
Christoph Irrenfried

Direct numerical simulation of turbulent
heated pipe flow at high Prandtl numbers

Master Thesis

Graz University of Technology

Institute for Fluid Mechanics and Heat Transfer
Head: Univ.-Prof. Dr.-Ing. habil. Brenn

Supervisor: Ao.Univ.-Prof. Dipl-Ing. Dr.techn. Steiner

Graz, November 2013



This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template


Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1
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Abstract

The numerical simulation of turbulent heat transfer at high molecular
Prandtls number is still strongly challenged by disparate thicknesses of
the viscous sublayers for the velocity and the temperature. The modelling
assumptions generally made for the prescription of the thermal boundary
conditions in RANS-type simulations become increasingly questionable for
higher Prandtl numbers. The present work addresses this issue performing
Direct Numerical Simulations of turbulent heated pipe flow varying the
molecular Prandtl number from Pr = 1 to Pr = 10. The DNS results basi-
cally confirm the major model assumptions in that the turbulent Prandtl
number PrT and the von Kármán constant κ remain on the same constant
levels inside the inertial sublayer for all considered Prandtl numbers. How-
ever, these assumptions break down in the viscous sublayer, where the
turbulent Prandtl number is strongly increased for the higher Pr. Nonethe-
less, the P-function proposed by Jayatilleke (1969) in order to model the
thermal resistance of the viscous sublayer still shows good agreement with
the corresponding DNS data. The validation against the DNS results further
demonstrates that any reliable wall-function, i. e. log-law, based modelling
of the thermal boundary conditions most importantly requires an appro-
priate prescription of the thermal mixing length l+mθ = κθy+ in terms of the
suitable setting for κθ =

κ
PrT

determining the linear increase with the wall
distance y+.
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Nomenclature and Abbreviations

Roman symbols

Symbol Description Dimension

a thermal diffusivity m2/s
aT eddy conductivity m2/s
c f local friction coefficient −
cp specific heat at constant pressure J/kgK
cv specific heat at constant volume J/kgK
D diameter m
e specific internal energy J/kg

Ec Eckert number −
L length of pipe m
lm mixing length m
l+mθ thermal mixing length m
Nu Nusselt number −

NuD Nusselt number −
p pressure Pa

Pe Peclet number −
PeT turbulent Peclet number −
Pr Prandtl number −

PrT turbulent Prandtl number −
q heat flux W/m2

q̇Q internal heat source W/m3

qw wall heat flux W/m2

Q̇ heat flux W
R radius m
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Symbol Description Dimension

ReD Reynolds number −
Reτ Reynolds number −

r radial direction m
t time s
T temperature K
Tτ friction temperature K
Tw wall temperature K
u velocity m/s

ui, U, V, W velocity component m/s
wτ friction velocity m/s
y wall-normal direction m
z axial direction m

Greek Symbols

Symbol Description Dimension

α heat transfer coefficient W/m2K
δ velocity boundary-layer thickness m

δT thermal boundary-layer thickness m
κ von Kármán constant −
λ thermal conductivity W/mK
µ dynamic viscosity kg/ms
ν kinematic viscosity m2/s
νT eddy diffusivity for momentum transfer m2/s
φ azimuthal direction −
ρ density kg/m3

τ stress tensor N/m2

τw wall shear stress N/m2
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Symbol Description Dimension

Θ transformed temperature K
ϑ observation period s

Subscripts

Symbol Description

()∗ non-dimensionalized
()+ representation in wall-coordinates
()′ fuctuation component
() statistical average
()m bulk mean value

Abbreviations

DNS Direct numerical simulation
LES Large eddy simulation
CFD Computational fluid dynamics
RANS Reynolds Averaged Navier-Stokes equations
MPI Message Passing Interface
CFL Courant–Friedrichs–Lewy condition
rms Root mean square
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1 Introduction

In mechanical engineering heat transfer into a pipe flow is of high impor-
tance, as it is met in a wide field of technical applications. Flows with high
Prandtl numbers are of special interest, when dealing with operating fluids
like organic cooling liquids, or oils. In figure 1.1, the range of Prandtl num-
bers is shown for different fluids. The reliable modelling of the turbulent
convective heat transfer into these liquids is still a very challenging task. In
this thesis, special attention was given to the Prandtl numbers 1.0, 2.0, 5.9
(water), and 10 (the lower limit of the oil range).

10−2 10−1 100 101 102 103

Liquid metals Gases Light organic liquids

Water Oils

Figure 1.1: Range of Prandtl numbers.

In a pipe flow, the most interesting region is the near-wall zone, where
the flow is highly affected by viscous forces, so that the flow structures
differ significantly from those in the turbulent core region. The numerical
resolution of small scale structures occurring in this near-wall layer requires
a strongly refined computational grid, which would mostly lead to unac-
ceptably high computational costs. For this reason, most of the currently
available Computational Fluid Dynamics (CFD) codes are working with
wall models. The significant advantage of such models is that only the core
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1 Introduction

region of the flow is simulated, while the near wall region is described using
analytical wall functions, which reduces the computational costs markedly.
Most of the analytical functions developed for the near-wall temperature
introduce the turbulent Prandtl number as important model parameter. To
reduce the complexity of the model most simulation codes use constant
values for this parameter, although it may considerably increase towards
the wall, as it is shown in Kays and Crawford (1993).

The present thesis computationally investigates the accuracy of the most
popular wall function based concepts for modelling the turbulent wall heat
transfer with a particular focus on cases with higher Prandtl numbers. For
this purpose, a turbulent pipe flow with a Reynolds number of ReD = 5300
(Reτ = 360) and a constant wall heat flux was considered.
The computational description of the convective wall heat transfer typically
faces the problem, that for increasing Prandtl numbers, the thickness of the
thermal boundary layer decreases in comparison to the velocity boundary
layer, which means that the essential transport mechanisms for heat occur
closer and closer to the wall. Therefore, the modelling in this area becomes
more important as the Prandtl number increases. The evaluation of any
model approach requires a very comprehensive and realistic description of
the conditions near the wall, which must not neglect any physically relevant
effect. This requires a high level of accuracy, which can only be provided by
a direct numerical simulation (DNS).

The majority of previous studies performing direct numerical simulations
of heated channel flows, considered fairly low Prandtl numbers. One of
the first attempts were made by Kim and Moin (1987), who examined only
flows with Prandtl numbers less than two. In a later study, Antonia and
Kim (1991) found a simple correlation for the spatial distribution of turbu-
lent Prandtl number PrT based on a DNS simulation applying numerous
simplifying assumptions. A more recent DNS study of a plane channel
flow including an evaluation of PrT was done by Kawamura et al. (1999).
However, these simulations were performed at Prandtl numbers less than 1,
which has the advantage that the thermal boundary layer is thicker than the
velocity boundary layer, so that the computational grid does not have to be
additionally refined to resolve the heat transfer near the wall.

2



1 Introduction

Besides the DNS investigations, large eddy simulation techniques (LES)
were used to investigate heat transfer into pipe flows. Solving for spatially
filtered transport equation LES captures directly only the large scale struc-
tures while it models all small scale phenomena, rather than resolving them
like in a DNS. Therefore, the number of grid cells can be reduced, which
reduces the computation time. A recent study done by Ould-Rouiss et al.
(2013) investigated the influence of a high Prandtl number (Pr >= 7) and a
high Reynolds number (ReD >= 20000) on a heated pipe flow.

The very thin thermal boundary layers met at high Prandtl numbers pose
also a great difficulty to experimental investigations. It is a very challenging
task to measure accurately the turbulent fluxes and temperature gradient
next to the wall. Therefore, reliable experimental data for the variation of the
turbulent Prandtl number close to the wall are hardly available. One of the
few measurements involving a high Prandtl number flow, was performed
by Hollingsworth et al. (1989) considering a turbulent thermal boundary
layer along a flat-plate with zero-pressure-gradient.
The still limited insight into the detailed conditions near the heated wall
provided thus far by experiments and numerical simulations motivated
to perform the DNS based investigation in the present work. The maxi-
mum considered Prandtl number was Pr = 10, which was associated with
extremely high but still affordable computational costs.

3



2 Fundamentals

2.1 Transport equations

The computational investigation of heated or cooled flow problems has
basically to solve the conservation equations of mass, momentum and
energy. The balance equations for mass and momentum are the so called
Navier-Stokes equations, which can be written in a conservative vectorial
formulation as

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

∂ρu
∂t

+ ∇ · (ρu u)︸ ︷︷ ︸
A ... advection

= −∇P + ∇ · τ︸ ︷︷ ︸
D ... diffusion

. (2.2)

The conservation equation of energy reads

∂ρe
∂t

+∇ · (ρue) = −p∇ · u + τ : ∇ u−∇ · q + q̇Q. (2.3)

The computational investigation in this thesis considers a pressure driven,
incompressible, fully developed, turbulent circular pipe flow. For such an
axisymmetric wall-bounded flow problem, it is convenient to rewrite the
Navier-Stokes equations in cylindrical coordinates as follows:

4



2 Fundamentals

• continuity equation

1
r

∂(rU)

∂r
+

1
r

∂V
∂φ

+
∂W
∂z

= 0 (2.4)

• momentum equation into the radial direction

∂U
∂t

+
1
r

∂(rUU)

∂r
+

1
r

∂(UV)

∂φ
− V2

r
+

∂(UW)

∂z︸ ︷︷ ︸
advection term = inertial forces

=

−∂P
∂r

+

[
1
r

∂(rτrr)

∂r
+

1
r

∂τrφ

∂φ
+

τφφ

r
+

∂τrz

∂z

]
︸ ︷︷ ︸

diffusion term = viscous forces

(2.5)

• momentum equation into the azimutal direction

∂V
∂t

+
1
r

∂(rVU)

∂r
+

1
r

∂(VV)

∂φ
+

VU
r

+
∂(VW)

∂z︸ ︷︷ ︸
advection term = inertial forces

=

−1
r

∂P
∂φ

+

[
1
r

∂(rτφr)

∂r
+

τφr

r
+

1
r

∂τφφ

∂φ
+

∂τφz

∂z

]
︸ ︷︷ ︸

diffusion term = viscous forces

(2.6)

• momentum equation into the axial direction

∂W
∂t

+
1
r

∂(rWU)

∂r
+

1
r

∂(WV)

∂φ
+

∂(WW)

∂z︸ ︷︷ ︸
advection term = inertial forces

=

−∂P
∂z

+

[
1
r

∂(rτzr)

∂r
+

1
r

∂τzφ

∂φ
+

∂τzz

∂z

]
︸ ︷︷ ︸

diffusion term = viscous forces

(2.7)
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2 Fundamentals

Assuming a Newtonian-fluid, the viscous stresses are written as

τrr = 2ν
∂U
∂r

(2.8)

τφφ = 2ν

(
1
r

∂V
∂φ

+
U
r

)
(2.9)

τzz = 2ν
∂W
∂z

(2.10)

τrφ = τφr = ν

[
r

∂

∂r

(
V
r

)
+

1
r

∂U
∂φ

]
(2.11)

τφz = τzφ = ν

[
∂V
∂z

+
1
r

∂W
∂φ

]
(2.12)

τzr = τrz = ν

[
∂W
∂r

+
∂U
∂z

]
. (2.13)

The energy equation (2.3) rewritten in terms of the temperature, using
e = cT reads:

∂T
∂t

+
1
r

∂(rUT)
∂r

+
1
r

∂(VT)
∂φ

+
∂(WT)

∂z
=

+
λ

ρc︸︷︷︸
a

[
1
r

∂

∂r

(
r

∂T
∂r

)
+

1
r2

∂2T
∂φ2 +

∂2T
∂z2

]
(2.14)

Due to the assumption of incompressible flow with constant density the
energy equation contains no pressure dilatation term. The effect of viscous
dissipation is neglected as well.
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2 Fundamentals

2.2 Turbulent flow

A turbulent flow is characterised by irregular and chaotic fluctuations of
the flow quantities. Turbulent flow occurs at Reynolds numbers which
exceed a certain critical limit. Beyond this critical limit, which depends on
the considered flow configuration, the inertial forces dominate over the
viscous forces resulting in highly unstable flow conditions. The inertial
forces are represented in the momentum equations (2.5) - (2.7) by the
nonlinear advective terms on the lefthand side. In the turbulent flow regime
the viscous forces represented in equations (2.5) - (2.7) by the diffusive terms
on the righthand side are too weak to dampen the fluctuating turbulent
motion.

2.2.1 Laminar-turbulent transition

D

wm
W

Re < Recrit

D

wm
W

Re > Recrit

Figure 2.1: Laminar and turbulent pipe flow.
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2 Fundamentals

As mentioned above the laminar-turbulent transition depends on the Reynolds
number written in the case of a pipe flow as

ReD =
wmD

ν
, (2.15)

where wm denotes the volumetric flow rate equivalent mean bulk velocity.

If the Reynolds number exceeds a certain value, the critical Reynolds number,
the flow becomes unstable. This means that any arbitrarily small pertur-
bation is increased so that the flow finally changes from a laminar into a
turbulent state. For example, the critical Reynolds number is around 2300

in the case of cylindrical pipe flow.

In the upper part of figure 2.1, a laminar pipe flow can be seen, where
the particle trajectories are parallel to the wall. The lower subfigure shows a
typical turbulent state, where the instantaneous velocity components are
strongly fluctuating, so that the particles move in a chaotic way. Due to this
irregular motion, the pressure drop increases and is roughly proportional
to the second power of the bulk velocity in comparison to the laminar flow,
where the pressure drop varies linearily with the bulk velocity.

2.2.1.1 Laminar velocity profile

In the laminar flow regime the viscous forces dominate over the inertial
forces, so that possible disturbances are always dampened completely, and
the flow remains stable. Steady fully developed laminar pipe flows is com-
monly referred to as ”Hagen-Poiseuille” flow. There is no mass transport
into the radial direction, which can be shown by solving the continuity
equation (equation (2.4)), imposing no-slip condition at the wall. It then
follows from the momentum equation into the radial direction that there is
no dependence of the pressure of the radial direction. This implies that the
pressure can only vary in the axial direction, i.e.,

8



2 Fundamentals

∂p
∂r

= 0 ⇒ p 6= f (r), p = f (z). (2.16)

The laminar streamwise velocity profile is obtained from the solution of the
axial momentum equation (equation (2.7)) as

w(r) = −1
4

dp
dz

R2
(

1− r2

R2

)
. (2.17)

2.2.1.2 Turbulent velocity profile

Figure 2.1 compares a laminar velocity profile against a typical average
turbulent velocity profile and example path lines. It can be seen that the
turbulent velocity is more bulky, which is caused by the increased momen-
tum transport into the radial direction associated with the turbulent mixing.
If the Reynolds number is large enough, Nikuradse found that the law of
the wall (commonly termed ”log-law”, see section 2.4.1) is not only valid in
the turbulent near wall region. Accordingly, the ”log-law”, which is written
as

w(r)
wmax

= 1− 1
wmax

1
κ

ln
(

R
R− r

)
, (2.18)

can be also used to describe fairly accurately the core flow region in the
center of the pipe.

2.3 Computation of turbulent flow

The majority of technical flow applications are in the turbulent regime. Since
turbulent flow is characterized by an unsteady, three-dimensional motion,

9



2 Fundamentals

all variables vary in all three spatial dimensions and in time. In figure 2.2, a
typical fluctuation of a velocity component over the time is shown.

ϑ

W

W

W = W + W ′

t

W ′

Figure 2.2: RANS approach for the velocity component w.

2.3.1 Direct numerical simulation

The DNS approach attempts to calculate the instantaneous values of every
flow variable in space and time by solving numerically the governing trans-
port equations, without the assistance of any simplifications or turbulence
models. As such it has to resolve the whole range of spatial and temporal
scales of turbulence, which requires a very fine computational grid and a
small time step size, resulting in large computational meshes and long com-
putation times. Due to the high computational costs the DNS is restricted
to the computation of generic flow configurations, like turbulent straight
channel flows, or turbulent free jets, at fairly low Reynolds numbers. For
technically relevant engineering applications, which are mostly associated

10
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with complex geometries and high Reynolds numbers, the concept of DNS
is computationally unfeasible. These flows are mostly computed using the
”Reynolds Averaged Navier-Stokes” (RANS) approach.

2.3.2 Reynolds Averaged Navier-Stokes (RANS)

The RANS concept is a statistical approach which considers flow variables
as statistical random variables varying in space and time. In figure 2.2
the temporal variation of a velocity component is exemplarily shown. The
statistics of the flow can be characterised by ensemble averages.

2.3.2.1 Ensemble averages

An ensemble represents the number of realisations of a flow variable in a
turbulent flow. In the theoretical limit of an infinite number of realisations,
the ensemble average becomes the real statistical average, generally termed
Reynolds averaged mean value. Assuming N as number of realisations, the
Reynolds averaged mean value of an arbitrary velocity component Wi is
defined as

〈Wi〉 = lim
N→∞

1
N

N

∑
n=1

W(n)
i

Based on this statistical average, Reynolds (1895) proposed to decompose
every flow variable into a mean 〈Wi〉 and a fluctuation wi written as

Wi = 〈Wi〉+ wi. (2.19)

The standard deviation defined as

w′i = 〈w2
i 〉

1
2 (2.20)

11
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represents the average fluctuation around the mean value.

2.3.2.2 Statistically stationary flow

In the book of Pope (2000) the following definition can be found:

A process is statistically stationary, if all multi-time statistics are
invariant under a shift in time, i.e., for all positive time intervals ϑ,
and all choices of t1, t2, ....tN, we have:

f (W1, t1 + ϑ; W2, t2 + ϑ; ... , WN, tN + ϑ) = f (W1, t1; W2, t2; ... , WN, tN)

(S.B. Pope, Turbulent flows, 2000)

Under this conditions the ensemble average obtained in the limit of an
infinite number of ensembles does not depend on the time, so that

〈Wi〉 6= f (t).

It follows that the statistical mean value can be also obtained as temporal
average defined as

〈Wi〉 = Wi = lim
ϑ→∞

1
ϑ

ϑ∫
0

Wi(t)dt,

where ϑ represents the observation time.
In statistically stationary flows the ensemble based Reynolds averaging is ev-
idently equivalent to the time averaging, so that the Reynolds decomposition
can be rewritten as

12
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U(r, φ, z, t) = U(r, φ, z) + U′(r, φ, z, t)

V(r, φ, z, t) = V(r, φ, z) + V′(r, φ, z, t)

W(r, φ, z, t) = W(r, φ, z) + W ′(r, φ, z, t)

T(r, φ, z, t) = T(r, φ, z) + T′(r, φ, z, t)

P(r, φ, z, t) = P(r, φ, z) + P′(r, φ, z, t)

where the instantaneous deviations from the temporal means are denoted
by the primes.
Introducing this decomposition into the conservation equation for mass,
momentum and energy, the so called RANS-type transport equations are
obtained. In cylindrical coordinates they read

• continuity equation

1
r

∂(rU)

∂r
+

1
r

∂V
∂φ

+
∂W
∂z

= 0 (2.21)

• momentum equation into the radial direction

∂U
∂t

+
1
r

∂(rU U)

∂r
+

1
r

∂(U V)

∂φ
− V2

r
+

∂(U W)

∂z

= −∂P
∂r

+ ν

[
∂

∂r

(
1
r

∂rU
∂r

)
+

1
r2

∂2U
∂φ2 −

2
r2

∂V
∂φ

+
∂2U
∂z2

]
−1

r
∂rU′U′

∂r
− 1

r
∂U′V′

∂φ
− V′V′

r
− ∂U′W ′

∂z

(2.22)
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• momentum equation into the azimuthal direction

∂V
∂t

+
1
r

∂(rV U)

∂r
+

1
r

∂(V V)

∂φ
+

V U
r

+
∂(V W)

∂z

= −1
r

∂P
∂φ

+ ν

[
∂

∂r

(
1
r

∂rV
∂r

)
+

1
r2

∂2V
∂φ2 −

2
r2

∂U
∂φ

+
∂2V
∂z2

]
−1

r
∂rV′U′

∂r
− 1

r
∂V′V′

∂φ
− V′U′

r
− ∂V′W ′

∂z

(2.23)

• momentum equation into the axial direction

∂W
∂t

+
1
r

∂(rW U)

∂r
+

1
r

∂(W V)

∂φ
+

∂(W W)

∂z

= −∂P
∂z

+ ν

[
∂

∂r

(
1
r

∂rW
∂r

)
+

1
r2

∂2W
∂φ2 +

∂2W
∂z2

]

−1
r

∂rW ′U′

∂r
− 1

r
∂W ′V′

∂φ
− ∂W ′W ′

∂z

(2.24)

• equation of energy

∂T
∂t

1
r

∂(rU T)
∂r

+
1
r

∂(V T)
∂φ

+
∂(T W)

∂z

= a
[

1
r

∂

∂r

(
r

∂T
∂r

)
+

1
r2

∂2T
∂φ2 +

∂2T
∂z2

]
−1

r
∂rU′T′

∂r
− 1

r
∂V′T′

∂φ
− ∂W ′T′

∂z

(2.25)

2.3.2.3 Closure problem

If a three-dimensional problem is considered, there are 14 unknown vari-
ables (three mean velocity components, the mean pressure, the mean tem-
perature, and nine turbulent stresses and heat fluxes represented by the
non-linear fluctuation terms), but only five equations (continuity, three mo-
mentum, and the thermal energy equation) available to solve the problem.
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This lack of equations is called ”closure problem”. It is the task of any tur-
bulence model to provide closure for the equation by relating the non-linear
turbulent momentum and heat flux terms to the mean values. In channel
flows a reliable modelling of these fluxes requires some insight into their
behavior near the wall. The main focus of this thesis was on the near wall
behaviour of the most relevant turbulent stresses and heat fluxes. The influ-
ence of these turbulent fluxes on the momentum and heat transfer inside a
turbulent boundary layer will be discussed in the following subsections.

2.4 Turbulent boundary layer

A turbulent flow is generally characterized by a very intense advective
transport of momentum, which is represented by the non-linear advection
terms on the lefthand side of the Navier-Stokes equations (eq. (2.5) - (2.7)).
However, in the proximity of non-moving walls, the flow becomes strongly
retarded due to the non-slip condition at the wall, and a velocity boundary
layer is formed. Inside the boundary layer the local Reynolds number
is strongly reduced with decreasing distance to the wall. This implies
that the effect of the viscous stresses is increased, and the effect of the
turbulent stresses is decreased, as the wall is approached. Dependent of
the contribution of the individual stresses to the total stress balance the
structure of the turbulent boundary layer distinguishes several sublayers, as
will be shown below.

Assuming the flow as

• fully turbulent
• statistically stationary
• rotationally symmetric

and applying the reductions based on the small thicknesses of the velocity
and thermal boundary layers the boundary layer approximation of the
RANS equations read
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W

W

laminar turbulent

xcrit; Recrit

Figure 2.3: Laminar turbulent turnover.(figure from Oertel (2002))

• continuity equation

1
r

∂(rU)

∂r
+

∂W
∂z

= 0 (2.26)

• momentum boundary equation into the radial direction

0 = −∂P
∂r

+ ν
∂

∂r

[
1
r

∂rU
∂r

]
− 1

r
∂

∂r

[
rU′U′

]
(2.27)

• momentum boundary equation into the axial direction

1
r

∂(rW U)

∂r
+

∂(W W)

∂z
= −∂P

∂z
+

1
r

∂

∂r

[
r

{
ν

∂W
∂r
−U′W ′

}]
(2.28)
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• thermal boundary layer equation

1
r

∂(rT U)

∂r
+

∂(T W)

∂z
=

1
r

∂

∂r

[
r
{

a
∂T
∂r
−U′T′

}]
(2.29)

2.4.1 The structure of the turbulent velocity boundary layer

y+

z+

laminar turbulent

viscous layer

buffer layer

inertial sublayer

overlap layer

outer layerδ

Figure 2.4: The structure of the turbulent velocity boundary layer.

Figure 2.4 shows a typical development of a velocity boundary layer along
a solid wall starting from a laminar entry region with a transition to turbu-
lence followed by a fully turbulent flow.

The structure of a turbulent boundary layer can be described based on
two length scales, the boundary layer thickness δ, and a characteristic vis-
cous scale ν

W ′ . The latter was introduced by Tennekes and Lumley (1972),
and it relates the kinematic viscosity to a characteristic level of the velocity
fluctuation W ′.

In a turbulent boundary layer different regions can be distinguished. Figure
2.5 gives an overview of these different layers and the determining length
scale ratios.

• Inner layer: This layer, which consists of the viscous sublayer and the
buffer layer is located closest to the wall, where the motion is controlled
by viscous forces.

17



2 Fundamentals

in
n
er

la
ye
r

buffer layer

viscous layer

inertial sublayer
(region of overlap)

outer region

ou
te
r
la
ye
r

y

δ
≈ 1

W ′y
ν

≫ 1,
y

δ
≪ 1

W ′y
ν

≈ 1

Figure 2.5: Regions of a turbulent boundary layer.

• Inertial sublayer: This represents an intermediate layer which, is neither
controlled by viscous forces nor by the outer flow conditions affecting the
boundary layer thickness δ.

• Outer layer: This layer is essentially determined by the outer flow condi-
tions, such as the pressure gradient, which depends on the considered
flow configuration.

2.4.2 Computation of turbulent boundary layer flow

2.4.2.1 Total shear stress

The non-linear fluctuation term occurring on the righthand side of the
turbulent boundary layer equation into the axial direction (eq. (2.28)), can
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be considered as a contribution of the turbulent motion to the total shear
stress. Accordingly, one can write

1
r

∂(rWU)

∂r
+

∂(WW)

∂z
= −∂P

∂z
+

1
ρr

∂

∂r
[r {τtot}]

with the total shear stress given as

τtot = ρν
∂W
∂r︸ ︷︷ ︸

τlam

−ρU′W ′︸ ︷︷ ︸
τturb

. (2.30)

Applying the Boussinesq eddy viscosity concept the turbulent shear stress
is computed analogously to the viscous counterpart

−U′W ′ = νT
∂W
∂r

(2.31)

introducing an eddy diffusivity of momentum νT. The total shear stress can
then be rewritten as

τtot = (ν + νT)
∂W
∂r

. (2.32)

The eddy diffusivity of momentum, or eddy viscosity, is a turbulent flow
variable and not a material property like the molecular viscosity. As stated
in Kays and Crawford (1993), the eddy diffusivity exceeds by far the viscous
counterpart in fully turbulent flows, i.e. νT >> ν, except in the viscous
sublayer close to the wall, where ν >> νT.
Using Boussinesq’s eddy diffusivity approach requires closure for νT. A very
old well established approach is based on L. Prandtl’s (1925) mixing-length
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theory. Following Prandtl’s concept the turbulent shear stress is obtained
as

τturb = lm2
∣∣∣∣∂W

∂y

∣∣∣∣ ∂W
∂y

(2.33)

with y denoting the distance from the wall

y =
D
2
− r,

involving the so called mixing length lm, which implies that the eddy
diffusivity of momentum transfer reads

νT = lm2
∣∣∣∣∂W

∂y

∣∣∣∣ . (2.34)

Oertel (2002) described the mixing length lm as the length, along which a
fluid particle loses its individuality while being mixed up (turbulent) with
the surrounding fluid. A very popular mathematical description of lm was
proposed by van Driest (1956) who suggested the following expression

lm = κy

1− e
−y
A

 . (2.35)

This expression involves the von Kármán constant κ, and A as empirical
parameters.

For the viscous, buffer, and inertial sublayes shown in Figure 2.5 it is possible
to find an universal description for the streamwise velocity by normalizing
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the flow variables with suitable reference scales. Introducing the wall friction
velocity

wτ =

√
τw

ρ
(2.36)

as relevant velocity scale the non-dimensional representation in the so called
wall coordinates written as

y+ =
ywτ

ν
, (2.37)

W+ =
W
wτ

, (2.38)

l+m =
wτlm

ν
= κy+

1− e
−y+

A+

 (2.39)

is obtained. Assuming a constant total shear stress in the region near the
wall one can write

τtot ≈ τw, (2.40)

so that eq. (2.32) combined with (2.34) can be rewritten as

21



2 Fundamentals

1 =
∂W+

∂y+︸ ︷︷ ︸
τlam

+ l+m
2

∣∣∣∣∣∂W+

∂y+

∣∣∣∣∣ ∂W+

∂y+︸ ︷︷ ︸
τturb

(2.41)

The solution of eq. (2.41) provides universal laws for W+
in the individual

sublayers near the wall valid in a certain range of the wall distance y+.

• 1. Viscous sublayer: y+ < 5
Inside this layer closest to the wall the viscous forces are dominant and
the turbulent shear stress is negligible, so that

τw = τlam.

The integration of equation (2.41) yields a simple linear variation of the
mean velocity

W+
= y+. (2.42)

• 2. Buffer layer: 5 < y+ < 50
This layer is located between the viscous and the inertial sublayer. Inside
this region both the effects of viscous and inertial forces are relevant,
which implies that neither of the stresses can be neglected in the integra-
tion of eq. (2.41). The universal expression for the streamwise velocity is
obtained here as

W+
=

y+∫
0

2dy+

1 +
√

1 + 4lm+2
(2.43)

using, e. g. the ansatz of van Driest (2.39) for lm+
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• 3. Inertial sublayer: y+ > 50
In the inertial sublayer the distance from the wall is far enough to ne-
glect the viscous forces, and only the turbulent contribution has to be
considered. In this region the mixing length can be assumed as linearily
dependent of y+, i.e.,

lm+ = κy+, (2.44)

which also represents the asymptotic limit of the van Driest equation
(2.39) for large y+. Substituting eq. (2.44) into eq. (2.41) and neglecting
the viscous contribution τlam yields, the so called ”law of the wall” or
”log law” written as

W+
=

1
κ

ln
(
y+
)
+ β. (2.45)

The integration constant β and the von Kármán constant are empirically
obtained parameters.

• 4. Outer turbulent layer:
In the outer turbulent layer remote from the wall the mean velocity
profile becomes also dependent of the boundary layer thickness δ, which
is strongly related to the pressure gradient into the streamwise direction
dp
dz

. With the help of experimental data, Coles (1956) proposed a non-
universal formulation for this region. Cole introduced an additional term
into the ”law of the wall” (equation (2.45), which describes the velocity
derivation from the law of the wall using an S-shaped profile. The so
obtained formula is known as Coles’ law of the wake written as

W+

wτ
= f

(ywτ

ν

)
+

Π
κ

η
(y

δ

)
(2.46)

The first term in equation (2.46) represents the ”law of the wall”. The
second term, which represents the velocity derivation, depends on the
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pressure gradient into the axial direction ( Π = f
(

dp
dz

)
) as well as on

the distance from the wall.

Figure 2.6: The effect of pressure gradient on the turbulent velocity profile (figure from
Kays and Crawford (1993))

Figure 2.6 compares flows with different pressure gradients producing
decelerating, constant, and accelerating free-stream condition. The devia-
tions from the log-law at large y+-values are well visible.
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2.4.3 Heat transfer in turbulent boundary layer flow

2.4.3.1 Prandtl number

The (molecular) Prandtl number basically represents a non-dimensional ma-
terial property, which is defined as the ratio of the diffusivity of momentum
to the thermal diffusivity.

Pr =
cµ

λ
=

ν

a
=

diffusivity of momentum
thermal diffusivity

(2.47)

Applying an order-of-magnitude analysis to the non-dimensionalized bound-
ary layer equations for a convective laminar flow along a heated (or cooled)
wall it can be shown that the molecular Prandtl number measures the rela-
tive thickness of the thermal boundary layer to the velocity boundary layer
according to

δ2

δ2
T
= O

(
1√
Pr

)
. (2.48)

The streamwise development of the boundary layer thickness along a flat
plate is exemplary shown for different Prandtl numbers in figure 2.7.
The relation (2.48) is, strictly speaking, only valid in laminar flow. It can
be, however, extended to the turbulent flow as well, where it applies to the
relative thicknesses of the corresponding viscous sublayers.

2.4.3.2 Turbulent Prandtl number

As outlined above the molecular Prandtl number relates by definition the
molecular diffusive transport of momentum caused by the viscous forces to
the molecular conductive transport of heat. Analogously, a turbulent Prandtl
number can be defined as the ratio of the eddy diffusivity of momentum to
the eddy conductivity written as
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δT (z)

δ(z)

Pr < 1

δ(z) = δT (z)

Pr = 1

δ(z)

δT (z)

Pr > 1

Figure 2.7: Velocity and thermal boundary layers with different molecular Prandtl numbers.

PrT =
νT

aT
. (2.49)

As such it relates the turbulent transfer of momentum associated with
the turbulent stresses to the turbulent transfer of heat associated with the
turbulent convective heat flux terms

U′W ′ ↔ U′T′.

In contrast to the molecular Prandtl number the turbulent Prandtl number
is no material property. Based on experimental studies it is mostly assumed
as constant of the order of PrT ∼ 0.9. Nevertheless, it is known that the
turbulent Prandtl number can deviate considerably from this value close
to the wall. Since it is often used to compute the eddy conductivity aT in
terms of the eddy viscosity νT, it represents an important input parameter
for the modelling of the turbulent heat transfer. Therefore, the present work
puts a special focus on the variation of the turbulent Prandtl number near
the wall in the analysis of the numerical results.
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2.4.3.3 Reynolds analogy

The Reynolds analogy basically represents a concept, which allows to com-
pute the solution of the thermal boundary layer equation directly from the
solution of the velocity boundary layer equation. It is strictly speaking only
applicable to boundary layer flow along flat plates, when the following
assumptions can be made:

• steady state
• incompressible fluid
• no pressure gradient into the streamwise direction
• viscous heating negligible
• constant wall temperature, Tw = const
• unity molecular Prandtl number, Pr = 1
• unity turbulent Prandtl number, PrT = 1

Under these conditions the non-dimensional solution for the velocity and
temperature are identical, i. e. ,

W∗ =
W

W∞
= T∗ =

Tw − T
Tw − T∞

, (2.50)

where W∞ and T∞ represent the free-stream velocity and temperature,
respectively.
Based on the identity (2.50) all derived quantities like wall friction and wall
heat flux can be directly related to each other.
In case of a heated pipe flow, the Reynolds analogy is not applicable, because
the pressure gradient term occurring in the momentum equation has no
analogous counterpart in the energy equation.

2.4.3.4 Total heat flux

In analogy to the shear stress in the momentum equation the leading-
order convective fluctuation term in the thermal boundary layer equation
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(equation (2.29)) can be interpreted as a turbulent contribution to the total
heat flux, such that

1
r

∂(rT U)

∂r
+

∂(T W)

∂z
=

1
r

∂

∂r
[r {−qtot}]

with

qtot

ρc
= −a

∂T
∂y︸ ︷︷ ︸

qlam

+U′T′︸︷︷︸
qturb

.
(2.51)

Applying Boussinesq’s eddy diffusivity concept to the turbulent heat flux
contribution we obtain

U′T′ = −aT
∂T
∂y

, (2.52)

qtot = − (a + aT)
∂T
∂y

(2.53)

involving the turbulent eddy conductivity aT.

Analogously to the wall friction velocity defined by equation (2.36) a wall
temperature defined as

Tτ =
qw

ρcwτ
(2.54)
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is introduced as reference scale for rewriting the temperature in non-
dimensional wall coordinates as

θ+ =
Tw − T

Tτ
. (2.55)

Similar to the total shear stress it is assumed that the total heat flux remains
constant in the wall region, so that

qtot = const. = qw. (2.56)

Analogously to the velocity boundary layer an universal solution can be
computed for the individual sublayers near the wall.

• 1. Viscous sublayer: y+Pr < 5
Inside this layer next to the wall the laminar heat flux is dominant, and
the turbulent heat flux can be neglected, so that

qtot = qw = qlam.

Using this assumption in equation (2.53) the temperature is obtained as

θ
+
= Pry+. (2.57)

• 2. Inertial sublayer: y+Pr > 50
Inside this sublayer the influence of the viscous heat flux is negligible
compared to the turbulent heat flux, so that

qtot = qw = qturb.
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Using this assumption in equation (2.53) and rewriting the eddy conduc-
tivity in terms of the eddy diffusivity of momentum and the turbulent
Prandtl number, i. e. ,

aT =
νT

PrT
,

the temperature profile can be determined as

θ
+
=

PrT

κ
ln
(
y+
)
+ βθ(Pr). (2.58)

The integration constant βθ, which is mainly dependent of the molecu-
lar Prandtl number, essentially represents the thermal resistance of the
viscous sublayer.

2.5 Heated turbulent pipe flow

2.5.1 Hydraulic entrance region

Unlike in external flow along flat plates, where the boundary layer con-
tinuously grows in streamwise direction, in a pipe flow the growth of the
boundary layer thickness is limited due to geometrical constraints. The axial
distance, which is needed to reach a fully developed flow is called ”entrance
region”. As sketched in Figure 2.8, the entrance region essentially ends,
when the boundary layers growing from the wall reach the center.

In the fully developed flow regime downstream of the entrance region the
mean velocity profile is independent of the streamwise direction, so that

∂Ui

∂z
= 0,

∂2Ui

∂z2 = 0.
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W (r, z)

W (r, 0)

entrance region fully developed

δ

zE,th

R r

z
δ

Figure 2.8: Entrance region of a pipe flow.

The integration of the continuity equation gives a zero mean radial velocity
component

U ≡ 0.

According to the literature the entrance length in turbulent pipe flow varies
around 50 to 60 pipe diameters.

2.5.2 Thermal entrance region

The present study considers the case of a turbulent pipe flow, which is
heated with a constant wall heat flux, as sketched in Figure 2.9. Due to the
uniform input of heat the temperature is continuously increasing in the
streamwise direction. The transformation which yields an axially periodic
representation of the temperature, will be explained in the following. The
advantage of such a transformation is that the transformed temperature
allows for the application of periodic thermal boundary conditions into the
axial direction.
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Tw Tw

qw = const.
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δt

zE,th

R r

z

Figure 2.9: Thermal entrance region of a heated pipe flow.(figure from Brenn and Meile
(2009))

2.5.2.1 Definition of cross-sectional mean values

At first some reference values shall be defined, which are needed for non-
dimensionalization.

In pipe flow there is no free-stream velocity outside the boundary layer,
which can be used as reference velocity like in an external flow over a profile.
Therefore, the mean velocity, which is equivalent to the volumetric flow rate,
is used here as reference scale. It is defined as

wm =
V̇
A

=
1
A

∫
A

W(r)dA. (2.59)

Analogously, based on the enthalpy flow across a pipe cross-section, the
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mean temperature is defined as

Tm =
1
ṁ

∫
A

ρW(r)TdA =
1

wm A

∫
A

W(r)TdA (2.60)

involving the mass flow through the pipe written as

ṁ = ρwm A. (2.61)

2.5.2.2 Conditions for a thermally developed flow with constant heat
flux

If appropriate reference quantities are used for non-dimensionalisation, the
thermally developed state can be described by a non-dimensional represen-
tation of the temperature distribution, which is independent of the axial
direction, such that

∂

∂z

[
Tw(z)− T(r, z)
Tw(z)− Tm(z)

]
= 0. (2.62)

Since the non-dimensional temperature shown in eq. (2.62) is independent of
the axial direction, its derivative into the radial direction is also independent
of the axial direction. Furthermore, it can be shown that in a thermally
developed state the heat transfer coefficient is constant, so that

α

λ
6= f (z).
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This implies for the case of constant heat flux (figure 2.10) that the axial
change of the temperature at the wall is the same as the change of the mean
temperature, since

qw

α
= const. = (Tw − Tm),

dTw

dz
=

dTm

dz
. (2.63)

Incorporating eq. (2.63) into eq. (2.62) yields

dT
dz
6= f (z)

The axial variation of the mean fluid temperature Tm(z) can be easily
derived from a global energy balance written as

Q̇ = ṁc(Tm out − Tm in). (2.64)

Rewriting eq. (2.64) for a differential cylindrical element of height dz yields

dQ̇ = ṁc
(

dTm

dz
dz
)
= qwDπdz,

dTm

dz
=

qwDπ

ṁc
(2.65)
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z

Figure 2.10: Pipe flow with constant heat flux.

with

ṁ =
ρD2π

4
wm.

The integration of eq. (2.65) gives

Tm(z) = Tm in +
qw4

Dρcwm
z (2.66)

This equation describes the linear axial variation of the mean temperature
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along the pipe, where the first part is the mean temperature at the entrance
and the second part is the temperature rise due to constant heat flux.

Introducing the following decomposition

T(t; r, φ, z) = Tw(z)− θ(t; r, φ, z) (2.67)

into the balance equation of energy (2.14) yields

∂θ

∂t
+ U

∂θ

∂r
+

V
r

∂θ

∂φ
+ W

(
−dTw

dz
+

∂θ

∂z

)
=

+a
[

1
r

∂

∂r

(
r

∂θ

∂r

)
+

1
r2

∂2θ

∂φ2 +
∂2θ

∂z2

] (2.68)

Normalizing this equation by introducing the following non-dimensional
quantities

t∗ =
twτ

D
, r∗ =

r
D

, z∗ =
z
D

, p+ =
p

ρwτ
2 ,

U+ =
U
wτ

, V+ =
V
wτ

, W+ =
W
wτ

,

θ+ =
θ

Tτ
,

and recalling equation (2.63) yields
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∂θ+

∂t∗
+ U+ ∂θ+

∂r∗
+

V+

r∗
∂θ+

∂φ
+ W+ ∂θ+

∂z∗
=

+
1

ReτPr

[
1
r∗

∂

∂r∗

(
r∗

∂θ+

∂r∗

)
+

1
r∗2

∂2θ+

∂φ2 +
∂2θ+

∂z∗2

]
+ W+ dT+

w
dz∗︸ ︷︷ ︸

=
dTm

+

dz∗
=

4
wm

+

, (2.69)

where Reτ =
wτD

ν
is the Reynolds number based on the wall friction veloc-

ity.

Using the formulation (2.69) the boundary condition can be written as

• at the wall: r∗ = R∗

θ+ = 0 (2.70)

• at the center of the pipe: r∗ = 0

θ+ =
1
2
(
θ+(r∗in, φ, z∗) + θ+(r∗in, φ + π, z∗)

)
(2.71)

with r∗in being the radius of the first grid cell next to the center of the
pipe.

• periodic in φ

θ+ (r∗, φ, z∗) = θ+ (r∗, φ + 2π, z∗) (2.72)

• periodic in z∗

θ+
(

r∗, φ, z∗ +
L
D

)
= θ+ (r∗, φ, z∗) (2.73)
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with L being the axial length of the domain.

2.5.3 Total shear stress

Based on the radial variation of the total shear stress in a turbulent pipe
flow it is possible to check, if the flow has reached a statistically stationary
and fully developed state. In a statistically stationary and fully developed
turbulent pipe flow the mean pressure is only dependent of the streamwise
position P+

= P+
(z∗) and the Reynolds averaged axial momentum equation

reads

0 = −dP+

dz+
+

1
r∗

∂

∂r∗
(
r∗τtot

+
) (2.74)

The integration of this equation yields

τtot

ρwτ
2 = τtot

+ =
r∗

2
dP+

dz∗
(2.75)

Applying a simple force balance the mean pressure gradient can be related
to the wall shear stress through

dP
dz

D2π

4
= τwDπ, (2.76)

which can be rewritten in non-dimensional form as

dP+

dz∗
= 4, (2.77)
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so that

τtot
+ =

τ

τw
= 2r∗. (2.78)

In figure 2.11, radial variation of the total shear stress and of its components,
the laminar and turbulent shear stress, can be seen. The profiles for both
components are obtained from a DNS at Reτ = 360.
The laminar shear stress reaches its maximum at the wall, while the tur-
bulent shear stress resulting from the turbulent fluctuations (see equation
(2.30)), vanishes due to the viscous damping of the turbulent motion.
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Figure 2.11: Total shear stress with its components, the laminar and turbulent shear stress.

2.5.4 Wall heat transfer

For a hydraulically and thermally fully developed pipe flow the Reynolds
averaged representation of the non-dimensional energy equation (2.69)
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becomes

0 = − 1
r∗

∂

∂r∗
(r∗qtot

+)− W+

wm
+ 4 , (2.79)

whose integration yields

qtot

qw
= qtot

+ = − 1
r∗

4
wm

+

r∗∫
0

r∗W+
dr∗. (2.80)

Figure 2.12 shows the variation of the total heat flux and the viscous and
turbulent components along the radial direction. The shown profiles are
obtained from a DNS at Reτ = 360 and Pr = 1.
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Figure 2.12: Total heat flux with its components, the laminar and turbulent heat fluxes, vs.
radius.
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2.5.5 Nusselt number

The Nusselt number basically represents a non-dimensional convective heat
transfer coefficient. It is defined as the ratio of the convective to conductive
heat-transfer.

NuD =
αD
λ

=
Convective heat transfer
Conductive heat transfer

(2.81)

Using the wall heat flux written as

qw = α(Tw − Tm) = −λ
∂T
∂y

∣∣∣∣
y=0

the Nusselt number can be obtained from the temperature as

NuD =
αD
λ

=

−λ
∂T
∂y

∣∣∣∣
y=0

λ

D
(
Tw − Tm

) .

In most typical engineering flow applications the numerical or analytical
computation of the Nusselt number is impossible or too complex. It is
therefore common to use empirical correlations to obtain Nu. In case of a
pipe flow the Dittus-Boelter equation is a very popular approach:

0.7 ≤ Pr ≤ 160

ReD =
wmD

ν
> 10000

L
D
≥ 10
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Nu =
αD
λ

= 0.023ReD
4/5Prn (2.82)

• n = 0.4 if Tw > Tm
• n = 0.3 if Tw < Tm
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In this chapter the computational model, which was used in this thesis will
be described in detail. The task was to simulate directly a turbulent heated
pipe flow to provide valuable data for an evaluation of the existing wall
models. The DNS represents the most accurate approach for the simulation
of turbulent flow. As such the method gives a most detailed and compre-
hensive insight into the instantaneous velocity and temperature fields. The
simulations were carried out using a simulation code written in Fortran
parallelized with MPI. The code solves the transport equations using a
finite-volume-method with second-order accuracy in space and time.

3.1 Computational mesh

The configuration investigated in this thesis, is a cylindrical pipe with a
length of 5 diameters, which is assumed to be sufficient to capture the
largest turbulent structures in the streamwise direction.
An important prerequisite to perform a reliable direct numerical simulation
is the generation of a sufficiently fine mesh to resolve all relevant processes
and phenomena. Owing to the fact that the relevant flow structures become
smaller near the wall the spatial resolution has to be increased towards the
wall. For this reason, the grid is clustered in the radial direction towards the
wall, while an equidistant grid is used in the axial and azimuthal directions,
respectively. In figure 3.1 the computational grid is schematically shown,
where the coordinate r stands for the radial, φ for the azimuthal, and z for
the axial direction, associated with the indices i,j, and k, respectively. The
corresponding velocities are U, V, and W.
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r
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Figure 3.1: Computational grid.

As for the local position of the individual flow quantities a staggered grid
is used. This means that the scalar values (pressure and temperature) are
located at the center of the cells, while the velocity components are located
on the cell faces.
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3.2 Numerical solution of the momentum
equations

3.2.1 Discretisation

The Navier-Stokes equations (equation (2.4) - (2.7)) are discretized in space
using a second-order accurate finite-volume scheme. For the time integration,
all advection and diffusion terms are discretized with an explicit scheme,
except for the azimuthal direction, where an implicit Crank-Nicolson scheme
is used. Solving implicitly the advective and diffusive transports into the
azimuthal direction excludes them from the CFL-based timestep criterion,
which would otherwise lead to very small maximum timesteps due to the
small azimuthal extension of the grid cells near the center.

3.2.2 Integration in time

Assuming a constant density allows for a solution of the Navier-Stokes
equations in the limit of low Mach numbers, where the pressure is computed
from a Poisson equation derived from the continuity constraint.
First, we recall the mass and momentum balance equation written in vector
form for ρ = const. as

∇ · u = 0 (3.1)

∂u
∂t

+ ∇ · (u u)︸ ︷︷ ︸
A ... advection

= −1
ρ
∇P + ν∇2u︸ ︷︷ ︸

D ... diffusion

. (3.2)

The code uses a so-called Projection method for solving the Navier-Stokes
equations, which works in two steps. In the first step the velocity compo-
nents are predicted (u∗) using a second-order accurate Leapfrog-scheme
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for the discrete integration of the advective and diffusive terms in time ne-
glecting the pressure gradient (L̃ stands for the actually used discretisation
scheme).

(1):
u∗ − un−1

2∆t
= L̃ {−A + D} (3.3)

The second step is the so called pressure correction step, which incorporates
the pressure gradient to give the solution on the new time level un+1.

(2):
un+1 − u∗

2∆t
= −1

ρ
∇P (3.4)

The solution of (3.4) for un+1 requires the knowledge of the pressure field.
This is obtained by taking the divergence of equation (3.4) and enforcing
the continuity constraint for the new velocity field

∇ · un+1 = 0, (3.5)

which yields the Poisson equation for the pressure.

∇2P =
ρ

2∆t
∇ · u∗ (3.6)

The Poisson equation (3.6) can be solved by using a poisson-solver. The
presently used slover applies a fast Fourier transformation in the axial and
azimuthal direction producing a sequence of tridiagonal systems, which
can be efficiently solved.

Substituting the pressure obtained from the solution of the Poisson equation
into eq. (3.4) finally yields the velocity at the new time step
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un+1 = u∗ − 2∆t
ρ
∇P. (3.7)

As mentioned above, the time-integration is carried out with a Leapfrog-
scheme. Applied to a general transient differential equation

∂ f
∂t

= g( f , x, t)

the Leapfrog scheme is written as

f n+1 = f n−1 + 2∆tg( f n, x, t). (3.8)

A more detailed description can be found in Hirsch (1988). The combination
of a leapfrog-scheme and a central difference scheme, can result in two
decoupled solutions, which satisfy the conservation equations, one at the
odd, and the other at even time steps. Performing the integration of the
solution at the even time steps, the flux terms on the right-hand side always
match the solution at the odd time step and vice versa, may continuously
enhance the decoupling of the solutions resulting finally in unstably growing
oscillations. To avoid this decoupling an Asselin-filter is applied, which
basically exchanges information between adjacent time levels in a diffusion-
type transfer. Using this filtering eq. (3.8) is rewritten as

f n+1 = f n−1 + 2∆tg( f n, x, t), (3.9)

where the filtered representation of the solution at time level (n − 1) is
obtained as
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f n−1 = f n−1 + γ
(

f n−2 − 2 f n−1 + f n
)

(3.10)

involving a diffusion parameter γ presently set to γ = 0.075.

The drawback of this concept is the damping effect of the filter, which can
affect the second-order accuracy.

3.3 Numerical solution of the energy equation

The energy equation given by eq. (2.69) is numerically solved using the
same temporal and spatial discretization schemes (second-order accurate
Leapfrog and finite-volume scheme) as for the momentum equations.
It is solved right after the momentum equations using the updated axial
velocity field for the computation of the source term

4W+

wm
+

occurring on its right-hand side.
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4.1 Considered cases

The following table shows all computationally investigated cases of the
present work.

Pr Reτ (ReD)
Number of grid cells

(i × j × k)
1 360 (5328) 128 × 160 × 400
1 480 (7320) 128 × 160 × 400
1 700 (10759) 128 × 160 × 400
2 360 (5328) 128 × 160 × 400

5.9 360 (5328) 256 × 160 × 400
10 360 (5328) 512 × 160 × 400

Table 4.1: Computationally investigated cases.

The first three cases assume always unity Prandtl number, while the Reynolds
number is varied from Reτ = 360 to Reτ = 700. These simulations were
mainly carried out to investigate the effect of the Reynolds number on the
flow field near the wall and the wall friction. The latter three cases assume
the smallest here considered Reynolds number Reτ = 360, while the Prandtl
number is increased up to Pr = 10. These cases are particularly intended to
show the influence of the reduced thickness of the viscous thermal sublayer
relative to thickness of the viscous sublayer for the velocity as the Prandtl
number is increased.
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In order to keep the computational costs on an acceptable level differ-
ent grids were used for the different Prandtl numbers. The number of grid
cells, which were used for the different cases can also be seen in the table
above.

4.2 Flow field

In this section the flow field is examined with the focus on the conditions
near the wall. The shown DNS results were obtained for the first three cases
listed in table 4.1 considering the Reynolds numbers Reτ = 360/480/700.

4.2.1 Near wall conditions

4.2.1.1 Statistical mean values

The presented statistical mean values were all obtained by averaging the
instantaneous flow quantities in the two homogeneous directions ( φ and z,
see Figure 3.1), and in time.

Figure 4.1 shows the streamwise velocity component in wall coordinates for
the different Reynolds numbers. The laminar velocity profile of the viscous
sublayer

W+
= y+

and the log-law

W+
=

1
κ

ln
(
y+
)
+ β
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with κ = 0.40 and β = 5.5 as suggested by Kays and Crawford (1993) are
plotted as dotted and dashed lines, respectively, as well. In the viscous
sublayer, the DNS perfectly reproduces the linear dependence of y+. At a
larger distance to the wall, inside the inertial sublayer, differences are no-
ticeable. The deviations from the log-law decrease with increasing Reynolds
number. This tendency is also experimentally observed as will be shown
in the next subsection. It also indicates that the inertial sublayer, where
the log-law is basically derived, is extended as the Reynolds number is
increased (Tennekes and Lumley (1972)).
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Figure 4.1: Axial velocity for different Reynolds numbers.

Using the DNS data it is possible to extract the von Kármán constant based
on equation (2.45). For this propose, equation (2.45) had to be differentiated
with respect to y+, which yields the expression
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κ =
1

y+

(
∂W+

∂y+

)−1

. (4.1)

The equation (4.1) is evaluated using the local velocity gradients obtained
from the DNS data, and the resulting κ-profiles are plotted over the wall
coordinate y+ for the different Reynolds numbers in Figure 4.2
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Figure 4.2: Variation of κ in the radial direction obtained from DNS results.

One can clearly identify a plateau at κ = 0.34. This value differs from
the κ suggested by Kays and Crawford (1993), which can be explained by
the circumstance that the simulations were performed at low Reynolds
numbers.
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4.2.1.2 Comparison against measurements

Due to the difficulty to measure experimentally all flow quantities very
close to the wall, there are hardly any reliable experimental data available
for the radial distribution of flow quantities near the wall. Among the scarce
studies in literature Durst et al. (1995) published pipe flow measurements,
performed at a low Reynolds number (ReD = 7442 / Reτ = 480) with an
outstanding resolution near the wall.
Figures 4.3 compares the mean velocity, as well as the velocity fluctuations
obtained in the DNS simulation against the measurements provided by
Durst et al. (1995). Only minor deviations are observed, which underlines
the the accuracy of the simulation.
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Figure 4.3: Comparison of the axial mean velocity and the velocity fluctuations against
measurements of Durst et al. (1995).

Regarding the scope of the log-law in describing the near wall conditions,
Durst et al. (1998) published a comparison between measurements from
different sources against the log-law for different Reynolds numbers, see
figure 4.4. The comparison indicates again that the existence of an inertial
sublayer is associated with a sufficiently high Reynolds number. Accordingly,
the agreement with the log-law becomes better the higher the Reynolds
number.
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Figure 4.4: Turbulent velocity near the wall, from Durst et al. (1998).

54



4 Numerical results

4.2.2 Wall friction

In this section the friction coefficient obtained from the DNS is compared
against the most common friction coefficient models. The friction coefficient
for the given configuration is computed from the wall shear stress (τw) and
the bulk mean velocity (wm), according to

c f =
τw

ρ
w2

m
2

.
(4.2)

4.2.2.1 Petukhov

Due to the low values of the Reynolds numbers, considered in this thesis, a
friction coefficient model proposed for the transition region between laminar
and turbulent motion should be preferably applied. Petukhov et al. (1973)
developed a correlation for the friction coefficient, which is valid for

2300 < ReD < 5 · 106

0.5 < Pr < 2000,

and reads

c f = (1.58ln(ReD)− 3.28)−2 . (4.3)

4.2.2.2 Blasius

For a fully turbulent pipe flow well apart from the laminar-turbulent tran-
sition, Blasius proposed a simple model for the friction coefficient, which
reads

c f =
0.079
Re0.25

D
. (4.4)
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Figure 4.5 compares the friction coefficient predicted by the DNS against
the results of the above mentioned correlations.
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Figure 4.5: c f obtained from the DNS compared against empirical correlations.

4.3 Temperature field and heat transfer

The variation of the temperature near the wall strongly depends on the
Prandtl number. The last three simulation cases listed in table 4.1 were
carried out to study the effect of an increase of the Prandtl number up
to Pr = 10. The Reynolds number was thereby kept always the same
Reτ = 360.
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4.3.1 Near wall conditions

4.3.1.1 Statistical mean values

Figure 4.6 shows the mean temperature profiles plotted against the wall
coordinate. It becomes evident that the wall gradient of the temperature
profile gets steeper with increasing Prandtl number.
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Figure 4.6: Temperature profile for different Prandtl numbers.

Figure 4.7 shows the individual temperature profiles plotted over the wall
coordinate in logarithmic scale. The straight parts of the lines indicate the
log-law region. Their level is strongly increased as the Prandtl number gets
higher.
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Figure 4.7: Profiles of the temperature θ
+

vs. y+ in semilogarithmic scale for different
Prandtl numbers.

4.3.1.2 Turbulent fluctuations

Figure 4.8 shows the mean fluctuation of the non-dimensional temperature
obtained as rms-values near the wall for Pr = 1. The turbulent intensities of
the three velocity components are plotted as well. The near wall variation of
the rms-value for the temperature θ′+ is evidently very close to the profile
of the turbulent intensity of the streamwise component W ′+. This is not
surprising, as for Pr = 1, the non-dimensionalized transport equation for
W+ and θ+, differ only in the source term on the right-hand side, being

58



4 Numerical results

dP+

dz∗
= 4,

and

dTw
+

dz∗
=

dTm
+

dz∗
=

4
wm

+ ,

respectively, which is associated with the streamwise periodicity of the
solution.

0

0.5

1

1.5

2

2.5

3

3.5

0.1 1 10 100 1000

y+

U′+
V′+
W ′+

θ′+

Figure 4.8: Turbulent intensities of temperature and velocity near the wall for Pr=1.
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Figure 4.9 shows the mean temperature fluctuations near the wall obtained
for the different Pr numbers. The viscous sublayer moves evidently closer
to the wall for increasing Pr, and the intensity of the fluctuation gets
significantly higher, as seen from the maxima of θ′+. This behaviour is well
in line with the simulation results obtained by Kawamura et al. (1999).
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Figure 4.9: Temperature fluctuation θ′+ for different Pr.
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Heat flux

As already stated in chapter 2.4.3.4, the total heat flux is the sum of the
laminar and the turbulent heat fluxes (see equation (2.51)). As seen from
eq. (2.80), the radial variation of qtot

+ is independent of the Prandtl number.
The contributions of the laminar and the turbulent components dependent
of the Prandtl number are shown in Figure 4.10. It becomes evident that the
contribution of turbulent heat flux becomes relatively higher as the Prandtl
number is increased. As already indicated by the temperature fluctuations in
Figure 4.9 the sublayer associated with very intense turbulent heat transfer
moves closer to the wall the higher the Prandtl number.
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Figure 4.10: Laminar and turbulent heat fluxes vs. y+ for different Pr.
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4.3.1.3 Turbulent Prandtl number

The knowledge of the level of the turbulent Prandtl number and its variation
along the radial direction is of paramount importance to obtain accurate
models for the heat flux. Based on the DNS data it was possible to calcu-
late the radial variation of the turbulent Prandtl number substituting the
local averages of the turbulent flux terms and gradients into the following
expression

PrT =
νT

aT
=

W ′+U′+
∂θ

+

∂y+

θ′+U′+
∂W+

∂y+

. (4.5)

Figure 4.11 shows the variation of the turbulent Prandtl numbers for dif-
ferent molecular Prandtl numbers computed from eq. (4.5) using the DNS
results. The turbulent Prandtl number is fairly low near the center associated
with y+ > 100 for all cases. In the inertial regime extending approximately
within 10 < y+ < 100 the PrT profiles are close to unity. For Pr = 1 and
2, PrT remains approximately constant close to unity also in the viscous
sublayer, while the profiles for Pr = 5.9 and 10 exhibit a significant increase
towards the wall. This indicates that the eddy conductivity aT decreases
faster towards the wall than the eddy diffusivity νT as can be seen from the
double-logarithmic plot in figure 4.13 and 4.12.
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Figure 4.11: Turbulent Prandtl numbers for different Pr.

The reason for the observed faster decrease of the eddy conductivity aT
towards the wall for increasing Prandtl numbers is illustrated in Figure 4.14.
The gradients of the non-dimensional temperature shown in the left subfig-
ure approach the constant values

∂θ
+

∂y+
= Pr

as expected in the viscous sublayer near the wall. Consequently, the eddy
conductivity near the wall reflects directly the decrease of the turbulent
transport U′+θ′+. As shown in the right subfigure, U′+θ′+ exhibits a steeper
decrease towards the wall for the higher Prandtl numbers, which translates
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Figure 4.12: Near wall variation of the eddy viscosity and conductivity for Pr = 5.9.

directly into a steeper decrease of aT.

From the results shown in Figure 4.11 it can be finally concluded that the
assumption of a constant turbulent Prandtl number, which is commonly
made in the models for the turbulent heat flux used in CFD, where it is
mostly set to PrT = 0.9, is essentially confirmed by, the results for the lower
molecular Prandtl numbers Pr = 1 and 2. For Pr = 5.9 and 10 this is clearly
not the case in the transition region to the viscous sublayer.
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Figure 4.13: Near wall variation of the eddy viscosity and conductivity for Pr = 10.

In comparison to the evaluation of eq. (4.5) based on DNS data, an evalua-
tion with experimental data is very difficult, as the input quantities on the
right-hand side are very hard to measure close to the wall. Owing to this fact
there are hardly any experimental data available on the near wall variation
of the turbulent Prandtl number. Hollingsworth et al. (1989) performed
measurements for a fully turbulent boundary layer in a free-surface chan-
nel flow with zero pressure gradient and Pr = 5.9. Figure 4.15 shows the
variation of PrT obtained from the DNS results for Pr = 5.9 (by evaluating
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Figure 4.14: Variation of the temperature gradient and turbulent heat flux for different Pr.

eq. (4.5)) plotted together with the experimental data of Hollingsworth et al.
(1989), although their investigated flow configuration differs considerably
from the simulated pipe flow. Roughly speaking, both profiles exhibit the
same tendency. PrT starts from a rather small value around PrT ≈ 0.5 in
the wall remote region, oscillates around unity in the inertial region, and
increases in the region of transition to the viscous sublayer near the wall.
The quantitative increase of PrT near the wall is still much higher in the
experiments, which may be due to the different flow configurations.

Empirical correlation for PrT

Kays and Crawford (1993) proposed a mathematical model for the turbulent
Prandtl number, which is based on measurement data of a pipe flow at high
Reynold number. The correlation is written as
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Figure 4.15: PrT obtained from the DNS data and the measurements done by Hollingsworth
et al. (1989).

PrT =
1

1
2PrT ∞

+ CPeT

√
1

PrT ∞
− (CPeT)

2

1− e

(
−

1
CPeT

√
PrT ∞

)
,

(4.6)

where PeT is the turbulent Peclet number, and C is an experimental model
constant, for which Kays and Crawford (1993) proposed C = 0.3. The
dependence on the distance to the wall is incorporated in terms of the
turbulent Peclet number, defined as
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PeT =
νT

ν
Pr. (4.7)

As the viscosity ratio scales with

νT

ν
∼ y+

PeT varies from zero at the wall to infinity in the core region remote from
the wall. The correlation (4.6) was basically developed for small molecular
Prandtl numbers Pr < 1, but the authors claim that the correlation is
applicable to Prandtl numbers Pr > 1 up to Pr ≈ 6 (e.g., water), provided
that the Peclet number is always computed with Pr = 0.7. This suggests that
results obtained for Pr = 0.7 (e.g. for air) can be directly used for Prandtl
numbers of liquids up to about Pr = 6. Figure 4.16 compares the variation
of PrT obtained from the present DNS results against the correlation of
Kays and Crawford (1993). As outlined above the latter is always the same
curve for the considered Prandtl numbers Pr = 1, 2, 5.9, and 10, where the
turbulent Peclet number was computed as

PeT = κy+0.7 (4.8)

and the asymptotic limit for y+ → ∞ was set to PrT ∞ = 0.85. Based on these
inputs the curve obtained from eq. (4.6) varies between PrT = 2PrT ∞ = 1.7
at y+ = 0 and PrT = PrT ∞ = 0.85 for y+ → ∞.

It is interesting to see the best agreement between the DNS data and the
model correlation is observed for the highest molecular Prandtl number
Pr = 10, while significant deviations appear in the near wall region for
all other cases. The inherently imposed independence of the molecular
Prandtl number by substituting always Pr = 0.7 into eq. (4.6) is evidently
not confirmed by the results of the DNS.
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Figure 4.16: DNS results for PrT compared against PrT model of Kays and Crawford (1993).

4.3.1.4 P-function

The reliability of the thermal log-law given by equation (2.57) for describing
the turbulent heat transfer strongly depends on the appropriate setting of
the parameters κθ and βθ.

Based on the DNS data it is possible to compute the variation of these
two parameters along the non-dimensional wall distance y+ by evaluating
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the following expressions:

κθ =
1

y+

(
∂θ

+

∂y+

)−1

(4.9)

βθ = θ
+ − κθ ln

(
y+
)

(4.10)
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Figure 4.17: Variation of κθ in the radial direction.

As seen from the resulting variations for κθ in figure 4.17, a plateau around
κθ = 0.34 can be identified in the inertial sublayer. This level is somewhat
smaller than the value obtained by Kawamura et al. (1999) for a channel
flow being κθ = 0.4. κθ basically represents the ratio
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κθ =
κ

PrT
. (4.11)

Substituting into this expression the value for the von Kármán constant κ =
0.34 computed from the present DNS results using eq. (4.1), the turbulent
Prandtl number becomes

PrT =
κ

κθ
= 1.00. (4.12)
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Figure 4.18: Variation of βθ in the radial direction.

The results obtained for βθ by evaluating eq. (4.10) using κθ from eq. (4.9)
are shown in Figure 4.18. βθ strongly decreases to a local minimum close to
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the wall. Aside from that it approaches an almost constant level for the most
part of the inertial region beyond y+ > 20. Thereby, βθ reaches markedly
higher constant levels for increasing molecular Prandtl numbers.

Combining the log-laws for the velocity and the temperature given by
equations (2.45) and (2.58), respectively, the temperature can be rewritten
as

θ
+
= PrT(W

+
+ P). (4.13)

This implies that the logarithmic temperature profile can be computed di-
rectly from the logarithmic velocity profile including an additive term P,
known as P-function. The P-function basically represents the thermal resis-
tance of the viscous sublayer, so that it strongly depends on the molecular
Prandtl number. It is related to the parameter βθ by

P =
βθ

PrT
− β (4.14)

involving the integration constant β from equation (2.45).

Various analytical, semi-empirical, and fully empirical correlations have
been proposed for the P-function. The most popular one was introduced by
Jayatilleke (1969), who essentially extended the analytically derived correla-
tion of Spalding (1967) by incorporating an empirically based modification.
Both correlations shall be described in more detail and validated against the
present DNS results below.

Spalding P-function

Spalding (1967) derived analytically an expression for the P-function in
the limit of high Prandtl numbers. Owing to this assumption, the thermal
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boundary thickness is very small compared to the thickness of the velocity
boundary layer. Therefore, it is possible to use the viscous velocity profile
(W+

= y+) for the whole thermal boundary layer, which is substituted into
the viscosity ratio computed from

νT

ν
= (κy+)

1− e
−y+

A+

 ∂W+

∂y+
(4.15)

involving the van Driest wall damping function with A+ = 26. The P-
function derived by Spalding finally reads

PSpalding =

(
Pr

PrT
− 1
)(

Pr
PrT

)−1/4 π

4sin(π/4)

(
A+

κ

)0.5

, (4.16)

where the turbulent Prandtl number is mostly set to a constant value
PrT = 0.9.

Jayatilleke P-function

Jayatilleke (1969) published a modified P-function based on Spalding’s
approach, which reads

P = 9.24

[(
Pr

PrT

)3/4

− 1

] 1 + 0.28e

(
−0.007

Pr
PrT

) , (4.17)

where the last square-bracketed term represents an empirically based func-
tion for modification.
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Jayatilleke suggested to use the constant value PrT = 0.9.

The P-function proposed by Spalding and Jayatilleke using both PrT = 0.9
are plotted over the molecular Prandtl number in Figure 4.19. The curves
evidently coincide for very high Prandtl numbers.
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Figure 4.19: P-function of Spalding and Jayatilleke vs. Pr.

Validation against DNS results

The correlations for the P-function proposed by Spalding and Jayatilleke
are validated against the DNS results based on equation (4.13). For this
purpose equation (4.13) is rewritten as
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P =
θ
+

PrT
−W+ (4.18)

and evaluated at selected positions (y+ = 20, 25, 30, 35) substituting the local
DNS results for W+

, θ
+

and PrT, whose profiles were already shown in
Figures 4.1, 4.7, and 4.11, respectively. The local turbulent Prandtl numbers
used as input into this evaluation are listed in table 4.2 for the different
molecular Prandtl numbers.

PrT
Pr y+ = 20 y+ = 25 y+ = 30 y+ = 35
1 0.967 0.975 0.994 1.012

2 0.940 0.944 0.960 0.981

5.9 0.916 0.936 0.959 0.987

10 0.882 0.908 0.929 0.967

Table 4.2: Turbulent Prandtl numbers obtained from DNS results at selected positions.

Figure 4.20 shows the results obtained from the evaluation of equation (4.18)
compared against the prediction of the correlations of Spalding and Jay-
atilleke for varying molecular Prandtl numbers. The Jayatilleke P-function
agrees evidently fairly well with the DNS results, although the scatter de-
pendent of the individual y+-position is increasing for increasing Prandtl
numbers. The observed scatter can be attributed to the stronger variation of
the turbulent Prandtl number PrT with y+ for the higher molecular Prandtl
numbers, as seen in table 4.2.

Analogously to the computation of the P-function by evaluating eq. (4.18)
with DNS data the integration constant βθ is computed by rewriting the
log-law for the temperature, eq. (2.58), as

βθ = θ
+ − 1

κθ
ln(y+) (4.19)
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Figure 4.20: P-functions compared against DNS results.

and evaluating it with DNS data at the positions y+ = 20, 25, 30, 35. Figure
4.21 shows the obtained results plotted together with the variations of βθ,
which correspond to the P-functions of Spalding and Jayatilleke computed
from the relation

βθ = P + PrTβ (4.20)

using the correlations (4.16) and (4.17) for P, with PrT and β set to 0.9 and
5.5, respectively.
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Figure 4.21: βθ obtained from DNS results compared against βθ obtained from P-functions
of Spalding and Jayatilleke.

The agreement of βθ based on the Jayatilleke P-function with the DNS
results is very good, which basically reflects the validation of the P-function
itself shown in Figure 4.20, as one might expect. Moreover, there is consid-
erably less scatter in the DNS based results for βθ than in those obtained
for P. This indicates that the parameter βθ is evidently less sensitive to the
increased spatial variation of the turbulent Prandtl number occurring at
higher molecular Prandtl numbers. From this point of view it appears to
be as favourable to compute the temperature θ

+
directly from the log-law,

eq. (2.58), with an appropriate model for βθ = βθ(Pr) instead of using eq.
(4.13) with a model for the P-function. βθ needs thereby not to be modelled
separately but can rather simply computed from the relation (4.20) using
the Jayatilleke P-function, such that βθ = βθ

Jayatilleke.
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Due to the good agreement between βθ
Jayatilleke and the DNS results ob-

served in Figure 4.21 one would expect a good agreement with the log-law
for the temperature, eq. (2.58) evaluated with βθ = βθ

Jayatilleke, as well.
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Figure 4.22: Log-law for the temperature using κθ =
κ

PrT
=

0.4
0.9

and βθ
Jayatilleke compared

against DNS results.

However, as seen from Figure 4.22, there still appear considerable discrep-
ancies between the log-law and the DNS results in the inertial sublayer.
Given the good agreement seen for βθ the observed deviations have to
be attributed to the parameter κθ. In the shown log-law this parameter is
computed from

κθ =
κ

PrT
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using the standard input parameter κ = 0.4 and PrT = 0.9 as suggested by
Kays and Crawford (1993).
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Figure 4.23: Log-law for the temperature using κθ = 0.34 and βθ
Jayatilleke compared against

DNS results.

Setting instead the parameter κθ to the value κθ = 0.34, which was ex-
tracted from the DNS results as a reliable general mean value in the inertial
subrange for all considered Prandtl numbers, significantly improves the
agreement with the log-law. This is clearly seen in Figure 4.23 comparing the
log-laws, eq. (2.58), evaluated with κ = 0.34 and βθ = βθ

Jayatilleke, against
the DNS results.

Due to the dependency of the parameter κθ of PrT, as it follows from
eq. (4.11), it can be concluded that the appropriate modelling of the turbu-
lent Prandtl number is by far more important than the modelling of the
P-function.
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4.3.2 Nusselt number

Based on the solution for the temperature the Nusselt number is computed
as follows:

Nu =
αD
λ

=
qw

Tw − Tm
· D

λ

Recalling

θ
+
=

Tw − T
qw

ρcwτ

we obtain

θ
+
m =

Tw − Tm

qw
ρcwτ =

∫
A∗ W+

θ
+

dA∗

w+
m A∗

so that

Nu =
wτ

θ
+
m

· ρcD
λ

, (4.21)

which can be rewritten as

Nu =
ReτPr

θ
+
m

. (4.22)

80



4 Numerical results

The following table shows the Nusselt number obtained from equation (4.22)
based on the DNS data:

Pr Nu
1 21.044

2 28.132

5.9 42.792

10 52.392

It was possible to fit a curve to the DNS data by using the method of least
squares (R2 = 0.9999) yielding the following correlation:

Nu = 3.842ln(ReD)
0.796Pr0.392 (4.23)

There are many well established correlations available to be compared
against the present results for the Nusselt number. Gnielinski (1975) pub-
lished a correlation which computes the Nusselt number dependent of the
wall friction coefficient and is written as

Nu =
c f/2(ReD − 1000)Pr

1 + 12.7
√

c f/2
(

Pr2/3 − 1
) . (4.24)

Therein, the friction coefficient is obtained from the correlation developed
by Petukhov et al. (1973) already shown by eq. (4.3). Owing to the fact that
the correlation of Petukhov et al. (1973) varies with the logarithm of ReD the
curve-fit of the present DNS results given by eq. (4.23) was also assumed as
dependent of the logarithm of ReD.

Figure 4.24 shows the Nusselt numbers obtained from the DNS together
with the curve-fit given by eq. (4.23) compared against the predictions of
the correlations of Gnielinski and Dittus-Boelter (see eq. (2.82)). The dis-
crepancies evidently tend to increase for the higher Prandtl numbers. The
predictions of the Dittus-Boelter correlation exhibits larger deviations from
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Figure 4.24: Nu obtained from the DNS compared against popular correlations.

the DNS data. This may be attributed to the fact that the Dittus-Boelter
equation is basically deviced for higher Reynolds number turbulent flow. In
the presently considered flow the bulk Reynolds number Re = 5300 is fairly
low, but still high enough to be in the turbulent regime.
The Nu correlation according to Gnielinski (1975) agrees better with the
DNS data, but it still shows some offset throughout the entire Prandtl num-
ber range to a lower value.

This offset is associated with the constant reduction of the Reynolds number
occurring in the correlation eq. (4.24). Gnielinski introduced this reduction
of the Reynolds number by 1000 to account for the reduced turbulent heat
transfer at low Reynolds numbers near the critical limit Recrit = 2300. Modi-
fying this constant reduction from 1000 to 800 already leads to significantly
improved agreement with the DNS data, as seen from the dashed line in
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Figure 4.24, which was obtained with this modification.

4.3.3 Computation time

As already mentioned, the computational grid was refined with increasing
Prandtl number, which resulted in an increasing computation time. Due to
the CFL criterion the computation time does not increase on a linear scale,
which is shown in figure 4.25.

Each simulation was performed over a non-dimensional time-span

∆t∗ =
wτ∆t

D
= 5,

which is equivalent to 15 flow-through times.

Pr number of computational time step ∆t∗

grid cells time
− − days −
1 8192000 3.63 0.0000870

2 8192000 3.63 0.0000870

5.9 16384000 27.17 0.0000255

10 32768000 230.43 0.0000066

Table 4.3: Computational parameters for the different Prandtl number cases.
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Figure 4.25: Computation time for the different Prandtl number cases.
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5 Summary and Conclusions

The present work performed Direct Numerical Simulation (DNS) of heated
turbulent pipe flow. Based on the DNS results obtained for molecular
Prandtl numbers varying from Pr = 1 to Pr = 10 the study examined in
particular the applicability of the most essential assumptions generally made
for the wall-function based modelling of the thermal boundary conditions,
which is widely applied in RANS-type simulations.
The DNS results of the flow field showed a very good agreement with
experimental data from literature. Inside the inertial sublayer the DNS data
somewhat deviated from the log-law profiles evaluated with the standard
value for the von Kármán constant being κ = 0.4. These deviations decrease
with increasing Reynolds numbers, as it was shown by DNS carried out for
higher Reynolds numbers. The here observed tendency is well consistent
with experimental findings.
The analysis of the DNS results for the temperature and the turbulent
heat fluxes provided a detailed insight into the near-wall variation of the
turbulent Prandtl number PrT. In the inertial sublayer PrT remains con-
stant around unity for all considered molecular Prandtl numbers. With
this respect the DNS results confirm a major assumption commonly made
in the wall-function based modelling, although PrT is generally set to a
constant value a little bit smaller than unity PrT = 0.9. The assumption of a
constant turbulent Prandtl number breaks down for the higher molecular
Prandtl numbers when approaching the viscous sublayer, where the DNS
results exhibit a considerable increase of PrT towards the wall. A popular
correlation proposed for PrT by Kays and Crawford (1993) is not capable to
describe this Pr-dependent effect.
The validation of the P-function based wall modelling of the thermal bound-
ary conditions gave the following results:
The P-function proposed by Jayatilleke (1969) showed a good agreement
with the corresponding values for P obtained from the DNS data. This
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was not the case for the P-function of Spalding (1967), where significant
deviations from the DNS data appeared at the higher Pr numbers.
The comparison of the DNS results for the temperature against the log-law
emphasized the importance of an appropriate setting of the parameter κθ,
which basically determines the linear increase of the thermal mixing length
according to l+mθ = κθy+. It is shown by the DNS results that this parameter
remains approximately constant in the inertial sublayer for all considered Pr
numbers being about κθ = 0.34. Substituting this value into the log-law for
the temperature improves significantly the agreement with the DNS results
as compared to the log-law evaluated with the widely used standard setting
κθ = κ

PrT
with κ = 0.4 and PrT = 0.9. Thus, for the considered range of Pr

numbers the assumption of a constant parameter κθ appears as justified
provided that the considered region is inside the inertial sublayer and κθ is
set to an appropriate value.

The comparison of the Nusselt numbers predicted by the DNS against
popular empirical correlations showed a fairly good agreement with the
correlation proposed by Gnielinski (1975). The observed agreement could
even be improved by applying a minor modification to a model parameter
which was introduced by Gnielinski to cover the low Reynolds number
range as well.
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pp. 16, 20).
Ould-Rouiss, M., M. Bousbai, and A. Mazouz (2013). “Large-Eddy simula-

tion of turbulent heat transfer in pipe flows with respect to Reynolds and
Prandtl number effects.” In: Acta Mechanica 224, pp. 1133–1155 (cit. on
p. 3).

Petukhov, B. S., V. A. Kurganov, and A. I. Gladuntsov (1973). “Heat trans-
fer in turbulent pipe flow of gases with variable properties.” In: Heat
Transfer-Soviet Research 5, pp. 109–116 (cit. on pp. 55, 81).

Pope, S. B. (2000). Turbulent flow. Cambridge University Press (cit. on p. 12).
Spalding, D. B. (1967). “Monograph on turbulent boundary layers.” In:

Imperial College Mechanical Engineering Department. Chap. Chapter 2

(cit. on pp. 72, 86).
Tennekes, H. and J. L. Lumley (1972). A first course in turbulence. MIT Press

(cit. on pp. 17, 51).
van Driest, E.R. (1956). “On turbulent flows Near a wall”. In: Journal of the

Aeronautical Sciences 23, pp. 1007–1011 (cit. on p. 20).

89


