a two-dimensional input space and the following

kernel function

k(x,x′) = θ0 exp

(
−1

2

2∑
i=1

ηi(xi − x′i)2
)

(2.28)

where ηi denote the newly added hyper-parameters. Adapting these η-values to the data

set using maximum likelihood it becomes possible to detect whether an input value has

little effect on the predictive distribution result. This can be useful to discard such inputs.

Figure 2.6 represents the η-values of a simple synthetic data set consisting of three

inputs x1, x2 and x3. 100 values of each function are sampled to generate the target

variable t. x1 and x2, sampled from the same Gaussian distribution, only differ from

each other by the addition of different noise whereas x3 is sampled from a independent

Gaussian distribution. However, the GP with ARD optimizes its marginal likelihood using

scaled conjugate gradients algorithm. Figure 2.6 plots the hyper-parameters η1, η2 and η3

as a function of the number of iterations. Note the logarithmic scaling of the vertical axis.

Interpreting the results depicted in Figure 2.6 one can see that η1 (red) performs slightly
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better than η2 (green) whereas η3 (blue) becomes very small indicating the irrelevance

of x3 to the prediction of the target t.

Figure 2.6.: Automatic relevance determination in a GP . Three inputs x1, x2 and x3 are represented through
their corresponding hyper-parameters η1 in red, η2 in green and η3 in blue as a function of
the number of marginal likelihood optimization iterations. η1 performs slightly better than
η2 where both outperform η3 which indicates its irrelevance to the target prediction (Sour-
ce: [Bishop, 2007]).

Finally, [Bishop, 2007] proposed the following form of kernel function including ARD

which is evaluated to perform properly for GP applications on regression tasks

k(xn,xm) = θ0 exp

(
−1

2

D∑
i=1

ηi(xni − xmi)2
)

+ θ2 + θ3

D∑
i=1

xnixmi. (2.29)

where D denotes the dimensionality of the input space [Bishop, 2007].

2.2. Applications

2.2.1. Linear Regression

The application of Linear Regression is a very basic and essential method. Thus, no

specific applications are considered. As [Montgomery and Peck, 1992] mentioned they

occur in almost every field including

• engineering

• physical sciences

• economics

• life and biological sciences

• management
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• social sciences.

Uses of Regression. Regression models in general are useful for several purposes like

• data description

• parameter estimation

• prediction and estimation

• control.

[Bishop, 2007] and [Montgomery and Peck, 1992] provide a large amount of applicati-

ons for either Linear Regression or Multiple Linear Regression.

2.2.2. Support Vector Regression

A very common application of SVM addressing both classification and regression pro-

blems is face recognition. [Li et al., 2000] covered a multi-view face detection and re-

cognition. Additionally, financial forecast is another domain of application of the SVR

approach. [Trafalis and Ince, 2000] investigated the use of SVR to forecast stock prices

and compared them with other techniques like back-propagation and RBF networks. Si-

milarly, [Tay and Cao, 2001] covered the topic of financial time series forecasting with

SVM and compared them with multi-layer back-propagation neural networks. An even

better approach in terms of time series forecasting is proposed by [Lu et al., 2009].

They get rid of one of the key problems in modelling financial time series, which is

having inherent high noise by combining independent component analysis (ICA) and

SVR . They used ICA as pre-processing step of the SVR to remove the noise and thus

improved their results considerably compared to conventional SVR approaches. Howe-

ver, even completely different topics already made use of the SVM approach. For in-

stance, [Yuan and Huang, 2004] used SVR to predict important properties of proteins,

particularly protein accessible surface areas (ASA). Moreover, SVR is also used in ap-

plications of iron works where our task belongs to. As an example, [Wen et al., 2009]

investigated corrosion rate prediction of 3C steel under different seawater environment

by using SVR . In the following, few approaches and their application will be explained

briefly.

Face Recognition. SVM are able to deal well with face recognition problems. For

instance, [Li et al., 2000] considered a multi-view face detection and recognition frame-

work. They constructed several detectors, each of them in charge of one specific view.

Generally speaking, its more probable having one person in different poses than many

persons in the same pose. However, if the pose of a face image is known, the recognition

31



2.2. Applications 2. Related Work

problem can be simplified to a great extent. Thus, they used a SVR approach to estimate

the pose followed by a support vector classification to identify the face.

In fact, two pose estimators are trained to estimate the yaw angles, on the one hand

and the tilt angles of the image faces on the other hand. The training set consisted of

1956 face images of size 20× 20 pixel taken from 12 subjects where one image per pose

containing poses from 0° - 180° in yaw and 60° - 120° in tilt with steps of 10°. A Gaussian

kernel is used. Firstly, all images are pre-processed applying sobel filters and principal

component analysis (PCA) to reduce the dimension as well as some simple normalisation

is done. Then, these patterns are fed to the training algorithm. The generalisation perfor-

mance of the trained pose estimators are tested using another set of 1283 face images.

This results shows that low dimensional PCA representation (20-30 in dimension per ex-

ample) can provide a satisfactory performance in pose estimation. The estimated results

of the pose estimators are fed into a set of SVC classifiers to perform the face recogniti-

on. Finally, all these issues are integrated into a SVM -based framework. Looking at the

test results, [Li et al., 2000] obtained a detection rate above 95% and a recognition accu-

racy above 95%. The pose estimation in both yaw and tilt is around 10°. All these results

are collected while testing their framework on four live video sequences containing faces

and across views.

In conclusion, one can see SVR works well to solve face recognition tasks.

Tourism Demand Prediction. Tourism industry has emerged as the fastest growing

sector all over the world in the past few decades. Tourism expenditure has become an

important source of economic activity, employment, tax revenue, income and foreign

exchange. Hence, every country has to understand its international visitors. Moreover,

unstockpiled economics such as empty hotel rooms or air flight seats should be avoided.

Thus, accurate forecasting of tourism demand, both the short and the long term becomes

an more and more essential requirement. [Chen and Wang, 2007] postulated a SVR ba-

sed approach to predict the tourism demand. As a matter of fact, the hyper-parameters

of a SVR has to be set carefully in order to achieve an efficient and appropriate fore-

cast. Inappropriate hyper-parameters in SVR lead to overfitting or underfitting. Among

others, these hyper-parameters include the kernel function as well as the bandwidth of

the kernel function. However, no general guidelines are available to select these hyper-

parameters. The generalization performance does not only depend on one rather than

on the interaction of all hyper-parameters. Therefore they investigated a real-value ge-

netic algorithm (RGA ), known as GA-SVR to determine hyper-parameters of the SVR .

Apart from known techniques GA-SVR is no trial-and-error procedure. These algorithm

simultaneously optimizes all SVR hyper-parameter from the training data. Skipping the

detailed explanation, this algorithm leads to the optimal hyper-parameters in the end.

Having the important hyper-parameters they created a experimental setting for forecas-

ting an univariate time series. The past, lagged observations of the time series are the
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input and the future values the output of the SVR . As input data set, tourism data of

China between 1985 and 2001 is used. 64 input patterns are used, where the prior 56

input patterns are employed for the training sample to model the SVR . The remaining

8 input patterns are used for testing samples to estimate the forecasting capacity of the

SVR . The result of the trained SVR is compared with back-propagation neural networks

(BPNN) and autoregressive integrated moving average models (ARIMA) .

Figure 2.7.: Performance of different tourism demand forecasting methods from [Chen and Wang, 2007].
All models lead to appropriate results. The GA-SVR outperforms BPNN and ARIMA in terms of
forecasting the tourism demand.

Looking at Figure 2.7 one can see that the forecasting performance of all three mo-

dels are appropriate. In detail, GA-SVR models are superior to those from the other two

models. In other words, the GA-SVR outperformed BPNN and ARIMA in terms of fore-

casting the tourism demand.

In conclusion, combining genetic algorithms (GA) and SVR result in a perfect forecas-

ting approach for non-linear time series. Within the forecasting fields of tourism demand,

the GA-SVR is a reliable forecasting tool.

Prediction of corrosion rate of 3C steel under different seawater environments.

[Wen et al., 2009] used SVR to predict the corrosion rate of 3C steel which is a carbon

steel under different seawater environments. In fact, the increasing tonnages of carbon

steel, dramatically attracting people’s attention to the question of corrosion. Seawater

is recognized to be one of the most corrosive natural electrolytes under natural environ-

ment. They investigated a corrosion prediction using SVR combined with a technique

called particle swarm optimization (PSO) to optimize the hyper-parameters. Finally, the

results are compared to BPNN results. The data set contains 46 samples from different
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seawater environments measured by electrochemical techniques. Five attributes

• temperature

• dissolved oxygen

• salinity

• pH value

• oxidation-reduction potential

are employed as input variables while corrosion rate acted as output variable. Five out

of 46 samples are used as test samples accompanied with 41 training samples. The SVR

model as well as the BPNN is trained with the same data sets to provide a perfectly

suited test environment for comparing reasons.

As a result, looking at Table 2.1 it can be seen that the maximum absolute percenta-

ge errors predicted by SVR are bigger than those of BPNN. However, the majority of

samples have smaller predicted percentage errors determined by SVR models compa-

red to BPNN. Thus, the prediction accuracy of SVR is greater than BPNN. We note that

an increase of the amount of training samples can contribute to improved regression

accuracy.

No. Experimental BPNN SVR

rate Pred. rate (µAcm−2) Rel. error (%) Pred. rate (µAcm−2) Rel. error (%)

7 14.06 13.12 -6.69 14.195 0.96
10 17.11 17.14 0.175 16.786 -1.88
14 10.578 11.1 4.93 10.928 3.31
19 11.446 12.08 5.54 11.653 1.81
21 12.553 11.59 -7.67 13.963 11.23

Table 2.1.: Comparison between electrochemical measurement values and estimated results by using BPNN
and SVR methods, respectively, for five test samples taken from [Wen et al., 2009].

In conclusion, SVR is able to predict corrosion rate of carbon steel under 5 different

seawater environments very satisfying and is therefore applicable to iron works as well.

In detail, the predicted errors of SVR are than those of BPNN using identical training

and test data sets. Finally, even the generalization ability of the SVR model is superior

to that of BPNN.

2.2.3. Gaussian Processes

As a matter of fact, GP are a very recent and state of the art approach. For this reason,

the amount of former researches is manageable. Nevertheless few past researches exist.

To be honest, GP is a very good tool dealing with non-linear data sets.
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Considering energy generation, one of the most recent topics is renewable energy.

[Mori and Kurata, 2008] investigated in the forecast of wind speed using GP , which is es-

sential for wind power generation. Another closely related topic covered in the past is the

air temperature prediction proposed by [Zhang et al., 2011]. Each time a new approach

arises estimations or recognitions on human faces is a famous research domain. Thus,

[Zhang and Yeung, 2010] drew their attention on personalized age estimation using GP .

Moreover, Gaussian Processes will be used in completely different topics like prediction

of financial stock trends by [Farrell and Correa, 2007] as well.

Few applications will be introduced briefly in the following.

Wind speed forecast. Renewable energy becomes more and more attractive to pro-

tect our environment. Though, the uncertainty of wind power output makes it quite dif-

ficult to deal with wind power generation. Logically, wind speed remarkably effects the

power generation output. Thus, big market players are interested in short term wind

speed prediction.

[Mori and Kurata, 2008] used GP to estimate the upper and lower bound of wind speed

as well as the average. The authors used data from May to July 2006 measured at the

Muroto Cape in Japan split into 144 training data and 24 test data parts to predict the

wind speed one hour ahead. Station pressure, sea-level pressure, average temperature,

humidity, rainfall level and wind speed are investigated as input each at time t to predict

the output wind speed at time t + 1. Their results are compared with results achieved

by a multi-layer perceptron (MLP) and by RBF, both used as an artificial neural network

(ANN) .

Looking at Figure 2.8 one can see that GP performs better than MLP and RBF in both

average and maximum error.

Figure 2.8.: Error comparison of one-hour ahead wind speed prediction using different approaches taken
from [Mori and Kurata, 2008]. Looking at both the maximum and the average error the GP
performs better than the RBF network and the multi-layer perceptron in terms of one-hour
ahead wind speed prediction.
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As a result, GP performs better than former approaches on short term wind speed

prediction.

Air temperature prediction. Weather is in fact an environment variable which has

huge impact to humans life. Therefore, weather forecasts, which are classic non-linear

problems, are research topics always gaining lots of interest. One key player in weather

forecast is the prediction of the air temperature.

[Zhang et al., 2011] used a combination of generalized partial least squares (GPLS)

algorithm and the GP approach to predict the air temperature. They combined these

two algorithms to take the good advantages of both approaches to reach higher forecast

performance. Measurements of 150 days in Izmir, Turkey are used to apply their proposed

GPLS-GP algorithm. 2/3 of the data set act as training set while the remaining 1/3 is used

to test their algorithm. Among others, [Zhang et al., 2011] used the root mean squared

error (RMSE) to evaluate their performance. Conventional methods like partial least

squares (PLS) and generalized partial least squares (GPLS) are used for comparison.

Looking at the RMSE in Table 2.2 as well as the prediction deviation in Figure 2.9

one can see that GPLS-GP approach produces the smallest prediction error indicating

the best performance of the compared methods. Especially Figure 2.9 shows increasing

errors at the very right of the plot for conventional approaches.

Figure 2.9.: Prediction error [F°] versus sample number of the compared methods PLS, GPLS, GP and GPLS-
GP taken from [Zhang et al., 2011]. The GPLS-GP leads to the best prediction accuracy indica-
ted through the smallest deviation error. Other conventional approaches perform worse and
tend to increased prediction errors, especially for higher sample numbers.

Concluding the research of [Zhang et al., 2011] results are improved in terms of ro-

bustness and accuracy notably.
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PLS GPLS GP GPLS-GP

pred. RMSE [F°] 2.9031 2.7000 4.7365 1.0218

Table 2.2.: Predicted RMSE comparison of different methods [Zhang et al., 2011].

Age estimation. Identification or recognition methods based on human face images

are one of the most interested and covered tasks in computer vision. Particularly, compu-

ter vision applications are interested in automatic age estimation. Facial images contain

rich information about a person, e.g. identity, gender, expression, age, etc. Recent rese-

arches show that personalized age estimation methods basically outperform global age

estimation algorithms.

[Zhang and Yeung, 2010] proposed a novel personalized age estimation approach by

formulating the task as a multi-task learning problem. In detail, a special form of GP

called warped GP is used as a basis to propose the so-called multi-task warped Gaussian

processes (MTWGP) . However, multi-task learning in general is a learning paradigm

focussing on the generalization performance of the task with the help of some other

related tasks. Thus, each person is treated as a separate task and each task is estimated

using a warped GP (WGP) explained by [Zhang and Yeung, 2010] in detail.

Considering age estimation, some common pattern are shared by all face images. For

instance, the whole face or even facial parts will become bigger as a person grows from

a child to an adult. Moreover, facial wrinkles are a common pattern usually increasing

as one gets older. [Zhang and Yeung, 2010] distinguishes facial features of the ageing

process in two parts. We have, on the one hand, features common to all persons and

on the other hand person specific features. Thus, a multi-task regression estimator is

proposed depending on both common features as well as features learned separately for

each person using MTWGP.

[Zhang and Yeung, 2010] tested their approach with the help of two age databases

FG-NET1 and MORPH [Ricanek and Tesafaye, 2006]. The FG-NET contains 1002 facial

images consisting of 6-18 images of 82 different persons varying in age from 0 to 69.

MORPH database comprises 1724 facial images from 515 persons with only 3 images

per person. Persons in MORPH database vary in age from 15 to 68. To examine MTWGP

performance the mean absolute error (MAE) as well as the cumulative score (CumScore)

are compared to former results. Having t test images, one supposes te≤l images have

a absolute prediction error smaller than l. Then, the CumScore at error level l can be

calculated like

CumScore(l) = te≤l/t× 100%. (2.30)

In [Zhang and Yeung, 2010] only cumulative scores smaller than l = 10 years are treated

1http://www.fgnet.rsunit.com
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as acceptable.

Figure 2.10.: Cumulative scores at error levels from 0 to 10 of different ages estimation methods applied
on facial images from the FG-NET database taken from [Zhang et al., 2011]. MTWGP leads
to the best results in the domain of personalized age estimation. This plot shows that other
state-of-the-art approaches can not achieve comparable results.

As a result, Figure 2.10 shows that MTWGP even outperforms other state-of-the-art

approaches in the domain of personalized age estimation. Similar results for the MORPH

database are shown in [Zhang et al., 2011].

Financial stock trend prediction. [Farrell and Correa, 2007] use GP regression to

predict stock trends. They examined two different experiments. Firstly, past stock prices

are used to predict whether the price will rise or fall the next day. Secondly, the GP are

investigated to predict the stock price explicitly.

A GP for stock prices can be seen as a function over time. [Farrell and Correa, 2007]

investigated in different kernels defining the covariance like

• squared exponential

• matern class

• rational quadratic.

Given a kernel the optimal set of hyper-parameters is optimized using 100 iteration steps

to fit the optimized data by maximizing the marginal likelihood as explained in Secti-

on 2.1.5.

From a practical point of view, 8 stocks are considered and their data is collected over

a period of 10 years. As a result, the prediction of the up and down trend turns out

to be highly sensitive to the amount of training data used. Good results can be achie-

ved using a matern class covariance function trained on a data set of one month. The

single-stock price prediction leads to more reliable results using long time training data
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sets. [Farrell and Correa, 2007] measured penalty in terms of regret. Having the next

day (t+1) stock prices in advance they are able to find which stock would have been the

best to invest the day before (t). The difference between the real price and the predic-

ted price between day (t) and (t+1) is calculated. Wrong predictions lead the penalty to

become the gain of the best stock.

Summing up, stock trend prediction is more useful on smaller data sets whereas single-

stock price prediction performs well on long term predictions (bigger data sets). From

the kernel-selection point of view matern class or squared exponential kernels lead to

the best results shown in Table 2.3.

Time period Squared exponential Matern ν = 3/2 Rational quadratic

10 day Stock 7, 0.24 regret Stock 7, 0.24 regret no stock predicted

1 month Stock 7, 0.24 regret Stock 7, 0.24 regret Stock 7, 0.24 regret

6 month Stock 7, 0.24 regret Stock 7, 0.24 regret Stock 7, 0.24 regret

1 year Stock 8, 0 regret Stock 8, 0 regret Stock 7, 0.24 regret

3 years Stock 8, 0 regret Stock 8, 0 regret Stock 7, 0.24 regret

Table 2.3.: Predicted stock with regret in covariance function for different time periods taken from
[Farrell and Correa, 2007].

In conclusion, GP provide a new and quite competitive method for further researches

on non-linear data samples in various domains.

2.3. Conclusion

This chapter basically introduced the theoretical background of the approaches LR , SVR

and GP used in APO. In addition, former researches using the same approaches in similar

and completely different domains are covered briefly.

So far, we know the theoretical background and the principles used in this thesis. The

next chapter focusses on their application and required adaptations in terms of APO.
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This chapter introduces the approaches applied in this thesis. Section 3.1 gives a the-

sis overview and basically describes how the procedure to achieve the aimed results is

structured. Section 3.2 briefly introduces the input data sets. Section 3.3 focusses on

data pre-processing which actually is a very important part in order to result in good

solutions. Finally, Section 3.4 focusses on APO specific simplifications of input data as on

use of the supervised learning concepts adapted for our purposes.

3.1. Overview

As mentioned in Section 1.3, finding relationships between production process para-

meters and refractory wear is the topic of interest. For this reason, Linear Regression
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and Multiple Linear Regression analysis and non-linear regression analyses like Support

Vector Regression as well as Gaussian Processes are applied. SVR and GP are used to

construct a model representing the process. The main goal of these analyses is to achieve

a sense-full model resulting in proper predictions of future behaviour of the converter.

Particularly, the refractory lining wear in the analysed area should be predicted. In other

words, one should be able to predict the evolution of areas inside the converter.

Recap, all analysis are based on a data set comprising

(1) laser measuring data of the remaining converter lining thickness

(2) production process data.

Maintenance data and refractory lining information will be added to APO in the future.

These inputs are not included in this thesis. The general APO data flow with more de-

tailed information about the input parameters is sketched in Figure 3.1. Once all input

parameters are collected they are passed through a data-link connection to the master

server. The master server performs the analyses of interest. In fact, this data flow is a

future aim of APO. In this thesis all analyses are determined locally on a PC or notebook.

Figure 3.1.: Data flow of APO approach [Lammer, 2011]. In the beginning all data is collected ahead of
passing it to the master server through a data-link connection. The analyses of interest are
performed on the master server.

In advance to all analyses, the input data has to be pre-processed. Laser data has to be

checked for inconsistency, missing values and some other criteria covered later in this

chapter.

Summing up, the tasks covered in this thesis are

(1) data pre-processing

(2) finding relationships between production process parameters and refractory wear
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(3) creating a model of the converter process using different approaches.

3.2. Data set

Basically, all input information is stored in laser measurement data on the one hand, and

production process data on the other hand. This section introduces the format of the

input files.

3.2.1. Laser measurement data

Generally speaking, each laser measurement produced by LaCam® consists of two files

(1) meta data file

(2) measurement data.

Both files are delivered in a raw ASCII text format with the extension *.lch.

Meta data file. The meta data file delivers information about the current converter

status including date, time, campaign number, heat number etc. Listing 3.1 shows an

excerpt of a typical laser meta data file produced by LaCam®. One row always contains

an indicator and the corresponding value separated by a tabulator. For instance, row 12

contains the indicator ’Standreise’ corresponding to the campaign number and, separa-

ted by a tabulator, the value. Nevertheless, the meta data file contains lots of overhead.

For this reason, this ASCII text file is pre-processed to fetch the data of interest as shown

later in Section 4.2.

1 [...]

2 Stahlwerk HKM

3 Stand 2

4 Zustellung 740501

5 Zust. Typ Working

6 Posit. Code 5

7 Mess. Typ Wear

8 Mess. Nr. 848

9 Gefä ß Nr. 2

10 Datum 29.08.08

11 Zeit 09:04

12 Standreise 150

13 Alter 57

14 Kippwinkel(\dg) _300_300_318_300_300

15 [...]

Listing 3.1: Excerpt of a exemplary meta data file provided by HKM
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Measurement data file. The measurement data file stores the measurement values

of interest. The file is split into four columns separated by a tabulator. The first two

columns reflect the two dimensional position inside a converter. In detail, column 1 holds

the angle in degree and column 2 the depth in meter. Adding the radius stored in column

3 leads to a 3D position. The radius in meter is measured from the lot to the surface of

the refractory material. Further on, the remaining brick value of the specified position

is calculated and stored in column 4. Each row corresponds to one measurement value.

Depending on the size of the converter up to 30000 measurement values exist. Listing 3.2

shows an excerpt of a typical laser measurement file produced by LaCam®.

1 Angle Depth Radius Brick

2 0 0 2 --

3 0 0.05 1.987 --

4 0 0.1 1.973 93

5 0 0.15 1.93 134

6 0 0.2 1.924 148

7 0 0.25 1.879 207

8 0 0.3 1.851 255

9 . . . .

10 . . . .

11 . . . .

12 40 5.35 3.021 699

13 40 5.4 3.019 703

14 . . . .

15 . . . .

16 . . . .

17 357.5 8.458 0.05 974

18 357.5 8.443 0 990

Listing 3.2: Excerpt of a exemplary measurement data file provided by HKM

Looking at row 2 in Listing 3.2, ’--’ indicates a missing value. Due to the measurement

approach of LaCam® missing values occur frequently.

3.2.2. Production process data

Generally speaking, a heat is defined by approximately 100 production process parame-

ters. HKM delivers one production process data file per campaign. This file stores a set of

production process parameters for each heat. Table 3.1 basically describes the producti-

on process data file format where each row corresponds to one heat. Column ’KV-Alter’

corresponds to a consecutive heat number. HKM uses a so-called ’Schmelznummer’ deno-

ted by the abbreviation SNR to uniquely identify each heat. KV standing for ’Konverter’

denotes the number of the blowing stands and ’Gefäß Nr.’ identifies the vessel which is

used. Columns Parameter1 to ParameterN contain the parameters based on which fur-

ther analyses are made.

In order to be able to successfully perform analyses on input data sets and consistency

has to be guaranteed. Since our input data set is not consistent at all, data pre-processing
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draws our attention. The following section explains the pre-processing steps investigated

in APO.

KV-Alter Datum SNR KV Gefäß Nr. Parameter1 · · · ParameterN

1 06/10/2008 741626 2 3 value11 · · · value1N
2 06/10/2008 641627 2 3 value21 · · · value2N
...

...
...

...
...

...
. . .

...

M 12/11/2008 542743 2 3 valueM1 · · · valueMN

Table 3.1.: Exemplary production process data file format provided by the cooperating steel-plant HKM.

3.3. Data pre-processing

Laser data as well as production process parameter can suffer from inconsistent data

sets. Missing or falsified values can occur in both occasions. In order to perform sense-

full analyses on the input data sets one has to eliminate those problems. This is done

during the pre-processing phase covered in detail in the following.

3.3.1. Laser data

Since LaCam® is based on runtime measurement problems like

• areas could not be reached

• areas are reached more than once with different measuring results

• different step-sizes between the measurements

are implied. Additionally, measurement errors can occur which lead to outliers in the

laser data set. Remedies applied in the APO approach will be introduced in the following.

As described in Section 3.2 each laser measurement provided by LaCam® comprises

meta data and measurement data. Both can suffer from following problems

(1) File is missing.

(2) File is incomplete. e.g. missing coordinates in measurement file or invalid cam-

paign number in meta data file.

In both cases the data couple is skipped during the import phase.
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Consolidation to ensure uniqueness. The remaining laser data couples are passed

through a consolidation step. Due to the runtime measurement method of LaCam® coor-

dinates inside the converter may be measured multiple times with slightly different re-

sults. For further analyses each coordinate should be distinct with respect to its remai-

ning refractory thickness. Hence, a consolidation step is necessary. This pre-processing

step counts the number of replicates of each coordinate and forms the mean of the brick

thickness for the replicate coordinate. All further brick thickness values of the replicated

coordinates are eliminated.

Interpolation to guarantee equal step-sizes. As stated in Section 3.2.1 each coor-

dinate is defined by depth and angle. Basically, the step-sizes between two depth values

or two angles are constant:

• depth step-size = 5cm

• angle step-size = 2.5◦.

Due to the runtime measurement method used by LaCam® the depth step-sizes may vary.

Particularly in the bottom area of the converter much more measurements exist. For our

analyses, fixed step-sizes are advantageous. Thus, a fixed grid with a step-size of 5cm is

desired. For this reason, the laser data is linearly interpolated with respect to the depth

step-size.

Eliminating holes. Some areas in the converter can not be reached by LaCam®, some

coordinates do not have a brick thickness value. These aspects cause problems in the

analysis step and have to be solved in advance. Therefore, a specific holes interpolation

remedy is introduced. This is done in two consecutive steps

(1) interpolate depth

(2) interpolate angle.

In step (1) all joint holes within the same angle get linearly interpolated over all depths.

This is done by finding the hole margins in both directions and linearly interpolating the

missing values in between. After completing step (1), the remaining holes (mainly located

at the converter margins) get linearly interpolated within the same depth over all angles.

This is done in step (2) where again the same strategy is used. Looking at Figure 3.2 this

strategy is summarized. Figure 3.2(a) shows step (1) performing the interpolation within

each angle. The interpolated holes from step (1) as well as the remaining holes and their

interpolation approach (2) are sketched in Figure 3.2(b).

Completing this holes interpolation the data set is optimally pre-processed and ready

for further analyses. More detailed explanations and some additional implementation

facts are added in Section 4.2.
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(a) step (1): interpolate depth (b) step (2): interpolate angle

Figure 3.2.: Two-step holes elimination strategy applied in APO. In the first step shown in (a) all joint holes
within the same angle get linearly interpolated over all depths. In step two the remaining holes
are linearly interpolated within the same depth over all angles as shown in (b).

3.3.2. Production process data

Since we have much more heats than LaCam® laser measurements we also have much

more production process data than laser measurement data. As particularly described

later in Section 3.4.1 we are only interested in one characteristic and representing value

for each parameter between two laser measurements. Thus, missing values in the pro-

duction process data set do not have a tremendous impact. For this reason, they would

not be eliminated during the pre-processing phase rather than just skipped during the

analysis phase.

The production process data pre-processing basically contains data structuring, date

formatting and the calculation of the availability parameter introduced in the Section 3.4

particularly.

3.3.3. Merging Data

Once the laser data and the production process data are imported and pre-processed

successfully they have to be combined in a sense-full way. Production process data is

synchronized with laser measurement data based on

(1) heat number

(2) converter number

(3) vessel number.

Intuitively, SNR would be suggested as the best criteria to synchronize production pro-

cess data and laser measurement data. Looking at the HKM data set more precise SNR is
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not a proper synchronization criteria. Directly after tapping the new SNR will be loaded

at HKM. Thus, a LaCam® laser measurement will already result in the new SNR which

is wrong. For this reason, SNR can not be used for synchronization purposes.

Summing up, in addition to the usual data import, pre-processing steps like consoli-

dation, interpolation and holes elimination have to be performed to suffice the needs of

the analyses steps in APO. Once the input data set is properly pre-processed, the desired

analysis can be applied. Their APO specific customized approaches are covered in the

following section.

3.4. Analysis

This section covers the analyses performed on the earlier introduced data set. First of all,

some simplifications necessary in APO are described. Later on, the applied approaches

and their specific usage as a part of APO are introduced.

3.4.1. APO approach

Since one of the main aims of APO is to find relationships between production process

parameters and refractory wear, different approaches are investigated. In order to apply

this approaches in a proper way the available data set has to be treated in a suitable

manner. Thus, some simplifications have to be made which will be introduced in the

following.

Production process parameter subset selection. Is it known from former research

that finding relationships is not guaranteed. In fact, models with less parameters are ea-

sier and, in terms of computational complexity, cheaper to parametrize. For this reason,

a top-down design is used to find rough relationships. Moreover, only 10 out of about 100

production process parameters are selected for the analyses in this thesis.

Based on the known negative influences on refractories illustrative depicted in the py-

ramid in Figure 3.3 the 10 most important available production process parameters are

chosen. This is done in cooperation with refractory specialists from RHI AG. The cho-

sen production process parameters as well as their nomenclature in production process

data set, Figure 3.3 and APO software are summarized in Table 3.4.1. The parameter

availability denoting the amount of heats per day is introduced and calculated by APO.

Analysis area definition. From Section 1.2 we know that converters are huge in terms

of dimension and size. Thus, analysing the whole converter would be computational

expensive. Furthermore, it is easier to parametrize smaller data sets. As a result, two
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Figure 3.3.: Negative influences of production process parameters on refractory wear. Based on experience
it is assumed production process parameters highlighted in red have the most influence while
the influence amount decreases for orange, yellow and green boxes. (Source: [Jandl, 2009])

characteristic areas of the converter are selected to perform our researches. The area

selection is done based on experience gathered by RHI AG specialists.

Basically, two areas are investigated

(1) area 8 - charge pad

(2) area 99 - virtual area without maintenance.

The charge pad area 8 is the most stressed converter area at HKM. Hence, the refrac-

tory wear is higher compared to other areas. Thus, maintenance is important in this area.

In contrary to area 8, the virtually selected area 99 has much lower refractory wear and

usually no maintenance is applied to this part of the converter. Since maintenance data

is missing in this thesis, results on this area are assumed to be more accurate compared

to results in area 8.

Area 8 is located between angles 130◦- 230◦ and from 3.80m to 6.30m depth. Moreo-

ver, area 99 is slightly smaller and lies between angles 260◦- 282.5◦ and 7m - 8m depth.

Figure 3.4(a) visualizes area 8 and Figure 3.4(b) area 99 using red rectangles.

No matter how much data we have, it is essential to treat all available data equally.

The APO approach to fulfil this requirement is described in the following.

Slot definition. The amount of production process data is much higher compared to

laser measurement data representing the remaining refractory. As a matter of fact, pro-

duction process data exist for each heat whereas in average only about 20 refractory
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Nomenclature in Figure 3.3 production process data set APO

T End of Blowing TEMP ABSTICH temp_abstich
(FeO) Fe Fe
t(end of blowing - tapping) Liegezeit liegezeit
[Si] Si Re Si_RE
[Mn] MnRE Mn_RE
Reblow Rate Dauer nachgeblasen dauer_nachgeblasen
(MgO) Input MgO MgO
Basicity Basizitaet basizitaet
FeSi FeSi 75% fesi_75prozent
Availability (heats/day) - availability

Table 3.2.: Selected most important production process parameters.

(a) area 8 (b) area 99

Figure 3.4.: Definition of analysed converter areas indicated by red rectangles. (a) highlights area 8 located
in the charge pad area of the converter. The area 99 located close to the bottom of the converter
is indicated in (b).

data measurements per campaign exist. In order to find relationships between produc-

tion process parameters and refractory wear one is interested in the refractory wear

between two laser measurements. In other words the refractory wear per heat in mm

draws our attention. Moreover, the amount of heats applied between two laser measu-

rements varies. Due to this facts, we defined so-called slots to equally treat all available

data. A slot is defined as the part between two laser measurements, graphically visuali-

zed in Figure 3.5.

Knowing the amount of heats between two measurements and assuming linear refrac-

tory wear within a slot the refractory wear per heat in millimetre can be calculated like

rwheat =
∆rw

slotsize
(3.1)
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Figure 3.5.: Definition of a slot. A slot is defined as the amount of heats between two laser measurements.
Since the refractory wear per heat draws our attention and slots varies in size it is required to
normalize all measurements by the size of the corresponding slot.

where ∆rw is the refractory material difference between one and its subsequent laser

scan. This can be done either for each position or coordinate in the converter or for a

characteristic value representing an area. The simplification of this characteristic values

are covered in the next paragraph.

Characteristic functions define representing values. The approaches applied to

find the desired relationships require parametrizations of model defining parameters. In

fact, the resulting model should find proper relationships as accurate as possible on the

one hand but without loss of generality on the other hand. For this reason and caused by

the fact of increasing computational costs analyses are not performed for each coordinate

inside a converter. As introduced earlier analyses are rather made for different areas

inside a converter. As we will see in the subsequent sections all analysis methods apply

a kind of regression approach. Hence, one production process parameter value acts as

training and one ∆rw value acts as target to perform the regression.

Having many refractory wear values per area and many production process parame-

ters inside a slot lead to more than one couple of data. As a result, some simplifications

have to be made. From the refractory point of view, the minimum value per laser scan of

an area is used as representative characteristic value. The reason for this choice is easily

argued. The minimum function represent the position with the lowest remaining refrac-

tory material. From a steel-plant point of view this is the most markable value in terms

of maintenance and preservability. The characteristic function applied for production

process parameters inside a slot varies from parameter to parameter. With the help of

experienced refractory specialists from RHI AG the characteristic functions are selected.

The main goal is to select the characteristic functions which has the most impact to the

refractory wear. The selected characteristic function per production process parameter

as well as their substantiation can be seen in Table 3.3.

Applying this simplifications, one ends up with one value per production process para-

meter per slot as training data and one refractory wear value per area per slot as target

data. As a matter of fact, all requirements for successfully applying regression analyses

are assured.
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Production process Characteristic Substantiation
parameter function

temp_abstich max ↑ tapping temperature→ massive impact to wear of refractory material
Fe max (FeOn) makes the slag liquid and aggressive
liegezeit max ↑ liegezeit→ higher refractory wear
Si_RE max ↑ (Si)→ more heat is generated→ higher refractory wear
Mn_RE max ↑ (Mn)→ more heat is generated→ higher refractory wear
dauer_nachgeblasen max risk of over-blowing→ higher refractory wear
MgO min ↑ (MgO)→ the stiffer the slag
basizitaet min ↓ basicity→ more chemical reactions between slag and refractory ma-

terial→ higher refractory wear
fesi_75prozent max ↑ (fesi_75prozent)→ energy added for additional heat→ higher refrac-

tory wear
availability min ↓ converter temperature→ higher refractory wear

Table 3.3.: Characteristic function definition per production process parameter and its substantiation.

In conclusion, some simplifications have to be made to ensure proper analyses. The

definition of areas of interest, slots and characteristic values are covered in this section.

Supervised learning approach. Apart from the basic LR , all approaches applied in

APO are based on the supervised learning principle introduced in Section 2.1.1. Recap,

that each approach realisation consists of a training and a test phase. In terms of APO

the available data set is split into 70% training set and 30% test set. The splitting is done

completely randomly, independent of chronological issues.

Data scaling before applying analysis approaches is very important especially for ap-

proaches like SVR and GP . It avoids parameters in greater numeric ranges dominating

those in smaller ranges. Moreover, scaling is a proper remedy to overcome numerical

difficulties during calculations. In APO each production process parameter is scaled to

the range of [−1, 1]. It is important to apply the same scaling to both training and test

data [Hsu et al., 2010].

Based on the training data set the model is parametrized. Having the model, predicti-

ons of the remaining data are made and compared to the real test data set. Figure 3.6

summarizes the data flow in 3.6(a) and schematically sketches the supervised learning

principle applied in APO in 3.6(b).

The following sections cover the used analyses more specific and explains the way of

applying this methods in APO.

3.4.2. Linear Regression

The main principle of LR is explained in Section 2.1.3 in detail. Basically, in LR one tries

to linearly fit the input data set. Thus, one has to parametrize the slope k and the offset

d of a straight line defined by the equation of a straight line y = kx + d. In case of APO

the 10 selected production process parameters act as input x while y is represented by

the refractory wear. Thus, the parameters k and d can easily be determined by applying

54



3. Approach 3.4. Analysis

(a) General APO data flow (b) Schematic describing the data split.

Figure 3.6.: General data flow of APO and schematic data split into training and test set. All input data
is passed into a predictor parametrized by past laser and production data in order to predict
remaining brick thickness as shown in (a). The available data set is split into training and test
set while the training set is used to train the artificial intelligence predictor ahead of comparing
their prediction results to the real test set data. This typical supervised learning concept is
depicted in (b).

least-squares fitting [Bishop, 2007]. First of all, only one production process parameter

is considered for regression. Later on, production process parameters are combined and

a multiple regression is performed.

3.4.3. Support Vector Regression

Section 2.1.4 introduced the theoretical background of SVR in general. Recap, the basic

idea of SVR is to find a function f(x) with at most ε deviation from observed targets for

all training data on the one hand and is shaped as smooth as possible at the same time,

on the other hand.

Different kernels used in APO. The mentioned Section 2.1.4 explained the meaning

of kernels to make the analysis computational feasible to non-linear regression problems.

Generally speaking, various kernels exist. In APO we investigated in two different kernels,

namely

(1) RBF kernel

(2) polynomial kernel

The kernel selection is based on former researches like [Hsu et al., 2010] designating

the RBF kernel as the kernel to start with, and the polynomial as a variant worthy to

investigate in.

RBFs in general are a widely used regression model. It has the property that each

basis function depends only on the radial distance from a centre or target value. This

radial distance is typically designed as an Euclidean distance. Historically, exact function

interpolations are the purpose of introducing these RBF functions [Bishop, 2007].
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In APO the RBF kernel of the form

K(xi, xj) := exp(−γ||xi − xj ||2) γ > 0 (3.2)

is used where γ is the kernel hyper-parameter.

The polynomial kernel formally denoted in Equation 2.13 is known in literature as a

popular example for non-linear modelling and can be formulated for APO purposes like

K(xi, xj) := (γxixj)
d γ > 0 (3.3)

where γ denotes again the kernel hyper-parameter and d the degree of the polynomial

kernel.

SVR hyper-parameters. As one can see, either polynomial or RBF kernels are para-

metrized by so-called hyper-parameters. From Equation 2.9 we know the penalty hyper-

parameter C of the error term [Hsu et al., 2010]. The meaning of the kernel hyper-

parameters γ and degree d in case of the polynomial kernel are mentioned earlier. In

fact, finding the optimal hyper-parameters is the main goal of the SVR training phase to

result in a model providing accurate prediction results.

Determine best hyper-parameters. Adapting from previous researches, for instan-

ce [Hsu et al., 2010], the hyper-parameters are applied in the binary numeral system,

except the polynomial degree hyper-parameter, and their ranges are initially set to

• error deviation of loss function ε = 2−8 − 22

• kernel function γ = 2−16 − 23

• penalty hyper-parameter C = 2−6 − 28

for SVR using RBF kernel and to

• error deviation of loss function ε = 2−8 − 22

• kernel function γ = 2−16 − 2−1

• penalty hyper-parameter C = 2−6 − 26

• polynomial degree d = 2− 4

for SVR with polynomial kernel. Moreover, a grid search is applied to determine the

best hyper-parameters. In doing so, step-sizes have to be defined. Initially the following

step-sizes are used

• εstep = 21
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• γstep = 21

• Cstep = 21

for both RBF and polynomial kernels and additionally dstep = 1 for the SVR with polyno-

mial kernel.

Iterative grid search to speed up evaluation. During the hyper-parameter evalua-

tion, it turns out, that this step becomes very time consuming and computational expen-

sive. As a remedy an iterative grid search is investigated. Thus, the hyper-parameter

selection is split into two consecutive parts. An initial rough grid search is applied using

step-sizes like

• εstep = 22

• γstep = 23

• Cstep = 23.

Evaluate best hyper-parameters using cross validation (CV). In detail, the hyper-

parameter selection is performed using a 20-fold CV . Generally speaking, CV is a famous

method for limited training and test data sets. n-fold CV splits the whole data set into n

equally sized proportions. Then, k trials are executed where all but one proportion is

used for training purposes and the remaining part as test set. During a CV each pro-

portions acts once as test set. Each trial results in an error. The average of all errors is

represented by the mean squared error (MSE) defined in Equation 5.1. As a result, the

hyper-parameter combination with the smallest MSE is selected.

Use finer grid search to improve accuracy. In second step of the iterative grid

search, the area around the best hyper-parameters is analysed more detailed. Hence,

the step-sizes are decreased to initially introduced values for all hyper-parameters and

the hyper-parameter ranges are fitted to the margins of the area skipped by the rough

grid search in the first step to ensure a finer grid search. Again, the best hyper-parameter

combination is found by minimizing the MSE. Due to this iterative grid search approach

a tremendous speed up of 50− 70% can be achieved.

Having the optimal hyper-parameters APO is able to train the model on the whole

training set and performs predictions using the test data set.

3.4.4. Gaussian Processes

Gaussian Processes are initially introduced and explained in Section 2.1.5. To recap, a GP

describes a probability distribution of functions where each function suffices a Gaussian
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distribution. A GP is completely specified by its mean m(x) and covariance cov(x,x′)

function, also known as kernel function in literature.

In fact, the modelling of either the mean function m(x) or the kernel function k(x,x′)

reflect the essential part of the GP training phase. Particularly, the procedure of applying

GP for regression tasks is explained in Section 2.1.5.

Mean and covariance function selection. Referring to APO, the selection of mean

and covariance functions and their initial hyper-parameter values are important in order

to properly train the model. The prediction quality depends on the choice of the mean

and covariance function. Based on former researches and statements in literature like

[Bishop, 2007] the mean function m(x) is set to zero. In contrary, the covariance functi-

on is not set to a fixed value rather than learned. In doing so, one first has to formally

define the covariance function. In APO we use a combination of exponential, linear and

constant kernel shown in Equation 3.4, which [Bishop, 2007] evaluated as proper cova-

riance function for regression tasks. Looking at Equation 3.4, θ represents the hyper-

parameters and D the dimensionality of the input vector.

k(xn,xm) = θ0 exp

(
−1

2

D∑
i=1

(xni − xmi)2
)

+ θ2 + θ3

D∑
i=1

xnixmi (3.4)

During training phase the hyper-parameters θ are optimized using log likelihood ma-

ximization mentioned earlier in Equation 2.27.

APO application of GP ARD. In Section 2.1.5 the automatic relevance determination

(ARD) introduced by [Rasmussen and Williams, 2006] is mentioned. GP ARD offers the

opportunity to easily represent the influence of each input production process parameter

on the refractory wear by just adding a new hyper-parameter η. Knowing the exposure

of the influence of a production process parameter on the refractory wear opens various

new opportunities for APO and for their designated users. For instance, steel-plants are

able to extract their top 3 wear production process parameters based on GP ARD . In

doing so, Equation 3.4 is extended by η as shown in Equation 6.72 in [Bishop, 2007]

leading to a kernel definition as mentioned in Equation 2.29.

3.5. Conclusion

In conclusion, this chapter covered the aim of this thesis with respect to APO, firstly.

Further on, the input data set comprising production process data and laser measure-

ment data is explained. Moreover, some necessary data pre-processing steps to guaran-

tee proper analyses are explained. Finally, the applied concepts are covered with specific
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respect to APO. Since we know the routines that have to be passed through from a theo-

retical point of view, let us focus on the way of implementing all the procedures in the

next chapter.
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This chapter basically focusses on the practical implementation. Section 4.1 gene-

rally introduces the framework applied in this thesis. As mentioned earlier, data pre-

processing is essential to achieve proper analysis results. Thus, Section 4.2 introduces

the APO data structure, explains the data import of production process data and laser

measurements and covers the pre-processing steps necessary to ensure consistent da-

ta sets. Finally, Section 4.3 practically draws the attention to the implementation of the

different analysis approaches and their prerequisites.

4.1. Framework

Generally speaking, MATLAB® is chosen as developing language for several reasons. In

fact, MATLAB® is a high-level technical computing language useful for various tasks. Al-

gorithm development, data visualisation, data analysis as well as numeric computations
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are suitable tasks. Flexibility and the availability of a huge amount of add-on is one of the

main advantages with respect to APO. All these advantages are good reasons for choo-

sing MATLAB® as the proper tool for the given problem. APO is based on several different

analyses. Some are already integrated in MATLAB®, some are not.

In order to perform SVR or GP analyses additional libraries are necessary. Thus, the

LIBSVM library and the GPML toolbox will be introduced in the following.

4.1.1. LIBSVM

The library provided by [Chang and Lin, 2011] was initially published in 2000. The de-

partment of Computer Science at the national Taiwan University in Taipei have been ac-

tively developing this package since the initial publishing. LIBSVM has been widely used

in many different areas. Within 2000 and 2010 more than 250,000 downloads of the

package have been recognized. Table 4.1 lists representative and successful works using

LIBSVM in various domains.

Domain Representative works

Computer vision LIBPMK [Grauman and Darrell, 2005]
Natural language processing Maltparser [Nivre et al., 2007]
Neuroimaging PyMVPA [Hanke et al., 2009]
Bioinformatics BDVal [Dorff et al., 2010]

Table 4.1.: Successful works with LIBSVM in various domains [Chang and Lin, 2011].

LIBSVM application. The typical use of LIBSVM involves two steps famous in supervi-

sed learning. Firstly, the data set is trained to obtain a model which is secondly used to

perform predictions on a test data set. LIBSVM is implemented in C++ but provides inter-

faces for MATLAB®, Python etc. MATLAB® calls the LIBSVM functions and subroutines using

so-called MATLAB® executables (MEX). Installation prerequisites for LIBSVM and MEX are

shown in Section A.2 in Appendix A.

As a result, the SVR analysis with LIBSVM outputs the mean squared error (MSE) shown

in Equation 5.1 as well as squared correlation coefficient R2 shown in Equation 5.4 in

the evaluation Section 5.1.

4.1.2. Gaussian Processes for machine learning toolbox.

From Section 2.1.5 we know, by definition, a GP is fully specified by a mean and a cova-

riance function. From a practical point of view, these functions, typically given in terms

of hyper-parameters, are mostly quite difficult to fully specify in advance. The difficulty

is to infer the hyper-parameters from the data.
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GPML toolbox overcomes hurdles. For this reason, the GP for machine learning

(GPML) toolbox has been designed by [Rasmussen and Nickisch, 2010] to overcome the-

se difficulties. They created a framework with the goal to be on the one hand, as simple

as possible to use, and on the other hand, easy to extend. Moreover, the GPML toolbox

is designed to show a high level of robustness while covering the full range of possible

hyper-parameters. Stable and modular code checked by an exhausted suite of test cases

is provided. The GPML toolbox is published under the FreeBSD license and offers, among

others, full compatibility to MATLAB®.

GPML toolbox offers flexibility. One strength of the GPML toolbox lies in its flexibi-

lity. Mean, covariance and inference methods can be applied directly or combined to

specialised functions. GPML toolbox calls the specialised functions composite functions.

Additionally, likelihood functions are needed to properly apply a GP . In fact, likelihood

functionality is needed both during the inference part of a GP and while predicting.

Based on the domain of interest the mean, covariance and likelihood functions as well

as the inference method have to be selected. A proper combination of likelihood function

and inference method depending on the task is essential to achieve well-performing re-

sults [Rasmussen and Nickisch, 2010]. A detailed technical documentation including all

functions and methods is provided in the developer’s guide on the GPML toolbox website1.

Section A.2 in Appendix A states the GPML toolbox installation requirements.

4.2. Data pre-processing

As covered in Section 3.3 both laser measurement data and production process data are

delivered in different file formats. Moreover, both can contain invalid or missing data.

To avoid problems during the analysis each input data set has to pass a soundly pre-

processing phase firstly. Once the raw input data is formatted in a suitable manner it

can be imported and stored in a proper data structure. In this chapter the data structure

used in APO is introduced in advance of describing the necessary pre-processing steps

with respect to the implementation.

4.2.1. Data structure.

We know that a campaign is a collection of heats with each heat having production pro-

cess parameters as well as laser measurements in the ideal case. In other words, pro-

duction process parameters belong to heats and heats to campaigns which represents a

kind of hierarchy. For this reason, MATLAB® struct arrays are used to store all input pa-

rameters. With a closer look, each campaign is uniquely identified using a uid. Moreover,

campaign number, converter number, and vessel number are stored for each campaign.

1http://www.gaussianprocess.org/gpml/code/matlab/doc/manual.pdf
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A boolean hasPData indicates whether this campaign has production process data or not.

Additionally, each campaign holds a separate struct for each heat which stores few meta

data tags like time t, data d, etc. as well as a boolean hasLData signalizing laser mea-

surement availability. If laser measurements are available they are stored in the arrays

angle, depth, radius and brick of the struct laserData. Finally, production process data

is stored in the struct prodData with the name of the production process parameter as

field name. Listing 4.1 summarizes the data structure used in this thesis.

1 c = struct( ’uid’, 0, ...

2 ’nr’, 0, ...

3 ’cv_nr’, 0, ...

4 ’v_nr’, 0, ...

5 ’hasPData’, false, ...

6 ’heats’,

7 { ...

8 struct( ’nr’, 0, ...

9 ’snr’, 0, ...

10 ’t’, ’’, ...

11 ’d’, ’’, ...

12 ’hasLData’, 0, ...

13 ’laserData’, ...

14 { ...

15 struct( ’angle’, [], ...

16 ’depth’, [], ...

17 ’radius’, [], ...

18 ’brick’, [],...

19 )

20 },...

21 ’prodData’, ...

22 { ...

23 struct( ’param_1’, 0, ...

24 ’param_2’, 0, ...

25 ...

26 ’param_N’, 0, ...

27 )

28 }

29 )

30 }

31 );

Listing 4.1: APO input data structure

Based on these data structure the raw data can be imported as described later in this

chapter.

4.2.2. Production process data

HKM delivers production process data as a *.xls file, one file for each campaign. Since

this file contains some statistics irrelevant for APO purposes the sheet of interest has

to be extracted. This is done, by manually exporting it to a tabulator separated *.csv

file to ensure a suitable format for the automatic import routine. In advance, it is es-
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sential to check whether the date column is delivered in the correct format. If not, the

format has to be changed before exporting to the format DD-MM-YYYY. In terms of naming

conventions, the exported production process data set is named fulfilling the pattern

ProductionData_<campaign_nr>_<converter_nr>_<vessel_nr>.

Preparing the production process data in this way guarantees a successful import.

4.2.3. Laser Data

From Section 3.3.1 we know the sequential pre-processing order is defined as

(1) import data

(2) consolidation

(3) interpolation

(4) holes elimination.

Import data. In advance of pre-processing laser measurement data as described abo-

ve, files have to be imported to our data structure. This is done in file ImportData.m by

applying two steps. Firstly, laser measurement meta data is imported. Secondly, the ac-

tual laser measurement values are added.

As stated in Section 3.2.1 the meta data file contains a lot of unnecessary overhead.

For this reason, regular expressions are used to fetch the data we are interested in.

Listing 4.2 shows an excerpt of the function fetchLMetaData responsible for the meta

data import.

1 SNR_NAME = ’Zustellung’;

2 VESSEL_NAME = ’Gefä ß Nr.’;

3 CONVERTER_NAME = ’Stand’;

4 DATE_NAME = ’Datum’;

5 TIME_NAME = ’Zeit’;

6 CAMPAIGNNR_NAME = ’Standreise’;

7 HEATNR_NAME = ’Alter’;

8

9 fid = fopen(f);

10

11 % Scan Text and separate each line

12 data = textscan(fid, ’%s’, ’Delimiter’, ’\n\r’);

13

14 % Collect line of interest using regular expressions

15 expr = [DATE_NAME, ’\t\d+.\d+.\d+|’, HEATNR_NAME, ’\t\d+|’, TIME_NAME, ...

16 ’\t\d+.\d+|’, CAMPAIGNNR_NAME, ’\t\d+|’, SNR_NAME, ...

17 ’\t\d+|’, CONVERTER_NAME, ’\t\d+|’, VESSEL_NAME, ’\t\d+’];

18 [res] = regexp(data{1}, expr, ’match’, ’once’);

Listing 4.2: Import laser measurement meta data of interest using regular expressions
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The real laser measurement values are far more structured than the meta data. Thus,

the import is easily done by subroutine fetchLData invoking the MATLAB® function textscan

using the tabulator as a column separator. Additionally, the laser measurement values are

restructured to fit into our data structure by subroutine reorganizeData.

Finally, as mentioned in Section 3.3.1, missing and invalid parts are removed to com-

plete the laser data import. Once the laser data set is imported and stored successfully

different pre-processing steps covered in the very next paragraphs can be applied.

Consolidation. Referring back to Section 3.3 one recognizes the necessity of data con-

solidation to achieve unique data. Regarding the implementation, each heat of each

campaign is passed through this consolidation executed in the file ConsolidateData.m.

This file calls the subroutine consolidate.m performing some data extraction and for-

matting. The core consolidation is examined by a open-source MATLAB® function called

consolidator.m provided by John D’Errico in 20092.

This consolidator can serve as a tool detecting replicates of each coordinate and re-

sults in one remaining representative value. Among others, John D’Errico’s consolidator

has the ability to determine the mean of the replicate values resulting in one remaining

value and eliminating the replicates. This is important to enable a trouble-free use of

MATLAB® interpolation method interp1 necessary to guarantee fixed step sizes or interpo-

late measurement holes, in detail explained in the following paragraphs.

Interpolation. As described in Section 3.3.1 in detail, depth step sizes vary due the

measurement approach of LaCam®. In order to achieve the desired fixed depth step

size of 5cm the file InterpolateData.m has to be executed using the strategy = ’depth’

switch. In doing so, function interpolateDepth is invoked and each laser measurement

of each heat is linearly interpolated using the MATLAB® interpolation method interp1.

Particularly, interp1 finds the values of the underlying function f(x) at intermediate data

points and interpolates the found values [MATLAB, 2011]. In this thesis the interpolation

is done linearly.

Eliminating holes. Section 3.3.1 introduced the necessity of holes elimination in de-

tail and proposed a two-step interpolation strategy. Again, the file InterpolateData.m has

to be executed, this time using the strategy = ’holes’ switch to invoke the subrouti-

ne interpolateHoles. Initially, this function finds the hole margins using the subrouti-

ne findHoleMargins. Having these margins the holes in between is linearly interpolated

using again the MATLAB® interpolation method interp1. As mentioned in Section 3.3.1

this is applied to all depths in advance to all angles. To ensure proper interpolation some

boundary conditions have to be fulfilled. For further analyses all interpolated values as

well as hole coordinates are saved to the data structure.

2http://www.mathworks.com/matlabcentral/fileexchange/8354-consolidator
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Once the laser measurement holes are eliminated the laser measurement input data

set is properly pre-processed for further analyses.

4.2.4. Merging data

To be able to perform the analyses we are interested in, laser measurement data and

production process data have to be merged. This is done as described in Section 3.3.3

in function mergeData. It is remarkable that campaigns without production process data

are tagged with hasPData = 0 and heats without laser measurement information with

hasPData = 0 during this merging procedure.

Finally, the successful pre-processed and imported data set is saved using the APO data

structure to a MATLAB® file called data.mat.

Summing up, input data sets are not consistent or flawless initially. Thus, pre-processing

steps have to be considered. Moreover, the data has to be imported and stored using a

suitable data structure. The data structure and all necessary steps to properly store input

data in it are covered in this section referring to the implementation.

4.3. Analysis

As mentioned in Section 3.1 different regression approaches are applied to determine

the best available relationships between production process parameters and refractory

wear. The APO specific adaptations of this approaches are introduced in Section 3.4. This

section focusses on the implementation of the simplifications applied in APO as well as the

realisation of the approaches LR , SVR and GP using MATLAB® with the help of additional

libraries like LIBSVM or GPML toolbox.

APO simpifications. Section 3.4.1 introduced the simplifications necessary for APO.

Basically, all simplifications are applied in advance to the analysis application. Most sim-

plifications are implemented in the file ExtractRefractoryWearData.m. Based on the out-

put file data.mat of the importing APO part the desired data sets in terms of areas are

extracted. Moreover, the production process parameters of interest applying their indi-

vidual characteristic functions are extracted. Additionally, the slot sizes are calculated

and the characteristic refractory wear values are determined. Particularly, this is done

in a subroutine called calcRWCharacteristics returning the ∆rw and the weighted rwheat

defined in Equation 3.1. Finally, ExtractRefractoryWearData.m calculates some area spe-

cific statistical values like min(depth) or max(depth). The extracted data is saved to a file

named sufficing the pattern <#campaigns>c_area_<area_nr>_RefractoryWear.mat.
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4.3.1. Linear Regression

As stated in Section 3.4.2 the LR is implemented in two steps. Initially, only one produc-

tion process parameter is considered for regression. Later on, productions process para-

meters are combined to apply MLR . Thus, followed by ExtractRefractoryWearData.m with

fieldOI=’linRegData’ delivering the pre-processed data for LR purposes, two different

files have to be executed. AnalyseLinearRegression.m performs the simple Linear Regres-

sion using one production process parameter while AnalyseMultipleLinearRegression.m

has to be invoked if more production process parameters are combined.

LR using single production process parameter. Basically, LR is performed for each

heat having laser measurement data and each production process parameter separately.

AnalyseLinearRegression.m fetches the necessary data and invokes a subroutine called

performLinReg performing the actual LR . Listing 4.3 shows the subroutine performLinReg.

In detail, the production process parameters x as predictors and refractory wear y as

target are delivered. Line 15 uses the MATLAB® function polyfit to fit the polynomial,

which is in this case the equation of a line, to the data. The resulting hyper-parameters

are stored in p and used in line 18 to determine the prediction using the MATLAB® function

polyval. Moreover, the residual values are calculated as shown in line 21. Lines 24 to 31

applies LR performance evaluation steps considered in Section 5.2.2 particularly.

1 function [p, rsq, yfit, yresid] = performLinReg(x, y)

2 % Performs linear regression

3 %function [p, rsq] = performLinReg(x, y)

4 % INPUT

5 % x - predictor values

6 % y - target values

7 % OUTPUT

8 % p - linear regression hyper parameter

9 % rsq - coefficient of determination

10 % yfit - predicted yfit

11 % yresid - residual values

12

13 % Calculate Linear regression

14 % p(1) = slope, p(2) = intercept of the linear predictor

15 p = polyfit(x, y, 1);

16

17 % Calculate predicted yfit

18 yfit = polyval(p, x);

19

20 % Compute residual values

21 yresid = y - yfit;

22

23 % Measurement of goodness by calculating coefficient of determination (R^2)

24 SSresid = sum(yresid.^2);

25 SStotal = (length(y)-1) * var(y);

26 rsq = 1 - (SSresid/SStotal);

27

28 if ~isnan(rsq)
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29 % round

30 rsq = str2num(num2str(rsq,’%7.4f’));

31 end

Listing 4.3: Subroutine performLinReg performing the single production process parameter LR in APO

Once each heat and each production process parameter is analysed using LR , all

results are collected, post-processed and saved to a MATLAB® file sufficing the pattern

<#campaigns>c_area_<area_nr>_linregresults.mat.

MLR using combined production process parameters. Similar to the LR , the MLR

is performed for each heat equipped with laser measurement data. In contrast, producti-

on process parameters are combined to sets of different sizes. Sets from 2 to 9 combined

parameters are applied. All possible production process parameter combinations are con-

sidered. Listing 4.4 sketches a pseudo code representing the procedure passed through

in AnalyseMultipleLinearRegression.m. As a matter of fact, a different function is used to

perform the MLR compared to the LR . MLR investigates in the MATLAB® function regress

performing MLR using least-squares. Delivering the refractory wear w_delta_rw and the

selected production process parameter combination par as shown in line 13 results to a

set of outputs defined in lines 7 to 12 taken from the MATLAB® documentation. Lines 2

and 15 are used for performance evaluation purposes using CV. Section 3.4.3 mentioned

this evaluation approach in detail. In the end, proper results are plotted by calling the

subroutine plotplotMultipleLinReg as shown in line 18.

1 % Function for crossvalidation

2 regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

3

4 for k = EACH_PARAMETER_COMBINATION

5

6 % perform multiple regression using regress

7 % B = vector B of regression coefficients

8 % BINT = BINT of 95% confidence intervals for B

9 % R = vector R of residuals

10 % RINT = matrix RINT of intervals that can be used to diagnose outliers

11 % STATS = containing the R-square, F statistic and p value

12 % for the full model, and an estimate of the error variance

13 [B, BINT, R, RINT, STATS] = regress(w_delta_rw, par);

14 % Perform crossvalidation to calculate performance using MAE

15 cvMAE(k) = myCrossval(’mse’, par, w_delta_rw, ’predfun’, regf, ’leaveout’,1);

16

17 % Plot interesting results

18 plotMultipleLinReg(...)

19

20 end

Listing 4.4: Pseudo code functionally representing the APO implementation of a MLR

Finally, the best results are extracted and saved to a MATLAB® file sufficing the pattern

<#campaigns>c_area_<area_nr>_multilinregresults.mat.
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In conclusion, two different LR approaches are investigated, implemented in two dif-

ferent files using two different calculation approaches. The simple LR directly evaluates

the regression in a subroutine whereas the MLR passes production process parameter

combinations to the MATLAB® function regress to perform the multiple regression. In both

occasions, data pre-processing is done in advance using ExtractRefractoryWearData.m.

4.3.2. Support Vector Regression

Section 2.1.4 introduced the general idea of non-linear SVR while Section 3.4.3 covered

all APO related issues of this approach. This section focusses on the SVR specific data

pre-processing and the necessary steps to properly implement SVR using the LIBSVM

library in MATLAB®.

SVR pre-processing. Principally, as for LR , ExtractRefractoryWearData.m is used to

extract the data subsets to analyse and store them to data.mat. In fact, SVR analyses

need more detailed data pre-processing. For this reason, PrepareDataSVR.m is implemen-

ted. As mentioned in the developer’s guide3 the library LIBSVM requires a specific data

format. Thus, PrepareDataSVR.m invokes a subroutine called convertDataToLIBSVMFormat,

one the one hand responsible for scaling the input data to the range of [-1,1] and on

the other hand converting the input data to the desired LIBSVM format. In detail, all

features are stored using a sparse matrix and written to a file sufficing the pattern

<#campaigns>c_area_<area_nr>_dataToAnalyse_scale.txt using the function libsvmwrite

provided by LIBSVM. Once the data is scaled and stored in the required format, the

data set is randomly split into 70% training data and 30% test data using the sub-

routine splitSVRData. As a results, training data is saved to a file fulfilling the pat-

tern area_<area_nr>_dataToAnalyse_scale.tr while test data is stored using the pattern

area_<area_nr>_dataToAnalyse_scale.te. Once all this steps are negotiated, the data pre-

processing is completed and everything is set for applying the analyses.

SVR execution sequence. To put it bluntly, it is essential to execute pre-processing

and analysis parts in the following sequential order to achieve proper analysis results:

(1) ExtractRefractoryWearData.m

(2) PrepareDataSVR.m

(3) SVR_Analysis.m

LIBSVM usage in APO. The actual analysis of interest is performed using LIBSVM by exe-

cuting SVR_Analysis.m. Listing 4.5 shows a pseudo code functionally representing the

main steps implemented in SVR_Analysis.m.

3http://www.gaussianprocess.org/gpml/code/matlab/doc/manual.pdf
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1 % Import data

2 [input.train_lbl, input.train_inst] = libsvmread(area_<area_nr>_dataToAnalyse_scale.tr);

3 [input.test_lbl, input.test_inst] = libsvmread(area_<area_nr>_dataToAnalyse_scale.te);

4

5 % SVR initializations

6 param.svr_type = 3; % 3 - epsilon-SVR

7 param.kernel_type = 1; % 0 - linear, 1 - polynomial, 2 - radial basis function

8 param.nfold = 20; % n of n-fold Crossvalidation; 0 for leave-one-out CV

9

10 for k = EACH_PARAMETER_COMBINATION

11

12 % fetch default parameter ranges

13 param.ranges = getDefaultParameterRanges(param.kernel_type);

14

15 % perform rough grid search

16 param = determineBestSVRParameter(input.train_lbl, tr_inst, param);

17

18 % set parameters for finer iterative grid search

19 param.ranges.step_c = 1;

20 param.ranges.step_gamma = 1;

21 param.ranges.step_eps = 1;

22

23 % perform finer grid search

24 param = determineBestSVRParameter(input.train_lbl, tr_inst, param);

25

26 % train the model

27 cmd = [’-s ’, num2str(param.svr_type), ’ -t ’, num2str(param.kernel_type), ...

28 ’ -c ’, num2str(param.bestc), ’ -g ’, num2str(param.bestg), ...

29 ’ -p ’, num2str(param.besteps)];

30 if isequal(param.kernel_type,1)

31 cmd = [cmd, ’-d ’, num2str(param.bestdegree)];

32 end

33 results.model = svmtrain(input.train_lbl, tr_inst, cmd);

34

35 % perform predictions

36 [results.predicted_label, results.accuracy, results.decisionvalues] = ...

37 svmpredict(input.test_lbl, te_inst, results.model);

38

39 % evaluate predictions

40 results.rmse = calcRMSE(input.test_lbl, results.predicted_label);

41

42 end

Listing 4.5: Pseudo code functionally representing the APO implementation of a SVR with LIBSVM

Initially, the desired data to analyse is imported using the LIBSVM function libsvmread as

shown in lines 2 and 3. Lines 6 to 8 depict the initializations necessary to properly apply

SVR . As one can see, all hyper-parameters are stored in a struct param. As introduced

in Section 3.4.3 different kernels are applied and a 20-fold CV is used to find the best

hyper-parameters. Comparable to the procedure in MLR , production process parameter

subsets of size 1 to 10 are created and each possible combination is evaluated using SVR

indicated through the loop in line 10.

73



4.3. Analysis 4. Implementation

Iterative grid search implementation. As described in Section 3.4.3 an iterative

grid search is applied. Looking at the implementation, the default hyper-parameter ran-

ges as well as the step sizes are initialised using the struct param in the subroutine

getDefaultParameterRanges in line 13.

The first step of the iterative approach, executes a rough grid search by invoking

the subroutine determineBestSVRParameter delivering the production process training pa-

rameter tr_inst, the refractory wear training data set input.train_lbl and the hyper-

parameter struct param as shown in line 16. The subroutine determineBestSVRParameter

steps through all possible hyper-parameter combinations. For each hyper-parameter

combination the SVR model is trained using the LIBSVM command svrtrain including a

20-fold CV. Finally, the subroutine determineBestSVRParameter returns the optimal hyper-

parameter combination found by minimizing the MSE.

The best hyper-parameter combination is stored in the struct param. In the second

step of the iterative approach, the area around the best hyper-parameters is analysed mo-

re detailed. In fact, the grid search is becoming finer by decreasing the step-sizes. Lines

19 to 21 indicate the step-size decrease while the finer grid search is executed similarly

as before by calling the subroutine determineBestSVRParameter with smaller step-sizes as

shown in line 24.

Train model with best hyper-parameters and perform prediction. Completing the

time consuming hyper-parameter selection, the SVR is all set to be trained on the whole

training data set. Lines 27 to 32 of Listing 4.5 shows the APO specific parameter setting

stored in the string cmd. Table 4.2 summarizes the delivered LIBSVM parameters and their

meaning.

hyper-parameter meaning

-s svm_type set the type of the SVM
3 = epsilon-SVR

-t kernel_type set type of kernel function (default 2)
0 – linear: u’*v
1 – polynomial: (gamma*u’*v + coef0)ˆdegree
2 – radial basis function: exp(-gamma*|u-v|ˆ2)

-c cost set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-p epsilon set the epsilon in loss function of epsilon-SVR (default 0.1)
-g gamma set gamma in kernel function (default 1/num_features)
-d degree set degree in kernel function (default 3)

Table 4.2.: LIBSVM parameters applied in APO [Chang and Lin, 2011].

Finally, the SVR model is trained delivering the production process training parame-

ters tr_inst, the refractory wear training data set input.train_lbl and the command

string cmd as shown in line 33. The resulting model is used for predictions applied on

the test set by invoking the LIBSVM function svmpredict delivering production process

test parameters te_inst, the refractory wear test data set input.test_lbl and the model

results.model as shown in line 36. The predicted results are stored in the struct results
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comprising the predicted refractory wear results.predicted_label as well as some other

statistics. Finally, the results are evaluated by calculating the root mean squared error

(RMSE) which will be covered in detail in the evaluation Section 5.2.3.

To sum up, additionally necessary pre-processing steps are required to properly apply

SVR analyses. The beginning of this section focussed on this required steps. APO uses

the library LIBSVM to implement SVR . This section gives some implementation-related

remarks about their usage in APO as well as focussing on hyper-parameter selection

strategies like iterative grid search using CV. Finally, it is important to guarantee the

sequential execution sequence introduced in this section.

4.3.3. Gaussian Processes

The basic principle of GP is introduced in Section 2.1.5 and the specific APO approach of

GP is covered in Section 3.4.4. This section covers the GP specific data pre-processing

and highlights the main implementation strategies used to apply both GP and GP ARD

with the help of the GPML toolbox.

GP specific data pre-processing. Recap, that ExtractRefractoryWearData.m is used to

extract the data of interest to a MATLAB® file called data.m. No matter, similar to SVR , so-

me GP specific pre-processing steps have to be applied. This is done in PrepareDataGP.m.

Particularly, this pre-processing procedure fetches the input data, scales it to a range

of [-1,1] by simply invoking the subroutine scaleData, splits it to 70% training data and

30% test data using the subroutine splitGPData converts it in a proper matrix. Final-

ly, PrepareDataGP.m saves the pre-processed data to a file named based on the pattern

<#campaigns>c_area_<area_nr>_70_preparedData_GP.mat.

GP execution sequence. Subsequent to the GP specific pre-processing the analyses of

interest are performed by invoking the file GP_Analysis.m. To guarantee proper analysis

results the following sequential execution sequence is essential:

(1) ExtractRefractoryWearData.m

(2) PrepareDataGP.m

(3) GP_Analysis.m

GPML toolbox usage in APO. The main GPML toolbox interface gp.m is invoked in the

file GP_Analysis.m. In advance, APO specific function formulations have to be made. Lis-

ting 4.6 shows a pseudo code excerpt functionally sketching the Gaussian Process APO

approach implemented in GP_Analysis.m.
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1 % (1) GP definitions

2 param.meanfunc = @meanZero;

3 param.likfunc = @likGauss;

4 param.inffunc = @infExact;

5 if useARD

6 param.covfunc = {’covSum’, {’covSEard’,’covConst’,’covLIN’}};

7 else

8 param.covfunc = {’covSum’, {’covSEiso’,’covConst’,’covLIN’}};

9 end

10

11 for i = EACH_PARAMETER_COMBINATION

12

13 % (2) GP initial values

14 if useARD, L = ones(r,1); else L = 0; end

15 hyp(i).cov = log([L; 1; 1]);

16 param.sn = std(error); % error of SVR results

17 hyp(i).lik = log(param.sn);

18

19 % (3) Optimise GP hyper-parameter

20 hyp(i) = minimize(hyp(i), @gp, -100, param.inffunc, param.meanfunc, ...

21 param.covfunc, param.likfunc, inp.train_feat(:,ind), inp.train_tgt);

22

23 % (4) Saving ETA values if using ARD

24 if useARD hyp(i).eta = hyp(i).cov(1:r); end

25

26 % (5) Performing GP prediction

27 [output(i).m res(i).s2] = gp(hyp(i), param.inffunc, param.meanfunc, ...

28 param.covfunc, param.likfunc, inp.train_feat(:,ind), inp.train_tgt, ...

29 inp.test_feat(:,ind), inp.test_tgt);

30

31 END

Listing 4.6: Pseudo code functionally representing the APO implementation of a Gaussian Process using the

GPML toolbox

In step (1) of Listing 4.6 the functional forms of the GP are defined and stored in

struct param. Based on results of [Bishop, 2007] on former regression tasks using GP

the mean function is set to zero in line 2. Since we assume Gaussian noise, line 3 se-

lects the proper likelihood function. The inference function is set to exact inference in

line 4 which suits perfect to our assumption of Gaussian likelihoods. Exact inference re-

duces the computation of mean and covariance of a multivariate Gaussian to a simple

matrix algebra. The covariance function is selected based on Equation 3.4 in line 8. It

has a composite form summing a linear term covLIN, a constant term covConst and an

isotropic squared exponential term covSEiso. The switch useARD is used to distinguish

between usual GP and GP including ARD. The GP ARD implementation is explained later

in this chapter. The loop in line 11 signifies the application of the following steps to each

combination of production process parameters.

After completing the GP definitions, it is essential to properly set the initial values of

the hyper-parameters. This is done in lines 14 to 17. The initial values of the composite

covariance function are set to log(0, 1, 1). The variance of the assumed Gaussian noise
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is set to variance of the earlier computed SVR error = prediction - target. Again, the

variance is delivered in logarithmic space.

Once the initial hyper-parameters are set, they are passed through the optimization

function minimize in line 20 to optimise the hyper-parameters using an expectation pro-

pagation approximation to the marginal likelihood. Additionally, the struct param and the

training features inp.train_feat representing the selected production process parame-

ters and the training targets inp.train_tgt representing the training refractory wear are

delivered. By setting the maximum amount of conjugate gradient (CG) iteration steps to

-100, the optimization part is fully specified. Finally, the main interface gp.m is invoked to

perform the optimization resulting in the optimal hyper-parameters stored in struct hyp.

Based on the optimized hyper-parameters the GP is executed in order to perform pre-

dictions on the unseen test data set. For this reason, in addition to the parameters de-

livered earlier the test features inp.test_feat and test targets inp.test_tgt are added

and passed to the GPML toolbox function gp.m. As line 27 shows the predictive mean

output(i).m and the predictive variance res(i).s2 are returned.

APO implementation of GP ARD. As mentioned in Section 3.4.4 APO customers are ex-

tremely interested in GP ARD . Looking at the implementation, few slight changes to GP

have to be applied. Referring back to line 8 in Listing 4.6 the definition of the covariance

has to be replaced by the definition shown in line 6. GPML toolbox already provides a GP

ARD covariance function named covSEard which is selected in line 6. Instead of using

the isotropic squared exponential part a squared exponential covariance function with

ARD is used. Additionally, the initial values in step (2) starting from line 14 have to be

adapted. Depending on the amount of used production process parameters the size of

the vector L = [1, 1, . . . , 1] varies. However, the initial values of the covariance function

are set to log(L, 1, 1). To extract the η values containing the exposure of the production

process parameter a further step (4) has to be added. Line 24 selects the proper η values

from the struct hyp(i).cov and stores it to hyp(i).eta. Apart from the recently mentio-

ned differences all other steps are equal compared to the common GP .

Summing up, to successfully apply GP for APO purposes an additional pre-processing

step has to be passed. It reshapes, scales and splits the data into its desired format. It

is essential to follow the sequential execution described in this chapter. Further on, the

GPML toolbox is used to perform the GP analyses. The definitions of mean, covariance

and likelihood functions as well as inference methods suitable to APO are shown. Both

common GP and GP ARD are supported by GPML. This section covered all mentioned

issues from an implementation viewpoint.
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4.4. Conclusion

In conclusion, this chapter briefly mentioned the framework and reasonable substantiati-

ons for the choice of languages and libraries with respect to APO. Further on, the design

of the APO data structure is covered and import as well as pre-processing routines are

explained. The last part of this chapter focussed on the implementation of the different

analysis approaches. Some necessary simplifications are mentioned as well as the usage

of MATLAB®, LIBSVM and GPML toolbox with respect to APO is covered to realise LR , SVR ,

GP and GP ARD regression analyses.

Up to now, all theoretical backgrounds, APO specific approaches as well as practical

prerequisites and implementation details are covered. Thus, we are all set to perform the

analyses of interest. The next chapter focusses on the evaluation and presentation of the

analysis results.
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This chapter explains the result evaluations starting with the introduction of the app-

lied evaluation metrics and methods in Section 5.1. Further on, the evaluation methods

used to optimize the hyper-parameters of the different approaches are covered. Finally,

the different applied approaches are compared to each other. REC curves are used to de-

termine the influence of data set size and statistical hypothesis tests are investigated to

evaluate which machine learning methods lead to the best prediction results. Section 5.2

covers these evaluation results.

5.1. Evaluation methods

In order to evaluate properly all APO approaches different metrics and methods are re-

quired. This section introduces the applied error metrics and explains the methods used

to evaluate the analyses results.
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5.1.1. Error metrics

Mean squared error (MSE). The mean squared error (MSE) is a simple and widely

used error function. The sum of the squares of the errors are determined and averaged

over the amount of data points N . In fact, the division by N allows to compare different

data set sizes on an equal footing. An error is defined as difference between the predicti-

on f(xi) and the corresponding real target value ti for each data point xi. Moreover, the

MSE is defined as an non-negative function which is zero if, and only if, the prediction

exactly passes each training data point [Bishop, 2007]. Equation 5.1 denotes the MSE

definition formally.

MSE =
1

N

N∑
i=1

(f(xi)− ti)2 (5.1)

Root mean squared error (RMSE). The root mean squared error (RMSE) is a very

similar error metric. Additionally, the square root is applied to the MSE as shown in

Equation 5.2. The RMSE ensures comparison ability of data sets with different data set

sizes on the same scale and in the same units [Bishop, 2007]. As a matter of fact, the

RMSE is especially useful when errors are both positive and negative. APO investigates

in a subroutine called calcRMSE to calculate the RMSE.

RMSE =

√√√√ 1

N

N∑
i=1

(f(xi)− ti)2 (5.2)

Mean absolute error (MAE). The mean absolute error (MAE) is yet another prediction

quality error metric. It is again a quantity to measure how close predictions are to the

real observations. Particularly, the MAE is an average of the absolute errors between pre-

dictions and targets. Equation 5.3 gives the definition of the MAE. Using the subroutine

calcMAE the MAE is determined in this thesis.

MAE =
1

N

N∑
i=1

|f(xi)− ti| (5.3)

Squared correlation coefficient (R2). The squared correlation coefficient R2, in li-

terature also known as coefficient of determination, is generally used in the context of

statistical models and provides a measure of how likely future prediction are. In other

words it is a statistic offering information about the goodness of a model fitting. In gene-
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ral the squared correlation coefficient R2 is defined as shown in Equation 5.4.

R2 =

(
N
∑N

i=1 f(xi)ti −
∑N

i=1 f(xi)
∑N

i=1 ti

)2(
N
∑N

i=1 f(xi)2 −
(∑N

i=1 f(xi)
)2)(

N
∑N

i=1 ti)
2 −

(∑N
i=1 ti

)2) (5.4)

In case of LR with only one independent variable the squared correlation coefficient

R2 is the square between the observed and the predicted values. Basically, the squared

correlation coefficientR2 ranges from 0 to 1. Applying the squared correlation coefficient

R2 to a MLR it accords the multiple correlation coefficients [Chang and Lin, 2011].

In terms ofR2 values interpretation, it is easy to say, thatR2 = 1 indicates a regression

result perfectly fitting the data.

5.1.2. Regression Error Characteristic curves

A powerful tool of performance evaluation are the Regression Error Characteristic (REC)

curves introduced by [Bi and Bennett, 2003].

ROC curve principle. Generally speaking, REC curves generalize Receiver Operating

Characteristic (ROC) curves, well known for visualizing and comparing classification

results, to regression problems. Reviewing ROC curves, the fraction of true positives

out of the positives (true positive rate) versus the fraction of false positives out of the

negatives (false positive rate) is plotted. One can argue that a classifier performs well if

the ROC curve climbs rapidly towards the upper left hand corner.

Looking at an ROC example in Figure 5.1(a) one can easily see that function A, which

is an almost perfect model, dramatically outperforms the null model represented in func-

tion E. Summarizing ROC curves, a classifier is said to dominate another if the corre-

sponding curve is always above the other.

The expected performance of a function can also be represented by the area under the

curve (AUC ) , which implies that the area over the curve (AOC ) represents the expec-

ted error. Figure 5.1(b) sketches the definition of AOC and AUC. The AOC of an perfect

model is 0. Note that AOC always is a biased estimate since it underestimates the ac-

tual expectation. This is due to dropping a part of the formula described in detail in

[Bi and Bennett, 2003]. Depending on the used error metric, the AOC is either close to

the MAD or to the MSE.

From ROC to REC. [Bi and Bennett, 2003] maintained all the properties and benefits

of ROC curves and transformed them to regression tasks. Practically, REC curves plot

the error tolerance versus the percentage of the points predicted within the tolerance.

In other words, ε versus acc(ε) is plotted. In detail, the error tolerance is defined as the
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(a) Sample ROC curves: function A = almost perfect
model; E = null model.

(b) The area over the curve (AOC) estimates the ex-
pected error.

Figure 5.1.: Sample ROC curves in (a) and AOC definition in (b). A classifier performs well if the ROC curve
climbs rapidly towards the upper left hand corner. From literature it is known that a classifier
dominates another if the corresponding curve is always above the other [Bi and Bennett, 2003].

difference between the predicted value f(x) and the actual value y. acc(ε) is defined like

acc(ε) :=
|{(x, y) : loss(f(xi, yi) ≤ ε, i = 1, . . . , N}|

N
(5.5)

where N denotes the amount of data points. It could be either the squared residual

loss(f(x), y) = (y − f(x))2 (5.6)

or the absolute deviation

loss(f(x), y) = |y − f(x)|. (5.7)

To plot REC curves the algorithm sketched in Listing A.1 in Appendix A implemented

in the MATLAB® function rec_curve has to be invoked. The function plots the REC curve

on the one hand and returns the calculated area over the curve (AOC) on the other hand.

The developers [Bi and Bennett, 2003] describe the delivered arguments particularly.

REC advantages. In conclusion, the most important properties of an REC curve are

• REC curves provide visual comparison of regression functions with each other.

• The REC curve estimates the CDF of the error → area over the curve (AOC) is a

biased estimate of the expected error.

• REC curve is invariant of error metric choice.
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• REC curves provide an effective method to present results to non-experts.

5.1.3. Significance testing

Generally speaking, significance testing is a technique often used in statistics to encou-

rage decisions. A decision is called statistically significant if a particular difference is

caused by nothing more than coincidence. In other words, a decision is treated as signi-

ficant if the likelihood that something happens is less than one in 20 [Rugg, 2007].

Significance testing was coined by [Fisher, 1925] like

“Critical tests of this kind may be called tests of significance, and when

such tests are available we may discover whether a second sample is or is

not significantly different from the first.” [Fisher, 1925]

Basically, a certain per-determined threshold probability exists to support a decisi-

on. This threshold is called significance level [Nickerson, 2000]. In doing so, an ass-

umption, so-called hypothesis, is proofed using mathematical statistics based on em-

pirical data sets. Initially, one usually starts with a null-hypothesis. By definition, the

null-hypothesis assumes that there is no difference between two things. Further on,

one tries to disprove the null-hypothesis by showing significant statistical differences

between them [Rugg, 2007]. Practically, various different tests exist. Depending on the

null-hypothesis and the domain of interest the suitable test can be selected.

APO uses Student’s t-tests. Among others, the Student’s t -test is often used to eva-

luate two groups. In fact, it is a statistical hypothesis t -test where the test statistic

suffices a Student’s t-distribution if the null-hypothesis is supported. As described in

[Xue and Titterington, 2011] a Student’s t -test is based on the assumption of having two

groups following a normal distribution with non-equal means and equal but unknown

within-group variances. One, basically, uses a null-hypothesis of assuming equal mean

and tries to reject the null-hypothesis with a significance level of 5%.

Practical significance testing using MATLAB®. Regarding the implementation, the

MATLAB® function ttest2 performs the Student’s t -test. The significance level α is set to

0.05 by default. Additionally, ttest2 provides the ability to deliver an arbitrary α value. It

returns a set of fields shown in Listing 5.1 in detail.

1 % Outputs:

2 % - h - h = 1 => reject the null hypothesis

3 % h = 0 => failure of null hypothesis rejection

4 % - p - the probability of observing the given result, or one more extreme,

5 % by chance if the null hypothesis is true.

6 % Small values of P cast doubt on the validity of% the null hypothesis.

7 % - ci -

8 % - structure stats with the following fields:
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9 % ’tstat’ - the value of the test statistic

10 % ’df’ - the degrees of freedom of the test

11 % ’sd’ - the pooled estimate of the population standard deviation

12 % (for the equal variance case) or a vector containing the

13 % unpooled estimates of the population standard deviations

14 % (for the unequal variance case)

Listing 5.1: Outputs of the MATLAB® function ttest2 (Source: [MATLAB, 2011]).

In conclusion, based on the knowledge of the evaluation methods and metrics provided

in this chapter, the APO analyses can be performed and rated. The next section reflects

the achieved results.

5.2. Results

This section initially covers the influence of data set sizes. Finding the optimal hyper-

parameters to design the model properly is important no matter which analysis approach

is used. Thus, each approach is treated separately and the applied hyper-parameter eva-

luation strategies and their results are discussed. Finally, all approaches applied in this

thesis are compared against each other to determine the most suitable approach for APO

purposes. This final comparison is done in both, area 8 and area 99.

5.2.1. Importance of data set size

As mentioned in the previous sections, the data set is split into training and test set. In or-

der to evaluate the influence of data set size, REC curves introduced in Section 5.1.2 are

investigated. This thesis was started with only 1 available campaign to perform analyses.

As time goes by, RHI AG and HKM provide more data sets.

For demonstration reasons, an arbitrary production process parameter combination is

chosen and analysed in area 8. Looking at Figure 5.2 one can see that even for one pro-

duction process parameter (e.g. Fe) or two combined parameters (e.g. Mn_Re, basicity)

the results clearly improve by increasing the data amount. Figures 5.2(a) and 5.2(b) are

analysed on just one campaign whereas Figures 5.2(c) and 5.2(d) uses 4 campaigns as

their underlying data.

The more data the more accurate the predictions. From Section 5.1.2 it is known

that the area over the curve (AOC) acts as a prediction quality measure. Moreover, a

predictor performs well if the REC curve climbs rapidly towards the upper left hand

corner. Since squared residual loss defined in Equation 5.6 is used, the AOC is close to

the MSE. The value in braces in each legend represent the AOC. Comparing the results,

one the one hand the AOC decreases by increasing the amount of campaigns, and on the

other hand, the REC curves using 4 campaigns, visually climb closer toward the upper

left hand corner.
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(a) 1 campaign, parameter Fe (b) 1 campaign, parameters Mn_RE and basicity

(c) 4 campaigns, parameter Fe (d) 4 campaigns, parameters Mn_RE and basicity

Figure 5.2.: Demonstration of data set size importance. An arbitrary production process parameter combi-
nation is chosen and analysed in area 8 using different data set sizes. (a) and (b) show the poor
results achieved using just 1 campaign as input. By increasing the data set size to 4 campaigns
in (c) and (d) clearly improved results for the same production process parameters can be found.
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As a result, one can clearly see the tremendous influence of the data set size to the

prediction results. By increasing the amount of campaigns the prediction results clearly

improve.

5.2.2. Linear Regression

As already known, two different approaches of LR are investigated. The first treats each

production process parameter separately and the second, combines production process

parameters to evaluate synergy effects with respect to refractory wear. In both occasions

the squared correlation coefficient R2 introduced in Section 5.1.1 acts as a quality mea-

surement. Recap, the better the linear model fits the data, the closer the R2 value comes

to 1. Referring back to Listing 4.3, lines 24 to 31 show the squared correlation coefficient

R2 calculation for the simple LR case. Applying MLR using the MATLAB® regress functi-

on, the squared correlation coefficient R2 is returned in the STATS structure as shown in

Listing 4.4.

Leave-one-out CV to evaluate results. Recollecting, LR and MLR models are the

only approaches applied in this thesis not using the supervised training/test approach.

This very first approach covers each campaign separately. The hyper-parameters defining

the regression line, in the LR case, or the plane, in the MLR case, are directly observed

during the regression. In order to evaluate the results a split into training and test set

is still necessary. In case of LR and MLR this is done by applying a leave-one-out CV. In

doing so, each data tuple acts once as test set while all others are used to determine the

LR or MLR . Finally, the MAE defined in Equation 5.3 is calculated as an additional error

metric.

Simple Linear Regression results. Focussing on each production process parameter

separately does not allow to many conclusions on the relationships to the refractory wear.

The squared correlation coefficients are smaller than 0.5 for each production process

parameter. Most of them are even below 0.3. In average, over all 9 analysed campaigns

and all production process parameters the R2 lies below 0.1. Looking at the MAE values,

the vary between 1.8 and 7.7 depending on the campaign and the parameter. In average

the MAE lies around 3.3. Table 5.1 summarizes the LR results in area 8.

Summing up, using one production process parameter does not allow a detailed state-

ment about the best production process parameter with respect to refractory wear. In

other words, one is not able to state which production process parameter has the most

influence on the refractory wear.

Multiple Linear Regression results. By adapting LR to MLR the production process

parameters are combined in advance of analysing their influences on refractory wear.
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Campaign ID MAE range mean(MAE) R2 range mean(R2)

147_1_3 3.6883 - 4.0273 3.8546 0 - 0.2091 0.0447
148_2_3 1.8218 - 3.1818 2.6199 0 - 0.4857 0.1260
149_1_2 2.9118 - 3.1338 3.0113 0 - 0.0289 0.0124
149_1_3 4.9121 - 5.7668 5.5580 0 - 0.3308 0.0718
149_2_1 6.4733 - 7.7765 7.0635 0 - 0.2884 0.0826
150_1_1 2.6146 - 3.4096 2.9399 0.0067 - 0.2114 0.0700
150_2_2 3.1699 - 4.3512 3.6039 0 - 0.1788 0.0487
150_1_2 3.2781 - 4.1543 3.8094 0.0017 - 0.2523 0.0854
161_2_2 3.4342 - 3.7487 3.6493 0.0011 - 0.1497 0.0333

Table 5.1.: Results of simple LR in area 8 for each campaign.

Particularly, combinations of size 2 to 9 are applied. Once, the combination size is spe-

cified, each possible combination of the 10 available production process parameters is

evaluated. Similar to the LR a leave-one-out CV is used to determine the MAE of each

production process parameters combination. Additionally, again the squared correlation

coefficient R2 is calculated.

Exemplary results for two combined production process parameters are shown in Fi-

gure 5.3 including the regression plane and the residuals. Interpreting the results in

Figure 5.3(a), a higher availability leads to higher refractory wear whereas higher MgO

decreases the refractory wear. With a closer look to Figure 5.3(b), one is able to argue,

that higher ’liegezeit’ and basicity has increasing influence on the refractory wear whe-

reas lower ’liegezeit’ and basicity, lead to the opposite effect. Looking at the title of both

plots the squared correlation coefficient R2 is much higher compared to the LR results

indicating better fits.

MLR results for more combined production process parameters. Recap, parame-

ter combinations greater than two are covered as well. Since they are difficult to plot

in 3D, squared correlation coefficient R2 values are analysed to evaluate MLR results.

Table 5.2 shows the results for an exemplary campaign for all analysed combinations.

combination size R2 range mean(R2)

2 0.0047 - 0.3373 0.1602
3 0.0155 - 0.4017 0.2264
4 0.0443 - 0.4422 0.2856
5 0.0755 - 0.4986 0.3393
6 0.1157 - 0.5239 0.3886
7 0.2338 - 0.5390 0.4345
8 0.3499 - 0.5556 0.4780
9 0.4380 - 0.5202 0.5598

Table 5.2.: MLR results on campaign 151_1_2 for different combination sizes.
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(a) Campaign 161_2_2, parameters availability and MgO.

(b) Campaign 148_2_3, parameters basizitaet and liegezeit.

Figure 5.3.: Exemplary MLR results including regression residuals achieved in area 8. The ∆wear in mm/he-
at over two arbitrary combined production process parameters is plotted and fitted by a MLR
plane. (a) shows that a higher availability leads to higher refractory wear whereas higher MgO
decreases the refractory wear. The second example in (b) indicates that higher ’liegezeit’ and
basicity have increasing influence on the refractory wear whereas lower ’liegezeit’ and basi-
city, lead to the opposite effect. Residuals are shown in the lower panels where red residuals
represent the maximum or minimum values.
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MLR does not perform equally well on each campaign. Some campaigns perform bet-

ter than the exemplary campaign some lead to worse results than others. By interpreting

the results one can see that they are dependent of the production process parameter

selection. Some choices perform better than others. However, in conclusion, increasing

the amount of combined production process parameters improve the MLR results.

To sum up, even the simple MLR model provides some insight to the relationship bet-

ween production process parameters and refractory wear. But, as shown in this section,

the relationship quality clearly depends on the selected production process parameters.

5.2.3. Support Vector Regression

Section 3.4.3 introduced two different kernels in which APO investigates. In contrast to

the LR , the SVR does not analyse each campaign separately rather than using the whole

data set and splitting it to training and test data set as described in Section 3.4. In doing

so, the evaluation contains two steps. Firstly, the optimal hyper-parameters defining the

SVR model have to be found using the training set. Secondly, the SVR model performance

is evaluated on the test set.

Learn optimal hyper-parameters. As explained in Section 4.3.2 the optimal hyper-

parameters are learned from the training data by applying a 20-fold CV minimizing the

MSEtrain on the training set. Similar to MLR all possible combinations of production

process parameters with combination sizes ranging from 1 to 10 are covered. Using an

iterative grid search the optimal hyper-parameter learning is accelerated. Increasing the

combination size, the amount of possible production process parameter combinations in-

creases up to a certain point. Thus, the hyper-parameter evaluation time grows just as

much. Additionally, the results in terms of MSEtrain does not improve for higher combi-

nation sizes. Table 5.3 summarizes the SVR hyper-parameter training results collected

from analysing area 8 per combination size, including the learned hyper-parameters for

the best production process parameter selection, the minimal MSEtrain as well as the

evaluation duration teval for SVR using both, RBF and polynomial kernel. For comparison

reasons, Table 5.4 shows the same results for area 99.

Looking at the results in Table 5.3, there are slight differences in terms of hyper-

parameter quality reflected in MSEtrain between RBF and polynomial kernels. Moreo-

ver, the MSEtrain decreases by increasing combination size up to 5 combined producti-

on process parameters for polynomial kernels whereas no improvements are made using

RBF kernels. As already mentioned earlier the evaluation time teval grows up to a cer-

tain combination size. In case of area 8 it grows until combination size 5. The evaluation

time is smaller for evaluating RBF than polynomial kernels caused by the additional-

ly evaluated hyper-parameter degree d in case of the polynomial kernel. Focussing on
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combination RBF kernel polynomial kernel
size ε γ C MSEtrain teval [sec] ε γ C d MSEtrain teval [sec]

1 1 0.5 64 24.4179 63.54 2 0.5 64 4 33.8585 67.97
2 1 0.5 64 24.4179 339.51 4 0.5 64 4 31.994 309.22
3 1 0.5 64 24.4179 990.59 1 0.5 64 2 30.4422 923.60
4 1 0.5 64 24.4179 1904.99 1 0.5 64 4 25.0739 1830.39
5 1 0.5 64 24.4179 2451.68 1 0.5 64 3 24.4179 2460.12
6 1 0.5 64 24.4179 2110.23 1 0.5 64 3 24.4179 2454.80
7 1 0.5 64 24.4179 1207.99 1 0.5 64 3 24.4179 1735.35
8 1 0.5 64 24.4179 459.16 1 0.5 64 3 24.4179 813.44
9 1 0.5 64 24.4179 102.41 1 0.5 64 3 24.4179 226.41
10 1 0.5 64 24.4179 10.39 1 0.5 64 3 24.4179 27.47

Table 5.3.: Learned optimal hyper-parameters for area 8 using SVR with RBF and polynomial kernels for
different combination sizes.

hyper-parameter learning results of area 99 summarized in Table 5.4, basically, likewise

results can be found. In case of area 99, both, RBF and polynomial kernels, slightly decre-

ase their performance results indicated through MSEtrain up to a certain combination

size. Looking at the evaluation time teval the learning process has the longest duration

for combination size 5 in terms of RBF kernels and 6 in terms of polynomial kernels.

combination RBF kernel polynomial kernel
size ε γ C MSEtrain teval [sec] ε γ C d MSEtrain teval [sec]

1 2−9 0.5 64 6.1416 75.60 2−5 0.5 64 2 7.1956 66.25
2 2−9 0.5 64 6.1416 483.96 1 0.5 64 3 6.9629 313.94
3 2−9 0.5 64 6.1416 1768.09 0.25 0.5 64 4 6.4998 956.83
4 2−11 1 128 5.5214 4272.27 0.5 0.5 64 4 6.2831 2116.79
5 2−11 1 128 5.5214 5277.96 2−9 0.5 64 3 6.1416 3935.13
6 2−11 1 128 5.5214 4103.42 2−9 0.5 64 3 6.1416 5098.34
7 2−11 1 128 5.5214 2169.46 2−9 0.5 64 3 6.1416 4052.62
8 2−11 1 128 5.5214 249.26 2−9 0.5 64 3 6.1416 1953.44
9 2−11 1 128 5.5214 155.27 2−9 0.5 64 3 6.1416 506.74
10 2−11 1 128 5.5214 14.80 2−9 0.5 64 3 6.1416 56.50

Table 5.4.: Learned optimal hyper-parameters for area 99 using SVR with RBF and polynomial kernels for
different combination sizes.

By comparing hyper-parameter results, area 99 clearly outperforms area 8 in terms of

MSEtrain.

Based on the hyper-parameters for each combination size the SVR can be finally trai-

ned and evaluated on the test set. In the following, the evaluation results are covered.

SVR results. The SVR model is evaluated on the test set as described in Section 4.3.2.

The REC curves introduced in Section 5.1.2 are used to visualize and compare the re-

sults. Additionally, the error metrics RMSE and MAE are investigated. Figure 5.4 shows

the SVR results using RBF kernels, polynomial kernels and the MLR results for area

8. Looking at the results, one can see that using one production process parameter no

real performance differences between the three compared methods can be found. By
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increasing the combined production process parameters to 4 as shown in Figure 5.4(b)

the performance slightly increases indicated by the decreasing RMSE. Again, one can

not argue that one approach outperforms another. Moving, to 6 combined production

process parameters as shown in Figure 5.4(c) an interesting fact arises. Comparing the

RMSE values to the earlier results, higher errors occur. As a result, combining to ma-

ny production process parameters forces the prediction performance to decrease again.

Moreover, the performance of SVR using polynomial kernel is getting worse compared to

the other approaches. Finally, Figure 5.4(d) combines all 10 available production process

parameters. The RMSE values are getting even more worse. Additionally, real performan-

ce differences between the approaches can be found. Looking at the REC curve shapes,

one can see that the MLR performs slightly better than the SVR with RBF kernel. Both

outperform the SVR with polynomial kernel.

Figure 5.5 summarizes the SVR results using RBF kernels, polynomial kernels and the

MLR results for area 99 using the same production process parameters as in Figure 5.4.

Similar behaviours can be observed comparing the results to area 8. One major diffe-

rence exists. The prediction performance, in general, no matter which approach is used

is much higher in area 99 compared to area 8. Thus, the RMSE values are much lower.

The reason for this prediction performance improvement is easy to find. Area 8 is one of

the most stressed areas of a converter at HKM. Thus, maintenance is important in area

8, whereas in area 99 usually no maintenance is required. Since maintenance data is not

available so far, the machine learning approaches applied in this thesis are not able to

predict area 8 as good as area 99. Referring back to the results in area 99, applying 1

production process parameter shown in Figure 5.5(a), as well as 4 combined production

process parameters shown in Figure 5.5(a), does not lead to real differences in prediction

quality between the two SVR approaches. Similar to area 8, more combined production

process parameters badly influence the prediction performance. Thus, the RMSE values

for 6 combined production process parameters shown in Figure 5.5(c), start to increase

again. The SVR approaches do not perform as good as the MLR approach. With a closer

look to the results using 10 combined production process parameters in Figure 5.5(d)

increasing RMSE values and a MLR result outperforming both SVR kernels can be ob-

served. In addition, the SVR kernel with polynomial kernel performs better than the RBF

kernel.

Summing up, SVR approaches are defined by a kernel which is modelled by different

hyper-parameters. During a time-consuming iterative grid search the hyper-parameters

are optimised. Based on the hyper-parameters the SVR is trained on the training set

and evaluated on the test set. In conclusion, results for combined production process

parameters improve up to a certain combination size and are getting worse again for too

many combined production process parameters. Moreover, MLR outperforms the SVR

especially for bigger combination sizes. It is shown in this section that results in area 99

area more accurate compared to area 8.
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(a) REC plot using 1 parameter in area 8 (b) REC plot using 4 parameter in area 8

(c) REC plot using 6 parameters in area 8 (d) REC plot using 10 parameter in area 8

Figure 5.4.: SVR results using RBF and polynomial kernels compared with MLR results in area 8. No predic-
tion performance improvements can be found for one parameter in (a). 4 combined production
process parameters slightly improves the results of all approaches as indicated by the decrea-
sing RMSE in (b). Increasing the combination size to 6 as shown in (c) the prediction accuracy
decreases again. Same tendency can be observed by looking at combination size 10 in (d). The
prediction accuracy again decreases and the linear approach performs better than the SVR with
RBF kernel while both outperform the SVR with polynomial kernel.
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(a) REC plot using 1 parameter in area 99 (b) REC plot using 4 parameter in area 99

(c) REC plot using 6 parameters in area 99 (d) REC plot using 10 parameter in area 99

Figure 5.5.: SVR results using RBF and polynomial kernels compared with MLR results in area 99. Apart
of the clearly improved prediction quality, similar behaviours as in area 8 can be observed.
Analysing 1 production process parameter in (a) as well as 4 combined production process
parameters in (b) does not lead to real differences in prediction quality between the different
SVR approaches. By looking at RMSE values for 6 combined production process parameters in
(c) one can see that they start to increase again, indicating worse results for higher combination
sizes. (d) shows that for combination size 10 the linear model clearly performs better than both
SVR kernels while the polynomial kernel slights performs better than the RBF kernel.
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5.2.4. Gaussian Processes

As introduced in Section 3.4.4 two different methods of GP are applied in APO: basic GP

and GP ARD . Similar to SVR approaches the data set is split into training set, from which

hyper-parameters are trained to define the GP model, and test set used to evaluate the

model.

Learn optimal hyper-parameters. Particularly, Section 4.3.2 introduced the selecti-

on of covariance functions and the hyper-parameter training strategy based on initially

set hyper-parameter values. Similar to SVR approaches, all possible combinations of

production process parameters with combination sizes from 1 to 10 are covered. Again,

hyper-parameter training time increases until combination size 5 and decreases for big-

ger combination sizes. Table 5.5 summarizes these training durations for area 8 and area

99.

time [sec]

combination GP GP ARD
size area 8 area 99 area 8 area 99

1 10.42 5.70 7.18 7.75
2 45.25 33.85 46.59 38.72
3 118.82 101.58 95.95 107.40
4 234.60 173.54 192.88 209.88
5 297.57 288.29 222.62 330.95
6 246.48 201.66 313.65 251.87
7 165.00 125.50 158.55 168.30
8 48.38 54.75 62.50 96.13
9 11.60 13.82 14.53 22.53
10 1.23 1.28 1.71 3.39

Table 5.5.: Duration of the GP hyper-parameter optimization for different combination sizes in area 8 and
99.

GP results. The test procedure of GP is already mentioned in Section 4.3.3. Similar

to SVR , REC curves and the RMSE as well as the MAE are investigated. Looking at the

results in Figure 5.6(a), one can see that GP clearly outperforms the other approaches

even for 1 production process parameter. The RMSE values indicate smaller errors for

GP and quite equal errors for the other methods. Increasing the combination size to

5 combined production process parameters does not change the result magnificently.

Again, GP leads to pretty much the same performance. The linear model improves

and leads to a slightly better performance than the SVR kernels. Figure 5.6(b) sum-

marizes the results in detail. This tendency is approved when looking at Figure 5.6(c),

where 7 production process parameters are combined. GP performs best, linear model

improves and outperforms both SVR kernels. SVR with polynomial kernels leads to the
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(a) REC plot using 1 parameter in area 8 (b) REC plot using 5 parameter in area 8

(c) REC plot using 7 parameters in area 8 (d) REC plot using 10 parameter in area 8

Figure 5.6.: GP results compared with other approaches in area 8. (a) shows that GP clearly outperforms
the other approaches even for 1 production process parameter. Increasing the combination size
to 5 or 7 combined production process parameters as shown in (b) and (c) does not change
the results magnificently. GP still has the best prediction performance while the MLR improves
and slightly performs better than the SVR kernels. (d) reflects a clear prediction performance
ranking. The GP is superior to all other approaches, while the MLR results clearly perform
better than both SVR kernels. Again, SVR with polynomial kernel leads to the worst results.
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(a) REC plot using 1 parameter in area 99 (b) REC plot using 5 parameter in area 99

(c) REC plot using 7 parameters in area 99 (d) REC plot using 10 parameter in area 99

Figure 5.7.: GP results compared with other approaches in area 99. In contrary to area 8, GP even performs
worse than conventional approaches for 1 parameter in (a). The prediction performance of GP
is improved by increasing the combination size. It catches the SVR results for combination size
4 in (b) and even performs better than SVR with respect to the RMSE for combination size
7 in (c). In both cases the MLR concept leads to the best performance results. Combining 10
production process parameters in (d) approving this tendency. MLR results are still superior
followed by the GP while SVR predictions lead again to the worst results.
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worst result. Finally, looking at the combination of all 10 production process parameters,

a clear ranking in terms of performance can be observed. GP leads to the best prediction

results, ahead of the linear model, which again outperforms the non-linear SVR models

where RBF kernels result better than polynomial kernels. Summing up, GP performs

pretty well in area 8 and always leads to the best performance results.

Figure 5.7 shows the results of the same productions process parameter combinations

in area 99. In the beginning, only 1 production process parameter is considered. In con-

trary to area 8, GP does not perform better than the other approaches. Its RMSE value

is much higher and the area over the curve as well. By combining 4 production process

parameters as shown in Figure 5.7(b), the prediction performance of GP is improving.

It catches the SVR with RBF kernel in terms performance. SVR with polynomial kernel

and the linear model still outperform the other two approaches. Figure 5.7(c) reflects the

prediction performance achieved by combining 7 production process parameters. Both

SVR kernels decline in terms of performance. Comparing the RMSE, the GP performs

slightly better than the SVR methods. The linear model clearly outperforms the other

concepts. Finally, Figure 5.7(d) summarizes the prediction performance results using all

10 production process parameters as a combination. The earlier observed tendency con-

tinues. The linear model leads to the best results. SVR kernels decrease more and more.

GP performance remains quite stable and leaves both SVR kernels behind them.

Summing up, GP does not perform that well in area 99 than in area 8 but in general

results are better in area 99 indicated in smaller RMSE values. By increasing the combi-

nation sizes, the SVR performances decrease while linear and GP remain stable. Thus,

linear models perform best in area 99 followed by GP .

5.2.5. Gaussian Processes with ARD

Basically, GP ARD results are equal to the GP results. The same hyper-parameters are

found leading to the same prediction performances. Additionally, the η hyper-parameter

introduced in Section 3.4.4 is determined. η allows deeper insight to the influence of

each production process parameter on the refractory wear. Due to this additional hyper-

parameter the training duration increases slightly compared to the basic GP approach.

Columns 4 and 5 in Table 5.5 summarize the GP ARD training duration.

GP ARD results. Figure 5.8(a) shows the influences of the 10 production process para-

meters on the refractory wear in area 8 in percent. One can see, that production process

parameter Si_RE has the biggest impact. All other production process parameters have

less than 10% influence on the refractory wear.

Similarly, Figure 5.8(b) reflects the influences found in area 99 in percent. Here, the

influence factors are much more balanced where again Si_RE, MgO and ’Liegezeit’ hold

the major parts.
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(a) Production process paramter influence on refractory wear in area 8.

(b) Production process paramter influence on refractory wear in area 99.

Figure 5.8.: Weighted influences of production process parameters on refractory wear determined by GP
ARD . Looking at area 8 in (a) production process parameter Si_RE plays a dominating role in
terms of refractory wear influence. Influence in area 99 in (b) is much more balanced. Producti-
on process parameters Si_RE, MgO and ’Liegezeit’ have the biggest refractory wear influences.

GP ARD results interpretation. Refractory wear specialists from RHI AG evaluated

the results. The GP ARD results found for area 99 properly fit the experience those spe-

cialists have. Looking at area 8, RHI AG specialists only partly agree with the results

found by APO. Due to missing maintenance and refractory material information as input,

RHI AG is still quite satisfied with the results gathered by APO. As only 10 out of 100 pro-

duction process parameters are chosen, not considered production process parameters

can have even bigger influences.

In conclusion, GP approaches perform a conjugate gradient based optimization ap-

proach in order to determine the optimal hyper-parameters. Using this hyper-parameters

the GP is trained on the training set and evaluated on the test set. Concluding the re-

sults, one is not able to say which approach leads to the best performance, in general.
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Certainly, it depends on the analysed area and on the amount of combined production

process parameters. By tendency, the linear model and the GP perform better than the

non-linear SVR results. In order to evidently propose the best approach statistical tests

are investigated. Their results are covered in the following section.

5.2.6. Performance evaluation

Since our data set is still very small and results vary depending on the selected produc-

tion process parameter combination, one is not clearly able to argue which method has

the best overall performance. Thus, statistical tests are investigated to find significant

differences. Fur our purpose Student’s t -test introduced in Section 5.1.3 are applied.

APO remedy to small test set. A small data set implies a small test set. In order to

achieve qualitative results by applying the Student’s t -test the small test set problem is

overcome using the following approach. First of all, the hyper-parameter are determined

as up to now. Then, two different test sets are created. One the one hand, the small real-

test-set is used, and on the other hand, the whole available data set is used as test set

again. From a practical point of view, the latter is not admissible since the same data is

used to train the hyper-parameters. To qualitatively evaluate the significant differences

between the APO approaches this is a irresistible treatment. In the following, a leave-one-

out CV on the test set is performed for each approach. As a result, the RMSE for each

validation set and the standard deviation of all RMSE values per test set are calculated.

This is done for each approach for combination sizes from 1 to 10 and each possible

production process parameter combination. Looking at the implementation, most of this

evaluation steps are executed in the subroutine performEvaluationCV.

Applying the Student’s t-test. A Student’s t -test is only capable to compare two ap-

proaches. Since we have 5 methods to be evaluated against each other, all possible com-

binations are considered. The RMSE values achieved through the leave-one-out CV on

the validation sets are used as an input to the Student’s t -test. To reduce complexity, only

the production process parameter combinations leading to the best predictions in terms

of minimizing the RMSE on the real-test-set are used. This reduces the Student’s t -test

analysis set to a handful combinations per combination size. Finally, the results of the

Student’s t -test are evaluated.

Regarding the implementation, the Student’s t -test is executed and graphically visuali-

zed in EvaluateResults.m and interpreted using the subroutine interpretStudentTResults.

The best results are plotted in the subroutine plotRMSEoverMethods.

Summing up, the procedure executed to evaluate Student’s t -tests:

(1) Create real-test-set and all-test-set.
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(2) Perform leave-one-out CV for both sets on each approach using each combination

size to determine RMSE and standard deviation.

(3) Select production process parameters leading to the best prediction results on real-

test-set by minimizing RMSE.

(4) Perform Student’s t -test on best production process parameter set using real-test-

set and all-test-set results for each possible approach combination and each com-

bination size.

(5) Interpret Student’s t -test results to determine best approach in terms of APO.

Interpretation of Student’s t-test results. Recap, all statistical significance tests

are performed using a significance level of 5%. As mentioned earlier, the best results

are plotted using the subroutine plotRMSEoverMethods. In doing so, the mean RMSE va-

lue and the standard deviation of all RMSE values of each approach are plotted for all

combination sizes. This is done for the real-test-set and the all-test-set. Figure 5.9 sket-

ches few results from the real-test-set and Figure 5.10 from the all-test-set achieved by

analysing area 8. Similarly, Figure 5.11 covers the real-test-set results and Figure 5.12

the all-test-set results gathered from area 99.

Student’s t-test results in area 8. Looking at the area 8 results on real-test-set in

Figure 5.9 one can see significant differences even for one production process parame-

ter. The GP results outperform the other approaches in terms of mean RMSE values and

standard deviation. This result does not change by increasing the combination size. For

large combination sizes clear differences can be found. GP leads to the best performan-

ces, ahead of MLR while the SVR kernels both does not perform that well. Figures 5.9(c)

and 5.9(d) reflect those results.

Figure 5.10 focusses on the all-test-set results achieved in area 8. Comparing to the

results on the real-test-set it becomes more difficult to find significant differences. By

increasing the combination size slightly significant differences can be observed. Star-

ting from an combination size of 2, GP significantly performs better than SVR . Using

combination size 10 as depicted in Figure 5.10(d) GP even performs better than the li-

near model indicated through the smaller standard deviation and the lower mean RMSE.

Similar to the real-test-set the linear model leads to better predictions than the time

consuming SVR .

Concluding the results in area 8, the results depend on the test set selection. Depen-

ding on the used test set significant performance differences can be found earlier in

terms of combination sizes. Nevertheless, in the end GP always leads to the best predic-

tion performance results.
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(a) real-test-set, 1 parameter, area 8 (b) real-test-set, 5 parameters, area 8

(c) real-test-set, 7 parameters, area 8 (d) real-test-set, 10 parameters, area 8

Figure 5.9.: Results of significance tests applied on real-test-set in area 8. Even one production process
parameter shown in (a) results in significant differences. GP results outperform the other ap-
proaches. Increasing the combination size does not change the result. GP leads to the best
performance, ahead of MLR while the SVR kernels both does not perform that well indicated in
(c) as well as in (d).
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(a) all-test-set, 1 parameter, area 8 (b) all-test-set, 5 parameters, area 8

(c) all-test-set, 7 parameters, area 8 (d) all-test-set, 10 parameters, area 8

Figure 5.10.: Results of significance tests applied on all-test-set in area 8. Compared to the real-test-set it
is more difficult to find significant differences. Smaller combination sizes like 1 and 5 shown
in (a) and (b) do not indicate clear significant differences. The tendency that GP significant-
ly performs better than SVR is approved in (d) where 10 production process parameters are
combined. GP even performs better than the linear model reflected through the smaller stan-
dard deviation and the lower mean RMSE. Similar to the real-test-set the linear model leads
to better predictions than SVR .
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Student’s t-test results in area 99. Figure 5.11 summarizes a set of results achieved

by applying the significance tests to the real-test-set in area 99. Initially, the GP performs

really bad in terms of mean RMSE as sketched in Figure 5.11(a). Nevertheless, no signi-

ficant differences are found between the approaches. By increasing the combination size

the linear model significantly performs better than the other approaches. No significant

differences between SVR and GP are found so far. This situation does not change until

increasing the combination size to 5. Figure 5.11(b) reflects the results for combination

size 5. Again the MLR outperforms GP and SVR with RBF kernel. Additionally, the SVR

with polynomial kernel significantly performs better than GP . This momentum changes

by increasing the combination size again. As depicted in Figure 5.11(c) the prediction

performance of SVR decreases for higher combination sizes. Thus, GP and linear models

significantly perform better than both SVR kernels. In the end, by combining all available

production process parameters, the linear model significantly performs better than the

SVR with both kernels and even the GP performs significantly better than the SVR with

polynomial kernel. This is sketched in Figure 5.11(d).

Looking at the results gathered from analysing area 99 on the all-test-set summarized

in Figure 5.12, one can see large significant differences. Even for one production process

parameter GP performs significantly better than the other approaches. Increasing the

combination size the significant performance dominance of GP results are confirmed.

Looking at 10 combined production process parameters sketched in Figure 5.12(d) one

can see that GP clearly outperforms all other approaches. Moreover, the linear model

performs significantly better than the SVR approaches.

Summing up, significance tests in area 99 again explicitly reflects the difference of re-

sults depending on the test set selection. Moreover, the combination size has influence on

the significance results as well. Concluding, the linear model and the GP clearly perform

better than the SVR approach.

Comparison to practical experience. Finally, the achieved results are reviewed in

terms of practical experience. Experienced RHI AG specialists know that refractory ma-

terial wears 0.2 to 0.7 millimetres per heat depending on the area in the converter.

Looking at the results in area 99 sketched in Figure 5.12 the mean RMSE of the GP ap-

proach lies around 0.7. That means that the APO prediction in average produces an error

of factor 2 in area 99. Results in area 8 are not that accurate due to various reasons men-

tioned earlier. In conclusion, RHI AG specialists are quite satisfied with the prediction

results with respect to the limitations of APO.

Summing up, statistical tests are used to determine significant differences between

the applied approaches with respect to the prediction performance. Different test sets

are investigated and analysed on combination sizes from 1 to 10 in area 8 and area 99.
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(a) real-test-set, 1 parameter, area 99 (b) real-test-set, 5 parameters, area 99

(c) real-test-set, 7 parameters, area 99 (d) real-test-set, 10 parameters, area 99

Figure 5.11.: Results of significance tests applied on real-test-set in area 99. (a) shows that GP performs
really bad, but no significant differences can be found, initially. For combination size 5 in (b)
interesting results can be observed. MLR outperforms GP and SVR with RBF kernel. Additio-
nally, the SVR with polynomial kernel significantly performs better than GP . Increasing the
combination size to 7 as shown in (c) changes this momentum. The prediction performance
of SVR decreases and both GP and linear models significantly perform better than both SVR
kernels. By combining all available production process parameters in (d), the linear model
significantly performs better than the SVR with both kernels and even the GP performs signi-
ficantly better than the SVR with polynomial kernel.
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(a) all-test-set, 1 parameter, area 99 (b) all-test-set, 5 parameters, area 99

(c) all-test-set, 7 parameters, area 99 (d) all-test-set, 10 parameters, area 99

Figure 5.12.: Results of significance tests applied on all-test-set in area 99. Significant differences can be ob-
served for all combination sizes. Even for one production process parameter in (a) GP performs
significantly better than the other approaches. Increasing the combination size the significant
performance dominance of the GP results are confirmed as shown in (b) and (c). Applying com-
bination size 10 as shown in (d) one can see that GP clearly outperforms all other approaches
while the linear model performs significantly better than the SVR approaches.
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5.3. Conclusion

Concluding this chapter, error metrics and methods to evaluate the APO approaches are

introduced. Then, the importance of the data set size is mentioned. It is shown, that

bigger data set sizes improve the prediction results explicitly. Additionally, the hyper-

parameter training results of each approach are covered in terms of evaluation time

and precision. Most of the results are plotted using REC curves. In the end, the GP

ARD results are discussed showing the influence of each production process parameter

on the refractory wear. Finally, all APO approaches are evaluated against each other to

find the best suitable approach. This is done by applying statistical tests. APO applied

Student’s t -tests to achieve deeper insight to the performance of each approach.

Altogether, significant differences occur in dependence of the analysed area, the com-

bination size and the used test set. Due to the small APO real-test-set a further test set

including all data is investigated. In doing so, a more general performance distinction is

possible. As a result, GP perform mostly well. In addition, GP offers the interesting ARD

feature to extract the weighted production process parameter influences on the refrac-

tory wear. Moreover, it is shown that the linear model performs better than both SVR

kernels.
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6 Conclusions
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This chapter briefly summarizes all results gathered in this thesis in Section 6.1 and

provides a outlook for future work in Section 6.2.

6.1. Conclusions

This thesis deals with tasks in steel manufacture. Although it is a rather old business,

steel is still required in huge amounts in various domains. Therefore, steel-plant com-

panies and their suppliers are interested in optimizing routines and processes on the

manufacturing site of a steel-plant. Thus, RHI AG carried out this thesis to analyse the

relationships between production process parameters defining the steel-making process

and the refractory wear occurring inside a converter.

This research made use of different machine learning approaches to analyse these

relationships. Linear ones like Linear Regression (LR ) or Multiple Linear Regression

(MLR ) are considered as well as non-linear techniques like Support Vector Regression

(SVR) with RBF or polynomial kernels. Moreover, Gaussian Processes (GP ) is an additio-

nal method applied in this thesis.

The data sets provided by the cooperating steel-plant HKM in Duisburg are delivered

in unusable formats for automatic processing. Thus, a pre-processing step for both pro-

duction process parameters and laser measurements is required. This thesis introduced

various simplifications to make the definition of prediction models as simple as possi-

ble and to reduce computational complexity. Among others, simplifications like reducing

the production process parameter subset to 10 selected parameters or representing da-

ta through characteristic values are mentioned. All analyses are done for two converter

areas and all possible combinations of production process parameters within the combi-

nation size range from 1 to 10. It is shown that data set size has tremendous impact on
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the prediction performance. Increasing data amounts clearly lead to improved results.

Concluding the different approaches’ results, it is shown that even simple MLR mo-

dels are able to provide some insight to the relationships between production process

parameters and refractory wear. The non-linear SVR approaches using RBF and polyno-

mial kernels both require a time consuming hyper-parameter training step. In advance,

70% of the data set are randomly chosen as training set and the remaining set acted

as a test set. An iterative grid search is introduced guaranteeing a training speed-up of

almost 70%. The SVR models are trained using the found hyper-parameters and their

predictions tested using the test set. It is shown that SVR results improves up to a cer-

tain combination size. In fact, MLR results are more accurate than both SVR kernels.

In addition, the prediction performance in area 99 is better compared the one achieved

in area 8. Like for SVR , Gaussian Processes require all the optimal hyper-parameters

to be determined, in this case using a conjugate gradient-based optimization concept.

Predictions made by a GP model, trained using the found hyper-parameters, show that,

by tendency, the GP perform better than the non-linear SVR results. While MLR showed

superior performance with respect to the evaluation time, GP still converges faster than

the time-consuming SVR approaches.

Since the available data set is quite small, this thesis used statistical tests to evidently

evaluate the different approaches against each other to find the best suitable approach.

Particularly, Student’s t -tests including cross validation are applied on two different test

sets to determine significant differences. On the one hand, the real-test-set is used, on

the other hand, due to the small real-test-set, the whole data set is used as so-called all-

test-set. Using the all-test-set including all data a more general performance distinction

can be made. Statistical tests in this thesis have shown that GP perform mostly well.

In contrary to the other approaches, GP offer the automatic relevance determination

feature to extract the specific production process parameter impact on the refractory

wear. Moreover, it is shown that the linear model clearly performs better than both SVR

kernels. Finally, this thesis demonstrated that prediction performance depends on the

selected production process parameters, the combination size and the analysed area as

well.

6.2. Future Outlook

As mentioned earlier, this thesis made use of various restrictions and simplifications,

once more summarized for a better overview:

(1) only 10 out of 100 production process parameters analysed

(2) lots of production process data represented through a characteristic value due to

too less laser measurements
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(3) no maintenance data included

(4) no refractory material data included

(5) analyses performed on converter area definitions based on experience

(6) interpolation and consolidation strategies applied to ensure consistent data set.

To further improve the prediction performance of the APO approaches the amount of

simplifications has to be decreased. In doing so, an inclusion of maintenance data and re-

fractory data would be helpful. Additionally, considering more or even other production

process parameters can lead to better results. The converter areas of interest are selec-

ted based on experience. One could even investigate in clustering algorithms to group

areas with similar characteristic behaviour automatically.

As the data sets are increased vastly only towards the end of the project, Artificial

neural networks (ANNs) are not part of the analyses in this thesis. Therefore, further in-

vestigations reasonably include ANNs to assess whether its prediction capabilities could

outperform those of the covered approaches.

As one can see, this topic still remains a research topic offering lots of opportunities

to improve the results gathered in this thesis.
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A Appendix

A.1. Listings

REC Plot Algorithm. The following plot algorithm uses εi = loss(f(xi), yi), i =

1, . . . , N as input. It is assumed that errors εi are sorted in ascending order. The plot

command interpolates the plotted points with a line. Listing A.1 sketches the REC plot

algorithm implemented in the MATLAB® function rec_curve.m.

1 εprev := 0; correct := 0;

2 for i = 1 to m

3 if εi > εprev then

4 plot(εprev, correct/m)

5 εprev := εi

6 end

7 correct := correct + 1

8 end

9 plot(εm, correct/m)

Listing A.1: Pseudo code of REC plot algorithm. (Source: [Bi and Bennett, 2003])

A.2. Installation requirements

MEX prerequisites and installation details. In order to use MEX-files properly the

following prerequisites have to be fulfilled:

• A proper compiler (C, C++, Fortran) needs to be installed

• A MEX function is necessary to build MEX-files.

MATLAB® provides a C compiler, Lcc but since the MATLAB® interface of LIBSVM is im-

plemented in C++ a C++ compiler is necessary. Hence, Microsoft Visual Studio C++

2010 Express has to be installed. To ensure that all functions work properly the SDK is
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installed as well. Since MATLAB® version 2009b is used an additional patch is necessary

to make the newer Visual Studio C++ 2010 Express visible. For this reason the patch

from MathWorks1 is downloaded and installed. Using mex -setup in MATLAB® the correct

compiler has to be selected as shown in Listing A.2 in detail.

Finally, the usage of LIBSVM has to be ensured by switching to the LIBSVM directory and

typing the make command in the MATLAB® console. Further tests are shown in the LIBSVM

readme. After installing MEX, LIBSVM functions can be used directly in MATLAB® like built-in

MATLAB® functions.

1 mex -setup

2 Please choose your compiler for building external interface (MEX) files:

3

4 Would you like mex to locate installed compilers [y]/n? y

5

6 Select a compiler:

7 [1] Lcc-win32 C 2.4.1 in C:\PROGRA~1\MATLAB\R2009b\sys\lcc

8 [2] Microsoft Visual C++ 2010 Express in C:\Program Files\Microsoft Visual Studio 10.0

9 [0] None

10

11 Compiler: 2

12

13 Please verify your choices:

14 Compiler: Microsoft Visual C++ 2010 Express

15 Location: C:\Program Files\Microsoft Visual Studio 10.0

16

17 Are these correct [y]/n? y

18

19 ***************************************************************************
20 Warning: MEX-files generated using Microsoft Visual C++ 2010 require

21 that Microsoft Visual Studio 2010 run-time libraries be

22 available on the computer they are run on.

23 If you plan to redistribute your MEX-files to other MATLAB

24 users, be sure that they have the run-time libraries.

25 ***************************************************************************
26

27 Trying to update options file: C:\Users\manuel\AppData\Roaming\MathWorks\MATLAB\R2009b\mexopts.bat

28 From template: C:\PROGRA~1\MATLAB\R2009b\bin\win32\mexopts\msvc100freeopts.bat

29

30 Done . . .

31

32 **************************************************************************
33 Warning: The MATLAB C and Fortran API has changed to support MATLAB

34 variables with more than 2^32-1 elements. In the near future

35 you will be required to update your code to utilize the new

36 API. You can find more information about this at:

37 http://www.mathworks.com/support/solutions/data/1-5C27B9.html?solution=1-5C27B9

38 Building with the -largeArrayDims option enables the new API.

39 **************************************************************************

Listing A.2: Installation instruction for selecting the correct MEX compiler

1http://www.mathworks.com/support/solutions/en/data/1-D5W493/?solution=1-D5W493
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A. Appendix A.2. Installation requirements

Installing GPML toolbox for MATLAB®. Setting up the GPML toolbox for MATLAB® is quite

easy. Once the GPML toolbox is downloaded from the GPML website2 one has to unpack

the archive. In doing so, the 6 subdirectories cov, doc, inf, lik, mean and util can be

found. It is not necessary to install anything, only a execution of startup.m script is re-

quired to set the path.

2http://www.gaussianprocess.org/gpml/code/matlab/doc/
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