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Abstract

Homeomorphic images of the unit circle in the Freudenthal compactification of a graph
can be seen as an infinite analogue of finite graph theoretic circles. In this sense the main
result of the present thesis constitutes a partial generalisation of Thomassen’s result that
every finite 4-edge-connected graph has a Hamiltonian line graph. We show that every
locally finite 6-edge-connected graph with finitely many ends has a Hamiltonian line
graph. In the proof of this result we will encounter an auxiliary result which may be
interesting on its own behalf, namely that every locally finite 2k-edge-connected graph
with finitely many ends has k − 1 edge disjoint end faithful spanning trees.
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1 Introduction

The Hamiltonian problem, that is, to decide whether or not a given graph contains a
spanning circle is probably one of the most popular problems in graph theory. Although
many sufficient conditions for the Hamiltonicity of a finite graph are known, there are still
numerous open problems and unsettled conjectures in connection with the Hamiltonian
problem (see [25] for an overview).

1.1 Infinite Graphs and Hamiltonicity

Despite the popularity of the Hamiltonian problem in finite graphs Hamiltonicity of
infinite graphs has not received much attention for a long time, partly due to the absence
of suitable concepts for Hamilton cycles in infinite graphs.

In some publications [27, 31, 40, 42, 45] spanning rays or double rays were considered
to be the infinite analogon to finite Hamiltonian cycles. This approach has yielded
several results, but it obviously does not allow Hamiltonicity results for any graph with
more than two ends.

Surprisingly the solution to this problem is topological rather than combinatorial.
In 2004 Diestel and Kühn [11, 15, 16] proposed to use topological concepts for circles,
paths and trees in infinite graphs. Considering the amount of follow-up publications
[2, 3, 4, 5, 6, 7, 12, 20, 21, 22, 23, 24, 29, 44] it can be said that their work was
groundbreaking for future research on infinite graphs.

As for circles, they suggested to use topological circles, i.e., homeomorphic images of
the unit circle S1 in the Freudenthal compactification of G as a generalization of finite
circles in graphs. Consequently a Hamilton circle can be defined as a topological circle
containing all vertices of a graph.

Using this notion of Hamiltonian circles some well known Hamiltonicity results for
finite graphs could be extended to locally finite graphs. Bruhn and Yu [7] found a
partial generalization of a theorem of Tutte [48] stating that every finite 4-connected
planar graph is Hamiltonian.

Theorem 1.1 (Bruhn and Yu [7]). Let G be a locally finite 6-connected planar graph
with finitely many ends. Then G has a Hamilton circle.

Georgakopoulos [22] generalized a result by Fleischner [18] to arbitrary locally finite
graphs. Previously Thomassen [45] had extended this result to single ended locally finite
graphs.

Theorem 1.2 (Georgakopoulos [22]). If G is a locally finite 2-connected graph, then G2

has a Hamilton circle.
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CHAPTER 1. INTRODUCTION

In the same paper he also proves an extension of a theorem of Karaganis [32] and
Sekianina [42].

Theorem 1.3 (Georgakopoulos [22]). If G is a connected locally finite graph, then G3

has a Hamilton circle.

1.2 The Conjectures of Thomassen and

Georgakopoulos

A well known unsettled conjecture associated with the finite Hamiltonian problem due to
Thomassen [46] relates the connectivity of a line graph to the property of Hamiltonicity.

Conjecture 1 (Thomassen [46]). Every finite 4-connected line graph has a Hamilton
cycle.

Thomassen made this conjecture motivated by the following observation which he
stated in [46] without a proof.

Theorem 1.4 (Thomassen [46]). The line graph of every finite 4-edge-connected graph
has a Hamiltonian cycle.

In Section 4.1 we will give a short proof sketch for this result which obviously consti-
tutes a special case of Thomassen’s conjecture.

Motivated by Thomassen’s conjecture there have been serveral other results connecting
connectivity and Hamiltonicity of line graphs. Below there is a brief overview of the most
important results related to Conjecture 1.

Theorem 1.5 (Zhan [49]). Every finite 7-connected line graph is Hamiltonian.

Theorem 1.6 (Lai [35]). Every finite 4-connected line graph of a planar graph is Hamil-
tonian.

Theorem 1.7 (Kriesell [33]). Every finite 4-connected line graph of a claw free graph is
Hamiltonian.

Theorem 1.8 (Lai et al. [36]). Every finite 3-connected essentially 11-connected line
graph is Hamiltonian.

Apart from a partial extension of Theorem 1.4 by Brewster and Funk [1] none of these
results have been extended to locally finite graphs so far.

The proofs of Theorems 1.4 and 1.5 rely on finding a spanning Eulerian subgraphs
of a graph G in order to show that its line graph is Hamiltonian, which may be the
key for generalizing these results to infinite graphs. Locally finite Eulerian graphs are
better understood than their Hamiltonian counterparts in the sense that the following
necessary and sufficient condition for the existence of a topological Euler tour is easy to
verify.
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CHAPTER 1. INTRODUCTION

Theorem 1.9 (Diestel and Kühn [15]). A locally finite graph G admits a topological
Euler tour if and only if every finite cut in G is even.

Georgakopoulos [22] proved a result which comes in handy when constructing a Hamil-
tonian cycle in the line graph of a Eulerian graph, since a Hamiltonian cycle (unlike an
Euler tour) needs to be injective at ends.

Theorem 1.10 (Georgakopoulos [22]). If a locally finite multigraph has a topological
Euler tour, then it also has one that is injective at ends.

Based on this fact he made the following conjecture to which the main results of this
thesis are related.

Conjecture 2 (Georgakopoulos [21]). The line graph of every locally finite 4-edge-
connected graph has a Hamiltonian cycle.

1.3 Outline of the Results of this Thesis

Motivated by Georgakopoulos’ work a partial generalization of Theorem 1.4 has been
given by Brewster and Funk [1] recently.

Theorem 1.11 (Brewster and Funk [1]). Let G be a locally finite, 6-edge-connected graph
with finitely many ends all of which are thin. Then the linegraph of G is Hamiltonian.

One of the main outcomes of this thesis will be a further extension of this result to
graphs with both thin and thick ends.

Theorem 1.12. Every locally finite 6-edge-connected graph with finitely many ends has
a Hamiltonian line graph.

The proof of Theorem 1.12 will among other things require one of the following two
statements concerning edge disjoint end faithful spanning trees of 2k-edge-connected
graphs which also may be interesting on their own behalf.

Theorem 1.13. Let G be a locally finite 2k-edge-connected graph with finitely many
ends. Then there exist edge disjoint topological spanning trees T 1, T 2, . . . , T k such that
T i ∪ T j is an end faithful connected spanning subgraph of G for every i 6= j.

Theorem 1.14. Let G be a locally finite 2k-edge-connected graph with finitely many
ends. Then G has k − 1 edge disjoint end faithful spanning trees.
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2 Graph Theoretic Definitions and

Facts

The set N of natural numbers does not contain 0. Throughout this thesis (V,E) denotes
a graph with a non empty vertex set V and edge set E ⊆ V × V = V 2 where every edge
e ∈ E contains exactly two vertices. If G = (V,E) we define V (G) = V and E(G) = E.
We will write x ∈ G instead of x ∈ V (G) or x ∈ E(G).

A vertex v ∈ V and an edge e ∈ E are called incident if v ∈ e. Two vertices u, v ∈ V
are called adjacent if there is an edge to which both u nd v are incident. We allow
multiple edges (i.e., E can be a multiset) but no loops (i.e., edges incident to only one
vertex).

We call H = (V ′, E ′) a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E such that every
edge in E ′ is only incident to vertices in V ′. In the case that V ′ = V the graph H is
called a spanning subgraph of G.

Edges will be seen not only as sets of two vertices but as homeomorphic copies of the
unit interval where 0 and 1 map to vertices and the image of (0, 1) is disjoint with all
other edges. This definition allows us to see a graph as a topological object, namely a
1-complex. We say that an edge e ∈ E with e(0) = u and e(1) = v connects u and v
and denote it by uv. This notation may be ambigous if there is more than one such edge
but as all of these edges are equivalent for our purpose this will not be a problem.

A u-v-path is a sequence u = v1e1v2e2 . . . ek−1vk = v where all vi ∈ V and ei = vivi+1 ∈
E. We call a path simple if all vi are different for 1 ≤ i ≤ k − 1. A u-u-path is called
a cycle, a simple cycle is a circle. A one sided infinite path is called a ray, a two sided
infinite path a double ray.

We will call a graph connected if there is a u-v-path for every pair of vertices u, v ∈ V .

2.1 Eulerian and Hamiltonian Cycles

Definition 2.1. Let G = (V,E) be a finite graph. A cycle containing every edge exactly
once is called a Eulerian cycle. G is called Eulerian if G is connected and contains a
Eulerian cycle.

The notion goes back to Euler [17] who, inspired by the seven bridges of Königsberg,
proved that it is not possible to find a walk through the city of Königsberg crossing every
bridge exactly once. His result that a finite graph admits a Eulerian cycle if and only if
all vertices have even degree is nowadays a standard result in graph theory. The proof
is short and straightforward and we will omit it as most readers probably are familiar
with the result. Those who are interested in a proof can find one in [13].
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CHAPTER 2. GRAPH THEORETIC DEFINITIONS AND FACTS

Definition 2.2. Let G = (V,E) be a finite graph. A cycle containing every vertex
exactly once is called a Hamiltonian cycle. G is called Hamiltonian if it contains a
Hamiltonian cycle. Note that a Hamiltonian cycle always has to be a circle.

Hamiltonian cycles are named after Sir William Rowan Hamilton who invented a game
which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron.

As there is an easy and natural solution to the Eulerian problem one might expect
that the same also is true for the Hamiltonian problem. This is, however, not the case
which might be a reason for the continuing interest in the problem.

Remark. Since the graph theoretic definition of a cycle only allows it to contain finitely
many vertices and edges both of these definitions make no sense in infinite graphs. In
Section 3.2 we will introduce concepts for cycles that can be used to extend the notions
and some results concerning Eulerian and Hamiltonian cycles to infinite graphs.

2.2 Linegraphs

Definition 2.3. Let G = (V,E) be a graph. Then the line graph of G is defined as

L(G) =
(

E, {ef | e, f ∈ E, e ∩ f 6= ∅}
)

,

i.e., the edges of G are the vertices of L(G) with two of them being adjacent if they have
a vertex in common.

The following results connecting Eulerian subgraphs of a graph to a Hamiltonian cycle
in its line graph are due to Chartrand [10]. The proofs are all straightforward but will
be given for the convenience of the reader.

Proposition 2.4 (Chartrand [10]). The line graph of a finite Eulerian graph is Hamil-
tonian.

Proof. Let e1, e2, . . . , ek be the sequence of edges of a Eulerian tour in G. Then obviously
ei and ei+1 have one common endpoint and thus the corresponding vertices are adjacent
in L(G). Since every edge appears exactly once in an Eulerian cycle e1, e2, . . . , ek is the
sequence of vertices of a Hamiltonian cycle in L(G).

Proposition 2.5 (Chartrand [10]). Let G = (V,E) be a finite graph. If G has a spanning
Eulerian subgraph H then L(G) is Hamiltonian.

Proof. Let v1e1v2e2 . . . vkekv1 be a Eulerian cycle in H . Define

Ei = {e ∈ E | e /∈ H, vi ∈ e, ∀j < i : vj /∈ e} .

Consider the sequence E ′
1, e1, E

′
2, e2, . . . , E

′
k, ek where E ′

i stands for an arbitrary sequence
of the edges in Ei.

Obviously every edge of G (and thus every vertex of L(G)) appears exactly once in
the sequence. Furthermore every edge has at least one vertex in common with the next
edge of the sequence. Thus it is the vertex sequence of a Hamiltonian cycle in L(G).

5



CHAPTER 2. GRAPH THEORETIC DEFINITIONS AND FACTS

In a similar manner we can prove one implication of the following result by Harary
and Nash-Williams [30].

Proposition 2.6 (Harary and Nash-Williams [30]). Let G = (V,E) be a finite graph.
L(G) is Hamiltonian if and only if there is a cycle in G that uses at least one vertex of
each edge.

Proof. The proof of the backward implication works exactly like the proof of Proposi-
tion 2.5.

Now assume that L(G) is Hamiltonian and let e1 . . . ek be the sequence of vertices of
L(G) used by a Hamiltonian cycle in L(G). We may without loss of generality assume
that there are at least two non-parallel edges and that ek and e1 are not parallel. Hence
there is only one vertex in ek ∩ e1. Denote this vertex by v1.

Now let

r1 =

{

min {r ≥ 1 | v1 /∈ er ∩ er+1} if the set is not empty

k otherwise.

Since er1 is incident with v1 there is exactly one vertex in er1 ∩ er1+1. Denote this vertex
by v2. Now define

r2 =

{

min {r > r1 | v2 /∈ er ∩ er+1} if the set is not empty

k otherwise.

Let v3 be the unique vertex in er2 ∩ er2+1.
Continue inductively until rs = k. By construction of the sequence there is an edge

(namely eri) connecting vi and vi+1 for 1 ≤ i ≤ s− 1. Furthermore ek = vsv1 or vs = v1
since ek has to be incident to vs and v1 by construction. Either way we obtain a cycle
containing exactly the vertices vi.

Every edge er is incident with vs for rs ≤ r < rs+1 and hence the cycle contains at
least one vertex of every edge.

2.3 Cuts and Connectivity

Definition 2.7. Let G = (V,E) be a connected graph.

• A set S ⊆ E is called an edge cut, if G \ S is not connected.

• A set S ⊆ V is called a vertex cut, if G \ S is not connected.

• A cut S seperates two vertices u and v if they lie in different components of G \S.
In this case S is called a u-v-cut.

Definition 2.8. For vertices u, v ∈ V define the local edge connectivity κ′
G(u, v) as the

minimal cardinality of a u-v-edge cut. The (global) edge connectivity of a graph is defined
as

κ′(G) = min
u,v∈V

κ′
G(u, v).

6



CHAPTER 2. GRAPH THEORETIC DEFINITIONS AND FACTS

Note that κ′(G) is the minimal number of edges we have to remove to disconnect the
graph.

The local vertex connectivity κG(u, v) is the minimal cardinality of a u-v-vertex cut.
The (global) vertex connectivity of a graph is

κ(G) = min
u,v∈V

κG(u, v).

In the rest of this thesis the term “cut” will refer to an edge cut. If vertex cuts are
meant it will be explicitely mentioned. Furthermore, we will sometimes write κ(u, v)
and κ′(u, v) instead of κG(u, v) and κ′

G(u, v) if G is clear from the context.

Proposition 2.9. Let G = (V,E) be a graph and u, v ∈ V . If S is a minimal u-v-cut
with respect to inclusion, then G \ S has exactly two components.

Proof. Let Cu and Cv be the components of G \ S containing u and v respectively.
Assume there is a third component C. If there are edges from C to both Cu and Cv in
S, then we can obtain a smaller u-v-cut by deleting all C-Cu-edges from S. Otherwise
C is connected only to one of Cu and Cv and we get a smaller u-v-cut by deleting all
edges from S that are adjacent to C.

Note that a minimal cut with respect to inclusion does not necessarily have to be a
cut of minimal cardinality, but a cut of minimal cardinality is always a minimal cut with
respect to inclusion.

The next result is due to Menger [38], see [13] for three different proofs of the theorem.

Theorem 2.10 (Menger). Let G = (V,E) be a graph and u, v ∈ V . Then

• κ(u, v) ≥ k if and only if there are k independent u-v-paths,

• κ′(u, v) ≥ k if and only if there are k edge disjoint u-v-paths.

2.4 Contractions of Vertex Sets

Definition 2.11. Let G = (V,E) be a graph and U ⊆ V . Then

G/U = (V ′, E ′)

where V ′ is obtained from V by replacing the set U by a new vertex xU and E ′ is obtained
from E by replacing all endpoints in U by xU and deleting loops. The resulting graph
is called the contraction of U in G (see Figure 2.1).

Note that we can define an injective function φ : E ′ → E in the following way:

• An edge e = xy, that does not have xU as an endpoint, maps to an edge xy in the
original graph.

• If e = xUy then φ(e) = uy with u ∈ U .

7
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U
xU

Figure 2.1: Contraction of the set U to a single vertex xU

If it is clear from the context, we will write e instead of φ(e).
The following propositions show that contracting sets of vertices does not affect cuts

of minimal cardinality. In particular, edge connectivity can only increase under contrac-
tions.

Proposition 2.12. Let G = (V,E) be a graph and u, v ∈ V . If S is a u-v-cut of minimal
cardinality and u ∈ U ⊆ V , then S is a xU -v-cut of minimal cardinality in G/U .

Proof. Assume there was a smaller xU -v-cut S ′ in G/U . Then there is no path from xU

to v in (G/U) \ S ′, which implies that there is no path from U to v in G \ S ′. Hence S ′

is also a u-v-cut in G, and thus S was not minimal.

Proposition 2.13. Let G = (V,E) be a graph and u, v ∈ V . If S is a u-v-cut of minimal
cardinality and u, v /∈ W ⊆ V , then S is a u-v-cut of minimal cardinality in G/W .

Proof. Assume there was a smaller u-v-cut S ′ in G/W . Then there is no path from u to
v in (G/W ) \ S ′, which implies that there is no path from u to v in G \ S ′. Hence S ′ is
also a u-v-cut in G, and thus S was not minimal.

Proposition 2.14. Let G = (V,E) be a graph and W ⊆ V . If G is k-edge connected
then so is G/W .

Proof. Combine Propositions 2.12 and 2.13.

2.5 Induced Subgraphs and Minors

Definition 2.15. Let G = (V,E) be a graph and U ⊆ V .

• The subgraph induced by U in G is defined as G[U ] = (U,E ∩ U2).

• The minor induced by U in G is the graph obtained from G by contracting every
component of G \ U to a vertex and denoted by G{U}.

(see Figure 2.2)

8
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U

G G[U ] G{U}

Figure 2.2: Induced subgraph and minor of U in G

It is clear from the definition that G[U ] is a subgraph of G{U}. It’s also obvious that
for a subset U ′ ⊆ U the equations

(G[U ]) [U ′] = G[U ′]

and
(G{U}){U ′} = G{U ′}

hold. Also note that if G \ U is connected then G{U} = G/(V \ U).

Definition 2.16. Let G = (V,E) be a graph, U ⊆ V , and H = (V ′, E ′) a subgraph of
G. The restriction of H to U is defined as the subgraph of G{U} that contains exactly
the edges of H and is denoted by H|U .

Remark. Obviously H|U also depends on the graph G. Throughout this thesis, however,
there will always be only one sensible choice for G at any time (which will mostly be
denoted by G or Gn for convenience).

It is another easily observed fact that if H is a connected spanning subgraph of G
then H|U is a connected spanning subgraph of G{U}, since in that case U ∩V ′ = U and,
by Proposition 2.14, contracting does not decrease connectivity.

2.6 Tree Packing

Definition 2.17. Let G = (V,E) be a graph. A spanning tree packing of G is a set

T =
{

T 1, T 2, . . . , T k
}

such that

• every T i is a spanning tree of G and

9



CHAPTER 2. GRAPH THEORETIC DEFINITIONS AND FACTS

• the T i are pairwise edge disjoint.

The spanning tree packing number of G is the maximal cardinality of a spanning tree
packing of G and will be denoted by τ(G).

Theorem 2.18 (Tutte [47], Nash-Williams [39]). Let G = (V,E) be a finite graph. For
a partitioning V of V denote by E(V) the set of edges that connect different sets in V.
Then G admits a spanning tree packing of cardinality k if and only if

|E(V)| ≥ k(|V| − 1)

for every partitioning V of V .

A proof for Theorem 2.18 can be found in the original publications in [13]. We will
state two well known implications of the result mentioned in [8]. Alternative proofs for
both of these corollaries will be obtained in Section 5.1.

The first result will be useful for the proof of Thomassen’s Theorem in Section 4.1.

Corollary 2.19. Let G = (V,E) be a finite graph. If κ′(G) ≥ 2k then τ(G) ≥ k.

Proof. Let
V = {V1, V2, . . . , Vr}

be an arbitrary partitioning of V . Now consider the graph G′ = (V ′, E ′) obtained from
G by contracting every set Vi to a vertex vi. Since G is 2k-edge-connected, G′ also is
2k-edge connected, and the number of edges in G′ obviously equals |E(V)|. Now

|E ′| =
1

2

r
∑

i=1

deg(vr) ≥
1

2

r
∑

i=1

2k = rk ≥ k(|V| − 1)

and Theorem 2.18 completes the proof.

The second corollary, sometimes attributed to Catlin [8, 9] characterizes the edge
connectivity of a graph by the spanning tree packing number of certain subgraphs. The
proof we will give can be found in [41].

Corollary 2.20. Let G be a finite graph.

1. κ′(G) ≥ 2k if and only if τ(G \ F ) ≥ k for every set F of at most k edges.

2. κ′(G) ≥ 2k+ 1 if and only if τ(G \ F ) ≥ k for every set F of at most k+ 1 edges.

Proof. 1. “⇐” If we remove k edges we still get k edge disjoint spanning trees. Thus
we have to remove at least another k edges in order to disconnect the graph.
So the minimal cardinality of a cut has to be at least 2k.

10
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“⇒” Let V = {V1, V2, . . . , Vr} be an arbitrary partition of V and F ⊆ E a set of
at most k edges.

As in the proof of Corollary 2.19 denote by G′ = (V ′, E ′) the graph that
we get from G by contracting every set Vi to a vertex vi. Furthermore, let
F ′ ⊆ E ′ be the set of edges in E ′ that have been obtained from edges in F .

It is an easy observation that |F ′| ≤ |F | ≤ k and that |E ′ \ F ′| corresponds
to |E(V)| in the graph G \ F . Since G′ is 2k-edge-connected we obtain

|E ′ \ F ′| =
1

2

∑

v∈V ′

deg(v)− k

=
1

2

r
∑

i=1

deg(vr)− k

≥
1

2

r
∑

i=1

2k − k

= rk − k

= k(|V| − 1).

2. “⇐” If we remove k + 1 edges we still get k edge disjoint spanning trees. Thus we
have to remove at least another k edges in order to disconnect the graph. So
the minimal cardinality of a cut has to be at least 2k + 1.

“⇒” Let E ′ be a set of k + 1 edges and e′ ∈ E ′. Then G \ e′ is 2k-edge-connected
and thus

(G \ e′) \ (E \ e′) = G \ E

has k edge disjoint spanning trees.

2.7 Extending Spanning Trees of Induced Minors

In the proofs of the main results of this thesis we will need to create spanning tree
packings of induced minors out of spanning tree packings of smaller induced minors.
The results in this section show how this can be done.

Proposition 2.21. Let G = (V,E) be a graph, U ⊆ V and H a spanning subgraph of
G. Furthermore let U1, U2, . . . , Uk be the vertex sets of the components of G \ U and
assume that H|U is a spanning tree of G{U}. Then H [Ui] is a spanning tree of G[Ui]
for all 1 ≤ i ≤ k if and only if H is a spanning tree of G.

Proof. “⇒” We have to show that H is connected and does not contain a cycle.

First assume that H is not connected. H|U is connected, hence a cut in G sep-
arating two components of H has to contain at least one edge in G[Ui] for some
i. However, as H [Ui] is connected no two different components of H can intersect
with the same Ui. Thus H has to be connected.

11
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Now assume that H contains a cycle. For any two vertices x, y on this cycle
κ′
H(x, y) ≥ 2 holds. If the cycle intersects with U then we would by Proposi-

tions 2.12 and 2.13 obtain a pair of vertices with edge connectivity at least 2 in
H|U . This would imply that H|U contains a cycle, a contradiction to H|U being a
tree.

If the cycle intersects with more than one Ui it also has non-empty intersection
with U since U seperates the Ui. Thus all vertices of the cycle have to be contained
in the same set Ui which is a contradiction to H [Ui] being a tree. Hence H cannot
contain a cycle at all.

“⇐” A cycle in H [Ui] would also be a cycle in H , hence the H [Ui] have to be cycle free.

Assume that H [Ui] is not connected. Then the components of H [Ui] have to be
connected by a path in H \H [Ui]. This path, however, starts and ends in the same
vertex of H|U and thus constitutes a cycle in H|U which is impossible.

Remark. Let U1, U2, . . . , Uk be the vertex sets of the components of G \ U . If we have
spanning subgraphs HU of G{U} and Hi of G[Ui] for 1 ≤ i ≤ k then there is a unique
spanning subgraph H of G satisfying

• H|U = HU and

• H [Ui] = Hi.

Proposition 2.22. Let G = (V,E) be a graph, U ⊆ V and let U1, U2, . . . , Uk be the
vertex sets of the components of G \ U . Given spanning trees HU of G{U} and Hi of
G[Ui] there is a unique spanning tree H of G satisfying

• H|U = HU and

• H [Ui] = Hi.

Proof. Combine Proposition 2.21 with the above remark.

Proposition 2.23. Let G = (V,E) be a graph, H1, H2 subgraphs of G and for U ⊆ V
denote by V(U) the set containing all vertex sets of components of G \U . The following
statements are equivalent:

(1) H1 and H2 are edge disjoint.

(2) For every U ⊆ V the pairs (H1|U , H2|U) and (H1[U
′], H2[U

′])U ′∈V(U) are edge disjoint.

(3) For some U ⊆ V the pairs (H1|U , H2|U) and (H1[U
′], H2[U

′])U ′∈V(U) are edge disjoint.

Proof. The implication (1) ⇒ (2) follows directly from the definitions of H|U and H [U ′],
(2) ⇒ (3) is trivial.

For the proof of (3) ⇒ (1) we assume that H1 and H2 are not edge disjoint. Let e be
an edge in H1 ∩ H2. If e connects two vertices that both lie in U ′ for some U ′ ∈ V(U)
then e ∈ H1[U

′]∩H2[U
′] Otherwise e ∈ H1|U∩H2|U . In both cases (3) does not hold.

12
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Figure 2.3: Splitting off {us, vs}

Proposition 2.24. Let G = (V,E) be a graph, U ⊆ V and let U1, U2, . . . , Uk be the vertex
sets of the components of G\U . If we have spanning tree packings TU = {T 1

U , T
2
U , . . . , T

r
U}

of G{U} and Ti = {T 1
i , T

2
i , . . . , T

r
i } of G[Ui] then there is a unique spanning tree packing

T = {T 1, T 2, . . . , T r} of G satisfying

• T j|U = T j
U and

• T j[Ui] = Hj
i

for 1 ≤ j ≤ r.

Proof. Follows from Propositions 2.22 and 2.23.

2.8 Splitting Off Edges

Definition 2.25. Let G = (V,E) be a graph and let s be a vertex of degree ≥ 2. If
u and v are neighbours of s splitting off the pair of edges {us, vs} means deleting these
two edges and replacing them by a new edge uv (see Figure 2.3).

The inverse operation of splitting off is called pinching, i.e., pinching a set of edges
E ′ ⊆ E at a vertex w means replacing every edge uv ∈ E ′ by the two edges uw and
vw. Note that if w /∈ V we need to add w to V first. For convenience we will omit the
brackets if E ′ = {e}.

The following theorem by Mader [37] will be an important ingredient to the proofs of
the main results of this thesis. A bridge here means a cut of cardinality 1, i.e., an edge
whose removal disconnects the graph.

Theorem 2.26 (Mader [37]). Let G = (V,E) be a connected graph, s ∈ V not incident
to any bridges in G and deg(s) 6= 3. Then we can find a pair of edges incident to
s that can be split off such that the local edge connectivity remains unchanged for all
x, y ∈ V \ {s}.
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3 Infinite Graphs and Topology

3.1 The Freudenthal Compactification

3.1.1 Definition and Elementary Facts

This section will contain a short introduction to the Freudenthal compactification (often
also refered to as end compactification) of a graph. For a more extensive introduction
to the topic see [13].

Freudenthal [19] was the first to introduce the idea of compactifying a graph by its
ends, i.e., to use the directions along which a sequence of vertices can tend to infin-
ity for the compactification. The commonly used combinatoric description of ends as
equivalence classes of rays that we will focus on has been introduced by Halin [26] in-
dependently of Freudenthal’s work. The two definitions fail to coincide in a non locally
finite setting and there are different approaches to define the end space of general infinite
graphs (see [34], [14] and [16]). In locally finite graphs, however, all of these approaches
are equivalent to the definitions of Freudenthal and Halin. Hence for the purpose of this
thesis the following definitions will be sufficient since it will only deal with locally finite
graphs.

Definition 3.1. Let G = (V,E) be a locally finite graph. A ray in G is a one sided
infinite path. An infinite subpath of a ray is called a tail of this ray.

We say that a finite set U of edges separates two rays γ1 and γ2 if there are different
components C1 and C2 of G \ U such that some tail of γi lies in Ci for i ∈ {1, 2}.

Now we define an equivalence relation ∼ on the set of rays by

γ1 ∼ γ2 ⇔ There is no finite set of edges separating γ1 and γ2

and call the equivalence classes of rays with respect to ∼ the ends of G. The set of all
ends of G is denoted by Ω(G). If G is clear from the context we will sometimes write Ω
instead of Ω(G).

Remark. • It is easy to see that ∼ is indeed an equivalence relation. If the graph is
locally finite it is also straightforward to check that two rays are equivalent if and
only if they cannot be separated by a finite number of vertices.

Furthermore two rays are equivalent if and only if there are infinitely many disjoint
paths connecting the two rays. As a consequence two rays are equivalent if and
only if there is a third ray meeting both of them infinitely often.

When proving equivalence of rays we will sometimes use one of the above conditions
without explicitly mentioning it.

14
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v

Uv

x

Ux

e

ω

Cω

Uω

Figure 3.1: Basic open neighbourhoods in the end topology

• If one ray has a tail that lies completely in a component C of G \U for some finite
set U of edges then so do all equivalent rays. Hence we may think of the end lying
in this component.

In the next step we will define a topology on G∪Ω by defining basic open neighbour-
hoods of every point in the set. Figure 3.1 illustrates these open neighbourhoods. Note
that the boundary is not included in any of the neighbourhoods. A bit more formally
speaking:

• For a vertex v the basic open neighbourhoods of v consist of v and an open half
edge for every edge incident to v.

• For an inner point x of an edge e the basic open neighbourhoods are exactly the
open intervals on e containing x.

• For an end ω and a finite set S of edges denote by Cω the component of G \ S
in which ω lies. Open neighbourhoods of ω consist of such a set Cω (including all
ends that lie in this component) plus a half edge of every e ∈ S.

Definition 3.2. The open neighbourhoods defined above form a basis of a topology τ
on G∪Ω. The topological space (G∪Ω, τ) is called the Freudenthal compactification or
end compactification of G and will be denoted by G.

It is a well known fact that for a locally finite connected graph G the space G is
compact and metrizable (see [13] for proofs). Among other things this implies that G is
a complete metric space and a normal and thus also Hausdorff topological space. All of
this also holds if G is locally finite and has finitely many components. If it has infinitely
many components then G is still a complete metric space but obviously it is not compact
anymore.

The sequence of vertices of a ray converges to the end in which the ray lies. More
generally, a sequence of vertices has an end ω as an accumulation point if and only if
there is an infinite comb with all teeth in the sequence whose spine lies in ω. This follows
easily from the definition of basic open neighbourhoods of an end.

Another obvious implication of the definition of the basic open sets is that G as a
subspace of G has the same topology as if we consider it a 1-complex.
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3.1.2 End Faithful Subgraphs

Proposition 3.3. Let G = (V,E) be a graph and H = (V ′, E ′) be a subgraph of G. Let
ι be the embedding of H in G, i.e., ∀x ∈ H : ι(x) = x. Then there is a unique continuous
function ι : H → G such that ι|H = ι.

Proof. Suppose we have such a function ι. Let (vn)n∈N be the sequence of vertices of a
ray γ converging to an end ω ∈ H and let ω′ be the end of G defined by γ. Then

ι(ω) = ι
(

lim
n→∞

vn

)

= lim
n→∞

ι (vn) = lim
n→∞

vn = ω′.

Thus there can be at most one continuous function with the desired properties.
For the proof of existence we have to check whether the only possible ι, that is

ι(x) =

{

x if x ∈ G

ω if x ∈ Ω(H) and a ray converging to x in H converges to ω in G

is well defined and continuous.
It is well defined because two rays that are equivalent in H certainly are equivalent

in G. Thus the end ω in the above definition does not depend on the choice of the ray.
Preimages of basic open neighbourhoods of points in G are basic open neighbourhoods

of points in H and thus open.
Now let ω ∈ Ω(G) and let O be a basic open neighbourhood of ω. Then O consists of

a component of G \ S and a half edge of every e ∈ S for a finite cut S. The preimage of
O consists the half edges in S ∩E ′ and some components of H \S. Now obviously every
point in ι−1(O) has an open neighbourhood that is completely contained in ι−1(O) and
thus ι−1(O) is open.

Definition 3.4. Let G = (V,E) be a graph and H a subgraph of G. Then H is said to
be end faithful if for the function ι from the previous proposition ι|Ω(H) : Ω(H) → Ω(G)
is injective.

Obviously H is an end faithful subgraph of G if and only if any two rays of H that
are equivalent in G are also equivalent in H . In the special case that H is connected the
following proposition provides another necessary and sufficient condition for H being
end faithful.

Proposition 3.5. Let G be a graph and let H be a connected subgraph of G. Then H
is end faithful if and only if ι is a homeomorphism from H onto the closure of H in G.

Proof. The backward implication is trivial because a homeomorphism is injective.
For the forward implication recall that H is known to be compact and that G is

Hausdorff. The function ι is injective and continuous.
The following two well known facts from topology (see for example [43]) complete the

proof.

16



CHAPTER 3. INFINITE GRAPHS AND TOPOLOGY

• Every injective continuous function from a compact space to a Hausdorff space is
a homeomorphism onto its image.

• Given a continuous function from a compact space to a Hausdorff space the image
of the closure of a set is the closure of the image of the same set.

In particular this result implies that a connected spanning subgraph H of a connected
graph G is end faithful if and only if ι|Ω(H) is a homeomorphism between the end spaces
of G and H .

3.2 Topological Paths, Circles and Trees in Infinite

Graphs

In this section we will describe some of the topological concepts concepts that Diestel
and Kühn[11, 15, 16] utilized to extend some graph theoretical notions from finite to
infinite graphs. For a more extensive introduction to the topic also see [13].

Definition 3.6. Let G = (V,E) be a locally finite graph and denote by G the Freuden-
thal compactification of G and by Ω the set of its ends.

• A topological path is a continuous (but not necessarily injective) map from the
closed unit interval [0, 1] to G.

Given U1, U2 ⊆ V we say that a topological path connects U1 and U2 if it maps 0
to u1 ∈ U1 and 1 to u2 ∈ U2. In this case it is called a topolocical U1-U2-path. For
convenience we will omit the brackets for topological {u1}-{u2}-paths.

• An arc is a homeomorphic image of the closed unit interval [0, 1] in G, i.e., the
image of an injective topological path.

• A topological ray a homeomorphic image of the half open unit interval [0, 1) in G.

• A topological circle is a homeomorphic image of the unit circle C1 in G.

The circuit associated with a circle C is defined as C ∩G.

• A topological tree is a path-connected subspace of G that does not contain a topo-
logical cirle.

A topological spanning tree of G is a topological tree that contains all vertices and
all ends of G and every edge of which it contains an inner point. Note that if T is
a topological spanning tree then T ∩G is a spanning forest of G.

The next two statements about topological paths and arcs are basic results from
topology. The first result deals with the composition of paths. The proof is short and
straightforward and can be found in most topology textbooks, see [43] for example.

Proposition 3.7. If A is the image of a topological a-x-path and B is the image of a
topological x-b-path then A ∪B is the image of a topological a-b-path.
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The second proposition can be used to create arcs out of paths. The proof is more
involved than the proof of Proposition 3.7 and can be found in [28].

Proposition 3.8. If A is the image of a topological path then A is arcwise connected,
i.e., for any two points a, b ∈ A there is an arc in A connecting a and b.

The next proposition assures that there is no non-constant topological path whose
image consists only of ends. Note that the requirement that G is locally finite is crucial
since the statement is not true for arbitrary countable graphs. See [16] for a non locally
finite counterexample.

Proposition 3.9. Let G = (V,E) be a locally finite graph and let P ⊆ G be the image
of a topological path. If P contains at least two points of V ∪Ω then P contains at least
one vertex.

Proof. Assume that P contains no vertices and denote by ω1, ω2 ∈ P two distinct ends.
ω1 and ω2 can be separated by removing a finite set of vertices, say V ′. This implies

that G\V ′ is the disjoint union of two open sets containing ω1 and ω2 respectively which
implies that there is no topological ω1-ω2-path in G \ V ′.

Thus P has to contain at least one vertex in V ′, a contradiction to P containing no
vertex at all.

Remark. Note that the above proposition also implies that in a locally finite graph every
topological circle has to contain at least one vertex.

Proposition 3.10. Let T be a tree. Then its Freudenthal compactification T does not
contain a topological circle.

Proof. A topological circle in T has to contain at least one end since a topological circle
containing no end at all is a graph theoretical circle.

If there was a topological circle containing only one end then there would be two
disjoint rays converging to that end. Since this is not possible in a tree a possible circle
has to contain at least two ends.

A topological circle containing at least two ends ω1, ω2 can be decomposed into two
disjoint arcs connecting those ends. Let v be a vertex of T such that ω1 and ω2 lie in
different components of T \ V (such a vertex exists because T is a tree). Then every
ω1-ω2-arc contains v and thus there cannot be a pair of disjoint ω1-ω2-arcs.

3.2.1 End Faithful Spanning Trees and Topological Spanning
Trees

Definition 3.11. Let G be a graph and let T ⊆ G be a topological spanning tree of G.
We call T end faithful if T ∩G is an end faithful subgraph of G.

The following result provides some sufficient conditions for end faithful topological
spanning trees of a locally finite graph. In [16] Diestel and Kühn obtain a similar result.
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They also show that the statement does not remain true for arbitrary countable graphs
by giving a non locally finite counterexample, i.e., an end faithful spanning tree whose
closure contains a topological circle.

Proposition 3.12. Let G = (V,E) be a locally finite graph and let T be a subspace of
G containing all ends of G. The following statements are equivalent.

1. T ∩G is an end faithful spanning tree.

2. T ∩G is a spanning tree and T is a topological spanning tree.

3. T contains a (graph theoretical) path between any two vertices but no topological
circle.

Proof. 1 ⇒ 2: As every graph theoretical path in T ∩G is also a topological path in T
we only have to prove that T does not contain a topological circle.

Since T ∩ G is a connected and end faithful subgraph of G we know that T
is homeomophic to the Freudenthal compactification T ∩G by Proposition 3.5.
By Proposition 3.10 there is no topological circle in T ∩G.

2 ⇒ 1: The graph T ∩G is a spanning tree. Hence it is sufficient to show that any two
rays in T ∩G which are equivalent in G are also equivalent in T ∩G.

Assume that the converse holds, i.e., there is an end ω and two rays belonging to
different ends of T ∩G which are both contained in ω. Since T ∩G is connected
there is a finite path in T ∩ G connecting the two rays. This path obviously
does not contain the end ω and it’s an easy observation that we can construct
a topological circle in T out of this path and the two rays, a contradiction to T
being a topological spanning tree.

2 ⇔ 3: The forward implication is trivial, for the backward implication observe that
every graph theoretical path (circle) also is a topological path (circle).

Proposition 3.13. Let G be a locally finite graph and let T be a spanning tree of G.
Then T is end faithful if and only if T ∪ Ω(G) is a topological spanning tree of G.

Proof. Follows from 1 ⇔ 2 in Proposition 3.12.

Proposition 3.14. Let G = (V,E) be a locally finite graph with finitely many ends and
let T be a topological spanning tree of G. Then T is end faithful if and only if T ∩ G
spanning tree of G.

Proof. The backward implication follows from 2 ⇒ 1 in Proposition 3.12.
For the forward implication assume that T ∩G is an end faithful spanning subgraph of

G. Clearly T ∩G is circle free. So the only thing left to prove is that T ∩G is connected.
Assume that u and v are vertices that lie in different components of T ∩ G. Since T

is a topological spanning tree there is a u-v-arc A in T . This arc has to contain at least
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one end ω. There are only finitely many ends so there is a neighbourhood of ω in A that
contains no other ends.

This neighbourhood can be decomposed into two disjoint rays γ1, γ2 converging to ω.
Since T is end faithful these two rays are equivalent in T ∩G. So there is a path P ⊆ T
connecting γ1 and γ2 and P ∪ γ1 ∪ γ2 contains a topological circle, a contradiction to T
being a topological spanning tree.

Remark. The requirement that G has finitely many ends is crucial. There are examples
of graphs with infinitely many ends such that the statement does not hold.

3.2.2 Limits of Subgraphs of Induced Minors

Sometimes it can be useful to know what the limit of a sequence of graphs looks like. This
is especially the case if we want to deduct properties of the limit graph from properties
of the elements of the sequence. The following result will particularly be relevant for the
proofs of Theorems 1.13 and 1.14 where we will construct topological spanning trees as
limits of spanning trees of finite contractions.

Proposition 3.15. Let G = (V,E) be a locally finite graph and let Vn be a sequence of
finite subsets of V such that limn→∞ Vn = V . Let Gn = G{Vn}. If Tn is a spanning tree
of Gn and Tn+1|Gn

= Tn for every n ∈ N then T := limn→∞ Tn is a topological spanning
tree of G.

Proof. First we show that there is a topological u-v-path P for every pair u, v ∈ V . We
will get this path as a limit of paths Pn in Tn. Let P1 be a u-v-path in T1 that uses
every contracted vertex at most once. We may choose a parametrisation such that the
preimage of every contracted vertex under P1 is an interval of length ε1 > 0. Since there
are only finitely many contracted vertices we can always achieve this property by simple
homotopic transformations.

Now construct Pn+1 out of Pn by replacing every contracted vertex by a path that lies
completely in the component of Gn+1 \ Vn corresponding to this vertex (recall that Tn+1

induces a spanning tree in each of these components by Proposition 2.21). We can do
so by only modifying the preimages of contracted vertices. Again we can assume that
Pn+1 uses every contracted vertex at most once and choose the parametrization of Pn+1

such that the preimage of every contracted vertex under Pn+1 is an interval of length
εn+1 > 0.

Now define P (x) = Pn0
(x) if the sequence Pn(x) is constant from n0 on. If there is no

such n0 then the sequence Pn(x) contains only contracted vertices. Since the sequence
does not stay in any bounded subset of the graph all of its accumulation points have to
be ends. There cannot be more than one accumulation point because any two distinct
ends are separated by a finite set of vertices and thus will eventually be contained in
different components of G \ Vn. Hence Pn(x) converges to a unique end ω and we define
P (x) = ω.

To check continuity of P consider the preimages of basic open sets. The preimages of
basic open neighbourhoods of vertices and inner points of edges are open due the fact
that P = Pn on those neighbourhoods for some n.
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Figure 3.2: A non-Hamiltonian graph

Let O be an open neighbourhood of an end, that is, a component C of G \ E ′ for
some finite set E ′ ⊆ E plus an open half edge for every e ∈ E ′. There is an index n
such that Vn contains all endpoints of edges in E ′. All points in [0, 1] that are mapped
to a component of G \Vn by Pn will be mapped to the same component by Pm for every
m > n. This holds for components contained in O as well as for components disjoint to
O. Hence the preimage of O under Pn and under P are the same and thus the preimage
of O under P is open.

The construction of a topological path between a vertex and an end or between two
ends works analogously, the only difference is that we need to construct paths connecting
a vertex in V to a contracted vertex or two contracted vertices respectively.

Finally assume that T contains a topological circle C. By Proposition 3.9 this circle
has to contain at least one vertex, say v. Then v is included in every Vn from some index
n0 on. The restriction of C to Hn is a circle for every n ≥ n0, a contradiction to Hn

being a tree.

As we have seen, the limit of a suitable sequence of spanning trees is a topological
spanning tree. If we were able to prove that something similar holds for Hamiltonian
cycles it would certainly help extending Hamiltonicity results from finite to locally finite
graphs.

It has been proposed to construct Hamilton cycles as limits of Hamilton cycles in the
graphs G{Vn}

∗ obtained from finite contractions G{Vn} by connecting any two vertices
in Vn that are connected to the same contracted vertex. The next example, however,
shows that there are non-Hamiltonian graphs such that whenever Vn is finite G{Vn}

∗

is Hamiltonian. Furthermore the graph in the example allows an infinite increasing
sequence of subsets Vn of V whose limit is V such that G{Vn} is Hamiltonian for every
n.

Example. Let G be the graph shown in Figure 3.2.

Claim 1. G is not Hamiltonian.

In a possible Hamilton cycle every vertex has to have degree two. Hence such a cycle
has to contain all of the upper and lower ray, i.e., two rays converging to the single end
ω of the graph.
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Figure 3.3: A possible finite contraction of the graph in Figure 3.2. The bold edges form
a Hamilton cycle.

The rest of the cycle has to span all vertices of the two rays inbetween. So this part
of the cycle contains at least one more ray converging to ω. This however implies that
the cycle has to pass through ω at least twice and thus is not injective.

Claim 2. There is a sequence (Vn)n∈N of subsets of V whose limit is V such that every
G{Vn} is Hamiltonian.

Consider the contraction and the Hamiltonian cycle in it that is shown in Figure 3.3.
In a similar way we can find Hamiltonian cycles in infinitely many contractions G{Vn}.
We only need to ensure that the subpaths of the two middle rays contained in Vn have
the same length.

Claim 3. Whenever Vn ⊆ V is finite G{Vn}
∗ is Hamiltonian.

By Claim 2 we can find Vn ⊆ Vm ⊆ V such that G{Vm} is Hamiltonian. We will now
use a Hamiltonian cycle in G{Vm} to construct a Hamiltonian cycle in G{Vn}

∗.
Let v0, v1, v2, . . . , vk−1, vk = v0 be the vertex sequence of a Hamilton cycle in G{Vm}.

We may without loss of generality assume that v0 ∈ Vn. Now let P = v0 and perform
the following steps until all vertices of Vn are contained in P :

Let vi be the last vertex that has been added to P

• If vi+1 ∈ Vn then append vi+1 to P .

• If vi+1 /∈ Vn denote by C the vertex set of the component of G{Vm} \ Vn to
which vi + 1 belongs. Let vC be the contracted vertex corresponding to C and let
j0 = min {j > i | vj /∈ C}. Obviously vj0 ∈ Vn because if this was not the case it
would belong to C (note that there is an edge connecting vj0 and C).

– If vC is not contained in P so far then append vC and vj0 to P .

– Otherwise only append vj0 to P .

The list P contains all vertices of G{Vn}
∗ because the cycle in G{Vm} contained all

vertices of G{Vm} and G{Vn} = (G{Vm}){Vn} has the same vertex set as G{Vn}
∗. There

is an edge between two consecutive vertices in the list P by the definition of G{Vn}
∗.

Hence P is the vertex list of a Hamilton cycle in G{Vn}
∗.
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4 Thomassen’s Theorem

4.1 A Proof Sketch

In this section we will give a short proof sketch of Thomassen’s Theorem and discuss
briefly what needs to be done in order to make a similar proof work for infinite graphs.
But first recall the statement of the theorem:

Theorem 1.4 (Thomassen [46]). The line graph of every finite 4-edge-connected graph
has a Hamiltonian cycle.

Proof Sketch. Basically the proof consists of three steps:

Step 1: By Corollary 2.19 a 4-edge-connected graph G has two edge disjoint spanning
trees T 1 and T 2.

Step 2: From T 1 and T 2 we can construct a spanning Eulerian subgraph H of G as
follows:

For every edge e of T 1 there is precisely one circle in T 2 ∪ {e}, the fundamental
circle of e with respect to T 2. Let V (H) = V (G) and let E(H) consist of all edges
of T 1 and of those edges in T 2 that lie in an odd number of such fundamental
circles.

Then H is connected because T 1 is a subgraph of H and it can easily be verified
that every vertex has even degree in H .

Step 3: Apply Proposition 2.5 to obtain a Hamilton cycle in L(G).

In order to make this proof work for locally finite graphs as well we first of all need
to find a suitable generalization of Corollary 2.19 to make sure that Step 1 works for
locally finite graphs.

As for Step 2 we need to ensure that we can define H like we did in the finite case, i.e.,
that it can not happen that an edge is contained in infinitely many fundamental circles.
We also need to check whether the construction yields a spanning Eulerian subgraph in
the locally finite case.

In order to make Step 3 work in a locally finite setting we need to extend Proposi-
tion 2.5 to locally finite graphs. It will be crucial that the spanning Eulerian subgraph
that has been constructed in Step 2 does not contain any end more than twice. Other-
wise Step 3 is bound to fail since a Hamilton circle contains exactly two topological rays
to every end and the end spaces of a graph and its line graph are the same.
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4.2 Topological Spanning Trees

As mentioned before we will first of all need a suitable generalization of Corollary 2.19.
Stein [44] proved the following natural extension of the theorem of Tutte and Nash-
Williams to locally finite graphs from which we can deduce a generalization of the
corollary.

Theorem 4.1 (Stein [44]). Let G = (V,E) be a locally finite graph. For a partitioning
V of V denote by E(V) the set of edges that connect different sets in V. Then G has
k edge disjoint topological spanning trees if and only if |E(V)| ≥ k(|V| − 1) for every
partitioning V of V .

Corollary 4.2. Let G be a 2k-edge-connected locally finite graph. Then G has k edge
disjoint topological spanning trees.

Furthermore Diestel and Kühn [16] showed that Step 2 generalizes verbatim to topo-
logical spanning trees. Note that the fundamental circles with respect to a topological
spanning tree are actually topological circles.

Theorem 4.3 (Diestel and Kühn [16]). Let G be a locally finite graph and let T be
a topological spanning tree of G. Then every edge is only contained in finitely many
fundamental circles with respect to T .

Proposition 4.4. Let G be a locally finite graph and let T 1, T 2 be topological spanning
trees of G. Let H be the subgraph of G obained by Step 2, i.e., H contains all edges of
T 1 and those edges of T 2 that are in an odd number of fundamental circles of edges in
T 1.

Then H contains an even number of edges in S for every finite cut S in G.

Proof. Observe that e ∈ T 1 is contained in an odd number (namely one) of fundamental
circles. Denote by KS the set of fundamental circles that contain edges in S for some
finite cut S. Note that every such circle contains an even number of vertices in S.

|S ∩H| ≡
∑

e∈S

∑

K∈KS

e∈K

1 ≡
∑

K∈KS

∑

e∈S∩K

1 ≡
∑

K∈KS

|K ∩ S| mod 2

because all of the sums are finite. For every circle |K ∩ S| is even, so |S ∩ H| is also
even.

However promising substituting topological spanning trees for ordinary spanning trees
may look, it is not sufficient to prove an Thomassen’s theorem for locally finite graphs.
The following example illustrates why.

Example. Figure 4.1 shows a 4-edge-connected graph G and two edge disjoint topological
spanning trees of G. When we apply Step 2 for these two topological spanning trees we
obtain the subgraph H shown in Figure 4.2. Obviously there are 5 non-equivalent rays
in H that converge to the same end in G and thus H can not be used to construct a
Hamiltonian cycle in L(G).
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Figure 4.1: Two edge disjoint topological spanning trees in a locally finite 4-edge-
connected graph.

Figure 4.2: The subgraph obtained by Step 2 from the two topological spanning trees in
Figure 4.1.
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4.3 An Additional Restriction

We have seen that finding edge disjoint topological spanning trees is not sufficient for a
generalizaion of the proof of Theorem 1.4 to locally finite graphs. However, things look
brighter if one of the two topological spanning trees fulfills the additional requirement
that its intersection with G is an ordinary spanning tree of G as the results in this section
will show.

Proposition 4.5. Let G be a locally finite graph and let T and T ′ be two edge disjoint
topological spanning trees of G such that T ∩G is an ordinary spanning tree of G. Then
G has an end faithful spanning subgraph that admits a topological Euler tour.

Proof. For and edge e in T denote by Ke the fundamental circle of e with respect to T ′.
Let H be the subgraph of G containing all edges of T and those edges of T ′ that are
contained in an odd number of Ke. By Theorem 4.3 this is well defined because no edge
is contained in infinitely many fundamental circles.

To show that H admits a topological Euler tour we need to show that every cut in H
is either even or infinite. For this purpose let S be a cut in H . Then we can find a cut
S ′ in G such that the vertex sets of the components of G \S ′ are precisely vertex sets of
the components of H \ S.

• If S ′ is finite then by Proposition 4.4 the cut S is even.

• If S ′ is infinite then we claim that S ∩ T ⊆ S is infinite as well.

Assume that this was not the case. Then there is an infinite sequence of edges
xiyi ∈ S ′ \ T . We may without loss of generality assume that the sequence xi

is convergent, otherwise choose a convergent subsequence. The limit is an end ω
because the sequence consists of infinitely many different vertices and thus even-
tually abandons every bounded subset of V . Clearly the sequence yi converges to
the same limit as the sequence xi.

Since T ∩ G is connected we can find an infinite comb in T ∩ G with all teeth in
the set {xi | i ∈ N}. The spine of this comb lies in ω. We also can find an infinite
comb in T ∩G with all teeth in the set {yi | i ∈ N} whose spine also lies in ω.

The sets of teeth of the two combs lie in different components of T \S. So if S ∩T
is finite the spines have tails lying in different components of T \ S. This implies
that they are not equivalent in T , a contradiction to T being end faithful.

This proves that H is Eulerian.
Now all that is left to show is that H is end faithful. For this purpose let γ be an

arbitrary ray in H and let (xi)i∈N be the sequence of vertices of γ. There is an infinite
comb in T with all teeth in γ and the spine of this comb lies in the same end as γ. So
every ray in H is equivalent in H to a ray in T . Since T is end faithful so is H .

The next result was obtained by Brewster and Funk [1] and among other things it
implies that the line graph of a graph with an end faithful spanning Eulerian subgraph
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contains a topological Hamilton cycle. A closed dominating trail here means a closed
topological path which contains at least one endpoint of each edge. The proof is based
on Georgakopoulos’ [22] proof of a very similar result.

Proposition 4.6 (Brewster and Funk [1]). Let G = (V,E) be a locally finite graph. If
G contains a closed dominating trail which is injective on the ends of G then L(G) is
Hamiltonian.

So in order to prove that the line graph of a graph G is Hamiltonian it is sufficient
to show that G has two edge disjoint topological spanning trees one of which yields an
ordinary spanning tree under intersection with G.
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5 Main Results

5.1 Edge Disjoint Spanning Trees with Restrictions

Definition 5.1. Let G = (V,E) be a graph, v ∈ V and let a and b be vertices or inner
points of edges of G. An a-b-arc is called an a-b-bypass of v if it does not contain v.

The set of all spanning tree packings T of G of cardinality k such that there are l
trees in T whose union contains an a-b-bypass of v will be denoted by T

k,l
G (a, b, v).

Definition 5.2. For a graph G = (V,E) and u ∈ V denote by Eu the set of edges
incident to u, i.e., Eu = {e ∈ E | u ∈ e}.

The following lemma constitutes the main result of this section. It will be one of the
main ingredients for the proof of Theorem 1.13 and consequently also for the proofs of
Theorems 1.12 and 1.14.

Lemma 5.3. Let G = (V,E) be a finite 2k-edge-connected graph and let u, v ∈ V be
such that Eu is a u-v-cut of minimal cardinality. Let a and b be vertices or inner points
of edges of G \ {u}. If there is an a-b-bypass of v in G \ {u} then

T
k,2
G\{u}(a, b, v) 6= ∅. (∗)

Remark. Note that in particular Lemma 5.3 implies that G \ {u} has a spanning tree
packing of cardinality k since for a = b 6= v an a-b-bypass of v always exists. If G \ {u}
consists of v only then the existence of such a spanning tree packing is trivial.

We will prove the statement of Lemma 5.3 by induction on the number of vertices.
Before doing so however, let’s take a look at some consequences of this result.

u

v

S

b

a

Figure 5.1: Situation in Lemma 5.3. Note that a and b do not necessarily need to be
vertices.
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5.1.1 Some Corollaries

The first corollary we will deduce from Lemma 5.3 will have its main application in the
proof of Theorem 1.14.

Corollary 5.4. Let G = (V,E) be a finite 2k-edge-connected graph, k ≥ 2, and let
u, v ∈ V be such that Eu is a u-v-cut of minimal cardinality. Let a and b be vertices of
G \ {u}. If there is an a-b-arc that does not contain u and v then

T
k−1,1
G\{u}(a, b, v) 6= ∅.

Proof. By Lemma 5.3 we can find

T =
{

T 1, T 2, . . . , T k
}

∈ T
k,2
G\{u}(a, b, v).

We may without loss of generality assume that T 1 ∪ T 2 contains an a-b-bypass of v.
Since both a and b are vertices every a-b-arc is a simple graph theoretical path and thus
cycle free.

Every acyclic subgraph of T 1 ∪ T 2 can be extended to a spanning tree T ′ of T 1 ∪ T 2

which also is a spanning tree of G \ {u}. Clearly T ′ contains the same a-b-bypass of v
as T 1 ∪ T 2 and T ′ and T i are edge disjoint for i > 2 because T ′ ⊆ T 1 ∪ T 2. So

T ′ :=
{

T ′, T 3, . . . , T k
}

∈ T
k−1,1
G\{u}(a, b, v).

Remark. A similar proof can be given if a and b are inner points of edges ea and eb as
long as at least one of the edges is not incident to v. If both ea and eb are incident to v
then an a-b-bypass of v induces a circle and hence such a bypass cannot be contained in
a tree.

The next corollary is very similar to the corollaries of Theorem 2.18 in Section 2.6
that deal with 2k-edge-connected graphs. In fact we can derive alternative proofs for
Corollaries 2.19 and 2.20 from Corollary 5.5.

Corollary 5.5. Let G = (V,E) be a finite 2k-edge-connected graph, let u, v ∈ V and
let S be a u-v-cut of minimal cardinality. Then there is a spanning tree packing T of
cardinality k of G such that every tree T ∈ T contains exactly one edge in S.

Proof. Let Cu and Cv be the vertex sets of the two components of G \ S in which u
and v lie respectively (by Proposition 2.9 these are the only components). Consider the
graph G/Cu and denote by u′ the vertex obtained from Cu in G/Cu.

By Proposition 2.12 the cut S is a u′-v-cut of minimal cardinality and since

S = {e ∈ E(G/Cu) | u
′ ∈ e}

we can apply Lemma 5.3 to obtain k edge disjoint spanning trees of

(G/Cu) \ {u
′} = G[Cv].
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Analogously we get k edge disjoint spanning trees of G[Cu].
By connecting a spanning tree of G[Cv] and a spanning tree of G[Cu] with an edge in

S we obtain a spanning tree of G that uses exactly one edge of S. There are at least 2k
edges in S and we have k edge disjoint spanning trees of G[Cu] and G[Cv] respectively.
This allows to construct the desired spanning tree packing and completes the proof.

As mentioned before this result can be used to obtain alternative proofs for Corollar-
ies 2.19 and 2.20 of Theorem 2.18.

Corollary 2.19. Let G = (V,E) be a finite graph. If κ′(G) ≥ 2k then τ(G) ≥ k.

Proof. Corollary 5.5 guarantees the existence of k edge disjoint spanning trees with
certain restrictions.

Corollary 2.20. Let G be a finite graph.

1. κ′(G) ≥ 2k if and only if τ(G \ F ) ≥ k for every set F of at most k edges.

2. κ′(G) ≥ 2k+ 1 if and only if τ(G \ F ) ≥ k for every set F of at most k+ 1 edges.

Proof. 1. “⇐” If we remove k edges we still get k edge disjoint spanning trees. Thus
we have to remove at least another k edges in order to disconnect the graph.
So the minimal cardinality of a cut has to be at least 2k.

“⇒” Let F ⊆ be a set of k edges and denote by G′ the graph obtained from G by
pinching F at a vertex v /∈ V .

G′ is 2k-edge connected because every cut contains at least 2k edges:

– For any two vertices a, b ∈ V (G) there are 2k edge disjoint a-b-paths
inherited from G. So the cardinality of any cut that separates a and b is
at least 2k.

– The only cut which does not disconnect two vertices in V (G) is the cut
Ev which contains 2k edges.

It follows immediately that S has to be a v-x-cut of minimal cardinality for
an arbitrary vertex x ∈ V because it is a cut of cardinality 2k in a 2k-edge-
connected graph. Hence by Corollary 5.5 we can find k edge disjoint trees
each of which only uses one edge of S. This implies that v is a leaf in all
of the trees. Thus we can remove all edges incident to v to obtain k edge
disjoint spanning trees of G \ F .

2. The second part of the proof can be copied verbatim from the proof of Corol-
lary 2.20 in Section 2.6.
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5.1.2 The Proof of Lemma 5.3

Before starting to prove Lemma 5.3 let’s recall its statement.

Lemma 5.3. Let G = (V,E) be a finite 2k-edge-connected graph and let u, v ∈ V be
such that Eu is a u-v-cut of minimal cardinality. Let a and b be vertices or inner points
of edges of G \ {u}. If there is an a-b-bypass of v in G \ {u} then

T
k,2
G\{u}(a, b, v) 6= ∅. (∗)

Proof of Lemma 5.3. As mentioned earlier we will prove the lemma by induction on the
number of vertices. If G is a graph on two vertices then G \ {u} consists only of v. So
there cannot be two points a and b as claimed in the condition of Lemma 5.3. Hence
induction starts at |V | = 3.

Let G be a 2k-edge-connected graph on three vertices u, v and w and let Eu be a
u-v-cut of minimal cardinality.

A spanning tree of G \ {u} consists of a vw-edge. So in order to obtain a spanning
tree packing of cardinality k we need to ensure that there are at least k such edges. By
Menger’s Theorem 2.10 there are as many edge disjoint u-v-paths as edges in Eu. In
particular there is a vw-edge for every uw-edge and since deg(w) ≥ 2k there are at least
k edges connecting v and w.

Now a and b can be either inner points of vw-edges or equal to w. Either way, there
are two vw-edges whose union contains an a-b-bypass of v. We can select these two
edges to form trees of the spanning tree packing.

For the induction step we may assume that |Eu| > κ′(G) because the lemma holds for
G if and only if it holds for the graph obtained from G by adding a bundle of parallel
uv-edges since those edges are irrelevant for the statement of the lemma.

Now let S be a cut such that |S| = κ′(G). The cut S does not separate u and v as Eu

is a u-v-cut of minimal cardinality and |Eu| > κ′(G). Denote by C and C ′ the vertex
sets of the components of G \ S and assume without loss of generality that u, v ∈ C.

We will distinguish the following two cases in both of which we will show that (∗)
holds:

Case 1: |C ′| > 1,

Case 2: |C ′| = 1, i.e., C ′ = {w} for some w ∈ V .

In case 1 consider the graph G/C ′. Denote by xC′ the vertex in G/C ′ that has been
obtained by contracting the set C ′ and define a′ = xC′ if a lies in G[C ′] and a′ = a
otherwise. Analogously define b′ from b.

We now claim that

(1) G[C ′] has k edge disjoint spanning trees,

(2) T
k,2
(G/C′)\{u}(a

′, b′, v) 6= ∅ and

(3) the statement (∗) follows from (1) and (2).
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So let us first prove (1). For this purpose denote by xC the vertex that corresponds
to C in G/C. It can easily be seen that G[C ′] = (G/C) \xC . Moreover G/C is 2k-edge-
connected by Proposition 2.14 and the set of edges incident to xC in G/C is a cut of
minimal cardinality in G/C by Proposition 2.12. As G/C has strictly less vertices than
G we can by induction hypothesis find k edge disjoint spanning trees of (G/C) \ {xC}.
This proves (1).

Next we prove (2). Clearly G/C ′ has strictly less vertices than G. From Proposi-
tion 2.14 it follows that G/C ′ is 2k-edge connected and by Propositions 2.12 and 2.13
the set of edges incident to u in G/C ′ is a u-v-cut of minimal cardinality in this graph.
The a-b-bypass of v in G \ {u} corresponds to an a′-b′-bypass of v in (G/C ′) \ {u}. So
T

k,2
(G/C′)\{u}(a

′, b′, v) 6= ∅ by the induction hypothesis. This proves (2).

In order to prove (3) let TC′ =
{

T 1
C′, T 2

C′ , . . . , T k
C′

}

be a spanning tree packing of G[C ′]

and let TG/C′ =
{

T 1
G/C′ , T 2

G/C′ , . . . , T k
G/C′

}

∈ T
k,2
(G/C′)\{u}(a

′, b′, v). Since we can permute

the trees in the packing freely we may without loss of generality assume that T 1
G/C′∪T 2

G/C′

contains an a′-b′-bypass of v.
If a lies in G[C ′] we may without loss of generality assume that a lies in T 1

C′ because

• if a is a vertex it is contained in every T i
C′ ,

• if a is an inner point of an edge contained in some T i
C′ we can permute the trees

and

• if a is an inner point of an edge e not contained in any of the T i
C′ we can modify

T 1
C′ by adding e and removing an arbitrary edge of the circle that has been closed

by doing so.

For the same reasons we may assume that if b lies in G[C ′] and if b is not an inner point
of an edge of T 1

C′ then b lies in T 2
C′ .

Now let T i be the subgraph of G that is obtained by replacing xC′ in T i
G/C′ by T i

C′.

We claim that T = {T i | 1 ≤ i ≤ k} ∈ T
k,2
G (a, b, v).

By Propositions 2.21 and 2.23 T is a spanning tree packing. Thus it suffices to prove
that T 1 ∪ T 2 contains an a-b-bypass of v.

• If both a and b lie in G[C ′] let x ∈ C ′ be an arbitrary vertex. Since x is a vertex
it is contained in every T i

C′. By our choice of TC′ it holds that a, b ∈ T 1
C′ ∪ T 2

C′.
Hence we can find an a-x-arc and a x-b-arc in T 1

C′ ∪ T 2
C′ .

The union of these two arcs clearly contains an a-b-arc. This arc does not contain
v because v /∈ C ′, so it is an a-b-bypass of v in T 1 ∪ T 2.

• If only one of a and b, say a, is contained in G[C ′] then T 1
G/C′ ∪ T 2

G/C′ contains a
xC′-b-bypass of v. This implies that there is a vertex x ∈ C ′ such that T 1 ∪ T 2

contains a x-b-bypass B of v.

For the same reason as before there is an a-x-arc A in T 1
C′ ∪ T 2

C′ .

The union A ∪ B contains an a-b-arc which is an a-b-bypass of v because v is not
contained in either of A and B.
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• If both a and b are not contained in G[C ′] there is an a-b-bypass of v in T 1
G/C′∪T 2

G/C′ .

If this bypass does not contain xC′ then it is also an a-b-bypass of v in T 1∪T 2 and
we are done.

So assume that it does contain xC′ . In this case there are vertices xa, xb ∈ U such
that T 1 ∪ T 2 contains an a-xa-bypass A and a xb-b-bypass B of v. Furthermore
there is a xa-xb-arc A′ in T 1

C′ since T 1
C′ is connected and both xa and xb are vertices

and thus contained in T 1
C′.

Clearly A ∪B ∪A′ contains an a-b-bypass of v.

This completes the proof of (3) and thus (∗) holds in case 1.

Now consider case 2, i.e., assume that C ′ = {w}. If deg(w) is odd then G is (2k+ 1)-
edge-connected, so removing an arbitrary edge from G will leave it 2k-edge-connected.
In order to be able to apply the induction hypothesis we want to select the edge that
we delete in a way that Eu remains a u-v-cut of minimal cardinality after deleting it.

To decide which edge to delete choose κ′
G(u, v) edge disjoint u-v-paths. The total

number of edges incident to w used by these paths has to be even as a path that enters
w via one edge has to leave the vertex via another one. Thus there is at least one such
edge, say e, which is not used by any of the paths. Hence Eu will still be a u-v-cut of
minimal cardinality after e has been removed since there are still κ′

G(u, v) edge disjoint
u-v-paths.

Now assume that degw is even (possibly after deleting an edge incident to w). By
Mader’s Theorem 2.26 we can split off all edges incident to w in pairs without changing
the local edge connectivity of any pair of vertices in V \ {w}. In particular the set of
edges incident to u remains a u-v-cut of minimal cardinality throughout this procedure.
Denote the graph that we obtain by H = (VH , EH). Now define a multiset V ′ over
VH (i.e., V ′ consists of vertices but may contain the same vertex more than once) and
E ′ ⊆ EH as follows:

• Add a copy of v′ ∈ VH to V ′ for every v′w-edge that has been split off with a
uw-edge. Add another copy of v′ if a v′w-edge has been deleted in order to make
deg(w) even.

• Add e′ ∈ EH to E ′ if it has been created by splitting off a pair of edges none of
which is incident to u.

It is an easy observation that G \ {u} is obtained from H \ {u} by pinching all edges
in E ′ at w and adding a v′w-edge for every v′ ∈ V ′.

We now claim that

(4) whenever TH =
{

T 1
H , T

2
H , . . . , T

k
H

}

is a spanning tree packing of H \ {u} and e1, e2
are edges of G\{u} that did not result from pinching an edge in

⋃k
i=3 T

i
H then there

is a spanning tree packing T =
{

T 1, T 2, . . . , T k
}

of G \ {u} such that

a) for every e ∈ E ∩ EH it holds that e ∈ T i
H if and only if e ∈ T i and
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b) e1 and e2 are contained in T 1 ∪ T 2.

The first step in the proof of (4) is to turn TH into a tree packing T =
{

T 1, T 2, . . . , T k
}

of G \ {u} by the following pinching procedure.
Begin with T i = T i

H for all i then pinch one edge in E ′ after the other at w and modify
the T i as follows (let e = xy be the next edge to be pinched).

(A) If e belongs to none of the T i
H we do not modify any T i.

(B) If e ∈ T i
H and no edges incident to w have been added to T i so far then we remove

e from T i and add both xw and yw to T i in order to replace e.

(C) If e ∈ T i
H and we have already added edges to T i before we also remove e from

T i. In this case adding both xw and yw to T i would result in a circle containing w
because there is either a x-w-path or a y-w-path in T i that does not use e. Hence
we only add the edge which is not contained in this circle to T i.

Note that the T i remain trees in every one of these steps and that no e ∈ E \ E ′ is
removed from or added to T i. So after pinching all of E ′ according to (A), (B) and (C)
we obtain k edge disjoint trees each of which spans VH .

Still some of the trees may not contain w. Before dealing with this problem, however,
we will take care of e1 and e2.

The edge e1 can only be contained in T i for some i if it has been added to T i applying
(B) or (C). Since e1 did not result from pinching an edge of T i for i > 2 this implies that
either e1 ∈ T 1 ∪ T 2 or e1 is not contained in any of the T i at all. Assume e1 /∈ T 1 ∪ T 2.

• If w /∈ T 1 adding e1 to T 1 makes T 1 a spanning tree of G \ {u}.

• If T 1 is a spanning tree of G \ {u} already then adding e1 to it completes a circle
that contains w. Remove the other edge incident to w in this circle from T 1 to
obtain a tree again.

So we may assume that e1 ∈ T 1 ∪ T 2, without loss of generality assume that e1 ∈ T 1. If
e2 /∈ T 1 ∪ T 2 we can use the same procedure as above to obtain e2 ∈ T 2. Since in this
case only T 2 is modified e1 remains in T 1.

Finally we need to ensure that all of the trees contain w. For this purpose define

L =
{

T i ∈ T | w /∈ T i
}

L′ =
{

e ∈ Ew | u /∈ e and ∀T i ∈ T : e /∈ T i
}

and let l = |L| and l′ = |L′|. All that is left to prove is that l′ − l ≥ 0 because in this
case we can add w to each tree in L using an edge in L′.

Note that l′− l is invariant under the above procedure for adding e1 and e2 to T 1∪T 2

because if w /∈ T 1 both values decrease by one while in the case that w ∈ T 1 they are
constant.

So it is sufficient to show that l′ − l ≥ 0 held before these modifications. At that time
there is an edge incident to w in G \ {u} which is not used by any tree for every vertex
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in V ′ and for every edge in E ′ for which (B) is not applied. Since (B) is applied exactly
once per tree containing w this implies that

l′ = |L′|

= |V ′|+ (|E ′| − |T \ L|)

= (|V ′|+ |E ′|)− (|T | − |L|)

≥ k − (k − l)

= l.

This completes the proof of (4). We will now distinguish the following subcases of case 2
in each of which we will apply the induction hypothesis and (4) to show that (∗) holds.
Note that we can apply the induction hypothesis to H because H has strictly less vertices
than G and the set of edges incident to u is a u-v-cut of minimal cardinality in H .

Case 2a: both a and b lie in H and there is an a-b-bypass of v in H \ {u},

Case 2b: both a and b lie in H and there is no a-b-bypass of v in H \ {u},

Case 2c: a lies in H and b is an inner point of an edge that has been split off to generate
an edge e′ ∈ E ′,

Case 2d: a lies in H and b is an inner point of a v′w-edge for v′ ∈ V ′,

Case 2e: both a and b lie on edges incident or are equal to to w.

Clearly these cases exhaust all possibilities where a and b could lie. So all we need to
show is that (∗) holds in every one of them.

In case 2a we can apply the induction hypothesis to find TH =
{

T 1
H , T

2
H , . . . , T

k
H

}

∈

T
k,2
H\{u}(a, b, v). We may without loss of generality assume that there is an a-b-bypass A

of v in T 1
H ∪ T 2

H . If A contains no edge of E ′ then it is also an a-b-bypass of v in the
spanning tree packing T obtained by (4).

So assume that there is at least one edge in E ′ that is used by A. Denote by ea the
first edge in E ′ that we pass through when we traverse A starting at a. Clearly ea is
contained in T 1 ∪ T 2. It is also easy to see that for one endpoint a′ of ea there is an
a-a′-subarc Aa of A that does not contain any inner point of an edge in E ′. Analogously
define eb and find a b-b′-subarc Ab of A that does not contain any inner point of an edge
in E ′ for an endpoint b′ of eb.

By (4) we can find a spanning tree packing T of G \ {u} such that there are two
trees in T whose union contains Aa, Ab and the edges a′w and b′w. Clearly the union
of the two paths and the two edges constitutes an a-b-bypass of v completing the proof
of case 2a.

Next consider case 2b. Since there is no a-b-bypass of v in H \ {u} every such bypass
in G\{u} used w. Thus such a bypass in G\{u} induces an a-a′-bypass and a b-b′-bypass
of v in H \ {u} where a′ and b′ are vertices in V ′ or inner points of edges in E ′.

We claim that in this case
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(5) there is a spanning tree packing TH =
{

T 1
H , T

2
H , . . . , T

k
H

}

of H such that T 1
H ∪ T 2

H

contains an a-a′-bypass and a b-b′-bypass of v.

By the induction hypothesis we can find a spanning tree packing Ta =
{

T 1
a , T

2
a , . . . , T

k
a

}

of H \ {u} such that T 1
a ∪ T 2

a contains an a-a′-bypass of v. We can also find a spanning
tree packing Tb =

{

T 1
b , T

2
b , . . . , T

k
b

}

of H \ {u} such that T 1
b ∪ T 2

b contains a b-b′-bypass
of v.

Since there is no a-b-bypass of v in H \ {u} we know that v is a cut vertex of H \ {u}
and that a and b lie in different components of H \ {u, v}. Denote by Ca the set of
vertices of the component in which a lies and let Cb = VH \ (Ca ∪ {u, v}). It is easy to
see that T i

a {Ca} is a spanning tree of (H \{u}) {Ca} and that T i
b {Cb} is a spanning tree

of (H \ {u}) {Cb} = (H \ {u})[VH \ Ca].
This in particular implies that there is only one component of H \ (Ca ∪ {u}) and (5)

follows from Proposition 2.24.
Now let TH be a spanning tree packing of H as claimed in (5) and let A be an a-a′-

bypass of v in T 1
H ∪ T 2

H .

• If A contains an inner point of an edge in E ′ let ea be the first edge in E ′ that we
pass through when we traverse A starting at a. Let a′′ be an endpoint of that edge
such that A contains an a-a′′ subarc A′ that does not use inner points of any edge
in E ′. In this case an a′′w-edge results from pinching ea ∈ T 1

H ∪ T 2
H

• Otherwise a′ ∈ V ′ holds. Let a′′ = a′ and A′ = A. In this case there is an a′′w-edge
which did not result from pinching any edge, in particular not from pinching an
edge in T i for i > 2.

Analogously define b′′ and B′ from a b-b′-bypass B of v.
Now we can by (4) find a spanning tree packing T =

{

T 1, T 2, . . . , T k
}

of G\{u} such
that T 1 ∪ T 2 contains A′, B′ and the edges a′′w and b′′w. Clearly the union of the two
paths and the two edges constitutes an a-b-bypass of w in T 1 ∪ T 2. This completes the
proof in case 2b.

Next let us turn to case 2c. In this case again the a-b-bypass of v in G \ {u} becomes
an a-a′-bypass in H \{u} where a′ is a vertex in V ′ or an inner point of an edge in E ′. By
the induction hypothesis we can find a spanning tree packing TH =

{

T 1
H , T

2
H , . . . , T

k
H

}

of H \ {u} such that T 1
H ∪ T 2

H contains an a-a′-bypass A of v. Analogously to case 2b
define a′′ and an a-a′′-subarc A′ of A.

Recall that in case 2c the point b is an inner point of an edge that has been split off
to create an edge e′ ∈ E ′. We claim that

(6) we can chose TH in a way that e′ ∈ T 1
H ∪ T 2

H .

If a and e′ lie in the same component of H \ {u, v} we may assume that a′ has been
an inner point of e′ in the first place and thus e′ ∈ T 1

H ∪ T 2
H holds.

So assume that a and e′ lie in different components. In this case we can choose a
vertex c in the component in which e′ lies. Since there is a c-b′-bypass of v in H \ {u}
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for every inner point b′ of e′ we can apply (5) to find a spanning tree packing with the
desired properties.

This proves (6) and thus we can assume that the edge b′′w of which b is an inner point
did not result from splitting off an edge in T i for i > 2.

By (4) we can find a spanning tree packing T =
{

T 1, T 2, . . . , T k
}

of G\{u} such that
T 1 ∪ T 2 contains A′ and the edges a′′w and b′′w whose union contains an a-b-bypass of
v which completes the proof of case 2c.

In case 2d once again apply the induction hypothesis to find a spanning tree packing
TH =

{

T 1
H , T

2
H , . . . , T

k
H

}

of H \ {u} such that T 1
H ∪ T 2

H contains an a-a′-bypass A of v
where a′ is a vertex in V ′ or an inner point of an edge in E ′. As in the previous two
cases define a′′ and an a-a′′-subarc A′ of A.

Now we can apply (4) to find a spanning tree packing T =
{

T 1, T 2, . . . , T k
}

of G\{u}
such that T 1 ∪ T 2 contains A′ and the edges a′′w and bw which clearly proves (∗) in
case 2d.

In case 2e apply the induction hypothesis to find k edge disjoint spanning trees of
H \ {u}. If the edges a′w and b′w on which a and b lie were created by pinching some
edges in E ′ we may permute the trees such that these edges lie in T 1 ∪ T 2 or in none of
the trees at all. We then apply (4) to find a spanning tree packing T =

{

T 1, T 2, . . . , T k
}

of G \ {u} such that T 1 ∪ T 2 contains both of a′w and b′w. This proves that (∗) holds
in case 2e.

Since there are no more cases left it also completes the induction step and thus the
proof of Lemma 5.3.

5.2 Gaps, Bridges and End Faithful Spanning Trees

Definition 5.6. Let G = (V,E) be a graph. A non-decreasing sequence (Vn)n∈N of
subsets of V is called exhausting if limn→∞ Vn = V .

Definition 5.7. Let G = (V,E) be a locally finite graph and (Vn)n∈N an exhausting
sequence of subsets of V . Define Gn = G{Vn}, i.e., Gn is the graph obtained from G by
contracting each component of G \ Vn to a single vertex.

• Given a spanning tree Tn of Gn we call a pair of components of Tn[Vn] a gap of Tn

in Gn.

If (C1, C2) is a gap and u ∈ C1 and v ∈ C2 we say that the gap separates u and v.

• Assume that Tk is a spanning tree of Gk and that Tk+1|Vk
= Tk for every k ∈ N

and let m < n be natural numbers.

– A gap (C1, C2) of Tn extends a gap (C ′
1, C

′
2) of Tm if the vertex set of C ′

i is a
subset of the vertex set of Ci for i ∈ {1, 2}.

Note that a gap (C ′
1, C

′
2) of Tm cannot be extended by multiple gaps in Tn.

Hence we will not distinguish between a gap and its extension. This allows
to talk about gaps in the sequence Tk.
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– A gap (C1, C2) of Tm terminates in Vn if it is not extended by a gap of Tn.
Note that in this case C1 and C2 both are contained in the same component
of Tn[Vn] and thus connected by a path in Tn that does not use any contracted
vertex.

– A gap that does not terminate is called a persistent gap in the sequence Tk.

• Given a gap Γ = (C1, C2) of Tn we say that a tree T ′
n ⊆ Gn bridges the gap Γ in Vn

if there is a path P from C1 to C2 in Tn ∪ T ′
n which does not use any contracted

vertex. The set of edges in P ∩ T ′
n is called a Γ-bridge in T ′

n.

A sequence T ′
n bridges a gap Γ in a sequence Tn infinitely often if there are arbi-

trarily large sets of disjoint Γ-bridges in T ′
n as n → ∞. Note that this can only be

the case if Γ is a persistent gap.

Proposition 5.8. Let G = (V,E) be a locally finite graph and (Vn)n∈N an exhausting
sequence of finite subsets of V . Furthermore let Tn be a sequence of spanning trees of
G{Vn} such that Tn|Vn−1

= Tn−1. If the sequence Tn contains no infinite gaps then
T := limn→∞ Tn is an end faithful spanning tree of G.

Proof. By Proposition 3.12 it is sufficient to show that T contains a (graph theoretical)
u-v-path for every pair u, v ∈ V and does not contain a topological circle.

By Proposition 3.15, T is a topological spanning tree and thus it does not contain a
topological circle.

To show that T is connected consider a pair u, v of vertices. Then there is an index
n0 ∈ N such that u, v ∈ Vn0

. This implies that there is a u-v-path in Tn0
. However,

this path might use some contracted vertices and thus it is not necessarily a path in T .
If this is the case, let Γ be the gap separating u and v. Now there is n1 such that Γ
terminates in Gn1

. Then in Tn1
there is a u-v-path that does not use any contracted

vertex and is thus also a u-v-path in T .

Proposition 5.9. Let G = (V,E) be a locally finite graph and (Vn)n∈N an exhausting
sequence of finite subsets of V . Furthermore let Tn, T

′
n be sequences of spanning trees of

G{Vn} such that Tn|Vn−1
= Tn−1 and T ′

n|Vn−1
= T ′

n−1. If the sequence T ′
n bridges every

persistent gap of the sequence Tn infinitely often then H := T ∪ T ′ is an end faithful
connected spanning subgraph of G where T = limn→∞ Tn and T ′ = limn→∞ T ′

n.

Proof. The graph H is connected because any pair of components of H would constitute
an infinite gap in the sequence Tn that is not bridged.

So we only need to show that any two rays γ1 and γ2 in H belonging to the same end
ω of G are equivalent in H . Assume that γi belongs to an end ωi of H for i ∈ {1, 2} and
that ω1 6= ω2.

Let n be big enough that ω1 and ω2 lie in different components C1
H and C2

H of H \Vn.
Note that C1

H and C2
H both are subsets of the same component CG of G \ Vn because γ1

and γ2 converge to the same end of G. For i ∈ {1, 2} denote by vi ∈ C i
H a vertex of γi

such that all consecutive vertices lie in C i
H as well (see Figure 5.2).
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Vn

CG

C1

H C2

Hγ1

γ2

v1

v2

Figure 5.2: Situation in the proof of Proposition 5.9

If v1 and v2 belonged to the same component of T then the unique path in T connecting
v1 and v2 would have to use vertices in Vn. Hence this path would correspond a circle
in Tn. So v1 and v2 belong to different components of T and there is an infinite gap Γ
that separates v1 and v2.

We know that Γ is bridged infinitely often, i.e., there are arbitrarily large sets P of
paths in H connecting v1 and v2 such that

∀P1, P2 ∈ P : P1 ∩ P2 ∩ E(T ′) = ∅.

If a path P ∈ P has non-empty intersection with Vn it has to use at least one edge of
T ′ with one endpoint in Vn because otherwise P |Vn

would be a cycle in Tn. Hence the
number of such paths is bounded by the number of edges with an endpoint in Vn. So if
|P| is large enough then there is a path P ∗ ∈ P that connects v1 and v2 such that P ∗

contains no vertex of Vn.
Consequently v1 and v2 lie in the same component of H \ Vn, a contradiction.

5.3 Compatible Cuts and a Partitioning of the Vertex

Set

Definition 5.10. Let G be a graph, let x, x1, x2, . . . , xk be vertices or ends of G and
let Si be a x-xi-cut for 1 ≤ i ≤ k. Let Ci be the component of G \ Si in which xi lies.
The set {S1, . . . , Sk} is said to be compatible if no Si contains an edge that connects two
points in Cj for 1 ≤ i, j ≤ k, otherwise it is said to be incompatible.

Definition 5.11. Let G = (V,E) be a graph, x ∈ V ∪ Ω and let Y ⊆ (V ∪ Ω) \ {x}.
Define

C
Y
x = {S | S is a x-y-cut of minimal cardinality for some y ∈ Y }

and denote by SY
x the power set of CY

x , i.e., the elements of SY
x are sets of cuts.

Now we define a binary relation ⊏ on SY
x ×SY

x . We say that S ⊏ U if

(D1) |S| ≤ |U|,
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(D2) S ⊆
⋃

U∈U U for every S ∈ S and

(D3) the component of G\
⋃

S∈S S in which x lies is exactly the component of G\
⋃

U∈U U
in which x lies.

Remark. Clearly S ⊏ U and U ⊏ S implies that
⋃

S∈S S =
⋃

U∈U U . It does however
not imply that S = U .

It is also an easily observed fact that the relation ⊏ is transitive and that whenever
U ∈ C

Y
x then S ⊏ U implies that S ∪ {U} ⊏ U ∪ {U}.

Proposition 5.12. Let G = (V,E) be a locally finite graph, x ∈ V ∪ Ω and let Y ⊆
(V ∪ Ω) \ {x}. Let U ∈ SY

x be finite. Then there is a compatible set S ∈ SY
x such that

S ⊏ U .

Proof. We will prove Proposition 5.12 by induction on |U|. For |U| = 1 there is nothing
to show because a set of one cut is always compatible.

For |U| > 1 let U ∈ U and apply the induction hypothesis to U \ {U} to obtain
a compatible set S ′

⊏ U \ {U} of cuts. By the above remark S ′ ∪ {U} ⊏ U . Now
distinguish the following two cases.

• If |S ′| < |U|−1 we can apply the induction hypothesis again to S ′∪{U} to obtain
S ⊏ S ′∪{U} where S is compatible. From the above remark it follows that S ⊏ U
which completes the proof.

• So now assume that |S ′| = |U| − 1. Choose a cut S1 ∈ CY
x fulfilling S ′ ∪ {S1} ⊏ U

with the property that the number of cuts S ′ ∈ S ′ that are incompatible with S1

is minimal. Note that there is such a cut because S ′ ∪ {U} ⊏ U .

If S1 is compatible with all cuts in S ′ we are done. So assume that there is a cut
S2 ∈ S ′ such that S1 and S2 are incompatible. For i ∈ {1, 2} let yi ∈ Y be such
that Si is a x-yi-cut of minimal cardinality.

For the next step of the proof we will need some definitions which are explained
in Figure 5.3. Denote by C0 the component of G \ (S1 ∪ S2) in which x lies.
Let Ci be the component of G \ Si in which yi lies. Let A1 be the set of edges
connecting C1 \ C2 to C0 and let B1 be the set of edges connecting C1 ∩ C2 to
C2 \C1. Analogously define A2 and B2. Let C be the set of edges between C1 \C2

and C2 \ C1 and let D be the set of edges connecting C0 and C1 ∩ C2.

From the definitions it is clear that A1, A2, B1, B2, C and D are pairwise disjoint
and that Si = Ai ∪ Bi ∪ C ∪ D. It is also clear that for (D1) to (D3) it does not
matter if an edge of B1, B2 or C is contained in any cut.

We will now define a new cut which – depending on where y1 and y2 lie – can
either be used to replace S1 and S2 so that we can apply the induction hypothesis
again or contradicts the assumption that the number of cuts S ′ ∈ S ′ that are
incompatible with S1 is minimal.
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C0

C1 \ C2

C1 ∩ C2

C2 \ C1

C2C1

A1 A2

B2 B1

C

D

Figure 5.3: Schematic drawing of the sets used in the proof of Proposition 5.12

– Suppose that y1 is contained in C1 ∩ C2. Since Si is a x-yi-cut of minimal
cardinality it follows that

|A1|+ |B1|+ |C|+ |D| ≤ |B1|+ |B2|+ |D| ⇒ |A1|+ |C| ≤ |B2| ,

|A2|+ |B2|+ |C|+ |D| ≤ |A1|+ |A2|+ |D| ⇒ |B2|+ |C| ≤ |A1| .

This implies that |C| = 0 and |A1| = |B2|. Hence

|A2|+ |B2|+ |C|+ |D| = |A1|+ |A2|+ |D|

and thus the cut defined by S∗ := A1 ∪ A2 ∪ D is a x-y2-cut of minimal
cardinality. It is easy to see that (S ′ \ S2) ∪ S∗

⊏ U and since (S ′ \ S2) ∪ S∗

has strictly less elements than U we can apply the induction hypothesis to
find a compatible set S ⊏ (S ′ \ S2) ∪ S∗

⊏ U .

– For y2 ∈ C1 ∩ C2 an analogous argument to the previous case works.

– Finally assume that y1 ∈ C1 \ C2 and y2 ∈ C2 \ C1. Then

|A1|+ |B1|+ |C|+ |D| ≤ |A1|+ |B2|+ |C| ⇒ |B1|+ |D| ≤ |B2| ,

|A2|+ |B2|+ |C|+ |D| ≤ |A2|+ |B1|+ |C| ⇒ |B2|+ |D| ≤ |B1| .

This in particular implies that |D| = 0 and |B1| = |B2| and thus

|A1|+ |B1|+ |C|+ |D| = |A1|+ |B2|+ |C| .
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Figure 5.4: Possible cuts and vertex sets in Lemma 5.13. Solid lines mark the boundaries
of the vertex sets while dashed lines mark cuts

So the cut S∗
1 := A1 ∪ B2 ∪ C is a x-y1-cut of minimal cardinality.

Clearly S ′ ∪ {S∗
1} ⊏ S ′ ∪{S1} ⊏ U . Whenever S ′ ∈ S ′ and S1 are compatible

it can easily be seen that S ′ and S∗
1 are compatible as well (recall that S ′

and S2 are compatible). The cuts S∗
1 and S2 are compatible while S1 and S2

are incompatible. So the number of cuts in S ′ that are incompatible to S∗
1

is strictly smaller than the number of cuts that are incompatible to S1. This
contradicts S1 minimizing that number.

Lemma 5.13. Let G = (V,E) be a locally finite graph. Then there is an exhaust-
ing sequence (Wn)n∈N of finite connected subsets of V and a sequence (Sn)n∈N of finite
compatible sets of finite cuts such that

• any two points in Wn+1 \Wn that are connected by a path in G \Wn are connected
by a path in G[Wn+1 \Wn],

• the component of G \
⋃

S∈Sn
S that contains Wn is finite,

• every S ∈ Sn is a ω-xn-cut of minimal cardinality in G/Wn for some end ω of G
where xn denotes the unique contracted vertex in G/Wn and

• every S ∈ Sn is contained in G[Wn+1].

Proof. Start with an arbitrary finite connected set W1. Now perform the following steps
for every n ∈ N:
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• For every end ω of G let Sω be an ω-Wn-cut of minimal cardinality. Clearly all
cuts Sω are finite. The component C of G \

⋃

ω∈Ω Sω that contains Wn is finite
because it does not contain any end. Hence there is a finite subset O of Ω such
that the component of G \

⋃

ω∈O Sω that contains Wn coincides with C.

Consider the graph G/Wn and apply Proposition 5.12 to find a compatible set Sn

of cuts each of which is an ω-Wn-cut of minimal cardinality for some ω ∈ O.

• Since Sn is a finite set of finite cuts we can find a finite connected set Wn+1 of
vertices such that G[Wn+1] contains every S ∈ Sn. It is an easy observation that
we can enlarge the set Wn+1 so that it contains all neighbours of Wn and that
G[Wn+1 \Wn] contains a path between any two vertices that are connected by a
path in G \Wn.

Clearly the required properties hold for the sequences Wn and Sn obtained by this
construction.

Remark. There is always exactly one finite component of G \
⋃

S∈Sn
S, namely the one

containing Wn. All other components have to be infinite because they must contain an
end.

Also note that G \
⋃

n∈N

⋃

S∈Sn
S has only finite components because every vertex is

eventually contained in Vn. Every such component is bounded by edges of one cut in Si

and finitely many cuts in Si+1 for some i ∈ N.
Let C be the vertex set of one such component and consider the graph G{C}. Let

u be the contracted vertex corresponding to the component of G \ C in which W1 lies.
Then the set of edges incident to u in G{C} is a u-v-cut of minimal cardinality for some
other contracted vertex v of G{C}. Note the connection to Lemma 5.3.

If G has only finitely many ends we can choose W1 big enough that there is only one
end in every component of G \Wn. In this case there are only two contracted vertices in
G{C} for every component C that does not contain W1. This in particular implies that
there is only one possible choice for the contracted vertex v in the above paragraph. We
will exploit this fact in the proofs of Theorems 1.13 and 1.14.

Lemma 5.14. Let G = (V,E) be a locally finite graph with finitely many ends. Then
there is a partition

V = V0 ⊎
⊎

ω∈Ω
n∈N

V ω
n

such that (let V ω
0 = V0∀ω)

(P1) every component of G \ V0 contains exactly one end,

(P2) each of the graphs G[V ω
n ] is finite and connected,

(P3) ω lies in
⊎

n≥m V ω
n for every end ω and m ∈ N,

(P4) apart from the edges inside the graphs G[V ω
n ] there are only edges from V ω

n to V ω
n−1

and to V ω
n+1 present in G and
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Figure 5.5: A possible decomposition of the vertex set of a graph with 4 ends as in
Lemma 5.14

(P5) the set Sω
n of edges between V ω

n−1 and V ω
n constitutes an ω-V ω

n−1-cut of minimal
cardinality for all ω and all n.

(see Figure 5.5)

Proof. If we choose W1 in Lemma 5.13 big enough that no component of G\W1 contains
more than one end then the vertex sets of the components of G \

⋃

n∈N

⋃

S∈Sn
S form a

partition with the desired properties.

5.4 Proof of the Main Results

Theorem 1.13. Let G be a locally finite 2k-edge-connected graph with finitely many
ends. Then there exist edge disjoint topological spanning trees T 1, T 2, . . . , T k such that
T i ∪ T j is an end faithful connected spanning subgraph of G for every i 6= j.

Proof. Let
V = V0 ⊎

⊎

ω∈Ω
n∈N

V ω
n

be a partitioning of the vertex set as in Lemma 5.14 and define

Vn = V0 ∪
⋃

ω∈Ω
i<n

V ω
i
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Obviously Vn is an exhausting sequence of finite subsets of V . We will now construct a
sequence Tn =

{

T 1
n , T

2
n , . . . , T

k
n

}

of spanning tree packings of Gn = G{Vn} such that

(1) T i
n+1 |Vn

= T i
n and

(2) for i 6= j every persistent gap in T i
n is bridged infinitely often by T j

n.

Then T i = limn→∞ T i
n is a topological spanning tree by Proposition 3.15. Whenever

i 6= j the edge sets of T i and T j are disjoint because T i
n and T j

n are edge disjoint for
every n ∈ N and by Proposition 5.9 the graph T i ∪ T j is an end faithful connected
spanning subgraph of G.

Regarding the construction of the sequence we will start by selecting an arbitrary
spanning tree packing T1 =

{

T 1
1 , T

2
1 , . . . , T

k
1

}

of G1. Such a spanning tree packing exists
because G1 can be obtained from the 2k-edge-connected graph G by a finite sequence of
contractions and is thus 2k-edge-connected.

We will now inductively define Tn+1 from Tn by selecting a spanning tree packing T ω
n

of G{V ω
n }\{u} for every ω where u denotes the vertex that resulted from contracting the

component in which V0 lies. Such a spanning tree packing always exists by Lemma 5.3.
Now Proposition 2.24 can be applied to find a spanning tree packing of Gn+1 for which
(1) holds.

In order to take care of (2) we will bridge one possible gap in every step of the
construction process. For this purpose let v1, v2, v3, . . . be an enumeration of the vertices
of G and choose a function

ϕ : N → N
2 × {(i, j) | 1 ≤ i, j ≤ k and i 6= j}

such that ϕ−1(s) is infinite for every s. This function will be used to make sure that every
persistent gap is bridged infinitely often in the following way: if ϕ(n) = (n1, n2, i, j) and
there is a gap Γ in T i

n that separates vn1
and vn2

we construct a Γ-bridge in T j
n+1 \ Vn.

So if the gap Γ is persistent there will be arbitrarily large sets of disjoint Γ-bridges since
ϕ−1(n1, n2, i, j) is infinite.

All that is left to show now is that we can construct such a Γ-bridge, i.e., that we can
choose the spanning tree packings of G{V ω

n } \ {u} accordingly. For this purpose let P
be the unique path in T i

n that connects vn1
and vn2

. Note that vn1
, vn2

∈ Vn and that P
uses at least one contracted vertex because Γ separates vn1

and vn2
.

Now for every end ω consider the graph G{V ω
n } \ {u} and select a spanning tree

packing as follows.

• If the corresponding contracted vertex in Gn is not contained in P choose an
arbitrary spanning tree packing T ω

n of cardinality k.

• If it is contained in P let vω be the contracted vertex corresponding to the compo-
nent in which ω lies and denote by aω and bω the vertices in V ω

n that are incident
to edges used by P (see Figure 5.6).

The graph G{V ω
n } is 2k-edge-connected and {e ∈ E(G{V ω

n }) | u ∈ e} is a u-vω-cut
of minimal cardinality. Furthermore G[V ω

n ] is connected, so in particular there is
an aω-bω-bypass of vω in G{V ω

n } \ {u}.
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Vn
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n
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ω3
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P
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b
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a
ω2 b

ω2

a
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b
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Figure 5.6: Construction of a Γ-bridge. The blue parts of the path correspond to the
path P in T i

n while every red path is a vω-bypass in T ω,i
n ∪ T ω,j

n for some ω.

So Lemma 5.3 can be used to find a spanning tree packing T ω
n = {T ω,1

n , . . . , T ω,1
n }

of G{V ω
n } \ {u} such that T ω,i

n ∪ T ω,j
n contains an aω-bω-bypass P ω of vω.

Assume that we have chosen the spanning tree packings T ω
n as described above and

applied Proposition 2.24 to obtain a spanning tree packing Tn+1 =
{

T 1
n+1, . . . , T

k
n+1

}

of
Gn+1. It is immediate that the union P ∗ of P and all of the P ω is a vn1

-vn2
-path in

T i
n+1∪T j

n+1 that does not use any contracted vertex. So P ∗ contains a Γ-bridge in T j
n+1.

All edges of this bridge are contained in T j
n+1 \ Vn because P ∗ |Vn

is a path in T i
n.

Theorem 1.14. Let G be a locally finite 2k-edge-connected graph with finitely many
ends. Then G has k − 1 edge disjoint end faithful spanning trees.

Proof. Construct a sequence of spanning tree packings as we did in the proof of Theo-
rem 1.13.

This time however, instead of Lemma 5.3 we will use Corollary 5.4 to obtain aω-bω-
paths that are contained in T i

n+1 and consequently the vn1
-vn2

-path P ∗ is completely
contained in T i

n+1. So if at some point in the construction process there is a gap sepa-
rating vn1

and vn2
it will eventually terminate.

Now use Proposition 5.8 to conclude that the limit of the spanning tree packings is
an end faithful spanning tree packing of G.

Theorem 1.12. Every locally finite 6-edge-connected graph with finitely many ends has
a Hamiltonian line graph.

Proof. By Propositions 4.5 and 4.6 it is sufficient to show that the graph G in question
has two topological spanning trees T1, T2 such that T1 ∩G is an ordinary spanning tree
of G. Any of Theorems 1.13 and 1.14 provides a way to find such a pair of topological
spanning trees.
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6 Conclusion

6.1 Summary

We have showed that under certain conditions high edge connectivity of a graph implies
that its line graph is Hamiltonian. More precisely we proved that the line graph of every
locally finite 6-edge-connected graph with only finitely many ends contains a Hamilton
cycle extending a result by Brewser and Funk [1] which additionally required all ends of
the graph to be thin.

In the proof of this result we encountered some interesting auxiliary results related to
spanning tree packings in both finite and infinite graphs.

As for finite graphs we proved that a finite 2k-edge-connected graph G always admits
a spanning tree packing of cardinality k such that every tree in the packing uses only
one edge in a given u-v-cut S of minimal cardinality where u and v are arbitrary vertices
of G. Furthermore we can choose this packing in a way that there are two trees in it
whose union contains a path that does not contain v between two given points a and b
in the graph if such a path exists in G \ S.

Based on this result we proved two results concerning spanning tree packings of infinite
graphs. We showed that every locally finite 2k-edge-connected graph G with finitely
many ends admits a topological spanning tree packing of cardinality k such that the
union of any two distinct topological trees in the packing is an end faithful connected
spanning subgraph of G. Finally, under the same conditions we proved the existence of
an end faithful spanning tree packing of G of cardinality k − 1.

6.2 Possible Directions for Further Research

Although Theorem 1.12 provides a sufficient condition for Hamiltonicity in locally finite
line graphs there is still room for improvements. Comparing the result to Georgakopou-
los’ conjecture which motivated it there are two obvious drawbacks. Firstly the graph
has to be 6-edge-connected instead of (as conjectured) 4-edge-connected and secondly
the proof does not work for graphs with infinitely many ends.

A closer look at the proofs of the main results reveils that there are not many steps
that need to be improved in order to deal with these two issues. In fact a suitable
refinement of one of Lemma 5.3 and Corollary 5.4 could provide a solution to both of
them.

As for edge connectivity, it is obvious that the only step in the proofs that depends
on the graph being 6-edge-connected is when we apply Lemma 5.3 or Corollary 5.4
respectively. So it comes as no surprise that an improvement of one of these two results,

47



CHAPTER 6. CONCLUSION

i.e., a similar result for 4-edge-connected graphs would be sufficient to deal with the
connectivity problem. As there are still many possible decompositions of the vertex set
fulfilling Lemma 5.14 it might not even be necessary to achieve such a result for all 4-
edge-connected graphs. One could also prove that there is a decomposition of the vertex
set where every part meets certain requirements and then prove that a result similiar
to Lemma 5.3 or Corollary 5.4 can be obtained for the minors that are induced by the
parts.

As mentioned before there is another refinement of one of the two results which could
be used to extend the proof to graphs with infinitely many ends. This follows from the
observation that Lemma 5.13 still gives rise to a decomposition of the vertex set if the
graph in question has infinitely many ends. The only problem that we need to overcome
is that there may be more than one contraced vertex in the induced minors that are
used for the proof, i.e., we need to construct edge disjoint spanning trees containing
paths which avoid more than one vertex in these induced minors. If this could be done
for some decomposition the proofs of the main results could also be shown to hold for
graphs with infinitely many ends.

Finally one might ask whether or not the main results remain true for non-locally
finite graphs. However, it will probably take a completely different approach to settle
this question since many of the proofs rely on the graph being locally finite.
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