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Abstract

The analysis of a cryptographic algorithm is important for the security
of newly proposed cryptographic algorithms. Symmetric key algorithms
model several different symmetric primitives like encryption schemes, hash
functions, pseudorandom number generators, message authentication codes
or authenticated encryption schemes.

In this thesis, we analyze the security of such a symmetric cryptographic
algorithm, called Spritz. Spritz was announced at CRYPTO 2014 as a re-
placement of the widely adapted stream cipher RC4. RC4 shows some
weaknesses, but there are still no practical attacks. Many cryptographers
have published improved versions of RC4. Spritz is a redesign of RC4 from
Ronald L. Rivest, the designer of RC4, and Jacob Schuldt. The designers of
Spritz argued the security level of Spritz according to statistical tests and
extensive simulations. However, they have not published a detailed security
analysis so far.

We provide the first cryptanalytic results on Spritz within this thesis. We
investigated the security of Spritz against generic attacks, searched for weak
key classes and implemented several statistic tests to search for biases in
the keystream. As Spritz is sponge-like, it offers many primitives from
sponge-constructions. In this context, we analyzed Spritz as a hash func-
tion and searched for collisions and applied pre-image attacks. Finally, we
propose three different state recovery attacks on Spritz as a stream cipher,
where our best attack recovers the initial state for Spritz with complexity
of approximately 21400. Even tough this is faster than exhaustive searching
through all possible states it is still far away from a practical attack.

Keywords: sponge-like, stream cipher, hash function, RC4, Spritz, crypt-
analysis, collision, state recovery attack
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Notation

Notation and Terminology

N: N is the number of words in the Spritz permutation. The default value
of N in Spritz is 256.

Mathematical Operations: All mathematical operations in RC4 as well as
Spritz are always modulo N (e.g. ”+” means addition modulo N).

State: The state Qt at time t of RC4 and Spritz consist of the permutation S
and the registers.

Registers: RC4 and Spritz use registers each holding one byte.

Permutation: Both, RC4 and Spritz hold a permutation S, which is a byte-
array of length N consisting a permutation of ZN = 0, 1, . . . , N � 1. All
entries in the array are modulo N.

Nibbles: In Spritz, a byte consists of two half-byte nibbles. A byte b can be
represented by two nibbles x, y, where b = x || y.

List of mathematical Symbols

a� b exclusive-or (XOR) bac floor function
a & b logical-and (AND) dae ceil function
a || b concatenation of two strings a! factorial
log(a) logarithm function (base 10) ln(a) logarithm function (base e)

xv



1
Introduction

1.1. Motivation

In this thesis, we analyze the security of symmetric key primitives. Sym-
metric cryptographic algorithms can be categorized into two classes: block
ciphers and stream ciphers. These symmetric ciphers can then be used
to model different symmetric primitives, like hash functions, pseudoran-
dom number generators, message authentication codes or authenticated
encryption schemes.

Recently, in August 2014, the RC4-like stream cipher and hash function
Spritz [RS14] has been published. To use such a newly proposed cipher
securely, it has to be analyzed in detail to claim important and distinct
security bounds. In this thesis, we review Spritz and give a detailed analysis
of the security of Spritz.

Spritz is the successor of the widely adopted stream cipher RC4, which was
designed in 1987 and has been implemented in various software applica-
tions and protocols. Over the years it has been well analyzed and some
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1.2. RELATED WORK

weaknesses have been shown. In 2013, AlFardan et. al. [ABP+
13] published

an attack on TLS when using RC4 that needed only 224 connections, with
the same key. To overcome these security issues, the designer of RC4, Ronald
L. Rivest together with Jacob Schuldt, proposed a new improved version of
RC4, called Spritz.

Our contribution in the cryptanalysis of Spritz contains many different
aspects and we try to find tight security bounds that will endorse the
security of the cipher. In our analysis, we looked at the distribution of the
registers in Spritz as well as on various correlations between states and
registers. We analyzed Spritz as a hash function regarding collision attacks.
Thereby, we searched for collisions, where we introduce message differences
by absorbing two slightly different messages and cancel the differences in
the Absorb, Whip or Crush function of Spritz. Additionally, we applied
pre-image attacks on Spritz. Furthermore, we analyzed Spritz as a stream
cipher. We analyzed possible weak key classes, the cyclic behavior of Spritz
and we introduced a state recovery attack on Spritz. The complexity of our
best state recovery attack, for the default version of Spritz, is approximately
21400 which is faster than exhaustive search.

1.2. Related Work

In the search for an improved variant of RC4, many ciphers have been
published. In 2004, Souradyuti and Preneel [SP04] presented their variant,
RC4A which improves the security of RC4. Also in 2004, Zoltak [Bar04]
published his variant, VMPC. Maitra and Paul [SG08] published RC4+ in
2008. RC4+ improves the key schedule of RC4. In August 2014, Spritz [RS14]
was proposed from Rivest and Schuldt, where the former one is also the
designer of RC4.

Spritz was proposed recently at CRYPTO 2014 (rump session) as a drop-in
replacement of RC4. However, it is too early to expect many published
cryptanalytic results on Spritz. Nevertheless, there are a few implementa-
tions [spr14] in different programming languages available.

2



CHAPTER 1. INTRODUCTION

There have been published some statistical weaknesses in the comparison
between Spritz and VMPC-R. Bartosz Zoltak, the designer of VMPC-R,
published a statistical weakness in Spritz that shows a bias when observing
the probability Prob(output(x) = output(x + 2)) for a simplified version of
Spritz, that can distinguish the Spritz output from an ideal primitive after
observing 221.9 outputs.

1.3. Outline

This thesis is organized as follows. In Chapter 2, an overview of symmetric
key primitives is given. We introduce symmetric cryptography and show
how stream ciphers and sponge constructions are designed and how they
work.

Chapter 3 lists analysis methods for symmetric key primitives. First, we give
some preliminaries on the analysis of cryptographic ciphers. Afterwards, we
outline some generic attacks that are applicable to any cipher. Furthermore,
we discuss some statistical attacks. We continue with attacks against stream
ciphers, like key reuse, cycles in the keystream and state recovery. We
conclude Chapter 3 with attacks on hash functions.

We give a detailed description of Spritz in Chapter 4. First, we show some
attacks against block ciphers in CBC mode and motivate the usage of RC4-
like ciphers. We describe RC4, the predecessor of Spritz, and illustrate some
attacks against it.

The main parts of this thesis are the cryptanalytic results on Spritz, given
in Chapter 5. We start our analysis with simple distribution tests for the
registers in Spritz up to various correlation tests between Spritz states and
registers. We analyze Spritz in context as a hash function as well as a stream
cipher. For hash function attacks we search for collisions between internal
states that lead to the same output. In context of a stream cipher we observed
the cyclic behavior of Spritz, we look at possible weak key classes and we
propose a state recovery attack.

Finally, we conclude the thesis in Chapter 6. Additionally, we discuss direc-
tion of future work.

3



2
Symmetric Key Primitives

In this chapter, we first introduce symmetric cryptography. Next, we describe
the working principle of stream ciphers. In the end we show the design of
sponge constructions and discuss some applications of their usage.

2.1. Symmetric Cryptography

In symmetric cryptography, the same cryptographic key is used for both,
encryption and decryption. The cryptographic key is a shared secret that
must be known to the two or more parties that want to communicate
securely over an untrusted channel. Compared to asymmetric cryptography,
where each party has its own keys, symmetric cryptography remains with a
drawback, the key distribution problem.

Symmetric cryptographic encryption schemes can be categorized in two
classes, block ciphers and stream ciphers. Stream ciphers typically encrypt
a single bit at a time, where they require a same length keystream as the
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CHAPTER 2. SYMMETRIC KEY PRIMITIVES

plaintext. Block ciphers operate on blocks of data, using the same key for
each block. There are several common modes for block ciphers: electronic
codebook mode (ECB), cipher block chaining mode (CBC), cipher feedback
mode (CFB) and output feedback mode (OFB).

Symmetric ciphers can be used to construct many different cryptographic
primitives like hash functions, message authentication codes, pseudorandom
number generators and authenticated encryption schemes.

2.2. Stream Ciphers

A stream cipher is a cryptographic algorithm that combines the plaintext
with a keystream using the exclusive-or (XOR) function. Stream ciphers
are symmetric encryption algorithms that are inspired by the only known
unconditionally secure crypto system, the one-time pad. The only drawback
of the one-time pad is that it requires a keystream with the same length as
the plaintext. The huge key length makes it nonpractical for key distribution.
Hence, stream ciphers can resolve this issue by generating a pseudorandom
keystream from a shorter secret key (seed). The keystream of a stream
cipher must be random for a computationally bounded adversary. Stream
ciphers can be categorized into two types: synchronous stream ciphers and
self-synchronous stream ciphers.

Synchronous stream ciphers. The pseudorandom keystream of a syn-
chronous stream cipher (illustrated in Figure 2.1) is independent of the plain-
text and ciphertext. Synchronous stream ciphers are for example E0 [e001]
and SEAL [RC94].

Figure 2.1.: A synchronous stream cipher is independent of the plaintext and ciphertext.

5



2.2. STREAM CIPHERS

Self-synchronous stream ciphers. In a self-synchronous, or asynchronous,
stream cipher (illustrated in Figure 2.2) the pseudorandom keystream de-
pends on the secret key and on a fixed number of ciphertext bytes (that
have already been produced). For instance, block ciphers in cipher feedback
mode are self-synchronized stream ciphers.

Figure 2.2.: A self-synchronous stream cipher depends on the secret key and ciphertext
bytes.

2.2.1. Stream Cipher Designs

The design of stream ciphers can be categorized in software-oriented stream
ciphers and hardware-oriented stream ciphers that are based on linear
feedback shift registers.

The best-analyzed and most common software-based stream ciphers are RC4

and SEAL. There are some weaknesses in RC4, but it remains still secure
if the beginning of the keystream is discarded [Mir02]. SEAL is a very fast
stream cipher that is used for encrypting hard drives, but unfortunately it is
patented.

Hardware-oriented stream ciphers are based on linear feedback shift regis-
ters (LFSR). Since linear feedback shift registers are easily analyzable and
breakable, some schemes were proposed that increase the security. This
can be achieved with nonlinear combinations of bits from the LFSR states
or through combinations of several LFSR’s. Another options are irregular
clocking of the LFSR’s. The most common hardware-oriented stream ciphers
are A5/1 [a5187] and A5/2 [a5289] that are used in GSM mobile networks
or E0 that is used in Bluetooth.

6
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2.2.2. eSTREAM

The aim of the eSTREAM project [RB08] was to find a portfolio of stream
ciphers that are well analyzed and can be used for widespread adoption.
The portfolio has two profiles, one for hardware-based and one for software-
based stream ciphers. The eSTREAM portfolio contains the following stream
ciphers (see Table 2.1).

Profile 1 (Software) Profile 2 (Hardware)
HC-128 [Wu08] Grain v1 [HJM07]

Rabbit [BVP+
03] MICKEY 2.0 [BD08]

Salsa20/12 [Ber08] Trivium [DCP08]
SOSEMANUK [BBC+

08]

Table 2.1.: eSTREAM

2.3. Sponge Constructions

A sponge construction [BDPVA14] is a mode of operation that maps a
variable-length input to an arbitrary length output according to a trans-
formation function f : {0, 1}n ! {0, 1}n. It is based on a fixed-length
permutation and a padding rule for the input. Another similar construc-
tion is the duplex construction [BDPA11], which absorbs and squeezes in a
different fashion. In the duplex construction, output is squeezed, immedi-
ately after one block is absorbed (with an application of the f function in
between). The authenticated encryption mode of the duplex construction is
called SpongeWrap [BDPVA14]. Both construction can model most crypto-
graphic primitives including hash functions, message authentication codes,
authenticated encryption, pseudorandom number generators and stream
ciphers.

7



2.3. SPONGE CONSTRUCTIONS

Figure 2.3.: Sponge construction

2.3.1. Construction

A sponge construction (as illustrated in Figure 2.3) is an iterated construction
that builds on a permutation (or transformation) f that operates on a state S
with size b. The state S is split into two parts, the bitrate r and the capacity
c, that are concatenated together.

A sponge construction operates in two phases:

• Absorbing phase: First the input is padded and cut into r-bit blocks.
Then the padded r-bit blocks are xored to the state alternating with
an application of the transformation function f . After the whole input
was absorbed, it changes to the squeezing phase.

• Squeezing phase: r-bit output blocks are returned alternating with an
application of the transformation function f .

The capacity c is never directly linked to the input in the absorbing phase,
neither it is directly outputted in the squeezing phase. The capacity parame-
ter is therefore important for the security of a sponge function, while the
bitrate defines the run time efficiency.
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2.3.2. Applications

A sponge construction offers plenty use cases. It can model most crypto-
graphic primitives like: stream ciphers, hash functions and authenticated
encryption schemes.

Sponge as a stream cipher

A sponge construction can be easily used as a stream cipher (illustrated
in Figure 2.4) by absorbing the key and an initialization vector. After that
an arbitrary length keystream can be squeezed. For more details we refer
to [BDPVA14].

Figure 2.4.: Sponge as a stream cipher with key and initialization vector as input and the
keystream as output.

Sponge as a hash function

To use a sponge construction as a hash function (illustrated in Figure 2.5),
first the padded input message has to be absorbed. The hash value can be
created by squeezing output bytes until the desired hash length is reached.
For more details we refer to [BDPVA14].

Figure 2.5.: Sponge as a hash function absorbs a variable-length input message and
squeezes an arbitrary length hash value.
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Sponge as a message authentication code

A sponge construction can be easily extended from a hash function to a
message authentication code (as illustrated in Figure 2.6). As a message
authentication code the sponge construction first absorbs the key, followed
by the padded input message. Afterwards the message authentication code
can be squeezed. For more details we refer to [BDPVA14].

Figure 2.6.: Sponge as a message authentication code absorbs a key and the padded input
message and squeezes the message authentication code.
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3
Analysis of Symmetric Key

Primitives

In this chapter, we describe some methods to cryptanalyze symmetric key
primitives. We begin with generic attacks that are applicable to any primitive.
Next, we describe statistical attacks, followed by attacks on stream ciphers.
In the end, we discuss attacks on hash functions.

3.1. Preliminaries

3.1.1. Cryptanalysis

Cryptanalysis refers to the study of crypto systems, ciphers and ciphertexts
to find hidden aspects or weaknesses without knowing the secret key. Crypt-
analysis comes from the greek words, kryptós (i.e. ”hidden”) and analýein
(i.e. ”to loosen”). The goal of crypt analyzing a cipher is to break the cipher,
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find weaknesses or to proof the resistance of the cipher against attacks.
There are many different techniques to analyze a cipher/crypto system,
mostly depending on what information the cryptanalyst has. The methods
to analyze a cipher reach from paper-and-pen methods to mathematically
advanced computation with clusters and super computers.

3.1.2. Attack Model

Depending to what information an attacker has access, there exists numer-
ous different attack models.

Chosen Ciphertext Attack. In a chosen ciphertext attack an encryption/de-
cryption oracle is available to the attacker, with whom the attacker can
encrypt/decrypt cipher texts of his choice. In this way the attacker can learn
about the functionality of the cipher by observing plaintext and ciphertext
pairs.

Chosen Plaintext Attack. The attacker can chose the plaintext that gets
encrypted. Afterwards, the attacker can observe the resulting ciphertext.
This mode is used for instance in differential cryptanalysis.

Known Plaintext Attack. The attacker has knowledge of a set of plaintext,
ciphertext pairs. With this information the attacker tries to deduce the key
to decrypt further ciphertexts.

Chiphertext-only Attack. The attacker knows several ciphertexts and tries
to recover the plaintext or deduce the key. The attack succeeds if any
information about the plaintext or the key could be gained.

12
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3.1.3. Cryptographic Security

To measure the security or secrecy of a cipher we first need to define when
a cipher is considered to be secure and when it is broken.

Unconditional Security or Perfect Secrecy. A cryptosystem offers perfect
secrecy when it leaks no information about the plaintext by observing the
ciphertext. It must not leak any information about the plaintext, even if the
attacker has infinite computational power. Furthermore, this applies that
the crypto system cannot be broken.

The only known cipher that offers perfect secrecy is the Vernam cipher
(better known as one-time pad):

ciphertext = plaintext� keystream

Perfect secrecy is only assured if the keystream is random and never used
twice to encrypt a message.

Computational Security. A cryptosystem is called computational secure
if the best-known attack requires 2n operations, where 2n is a very large
number. In practice, an adversary (i.e. attacker) is computationally bound
to limits of time, memory and data. Cryptographic schemes are designed
to be secure against such adversaries. To calculate the security level for
a cryptographic algorithm we first need to define how to measure those
security level:

Defintion 1 (Big-O Notation):

O(g(n)) = {T(n) : there exist positive constants c and n0 such that
0 � f (n) � c · g(n) for all n � n0}

13



3.2. GENERIC ATTACK METHODS

Defintion 2 (polynomial time algorithm): An algorithm with input length
n and for some constant c is called polynomial time algorithm, if its running
time f (n) = O(nc).

For a cryptosystem to be secure, the success probability for any polynomial
time adversary to find a solution must be negligible. A cryptographic
algorithm is called ”broken” if there exists an attack that is computationally
faster than brute force. This does not automatically imply that such an attack
is practical. Note that an attack is called practical, if it is possible to break
the cipher with current computer technology.

3.2. Generic Attack Methods

In this section, we describe some general attack methods that can be applied
to any cipher. Generic attacks treat ciphers as black boxes and do not exploit
any weaknesses in a specific cipher. Therefore, they are applicable to any
cipher. Furthermore, these attacks are used to define security level to ciphers
regarding computational security.

3.2.1. Exhaustive Search

Exhaustive search is a brute force method, which involves searching the
entire key space to find the correct key. This attack can be used when
no weakness is known for the attacked cipher. The worst case complexity
for exhaustive search is O(n) = 2n for a key of n bits. To improve the
search time an attacker can use heuristics that indicate where the solution
is more probable. Ciphers should be designed to use a large enough key
space to resist against brute force methods. Therefore, the bounds that are
computable by current technologies can be used.
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3.2.2. Time-Memory / Space-Time Tradeo↵ Attacks

In a space-time / time-memory attack an attacker reduces the execution
time at the cost of memory or conversely. In cryptography an attacker can
use these attacks to improve the time complexity by storing pre-computed
results in lookup tables or by storing values in recursive algorithms.

3.2.3. Birthday Attack

The birthday attack is a mathematical attack that exploits the birthday
paradox and pigeonhole principle. It can be used to find collisions with a
complexity of 2n/2 for any function f with output size n. The attack can be
used to attack the communication between two or more parties.

The birthday paradox tries to approximate the probability that in a set of n
people, two of them have the same birthday. According to the pigeonhole
principle, the probability is 50% with 23 people, 99.9% with 70 people and
100% with 367 people as illustrated in Figure 3.1.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

n

P(
3
6
5
,n

)

Figure 3.1.: Birthday paradox approximates the probability that in a set of n people, two of
them have the same birthday.
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This can be calculated by:

P(n, k) = 1� n!
(n� k)!nk (3.1)

= 1� [(1� 1
n
) · (1� 2

n
) · · · · · (1� k� 1

n
)] (3.2)

If we assume that the following inequality holds:

(1� x)  e�x (3.3)

then we have:

P(n, k) > 1� [(e
�1
n ) · (e�2

n ) · · · · · (e�(k�1)
n )] (3.4)

> 1� e
�(k·(k�1))

2n (3.5)

If we now want to know when the probability is higher than 50% we can
set:

0.5 = 1� e
�(k·(k�1))

2n ln(2) =
k · (k� 1)

2n
(3.6)

for large values of k we can approximate k · (k� 1) by k2:

k =
q

2(ln(2))n = 1, 18 ·pn (3.7)

The birthday paradox is a important factor for cryptanalyzing ciphers as
the probability to find a collision is 50% with 2n/2 inputs.

3.2.4. Distinguisher

In a distinguishing attack an attacker observes the ciphertext and tries to
find any pattern that distinguishes the encrypted output from the output of
an ideal primitive. If such a pattern can be found the attacker can use it to
recover the secret key. Ciphertext indistinguishability is a property of many
modern ciphers.
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3.2.5. Related Keys

Related key attacks were introduced independently by Knudsen [Knu92]
and Biham [Bih93]. In a related key attack, an attacker uses two or more
keys that are mathematically related and tries to observe a weakness in the
cipher. Given keys K and K⇤ 6= K an attacker choses a relationship f such
that:

K⇤ = f (K)

The attacker knows the relationship of the keys, however the keys are
unknown to the attacker. Using those related keys the attacker can try to
observe the functionality of the cipher, or try to create collisions that lead to
the same keystream, etc.

3.2.6. Weak Keys

A weak key is a specific key, that when used in a cipher, makes the cipher
behave in an unexpected way. If for a set of weak keys, the cipher is much
weaker, then this set is called a class of weak keys. Weak keys are an
important factor for the security of ciphers and modern ciphers should be
designed to avoid such keys. There are some ciphers that are vulnerable to
weak keys (e.g. RC4 [FMS01], DES [MS87], IDEA [Haw98]).

To find weak keys an attacker can do a so-called membership test for the
class. We can assume that for a key space of n bits, there can be 2n possible
keys if an attacker tries to find the key using exhaustive search. If there exist
a class of weak keys of size 2w that can be found within a membership test
with complexity of 2m. Then if m < w the class is a weak key class with a
complexity of less than exhaustive search. This can lead to attacks on the
cipher with faster attacks then exhaustive search for keys in the weak key
class.
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3.3. Statistical Attacks

Statistical attacks exploits weaknesses in the underlying cryptosystem.
Therefore, many mathematical tests can be used like distribution tests,
pairs of letter tests, correlation tests and plenty other statistical tests.

A popular example for a statistical attack is frequency analysis, where an
attacker analyzes the frequency of each letter and then maps the most
frequent letter in the observed ciphertext to the most common letter in the
language of the plaintext.

3.3.1. Pearson’s Chi-Squared Test

Pearson’s chi-squared test is a statistical test that evaluates the likelihood of
a difference between two sets. It can be used for two types of comparison:
tests of goodness of fit and tests of independence. In the goodness of fit test
the deviation from uniformity of a distribution is measured.

In cryptography, the test can be used to find statistical abnormalities and
biases in encrypted data that show weaknesses in a cipher.

The chi-squared statistic can be calculated by:

c2 =
q�1

Â
u=0

(Ou � Eu)2

Eu

given Eu as:

Eu =
T
q

c2 . . . chi squared statistic
Ou . . . number of outcomes observed of type u
Eu . . . expected number of outcomes of type u (should be at least 5)
T . . . total number of trials
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The expected value for the chi-squared test is the number of degrees of
freedom. The number of degrees of freedom, #d f , is equal to the number of
elements in the test set, subtracted by the reduction in degrees of freedom
(which depends on the distribution, e.g. uniform distribution = 1). The
standard deviation can be calculated as

p
2 · #d f .

A test fails if the chi-squared statistic is larger than four times the standard
deviation above its expected value.

3.3.2. Correlations

Pearson’s correlation coefficient is used to measure the dependence of two
datasets. In cryptography, an attacker can correlate the plaintext with the
ciphertext to find weaknesses in the cipher (e.g. weak keys). It can also be
used to measure the similarity of encrypted data to find related keys.

Pearson’s correlation coefficient rxy can be calculated by:

rxy =
Â xiyi � nx̄ȳ
(n� 1)sxsy

=
n Â xiyi �Â xi Â yiq

n Â x2
i � (Â xi)2

q
n Â y2

i � (Â yi)2

The correlation coefficient rxy varies between -1 and 1 whereby -1 shows
a strong negative correlation and 1 shows a strong positive correlation. If
rxy is 0 this indicates that there is no correlation between the two measured
datasets.

3.4. Stream Cipher Attacks

Stream ciphers (as described in Section 2.2) normally build upon the one-
time pad, where the plaintext is combined with a keystream regarding the
exclusive-or function (XOR). The security of stream ciphers depends on a
few constraints. The keystream, which is xored to the plaintext, has to be
random, and should never used twice.
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3.4.1. Reuse Key

In a stream cipher the same key should never be used more than once, to
encrypt two or more messages. If we encrypt two messages m1 and m2, both
encrypted with the same key K. The stream cipher produces a keystream C
with the same length as the messages, which can be XORed to each message.
The encrypted messages are:

c1 = m1 � C

c2 = m2 � C

If an adversary now intercepts both encrypted messages c1 and c2 he can
compute:

c1 � c2 = (m1 � C)� (m2 � C) = (m1 �m2)� (C� C) = m1 �m2

because the XOR function is commutative (i.e. x � y = y � x) and self-
inverse (x � x = 0). If the two intercepted messages are of different length,
an adversary can only recover information, until the end of the shorter
message.

3.4.2. Cycles in the Keystream

The generation of random values is quite difficult. Stream ciphers are
pseudorandom number generators (PRNG) that generate a keystream. After
a while the pseudorandom number generator returns the same values again
and runs in a cycle. The size of such a cycle depends on the internal state of
the stream cipher, as well as the algorithm itself. The internal state should
be chosen large enough that small cycles do not occur. However, this alone
does not guarantee that there are no short cycles in the keystream.

A well known example of cycles were discovered by Hal Finnley [Fin94], in
1994, on RC4.
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3.4.3. State Recovery

In a state recovery attack, an attacker tries to recover the internal state of a
cipher. To recover an internal state the attacker takes advantage of known
values for any variable of the cipher and the known output keystream.
Additionally, an attacker may assume that some parts of the internal state
are known (i.e. with an previous other attack, according to some biases in
the output keystream or with the usage of some heuristics).

If the next-state function (Update) is easily invertible (which is the case
for example in RC4), an attacker can recover the initial state if any internal
state is known. Furthermore, with the knowledge of an internal state, the
attacker can generate further output keystream bytes if the attacker is in
possession of an encryption oracle. If a state recovery attack succeeds, the
cipher can be broken complete. Most ciphers use a large internal state to
prevent against state recovery attacks, so that e.g. exhaustive search or
time/memory tradeoff attacks of an internal state are infeasible.

3.4.4. Key Recovery

In a key recovery attack, an attacker tries to recover the cryptographic key
of a crypto system. One has to differ between two types, key recovery from
the keystream and key recovery from an internal state. The first one uses
the information from the known output keystream values to recover the key.
The second one builds upon a state recovery attack that recovers an internal
state, or from a known internal state. To make exhaustive key-search over
the key space infeasible, modern ciphers chose a large enough key space
(e.g. key space with > 96-bit and larger).

3.5. Hash Function Attacks

A cryptographic hash function maps an arbitrary input message to a fixed-
length hash value. For a secure hash function it should be computational
infeasible to find two messages that map to the same hash value. As a hash
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function is defined as a one-way function, it should also be infeasible to find
the input from a given hash value.

A cryptographic hash function must have several properties to be secure:
collision resistance, pre-image resistance and second pre-image resistance.

3.5.1. Collision Attack

In a collision attack, the attacker tries to find two messages that result in the
same hash value, i.e. a collision occurs. Mathematically, a collision attack can
be described by choosing a message m1 and a second message m2 that result
in the same hash value, i.e. hash(m1) = hash(m2) but m1 6= m2. According to
the birthday attack collisions can occur with complexity of 2n/2. Figure 3.2
illustrates a hash collision attack.

Figure 3.2.: A hash collision attack, i.e. hash(m1) = hash(m2) but m1 6= m2.

3.5.2. Pre-image Attack

In a pre-image attack, the attacker tries to find a message for a specific
hash value, i.e. the pre-image of the hash value. It should be infeasible to
find a message, that is hashed to the given value, i.e. given hash value y =
hash(x), find pre-image x. Pre-image resistance is given up to complexity of
2n. Figure 3.3 shows a pre-image attack.
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Figure 3.3.: A pre-image attack, i.e. given hash value y = hash(x), find pre-image x.

3.5.3. Second Pre-image Attack

In a second pre-image attack, the attacker tries to find a second message m2
that results in the same hash value, than a given message m1, i.e. find m2
for a given message m1 such that hash(m1) = hash(m2) but m1 6= m2. Second
pre-image resistance is given up to complexity of 2n. Figure 3.4 illustrates a
second pre-image attack.

If a hash function is collision resistant to a given bound, this implies it is
also second pre-image resistant to that bound. However, this is not valid for
pre-image resistance.

Figure 3.4.: Second pre-image attack, i.e. find m2 for a given message m1 so that hash(m1)
= hash(m2) but m1 6= m2.
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4
Spritz: A RC4-like Stream Cipher

and Hash Function

In this chapter, we give an introduction to Spritz. We motivate the design
of Spritz with some flaws in the cipher block chaining (CBC) mode, which
leads to several destructive attacks on SSL/TLS. As result of these attacks
RC4 was highly recommended. Next, we give an overview of RC4, which is
the predecessor of Spritz. Afterwards, we highlight the current cryptanalytic
results on RC4 that show the need of an improved version of RC4. Finally,
we give a detailed description of Spritz.

4.1. Motivation

In the last few years, there have been some devastating attacks against
SSL/TLS. Most of them exploited flaws in the block cipher mode, cipher
block chaining mode, others aimed at implementation errors.
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BEAST. In 2011, Thai Duong and Juliano Rizzo [DR11] demonstrated an
attack called BEAST (Browser Exploit against SSL/TLS) exploiting a long
known vulnerability in the cipher block chaining mode of block ciphers.
The vulnerability was discovered in 2002 by Phillip Rogaway [Rog02], but
no practical attack has previously been published. Since RC4 as a stream
cipher is not vulnerable to BEAST, it was recommended for use in TLS in
spite of its shortcomings.

Lucky 13. In February 2013, Nadhem J. AlFardan and Kenneth G. Pater-
son [AFP13] published an attack called Lucky 13 that allows a man-in-the-
middle attack when the cipher block chaining mode in TLS is used. The
attack uses a timing side channel of the TLS error messages in combination
with the authentication part of TLS. Using RC4 can mitigate the Lucky 13

attack.

POODLE. Recently, in September 2014, Bodo Moeller et. al. [MDK14]
published the POODLE attack (Padding Oracle On Downgraded Legacy
Encryption). POODLE exploits the fallback of client software and attacks
SSL v3.0. It therefore uses the absence of a specification of the padding bytes
in SSL v3.0 in combination with the CBC mode. In December 2014, Adam
Langley [Lan14] improved the attack such that the fallback to SSL v3.0 is
not needed anymore.

All those attacks aimed at block ciphers in CBC mode. To overcome these
attacks, the usage of the stream cipher RC4 in SSL/TLS was recommended.
Unfortunately, RC4 has some security flaws, which lead to the point that
RC4 is weaker than previously thought and should not be used either.
The design of RC4 is widely analyzed and gives a good starting point
for a new algorithm. In the progress of finding a successor of RC4 many
improved designs have been proposed. Recently, the designer of RC4, Rivest
in cooperation with Schuldt proposed a new version, called Spritz.
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4.2. Description of RC4

The RC4 stream cipher was designed by Ronald L. Rivest in 1987. It is a
software-oriented stream cipher, which is extremely fast and has a simple
design. In contrast to other keystream generators, which consist of linear
feedback shift registers (LFSR’s), RC4 is a software based stream cipher that
is based on a permutation of 2n n-bit words (the default value for n = 8,
so that RC4 operates on bytes) and two 8-bit registers. The design of RC4

was for a long time kept as a trade secret, until it was anonymously leaked
to the cypherpunks mailing list [Ano94] in 1994. RC4 is one of the most
widely deployed stream ciphers and is implemented in various software
applications and standardized protocols like SSL/TLS. Moreover, it is used
in wireless networks within the WEP and WPA protocols and in commercial
products like Microsoft Lotus, Oracle Secure SQL, Microsoft Windows, and
many others.

The internal state of RC4 consists of a permutation table S = S[l]2
n�1

l=0 of 2n

n-bit words and two n-bit pointers i and j (the default value for n = 8). The
cipher is initialized with a variable length key K (with size typically between
40. . . 256 bit) during the key-scheduling algorithm (KSA). The internal state
size is given by log2(2n!) + 2n that is calculated by the possible number
of states for the permutation S and the two pointers i and j. After the
KSA is finished, keystream can be generated by calling the pseudo-random
generation algorithm (PRGA).

4.2.1. KSA: Key-scheduling algorithm

The key-scheduling algorithm initializes the permutation S with the identity
permutation and sets both pointers to 0. Afterwards j is updated over the
size of the permutation S, where it is influenced from its previous value,
the permutation S and the key K. The permutation S is updated in each
step by swapping one value with another one. The pointer i runs over all
possible values from 0 . . . 256 so that each element in S is swapped at least
once. Listing 4.1 provides pseudocode of the KSA.
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1 for i = 0 to 255

2 S [ i ] := i
3 end for
4 j := 0

5 for i = 0 to 255

6 j := ( j + S [ i ] + K[ i mod K. length ] ) mod 256

7 SWAP( S [ i ] , S [ j ] )
8 end for
9 i := j := 0

Algorithm 4.1: KSA is the key-scheduling algorithm, which initializes i, j and the
permutation S based on key K

4.2.2. PRGA: Pseudorandom generation algorithm

The pseudorandom generation algorithm updates the internal state of RC4

for each step. The pointer i is incremented by 1 each step, where j is incre-
mented by the value of permutation S at position i. Afterwards, the values
of the permutation S are swapped at the updated pointers i and j. Finally,
at each step a keystream byte is generated from the value in permutation S
at the index of the sum S[i] + S[j]. All operations in RC4 are done modulo
2n. Algorithm 4.2 provides pseudocode of the PRGA.

1 i := ( i + 1 ) mod 256

2 j := ( j + S [ i ] ) mod 256

3 SWAP( S [ i ] , S [ i ] )
4 Z = S [ ( S [ i ] + S [ j ] ) mod 256 ]
5 output Z

Algorithm 4.2: PRGA is the pseudo-random generation algorithm, where at each step
the state is updated and one output byte is produced

4.3. Cryptanalytic Results on RC4

Since RC4 was designed in 1987 it has become a widely used popular
stream cipher. It has been well analyzed over the years, but until now no
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practical attacks have been found. Despite some flaws in the first iterations
of the output stream, RC4 is still secure, if the first r output bytes are
discarded [Mir02].

4.3.1. Biases and Distinguishers

Most of the cryptanalysis on RC4 focuses on biases found in the key stream
or distinguishers that differentiate the pseudorandom output of RC4 from
a random oracle. The first results were published by Roos [Roo95], in
1995, who discovered that the permutation S is highly correlated with
the key. Fluhrer, Mantin and Shamir [FMS01] published weak keys and
recommended to discard the first N output bytes of RC4. In 2001, Mantin
and Shamir [MS01] found a bias in the second output key stream byte which
occurs with probability 2/N instead of 1/N. This leads to a distinguishing
attack. In 2013, AlFardan et. al. [ABP+

13] published new biases against
RC4 which lead to an attack on TLS, with only 224 connections/sessions to
reliable recover plaintext bytes.

4.3.2. Key Collisions

In 2009, Matsui [Mat09] found colliding key pairs for 24-byte keys. Chen
and Myaji [CM11] improved the attack and found colliding key pairs for
shorter keys (22-byte keys). These keys can be used to create collisions in
the internal state of RC4.

4.3.3. Key Recovery

For key recovery, one has to distinguish between key recovery from an
internal state and key recovery from the key stream. Key recovery from
an internal state was first published by Paul and Maitra [PM07]. Further
improvements were published by Biham and Carmeli [BC08] and Khazei
and Meier [KM08].
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Key recovery from the key stream is mostly done on WEP or WPA. First
results were done by Fluhrer et. al. [FMS01]. The attack was improved by
Klein [Kle08]. Sepehrdad et. al. [SVV11] published their results in WPA
with a complexity of 296.

4.3.4. State Recovery

There are several papers on determining the internal state from a known
output key stream. The first one is from Knudsen et. al. [KMP+

98] which
can recover the initial state of RC4 with complexity of 2779. Maximov and
Khovratovich [MK08] have published an improved algorithm which uses
patterns in the key stream and leads to a complexity of 2241 under plausible
assumptions. Another probabilistic algorithm was published by Golic and
Morgari [GM08] with a complexity of 2689. The complexity of each those
attacks is far beyond practical complexities. Therefore, it is no real threat
to RC4. Nevertheless, a practical state recovery attack would allow an
adversary to generate further output without knowing the secret key, or
to recover the initial state of RC4 (which can be used for a key recovery
attack).

4.4. Description of Spritz

Spritz [RS14] was recently presented at the rump session of CRYPTO 2014.
It was designed by Rivest and Schuldt. The former one was also the designer
of RC4. Spritz was proposed as an improved variant of the stream cipher
RC4 and follows similar design principles. Additionally, Spritz is formulated
as a sponge-like function, which offers the typical sponge functionalities.
Spritz can be used as stream cipher, hash function, message authentication
code or for authenticated encryption.

Spritz is build upon RC4 and fixes many weaknesses. It was designed as
drop-in replacement of RC4 and should keep the simple design. Therefore,
Spritz as well as RC4 builds upon a permutation and a few pointers (i.e.
8-bit registers). Spritz is the result of extensive simulations and statistical
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analysis. The designers created the Spritz functions by basically generating
all possible candidates, constrained to six registers and a permutation of
size N, and chose the ones with the best security properties. The design was
done in a huge computer cluster and with about five months of computation
time, according to the designers [RS14].

4.4.1. Spritz Spezification

Spritz offers several functions as described in Figure 4.1. Moreover, it is build
upon a sponge function as proposed by Bertoni et. al. [BDPVA14]. As it is
not a sponge function by definition it should be considered as sponge-like
or spongy.

Permutation. Spritz uses a permutation S = {0, 1, . . . , N � 1} with N ele-
ments.

Registers. Spritz uses six registers: i, j, k, z, w and a. Registers i, j and k are
used as pointers to the permutation S in the Update function, similar as in
RC4. Register w is always relative prime to N and is used to update register
i. The update of register i causes it to cycle between all values modulo N.
Register a denotes the number of nibbles that have been absorbed. Register
z stores the last generated output key stream value.

State. The state of Spritz consists of the six registers and the permutation
S. Spritz has a maximum of:

N! · N6

possible states. For the default value of N = 256 this leads to log2(N! · N6) ⇡
21730 states.

Key. The key in Spritz is an arbitrary length byte array K[0, . . . , L-1]
where L denotes the length of the key. The default values for L are h16, 32i,
resulting in key sizes of 128 and 256 bits, respectively.
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Capacity. As Spritz is sponge-like the capacity of Spritz is relevant for the
security analysis. The capacity of Spritz is defined as:

c(N) = (dN/2e � D) · log(N), where D = d
p

Ne
(for N = 256 the capacity yields to c(N) = 936 bits).

4.4.2. Sponge Functions

A detailed description is given in Figure 4.1.

InitializeState. This function initializes Spritz and sets the registers i, j, k,
z and a to zero and register w to one. The permutation S is initialized with
the identity permutation.

Absorb. The Absorb function in Spritz absorbs arbitrary length input
and updates the Spritz state accordingly. The input is split into bytes and
absorbed with the AbsorbByte function. This function again splits the byte
in two nibbles (i.e. half bytes = 4-bit), while the lower nibble is absorbed
first. For each nibble that is absorbed the register a is increased. If a >bN/2c
is reached, Spritz is ”full” (i.e. the capacity is reached) and Shuffle gets
called.

The AbsorbStop function is used in Spritz as padding function. AbsorbStop

calls Shuffle if a >bN/2c and increments a by one. This is equivalent as
absorbing a special stop symbol ” ” that is outside of the input alphabet.

Shu✏e. Shuffle randomizes the Spritz state. To achieve good random-
ization three applications of Whip and two applications of Crush are
performed alternatively.

Whip calls Update 2N times without producing any output, in order to
randomly update the registers i, j and k as well as the permutation S.
Additionally, Whip updates register w every time it gets called to the next
value relative prime to N.
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InitializeState(N)

1 i := j := k := z := a := 0
2 w := 1
3 for v = 0 to N � 1
4 S [ v ] := v

Absorb(I)

1 for v = 0 to I . length � 1
2 AbsorbByte ( I [ v ] )

AbsorbByte(b)

1 AbsorbNibble ( Low ( b ) )
2 AbsorbNibble ( High ( b ) )

AbsorbNibble(x)

1 i f a = bN/2c
2 Shuffle ( )
3 Swap ( S [ a ] , S [ bN/2c + x ] )
4 a := a + 1

AbsorbStop()

1 i f a = bN/2c
2 Shuffle ( )
3 a := a + 1

Shuffle()

1 Whip(2N)
2 Crush ( )
3 Whip(2N)
4 Crush ( )
5 Whip(2N)
6 a := 0

Whip(r)

1 for v = 0 to r � 1
2 Update ( )
3 do w := w + 1
4 u n t i l Gcd(w, N) = 1

Crush()

1 for v = 0 to bN/2c � 1
2 i f S [ v ] > S [N � 1 � v ]
3 Swap ( S [ v ] , S [N � 1 � v ] )

Squeeze(r)

1 i f a > 0
2 Shuffle ( )
3 P := Array .New( r )
4 for v = 0 to r � 1
5 P [ v ] = Drip ( )
6 return P

Drip()

1 i f a > 0
2 Shuffle ( )
3 Update ( )
4 return Output ( )

Update()

1 i := i + w
2 j := k + S [ j + S [ i ] ]
3 k := i + k + S [ j ]
4 Swap ( S [ i ] , S [ j ] )

Output()

1 z := S [ j + S [ i + S [ z + k ] ] ]
2 return z

Figure 4.1.: Pseudocode of Spritz. All additions are modulo N. When N is a power of 2,
the last two lines in Whip are equivalent to w = w + 2.
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Crush maps 2N/2 states to one state, and looses information intentionally,
which makes Crush a non-invertible transformation. In more detail, Crush

compares iteratively the beginning to the end, and sorts the state ascending
(Figure 4.2 illustrates Crush).

Figure 4.2.: Crush compares pairs from the beginning to the end and sorts ascending

Squeeze, Drip. Squeeze and Drip are the output functions of Spritz. First,
register a > 0 is checked, and if necessary Shuffle is called which puts
Spritz in ”squeezing mode” (i.e. a = 0). Afterwards Squeeze, calls Drip r
times and returns the output in an array. Drip uses Update and Output to
produce a new output byte.

Update, Output. Update is the next-state function of Spritz. In Update

the registers i, j and k are updated and S[i] and S[j] are swapped.

Output produces a single byte output by nested lookups in the permutation
S mixed with the registers i, j, k and also feedback from the last produced
output value.
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4.4.3. Applications

As Spritz is inspired by the sponge construction, it can be used as stream
cipher, hash function, message authentication code (MAC) or also for au-
thenticated encryption with associated data (AEAD).

Stream cipher. When Spritz is used as stream cipher the KeySetup is
called which absorbs the key. Afterwards, a key stream is generated as long
as the message that should be encrypted. Then each byte of the message
is added to the corresponding byte of the key stream, which yields to the
ciphertext. Algorithm 4.3 to 4.5 illustrates Spritz as a stream cipher.

Encrypt(K, M)

1 KeySetup (K)
2 C = M + Squeeze (M. length )
3 return C

Algorithm 4.3: Encrypt function

Decrypt(K, C)

1 KeySetup (K)
2 M = C � Squeeze (M. length )
3 return M

Algorithm 4.4: Decrypt function

KeySetup(K)

1 I n i t i a l i z e S t a t e ( )
2 Absorb (K)

Algorithm 4.5: KeySetup function

Hash function. Spritz can also be used as hash function, which can pro-
duce hash values of arbitrary length. The hash function first absorbs the
message. Next, it calls AbsorbStop, which can be seen as message padding.
Then an integer r with the desired hash length is absorbed. The hash length
is absorbed so that e.g. a 16-byte hash is not a prefix of a e.g. 32-byte hash.
Algorithm 4.6 illustrates pseudocode of the hash function.
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Hash(M,r)

1 I n i t i a l i z e S t a t e ( )
2 Absorb (M) ; AbsorbStop ( )
3 Absorb ( r )
4 return Squeeze ( r )

Algorithm 4.6: Hash function

Message Authentication Code (MAC). The following pseudo code (see
Algorithm 4.7) illustrates how Spritz can be used as Message Authentication
Code. First, the key is absorbed, afterwards it works as a hash function.

MAC(K,M,r)

1 I n i t i a l i z e S t a t e ( )
2 Absorb (K) ; AbsorbStop ( )
3 Absorb (M) ; AbsorbStop ( )
4 Absorb ( r )
5 return Squeeze ( r )

Algorithm 4.7: MAC function

Authenticated Encryption with Associated Data (AEAD). Spritz can be
used as authenticated encryption function with associated data. It takes
as inputs the key K, a nonce Z, a header H (which is the associated data)
and a message M. The function returns the ciphertext as well as an r-byte
authentication tag t.
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AEAD(K,Z,H,M,r)

1 I n i t i a l i z e S t a t e ( )
2 Absorb (K) ; AbsorbStop ( )
3 Absorb (Z) ; AbsorbStop ( )
4 Absorb (H) ; AbsorbStop ( )
5 Divide M i n t o blocks M1, M2, . . . , Mn , each N/4 bytes long

except poss ib ly the l a s t .
6 for i = 1 to t
7 output Ci = Mi + Squeeze ( Mi . length )
8 Absorb ( Ci )
9 AbsorbStop ( )

10 Absorb ( r )
11 output t = Squeeze ( r )

Algorithm 4.8: AEAD function

4.4.4. Performance

The designers of Spritz give some insights in the performance of their
algorithm in the proposal.

Table 4.1 compares Spritz to its predecessor RC4 as well as to the eSTREAM
candidate Salsa20 and AES-CTR. In the first column (Squeeze) the amount of
output data is measured, in cycles per byte. The second column (encryption
of short packages) measures the key setup time by encrypting a 512-byte
message with a 16-byte key.

Table 4.1.: Performance of Spritz as a stream cipher compared to other stream ciphers
Primitive Squeeze Encryption of short packages

Spritz 19 c/b 56 c/b
RC4 6 c/b 13 c/b

Salsa20 6 c/b 7 c/b
AES-CTR 12 c/b 12 c/b

Table 4.2 shows the performance of Spritz as a hash function. Spritz is very
slow compared to Keccak, or SHA-256. The designers claim that the goal of
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Spritz should be the simplicity and easy implementable design and not its
performance.

Table 4.2.: Performance of Spritz as a hash function compared to other hash functions
Primitive Absorb

Spritz 408 c/b
Keccak 11 c/b

SHA-256 14 c/b
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5
Cryptanalysis of Spritz

In this chapter, we first motivate the need and the purpose of an analysis of
Spritz. We begin with our results from generic attacks on Spritz. Afterwards,
we continue with our results on statistical attacks, such as distribution tests
and correlation tests. Moreover, we discuss our results on the analysis of
Spritz when used as a hash function. We conclude this section with the
results on the analysis of Spritz, when used as a stream cipher, such as the
cycle structure of Spritz and state recovery attacks.

5.1. Motivation

Spritz is a recently proposed stream cipher and hash function, as a drop-in
replacement for the widely used stream cipher RC4. In 2013 [ABP+

13], some
new attacks were published on RC4 that require only 224 connections. The
authors of Spritz, Rivest and Schuldt, claimed their security bounds based
on various statistical tests, but did not published a detailed security analysis
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of Spritz, in their proposal. If Spritz offers strong security bounds in various
analyses it could be used to replace RC4. Due to the big spectrum of appli-
cations and protocols in which RC4 is used, it is important that a successor
provides tight security bounds against all possible attack vectors.

5.2. Generic Attacks

In this section, we discuss some generic attacks on Spritz. First, we searched
for weak key classes in Spritz. For this we used some common weak key
patterns and observed how the output varies if these weak key patterns
are applied. Next, we investigate how the state randomization function
Shuffle changes the number of possible states. The number of possible
states is interesting for example in collision attacks. Furthermore, we studied
if there are any anomalies with the sign of the permutation. We conclude
this section by studying state rotation of Spritz, which can be used to find
cycles in Spritz. This can be used for state recovery attacks and again also
to find two messages that lead to an internal collision.

5.2.1. Weak Keys

A typical test, when analyzing a new cipher, is to look if there are any
weak key classes. If there are any weak key classes, then we may find also
a vulnerability in the key schedule. This can be used in further attacks. In
Spritz the key length is 128 to 256 bits, so the key space is too large to try
all keys to find weak key classes. Instead, we generate a huge amount of
keys, with specific patterns, and applied our tests on those keys. Moreover,
we tried various correlations between keys and the output to see if there are
any weaknesses.

We applied several different tests for weak keys. Some of the tests are
simple tests, where we absorbed a key with an increasing byte order and
looked if the output has the same byte order. We also tested keys that
are prefixes of other keys, where one byte in the end of the second key
is different. Additionally, we tested some weak key patterns like keys
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with all 0x00, 0xFF, 0x55 and others. These patterns are used for the
whole key (e.g. key = {0xFF, . . . , 0xFF}). We also rotated such a pattern
through a key with all constant values (e.g. key = {0xFF, 0x00, . . . }! key =
{0x00, 0xFF, 0x00, . . . }) or we applied various patterns alternating through
the key (e.g. key = {0xFF, 0x55, 0xFE, 0xEF, . . . }).

Our results are listed in Table 5.1.

Table 5.1.: Results on weak key tests
Test N Input Results

k1 is a prefix of k2

8

220
16/17-

byte key
pairs where
k1 is a prefix
of k2

32825 correlated outputs
16 8182 correlated outputs
32 no correlated outputs
64 no correlated outputs

128 no correlated outputs
256 no correlated outputs

increasing input
increasing output 8 . . . 256

220 increas-
ing random
length keys

no correlated outputs

decreasing input
decreasing output 8 . . . 256

220 decreas-
ing random
length keys

no correlated outputs

weak key patterns
(whole key) 8 . . . 256

keys from
16 to 32 byte
length

no correlated outputs

weak key patterns
(alternating) 8 . . . 256

keys from
16 to 32 byte
length

no correlated outputs

weak key patterns
(rotational) 8 . . . 256

keys from
16 to 32 byte
length

no correlated outputs
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5.2.2. Analysis of Spritz States

The internal state Qt in Spritz at time t consists of the six registers i, j, k, w,
z and a as well as the permutation S. Therefore, the maximum number of
states in Spritz is

#states = N6
|{z}

registers

· N!|{z}
permutation

For N = 256 this leads to N6 · N! ⇡ 21730 states. While absorbing input and
updating the permutation S does not effect the number of states, Crush with
its many-to-one mapping does effect the number of states. Crush provides
a non-invertible transformation where it maps 2N/2 states to one. Therefore,
we looked in our tests how much information is lost after applying Crush.
After Crush, Whip gets called, which again increases the number of possible
states due to the different values in registers i, j and k and the call to Update

in Whip.

In our tests, we additionally looked at the registers of Spritz. To find internal
collisions we need to find two inputs that somehow lead to the same internal
state. If we achieve to find two inputs that lead to the same permutation
S, we therefore also have to check if the registers i, j, k, z, w and a are the
same.

Our results show that if we start with different random permutations then
we can observe that for all N, the registers stay nearly the same after one
application of Whip (Note that Crush did not change the registers). If
we additionally look when the whole state (i.e. registers and permutation)
stays the same, we can observe that for N = 8 there are about 266 equal
states after Whip and about 1716 equal states after Crush. However, for
larger N > 8, we could not observe any equal states. The different tests are
summarized in Table 5.2.

5.2.3. Sign of Permutation

In 2002, Mironov [Mir02] published an anomaly in the RC4 key schedule
whereby it is possible to correctly guess the sign of the RC4 permutation S
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Table 5.2.: Results on state tests
Test N Input Results

equal registers
(i, j, k, z, w and
a)

8

220 random
initial states

220.000 equal registers
16 220.000 equal registers
32 219.999 equal registers
64 219.994 equal registers

128 219.977 equal registers
256 219.907 equal registers

after Whip after Crush

equal states (per-
mutation + reg-
isters)

8

216 random
initial states

266 equal states 1716 equal states
16 no equal states no equal states
32 no equal states no equal states
64 no equal states no equal states

128 no equal states no equal states
256 no equal states no equal states

with probability 56%. Since Spritz also uses a permutation, whose entries are
swapped in the next state function of Spritz, we applied the same analysis.

The sign of a permutation p, which is represented as a product of non-trivial
transpositions (i.e. p = (a1b1)(a2b2) . . . (ambm)), is defined as:

sign(p) = (�1)m =

(
+1 if 2 | m
�1, otherwise.

Equal to RC4 the permutation S in Spritz is initialized with the identity
permutation. Therefore, after InitializeState the sign (S) = +1, which is
called in the beginning of Spritz. As the sign of the permutation is defined
over the parity of the permutation it can also be defined over the number of
transpositions in the decomposition (i.e. m) of the permutation S.

Each Swap in each iteration changes the sign of the permutation, unless the
pointers i and j are the same. If we assume that i = j with probability 1/N
we have an advantage in guessing the correct sign over random guessing.
We can calculate the probability of the sign being odd or even, which is
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(1� 1/n)n ⇡ e�1. The distribution of the two possible values for sign (S)
was calculated by [Mir02]:

Pr[sign(S) = (�1)N ] =

✓
1� 1

N

◆N
+

✓
N
2

◆✓
1� 1

N

◆N�2 1
N2 + · · ·+ 1

NN

= e�1
✓

1 +
1
2!

+
1
4!

+ . . .
◆
���!
N!•

1
2
(1 + e�2)

Pr[sign(S) = (�1)N�1] = 1� Pr[sign(S) = (�1)N ] ���!
N!•

1
2
(1� e�2)

which results in an advantage of 1/2 · e�2 ⇡ 6, 7% for guessing the sign
correctly, over random guessing.

It should be noted that this is only valid under the assumption that N is
large (i.e. the default value for N in Spritz is 256, which is large enough)
and we also rely on the assumption that i = j with probability 1/N.

The attack on Spritz has some additional restrictions. If we absorb more
than N/4 bytes, Shuffle is executed which contains a call to Crush. As
Crush performs a unknown number of swaps due to its ascending ordering
of the permutation S, we loose information about the number of swaps.
Therefore, it is not possible to guess the correct sign of the permutation
anymore. Additionally, our experiments have shown that for N = 256 the
registers i and j are never the same. Hence, it is unfortunately not possible
to use this attack on Spritz, because an attacker only has an advantage of
guessing the sign of the permutation correctly, if the registers i and j are at
least one time the same.

5.2.4. Partial State Rotations

In 2008, Indesteege and Preenel [IP08] published a collision attack on RC4-
Hash, which is based on RC4. The attack exploits some fixed points and
partial state rotations in the compression function.
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Spritz also seems to be vulnerable to partial state rotations during Absorb.
If we consider an internal state S = {s0, s1, . . . , sn} and absorb a message
block M = {m, m, . . . , m} with m = (0x00)n we can show that

S[i] =

8
>>><

>>>:

s128, if i = 0
si�1, if 1  i<128
s0, if i = 128
si, if 129  i<255

This partial state rotations in Spritz are illustrated in Table 5.3.

Table 5.3.: Partial state rotations in Spritz during Absorb

Step bN/2c+ x S(i)

0 128 s128 s1 s2 . . . s127 s0 s129 . . . s255

1 128 s128 s0 s2 . . . s127 s1 s129 . . . s255

2 128 s128 s0 s1 . . . s127 s2 s129 . . . s255

3 128 s128 s0 s1 . . . s127 s3 s129 . . . s255

...
...

...
...

... . . . ...
...

...
...

...
127 128 s128 s0 s1 . . . s126 s127 s129 . . . s255

Since there is a call to Shuffle after absorbing N/2 Nibbles these state
rotations just occur when absorbing less than N/4 bytes, and disappear
after Shuffle gets called. Moreover, due to the addition of the nibble x in
bN/2c+ x in Absorb, these state rotations are shifted by x if x > 0.

In the attack on RC4-Hash these state rotations can be used to create fixed
points by applying 255 iterations of the compression function, which leads to
the same state (i.e. initial state). A collision can then be found for RC4-Hash
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by using two messages like.

M = P||M0,1||
255z }| {

M1,1|| . . . ||M1,1

M0 = P||
255z }| {

M0,0|| . . . ||M0,0 M0,1

The attack on RC4-Hash is illustrated in Figure 5.1.

Figure 5.1.: Collision attack on RC4-Hash [IP08].

We applied the same attack on Spritz, but due to the execution of Shuffle

after absorbing N/4 bytes the attack is not possible in Spritz. In Spritz
we are not able to create the two different messages that lead to the same
internal state, since the state rotations only hold for the first N/2 bytes and
then the whole state is mixed up in Shuffle.

5.3. Statistical Attacks

The designers of Spritz invested a huge amount of computing power and
time to find the Spritz design. After their tests they chose the design of
Spritz according to the functions that have the best choices for the update
function used in Spritz. They applied various statistical tests, including
distribution tests and correlation tests.
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We additionally applied some statistical tests on Spritz to verify the results
of the designers and for further testing. Our tests can be categorized in
three classes. First, we applied some distribution tests, where we measured
if the distribution of the registers or output values differs from a uniform
distribution. Second, we looked at equal values in the output keystream
with a fixed distance between the output bytes. Third, we applied various
correlation tests between registers and permutations.

5.3.1. Distribution Tests

If Spritz behaves like a ideal primitive, its output values are completely
random and distributed uniformly where each value occurs with probability
of 1/N. The registers in Spritz should also be uniformly distributed.

In our distribution tests we used Pearson’s chi-squared test (described in
Section 3.3.1) to measure whether the distribution deviates from a uniform
distribution. We applied several tests on the output keystream of Spritz.
This included tests, where we did not absorb any input, so Shuffle did not
get called, or we absorbed some input so that Shuffle could randomize the
state. Additionally, we looked at the distribution of successive output values
as well as the individual values. In our simple output tests we squeezed
a large amount of output and counted the occurrences of each value. In
the test with the separate distribution we absorbed random input and just
dripped one byte each time, which we used to measure the distribution of
the output values.

Furthermore, we studied the distribution of the different Spritz registers.
Register i is increased by w every time Update gets called, and results in
a perfect uniform distribution. Registers j and k should be pseudorandom.
Our tests show that both register j and k also have a uniform distribution.

We also looked at some more advanced tests, where we observed the
combined distribution of some registers. The designers or Spritz mentioned
a bias in the iz3z distribution of Spritz, which can be used in a distinguishing
attack where 281 calls to Drip are required. In our tests we also observed
some biases in the ijk, iz2z and iz3z distribution. This biases may be used
in some more advanced attacks. Due to the large amount of plaintext that
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are needed to show the biases, they may not be useful for practical attacks,
but they give some new insights in the security of Spritz.

The results of our distribution tests can be found in Appendix A in Table A.1
to A.3.

5.3.2. Distant-Equality Tests

In December 2014, Zoltak [Bar14], published a statistical weakness of Spritz
in the comparison to VMPC-R [Bar04], another RC4 like cipher, similar to
Spritz. The weakness occurs in a distant-equality test, where the output
stream of Spritz is observed and two words of the keystream are equal with
distance k. This can be denoted by:

zi = zi+k for k 2 {1, 2, . . . , 8}
where zi denotes the output byte at position i and k is the distance between
two output bytes.

Spritz shows a statistical weakness if the distance between two output bytes
is two. In our tests we verified the results published by Zoltak. A bias occurs
after observing 226 samples for N = 8 and after 240 samples for N = 16.
More details of the result are shown in Table 5.4.

Table 5.4.: Results on distant-equality tests
Test N Iterations Results

distant-equality 8 226 bias (⇡ 13 standard deviation)
16 240 bias (⇡ 7 standard deviation)

5.3.3. Correlation Tests

In our correlation tests, we use Pearson’s correlation coefficient (described
in Section 3.3.2) to measure the dependence between two datasets.

We applied various correlation tests in our analysis. Therefore, we analyzed
the correlation between the initial state and the internal state after absorbing
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N/4 random inputs, which leads to a high correlation for N > 128. We also
analyzed the behavior of Whip and Crush, which shows that after Whip

there are no correlations, but after Crush the correlation increases again.
When using Shuffle (i.e. two applications of Crush and three applications
of Whip) there are no correlations compared to the initial state. Furthermore,
we observed the correlation between random input and the corresponding
output keystream.

The results of our correlation tests are highlighted in Table A.4 in Ap-
pendix A. The correlations results may be used in some more advanced
attacks. Nevertheless, they give some new insights in Spritz.

5.4. Hash Attacks

As Spritz is designed as sponge-like it is possible to use all different appli-
cation areas that a sponge construction offers. This enables us to use Spritz
as a hash function. However, we need to consider some attacks on hash
functions, i.e. collision, pre-image and second pre-image attacks.

5.4.1. Collision Attack

In a collision attack, an attacker tries to find two different messages m1
and m2 that lead to the same hash value hash(m1) = hash(m2). Due to the
birthday paradox (described in Section 3.2.3) it is always possible to find
collisions after testing 2n/2 inputs.

To successfully create collisions we need to find two messages that create
the same state and then lead to the same output. In this case, we came up
with three different approaches. In our first approach, we try to cancel the
differences directly during Absorb. Our second approach aims to cancel
differences in the Update function. The third approach is to cancel the
differences in Crush.
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Collisions in Absorb. In our first approach, we try to cancel the differences
between the messages directly when absorbing the message during the Swap

operation in AbsorbNibble. In our attacks we aim to cancel differences
introduced by message differences directly in the first Swap in AbsorbNib-
ble. In AbsorbNibble the nibble count register a is swapped with the input
nibble added to N/2 like Swap(S[a], S[bN/2c+ x]). Furthermore, we tried
related key attacks where we used keys that are nearly the same, just with
some slightly changed values and looked if the differences are canceled in
Spritz.

Table 5.5.: Results on collision attacks in Absorb

Test N Inputs Results
Collision attack in

Absorb

8 . . . 256 256 · N
2 ascending
inputs

no collisions
found

Collisions in Whip. Our second approach aim to cancel differences intro-
duced by different messages during one of the first calls to Update in Whip.
If we absorb a message with just a few differences the Spritz state does
not differ too much. We then can try to cancel the differences by swapping
the different values. A similar approach is to reach a state, where for one
message register i and register j are the same so that a call to Swap does not
change the permutation. When for the second message now a swap is done
and the same state is reached, we have found a collision. The attack to find
colliding inputs that cancel during Whip is illustrated in Algorithm 5.1.

The results of our attack are summarized in Table 5.6. We performed the
attack for N = 8 . . . 256 for an ascending number of calls to Whip starting
from 0 to 2N. In our attack we absorb random input and look if we find a
collision during one of the first calls to Update in Whip. Unfortunately, we
have not found any collisions that occur in Whip.

Table 5.6.: Results on collision attacks in Whip

Test N Inputs Results
Collision attack in

Whip

8 . . . 256 224 random inputs no collisions
found
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Algorithm 5.1 Collision attack in Whip

function CollisionAttackWhip()
for #ofWhips = 0 to 2N do

for i = 0 to 210 do
InitializeState()
Absorb(random input)
Whip(#ofWhips)
SA f terWhip  getPermutation()
for j = 0 to 210 do

InitializeState()
Absorb(random input)
Whip(#ofWhips)
if SA f terWhip == getPermutation() then

return ”Collision found!”
end if

end for
end for

end for
end function

Collisions in Crush. In our third approach, we try to cancel differences
between the two messages m1 and m2 during the ascending ordering in
Crush. Our goal is to find two messages that are nearly the same after
one application of Whip, where only a few positions in the permutation
change so that these differences are canceled during the ascending sorting
in Crush.

For example if we have two messages, where for the first message, Crush

did not need to sort anything and for the second message, only the first and
the last entry of the permutation are in different order, but otherwise the
state is the same. If in the second message the first entry in the permutation
is larger than the last entry then we have to sort just for one time and than
reach the same state as with the first message. Afterwards the Spritz state is
the same for both messages and we have a collision.

Our collision attack in Crush is described in Algorithm 5.2.
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Algorithm 5.2 Collision attack in Crush

function CollisionAttackCrush()
for m1 = 0 to 256 · (N/2) do

InitializeState()
Absorb(m1)
Whip(2N)
Crush()
SA f terCrush  getPermutation()
for m2 = 0 to 256 · (N/2) do

InitializeState()
Absorb(m2)
Whip(2N)
Crush()
if SA f terCrush == getPermutation() then

return ”Collision found!”
end if

end for
end for

end function

We performed our attack for N = 8 . . . 256 but did not find any collisions
that are canceled out in Crush. Our results for the different N are given in
Table 5.7.

Table 5.7.: Results on collision attacks in Crush

Test N Inputs Results
Collision attack in

Crush

8 . . . 256

256 · N
2 ascending
inputs

0 collisions found

5.4.2. Pre-image Attack

In a pre-image attack an attacker tries to determine the message, for a given
hash value, that results in the desired hash value.
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In our analysis, we performed a pre-image attack combined with a collision
attack on Spritz, where we generated all 2n possible messages m1 for a
given length and calculated until the beginning of Crush. Then we used
a modified version of Crush, called descendingCrush, which compares
the permutation S like Crush, but sorts only one time in descending order.
After that we started our pre-image attack, where we used inverseWhip (i.e.
this function reverses the Whip function), to calculate back to the state after
the message has been absorbed. Next, we generate all possible messages m2
up to 2n/4 (i.e. after N/4 messages Shuffle gets called, which contains the
non-invertible function Crush). We applied inverseAbsorb for all messages
m2 and checked if the permutation equals the identity permutation. If we
now got the identity permutation then we got a valid input, which leads to
a pre-image in Crush (i.e. we just have to sort one more time in Crush). If
we do not reach the identity permutation, it is not possible to generate the
state with a valid input. The attack is highlighted in Algorithm 5.3.

Algorithm 5.3 Pre-image attack
function Pre-ImageAttack()

for m1 = 0 to 2n do
Absorb()
Whip(2N)
descendingCrush()
inverseWhip(2N)
for m2 = 0 to 2n/4 do

inverseAbsorb()
if permutation == identity permutation then

return ”Pre-image found!”
end if

end for
end for

end function

We started our attack for small N  32 but unfortunately, did not find the
identity permutation for any of the inputs. Therefore, it is not possible with
any of the tested valid inputs to reach such a state that leads to a pre-image
in Crush. Additionally, we calculated the correlation between the identity
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permutation and the output permutations after our pre-image attack to
observe if we may achieve some near collisions. For N = 16 we found some
high correlated permutations in ascending order, but they still diverged
from the identity permutation.

5.4.3. Length-extension

A length-extension attack misuses a message authentication code (MAC)
by applying additional input data and breaches the integrity of the MAC
function. A vulnerable hash function outputs its internal state as the message
digest. An attacker can then reconstruct the internal state according to the
message digest and extend the message with additional data.

Spritz can easily be extended from a hash function to a message authen-
tication code, by absorbing a key K before absorbing the message M. The
authors of Spritz claim that Spritz is secure against length-extension attacks,
since they call the state randomization function, Shuffle, before any output
in Squeeze/Drip is produced. As a consequence each input that has been
absorbed, will be variously mixed before it will be squeezed. In this case
it is not possible to use the output to determine the internal state of Spritz
after absorbing message M.

5.5. Stream Cipher Attacks

Spritz is a redesign of the stream cipher RC4 with intention to replace RC4

due to better security and more application areas. Its main focus is still as
a stream cipher and therefore, we have to consider various stream cipher
attacks.

In our analysis, we studied the cyclic behavior of Spritz and searched for
”bad” starting states, which lead to small cycles in Spritz. Furthermore, we
looked at state recovery attacks and describe several different state recovery
attacks on reduced versions of Spritz.
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5.5.1. Cycles

Spritz as a stream cipher generates a pseudorandom output keystream that
is byte wise xored to a plaintext resulting in a ciphertext. As the keystream
is pseudorandom, this implies that after some time the keystream repeats
and runs in a cycle. If we want to use Spritz securely, it is important that this
cycle length is very high for any N. We can distinguish between two possible
sources where a cycle can be produced. The first one is the Update function,
which continuously updates the registers i, j and k and the permutation S.
The second possibility to create a cycle is in Drip, where additionally to
Update the Output function is called. The Uptdate function changes the z
register that is also used as feedback by updating itself. In the search for
cycles in Spritz we implemented a multithreaded algorithm that is described
in Algorithm 5.4.

The algorithm first generates all possible permutations for a given N, such
that we can search for cycles for any given starting state. Next, we break
down the whole list of possible permutations and with all threads we search
for cycles. Afterwards, we start the FindCycles function for each thread. In
the FindCycles function we initialize the permutation S with one of the
generated permutations and execute the Drip function until we reach our
starting state again (i.e. a cycle occurs). When we found a cycle, we check if it
is the current smallest one, and then iterate over the remaining permutations.
The results of our cycle search algorithm are given in Table 5.8, where the
expected cycle length should be N! · N6.

Table 5.8.: Results on the Cycle Search Algorithm
Test N Permutations Smallest Cycle

Smallest Cycle
6 6! 12

8 8! 208

10 10! > 220

We searched for cycles for N = 6 . . . 10, but we where computationally
limited after N > 10.

Furthermore, we analyzed the cyclic behavior of Spritz if we reduce the
frequency of swaps during Update. Therefore, we reduced the frequency
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Algorithm 5.4 Multithreaded Cycle Search Algorithm
function SearchForCycles()

for i = 0 to N! do
P GeneratePemutations(N)

end for
for t = 0 to #ofThreads do

thread P[t]
thread! findCycles()

end for
end function
function FindCycles()

for p = 0 to Pthread do
InitializeState()
S Pthread[p]
while currentState() 6= startingState do

Drip()
end while
if CheckIfSmallestCycle() then

return ”Smallest Cycle Found!”
end if

end for
end function

from swapping every time Update gets called down to zero swaps. We
observed that if we do not swap in Update and no input is absorbed, Spritz
runs in a cycle of length 6N for every N. Table 5.9 illustrates an cycle of 6N
for N = 16.

5.5.2. State Recovery

In a state recovery attack an attacker searches (parts of) the internal state
of the attacked cipher. If the next-state function (Figure 5.1) of the attacked
cipher is easily invertible (as it is the case in Spritz), an attacker can then
recover the initial state of the cipher after the secret key was absorbed.
Moreover, an attacker can produce further output words without knowing
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Table 5.9.: Cycle for N = 16 in the output sequence with no swaps in Update where after
6N the output runs in a cycle.

4 4 5 14 15 1 15 1 4 7 10 14 6 10 15 12

1 7 9 15 6 13 4 12 8 0 9 10 3 13 3 13

8 3 14 10 10 6 3 8 5 3 13 11 10 9 8 8

12 12 13 6 7 9 7 9 12 15 2 6 14 2 7 4

9 15 1 7 14 5 12 4 0 8 1 2 11 5 11 5

0 11 6 2 2 14 11 0 13 11 5 3 2 1 0 0

4 4 5 14 15 1 15 1 4 7 10 14 6 10 15 12

1 7 9 15 6 13 4 12 8 0 9 10 3 13 3 13

8 3 14 10 10 6 3 8 5 3 13 11 10 9 8 8

12 12 13 6 7 9 7 9 12 15 2 6 14 2 7 4

9 15 1 7 14 5 12 4 0 8 1 2 11 5 11 5

0 11 6 2 2 14 11 0 13 11 5 3 2 1 0 0

the secret key, if the attacker can recover an internal state. To increase the
security against state recovery attacks many ciphers use a large internal
state, so that exhaustive search is infeasible. The number of possible states
in Spritz is N! · N6 which leads to 21730 possible states for N = 256, which
is computationally infeasible.

Figure 5.1.: Next-state function of Spritz

it = it�1 + w(5.1)
jt = kt�1 + St�1[jt�1 + St�1[it]](5.2)
kt = it + kt�1 + St�1[jt](5.3)
St[it] = St�1[jt], St[jt] = St�1[it](5.4)
zt = St[jt + St[it + St[zt�1 + kt]]](5.5)

In this section, we propose three different state recovery algorithms. Our
best algorithm recovers the initial state with complexity of ⇡ 21400, which
is faster than exhaustive search through all possible initial states. The first
algorithm implements a recursive backtracking approach to recover the
internal state. The second approach searches for a pattern in the keystream
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that allows us to easily recover the values for the Spritz registers i, j and
k for a given window length. In the third approach we implemented a
probabilistic algorithm to recover the internal state.

State Recovery with Backtracking

In our recursive state recovery algorithm with the backtracking, we used a
similar approach as Knudsen et. al. [KMP+

98] in their analysis of RC4. The
state recovery attack needs only N output keystream bytes to successfully
recover the internal state. To recover the initial state from a given internal
state we can easily invert the Spritz next-state function, Update, and cal-
culate backwards to the state until the Shuffle function was applied in
Drip/Squeeze. Note that Crush in Shuffle cannot be inverted.

The idea of our recursive backtracking algorithm can be described as follows.
We simulate the Update/Output function of Spritz as long as all values to
proceed are known. If a value is unknown we simply guess it and proceed.
In our state recovery attack we can start at any point, but we assume that
the initial registers are correctly known (either to a previous attack, through
some heuristics or by simply guessing them). If we absorb no input and start
at the beginning we know the initial values of the registers, but after one
application of Shuffle (e.g. in Drip when any input was absorbed) we loose
knowledge of the register values. In each step we have to guess at most five
unknown values (i.e. St�1[it], St�1[jt�1 + St�1[it]], St�1[jt], St[zt�1 + kt] and
St[it + St[zt�1 + kt]]) that we need to process to the next state.

For steps t = 1 . . . N we only proceed if the calculated output word z0t = zt
where zt is the output word we observe from the known output stream at
step t, and z0t is the output word according to our simulation of the next-state
function. In our tests we observed that the output word z0t sometimes equals
zt even with wrong guessed entries in the partly recovered state. There are
several restrictions, which we can use to cut off branches in our search tree
that could not lead to a correct solution anymore.

1. S is a permutation table where every element can only occur once.
This reduces the number of possible values, which we have to guess,
when a value is unknown.
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2. If the known output word zt has been assigned to S during a previous
guess, we can look if the index jt + St[it + St[zt�1 + kt]] is equal to the
position of the previous assigned value. If the indexes are equal we
can proceed to step t + 1. If not, we have a contradiction and can cut
off the branch in the search tree.

3. If the known output word zt has not been assigned to S during a
previous guess, we can again look if there is already a value at index
jt + St[it + St[zt�1 + kt]]. If there is already a value, we again have
a contradiction and can cut off the branch in the search tree. If not,
we can set zt at position of index jt + St[it + St[zt�1 + kt]] and then
proceed with step t + 1.

We implemented the state recovery algorithm in a recursive function re-
coverState() (see Algorithm 5.5), where most branches end up by contra-
dictions. If in one branch we achieved to fill up the internal state table (at
maximum of N steps) we verified the correct internal state by calculating
the next-state a few more times and comparing the output words. After-
wards, we calculated the initial state by inverting the next-state function.
Furthermore, we can speed up the search if we pre-assign the state recovery
table with a few previously known values.

To determine the efficiency of our attack we have to determine the complex-
ity of the attack. The complexity is measured as total number of operations
that are necessary to perform until a solution is found. In case of our state
recovery attack on Spritz the complexity is measured in the total number
of assignments made for all entries in the initial table S0. We can calculate
the complexity by splitting the algorithm in several cases ci(a) to which we
assign probabilities according to the occurrence of each case. Afterwards,
we can compute the complexity based on the number of known bytes a in
the permutation S and the assigned probabilities.
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Algorithm 5.5 State Recovery Algorithm with Backtracking
function recoverState(t)

it  it�1 + w
if St�1[it] is not assigned then

Guess St�1[it] v . for 0  v < N
end if
if St�1[jt�1 + St�1[it]] is not assigned then

Guess St�1[jt�1 + St�1[it]] v . for 0  v < N
end if
jt  kt�1 + St�1[jt�1 + St�1[it]]
if St�1[jt] is not assigned then

Guess St�1[jt] v . for 0  v < N
end if
kt  it + kt�1 + St�1[jt]
St[it] St�1[jt]; St[jt] St�1[it] . Swap(S[i], S[j])
if St[zt�1 + kt] is not assigned then

Guess St[zt�1 + kt] v . for 0  v < N
end if
if St[it + St[zt�1 + kt]] is not assigned then

Guess St[it + St[zt�1 + kt]] v . for 0  v < N
end if
z0t = St[jt + St[it + St[zt�1 + kt]]]
if z0t equals any word in S then

if St[jt + St[it + St[zt�1 + kt]]] 6= position of any word in S then
contradiction

else
recoverState(t + 1)

end if
else

if jt + St[it + St[zt�1 + kt]] 6= position of any word in S then
St[jt + St[it + St[zt�1 + kt]]] = z0t
recoverState(t + 1)

else
contradiction

end if
end if

end function
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The complexity of the state recovery attack on Spritz can be calculated by
using equation (5.6) & (5.7):

5

Â
i=1

ci(a) =
a

2n · ci+1(a) + (1� a
2n ) · (2n � a) · ci+1(a + 1) (5.6)

c6(a) =
a

2n · ((1� a
2n ) · 1 + c1(a)) + (1� a

2n ) · (
a

2n · 1 + c1(a + 1)) (5.7)

Another option to estimate the complexity is to experimentally observe it
by counting how many assignments for all entries in the permutation S are
made until the initial state can be reconstructed.

The results of our state recovery algorithm are shown in Table 5.10 where
a gives the number of pre-assigned values in the state table. Furthermore,
results for different N are given in Appendix B. The complexities are calcu-
lated using Equations (5.6) and (5.7). Additionally, we give the complexity
that we observed during experimental tests of our algorithm. The complexi-
ties are slightly faster then exhaustive searching through all possible initial
states. Our algorithm becomes infeasible at N = 32, and is, therefore no
threat to Spritz with N = 256.

Table 5.10.: Approximated complexity for N = 32 . . . 256
N a calc. complexity N!
32 0 299.8 2117.6

64 0 2249.0 2296.0

128 0 2599.4 2716.1

256 0 ⇡ 21400 21683.9

Pattern Search and State Recovery

Our pattern search approach was inspired by the state recovery algorithm
proposed by Maximov and Khovratovich [MK08]. In our algorithm, we
applied a known plaintext attack, where we assumed that according to a
pattern in the output keystream, all register values in a given window of
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length wl are known. Therefore, we can easily derive a formula St�1[jt] =
kt � it � kt�1 from the update rule of register k. This allows us to compute
some values of the permutation S without guessing additional values.

With the known entries in the permutation S and the knowledge of the
register values during the window of length wl, we can now apply our state
recovery algorithm. It iteratively tries to recover an internal state. As long as
we are inside our window, the register values are known and we can easily
compute new values. If we lose knowledge of register j or k, outside of our
window, we have to guess new permutation entries to proceed in our state
recovery algorithm.

Assume at step t in a window, with length wl, of the keystream z all
the values jt, jt+1, . . . , jt+wl and kt, kt+1, . . . , kt+wl are known. Then we can
according to

St�1[jt] = kt � it � kt�1

calculate us wl entries for St�1[jt], which after Swap become St[it]. Unfortu-
nately, due to the uniform distribution of register j, the values are randomly
distributed through our state recovery table. Nevertheless, we only have to
guess three unknown values:

St�1[it], St�1[jt�1 + St�1[it]], St�1[jt]

instead of five, as in our previous state recovery attack with backtracking
(see Section 5.5.2). Our state recovery algorithm can be described as shown
in Algorithm 5.6.

A contradiction can occur in steps 1 . . . 3 if the newly calculated value is
already in another cell in the state table. Moreover, a contradiction can occur
if there already exists a value, at the index of the current computed value,
and the new compute value differs from the already existing value.

Our state recovery algorithm assumes that for a given window of length
wl all registers are known. This assumption is based on a pattern in the
keystream that let us determine the register values with a high probability.
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Algorithm 5.6 State Recovery Algorithm with Pattern Search
As long as registers i, j and k are known:

1. Calculate St�1[jt] = kt � it � kt�1
2. Swap St[it] St�1[jt]; St[jt] St�1[it]
3. Check if St[zt�1 + kt] is already known

3.1. If true! check if St[it + st[zt�1 + kt]] is already known
3.1.1. If true! check if at index jt + St[it + st[zt�1 + kt]] is already

a value
3.1.1.1. If true! compare if it is the same value as zt
3.1.1.2. If false! set zt at index jt + St[it + st[zt�1 + kt]]

If registers j and k are no longer known:

4. Guess St�1[it]
5. Guess St�1[jt�1 + St�1[it]]

5.1. Calculate jt = kt�1 + St�1[jt�1 + St�1[it]]
6. Guess St�1[jt]

6.1. Calculate kt = it + kt�1 + St�1[jt]
7. Proceed with step 1

Therefore, we need two definitions to describe these patterns in more detail
(these definitions were defined by Maximov and Khovratovich [MK08] and
are adjusted to Spritz):

Definition 1 (d-order pattern). A d-order pattern is a tuple

Pd = {i, j, k, I, V}, i, j, k 2 ZN and I, V 2 Zd
N

where I and V are two vectors. At step t the internal state of Spritz is
compliant with pattern Pd if it = i, jt = j, kt = k and d entries of permutation
S contain their values in vector V and their corresponding indexes in vector
I.

Definition 2 (w-generative pattern). A pattern Pw is called w-generative if
for any internal state that is compliant to Pw the next wl steps all registers are
known and let us derive wl formulas of the form St�1[jt] = kt � it � kt�1.
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It is obvious that such patterns exist in the keystream of Spritz. However,
for efficiency of our state recovery algorithm, we need to find patterns with
a high d-order and patterns that are high w-generative, so that we initially
know the values for the registers in a large window. We implemented a
simple pattern search algorithm (described in Algorithm 5.7), that first fixes
i = 0, and then tries all N values for each j and k before increasing i. If
for a combination i, j and k the first index, value pair from the vectors
I and V fits, we have found a pattern with d-order = 1. Our algorithm
requires a keystream of length 2256, where the search of such a pattern is a
pre-computation stage of our attack.

Algorithm 5.7 Pattern Search
function searchPattern(i, j, k, V, I)

for n = 0 to 2N do
for {i, j, k} = 0 to N do

if it = i and jt = j and kt = k then
if keystream at position t equals Vt and It then

while keystream equals V and I do
P V and I
P i, j, k

end while
end if

end if
end for
StorePattern(P)

end for
end function

We implemented our state recovery algorithm and tested it for various sizes
of N. If a contradiction occurs, we reset the responsible values in our state
recovery table and continue with the recovery. In our tests we observed that
even with some pre-assigned values, we too often reach to a contradiction,
whereby we delete more information from our state recovery table, than we
can fill it up with our state recovery attack. If we handle contradictions in a
different way, we observed that either the complexity gets too high or we
get to much wrong values in our state recovery table.
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Probabilistic State Recovery

Knudsen et. al. [KMP+
98] proposed an probabilistic state recovery approach

on RC4, that has been further improved by Golic and Morgari [GM08]. Our
probabilistic state recovery algorithm follows a similar strategy and can
be described as follows: The initial state of the permutation S in Spritz
depends on the secret key that is absorbed and is therefore, unknown to an
attacker. We assume that all N! possible states for the initial state are equalky
probable, which means that the a priori probability distribution is uniform
for the initial state. From the observation of the output keystream we gain
information and can calculate an a posteriori probability distribution for the
permutation S. After some steps the calculation for S should converge and
we can recover the internal state.

In our probabilistic state recovery algorithm we represent the information
about the register j, k and the permutation S by means of probability distri-
butions. In each step we calculate the a posteriori probability distribution
of Sdist, jdist and kdist distribution. We observe the keystream z and with
the update rule for z = S[j + S[i + S[z + k]]] and the Bayes rule we update
the probability distributions. The distribution Sdist is represented in a N · N
matrix (see Equation 5.8), which represents the conditional probabilities of
a given register and the associated entries in the permutation where the
registers maps (e.g. S[i][St�1[jt]] = Pr(St�1[it] | j)).
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We implemented the state recovery algorithm (see Algorithm 5.8) in a
function probabilisticRecoverState() that runs for a given amount of
steps where for each step it updates the probabilities of our Sdist, jdist and
kdist distributions. If the algorithm converges, it stops and we can invert the
next-state function of Spritz to recover the initial state. The convergence
criteria in this case is that in the Sdist distribution each value is either zero
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or one. Based on that we can map our Sdist distribution to our state recovery
table.

Algorithm 5.8 Probabilistic State Recovery Algorithm
function probabilisticRecoverState()

InitializeState()
Absorb(random key)
z Drip() . Store output keystream
{Sdist, jdist, kdist} initializeProbabilityDistributions()
for step i = 1 to steps do

{Sdist, jdist, kdist} updateProbabilityDistributions()
if {Sdist, jdist, kdist} converges then

recoverInitialState()
end if

end for
end function

We tested our probabilistic state recovery algorithm with different sizes
for N and with pre-assigned values (the distribution table was accordingly
adjusted) for the state table, but unfortunately our algorithm either did not
converge or some of the entries in the table were incorrect.

5.6. Summary

Our contribution to the analysis of Spritz consists of a large amount of tests
and attacks. First, we applied some generic attacks, such as the search for
weak key classes and state rotations. Next, we applied some statistical at-
tacks, where we found some biases. Unfortunately, the biases occur only if a
large amount of plaintext is used, such that they can not be used in practical
attacks. Nevertheless, we gained new insights in Spritz. Furthermore, we
searched for collisions and pre-image attacks, when Spritz is used as a hash
function. We also introduced three state recovery attacks, when Spritz is
used as a stream cipher. Our best state recovery attack has a complexity of
approximately 21400, which is faster than exhaustive search of all possible
states, but still far from a practical attack.
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6
Conclusions

In this thesis, we analyzed the security of symmetric key primitives. In more
detail, we focused on the recently proposed stream cipher and hash function
called Spritz. Spritz was presented at the rump session of CRYPTO 2014 by
the designer of RC4, Ronald L. Rivest together with Jacob Schuldt. After
years of analysis there are still no practical attacks on RC4. Nevertheless,
RC4 is well analyzed and some weaknesses has been published. Spritz is a
complete redesign of RC4 introducing new security features and new cryp-
tographic functionalities due to its sponge-like design. Spritz was designed
as a drop-in replacement of RC4.

However, a detailed analysis is needed before Spritz can be used in practical
applications. In the proposal of Spritz the designers claimed the security
bounds according to many statistical tests and extensively simulations. This
thesis provides some of the first cryptanalytic results on Spritz. In our
analysis, we examined Spritz according to various different cryptanalytic
methods. These include generic attacks, weak keys, state rotations as well as
statistical attacks with distribution tests and various correlations. Further-
more, we studied the security of Spritz, when used as a hash function. In
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our analysis, we searched for collisions in the Spritz hash function but Spritz
seems to be secure against collision attacks. Furthermore, we investigated
pre-image attacks combined with collision attacks but unfortunately, we
could not construct any hash values that can be used in a pre-image attack
to find the corresponding message.

As Spritz should replace the stream cipher RC4, our main focus was con-
sidered on Spritz as a stream cipher. In the context of stream cipher attacks
we analyzed the cyclic behavior of Spritz and proposed three different
approaches for state recovery attacks on Spritz. In the context of Spritz as a
stream cipher we observed that the output of Spritz results in a cycle of 6N if
no input is absorbed and no Swap is done in the next-state function, Update.
Moreover, we propose three different state recovery algorithms where our
best algorithm can recover the initial state with complexity of ⇡ 21400, which
is faster then exhaustive searching through all possible states.

As attacks on cryptographic algorithms never get weaker, we will see more
advanced attacks on Spritz in the near future. There are many points that
can be improved in the analysis of Spritz. In the search for biases and distin-
guishers an attacker with a huge computer cluster can do more advanced
statistical tests with much more inputs. For collision and pre-image attacks
other analysis may show different aspects and other potentials for attacks.
Furthermore, the complexity of the state recovery attacks may be reduced
by optimizing the state recovery attacks or through combination of the state
recovery attacks with some heuristics that reduce the number of branches
in the search trees. Another open point is to determine the complexity of
inverting the state randomization function Shuffle related to Crush.

It is important to continue the analysis of Spritz to get a good view on
the security margins of Spritz. Even though this paper provides the first
external analysis, it is only a first step towards increasing the confidentiality
in the security of Spritz.
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08] Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois,

Henri Gilbert, Louis Goubin, Aline Gouget, Louis Granboulan,
Cédric Lauradoux, Marine Minier, Thomas Pornin, and Hervé
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A
Results of Statistic Tests

In this Chapter the results of our statistical tests are summarized. In our
analysis we performed various different statistical tests. These include
distribution tests, where we observed if the registers, the permutation or the
output values follow a uniform distribution. Additionally, we applied some
correlation tests between internal states and the initial state or between
random input and the output of Spritz.

The results are given in Table A.1 to Table A.4.

73



A.1. Results of register distribution tests

Table A.1 shows the results of our tests of the different registers in Spritz.
Therefore we tested for various sizes of N = 8 . . . 256 with about 220 iter-
ations. In our tests we revealed no significant bias that is larger than four
times the standard deviation of its expected value. All registers therefore
provide a uniform distribution of their values.

Table A.1.: Results of register distribution tests
Test N Iterations Results

register i
8 . . . 256 220 no bias

register j
8 . . . 256 220 no bias

register k
8 . . . 256 220 no bias

register z
8 . . . 256 220 no bias
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A.2. Results of output distribution tests

Table A.2 shows the results of our tests of the output values in Spritz. In our
analysis we tested Spritz for different N = 8 . . . 256 and up to 220 iterations
to find biases in the output key stream. In our main test we squeezed 220

output values and then observed if there are some anomalies in the key
stream. We found a bias for N = 8 when we absorb so much input that
Shuffle gets called during Absorb. In our second test (with the separate
distribution) we Drip for 220 times and directly observe the first output byte.
Therefore we again found a bias for N = 8 which is about 12 times the
standard deviation.

Table A.2.: Results of output distribution tests
Test N Iterations Results

output values
(no input) 8 . . . 256 220 no bias

output values
( N

4 input) 8 . . . 256 220 no bias

output values
( N

4 + 1 input,
Shuffle called)

8 212 bias (⇡ 14 standard
deviation)

16 . . . 256 220 no bias

successive output
values

8 . . . 256 220 no bias

output values
(separate

distribution)

8 213 bias (⇡ 12 standard
deviation)

16 . . . 256 220 no bias
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A.3. Results of combined registers distribution
tests

Table A.3 shows the results of our tests for combined register distributions.
In these tests we observed the deviation from a uniform distribution if we
combine several registers. We found biases for distributions ijk, iz2z and
iz3z for all N = 8 . . . 256.

Table A.3.: Results of combined registers distribution tests
Test N Inputs Results

combined
distribution of

registers ijk

8 29 bias (⇡ 1
2 · standard deviation)

16 212 bias (⇡ 7· standard deviation)
32 215 bias (⇡ 19· standard deviation)
64 218 bias (⇡ 24· standard deviation)

128 222 bias (⇡ 49· standard deviation)
256 225 bias (⇡ 65· standard deviation)

combined
distribution of
registers iz2z

8 29 bias (⇡ 4,7 ·106· standard deviation)
16 212 bias (⇡ 805 · 106· standard deviation)
32 216 bias (⇡ 113 · 1011· standard deviation)

combined
distribution of
registers iz3z

8 29 bias (⇡ 4, 6 · 106· standard deviation)
16 212 bias (⇡ 798 · 106· standard deviation)
32 216 bias (⇡ 113 · 1011· standard deviation)
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A.4. Results of correlation tests

Table A.4 shows the results of our correlation tests. We could observe that for
large N = 128, 256 after Absorb the correlation between the internal state
and the initial state is high. After an application of Shuffle, the correlation
is nearly zero. We also absorbed the correlation between random input and
Spritz output. For 220 random inputs we found about 20 correlating outputs,
which can be seen as normal according to the high number of inputs.

Table A.4.: Results of correlation tests
Test N Inputs Results

correlation after
Absorb

8 . . . 64 N
4 random

input

no correlation

128 . . . 256

high correlation
(⇡ 0, 95)

correlation after
Whip 8 . . . 256 no input no correlation

correlation after
Whip, Crush 8 . . . 256 no input correlation (⇡ 0, 5)

correlation after
Shuffle

8 . . . 256 no input no correlation

correlation random
input / output

8

220
10 byte

random
inputs

23 correlated pairs
16 17 correlated pairs
32 25 correlated pairs
64 26 correlated pairs

128 17 correlated pairs
256 21 correlated pairs
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B
Results of State Recovery Attacks

In this Chapter the results of our state recovery attacks are highlighted.
We implemented three different state recovery algorithms. Our best one
uses backtracking and cuts off branches that result in a contradiction. We
measured the complexity experimental which is given in the next tables as
exp.complexity. Additionally, we calculated the complexity which is given as
calc.complexity. The parameter k means the number of pre-assigned values
in our state recovery table. The last column shows the number of possible
values in the permutation S given by N!.

In Table B.1 and Table B.2 we applied our state recovery attack with random
input, which leads to random initial states that we have to recover. We can
show that the performance of our state recovery attack is much higher if no
input is absorbed (i.e. the initial state is the identity permutation) which is
highlighted in Table B.3 to Table B.5.
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B.1. Results of the state recovery attack with
backtracking

Table B.1.: Results for state recovery attack with backtracking for N = 8

k exp. complexity calc. complexity (N-k)!
07 20 20 20

06 21,7 21 21

05 22,7 22,6 22,6

04 24,6 24,6 24,6

03 26,2 26,9 26,9

02 28,1 29,5 29,5

01 29,0 211,3 212,3

00 211,7 213,7 215,3

Table B.2.: Results for state recovery attack with backtracking for N = 16

k exp. complexity calc. complexity (N-k)!
15 20 20 20

14 21,6 21 21

13 23,0 22,6 22,6

12 23,8 24,6 24,6

11 24,4 26,9 26,9

10 26,5 29,5 29,5

09 26,6 211,3 212,3

08 27,5 213,7 215,3

07 221,0 216,5 218,5

06 - 219,5 221,8

05 - 222,7 225,3

04 - 226,0 228,9

03 - 228,5 232,6

02 - 231,5 236,4

01 - 234,9 240,3

00 - 238,4 244,3
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B.2. Results of the state recovery attack with
backtracking and no input

Table B.3.: Results for state recovery attack with backtracking for N = 8 and no input (i.e.
identity permutation as initial state)

k exp. complexity calc. complexity (N-k)!
07 20 20 20

06 21 21 21

05 21,6 22,6 22,6

04 22 24,6 24,6

03 22,4 26,9 26,9

02 22,6 29,5 29,5

01 22,9 211,3 212,3

00 - 213,7 215,3

Table B.4.: Results for state recovery attack with backtracking for N = 16 and no input (i.e.
identity permutation as initial state)

k exp. complexity calc. complexity (N-k)!
15 20 20 20

14 21,6 21 21

13 22 22,6 22,6

12 23,6 24,6 24,6

11 24,1 26,9 26,9

10 25,3 29,5 29,5

09 26,3 211,3 212,3

08 27,6 213,7 215,3

07 211,9 216,5 218,5

06 214,45 219,5 221,8

05 214,45 222,7 225,3

04 214,45 226,0 228,9

03 214,45 228,5 232,6

02 214,45 231,5 236,4

01 214,45 234,9 240,3

00 - 238,4 244,3
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Table B.5.: Results for state recovery attack with backtracking for N = 32 and no input (i.e.
identity permutation as initial state)

k exp. complexity calc. complexity (N-k)!
31 20 20 20

30 21,6 21 21

29 22,6 22,6 22,6

28 23,0 24,6 24,6

27 23,6 26,9 26,9

26 23,8 29,5 29,5

25 24,5 211,3 212,3

24 25,3 213,7 215,3

23 25,3 216,5 218,5

22 25,7 219,5 221,8

21 26,5 222,7 225,3

20 26,5 226,0 228,9

19 27,1 228,5 232,6

18 27,1 231,5 236,4

17 27,1 234,9 240,3

16 218,7 238,4 244,3

15 218,7 242,1 248,3

14 - 246,0 252,5

13 - 248,9 256,7

12 - 252,4 261,0

11 - 256,1 265,4

10 - 260,0 269,9

09 - 264,1 274,4

08 - 268,2 279,0

07 - 271,5 283,6

06 - 275,3 288,3

05 - 279,3 293,1

04 - 283,5 297,9

03 - 287,8 2102,8

02 - 292,3 2107,7

01 - 295,8 2112,6

00 - 299,8 2117,6
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