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Abstract

Ensuring the correctness of distributed systems is a driving force behind the development of formal
methods. In contrast to informal methods like testing, verification guarantees to reveal hard-to-find bugs,
while synthesis even allows to create systems that are correct by construction. Distributed systems are
often parameterized regarding the number of processes, that is, they consist of a variable number of
processes that are either isomorphic or belong to a finite group of isomorphic processes. This scalability
makes known formal methods undecidable in general, since correctness needs to be shown for each of
the possibly infinitely many parameterized system instantiations with a particular size.

Nevertheless, research revealed several methods which allow to efficiently solve the Parameterized
Model Checking Problem (PMCP) and the Parameterized Synthesis Problem for certain system classes,
respectively. This thesis aims at establishing efficient Parameterized Synthesis for the class of guarded
systems. By reducing the model checking of parameterized guarded systems to the model checking
of several small-sized guarded systems, Emerson and Kahlon (2000) showed that the PMCP for this
class is efficiently decidable for special types of CTL?\X specifications. In order to provide efficient
Parameterized Synthesis, we lift these results to the synthesis domain. One major problem of the already
existing results is that they only apply to closed systems and do not consider fairness. However, the
usual goal of synthesis is to find an open system implementation under the aspect of fairness. For this
reason, we first develop an approach that directly uses the existing cutoffs for synthesizing open systems.
In order to achieve efficient synthesis under consideration of fairness, we then revisit and extend the
result of Emerson and Kahlon. Furthermore, we describe our implementation that solves the Bounded
Synthesis Problem for guarded systems. Based on our prototype, we finally evaluate the Parameterized
Synthesis of guarded systems using the newly obtained cutoffs.





Kurzfassung

Die Sicherstellung der Korrektheit verteilter Systeme ist eine treibende Kraft für die Entwicklung
formaler Methoden. Im Gegensatz zu informalen Methoden, wie beispielsweise Testen, garantiert die
Verifikation, dass schwer zu findende Fehler gefunden werden, während aus der Synthese per Definiti-
on korrekte Systeme resultieren. Oft sind verteilte Systeme bezüglich der Prozessanzahl parametrisiert,
das heißt sie bestehen aus einer variablen Anzahl von Prozessen, welche entweder isomorph sind oder
einer Gruppe isomorpher Prozesse angehören. Bekannte formale Methoden sind aufgrund dieser Ska-
lierbarkeit generell unentscheidbar, da die Korrektheit für jede der unendlich vielen verschieden großen
Systeme gezeigt werden muss.

Nichtsdestotrotz wurden mehrere Ansätze entwickelt, die erlauben, das Parameterized Model Checking
Problem (PMCP) sowie das Parameterized Synthesis Problem für gewisse Systemklassen effizient zu lö-
sen. Diese Arbeit beschäftigt sich mit der effizienten parametrisierten Synthese für die Klasse der Guar-
ded Systems. Emerson und Kahlon (2000) haben gezeigt, dass das PMCP für diese Systemklasse unter
Betrachtung eingeschränkter CTL?\X-Spezifikationen durch Model Checking einer finiten Anzahl klei-
ner Systeminstanzen effizient entscheidbar ist. Um zu zeigen, dass auch die parametrisierte Synthese
für diese Systemklasse effizient entscheidbar ist, heben wir diese Resultate von der Model-Checking- in
die Synthese-Domäne. Ein Hauptproblem dabei ist, dass die vorhandenen Resultate nur für geschlosse-
ne Systeme gültig sind und Fairness nicht unterstützen. Jedoch ist das Ziel von Synthese hauptsächlich
die Konstruktion offener Systeme unter Annahme fairer Environments. Zunächst entwickeln wir daher
einen Ansatz zur Synthese offener Systeme, welcher die bereits vorhandenen Resultate verwendet. Um
auch die Synthese von fairen, offenen Systemen zu ermöglichen, erweitern wir anschließend die Cutoff-
Resultate von Emerson und Kahlon um solche, welche Fairness unterstützen. Weiter beschreiben wir
sowohl unsere Implementierung, welche das Bounded Synthesis Problem für Guarded Systems löst, als
auch das zugrunde liegende SMT-Encoding. Basierend auf unserem Prototypen evaluieren wir schließ-
lich die Parameterized Synthesis von Guarded Systems unter Verwendung der neuen Cutoffs.
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Chapter 1

Introduction

1.1 Background and Motivation

Today we rely on computer systems in many fields of application. Especially in safety-critical areas like
medicine, transportation, aeronautics, astronautics, and so forth, faults in hardware and software have
dramatic consequences, ranging from millions of dollars worth of damage to loss of human life. [75] In
order to assure a constantly high product quality and minimize risks related to the development process,
undesired program behaviour must be detected as soon as possible. For ensuring that a system is correct,
developers rely on informal methods like extensive testing and simulation, but also on formal methods
like verification, where the system is proved to satisfy the specification. Synthesis even goes a step
further than verification, and aims at creating systems that are correct by construction, making risky and
cost-intensive manual development superfluous.

A plethora of real-world systems consist of multiple autonomous entities that constantly react on
some input (e.g., a button press), and interact with each other by exchanging some information. In some
of these so-called distributed reactive systems, entities are allowed to act (i.e., change their state) inde-
pendently from all other participants, and synchronize with them at certain points of time. The entities’
concurrency makes testing distributed systems very challenging, because the occurrence of some un-
desired behaviour in one process can strongly depend on the timing with respect to the overall system.
Thus, reproducing certain bugs is very hard, and the outcome of tests is not predictable: If the timing dur-
ing the test execution is such that the bug is revealed, the test fails, otherwise the test succeeds although
the system is not correct. By contrast, verification is unconditionally capable of revealing the presence of
such race conditions, while synthesis guarantees their absence if properly described in the specification.

Both recent advances in the field of formal methods and increasing computational power caused
formal methods to become feasible for industrial purposes. Especially the use of model checking, an
algorithmic verification approach, became widespread in industry because it allows to do a correctness
check in a fully automated manner [76]. Nevertheless, both the model checking problem and the syn-
thesis problem cannot yet be solved efficiently for all kind of systems. In particular, applying formal
methods to distributed systems of an arbitrary size has become a challenging field of research.

1.1.1 Distributed Reactive Systems

A reactive system is a permanently operating system which continually reacts to inputs provided by an
external entity (see Figure 1.1a), i.e., the environment [46]. By contrast, a transformational system (see
Figure 1.1b) can be represented as a mapping from an input value to an output value [60]. Reactive
systems are often distributed, that is, they involve multiple processes. Depending on the structure of the
system, processes are allowed to run in parallel. Each process possibly communicates with the environ-
ment, but also exchanges information with other processes in order to achieve overall consistency (e.g.,

1



2 1. Introduction

synchronization). Reasons for using distributed systems are speed, fault-tolerance as well as physical
distribution requirements [45].

Environment System

Inputs

Outputs

(a) Reactive System

System

Inputs

Outputs

(b) Transformational
System

Figure 1.1: Structure of reactive and transformational system

1.1.2 Model Checking

The growing interest for the verification of concurrent reactive systems arises from the fact that testing is
not capable of revealing timing-dependent bugs with certainty. Before the invention of model checking,
most approaches were either based on theorem proving or exhaustive state search [18]. Both suffer from
lacking scalability. On the one hand, theorem proving requires human intervention. This makes proving
large systems a time-consuming process. On the other hand, applying exhaustive state search to large
systems is infeasible due to the number of possible states. In the 1970s, Burgstall [15], Kröger [54],
Pnueli [64], and others proposed using Temporal Logics for proving programs. Originally invented by
linguists and philosophers, Temporal Logics allow to describe the ordering of events without explicitly
introducing the aspect of time. We distinguish between Linear Time Logics, e.g., LTL, and Branching
Time Logics, e.g., CTL (Computational Tree Logic). Pnueli [64] also demonstrated that Temporal Logics
allow to express properties of concurrent programs in an elegant way. Clarke and Emerson combined the
idea of using Temporal Logic specifications and efficient state exploration, and developed model check-
ing, an efficient algorithmic approach that allows to decide if a system satisfies a formal specification
in CTL. Clarke [18] points out that the word “model” does not refer to the fact that an abstraction of
the system is checked, but instead has its origin in the purpose of the approach, i.e., to check whether a
system is a model for the specification.

In contrast to verification techniques like theorem proving, model checking is fully automatic and
does not require the user to manually construct proofs. Additionally, if the model checking algorithm
finds a state that violates the specification, it is able to construct a counterexample, which helps the
developer to better identify the causes of the violation. Moreover, model checking can be applied to
specifications of partial correctness. For example, model checking can be used for checking only safety
properties (e.g. mutual exclusion). Both LTL and CTL? (a Temporal Logic which unites the express-
iveness of LTL and CTL) model checking have been shown to be PSPACE-complete with respect to the
size of the specification [70, 20, 21]. The model checking problem for distributed systems can be solved
by considering the distributed system as a single centralized system.

A major drawback of model checking is that it suffers from a so-called state explosion, making the
approach inefficient when checking systems with a large number of states, including distributed systems
with a large number of entities. Improvements like Symbolic Model Checking [14, 61] and Bounded
Model Checking [12], partial order reduction [74, 42] etc. made it possible to check complex systems
whose state space is orders of magnitudes larger than the state space of systems which could be checked
with the original algorithm.

Furthermore, there exist techniques that reduce the complexity for distributed systems model check-
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ing. These techniques include, e.g., compositional reasoning, which allows to verify the particular com-
ponents in isolation [10], abstraction, which reduces the complexity by modelling simple (e.g. arithmetic)
relations [22], and symmetry reduction [47], which is based on the observation that many distributed sys-
tems contain many identical processes.

1.1.3 Synthesis

The synthesis problem is to find a system that satisfies a given formal specification. In contrast to
verification, synthesis does not check whether an existing system is correct, but constructs a system
that is correct with respect to the specification. Thus, synthesis automates the step of implementing the
system, changing the system development process from programming systems to defining the desired
systems’ properties. A detailed specification which fully describes the behaviour of the desired system
is a prerequisite for synthesis.

The problem of determining whether there exists a system that satisfies the specification is the
realizability problem. The realizability problem and the synthesis problem were first formulated by
Church [17]. Rabin [67] as well as Büchi and Landweber [13] solved the synthesis problem for specific-
ations written in the monadic second-order logic of one successor (S1S) in two different ways. While
Rabin’s solution is based on infinite trees, Büchi and Landweber developed an algorithm that is based on
finding a winning strategy for infinite games. Synthesis of specifications in LTL [64] was introduced by
Pnueli and Rosner [65], who provided a synthesis algorithm and showed that the problem is 2EXPTIME-
complete regarding the specification. Their algorithm with double-exponential runtime consists of the
following steps. First, the specification is converted into a non-deterministic Büchi automaton. This
conversion yields a single exponential blow-up of the state space. Second, Safra’s determinization al-
gorithm is applied in order to retrieve a deterministic Rabin automaton with a number of states that is
double-exponential regarding the size of the original specification. Finally, an emptiness check is applied
to the tree automaton and the infinite tree that represents the implementation. Kupferman and Vardi [57]
point out that Safra’s construction is difficult to implement, and propose an alternative approach that goes
without the determinization step. In this algorithm the LTL formula is first translated into a universal co-
Büchi tree automaton, and then converted into a non-deterministic parity tree automaton. This approach
is simpler than the Safra construction, and thus easier to implement. Moreover, the improved “Safraless”
translation enables BDD-based implementations, and also provides support for optimizations. [55]

The theoretical lower bound for the synthesis of LTL specifications is double exponential. Never-
theless, there exist certain fragments within LTL that are sufficient for real-world specifications, and can
be efficiently synthesized. One popular example of such an LTL fragment is GR(1), for which Piterman
et al. provide a polynomial synthesis algorithm [63]. A further challenge is the synthesis of distributed
systems. As already mentioned, the model checking problem is PSPACE-complete for both centralized
and distributed systems. However, Pnueli and Rosner proved that the synthesis of systems with more
than one entity (i.e., process) is undecidable in general, and non-elementary decidable for systems with
hierarchical architectures. As in the general case of synthesis, there exist approaches, which efficiently
find solutions for specific subsets of synthesis problems [53, 16].

Finkbeiner and Schewe introduced the concept of information forks, and showed that architectures
with such information forks are undecidable [37]. One major aspect of synthesis is that the size of
the implementation is left implicit, whereas it is explicitly provided in case of model checking [69].
Finkbeiner and Schewe observed that many specifications are satisfied by systems with a small number
of states. Using this observation, they proposed a semi-algorithm to solve the synthesis problem [69].
Their bounded synthesis algorithm consists of the following steps. First, the maximum size of the desired
implementation is restricted a priori. Second, the specification is converted into a universal co-Büchi
Tree Automaton (UCT). Then, the language emptiness check of the UCT is reduced to the problem
of assigning a label to each state of the run graph of the UCT on the implementation. Finally, the
annotation is encoded in SMT, allowing to describe the synthesis problem as an SMT problem. If the
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SMT problem is satisfiable, a valid system is found, otherwise the maximum system size is increased,
followed by solving the bounded synthesis problem for the new upper bound. Using an SMT solver
entails greater flexibility compared to a purely automaton-based emptiness check. While it is difficult
or even impossible to encode additional system requirements into an automaton, adding corresponding
SMT constraints is simple, which is especially favourable in case of distributed synthesis.

1.2 Problems Addressed in this Thesis

Many real-world distributed systems are based on a structure that enables scalability regarding the system
size. For example, consider bus protocols, which support any number of slaves, or cache coherence
protocols, which are designed to ensure consistency of an arbitrary number of caches. The structure of
these systems is also called architecture. It defines the interface (inputs and outputs) of each process as
well as the communication between processes. In case of arbitrarily scalable systems, we usually assume
that all processes are isomorphic (they share the same implementation) or that there is a finite number of
isomorphic process groups. For example, consider a token ring network of isomorphic processes. The
system is arbitrarily scalable because it can be extended by inserting an additional entity and connecting
it with its neighbours (see Figure 1.2a). If a process is removed, the two previous neighbour processes
are connected with each other.

T0

T1

T2

T3

T4

T5

T6

T7

T8

(a) Token Ring Architecture

T 1
1 T 2

1

T 3
1 T 4

1

T 1
1

T 2
1

T 1
1 T 2

1 T 3
1

(b) Guarded Systems Architecture

Figure 1.2: Distributed systems based on parameterized architectures

A parameterized architecture is a family of architectures which only vary in the number of processes.
Given implementations of system processes, the goal of verifying a parameterized architecture against a
specification is to check whether the specification holds for all system sizes. Parameterized architecture
synthesis (abbreviated to parameterized synthesis) aims at constructing a parameterized architecture that
is correct for each system size. Suzuki [72] showed that the model checking problem for parameterized
architectures with respect to a fixed implementation is undecidable independent from the specification
language. However, efficient model checking against special specification types is possible for some
parameterized architectures. This is possible because of the existence of small-sized systems which
cover all possible behaviours of any larger system regarding the particular specification. Therefore, only
a finite number of small systems needs to be considered.

In this thesis, we consider the parameterized architecture of guarded systems (see Figure 1.2b). Ori-
ginally described by Clarke and Emerson [19], guarded systems consist of multiple groups of isomorphic
processes, all based on a set of so-called process templates. Processes communicate to each other by re-
porting their current state. Each process’ behaviour is influenced by the states of all other processes.
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Emerson and Kahlon [35] describe how model checking of guarded systems against three different types
of restricted CTL? specifications can be efficiently realized.

This thesis aims at enabling efficient synthesis for guarded systems. We consider the cutoffs proved
by Emerson and Kahlon [35] for the purpose of model checking guarded systems, and aim at lifting their
results to synthesis. Two main problems need to be tackled. First, the results of Emerson and Kahlon are
for closed systems, that is, systems which cannot be influenced by some external entity. For our purpose,
this restriction is insufficient, since the majority of real-world distributed systems expect some stimuli.
For example, a memory cache provides a signal which allows a control unit to trigger a write action,
while a bus arbiter has some input which is used by an external entity to signal a bus request.

The second problem to be solved is that the specification types from [35] do not allow to express fair-
ness. In the context of synthesis, this possibly results either in unrealizability (because the specification is
too strong) or undesired trivial solutions for the implementation (because the specification is too weak).
To tackle this problem, we need to extend the specification by so-called fairness constraints — formulae
which ensure that the system only needs to satisfy the specification in fair cases. A further problem
arising from introducing fairness constraints is that the extended specifications are not compatible with
the specification types from [35]. As a result, we cannot use the existing cutoffs for the synthesis under
consideration of fairness.

1.3 Outline of the Solution

We pursue two different approaches. The first approach is to directly use the cutoff results of Emerson
and Kahlon [35] for synthesis. Here, we synthesize a closed system which is finally converted into an
open system. To this end, we introduce a set of conversion rules, which allow to convert each arbitrary
open system into a corresponding closed system and vice versa. However, this approach has two major
drawbacks. On the one hand, the conversion yields an exponential blow-up of the state space. On the
other hand, fairness is not considered.

In the second approach, we show that the existing cutoff results can be used for open systems directly.
Moreover, we amend the existing cutoff results for guarded systems under the aspect of fairness. In
particular, we introduce fairness constraints such that unfair behaviour regarding the environment does
not cause trivial synthesis results. Moreover, we focus on introducing cutoffs that allow us to detect
whether there exists some large system where at least one process or even the whole system deadlocks.

After introducing the new cutoff results, we modify the semi-decision bounded synthesis algorithm [69]
in order to synthesize guarded systems. Finally, we develop a prototype which implements this algorithm,
and evaluate synthesis results for a set of small examples.

1.4 Structure of this Thesis

This document is organized as follows. In Chapter 2 we give an overview of related work in the field of
module checking (model checking of open systems), parameterized model checking, and parameterized
synthesis. We introduce the preliminaries in Chapter 3, and define the considered system model in
Chapter 4. Chapter 5 summarizes the work of Emerson and Kahlon [35]. We describe the theoretical
aspects of parameterized synthesis for guarded systems in Chapter 6. Chapter 7 deals with the SMT-
based encoding of the bounded synthesis algorithm for guarded system synthesis in SMT. In Chapter 8
we describe our prototype implementation and practical experiments. Chapter 9 concludes our work with
a discussion of our results and an overview about future work.
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Chapter 2

Related Work

2.1 Model Checking Open Systems

Kupferman and Vardi [58] investigate the complexity of model checking open systems (module check-
ing) against specifications in linear and branching time logics. They show that CTL module checking
is EXPTIME-complete, whereas CTL? module checking is 2EXPTIME-complete. Moreover, the mod-
ule checking problem is harder (PTIME-complete) than model checking (NLOGSPACE) with respect
to the program complexity, i.e., the size of the implementation (under consideration of a fixed specific-
ation) [58]. However, both model checking and module checking for universally quantified temporal
logics are in PSPACE with respect to the specification, and in NLOGSPACE with respect to the sys-
tem size. Kupferman and Vardi [56] further consider systems with incomplete information, i.e., systems
with variables that are not visible for the environment. For universal temporal logics, the complexity of
module checking systems with incomplete information is equivalent to the complexity of the standard
module checking problem. For non-universal temporal logics, the module checking problem is harder
under the aspect of incomplete information.

2.2 Parameterized Model Checking

Apt and Kozen [5] show that the Parameterized Model Checking Problem (PMCP) is undecidable in
general. Undecidability even holds for ring-based systems with isomorphic processes [72]. As described
by Arons et al. [6], the research community follows two approaches in order to tackle the undecidabil-
ity problem. On the one hand, research focuses on identifying fragments for which the PMCP can be
reduced to the standard model checking problem. On the other hand, heuristic-based solutions for the
PMCP are developed. In the following, we consider publications that are based on the first approach.
The PMCP is well studied for systems classes that use some sort of token as a communication primitive.
Emerson and Namjoshi [34] prove that the PMCP is decidable for unidirectional token-passing rings
of isomorphic processes and special properties in prenex indexed CTL?\X. To this end, they show that
the PMCP for these cases is equal to the model-checking problem for systems up to a small number
of processes (cutoff). In the considered system model, tokens are only used for signaling, and do not
carry values [32]. In [32], Emerson and Kahlon consider the PMCP for the more general system model
of message-passing bidirectional token rings with isomorphic processes and LTL\X properties. There
exist cutoffs for such systems if the number of token value changes is bounded. Moreover, Emerson
and Kahlon provide cutoffs for unidirectional message-passing rings with multiple tokens and a bounded
number of value changes. Clarke et al. [24] consider token-passing systems over arbitrary graphs consist-
ing of isomorphic processes that are not direction-aware. For LTL\X properties, they propose a decom-
position approach, where a large network graph is split into a finite set of small (constant-sized) networks,

7
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which can be model-checked efficiently. There does not exist such a decomposition for indexed CTL\X
specifications [24].

As proved by Aminof et al. [3], the PMCP is generally undecidable for arbitrary topologies and
both k-indexed LTL\X and CTL\X properties if processes are direction-aware, that is, each process is
allowed to choose at least the token sending or receiving direction. For topologies without direction-
aware processes, there exist cutoffs for arbitrary topologies and k-indexed properties in CTL?

d\X, where
k is the number of process quantifiers and d is the path quantifiers’ nesting depth [3]. Although this result
implies that there exists a cutoff for each full-indexed CTL?

d\X formula, the existence of an algorithm for
computing the particular cutoff is not guaranteed. Indeed, there exist certain topologies, for which the
PMCP is undecidable regarding prenex indexed LTL\X and CTL\X specifications.

In [35], Emerson and Kahlon show decidability for the PMCP for disjunctive and conjunctive guarded
synchronization skeletons [19] and prenex indexed CTL?\X properties by providing cutoffs. Emerson
and Kahlon also consider the PMCP of various cache coherence protocol types [31] and restricted CTL?

properties. To this end, they introduce a framework consisting of restricted system types. General snoopy
based protocols are modeled as guarded broadcast protocols, while invalidation-based snoopy protocols
are modeled as initialized broadcast protocols. Safety properties of parameterized protocols modeled as
guarded broadcast protocols are model-checked using a so-called abstract history graph. This graph ab-
stracts the system’s global state, yielding a state space that is independent from the number of processes
in the system. For the more restricted model called initialized broadcast protocols, efficient PMCP is
established by the existence of a constant cutoff. Moreover, Emerson and Kahlon describe a reduction
of the PMCP for directory based protocols to the PMCP for snoopy protocols.

Emerson and Kahlon examine the PMCP for action-based systems under consideration of different
communication primitives in systems with a single control process C and an arbitrary number of “user
processes” U [30]. These include conjunctive and disjunctive Boolean guards, pairwise and asynchron-
ous rendezvous as well as broadcast actions. The considered specification types are (p1) properties over
C in LTL\X, (p2) properties overC in LTL, (p3) regular properties given as regular automata, and (p4) ω-
regular properties given as ω-regular automata. Table 2.1 summarizes the results presented in [30]. Note
that LTL\X is less expressive than LTL, and LTL is less expressive than ω-regular automata. In the
context of action-based systems, disjunctive guards and pairwise rendezvous are equally expressive, and
strictly less expressive than asynchronous rendezvous. Hence, the model checking problem for systems
with pairwise rendezvous can be solved by model checking the corresponding disjunctive guarded sys-
tems (where cutoffs for the PMCP are known [35]). Thus, the PMCP under consideration of LTL\X
properties over the control process C is decidable for systems with pairwise rendezvous. By contrast,
the PMCP for properties of type 1 are undecidable for asynchronous rendezvous and broadcast actions.
The PMCP for type 2 and type 4 properties is decidable for disjunctive guards and pairwise rendezvous,
and undecidable for all other communication primitives. For type 3 properties, the PMCP is undecid-
able for conjunctive guards, and decidable for the other communication primitives. Moreover, Emerson
and Kahlon consider systems that use combination of protocols. They show that combinations includ-
ing conjunctive guards yield undecidability, whereas the PMCP for systems with broadcast actions and
asynchronous rendezvous is decidable for type 3 properties. Emerson and Kahlon restrict the model of
conjunctive guarded systems based on observations of cache coherence protocols. On the one hand, they
require a conjunctive guarded system to be initializable, that is, each state has an unguarded transition to
the initial state. On the other hand, transitions must not be blocked by any process which is in its initial
state. In other words, each guard must include all initial states. These restrictions yield decidability for
the PMCP for systems with conjunctive guards and any other communication primitive under consider-
ation of regular properties (see Column 1 in Table 2.1). The following recent publications consider the
cutoff results from [35]. Aminof et al. [2] reduced pairwise rendezvous to disjunctive guards. This result
implies decidability for the PMCP of systems with pairwise rendezvous synchronization (by the cutoffs
for disjunctive guarded systems from [35]). Spalazzi and Spegni [71] revisit the cutoffs for conjunctive
guarded systems to the enable efficient model checking of timed automata.
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Restricted
Conjunctive

Guards

Disjunctive
Guards

Pairwise
Rendezvous

Asynchronous
Rendezvous

Broadcast

p1 3 [35] 3 [35] 3 [41] 7 [30] 7 [30]
p2 7 [30] 3 [30] 3 [30] 7 (by p1) 7 (by p1)
p3 7 3 [30] 3 [30] 3 [28] 3 [36]
p4 7 (by p2) 3 [30] 3 [30] 7 (by p2) 7 [36]

Table 2.1: Decidability of the PMCP for action-based systems (3 is decidable, 7 is undecidable)

2.3 Parameterized Synthesis

Undecidability for the general case of distributed synthesis is shown by Pnueli and Rosner [66]. In [48],
Jacobs and Bloem show that the parameterized synthesis problem for uni-directional token rings with iso-
morphic process implementations and LTL\X properties is undecidable. They provide a semi-decision
procedure based on bounded synthesis [37] that allows to synthesize arbitrary token-passing networks
(without direction awareness) given LTL\X specifications. To this end, they apply the PMCP results
of Emerson and Namjoshi [33] (for unidirectional token-rings) and Clarke et al. [24] (for other token-
passing networks) to synthesis. Furthermore, Jacobs and Bloem [49] provide a synthesis framework
that describes how to obtain a semi-decision synthesis algorithm by lifting verification algorithms for
particular system classes to synthesis. The synthesis framework considers different types of PMCP res-
ults. Cutoffs which only depend on the architecture and on the specification (static structure-independent
cutoffs) as well as cutoffs which additionally depend on the size of the implementation (static structure-
dependent cutoffs) can be applied to parameterized synthesis directly. For static structure-independent
cutoffs, the resulting semi-algorithm for synthesis consists of the following steps. First, the cutoff is
calculated. Second, the bounded synthesis problem is encoded in SMT for system sizes (number of
processes) up to the determined cutoff. Finally, solving the SMT problem yields an implementation in
case of satisfiability, otherwise, the bounded synthesis problem is solved for an increased number of
states. Synthesis under consideration of static structure-dependent cutoffs is similar. However, due to
the cutoffs’ dependence on the process size, the considered system size changes in each loop iteration.
Therefore, the first step in each loop iteration is computing the current cutoff. Dynamic cutoffs are not
computed based on syntactic properties of the architecture, the specification, or the implementation [49],
but instead require an exploration of the actual implementation. Such cutoffs cannot be lifted to synthesis
easily because of their dependence on the implementation, which is given in case of verification, how-
ever, a priori unknown in case of synthesis. Further methods for parameterized verification described
in the synthesis framework, i.e., induction-based approaches, abstraction-based approaches, and regular
model checking, have not been considered for parameterized synthesis so far.

Khalimov et al. [52] extend and improve the approach introduced in [48] considering two different
aspects. On the one hand, the original SMT encoding is optimized. For example, the original top-
down encoding [37] is replaced by a more compact bottom-up encoding. On the other hand, general
optimizations are described. These include using incremental SMT solving, modular synthesis, and
specification strengthening, a technique which is sound, but not complete. In [51], Khalimov et al.
present PARTY, an implementation of the bounded synthesis approach that is capable of synthesizing
monolithic as well as parameterized systems. Alur et al. [73] propose a semi-automatic synthesis method
similar to CEGIS [44] for designing protocols based on communicating variants of finite state machines.
Here, the algorithm requires a temporal logic specification and a set of concolic snippets which describe
the transition update behaviour. First, a synthesis engine consisting of an expression enumerator and an
SMT solver, completes each transition such that the transition update corresponds to the given scenarios.
Then, a model-checker checks the resulting implementation against the given specification. The design
process is finished if the protocol implementation satisfies the specification, otherwise the user needs to
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amend the implementation with respect to the counter-example provided by the model-checker, and then
restart the synthesis tool.



Chapter 3

Preliminaries

3.1 Labelled Transition System

A labelled transition system (LTS) is a quadruple which consists of a state set T , an initial state init ∈ T ,
a transition function δ, and a state labelling function o. It takes inputs E from an external entity (i.e., the
environment), and provides outputs O, where the assignment of O depends on the transition system’s
state.

T = (T, init, δ, o)

init ∈ T
δ : (T × BE)→ T

o : T → BO

Note that BX (also P(X)) denotes the set of possible assignments to a set of variables X . The
transition function δ determines the successor states given the current state and the current assignment
of input variables. A path of an LTS is a possibly infinite sequence (t1, e1) (t2, e2) (t3, e3) . . . of pairs,
where ti ∈ T denotes the state, and ei ∈ BE is the input valuation in the i-th step [49]. A run of an LTS
is a maximal path starting in the initial state. A trace is a sequence o(t1) o(t2) . . . of output (also called
state label) assignments corresponding to a given path.

An LTS is closed if there are no inputs. In this case, the transition function only depends on the
current state. By contrast, an open LTS has a non-empty set of inputs. The output function assigns a
value to each output variable. An LTS is state identifiable if the output function is such that each state is
uniquely identifiable given an assignment of O.

∀t, t′ ∈ T : t 6= t′ → o(t) 6= o(t′)

An input-preserving LTS is an LTS where the last read input value is part of the current state’s label,
i.e., E ⊆ O, and for each transition t e−→ t′, oE(t′) = e, where oE : T → BE is the valuation of
the output subset E in the particular state. Because an LTS enters the initial state before receiving any
environment inputs, we use the empty symbol ε as the last read input value in the initial state, also called
initial direction.

Non-Deterministic Labelled Transition System In a non-deterministic LTS, successor states are
determined in a non-deterministic way. That is, the current state and current environment input are not
mapped to a single successor state, but to a set of possible successor states. In order to model such a
system, we define δ to be a relation.

δ : (T × BE)× T

11
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If a tuple (t, e, t′) is in δ, there exists a transition t e−→ t′ (i.e., a transition from t to t′ labelled with
input e). In a non-deterministic closed LTS the transition relation can be defined as δ : T × T .

A strongly connected component (SCC) is a subset of the state set T , where each state is (not neces-
sarily directly) reachable via δ from each other state.

3.2 Temporal Logics

Temporal logics extend propositional and first-order logic by operators which allow to specify terms that
describe the evolution of a certain expression’s truth value over time. Consider a set of atomic proposi-
tions AP . Each atom p ∈ AP has one particular truth value in classical logic. By contrast, in temporal
logic it has one truth value in each time step. We distinguish between temporal logics that are based on a
linear-time perspective, and temporal logics that are based on a branching-time perspective [9]. We first
focus on the branching time logic CTL?, and then introduce the more restricted logics CTL and LTL.

3.2.1 Computational Tree Logic?

Computational Tree Logic? (CTL?) is a branching time logic [29]. It distinguishes between state for-
mulae and path formulae. A well-formed Computational Tree Logic? state formula over AP has the
following syntax.

Φ ::= true | a | Φ ∧Ψ | ¬Φ | Eϕ

where a ∈ AP is an atomic proposition, Φ and Ψ are state formulae, and ϕ is a path formula. Path
formulae have the following syntax.

ϕ ::= Φ | ϕ ∧ ψ | ¬ϕ | Xϕ | ϕUψ

where Φ is a state-formula, and ϕ, ψ are path formulae [9]. Moreover, we use the following derived
operators.

ϕ ∨ ψ is equivalent to ¬(¬ϕ ∧ ¬ψ)

ϕ =⇒ ψ is equivalent to ¬ϕ ∨ ψ

ϕ ⇐⇒ ψ is equivalent to (ϕ =⇒ ψ) ∧ (ψ =⇒ ϕ)

Fϕ is equivalent to trueUϕ

Gϕ is equivalent to ¬F¬ϕ

ϕWψ is equivalent to (ϕUψ) ∨ Gϕ

Aϕ is equivalent to ¬E¬ϕ

The operators E and A are called path quantifiers. Let T = (T, Init, δ, o) be a transition system with
state set T , initial states Init ⊆ T , transition relation δ, and labelling function o : T → BAP . We use π
to denote a path t0 t1 t2 . . . of the transition system, and πi with i ≥ 0 to denote a suffix ti ti+1 . . . of
π. Moreover, let a ∈ AP be an atomic proposition, t ∈ T a state, Φ and Ψ state formulae, and ϕ, ψ path
formulae. Then the semantics the satisfaction relation |= is defined as follows [9].
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For state formulae,

t |= true

t |= a iff a ∈ o(t)

t |= Φ ∧Ψ iff t |= Φ and t |= Ψ

t |= ¬Φ iff t 6|= Φ

t |= Eϕ iff there exists a path π starting in t that satisfies π |= ϕ

T |= Φ iff ∀t ∈ Init : t |= Φ

For path formulae,

π |= Φ iff t0 |= Φ

π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

π |= ¬ϕ iff π 6|= ϕ

π |= Xϕ iff π1 |= ϕ

π |= φUψ iff ∃j ≥ 0 : πj |= ψ and ∀ 0 ≤ i < j : πi |= ϕ

3.2.2 Linear-Time Temporal Logic

Linear-time temporal logic (LTL) was defined by Pnueli [64]. In contrast to branching time logics like
CTL?, it provides only limited support for branching sequences. The syntax of LTL is defined as follows.

ϕ ::= ⊥ | true| a | ϕ ∧ ψ | ¬ϕ | Xϕ | ϕUψ

where a is an element of the set of atomic propositions AP , and ϕ, ψ are valid LTL formulae. As
for CTL?, we can introduce derived operators ∨, =⇒ etc. based on this syntax. Note that the LTL
syntax does not allow the use of path quantifiers (E, A). However, every well-formed LTL formula is
also a well-formed CTL? path formula. Furthermore, the semantics of an LTL formula ϕ is equivalent
to the semantics of the CTL? state formula Aϕ. Hence, LTL is a sublogic of CTL?. The logic LTL\X is
equivalent to LTL without the X operator.

3.2.3 Computational Tree Logic

Computational Tree Logic (CTL) is a sublogic of CTL? [19]. Here, each path formula must be immedi-
ately preceded by a path quantifier (A, E). This restriction results in the following syntax for CTL.

Φ ::= true | a | Φ ∧Ψ | ¬Φ | EΦ

ϕ ::= XΦ | ΦUΨ

where a ∈ AP is an atomic proposition, Φ and Ψ are state formulae, and ϕ is a path formula. The
semantics is as defined for CTL?.
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3.2.4 Linear-time Temporal Logic and Computational Tree Logic

Both CTL and LTL are sublogics of CTL?. The expressiveness of CTL and LTL is incomparable, i.e.,
each logic contains properties that cannot expressed in the other. In particular, the restriction that each
path formula must be preceded by a path quantifier in CTL applies to a subset of LTL formulas which
cannot be expressed in CTL. For example, consider the LTL formula G(r → Fg), where r is the request
signal and g is the grant signal of an arbiter. The equivalent CTL? formula is AG (r → Fg), which is
not supported by CTL. Valid CTL formulas like AG (r → AFg) or AG (r → EFg) do not have the same
semantics. LTL and CTL? formulas express that for all paths, if there is a request r, a grant g must
eventually follow in the same path, whereas the CTL formulas express that for all paths, if there is a
request r, there must eventually be a grant g in all paths (some path, respectively). However, in CTL, we
cannot force a grant in the path in which the request is received.

3.3 Satisfiability Modulo Theories

Many real-world problems can be described as constraint satisfaction problems [27]. One popular ex-
ample is the propositional satisfiability (SAT) problem, which is to decide whether a propositional logical
formula over Boolean variables is satisfiable. The satisfiability modulo theories (SMT) problem extends
the classical NP-complete SAT problem by supporting theories and thus allows to formalize problems
that require additional expressiveness. Examples for such background theories are arithmetics, arrays,
and the theory of bit vectors. SMT solvers therefore unite the capabilities of a) SAT solvers, which aim
at finding assignments for propositional variables that satisfy logical formulae, and b) theory solvers,
which rely on decision procedures that exploit the mathematical properties of the particular theory in
order to determine solutions for variables having a type defined by the theory (a so-called sort) .

Like SAT solvers, SMT solvers perform a case-analysis. To this end, most implementations rely on
systematic search. Here, the search space consisting of all possible variable assignments is represented
as a tree, where each vertex corresponds to the propositional variables, and the (two) outgoing edges
of each vertex represent the variable assignments true and false, respectively. Each path from the root
node to a leaf node represents an assignment to all variables. The goal of systematic search is then to
systematically explore the tree and to find an appropriate path. The most widely used systematic search
algorithm in the field of SAT solving is DPLL, which operates on CNF formulae [26].

Most well-performing SMT solvers basically combine Boolean reasoning (DPLL, in particular) with
theory reasoning (provided by the particular theory solver) as illustrated in Algorithm 1. In this so-called
offline lazy approach the given formula is first converted in to a propositional CNF formula (Line 1). To
this end, variables and expressions belonging to a background theory are abstracted by fresh propositional
variables. For example, the arithmetic expression (a ≥ 0) is replaced by a propositional variable x, and
x == (a ≥ 0). Then, the DPLL algorithm determines whether there exists a satisfying assignment for
the propositional formula F (Line 3). If there is no such assignment, there is also no solution such that ϕ
is satisfied, thus the algorithm returns UNSAT. Otherwise, the resulting assignmentM (model) is applied
to the background theory (e.g., x == true is equivalent to a ≥ 0). In Line 6, the theory solver tries to
find solutions for sort variables under consideration of the newly derived constraints. If an assignment
is found, the solver terminates by returning SAT. Otherwise, a further loop execution is done. In order
to avoid that the DPLL algorithm reports the same propositional variable assignment in succeeding runs,
the formula F is extended by a so-called blocking clause. [43]

Real-world SMT solvers extend this basic algorithm by a plethora of optimizations. For example,
the theory solver is usually used for checking the theory-side consistency of partial propositional vari-
able assignments (online integration). Moreover, theory deduction rules are used to prune the search
space (theory propagation). A further challenge in SMT solving is the combination of multiple theories.
Here, it depends on the particular theories how they can be combined and whether their combination is
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Data: Propositional formula ϕ under theory T
Result: SAT or UNSAT

1 F ← CNF_bool(ϕ)
2 while true do
3 res,M ← check_SAT(F )
4 if res == true then
5 M ′ ← to_T(M)
6 res← check_T(M ′)
7 if res == true then
8 return SAT
9 else

10 F ← F ∪ blocking_clause(M)
11 end
12 else
13 return UNSAT
14 end
15 end

Algorithm 1: Offline lazy SMT solving approach [43]

decidable. Strongly disjoint theories, which do not share common data types (and consequently have no
common variables) can be easily combined by solving each part of the formula under consideration of the
particular background theory. Theories which can be combined that way are e.g., the theory of arithmet-
ics and the theory of bit vectors. Theories that do not have any common predicate and function symbols,
but possibly have common sort symbols (disjoint theories) can be combined using the Nelson-Oppen
procedure [62] if they are stably infinite, i.e., every formula satisfiable in the theory is also satisfiable
in an infinite model of the theory. Extensions of the Nelson-Oppen method enable the combination of
non-stably infinite theories, and non-disjoint theories [26].

Most theories are only decidable in their quantifier-free fragment. Yet defining an SMT problem often
involves the use of quantifiers. For this reason, many SMT solvers implement an incomplete approach to
support quantifiers using existential quantifier elimination and heuristics-based instantiation of universal
quantifiers [50].

3.4 Tree Automaton

An alternating tree automaton U is a tuple (Σ,Υ, Q, q0,∆,Φacc) where Σ is a finite set of labels, Υ
is a finite set of directions, Q is the finite set of states, q0 is the initial state, and Φacc is an acceptance
condition [38]. The transition function ∆ : (Q× Σ)→ B+(Υ×Q) maps each state-label-pair (q, σ) ∈
Q× Σ to a positive Boolean combination of state-direction pairs. In a non-deterministic alternating tree
automaton the disjunctive forms of formulas in the image set of ∆ are such that each disjunct contains
at most one element of Q × {v} for each v ∈ Υ. An alternating tree automaton where the image of ∆
is restricted to conjunctions of elements of Q×Υ is called universal. A universal and non-deterministic
tree automaton is deterministic [38].

A run of an alternating tree automaton U on an LTS T results in a run graph G = (G,E) with nodes
G (G ⊆ Q × T ) and edges E. Note that the directions of the automaton’s Υ set serve as inputs for
the LTS, while the LTS outputs correspond to the automaton’s current label values. A run graph has
the following properties. First, the initial state (q0, t0) must be in G. Second, for each state (q, t), all
elements of the set {(q′, v) ∈ Q×Υ | ((q, t), (q′, δ(t, v)) ∈ E}must satisfy the formula ∆(q, o(t)) [38].
Thus, there must exist a corresponding transition in both the tree automaton and the LTS for each edge
(q, t)→ (q′, t′). To be precise, the current LTS outputs need to be such that ∆(q, o(t)) is true, and given
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the automaton’s label v, t′ is a successor of t regarding the LTS transition function δ.

A path of the run graph is a sequence of graph vertices g1 g2 g3 . . ., where g1 = (q0, init) and each
vertex in the sequence has a single successor. A run graph is accepting if every infinite path satisfies
the alternating tree automaton’s acceptance condition. There exist several acceptance conditions. For
example, the alternating parity tree automaton defines a coloring function α : Q → C ⊂ N. A path
g1 g2 g3 . . . satisfies the parity condition if the maximum of all infinitely often occurring values in the
corresponding coloring function sequence α(g1)α(g2)α(g3) . . . is even. The overall run graph is ac-
cepted if all paths satisfy the parity condition. Alternating Büchi tree automata define a set F ⊆ Q of
accepted states. The acceptance condition is satisfied if all infinitely often visited states are in F . By
contrast, the co-Büchi acceptance condition is satisfied if states in F are visited only finitely often. Both
the Büchi and the co-Büchi acceptance condition can be expressed by the parity condition. Here, the
coloring function’s image is restricted to a set with two elements ({1, 2} for the Büchi condition, {0, 1}
for the co-Büchi condition), and elements in F are mapped to the respective higher number (2 for the
Büchi condition, 1 for the co-Büchi condition) [38].
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(a) Example LTS
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(b) Büchi Tree Automaton for LTL
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(c) Run graph for UCT on LTS

Figure 3.1: Büchi Automaton and its run on a small LTS

For example, consider the LTS shown in Figure 3.1a. It has two states T = {t0, t1} with initial
state t0, an input signal r (request), and an output signal g (grant). The Büchi tree automaton (BTA)
in Figure 3.1b accepts all runs that satisfy the the LTL formula G(r → F g). This automaton U =
(Σ,Υ, Q, q0,∆, F ) has labels Σ = BE × B, directions Υ = BE , Q = {q0, q1} with initial state q0,
transition function ∆, and the set of accepting states F = {q0}.

The run graph for the BTA on the given LTS is shown in Figure 3.1c. The node (q0, t0) corresponds to
the initial state of both the BTA and the LTS. Whenever there is a request (r raised), the LTS immediately
moves to state t1 (granting state), and thus the BTA remains in q0. The transition from t1 back to t0 also
satisfies the UCT’s loop edge on q0, therefore the UCT remains in q0. The same applies to the loop
transitions for t0 and t1. For this reason, the rejecting UCT state q1 is not present in run graph node and
the LTS does not contain a rejecting run.

3.5 Distributed System

3.5.1 Architecture

Jacobs and Bloem [49] define an architecture as a tuple A = (P, env, V,E,O), where P is a finite set of
processes that contains the environment process and system processes P− = P \ {env}. V is the set of
so-called system variables, i.e., outputs of all processes in P . E = {Ei ⊆ V |i ∈ P−} contains a set of
input variables for each system process, and O = {Oi ⊆ V |i ∈ P} defines the outputs of each process
such that V =

⋃
· i∈P Oi. System variables have exactly one origin (each is present in Oi for a single
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i ∈ P ), but can appear in an arbitrary number of input sets Ei. In a fully informed architecture, Ei = Ej

for all i, j ∈ P−. A set of system processes with |P−| ≥ 1 is called distributed system.

3.5.2 Implementation

Given an architecture A, the implementation of a system process i ∈ P− with inputs Ei and outputs Oi

is an LTS Ti = (Ti, initi, δi, oi), with δi : Ti×BEi ×Ti and oi : Ti → BOi [49]. Let {T1, . . . , Tn} be the
set of system process implementations, where Ti is an implementation for a particular Pi ∈ P−. Then,
the composition of all system process implementations is an LTS S = (S, initS , δS , oS) with inputs ES ,
schedulings SchedS , and outputs OS , where

• ES = (E1, . . . , En)

• SchedS = B× · · · × B︸ ︷︷ ︸
n times

• OS =
⋃

i∈P− Oi

• S = T1 × · · · × Tn

• initS = (init1, . . . , initn),

• oS : S → BOS

oS(t1, . . . , tn) = o1(t1) ∪ · · · ∪ on(tn)

A state s ∈ S of the composition is called global state. The scheduling signals sched = (sched1, . . . , schedn)
are provided by a scheduler, which is part of the environment and decides for each process whether it
is allowed to move. Let δi for each system process implementation Ti be a transition function (that is,
δi : Ti × BEi → Ti). Then, δS : S × ES × SchedS → S is as follows.

δS((t1, . . . , tn), (e1, . . . , en), (sched1, . . . , schedn)) = (δ′1(t1, e1, sched1), . . . , δ′n(tn, en, schedn))

δ′i(ti, ei, schedi) =

{
δ(ti, ei) if schedi
ti otherwise

For compositions of system process implementations Ti with transition relations δi : (Ti × BEi) × Ti,
δS : (S × BES × SchedS)× S is as follows.

((t1, . . . , tn), (e1, . . . , en), (sched1, . . . , schedn), (t′1, . . . , t
′
n)) ∈ δS ⇔(

sched1 ∧ (t1, e1, t
′
1) ∈ δ1 ∨ ¬sched1 ∧ t′1 = t1

)
∧ · · · ∧

(
schedn ∧ (tn, en, t

′
n) ∈ δn ∨ ¬schedn ∧ t′n = tn

)
Each component ti ∈ Ti of s corresponding to a certain system process implementation is a so-called
local state, also written as s(i). Given a global input e ∈ ES , the local input for process i is denoted as
e(i). A configuration of a system is a tuple (s, e, sched) ∈ S × BES × SchedS .

3.5.3 Paths and Runs

A path of a composition (also called global path) is a possibly infinite sequence of configurations
(s0, e0, sched0) (s1, e1, sched1) . . . where si+1 = δS(si, ei, schedi), and (si, ei, schedi, si+1) ∈ δS , re-
spectively. Given a global path x = (si, ei, schedi) (si+1, ei+1, schedi+1) . . ., a local path x(p) =
(si(p), ei(p)) (si+1(p), ei+1(p)) . . . is its projection to a single process p. A run of a composition is
a maximal path starting in the global initial state.

A synchronous system is a composition which only allows configurations where all processes are
scheduled. Considering such systems, the configuration’s SchedS part can be omitted. By contrast, an
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asynchronous system is a composition that only allows configurations where a single process is sched-
uled. The configuration of an asynchronous system can also be defined as a triple (s, e, p), where s and e
are as described above, and p ∈ P− is not a tuple of Boolean variables, but contains the scheduled pro-
cess. Consequently, a path of an asynchronous system is a sequence (s0, e0, p0) (s1, e1, p1) . . ., where

∀p′ ∈ P− : (p′ 6= pi) → (si+1(p
′) = si(p

′)), and there is a transition si(pi)
ei(pi)−−−→ si+1(pi). Likewise,

a run of an asynchronous system is defined as above for the general case.

A scheduling is fair if a certain fairness condition is satisfied. Furthermore, a fair run is a run that
is based on a fair scheduling. An example for a fairness condition is the requirement that each process
is scheduled infinitely often. In Section 6.2.3 we describe and analyze appropriate fairness conditions
under consideration of our system model.

3.6 Model Checking and Synthesis

Given an architecture A, a specification ϕ is a logic formula over system variables V of A that repres-
ents the desired behaviour of a distributed system. Specifications are usually conjunctions of so-called
properties. Each property is an implication

assumption→ guarantee

where the left-hand side describes preconditions, e.g., environment behaviour etc., and the right-hand
side is the required system behaviour in case all preconditions are fulfilled. If the left-hand side of a
property is true, the particular guarantee must hold unconditionally. This is equivalent to a property that
only consists of the guarantee part.

We distinguish between two types of properties. A safety property describes that some “bad thing”
must never happen, while a liveness property describes that some “good thing” will eventually hap-
pen [59, 1].

T

r1

g1

T

r2

g2

· · · · · · T

rn

gn

Figure 3.2: Arbiter processes

For example, consider a set of arbiter processes, as shown in Figure 3.2, where each process gets
a request signal ri from the environment, and provides a grant signal gi to the environment. Let the
specification for a system of two processes be as follows.

G(r1 → F(g1)) ∧ G(r2 → F(g2)) ∧ G(¬(g1 ∧ g2))

The specification consists of three properties. All properties are without precondition (assumption),
thus the guarantees have to hold unconditionally. The first two conjuncts are liveness properties. They
stipulate that each request must be finally granted (something “good” must eventually happen). By
contrast, the third property is a safety property, since it describes the absence of something “bad” (i.e.,
mutual exclusion).

A synchronous distributed system satisfies the specification ϕ if for all runs (s0, e0) . . . the set
(o(sj) ∪ ej) satisfies ϕ in each step j. A formula ϕ is satisfied by an asynchronous system if for all
runs (s0, e0, p0) (s1, e1, p1) . . ., the set (o(sj) ∪ ej) satisfies ϕ in each step j. Note that for asynchron-
ous systems, some (liveness) properties are possibly only realizable if the scheduling is fair. For such
properties, the assumptions part needs to contain an appropriate fairness constraint such that the system
only needs to satisfy the guarantee if the fairness condition holds.
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3.6.1 Model Checking and Synthesis

The model checking problem is to decide whether the composition of a given set of implementations for
system processes P− satisfies the specification ϕ, that is, (T1, . . . , Tn) |= ϕ. [7]

Given an architecture A and a specification ϕ, the distributed synthesis problem is to decide whether
there exists an implementation Ti for each i ∈ P− such that the specification is satisfied by the com-
position S of these processes, i.e., A,S |= ϕ. If there exists such an implementation, the specification
is realizable [49]. Pnueli and Rosner [66] showed that the distributed synthesis problem is undecidable
for the case where system processes are not fully informed. The synthesis of distributed systems based
on fully informed architectures is decidable, but the complexity of this problem is nonelementary [37].
Moreover, the synthesis problem for asynchronous systems has been shown to be undecidable [68].

3.6.2 Bounded Synthesis

The bounded synthesis problem is a specialization of the general synthesis problem stated in Section 3.6.1.
Here, the goal is to find implementations with a given maximal size (i.e., number of LTS states) that sat-
isfy a certain LTL specification ϕ. More precisely, given an architecture A, a specification ϕ, a set of
bounds b = {b1, b2, . . . , bn}, and a bound bS , the goal is to find an implementation Ti for each sys-
tem process i ∈ P− such that ϕ is satisfied, |Ti| ≤ bi, and for the composition S, |S| ≤ bS . [38, 49]
Finkbeiner and Schewe [69, 38] showed that bounded synthesis is semi-decidable, and introduced an
algorithm to solve the bounded synthesis problem. This algorithm consists of the following main steps:

1. Fix the maximum size of system process implementations by setting bounds b and bS

2. Construct a universal co-Büchi tree automaton (UCT) which accepts all runs that violate ϕ.

3. Solve the problem of finding process implementations such that there is no run in the compos-
ition S that is accepted by the UCT. If there is no such system, increase the bound values, and
continue with the first step.

In the second step, the LTL formula is converted into a UCT as described by Kupferman and Vardi [57].
Here, the LTL specification ϕ is negated, and then converted into a nondeterministic Büchi word auto-
maton (NBW). As a final step of the conversion, a UCT that simulates the NBW is constructed. The
algorithm yields a single exponential blow-up caused by the construction of the NBW that accepts ϕ.

q0 q1

true

r ∧ ¬g

¬g

Figure 3.3: Universal co-Büchi Tree Automaton for the property G(r1 → F(g1))

The resulting tree automaton U = (Σ,Υ, Q, q0,∆, F ) accepts all “bad” runs, i.e., runs that viol-
ate property ϕ. For example, consider Figure 3.3, which corresponds to the arbiter liveness property
G(r1 → F(g1)), where r1 is the request signal provided by the environment to the first system process
and g1 is the grant signal provided by the first system process. As defined by the co-Büchi condition, a
path is “bad”, if a rejecting state is visited infinitely often. For our example, a bad path is obviously a path
where a request is raised, but not granted. Let G = (G,E) be the run graph of U on the desired system
composition S (in our example a single LTS). If the system composition violates the specification, there
is a path in the run graph such that the sequence of Q components contains some rejecting state infinitely
often.
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We observe that finding a valid implementation is equivalent to asking for a run graph that contains
only paths with finitely many rejecting UCT states. Finkbeiner and Schewe [38] solve this problem as
a labelling problem (which is encoded and solved as an SMT instance). They introduce an annotation
function λ : Q × S → N ∪ {_} that assigns either a natural number or an empty symbol to each vertex
(q, s) of the run graph. The annotation function must satisfy the following constraints:

• λ(q0, initS) = 0

• Each state (q′, s′) ∈ G that is reachable from a state (q, s) with λ(q, s) 6= _ must be annotated
such that λ(q′, s′) . λ(q, s), where . ∈ {>,≥}, and > iff q′ ∈ F .

If there exists a labelling that satisfies the above conditions, there exists a valid implementation. In [38],
the authors describe how the annotation problem is encoded in SMT. States are represented by natural
numbers S = {1, . . . , bS}. The transition function is represented as an uninterpreted function δS :
S × BES → S.1 For each output o ∈ OS , a function o : S → B is introduced.

Because we not only want to find the composition S, but the actual implementations T1, . . . , Tn, we
add for each system process i a projection di : S → Ti that maps each global state to a local state of the
particular process implementation. Here, Ti = {1, . . . , bi}. Moreover, we need to ensure that each local
transition δi only depends on inputs that the particular process gets from the environment. Likewise,
each process’ output must only depend on the particular local state. In case of asynchronous systems,
we need additional constraints to ensure that for each global transition s→ s′, s and s′ only differ in the
scheduled process’ local state.

3.6.3 Parameterized Synthesis

A parameterized architecture is a function Π : N → A that selects an architecture A ∈ A for a given
number of processes n ∈ N . [49] A parameterized specification Φ is a formula in temporal logic (LTL,
CTL, CTL?) over indexed variables that are universally or existentially quantified in prenex form [49].
The instantiation of a parameterized specification for n ∈ N processes, written as Φ(n), is a specifica-
tion ϕ that is obtained by replacing all process-quantified formulae by their instantiations.

• ∀i : h(i) is instantiated to
∧

i∈[1,n] h(i)

• ∃i : h(i) is instantiated to
∨

i∈[1,n] h(i)

Parameterized architectures require that architecture instantiations in the class A are similar, that is, the
implementation of system processes are either isomorphic or belong to a group of implementations. Con-
sider a parameterized architecture with isomorphic processes, i.e., ∀A ∈ A∀i, j ∈ P− : Ti = Tj , where
Ti denotes the implementation of system process i ∈ P−. In other words, there is a single implement-
ation T for all system processes. Then, a parameterized architecture Π and a process implementation
satisfy a parameterized specification Φ if for all n ∈ N , Π(n), (T , . . . , T︸ ︷︷ ︸

n times

) |= Φ(n). This is written as

Π, T |= Φ [49]. Parameterized architectures with multiple groups of isomorphic processes are defined
in a similar way (see Chapter 4).

The parameterized model checking problem (PMCP) is to decide whether Π, T |= Φ holds for a given
parameterized architecture Π, a parameterized specification Φ, and a system process implementation T .
The parameterized synthesis problem for isomorphic processes is to find an implementation T such that
Π, T |= Φ [49].

1A transition relation can likewise be represented as an uninterpreted function δS : S×BES ×S → B that is true for some
tuples (s, e, s′) ∈ (S × BES × S) iff there is a transition from s to successor state s′ with inputs e.



Chapter 4

System Model

In this section, we first introduce the class of guarded systems, and then define the parameterized model
checking and synthesis problem for this system class.

4.1 Guarded System

4.1.1 Process Template and Guarded Protocol

A guarded system is an asynchronous distributed system, where each system process is based on a so-
called process template. Given a set of environment inputsEk and a set of outputsOk, a process template
is a special form of LTS Tk = (Tk, initk, δk, guardk, ok), where Tk denotes the set of states, initk ∈ Tk
is the initial state, δk : Tk × BEk × Tk is the transition relation, and ok : Tk → BOk is the output
(state labelling) function, as for standard LTSs defined in Chapter 3. Let the tuple (T1, T2, . . . , Tk) with
template index k ∈ [1, k] define the process templates of a system, also called system type. Then, the
guard assignment function guardk : Tk × BEk × Tk → BG with G =

⋃
k∈[1,k] BOk maps each transition

in δk to a so-called guard. Every element of BG can be seen as a subset of G. We call such a subset
a guard set. Elements contained in a guard set are denoted as guard variables. Because each guard
variable represents one assignment of output variables for a particular process template, we also say that
a guard variable represents an “observable state” [7]. All processes that are based on the same process
template form a group of isomorphic processes. In a guarded system, there is a finite number of such
process groups.

The guarded protocol (T1, T2, . . . , Tk)(n1,n2,...,nk) is the interleaving parallel composition of n1 in-
stances of the first process template, n2 instances of the second process template, and so forth [7]. We
call the tuple (n1, . . . , nk) multiplicity vector. The set of the nk instances that are based on template Tk
are also denoted as Tk-processes. By T i

k we denote the i-th instance of process template Tk. The global
state of a guarded protocol (T1, . . . , Tk)(n1,...,nk) is a tuple s = (t11, . . . , t

n1
1 , t

1
2, . . . , t

nk
k ), and s(T i

k ) = tik
denotes the local state of process T i

k . sj(T i
k ) is the local state of process T i

k in the j-th step. Likewise,
given the environment input e, e(T i

k ) denotes the local input for process T i
k , and ej(T i

k ) the local input
for process T i

k in the j-th step. By s(Tk) (also abbreviated to s(k)) we denote the tuple that contains the
local states of all instances based on process template Tk (also called Tk-states). e(Tk) denotes the inputs
for these processes.

4.1.2 Guard Evaluation

Consider a guarded protocol with k process templates {T1, . . . , Tk}, and let N =
∑

k∈[1,k] |BOk |. Given

a global state s = (t11, . . . , t
n1
1 , t

1
2, . . . , t

nk
k ), a local transition t etrans−−→ t′ of a process T i

k is enabled if

21
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the following conditions are satisfied: a) the environment inputs e(T i
k ) match etrans, and b) the guard

resulting from guardk(t, etrans, t
′) is satisfied, as defined in the following.

Let state : G→
⋃

k Tk be a bijective mapping from guard variable to a set of process template states
for which the particular guard variable is true. The state guard function maps the current global state to
a global state guard, and g ∈ G is true in the global state guard for s iff there exists a process p 6= T i

k

(i.e., the process whose transition is considered) such that s(p) ∈ state(g).

The guard evaluation function eval_guard : BG×BG → B takes a global state guard and a transition
guard, and evaluates to true iff the transition guard is satisfied by the current state guard. We distinguish
between two kinds of guard evaluation functions, namely disjunctive guards and conjunctive guards. In
a disjunctive guarded system, the transition guard is satisfied if there is at least one guard variable which
is contained in both the desired transition’s guard and the current global state guard. In a conjunctive
guarded system, the transition guard is satisfied if all guard variables in the current global state guard are
contained in the transition guard. Moreover, the transition guard must contain at least one guard variable.
We define an additional restriction for conjunctive guards: Processes that are in their respective initial
states do not cause the disabling of any transition [35]. To this end, each transition guard set must contain
all guard variables that correspond to the process templates’ initial states. A transition is unguarded if
the system never reaches a global state that causes the guard evaluation function to evaluate to false for
the transition’s guard. Such transitions are equivalent to the transitions of standard LTSs.

In a guarded protocol where each template’s output function is injective, we can omit the concept
of guard sets and define the guard evaluation using state sets. That is, the guard assignment function
guardk is a mapping to BTk , and the guard is evaluated by directly comparing it with the global state set
(excluding the particular process’ state). Furthermore, we use the term 1-guard to denote a special guard
set. In a disjunctive system, a 1-guard is a guard set with cardinality 1. In a conjunctive guarded system,
a 1-guard contains N − 1 guard variables, where N denotes the overall number of guard variables in the
system.

4.1.3 Path and Run

Configuration, path and run are defined as for asynchronous systems. A guarded protocol configuration
is a triple (s, e, p) with global state s, environment input e, and scheduled process p (or ⊥ if there is no
scheduled process). A path is a possibly infinite sequence of configurations (s0, e0, p0) (s1, e1, p1) . . . ,
where sj+1 is the result of a local transition from sj of process pj . In each step the following conditions

must be satisfied: a) the scheduled process pj takes the enabled transition sj(pj)
ej(pj)−−−−→ sj+1(pj), and

b) for all other processes p 6= pj , sj+1(p) = sj(p). These requirements imply that the environment
must schedule a process which is enabled with respect to the given inputs and the global state. pj = ⊥
iff there is no process with at least one enabled transition in step j. For paths of guarded protocols, the
environment must not change the inputs of unscheduled processes, i.e., for all p, ej+1(p) = ej(p), unless
p = pj . This definition is similar to the definition of an action-based system.

A run of a system is a maximal path starting in the initial state [7]. A path x stutters in step j if
xj−1 = xj . The destuttering of x, destutter(x), is obtained by removing all stuttering steps from x. Two
paths x and y are stutter-equivalent (x ' y) if destutter(x) = destutter(y). Two systems are stutter-
equivalent if for each infinite run of the first system, there is a corresponding stutter-equivalent infinite
run in the second, and vice versa [7]. Stutter-equivalent paths and systems satisfy the same formulas
in LTL\X, i.e., they are indistinguishable by any LTL\X formula. A run is locally deadlocked for some
process p if there is some step j such that p is disabled for all sj′ , ej′ with j′ ≥ j. A run is globally
deadlocked if it is locally deadlocked for each process [7].
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4.2 Restrictions

A guarded system requires that all guards are evaluated using the same guard evaluation function. In
other words, it is not possible to mix conjunctive and disjunctive guards. We do not consider modifying
the system model in order to support mixtures of guard evaluation functions, because the parameterized
model checking problem was shown to be undecidable for such systems [30].

A further restriction is that the system model allows to define at most one transition for each tuple
(t, e, t′). Consequently, transition systems as shown in Figure 4.1a are not directly supported. This
problem does not apply to disjunctive guards. Given such an unsupported system (Figure 4.1a), we
construct an equivalent supported one by transition replacement. To this end, we merge the two guard sets
such that guardk(t, e, t′) = g, and g = g1 ∪ g2. In other words, we build a disjunction of guard variables
contained in the two guard sets (which are themselves interpreted as disjunctions by the disjunctive guard
evaluation function). The resulting equivalent LTS for our example is shown in Figure 4.1b.

t t′
e
g2

e
g1

(a) Guarded template with
unsupported transitions

t t′e
g

(b) Equivalent solution
(disjunctive guards)

Figure 4.1: The system model does not support multiple transitions with the same source state, destination state,
and input label.

This merging is not applicable to conjunctive guarded systems. Let g be a merged transition guard. If
a certain state guard satisfies g1 (g2), it also satisfies g. However, the opposite direction is not necessarily
true. For example, consider the case where guard g is satisfied, and one subset of the global state guard
satisfies g1, but not g2, whereas another subset of the global state guard satisfies g2, but not g1. Under
the assumption that the environment provides inputs e, the merged transition (t, e, t′) guarded with g is
enabled, although both of the two original transitions are disabled.

A solution to this problem is to redefine the system model in order to support multiple transitions for
the same triple (t, e, t′). That is, the process template function δk is modified such that it also includes
the guard information.

δk : Tk × BEk × BG × Tk
The guard assignment function guardk therefore becomes superfluous. However, we forego this solution
in our work, since it significantly increases the problem size of the synthesis instance, and was not shown
to be indispensable in the course of our evaluation.

4.3 Model Checking and Synthesis

The model checking problem for guarded systems is to decide whether a given protocol (T1, . . . , Tk)(n1,...,nk)

satisfies a specification ϕ, i.e., (T1, . . . , Tk)(n1,...,nk) |= ϕ. The (local) deadlock detection problem is to
decide whether for a system (T1, . . . , Tk)(n1,...,nk) there exists a (locally) deadlocked run [7]. Given a
multiplicity vector (n1, . . . , nk) and a specification ϕ, the template synthesis problem is to find process
templates (T1, . . . , Tk) such that (T1, . . . , Tk)(n1,...,nk) |= ϕ. Given a multiplicity vector (n1, . . . , nk), a
tuple of bounds (b1, . . . , bk) ∈ N× · · · ×N, and a specification ϕ, the bounded template synthesis prob-
lem (also denoted as bounded synthesis problem for guarded systems) is to find templates (T1, . . . , Tk)
such that (T1, . . . , Tk)(n1,...,nk) |= ϕ and ∀k ∈ [1, k] : |Tk| ≤ bk. [7]

For guarded systems, we consider specifications Φ with the following structures, where Ξ ∈ {A,E},
and h(T ik

k , . . . , T il
l ) is an LTL\X formula over in- and outputs of processes T ik

k , . . . , T il
l .
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• Single-indexed [35]:
∧

i∈[1,nk]
Ξh(T i

k )

• Multi-indexed over one process template [7]:
∧

i1,...im∈[1,nk]:i1 6=···6=im
Ξh(T i1

k , . . . , T im
k )

• Multi-indexed over two process templates [7]:
∧

i∈[1,nk]

∧
j1,...jm∈[1,nl]:j1 6=···6=jm

Ξh(T i
k , T

j1
l , . . . , T jm

l )

The parameterized model checking problem for guarded systems is to decide whether given system type
(T1, . . . , Tk), a parameterized specification Φ, and a multiplicity vector (m1, . . . ,mk), (T1, . . . , Tk)(n1,...,nk) |=
Φ for all (n1, . . . , nk) � (m1, . . . ,mk).1 The parameterized template synthesis problem is to find pro-
cess templates (T1, . . . , Tk) given a multiplicity vector (m1, . . . ,mk) and a specification Φ such that
(T1, . . . , Tk)(n1,...,nk) |= Φ for all (n1, . . . , nk) � (m1, . . . ,mk). [7]

1We use the symbol� for the component-wise comparison of two tuples: (n1, . . . , nn) � (m1, . . . ,mn)⇔ ∀i : ni ≥ mi



Chapter 5

Parameterized Model Checking for
Guarded Systems

In this section we recapitulate already existing cutoff results for reducing the Parameterized Model
Checking Problem (PMCP) for guarded systems to a standard Model Checking Problem of a system
with a constant number of processes [35].

Consider the process templates (T1, . . . , Tk) of a guarded system, and a supported parameterized
specification Φ (as described in Chapter 4). Then, a cutoff is a multiplicity (c1, . . . , ck) such that

(T1, . . . , Tk)(c1,...,ck) |= Φ iff ∀(n1, . . . , nk) � (c1, . . . , ck) : (T1, . . . , Tk)(n1,...,nk) |= Φ

The system (T1, . . . , Tk)(c1,...,ck) is called cutoff system. The cutoff system satisfies the specification Φ
if and only if this specification is also satisfied by any larger system. In order to check whether Φ
holds for systems of any size, we have to check if (T1, . . . , Tk)(d1,...,dk) |= Φ for all (d1, . . . , dk) �
(c1, . . . , ck). The cutoffs proved by Emerson and Kahlon depend on the number of template states and
the specification’s structure. For notational simplicity, the authors first consider a system type with
two process templates (T1, T2), and then generalize the resulting theorems to an arbitrary number of
templates. We borrow this simplification for our explanations. Moreover, we use the notation (A,B)
equivalently to (T1, T2). By Tk-process, we denote some process T i

k based on template Tk.

5.1 Disjunctive Cutoffs

Lemma 5.1.1 (Disjunctive Monotonicity Lemma [35])
For all closed disjunctive process templates (A,B),

∀n ≥ 1 : (A,B)(1,n) |= Eh(A1)⇒ (A,B)(1,n+1) |= Eh(A1)
∀n ≥ 1 : (A,B)(1,n) |= Eh(B1)⇒ (A,B)(1,n+1) |= Eh(B1)

Proof. In order to prove the lemma, we only need to consider the case where the left-hand side of the
implication is true, i.e., cases where the smaller system satisfies the specification. Consider a run x of
the small system that satisfies the specification. We construct a corresponding run y in the larger system:
We set y(A1) to x(A1) and y(Bi) to x(Bi) for all i ∈ [1, n]. Moreover, we we let the additional process
Bn+1 in y stutter in its initial state initB . Because the additional stuttering run y(Bn+1) does not change
the behaviour of the remaining runs, and we copied all local runs of the original system to the larger
system, y still satisfies the specification.
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Lemma 5.1.2 (Disjunctive Bounding Lemma [35])
For all closed disjunctive process templates (A,B),

∀n ≥ c : (A,B)(1,n) |= Eh(A1)⇔ (A,B)(1,c) |= Eh(A1) where c = |B|+ 1 (5.1.1)

∀n ≥ c : (A,B)(1,n) |= Eh(B1)⇔ (A,B)(1,c) |= Eh(B1) where c = |B|+ 2 (5.1.2)

If c < n, the Disjunctive Bounding Lemma allows us to reduce the number of B-processes from n to
c without changing the system’s behaviour regarding the desired specification. We first cover the proof
for the second part of the lemma, and then describe the required modifications in order to prove the first
part.

Proof. =⇒ In the following, we construct a run y in the cutoff system that is equivalent to a given run
x = (s1, e1, p1) . . . in the larger system. Here, y(A1) and y(B1) are set to the corresponding local runs
x(A1) and x(B1) without any modification up to stuttering. If x is an infinite run, y must also be infinite.
If x(A1) or x(B1) is infinite, then y is already infinite. Otherwise, there exists some index i such that
x(Bi) is an infinite local run. Then, we set y(Bc) = x(Bi).

In order to enable all transitions along y(A1) and y(B1) (and possibly y(Bc)), we need to guarantee
that all corresponding guards are enabled. To this end, consider a non-trivial (i.e., non-empty) guard g
labelling a transition sj(B1)→ sj+1(B

1). Moreover, consider some state t that is necessary in order to
enable g. Because g is enabled in the j-th step of x, there is at least one other process whose local state is
t in the j-th step. If t ∈ TA, the global state in the j-th step of y already contains t, therefore g is enabled
in the larger system. Otherwise, there exists an index i such that sj(Bi) = t. In the latter case, we need
to introduce a local run in y which ensures that state t is present in the j-th step. Let MinComp(t) be the
shortest prefix of some local computation in x leading to state t. Moreover, let the function MinLen(t)
be the length of MinComp(t). Applied to the desired state t ∈ TB , MinComp(t) is a prefix of some
B-process’ local path. Since MinComp(t) is the prefix of the run that first visits t, there does not exist
any transition in x whose guard is enabled by a local copy of t for any step d within 0 ≤ d < MinLen(t).
Therefore, we can ensure that all guards of transitions in x requiring t are enabled by adding a flooding
run for t to y, i.e., a run which first approaches t in the same way as MinComp(t), and then stutters
in t for an infinite number of steps if x is infinite, and for |x| − MinLen(t) steps if x is finite. More
generally, let Reach ⊆ TB be the set of B states that are visited at least once in x. We add a flooding
path for each such state. To this end, we assign the local run of |Reach| process instances as follows.
Let f : [1, |Reach|]→ Reach be a bijection. Then, we set y(Bi+1) = MinComp(f(i)) ◦ (f(i))l, where
l is ω if y is infinite, |y| −MinComp(f(i)) otherwise. We let all remaining B-processes in y stutter in
their initial states (which is allowed by the monotonicity lemma).

Consider two states t, t′ ∈ TB and their corresponding flooding runs y(Bi) and y(Bm). If both
flooding runs are based on a single local run of x, i.e., MinComp(t) is a prefix of MinComp(t′), the
interleaving constraint for asynchronous systems is violated. This violation can be corrected by adding
additional steps and let the processes move sequentially. That is, we insert a stuttering step l after
each step j, where both instances Bi and Bm take a transition. We then set yl(Bi) = yj+1(B

i), and
yl(B

m) = yj(B
m). If n process instances are involved in the violation, we insert n − 1 additional

stuttering steps, and split up the single global transition into n global transitions, each corresponding to
a single local transition.

This run construction shows that for each path x in the first system, there exists a corresponding
path y in the second system. Since y(B1) is equivalent to x(B1) except for additional stuttering steps, y
fulfills the LTL\X formula h(B1) iff x does.

⇐= We repeatedly apply the Disjunctive Monotonicity Lemma and add n − c processes, which
stutter in their initial states.
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The proof for the first part of the lemma is similar. Here, we do not need to preserve the computation
x(B1), thus the cutoff is reduced by 1 if the specification considers A1 instead of B1.

Lemma 5.1.3 (Disjunctive Truncation Lemma [35])
∀nA, nB : (A,B)(nA,nB) |= Eh(B1)⇔ (A,B)(mA,mB) |= Eh(B1) where mA = min(nA, |A|+ 1) and
mB = min(nB, |B|+ 2)

Proof. If nB ≤ |B| + 2, nB = mB . Otherwise, we let A′ be the parallel composition of the nA in-
stances of A, i.e., A′ = (A)(nA). Then, (A,B)(nA,nB) = (A′, B)(1,nB) and (A′, B)(1,nB) |= Eh(B1) iff
(A′, B)(1,|B|+2) |= Eh(B1) (Disjunctive Bounding Lemma) iff (A,B)(mA,|B|+2) |= Eh(B1). Similarly,
if nA ≤ |A|+1, nA = mA. Otherwise, letA′ = (B)(mB) andB′ = A. Then, (A,B)(mA,mB) |= Eh(B1)
is equivalent to (A′, B′)(1,nA) |= Eh(A1), which further is satisfied iff (A′, B′)(1,|A|+1) |= Eh(A1) (Dis-
junctive Bounding Lemma) iff (A,B)(mA,mB) |= Eh(B1). [35]

Theorem 5.1.4 (Disjunctive Cutoff Result [35])
Let f be

∧
i∈[1,nk]

Ah(T i
k ) or

∧
i∈[1,nk]

Eh(T i
k ).

∀(n1, n2) � (1, 1) : (T1, T2)(n1,n2) |= f ⇔ ∀(d1, d2) � (c1, c2) : (T1, T2)(d1,d2) |= f

where cl is the cutoff for the l-th template, ck = |Tk|+ 2 and for l 6= k : cl = |Tl|+ 1.

We restrict the set of formulas f we need to consider in the proof. Without loss of generality, we
assume that f = Eh(T 1

2 ) because of three reasons. First, consider specifications f with the structure∧
i∈[1,nk]

Ah(T i
k ). Since all nk instances of template k are isomorphic,

∧
i∈[1,nk]

Ah(T i
k ) is equivalent to

Ah(T i
k ) for any i ∈ [1, nk]. Second, we can use the duality of E and A to convert each A specification

into an E specification by negating h. Third, Eh(T 1
1 ) is equivalent to Eh(T 1

2 ) if we reorder the templates,
i.e., swap the template indices. These simplifications result in the following formula.

∀(n1, n2) � (1, 1) : (T1, T2)(n1,n2) |= Eh(T 1
2 ) iff ∀(d1, d2) � (c1, c2)(T1, T2)(d1,d2) |= Eh(T 1

2 )

where cl = |Tl|+ l

Proof. =⇒ Consider any n1, n2 ≥ 1, and let m1 = min(n1, |T1| + 1), m2 = min(n2, |T2| + 2). By
the Disjunctive Truncation Lemma, (T1, T2)(n1,n2) |= Eh(T 1

2 ) iff (T1, T2)(m1,m2) |= Eh(T 1
2 ). Thus, for

all systems with size (n1, n2) � (|T1|+ 1, |T2|+ 2) it is enough to show that the specification is satisfied
in systems of size (|T1| + 1, |T2| + 2). ⇐= If the specification holds for all (n1, n2), it also holds for
all (d1, d2) � (c1, c2).

Disjunctive Monotonicity Lemma, Disjunctive Bounding Lemma, and Disjunctive Truncation Lemma
can easily be generalized to an arbitrary number of templates. For the sake of notational clarity, we omit
repeating the multi-template versions of these theorems. Instead, we only provide the final cutoff result
for the PMCP of disjunctive cutoff systems given single-indexed properties.

Theorem 5.1.5 (Disjunctive Cutoff Theorem [35])
Let f be

∧
i∈[1,nk]

Ah(T i
k ) or

∧
i∈[1,nk]

Eh(T i
k ). Then,

∀(n1, . . . , nk) � (1, . . . , 1) : (T1, . . . , Tk)
(n1,...,nk) |= f iff

∀(d1, . . . , dk) � (c1, . . . , ck)(T1, . . . , Tk)
(d1,...,dk) |= f

where cl is the cutoff for the l-th template, ck = |Tk|+ 2, and ∀l 6= k : cl = |Tl|+ 1.

Theorem 5 in [35] deals with the cutoffs for model-checking against double-indexed properties
(proofs are omitted).
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Theorem 5.1.6 (Disjunctive Cutoff Theorem for Process Pairs [35])
Let f be

∧
i∈[1,nk],j∈[1,nl]

Ah(T i
k , T

j
l ) or

∧
i∈[1,nk],j∈[1,nl]

Eh(T i
k , T

j
l ). Then,

∀(n1, . . . , nk) � (1, . . . , 1) : (T1, . . . , Tk)
(n1,...,nk) |= f iff

∀(d1, . . . , dk) � (c1, . . . , ck)(T1, . . . , Tk)
(d1,...,dk) |= f

where ck = |Tk|+ 2, cl = |Tl|+ 2, and for ∀m 6= k, l : cm = |Tm|+ 1.

We take a closer look at the required modifications to the existing lemmas in order to support double-
and multi-indexed properties. The Disjunctive Monotonicity Lemma (Lemma 5.1.1) allows adding pro-
cesses to a given system without violating its behaviour regarding the specification. We observe that this
lemma still holds if we consider multi-indexed properties, since we let the additional processes stutter in
the initial state and do not change any of the existing local runs. By contrast, the Disjunctive Bounding
Lemma (Lemma 5.1.2) explicitly uses the structure of single-indexed properties. We therefore introduce
an adapted version of the Disjunctive Bounding Lemma that supports multi-indexed properties.

Lemma 5.1.7 (Disjunctive Bounding Lemma (for Multi-Indexed Properties) [7])
For all closed disjunctive process templates (A,B),

∀n ≥ c : (A,B)(1,n) |= Eh(A1, B(k))⇔ (A,B)(1,c) |= Eh(A1, B(k)) where c = |B|+ k + 1

Proof Idea =⇒ As in the original proof, we construct a run y of the cutoff system for each possible
run x of the large system. Properties that do not include any B-processes have no influence on the cutoff
for template B. As a result, k = 0 corresponds to the first part of Lemma 5.1.2. Moreover, the case
where k = 1 is equivalent to the second part of Lemma 5.1.2. Here we need to preserve x(A1) as well as
x(B1) when constructing a cutoff run for a given run x of large system. For k ≥ 2, we need to preserve
the runs of k processes of template B.

The final multi-template theorem for multi-indexed properties can be shown similarly as for single-
indexed properties.

5.2 Conjunctive Cutoffs

In this section we describe the cutoff proofs for conjunctive guarded systems. As for disjunctive guards,
we first introduce the required lemmas and then prove the Conjunctive Cutoff Result, i.e., the cutoff
theorem for systems with two templates. Finally, we generalize the Conjunctive Cutoff Result to support
systems with an arbitrary number of templates.

Lemma 5.2.1 (Conjunctive Monotonicity Lemma [35])
For all closed conjunctive process templates (A,B),

∀n ≥ 1 : (A,B)(1,n) |= Eh(A1)⇒ (A,B)(1,n+1) |= Eh(A1)
∀n ≥ 1 : (A,B)(1,n) |= Eh(B1)⇒ (A,B)(1,n+1) |= Eh(B1)

Proof. Let x be a run of the smaller system that satisfies the specification. We build a corresponding
run y of the larger system which also satisfies the specification. To this end, we set y(A1) = x(A1) and
∀i ∈ [1, n] : y(Bi) = x(Bi). Moreover, we let the additional process Bn+1 stutter in its initial state.
This additional local computation does not change the enabledness of transitions along other local runs
due to the restriction that conjunctive guards must contain the guard variables corresponding to each
template’s initial state. Thus, transitions along y are not blocked by the additional process. Because
y(A1) and y(B1) are copies of x(A1) and x(B1), respectively, the larger system is equivalent to the
smaller system regarding the specification. [35]
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Lemma 5.2.2 (Conjunctive Bounding Lemma [35, 7])
For all closed conjunctive process templates (A,B),

∀n ≥ c : (A,B)(1,n) |= Eh(A1)⇔ (A,B)(1,c) |= Eh(A1) where c = 2|B| − 2
∀n ≥ c : (A,B)(1,n) |= Eh(B1)⇔ (A,B)(1,c) |= Eh(B1) where c = 2|B| − 2

For simplicity, we first prove the second part of the lemma, i.e., we consider the specification Eh(B1),
and then describe the necessary modifications for the proof of the first part. 1

Proof. =⇒ Let x = (s1, e1, p1) . . . be a run of the larger system that satisfies the specification. We
construct a corresponding run y of the cutoff system, where y(A1) = x(A1) and y(B1) = x(B1) up to
stuttering. Thus, the specification is also satisfied by y. Since for conjunctive guarded systems, adding
a process to the already existing system results in equally or more strengthened guards, we do not need
additional local runs for y in order to enable the transitions along y(A1) and y(B1). The two local runs
in y are copies of the original system, and thus the guards are enabled in the smaller system if they are
also enabled in the original system. Additionally, for infinite runs x where both x(A1) and x(B1) are
finite (i.e, locally deadlocked), we need to construct an infinite corresponding run y. In this case, there
exists an infinite local computation x(Bi). Thus, we set y(B2) = x(Bi).

To exclude the case that the large system deadlocks, but the cutoff system satisfies Eh(B1), we must
consider the case where x is globally deadlocked. There exist at most |B|−1 states (i.e., all states except
the initial state) which disable the guards of all successor transitions of local states sj(A1) and sj(B1)
in some deadlock state sj . We extend y by selecting one local run for each TB state that is necessary to
reproduce the deadlock of x. However, in order to ensure a global deadlock, we must ensure that these
copied computations are also deadlocked. Otherwise, the deadlock can be easily resolved by letting
non-deadlocked processes move out of the particular “bad” state. Consider a transition t′

g−→ t of some
process, where t′ 6= initB and g is such that it is enabled by all states of TA and TB except for t′. Because
guards are not reflexive, i.e., they do not consider the process whose guard is evaluated, the particular
stuttering process is allowed to take the particular transition. This state transition is possible since there
is no other process which is in state t′ during the guard evaluation. In order to prevent that any transition
of the additional run is enabled when the original run deadlocks, we need at most one additional local
computation for each state of TB \ {initB}, which finally stutters in the particular state.

⇐= We repeatedly apply the monotonicity lemma and let the remaining processes stutter in their
initial states.

The cutoff under consideration of infinite runs is at most c = 2. If x is infinite and x(A1) or x(B1)
is infinite, c = 1, otherwise c = 2 because we need to copy one infinite local run x(Bi) to y. In order
to reproduce deadlocked runs, we need at most 2 local runs for each TB state except for the initial state,
i.e. 2(|B| − 1) local runs. Consider the case where B1 is deadlocked in state initB . At first sight, still
≤ 2(|B| − 1) additional runs are required in order to ensure a global deadlock. Some transition t

g−→ t′ is
the last transition in y, i.e., the one that leads to the global deadlock in step j. Note the following facts.

• Because the global state already contains at least one of all bad TB states, processA1 is deadlocked.
Thus, this transition belongs to some B-process.

• The transition is not unguarded, otherwise there is no global deadlock in step j.

• The global state contains at least two copies of t, one copy of t′, and at least one copy of all other
bad TB states.

1Note that Emerson and Kahlon [35] proved the cutoff to be c = 2|B| for the first case, and c = 2|B| + 1 for the second
case. However, we consider refined cutoffs from [7].
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As a result, there does not exist a non-trivial, and enabled guard g in this step, and the cutoff is 2(|B|−1).

Consider the first part of the Conjunctive Bounding Lemma. Because the specification only includes
A1, we do not need to preserve the local computation x(B1) as described for the second part. Thus,
the newly constructed corresponding path y contains only one local computation of x, namely y(A1) =
x(A1). For infinite computations x of the original system where x(A1) is locally deadlocked, we set
y(B1) to an infinite computation x(Bi) up to stuttering. Thus, the cutoff for the number of B instances
is c = 1 in this case. However, if x is deadlocked, we need to ensure that all outgoing transitions from
the last state of A1 are disabled in the same deadlock step j as in the original run (up to stuttering). To
this end, we add flooding paths for at most |B| − 1 states (i.e., all states of B except the initial state).
Because of the guards’ irreflexivity we require at most 2(|B| − 1) such runs. Thus, the overall cutoff for
deadlocked systems is c = 2(|B| − 1) = 2|B| − 2.

Lemma 5.2.3 (Conjunctive Truncation Lemma [35])
For all closed conjunctive templates (A,B),

∀nA, nB : (A,B)(nA,nB) |= Eh(B1)⇔ (A,B)(mA,mB) |= Eh(B1)

where mA = min(nA, 2|A| − 2) and mB = min(nB, 2|B| − 2)

The proof is similar to the proof of the Disjunctive Truncation Lemma.

Theorem 5.2.4 (Conjunctive Cutoff Result [35])
Let f be

∧
i∈[1,nk]

Ah(T i
k ) or

∧
i∈[1,nk]

Eh(T i
k ).

∀(n1, n2) � (1, 1) : (T1, T2)(n1,n2) |= f ⇔ ∀(d1, d2) � (c1, c2) : (T1, T2)(d1,d2) |= f

where cl = 2|Tl| − 2 is the cutoff for the l-th template.

The proof is similar to the proof of the Disjunctive Cutoff Result.

Theorem 5.2.5 (Conjunctive Cutoff Theorem [35])
Let f be

∧
i∈[1,nk]

Ah(T i
k ) or

∧
i∈[1,nk]

Eh(T i
k ). Then,

∀(n1, . . . , nk) � (1, . . . , 1) : (T1, . . . , Tk)
(n1,...,nk) |= f ⇔

∀(d1, . . . , dk) � (c1, . . . , ck)(T1, . . . , Tk)(d1,...,dk) |= f

where cl is the cutoff for the l-th template, and cl = 2|Tk| − 2.

The proof of this lemma is similar to the proof of the Disjunctive Cutoff Theorem.



Chapter 6

Parameterized Synthesis for Guarded
Systems

In order to reduce the parameterized template synthesis problem to a standard template synthesis prob-
lem, we aim at using the cutoffs of Emerson and Kahlon [35] described in Chapter 5. To this end, we
need to tackle two problems. First, Emerson and Kahlon only consider closed systems. However, the
goal of synthesis is usually to construct a system whose behaviour can be influenced by the environment,
i.e., an open system. Second, using the cutoffs introduced in Chapter 5 does not allow synthesizing live-
ness properties because they do not support any notion of fairness. This chapter describes our theoretical
work consisting of two solutions. The first solution focuses on obtaining an open system by synthesizing
a closed system and converting it into an open one (Section 6.1). This solution allows to directly use the
existing cutoffs, however, does not address fairness, and is thus only applicable for synthesizing safety
properties. Moreover, it suffers from state explosion. For this reason, we follow a second approach that
is based on a thorough analysis and extension of the cutoffs from [35], in order to support both open
systems and liveness properties (Section 6.2).

6.1 Conversion from Open to Closed Systems

As already pointed out, we cannot directly use the existing cutoffs for the synthesis of open systems. A
solution which allows us to directly use the existing cutoff results is to synthesize closed systems. Given
a specification Φ, we interpret all signals provided by the environment as outputs instead of inputs of
the particular processes, and let the processes non-deterministically choose the assignments for these
variables. We then synthesize closed templates (T1, . . . , Tk) such that (T1, . . . , Tk)(n1,...,nk) |= Φ, and
convert each of the resulting closed system templates into an equivalent open template. Figure 6.1
illustrates the general idea. This approach entails the following requirements. First, there must be a
representative closed system for each possible open system. This representative system must behave
equivalently to the desired open system regarding its states and outputs. Second, there must be a unique
open system for each closed system such that the closed system resulting from synthesis can be translated
to the final open system without any ambiguities.

Open System
Specification

Closed
System

Specification

Convert Closed
System

Synthesize
Open SystemConvert

Figure 6.1: Obtaining open systems by synthesizing closed systems
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6.1.1 Closed System Types

Consider an open process template T = (T, init, δ, guard, o) with inputsE and outputsO. A correspond-
ing closed system T ′ with inputs E′ = ∅ and O′ = O × E models the environment’s choice of values
for each variable in E by a non-deterministic selection of the successor state. We define the correspond-
ing closed system to be an LTS T ′ = (T ′, init′, δ′, o′). The state is a tuple containing both the original
open LTS state and the selected input values, i.e, T ′ ⊆ T × BE . Likewise, the output of each state is a
tuple that consist of the original output and the inputs associated to the particular state. Consider some
closed system state (t, e) ∈ T ′. We call the component representing the original open LTS state the state
component, and denote the second part as input component.

The increased number of output variables in the closed system yields a larger set of observable
states because the set of guard variables in the closed system is G′ =

⋃
k∈[1,k] BOk∪Ek . Therefore,

we need to prevent divergence of the closed system’s behaviour from the original open system’s beha-
viour. This means that in closed system guards all guard variables corresponding to a single open system
guard variable must have the same valuation. To this end, we introduce a guard modification function
mod_guard : BG → BG′ that maps an open system transition guard g ∈ BG into a corresponding closed
system transition guard g ∈ BG′ as follows. For each guard variable that is true (false) in g, all cor-
responding closed system guard variables (that is, closed system guard variables associated to the same
valuation of variables in Ok as the open system guard variable) are set to true (false) in the resulting
closed system guard. Note that there is a bijective mapping between closed system guards obtained by
applying mod_guard and the set of open system guards, which is a prerequisite for converting closed
systems into open systems.

There exist two different closed system models. The difference between them is the semantics of the
states’ input component.

Last Input Closed Systems In a Last Input Closed System (LICS), we interpret the input com-
ponent of a state as the previously processed input. For example, consider an open template transition

t
e′−→ t′. Then, the corresponding closed LTS transition is (t, e) → (t′, e′), where e is the environment

input which is consumed by the transition that connects the predecessor of t and t.

We convert an open template T = (T, init, δ, guard, o) into a LICS template T ′ = (T ′, init′, δ′, guard′, o′)
according to the following conversion rules.

1. For each original state t ∈ T and each incoming transition labelled with input valuation e, there
exists a state (t, e) ∈ T ′ in the corresponding closed template.

2. For each state (t, e) ∈ T ′, the output component of o′((t, e)) must be equal to o(t).

3. For each transition tj
e,g−−→ tj+1 in the open template, and for each t′j ∈ T ′ corresponding to tj (i.e.,

with state component t), there exists a transition t′j
g′−→ (tj+1, e) with g′ = mod_guard(g).

These rules ensure that each environment input that causes a transition to be enabled can be “generated”
by the closed system. The output behaviour of the closed system matches the output behaviour of the
original system according to the second rule. As described by the third rule, we add for each transition
labelled with guard g in the original template a set of transitions labelled with guard g′ in the new
template. Here, guard g′ is retrieved by applying the guard modification function to g.

Figure 6.2a shows a small open process template with state set T = {t0, t1, t2}, initial state t0, and
two input bits. The corresponding LICS obtained by conversion is shown in Figure 6.2c. There is a
single state that represents the original initial state t0, however, since t1 of the open LTS is reachable via
two transitions with different inputs (00, 01), the conversion also yields a separate t1 state for each input.
In the initial closed system state, the current “input” is determined by choosing either the transition that
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leads to (t1, 00) or the transition that leads to (t1, 01). For both states corresponding to t1, there is only a
single successor which is reachable by choosing one specific input value 01 (as in the original template).
Consider Figure 6.2b and Figure 6.2c. The example shows the similarity between input-preserving open
systems and LICS. Both store the information about the last input in their states. The only difference
is that input-preserving open systems receive their inputs from the environment, while LICS determine
inputs by choosing transitions non-deterministically. Thus, their transitions are not labelled with input
values.

Next Input Closed Systems In the second closed process template type, we interpret the input
component of a state as the current (or next, respectively) input. Given the open template transition
t

e−→ t′, the corresponding closed template transition is (t, e) → (t′, e′), where e′ is the input consumed
by the transition between t′ and its successor. These closed systems are called Next Input Closed Systems
(NICS).

The conversion of an open process template T into a NICS template T ′ happens according to the
following rules.

1. For each open system state t ∈ T and each outgoing transition labelled with input assignment
e ∈ BE , there exists a closed system state (t, e) ∈ T ′.

2. For each state (t, e) ∈ T ′, the output component of o′((t, e)) must be equal to o(t).

3. For each open system transition tj
e,g−−→ tj+1, and for all t′j+1 ∈ T ′ with state component tj+1,

there exists a closed system transition (tj , e)
g′−→ t′j+1 with g′ = mod_guard(g).

Figure 6.2d shows a closed process template that is obtained by converting the open template in Fig-
ure 6.2a into a NICS.

The construction rules for both closed template types ensure that for each path in the open template
p = (t1, e1) (t2, e2) . . . , there exists a corresponding state sequence in the closed template (pLICS =
(t1, ε) (t2, e1) . . . , and pNICS = (t1, e1) (t2, e2) . . . , respectively). Moreover, the closed template’s trace
is equivalent to the open template’s trace for each path. This allows us to replace a parallel composition
of multiple open systems by an equivalent composition of closed systems. Consider a system type
(T1, . . . , Tk). We replace the first process template by a corresponding NICS or LICS T ′1 . Because of
the trace equivalence between open and closed systems, each global state of the original system and all
corresponding global states of the new system (i.e., with one template replaced) are mapped to the same
state guard. Furthermore, each closed template transition is labelled with a guard that is equivalent to the
particular open transition’s guard. As a result, we have the following properties for each computation
of a system based on the original system type (T1, . . . , Tk), and its corresponding computation of the
system based on the modified system type (T ′1 , T2, . . . , Tk). Local paths of T1 processes are replaced
by equivalent closed local transitions (of T ′1 ). Here, the enabledness of each transition along the new
local path is equivalent to the enabledness of the particular transition in the original path. Local paths of
processes that are based on other than the replaced template remain unchanged. This allows an iterative
replacement of each open template Tk, until all templates in the system type are closed ones. By applying
each conversion rule in the opposite direction, a closed process template is converted into an equivalent
open template. Based on iterative replacement of each closed process template by the equivalent open
template, we retrieve an open guarded system.

6.1.2 Issues

The approach of synthesizing closed systems and converting them into open systems allows us to directly
use the cutoffs for synthesizing guarded systems. However, this solution has several drawbacks. The
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Figure 6.2: Examples for different LTS types

conversion from open to closed systems yields a state explosion, that is, converting an open template
with states Tk and inputsEk results in a closed template with up to |Tk|×|BEk | states. As a consequence,
we need to synthesize a closed template with ≤ |Tk| × |BEk | states. The impact to synthesis is twofold.
On the one hand, we need to consider templates that are bigger than the desired open system, by a
factor that is exponential in the number of input variables. On the other hand, the cutoffs described in
Chapter 5 directly depend on the number of template states. Consequently, not only the number of states,
but also the cutoffs (number of required instances) increase exponentially in the size of the desired open
template. Furthermore, the original cutoffs do not consider the aspect of fairness, which is, as mentioned
in Chapter 3, an absolute necessity for the synthesis of liveness properties. Hence, by our conversion
solution we can only obtain systems that satisfy given safety properties.
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6.2 Cutoffs for Synthesis

Modelling open systems as closed systems (see Section 6.1) has the major disadvantage that it results in
a state explosion. Furthermore, we can only synthesize safety properties with this approach because it
does not consider any type of fairness. To tackle these problems, we adapt the existing cutoffs in order
to support synthesizing fair open systems directly. The remainder of this section is organized as follows.
First, we recapitulate the proof structure of the existing cutoff proofs. Then, we focus on making these
cutoffs applicable to open systems. In the next step, we analyze possible fairness constraints and select
an appropriate one. Based on the aspect of fairness, we finally provide new cutoffs for the synthesis of
fair open systems.

6.2.1 Proof Structure

The analysis of the proofs in [35] shows that the proof structure is similar for disjunctive and conjunctive
guard cutoffs. Besides stuttering bisimulation of a large system and the corresponding cutoff system, the
following concepts are essential [7].

Symmetry The cutoffs are for systems that consist of multiple isomorphic process groups. For this
reason, it is enough to consider only one process for single-indexed properties, and two processes for
double-indexed properties, respectively.

•
∧

i Eh(T i
k ) iff Eh(T 1

k )

•
∧

i,j:i 6=j Eh(T i
k , T

j
k ) iff Eh(T 1

k , T 2
k )

•
∧

i∈[1,nk]

∧
j∈[1,nl]

Eh(T i
k , T

j
l ) iff Eh(T 1

k , T 1
l )

This equivalence allows us to prove the monotonicity lemmas and bounding lemmas for both guard types
under consideration of the simplified specification.

Monotonicity Lemma If a specification Eh(T 1
1 ) or Eh(T 1

2 ) is satisfied by a system (T1, T2)(1,n), it
is also satisfied by the system (T1, T2)(1,n+1). This is shown by constructing a corresponding path in the
larger system for each path in the smaller system. To this end, the additional process T n+1

2 stutters in the
initial state infinitely often. For disjunctive guarded systems, adding a path does not disable any guard,
because extending the global state by an additional local state “weakens” guards (i.e., in the new system,
there are possibly more guards enabled). By contrast, enlarging the global state of conjunctive guarded
systems “strengthens” guards (i.e., there possibly exist guards that are enabled in the original system,
but not in the new system). However, processes that are in the respective initial states do not disable any
conjunctive guard by definition.

Bounding Lemma If a specification Eh(T 1
1 ) or Eh(T 1

2 ) is satisfied by a system (T1, T2)(1,n), then
the specification is satisfied by the cutoff system (T1, T2)(1,c). The proof is based on showing that for
each run in the original (larger) system there exists a stuttering-equivalent run in the cutoff system. For
disjunctive guarded systems, the constructed run consists of a) all local runs which are contained in the
specification and b) one additional local run for each state that is reachable in the original run, in order
to ensure that all transitions which are enabled in the original run are also enabled in the constructed run.
These additional local runs consist of the shortest path to the particular state, and an (infinite) stuttering
sequence. The bounding lemma for conjunctive guarded systems (in [35]) distinguishes between infinite
and globally deadlocked runs. The proof for the infinite case is based on removing local runs that are not
contained in the specification. The global deadlock cutoff is shown by constructing a global deadlock in
the cutoff system based on the global deadlock in the large system.
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Cutoff Result The Bounding Lemma is extended to both templates by template reordering and using
a parallel composition of one template’s instances (Truncation Lemma). The final Cutoff Result for two
templates is proved by using the duality between E and A as well as the symmetry constraint. The Cutoff
Theorem is a generalization of the Cutoff Result for an arbitrary number of processes. This derivation is
equivalent for both guard types.

6.2.2 Cutoffs for Open Systems

In Section 6.1 we described that for each open system there exists a corresponding closed system, that is,
for each run in an open system, there exists an equivalent run in the corresponding closed system such
that the sequence of inputs provided by the environment to the open system is modeled by the closed
system using non-determinism. Therefore, the existence of a path in the closed system entails both a
sequence of inputs and a path for the corresponding open system. If this input sequence is provided to
the particular open system, all transitions along the desired computation are enabled.

Hence, each run that satisfies a specification in the closed system is also realizable in the open system,
and vice versa. Because the proofs of Emerson and Kahlon are based on a stuttering bisimulation, and
do not include assumptions regarding characteristics of closed systems, they can also be used to reason
about open system runs instead of closed system runs. Thus, we can use the existing cutoff results for
open systems directly.

6.2.3 Fairness Considerations

As mentioned in Chapter 3, certain properties of a specification cannot be satisfied without any as-
sumptions regarding the environment. For example, consider the liveness property

∧
i G(F(s(T i) =

t0) ∧ F(s(T i) = t1)), which should be satisfied by a system (T )(n) with states T = {t0, t1, . . . }. In
other words, the requirement is that both states t0 and t1 are visited infinitely often by all process in-
stances. Obviously, the property can easily be violated by the environment, e.g. if at least one process
is never scheduled. This “bad” scheduling must be avoided. Hence, the scheduling is essential for the
existence of a specified system: If one of the processes is never scheduled, the specification is violated,
and no valid system can be synthesized. We introduce a fair scheduling constraint which restricts the set
of possible schedulings to the relevant (i.e., fair) ones. This constraint is added to each property of the
specification as follows.

(assumption ∧ fair_scheduling)→ guarantee

The left-hand side of the implication is a conjunction of assumptions given in the property and the
fairness constraint. The right-hand side is the guarantee of the property that needs to be satisfied by the
system. Adding a fairness constraint to our example property yields the following formula:

fair_scheduling→

[∧
i

G(F(s(T i) = t0) ∧ F(s(T i) = t1))

]

Note that the set of “bad” schedulings strongly depends on the system architecture. Fairness constraints
must be defined such that “bad” schedulings are avoided, however, without forbidding “good” (fair)
schedulings. Furthermore, fairness constraints complicate the specification, leading to an increased com-
plexity of the synthesis problem. Thus, the constraint must be as compact as possible. We analyze the
following fairness constraints. 1

• Unconditional fairness [9]:
∧

p GFmovesp

1Note that in our system model, we do not allow the scheduling of processes that are not enabled. Under this assumption,
weak fairness [9] (every process is scheduled infinitely often) coincides with unconditional fairness, and we do not consider it
separately.
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• Strong fairness [9]:
∧

p (GF enabledp → GFmovesp)

Here, enabledp is true iff there is at least one enabled transition for process p. For open systems, the
enabledness depends on both the guards and the environment input. The signal movesp is true iff process
p is scheduled (which implies enabledness, by definition of our system model).

We use Euncondh (Auncondh) to describe that a property h holds for at least one (for all) unconditionally
fair runs.

Euncondh :=

[∧
p

GFmovesp

]
→ Eh

Auncondh :=

[∧
p

GFmovesp

]
→ Ah

Estrongh (Astrongh) are defined likewise. Usually, we want to synthesize specifications under unconditional
fairness. However, this constraint suffers from the fact that the process’ enabledness does not only depend
on the environment (i.e., the inputs) and the global state, but also on the implementation. This allows the
synthesis algorithm to easily satisfy any property under fairness by falsifying the fairness constraint. For
example, one such resulting implementation is a trivially deadlocked system with processes for which
enabledp is always false.

We need to counteract this problem by ensuring that there are no local deadlocks, i.e.,
∧

p GF enabledp.
Obviously, deadlock freedom cannot be guaranteed unconditionally. It rather requires that each process
is scheduled infinitely often. To this end, we weaken the desired property by adding the weakest fairness
assumption we discussed above, i.e., strong fairness.∧

p

(GF enabledp → GFmovesp)→
∧
p

GF enabledp

As a result, applying the enabledness constraint and the actual fairness constraint to a specification Φ
results in the following formula.(∧

p

(GF enabledp → GFmovesp)→
∧
p

GF enabledp

)
∧

(∧
p

GFmovesp → Φ

)

6.2.4 Cutoffs for Fair Guarded Systems

Based on our observations regarding the proof structure in Section 6.2.1, we first briefly point out the
issues when considering open and fair systems. In the following two subsections we then derive new
cutoffs that support open systems and fairness. For each guard type, we first introduce the Monoton-
icity Lemma, followed by the Bounding Lemma for infinite runs, and the Deadlock Detection Lemma.
Because Truncation Lemma, Cutoff Result, and Cutoff Theorem under fairness are equivalent to the cor-
responding originals, we forego repeating them. For the sake of notational simplicity, we abbreviate the
system type (T1, T2) with (A,B).

Monotonicity Lemma Obviously, the proof structure of the monotonicity lemma for both guard
types does not preserve fairness, since the construction used in the proof is based on letting additional
processes stutter in their initial states (see Section 6.2.1).

Bounding Lemma In the disjunctive case, the cutoff run construction requires flooding runs, each
one stuttering for a possibly infinite number of steps in one particular state that is reachable in the large
run. This flooding construction obviously violates the fairness constraint. By contrast, the conjunctive
bounding lemma part considering infinite systems preserves (unconditional) fairness. However, uncon-
ditional fairness is not applicable to the global deadlock part.
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Challenges The cutoff proofs of Emerson and Kahlon do not support any kind of fairness. Dead-
locks are not considered in case of disjunctive guards, and only partially (global deadlocks only) in case
of conjunctive guards. For ensuring deadlock freedom, we need to detect both global and local dead-
locks. Therefore, we introduce separate lemmas which prove that (local) deadlock freedom under strong
fairness in the cutoff system implies (local) deadlock freedom under strong fairness in the large system.
Because we use different fairness constraints for deadlock freedom and specification-specific properties,
we introduce two counterparts for each original bounding lemma, namely a) a bounding lemma for spe-
cification properties under consideration of infinite systems (unconditional fairness), and b) a deadlock
detection lemma (with respect to strong fairness). This structure also enables the modular use of different
cutoffs in synthesis [52].

Cutoffs for Fair Disjunctive Guarded Systems

Lemma 6.2.1 (Disjunctive Monotonicity Lemma for Fair Open Systems [7])
For all open disjunctive process templates (A,B),

∀n ≥ 1 : (A,B)(1,n) |= Euncondh(A1)⇒ (A,B)(1,n+1) |= Euncondh(A1)
∀n ≥ 1 : (A,B)(1,n) |= Euncondh(B1)⇒ (A,B)(1,n+1) |= Euncondh(B1)

Proof. Given an unconditionally fair run x of the original system that satisfies the specification h(A1)
(h(B1), respectively), we construct a corresponding fair run y of the larger system. We set y(A1) =
x(A1) and ∀i ∈ [1, n] : y(Bi) = x(Bi). For the additional process, y(Bn+1) = x(Bn). Note that the
local path duplication leads to the violation of the interleaving constraint because y(Bn) and y(Bn+1)
move simultaneously. We resolve the interleaving by adding an additional step whenever both processes
move. In each such step, we first let process Bn move, while Bn+1 and all other processes remain in
their current states. In the next step, process Bn+1 moves and all other processes including Bn remain in
their respective previous states. The inputs of stuttering processes must not change by our system model
definition. Then, each transition along y(Bn+1) is enabled if the corresponding transition along y(Bn)
is enabled. Because all local runs of y are copies of the local runs in x up to stuttering, all transitions that
are enabled along local runs of x are also enabled along local runs of y.

Lemma 6.2.2 (Disjunctive Bounding Lemma for Fair Open Systems [7])
For all open disjunctive process templates,

∀n ≥ c : (A,B)(1,n) |= Euncondh(A1) iff (A,B)(1,c) |= Euncondh(A1), where c = 2|B|
∀n ≥ c : (A,B)(1,n) |= Euncondh(B1) iff (A,B)(1,c) |= Euncondh(B1), where c = 2|B|

For the sake of clarity, we first prove the first part of the lemma and then consider the second part.

Proof. =⇒ Let x = (s0, e0, p0) (s1, e1, p1) . . . be an unconditionally fair run of the original system
(A,B)(1,n) satisfying the specification h(A1). We construct a corresponding fair run y of the cutoff
system (A,B)(1,c). In order to preserve the behaviour of the local run contained in the specification,
x(A1) is copied to y modulo stuttering. As in the original proof (see Lemma 5.1.2), we introduce
a flooding path for each state in TB that is eventually reached in the run x (see Section 5.1). Each
flooding path consists of the shortest local path in x from initB to the particular flooded state, followed
by infinitely many stuttering steps. Because infinite stuttering paths violate the fairness constraint, we
modify the original proof. To this end, consider the set of flooded states Reach, which is the union of
the following two disjoint subsets: a) Reachfin, the set of states in TB that are visited finitely often, and
b) Reachinf, the set of states in TB that are visited infinitely often in the original run. For each set, we
provide a specific flooding path construction. Consider some t ∈ Reachfin. Let Bf be the process that
first reaches t in step j, i.e., sj(Bf ) = t, and let Bg be the process that is the last one to leave t in some
stepm, i.e., m = max(j | ∃i : sj(B

i) = t). Then, the flooding path of t ∈ Reachfin is the concatenation
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x(Bf ) until step j and the infinite suffix x(Bg) beginning at step m. By definition, this construction is
fair because both parts of the new path are contained in the original fair run.

We now consider the set of infinitely often visited states Reachinf. Let t be some state in this set,
and Bf be the process that first reaches t in step j. Then, the flooding path for this state consists of
x(Bf ) until step j, followed by an infinite stuttering sequence in state t. In order to make the path fair,
we interrupt the infinite stuttering sequence and let the particular process move out and return again to
t. Since TB is finite and t is visited infinitely often, there is such a loop path in the original run x.
However, we need to ensure that all transitions along this loop path from t to t are enabled. By the
flooding constructions, all states Reachinf \ {t} are present in the global state. However, if the loop path
contains a transition that requires some process to be in state t, we need another process in t while the
particular flooding process moves along the loop path. We distinguish between the following cases.

1. The flooding path of t consists of a single self-transition guarded with t.

2. There is some other flooded state t′ whose loop path contains t, i.e., t and t′ are part of the same
SCC.

In the first case, we need two flooding paths for each flooded state t. In the latter case, we obviously do
not need an additional flooding path for each of the two states t and t′. Instead, we introduce a single copy
of the flooding path for t′ (w.l.o.g.), and use it as a shared flooding path. We then interrupt the infinite
stuttering as follows. Consider some step in which the three processes corresponding to the flooding
paths are in their particular flooded states, i.e., t, t′, and t′, respectively. First, we let the additional
process move along the loop path from t′ to t (third computation). Then, we let the process in state t
move to t′ (first computation). Finally, we let the remaining process (second computation) move from t′

to t. The resulting local states of the three processes are t′, t, t. Note that in each step where one process
moves along the loop path, the other two processes are in t and t′, respectively. Naturally, processes
corresponding to other flooding paths are in the particular flooded state. Thus, all transitions along the
loop paths are enabled.

⇐= We apply the Disjunctive Monotonicity Lemma for fair systems n− c times.

Compared to the original Disjunctive Bounding Lemma, preserving fairness yields at most one ad-
ditional process for each SCC of infinitely often visited states. Let nSCC denote the minimal number
of SCCs in B such that all reachable states are in at least one SCC. Then, the cutoff for the first part
of the lemma is c = |B| + nSCC. In the worst case, Reachinf = TB , and all loop paths consist of a
self-transition. As a result, the cutoff for specifications of the form Euncond(A1) is c = 2|B|.

Consider the second part of the lemma. Here, we need to preserve the local run x(B1). Hence,
we set y(B1) = x(B1) (and also y(A1) = x(A1) as for the first part). As before, we need at most
|B| flooding paths in order to enable all transitions along x(A1) and x(B1), and additional flooding path
copies in order to preserve fairness. Because x(B1) is infinite, there is some step, after which the process
corresponding to x(B1) visits only states in Reachinf, i.e., the process moves along an SCC of Reachinf
states infinitely often. This SCC contains at least one state (i.e., self-loop), and at most Reachinf states.
In the worst case regarding the cutoff, the SCC consists of a single state t ∈ Reachinf. Then, x(B1) is
a flooding path for t. As a result, c = 1 + (2|Reachinf| − 1) ≤ 2|B|. If the SCC contains more than
one state, x(B1) is a shared flooding path for all SCC states. Let t, t′ ∈ Reachinf be visited by x(B1)
infinitely often. Whenever process x(B1) is in state t, we let the process corresponding to the flooding
path for t move along the loop path back to t. Next, we let process x(B1) continue moving until it visits
state t′. Then, the process corresponding to the flooding path for t′ moves along the self loop and back
to t′, and so forth. Consequently, the cutoff for this case is strictly less than 2|B|.

Thus, the cutoff for the second part of the lemma is equal to the cutoff for the first part of the lemma,
i.e., c = 2|B|.
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Lemma 6.2.2 only considers infinite runs. Because we want synthesize deadlock-free systems, we
need to ensure that if deadlock-freedom holds for a cutoff system, any larger system is also deadlock-free.
To this end, we introduce the Disjunctive Deadlock Detection Lemma.

Lemma 6.2.3 (Disjunctive Deadlock Detection Lemma for Fair Open Systems [7])
For strong-fair runs of open systems (A,B)(1,n), c = 2|B| − 1 is a cutoff for local deadlock detection.

Proof. =⇒ For each strong-fair and locally deadlocked run x = (s1, e1, p1) (s2, e2, p2) . . . of the
system (A,B)(1,n), there is a locally deadlocked strong-fair run in the cutoff system (A,B)(1,c). Let j
denote the step in run x in which the system has at least one locally deadlocked process.

Let Visited⊥ = Visited1⊥∪Visited2⊥ be the set of locally deadlocked states along x. Visited1⊥ contains
all states that are only deadlocked if there is no other process in the same state, and Visited2⊥ contains
all states that are deadlocked although there is some other process in the same state. P 1

⊥ (P 2
⊥) contains

the set of processes p for which sj(p) ∈ Visited1⊥ (sj(p) ∈ Visited2⊥). We define Visitedinf to be the
set of infinitely often visited states, and Visitedfin to be the set of states that are visited finitely often by
processes not in P 1

⊥. We set y(A1) = x(A1), y(p) = x(p) for all p ∈ P 1
⊥, and define the remaining local

runs of B-processes as follows. We add one flooding process for each state in Visitedfin ∪ Visited2⊥, and
two flooding processes for each state in Visitedinf.

By definition, processes in Visitedfin must either deadlock or eventually move into some infinitely
often visited state. We let the particular processes in y imitate the behaviour of the corresponding pro-
cesses in x. Fairness for non-deadlocked processes is ensured by introducing a self-loop path sequence
for the particular processes.

The resulting construction yields the cutoff Visitedfin + Visited⊥+ Visitedinf ≤ 2|B|. Further invest-
igations show that the cutoff is strictly less than 2|B|. There are three different cases of local deadlocks.

1. ProcessA1 deadlocks because of the absence of some state t ∈ TB . Obviously, there neither exists
a process which deadlocks in t nor a process which visits t infinitely often. Thus, t is in Visitedfin,
visited by some process p ∈ Visited1⊥, or not visited at all. Consequently, the cutoff construction
results requires at most two processes for TB \ {t}, and at most one process for state t.

2. A B-process is deadlocked in some state t ∈ Visited2⊥. Thus, y contains one flooding process for
t and at most 2 flooding processes for each state except for t.

3. A B-process is deadlocked in some state t ∈ Visited1⊥. If t ∈ Visitedfin, the process which does
not deadlock in t leaves t and eventually moves into some state t′′ ∈ Visited2⊥ ∪ Visitedinf. If
t′′ ∈ Visited2⊥, c ≤ 2|B| − 1. Otherwise, we omit one of the two flooding processes for t′′, (does
not violate strong fairness) and thus c ≤ 2|B| − 1.

⇐= Because n > |B|, there is at least one process p which either moves infinitely often, or
is deadlocked in some state in Visited2⊥. We repeatedly apply the monotonicity lemma, and let the
additional processes imitate the behaviour of process p.
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Cutoffs for Fair Conjunctive Guarded Systems

The proof of the original Conjunctive Monotonicity Lemma is based on letting the additional process
remaining in the initial state forever, which does not influence (i.e., disable) any guards. Such a con-
struction obviously violates unconditional fairness. Thus, the additional process must move infinitely
often. However, in case of conjunctive guarded systems, we cannot, for example, let the new process
move along the same path as one of the other processes (as in case of the Lemma 6.2.1), since the
additional path possibly causes a (local) deadlock. We tackle the problem by restricting the set of con-
sidered conjunctive guarded systems to the set of initializing conjunctive guarded systems, where each
B-process visits the initial state infinitely often. The restriction is represented as an additional guarantee
in the specification that must be satisfied under unconditional fairness.∧

i∈[1,nB]

Auncond GF s(Bi) = initB

Runs that satisfy the additional property are unconditionally initializing. Adding such a restriction is
reasonable, because it holds for a plethora of protocols, like the AMBA bus protocol and various cache
coherence protocols.

Lemma 6.2.4 (Conjunctive Monotonicity Lemma for Fair Open Systems [7])
For all unconditional-fair initializing runs of open conjunctive guarded systems,

∀n ≥ 1 : (A,B)(1,n) |= Euncondh(A1)⇒ (A,B)(1,n+1) |= Euncondh(A1)
∀n ≥ 2 : (A,B)(1,n) |= Euncondh(B1)⇒ (A,B)(1,n+1) |= Euncondh(B1)

Proof. Let x be a unconditional-fair run of the smaller system. We construct a run y in the larger system
based on x. To this end, we set y(A1) = x(A1) and ∀i ∈ [1, n] : y(Bi) = x(Bi). By definition of
initializing runs, x(Bn) visits the initial state infinitely often. We take advantage of this property and
split x(Bn) into a sequence of infinitely many path slices, where each sequence starts in the initial state
initB . In y, we let process Bn move along x(Bn) until xj(Bn) = initB at some time j. This sequence
corresponds to the first path slice. In other words, ∀m < j : ym(Bn) = xm(Bn), ym(Bn+1) = initB .
Then, we let process Bn stay in the initial state, while process Bn+1 moves along the second path slice.
After Bn+1 enters the initial state again, we let process Bn move along the third path slice, and so forth.
The existence of infinitely many path slices implies that there are infinitely many such alternations. Thus,
the resulting runs y(Bn) and y(Bn+1) satisfy unconditional fairness (processes move infinitely often)
and are initializing (the initial state is visited infinitely often). Because all other local runs are copies of
the original local runs up to stuttering, y is initializable and satisfies unconditional fairness.

Lemma 6.2.5 (Conjunctive Bounding Lemma for Fair Open Systems)
For all unconditional-fair initializing runs of open conjunctive guarded systems,

∀n ≥ 1 : (A,B)(1,n) |= Euncondh(A1) iff (A,B)(1,1) |= Euncondh(A1)
∀n ≥ 2 : (A,B)(1,n) |= Euncondh(B1) iff (A,B)(1,2) |= Euncondh(B1)

Proof. =⇒ Let x be a run of the original system that satisfies all properties assumed by the lemma.
We construct a corresponding run y in the cutoff system. In order to preserve the system’s behaviour
regarding the specification, we set y(A1) = x(A1) and y(B1) = x(B1) in the first case, and additionally
y(B2) = x(B2) in the second case. All transitions along the local runs are enabled if they are enabled in
the particular original local runs, because removing local runs weakens conjunctive guards. y is infinite
because x is infinite, and we do not need additional adaptations.

⇐= We repeatedly apply the Conjunctive Monotonicity Lemma for Fair Open Systems.
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Note that the =⇒ direction of the proof yields a cutoff of (0, 1), (1, 0) respectively. However, in
order to apply the monotonicity lemma, we need for each template at least one process not occurring in
the specification. Therefore, the cutoff is (1, 1), or (1, 2), depending on the specification.

By the new Conjunctive Bounding Lemma, there exists an unconditional-fair run in the cutoff system
for each unconditional-fair run in the original system that satisfies a certain specification, and vice versa.
We also need to ensure that deadlock-freedom in the cutoff system implies deadlock-freedom in any lar-
ger system. Therefore, we introduce cutoffs for deadlock detection. Note that the proof of Lemma 5.2.2
considers global deadlocks. We can directly apply this partial result to fair systems, because strong
fairness is trivially satisfied in any case if there is a global deadlock.

Lemma 6.2.6 (Conjunctive Global Deadlock Detection Lemma for Fair Open Systems [35, 7])
For strong-fair systems, 2|B| − 2 is a cutoff for global deadlock detection on strong-fair runs.

Since we not only want to detect and avoid global deadlocks, but also local deadlocks, we extend our
results by the following lemma.

Lemma 6.2.7 (Conjunctive (Local) Deadlock Detection Lemma for Fair Open Systems [7])
For strong-fair, 1-guard conjunctive systems, 2|B|−2 is a cutoff for (local) deadlock detection on strong-
fair runs.

Proof. =⇒ Let x = (s1, e1, p1) (s2, e2, p2) . . . be a deadlocked run of the large system, where
each non-deadlocked (infinite) local run is strong-fair and initializing. That is, after some step j, x
contains at least one deadlocked local run. Let P⊥ be the set of processes that are deadlocked in x, and
Visited⊥ = Visited1⊥ ∪ Visited2⊥ be the set of final states of processes in P⊥.

1. The set Visited2⊥ contains deadlock states t, which have at least one transition guarded with the
complement of {t}. That is, t requires one other process in state t in order to be disabled.

2. The set Visited1⊥ contains deadlock states, which do not require another process to be in the same
state in order to be disabled.

Moreover, let Visitedinf be the set of infinitely often visited states. By definition, Visited1⊥, Visited2⊥, and
Visitedinf are disjoint. By BlockSet we denote the set of states which are required to disable all transitions
of states in Visited⊥.

We set y(A1) = x(A1) and for each t ∈ BlockSet ∩ TB:

1. If t ∈ Visited1⊥, there exists at least one local run x(Bi) such that sj(Bi) = t. We copy this
particular local run to y.

2. If t ∈ Visited2⊥, there exist at least two local runs with local state t in step j. We copy these two
local runs to y.

3. If t ∈ Visitedinf, we can distinguish between two cases.

(a) x contains either an infinite run, which eventually only visits t, i.e., it moves along a self-loop
from t to t. In this case, we let one B-process in y imitate the behaviour of the particular
process in x.

(b) There are at least two processes Bi, Bm, such that sj(Bi) = sj(B
m) = t. Moreover, Bi

and Bm are part of a set of processes that visit t infinitely often in x. In each step, at least
one of these processes is in state t. Each process that visits t infinitely often, moves along
(some) loop path from t to t. Obviously, this loop path does not contain transitions labelled
with ¬{t}. In order to ensure that t is present in y after step j, we construct two local runs as
follows. We copy the prefixes of x(Bi) and x(Bm), and then let the two processes alternately
move along a loop path from t to t. While one process moves, the other one needs to stutter
in t.
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⇐= We repeatedly apply the monotonicity lemma.

|BlockSet ∩ TB| < |TB| since initB does not disable any transition by definition. Since we need at
least two processes for each state in BlockSet, the cutoff is 2|B| − 2.

Without the restriction to 1-guard systems, the BlockSet consists of sets of states (subsets of P(TB).
In each step, there is possibly a different blocking set responsible for ensuring the particular (local)
deadlocks, which does not allow a static construction as above. 2

Table 6.1 summarizes the bounding lemma cutoff results presented here, in [35], and in [7]. The
left-hand side of the table shows the cutoff results without considering fairness. Here, disjunctive and
conjunctive property cutoffs proved by Emerson and Kahlon were applied without any modifications.
In [7], we consider deadlock detection without fairness for both guard types, and extend the results of [35]
who only consider global deadlocks for conjunctive guards. For local deadlock detection in disjunctive
guarded systems, we currently do not know a smaller cutoff than 2|B| − 1 (which can be proved in
the same way as for the fair case). Note that the local deadlock cutoff for non-fair conjunctive guards
(marked with (*)) is only valid for the subset of initializing systems. The right-hand side of the table
shows the cutoff results with respect to fairness, which are subject of this work and [7]. The new cutoff
results for disjunctive guards are valid unconditionally. By contrast, property cutoffs for conjunctive
guards only apply to initializing systems. Fair conjunctive deadlock detection (local deadlock detection,
to be precise [7]) is applicable for 1-guard systems only (marked with (**)).

Without fairness With fairness
Property h(A1, Bk)

[35, 7]
Deadlock

Detection [7]
Property h(A1, Bk)

[7]
Deadlock

Detection [7]

Disjunctive |B|+ k + 1
global: |B|+ 2
local: 2|B| − 1

max(2|B|, 2|B|+ k − 1) 2|B| − 1

Conjunctive k + 1
global: 2|B| − 2 [35]

local: 2|B| − 2 (*)
k + 1 (*) 2|B| − 2 (**)

Table 6.1: Cutoff results for modular synthesis of fair systems [7]

2Due to the results, we restrict ourselves to 1-guard systems, since finding a cutoff for general conjunctive systems is outside
the scope of this work.
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Chapter 7

Algorithm

For synthesizing guarded systems, we use the distributed bounded synthesis algorithm [69], which was
already described in Section 3.6.2. In order to add support for guarded systems, we need to adapt certain
parts of the original algorithm, under consideration of the following aspects.

• Fairness Constraints: Before translating the given specification into a UCT automaton, we need to
add fairness constraints for each liveness property as well as additional properties used as system
assumptions in the cutoff proofs.

• Process Templates: We synthesize a predefined number of different process templates instead of a
set of isomorphic processes.

• Interleaving Constraints: In each global step of the desired system, only one process is allowed to
move.

• Guards: We need to introduce a guard assignment function that assigns a guard to each transition
as well as a guard evaluation function that determines the enabledness of each transition in the
system with respect to the global state.

In Section 7.1, we first describe the modified procedure in Algorithm 2 informally, and will go into more
detail in the following subsections. In Section 7.2 we then discuss possible optimizations, including
applicable techniques from other publications that use the bounded synthesis approach.

7.1 Bounded Synthesis of Guarded Systems

Algorithm 2 shows the main steps of the modified bounded synthesis approach. As an input, the
algorithm gets the parameterized specification Φ, the desired numbers of instances nk and the ini-
tial template size bk for each process template with index k as well as a value max_increments that
restricts the number of bound increments. This maximum number of loop iterations is required to
ensure the semi-algorithm’s termination. The algorithm returns the implementations of all process
templates, or UNSAT if there are no templates (T1, . . . , Tk) with (b1, . . . , bk) � (|T1|, . . . , |Tk|) �
(b1 +max_increments, . . . , bk +max_increments) such that the system (T1, . . . , Tk)(n1,...,nk) satisfies the
specification. As described in Chapter 3, liveness properties must hold whenever fairness is provided,
while safety properties must hold unconditionally (with respect to fairness). We assume that the spe-
cification does not include any fairness constraints. Hence, the algorithm first processes the specifica-
tion (Line 4) and extends each liveness property by the unconditional fairness assumption introduced in
Chapter 6. Moreover, architecture specific constraints Φarch are added to the specification. In the suc-
ceeding loop (Line 10), we first determine the minimum number of instances required for synthesizing a
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correct system with respect to the given multiplicity (n1, . . . , nk). To this end, we calculate the cutoff for
each property of the specification as well as the deadlock detection cutoff. Then, all properties of the spe-
cification are instantiated based on the property cutoffs. As in the original algorithm, we finally encode
the bounded synthesis problem in SMT and use an SMT solver in order to determine whether there exists
a solution for the given problem. If the SMT formula is satisfiable, the process template implementations
are extracted from the model provided by the SMT solver. Otherwise, the loop is repeated until a solution
is found for some increased bound values, or the number of loop iterations exceeds max_increments.

Data: Φ, N = (n1, . . . , nk), b = (b1, . . . , bk), max_increments
Result: (T1, . . . , Tk) or UNSAT

1 Φ′ ← true
2 foreach Φprop ∈ Φ do
3 if Φprop is a liveness property then
4 Φprop ←

(
fair_scheduling→ Φprop

)
5 end
6 Φ′ ← Φ′ ∧ Φprop

7 end
8 Φ′ ← Φ′ ∧ Φarch
9 increments← 0

10 while increments < max _increments do
11 Cp ← get_cutoffs(Φ′, N , b)
12 ϕ← instantiate(Φ′, b, Cp)
13 formula← encode(ϕ, b, Cp)
14 res← solve(formula)
15 if res == SAT then
16 return extract_model()
17 end
18 b← (b1 + 1, . . . , bk + 1)
19 increments← increments + 1

20 end
21 return UNSAT

Algorithm 2: Bounded Synthesis of Guarded Systems

In the following subsections, we discuss modifying the specification, detecting cutoffs, instantiating
the specification and the final SMT encoding more precisely. To this end, we use the following simple
mutual exclusion scenario as a running example. The desired system consists of two conjunctive guarded
process templates (see Figure 7.1a). The first process template T1 has an input r1, which allows the
environment to request a shared resource, as well as an output g1, which is raised whenever access to the
resource is granted. The second process template T2 provides a grant signal g2 with the same semantics
as g1, however, T2 has no input signals. Instead, the process template decides internally when to allow
access to the resource. The parameterized specification is

Φ :=

 ∧
i∈[1,n1]

AG(ri1 → F(gi1))

 ∧
 ∧

i∈[1,n2]

AGF(gi2)

 ∧
 ∧

i∈[1,n1]

∧
j∈[1,n2]

AG
(
¬(gi1 ∧ g

j
2)
)

All request signals must finally be granted by T1 processes, and each T2 process must grant infinitely
often. No two pairs of T1 and T2 processes must grant access to the resource at the same time. Pairs of
processes based on the same template are allowed to grant at the same time. A valid implementation is
shown in Figure 7.1b.
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T1

r1

g1

T2

g2

(a) Process Templates for
Running Example

init1 ¬g1

t11 g1

r
{init2} {init2}

T1

init2 ¬g2

t12 g1

{init1} {init1}

T2

(b) Valid Implementation for Running
Example

Figure 7.1: Running Example

7.1.1 Specification

The specification consists of properties as defined in Chapter 4, that is, special prenex-indexed CTL?\X
formulas over input signals and output signals. Architecture-specific formulae like the fairness condi-
tion and the property for deadlock freedom also contain architecture-specific internal signals, which are
introduced in order to express architecture-related states. In particular, the signal is_enabledik signifies
whether process T i

k is enabled in its current local state (with respect to the global state and environ-
ment inputs). The signal movesik is true iff process T i

k is scheduled (in this case is_enabledik = true by
definition of our system model). The SMT encoder replaces every occurrence of an internal signals by a
corresponding predicate.

Regarding the assume → guarantee style, properties only consist of a guarantee part. Each such
property is expected to be either a safety or a liveness property.1 In order to determine its type, we first
obtain the smallest possible instantiation for the particular indexed property and then convert it into a
corresponding UCT. For Büchi automata, the property is a safety property if the corresponding Büchi
automaton contains a rejecting node, which can only reach itself or other rejecting nodes, but cannot
reach any non-rejecting nodes. Otherwise, the property is a liveness property [1]. A UCT corresponds to
a safety property if all rejecting nodes are absorbing (that is, they contain no outgoing edges or a true-
labelled self-loop). Otherwise, the UCT corresponds to a liveness property [51]. Each liveness property
(liveness guarantee in our case) Φprop is extended by the unconditional fairness constraint.

Φprop :=

 ∧
k∈[1,k]

∧
i∈[1,nk]

GFmovesik

→ Φprop

Moreover, we define a specification part Φarch containing architecture-specific properties. For both dis-
junctive and conjunctive guarded systems, Φarch includes the architecture specific fairness property (see
Section 6.2.3).

Φarch :=

 ∧
k∈[1,k]

∧
i∈[1,nk]

(
GF is_enabledik → GFmovesik

)
→

∧
k∈[1,k]

∧
i∈[1,nk]

GF is_enabledik


Moreover, for synthesizing conjunctive guarded systems, we also need to ensure that the initial state is

1We assume that the specification defines a set of properties that are either safety or liveness properties. Note that each
property containing both types can be split into two properties — one safety and one liveness property.
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q0true

q1¬g

¬g11 ∧ r11

(a) UCT for guarantee
AG(r11 → F g11)

q0true

q1¬g12

¬g12

(b) UCT for guarantee
AGF(g12)

q0

¬g11 ∨ (g11 ∧ g12)

q1

g11 ∧ g12

(c) UCT for guarantee
AG(¬(g11 ∧ g12))

Figure 7.2: UCTs for running example properties

visited infinitely often. Thus, we add the following property.2

Φarch := Φarch ∧

 ∧
k∈[1,k]

∧
i∈[1,nk]

GFmovesik

→
 ∧

k∈[1,k]

∧
i∈[1,nk]

GF is_initik


The resulting specification Φ can be seen as a conjunction of safety properties, (modified) liveness prop-
erties, and architecture properties.

Φ := Φsafety ∧ Φliveness ∧ Φarch

Consider our running example. The UCTs for the smallest possible guarantee instantiations (that is,
single-indexed properties instantiated for one, double-indexed properties instantiated for two processes)
are shown in Figure 7.2. We observe that

∧
i∈[1,n1]

AG(ri → F gi1) and
∧

i∈[1,n2]
AGF gi2 are liveness

properties, whereas
∧

i∈[1,n1]

∧
j∈[1,n2]

AG
(
¬(gi1 ∧ g

j
2)
)

is a safety property. Thus, the first two proper-
ties are extended by the fairness constraint, while the latter is left unchanged. Moreover, the previously
added architecture specific properties are added. We obtain the following modified specification.

Φ :=

 ∧
i∈[1,n1]

∧
j∈[1,n2]

AG
(
¬(gi1 ∧ g

j
2)
)∧

 ∧
k∈[1,k]

∧
i∈[1,nk]

GFmovesik

→
 ∧

i∈[1,n1]

AG(ri → F gi1)

 ∧
 ∧

i∈[1,n2]

AGF gi2

∧
 ∧

k∈[1,k]

∧
i∈[1,nk]

GFmovesik

→
 ∧

i∈[1,n1]

AGF is_initi1

 ∧
 ∧

i∈[1,n2]

AGF is_initi2

∧
 ∧
k∈[1,k]

∧
i∈[1,nk]

(
GF is_enabledik → GFmovesik

)
→

∧
k∈[1,k]

∧
i∈[1,nk]

GF is_enabledik



7.1.2 Cutoff Detection

The cutoff detection routine determines the deadlock detection cutoff as well as the cutoff required
for each specified property. The calculation of the deadlock detection cutoff is trivial, since its value

2Note that this architectural property is also a liveness property. Therefore, it is also considered when applying operations
to liveness properties in the following.
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only depends on the current bounds. For calculating property cutoffs, the structure of each safety and
liveness property’s guarantee is considered. The cutoff of architecture properties is set to the previously
determined deadlock detection cutoff.

Next, each resulting cutoff is compared element-wise to the desired number of instances N =
(n1, . . . , nk). If the cutoff for a template is larger than the desired number of instances, we restrict
the cutoff to the number of instances. This operation is intuitive: We do not want to use cutoffs which
exceed the number of desired instances and thus increase the problem’s complexity.

Under the assumption of bound b = (2, 2), the cutoff detection yields an overall cutoff c = (2, 2)
cutoffs for our example, and constant cutoffs (1, 2), (2, 1), (2, 2) for safety and liveness properties.

7.1.3 Specification Instantiation

Instantiating an indexed formula means replacing each quantified sub-formula h by a set of concrete
instantiations, which are logically connected depending on the quantifier, i.e., as disjunctions in case of
existential quantifiers, and as conjunctions in case of universal quantifiers. The instantiation results for
supported properties are shown in the second column of Table 7.1.

Indexed Formula
Instantiation

without symmetry with symmetry∧
i∈[1,nk]

Ah(T i
k ) h(T 1

k ) ∧ · · · ∧ h(T nk
k ) h(T 1

k )∧
i,j∈[1,nk],i 6=j Ah(T i

k , T
j
k ) h(T 1

k , T 2
k ) ∧ h(T 2

k , T 1
k ) ∧ · · · ∧ h(T nk−1

k , T nk
k ) h(T 1

k , T 2
k )∧

i∈[1,nk]

∧
j∈[1,nl]

Ah(T i
k , T

j
l ) h(T 1

k , T 1
l ) ∧ h(T 1

k , T 2
l ) ∧ · · · ∧ h(T nk

k , T nl
l ) h(T 1

k , T 1
l )

Table 7.1: Instantiation of indexed properties with and without using symmetry

By symmetry of isomorphic processes, we conclude that some single-indexed property
∧

i Ah(T i
k )

holds if Ah(T i
k ) holds for some i, e.g. Ah(T 1

k ). Similar considerations apply to double-indexed and
other multi-indexed properties. This symmetry, which was already used in the proofs of the Disjunct-
ive Cutoff Result (Theorem 5.1.4) and Conjunctive Cutoff Result (Theorem 5.2.4), decreases the size
of property instantiations significantly, as shown in the third column of Table 7.1. Instead of conjuncts
whose number is polynomial regarding the cutoff, instantiated properties consist of a single conjunct
when using symmetry. We apply this optimization to all guarantees of safety and liveness properties.
Note that symmetry considerations are not usable for quantified assumptions (e.g., the fairness con-
straint), because those must hold explicitly for all processes in the system. For this reason, we fully
instantiate the left-hand side of liveness properties as well as universally quantified architecture proper-
ties for the given cutoff.

Instantiating the illustrative specification results in a CTL?\X formula, which is equivalent to the
following LTL\X formula.

ϕ := G
(
¬(g11 ∧ g12)

)
∧[(

GFmoves11 ∧ GFmoves21 ∧ GFmoves12
)
→
(
G
(
r11 → F g11

))]
∧[(

GFmoves11 ∧ GFmoves12 ∧ GFmoves22
)
→
(
GF g12

)]
∧[(

GFmoves11 ∧ GFmoves21 ∧ GFmoves12
)
→
(
GF is_init11

)]
∧[(

GFmoves11 ∧ GFmoves12 ∧ GFmoves22
)
→
(
GF is_init12

)]
∧[(

(GF is_enabled11 → GFmoves11) ∧ (GF is_enabled21 → GFmoves21) ∧
(GF is_enabled12 → GFmoves12) ∧ (GF is_enabled22 → GFmoves22)

)
→(

GF is_enabled11 ∧ GF is_enabled21 ∧ GF is_enabled12 ∧ GF is_enabled22
)]
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7.1.4 SMT Encoding

The SMT encoding function called in Algorithm 2 gets an instantiated formula ϕ, bounds b, and cutoffs
Cp for each property of ϕ, and creates a formula that encodes the bounded synthesis problem in SMT.
The resulting formula consists of an architecture specific part on the one hand, and of a specification part
on the other hand. We first focus on the architecture specific part, and then describe how the specific-
ation specific part is encoded. Note that in our description, we denote the bit-wise conjunction by the
symbol &, and the bit-wise disjunction by the symbol |.

Architecture Encoding

All data types and functions required for encoding guarded systems are defined in the architecture-
specific part. Consider the set of bounds b = (b1, . . . , bk). For each template we define the following
basic constructs.

• State data-type Tk = (initk, t1k, . . . , t
bk−1
k ),

• Uninterpreted guard assignment function guardk : Tk × Ek × Tk → BG

• Uninterpreted output assignment function o : Tk → B for each output o ∈ Ok

• State guard assignment function guard_bitk : Tk → BG that determines which guard variable is
set for a particular local state

As defined by the system model, the set of guard variables for label guards is G =
⋃

k∈[1,k] BOk . In our
encoding, each guard variable is represented as a single bit of a |G|-sized bit vector. Figure 7.3 illustrates
the bit vector partitioning. Each template Tk is assigned a chunk of |BOk | bits in increasing order (the
template with the smallest index is assigned the chunk which includes the LSB). The guard_bitk function
is fully interpreted, and maps each observable state to a unique bit inside the bit chunk of the particular
template. Let Ok = {o1, . . . , om}. Then,

guard_bitk(t) := 1�

(k−1∑
l=0

|Ol|

)
+

|Ok|∑
i=1

({
1� (i− 1) if oi(t)
0 otherwise

)
In conjunctive guarded systems, the initial states of all templates must be included in each guard [35].

T1Tk

¬o1
¬o2
...
¬om

o1
o2
...
om

LSB

Figure 7.3: Guard bit vector partitioning

We ensure this by introducing the following constraint regarding the guard assignment function.∧
t,t′∈Tk

∧
e∈BEk

(
guard(t, e, t′) 6= 0

)
→
(
(guard(t, e, t′) & guard_initial) = guard_initial

)
where guard_initial := guard_bit1(init1) | . . . | guard_bitk(initk).
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For checking whether the guard of some transition of process T i
k is satisfied with respect to the

current global state, the global state s = (t11, . . . , t
n1
1 , t

1
2, . . . t

nk
k ) is converted into a guard bit vector by

considering all local states except for the local state of T i
k .

guard_setik(s) :=guard_bit1(t
1
1) | . . . | guard_bit1(t

n1
1 ) | guard_bit2(t

1
2) | . . . | guard_bitk(ti−1k ) |

guard_bitk(ti+1
k ) | guard_bitk(tnk

k )

Note that the guard_set function is only introduced for notational brevity, however, is not present in the
final formula. Instead, the sequence of bit-wise disjunctions is embedded where the global state guard
is used. Depending on the guard type, we define the guard evaluation function eval_guard, which takes
two bit vectors with the same size. The first argument g1 is the guard of some transition belonging to
process T i

k obtained by the function guardk. The second guard g2 is the current global state’s guard
representation for the particular process. For disjunctive guarded systems, we define

eval_guard(g1, g2) := ((g1&g2) 6= 0)

The evaluation function for conjunctive guarded systems is

eval_guard(g1, g2) := ((g1 | g2) = g1) ∧ (g1 6= 0)

Based on the guard evaluation function, we define two additional template-specific wrapper func-
tions. The first function delta_enabledk : Tk × B|Ek| × Tk × BG → B is true for some process T i

k if
the global state’s guard representation gs := guard_setik(s) and the environment input e are such that
transition t→ t′ is enabled.

delta_enabledk(t, e, t′, gs) := eval_guard(guardk(t, e, t′), gs)

The second function any_enabledk : Tk × B|Ek| × BG → B determines for process T i
k in some current

local state t whether there is an enabled transition with respect to the current environment input and the
current global state.

any_enabledk(t, e, gs) := ∃t′ ∈ Tk : delta_enabled(t, e, t′, gs)

Specification Encoding

In order to encode the specification, each property of the instantiated specification is first converted into
a corresponding UCT. Then, the existence of a system that satisfies the UCT is encoded as finding a valid
annotation for the run graph, as proposed by Finkbeiner and Schewe [69]. Here, each UCT is considered
separately [52]. That is, for each UCT, we consider a system of the corresponding cutoff size. For each
such subsystem, the environment provides a) inputs for each process (as defined by the particular process
templates), and b) Boolean scheduling signals, which allow to schedule a single process instance. Valid
process templates are found if each subsystem satisfies the encoded UCT. The advantage of this modular
approach is that for each property we look for systems with cutoff size instead of systems whose size is
the maximum of all cutoffs. This modular approach allows for a reduced size of the run graph compared
to the run graph of the maximum cutoff sized system, because there are less states to be annotated. For
example, in case of conjunctive guards, property cutoffs are constant, whereas deadlock detection cutoffs
depend on the bound on the size of the particular process template.

The procedure of encoding a single UCT is illustrated in Algorithm 3. For representing the annotation
of the run graph, we define two uninterpreted functions λB and λ#, where the first function determines
whether a certain run graph state is annotated, and the latter assigns a concrete annotation value to a
particular node. Here, each run graph state consists of a UCT state and a global state of the system with
cp processes (c1 instances of template T1, c2 instances of template T2 etc.). If λB is false for some node,
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the node is annotated with the empty symbol, otherwise the annotation value is provided by λ#. Next,
we ensure that the initial node of the run graph is annotated. In Line 5, the function get_schedulings is
called in order to obtain the scheduling variable assignments for all possible schedulings in the system
of size cp.

Then, each UCT edge q lbl−→ q′ is iteratively analyzed. Because of the fairness constraints and inputs,
which are only readable if the particular process moves, UCT labels possibly contain variables movesik
for different processes T i

k . Obviously, movesik is false if the scheduling variables are such that a particu-
lar process T i

k is not scheduled. In Line 9 of the algorithm, we therefore ensure that we only add SMT
constraints for combinations of UCT edges and schedulings for which label and scheduling do not con-
tradict each other. If the UCT label evaluates to false under the current scheduling, the considered UCT
edge is not possible with respect to this scheduling. Otherwise, we add a run graph annotation constraint
for the particular UCT edge q → q′ and each combination of a) current global state, b) environment
inputs for each process, and c) next global state with respect to the interleaving constraint, that is, only
the currently scheduled process T i

k changes its local state. For each such combination the run graph for
q′ and the next global system state must be annotated if

a) the run graph node for q and the current global system state is annotated,

b) inputs, outputs of processes, and architecture specific variables are such that the UCT’s edge label is
satisfied (represented by predicate cond), and

c) there is an enabled local transition from tik to ti′k with respect to the current environment inputs and
the current global state guard.

The annotation value for the succeeding run graph node must be greater than the current run graph node,
and strictly greater if the UCT’s target node is rejecting. The conjunction cond (Item b) consists of one
conjunct for each requirement defined by the UCT edge label. In order to represent our system model,
we need to ensure that each input can only be read if the corresponding process moves. To this end,
we encode each input requirement in cond as a conjunction of the particular quantified input variable
and movesik, where T i

k is the process the input signal belongs to. Output requirements are encoded
using the particular template’s output functions. Architecture-specific variables are encoded in SMT as
follows. is_enabledik is replaced by the previously defined propositional function with the same name,
i.e., is_enabledk(tik, e

i
k, gs). is_initik is replaced by a predicate is_initik(tik) which is true iff the quantified

local state tik is the initial state initk. movesik is encoded as is_schedik ∧ is_enabledik, with is_enabledik
being replaced by the predicate as described. Note that is_schedik is an actual Boolean value determined
by the encoder: true if the currently considered scheduling is such that process T i

k is scheduled (without
consideration of its enabledness), false otherwise.

For example, consider the UCT (Figure 7.4) that corresponds to the following instantiated liveness
property. (

GFmoves11 ∧ GFmoves21 ∧ GFmoves12
)
→ (G(r11 ∧moves11)→ F g11)

The environment provides two Boolean scheduling variables sched0 and sched1 to the property cutoff
system of size (1, 2). By setting both scheduling signals to false, the environment chooses to schedule
process T 1

1 (which causes is_sched11 to become true). If sched0 is true and sched1 is false, process T 2
1 is

scheduled. Setting sched0 to false and sched1 to true causes process T 1
2 to be scheduled. The assignment

sched0 = sched1 = true is invalid, since there is no fourth process in the system.

Consider the UCT edge q0 → q1 with label moves11 ∧ ¬g11 ∧ r11. By Line 9 of Algorithm 3, we only
consider the scheduling sched0 = sched1 = false for the encoding of this edge. Under consideration of
this scheduling, we add a constraint in Line 16. The current global state consists of the three local states
t11, t21, t12. The next global state consists of a new local state t1′1 for the scheduled process as well as the
current local states t21 and t12 of the other processes. Moreover, there is a single input variable, namely
r11, for which a universally quantified Boolean SMT variable is introduced.
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Input: Formula f , UCT automaton U , property cut-cutoff cp = (c1, . . . , ck), global cutoff c
Output: SMT encoding of UCT automaton

1 λB := Q× T1 × · · · × T1 × T2 × . . . × Tk → B
2 λ# := Q× T1 × · · · × T1 × T2 × . . . × Tk → N
3 f ← λB(q0, init1, . . . , init1, init2, . . . , initk) ∧ λ#(q0, init1, . . . , init1, init2, . . . , initk) = 0
4

5 schedulings← get_schedulings(cp, c)

6 foreach UCT edge q lbl−→ q′ do
7 foreach scheduling sched ∈ schedulings do
8 k, i← get_scheduled_process(scheduling)
9 if scheduling ∧ lbl == true then

10 cond← build_conditions(lbl)
11 .←≥
12 if q′ is rejecting then
13 .← >
14 end
15

f ← f ∧[
∀t11, . . . , t

c1
1 , t

1
2, . . . , t

ck
k ∀t

i′
k ∀e11, . . . , e

c1
1 , . . . , e

ck
k :(

λB(q, t11, . . . , t
ck
k ) ∧ cond ∧ delta_enabled(tik, e

i
k, t

i′
k , guard_setk((t11, . . . , t

ck
k )), i)

)
→(

λB(q′, t11, . . . , t
i′
k , . . . t

ck
k ) ∧ λ#(q′, t11, . . . , t

i′
k , . . . t

ck
k ) . λ#(q, t11, . . . , t

i
k, . . . t

ck
k )
)]

16

17 end
18 end
19 end
20 return f

Algorithm 3: UCT Encoding Algorithm

cond is built based on the label. The first conjunct of the label, moves11, is replaced by is_sched11 ∧
is_enabled1(t11, r

1
1, guard_bit1(t

2
1) | guard_bit2(t

1
2)), where is_sched11 is obviously true. The second con-

junct, namely ¬g11 , contains an output signal of template T1, for which there exists an SMT function
g1 : T1 → B. Thus, we represent ¬g11 as ¬g1(t11). The last conjunct contains the input signal r11. This
signal corresponds to the universally quantified SMT variable with the same name. As described above,
we encode this signal as r11 ∧moves11 = r11 ∧ true∧ is_enabled1(t11, r

1
1, guard_bit1(t

2
1) | guard_bit2(t

1
2)).

The resulting constraint is as follows.

∀t11, t21, t1′1 ∈ T1 ∀t12 ∈ T2 ∀r11 ∈ B :(
λB(q0, t

1
1, t

2
1, t

1
2) ∧ is_enabled1(t11, r

1
1, guard_bit1(t

2
1) | guard_bit2(t

1
2)) ∧ ¬g1(t11) ∧ r11∧
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1
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2
1) | guard_bit2(t

1
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1
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2
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1
2) > λ#(q0, t

1
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2
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1
2)
)
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q0

1

q1 ¬g11

moves11 ∧ ¬g11 ∧ r11

q2 ¬g11

moves21 ∧ ¬g11

q3
moves12 ∧ ¬g11

moves11 ∧ ¬g11

q4

¬g11

¬g11

moves11 ∧ ¬g11

Figure 7.4: UCT of an illustrative liveness property

7.2 Remarks and Optimizations

In this section, we consider optimizations of the encoding based on observations about the relation
between state labels and actual states as well as additional heuristics and optimizations mentioned in
previous work on bounded synthesis.

7.2.1 Label-Based Guards

In the original system model by Emerson and Kahlon [35], guards are defined over states instead of
output labels. In our system model (see Chapter 4), there are two possible cases which need to be further
investigated. First, if the number of observable states |BOk | is smaller than the number of states |Tk| for
some template Tk, we are not able to uniquely identify each state t ∈ Tk. Instead, the internal system
states Tk are partitioned, because multiple states are assigned to the same label, and thus belong to the
same observable state. In the second case, |BOk | > |Tk|. Here, it depends on the concrete implementation
whether states are uniquely identifiable (each state is assigned a different label), or whether there are
multiple states that appear as a single observable state (at least one label is assigned to more than one
state).

Consider a system where |BOl | = |Tl| for all templates Tl except for some template Tk. Compared
to the original system model from [35], using the concept of observable states yields a smaller problem
instance if |BOk | < |Tk|, since there exist less possible guards. However, there possibly exists a solution
which requires that all states Tk are uniquely identifiable. Using observable states, this problem can be
resolved by introducing auxiliary labels, that is, adding pseudo-variables to Ok such that the number of
used labels exceeds |Tk|. The actual number of required auxiliary variables depends on state partitioning,
i.e., the number of observable states. Under the assumption that the cardinality of the original output set
Ok is at least 1 and the specification allows at least two output assignments (all output signals are true
and false, respectively), the upper bound for the number of required auxiliary labels is log |Tk| − 1.

Obviously, |BOk | > |Tk| yields a larger number of possible guards, therefore, the SMT problem
instance becomes more difficult to solve. One way to ensure that |BOk | ≤ |Tk| is to split the set of labels
Ok into two sets: a set of labels that are considered as part of the observable state, and a set of labels
whose assignment does not influence any guard. However, this partitioning is not known a priori, since
it depends on the semantics of the different output labels defined by the specification. Possible solutions
are discussed in the Section 7.2.2. Note that if |Tk| is not a power of 2, adding all auxiliary variables
required to uniquely identify each state causes the number of possible label combinations (observable
states) to be larger than |Tk|. Solutions to this problem are discussed in Section 7.2.3.
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7.2.2 State-Based Guards

As already pointed out, using label-based guards instead of state-based guards is more complex if∑
k |BOk | >

∑
k |Tk|. To this end, we distinguish between two cases when defining the architecture-

specific constraints for each template. On the one hand, if
∑

k |BOk | ≤
∑

k |Tk|, we use label-based
guards as defined in our system model. On the other hand, if

∑
k |BOk | >

∑
k |Tk|, we use state-based

guards for the particular template and define guard_bitk to map each state t ∈ Tk to a unique bit inside
the bit chunk assigned to template Tk. The following function determines the number of bits in the guard
bit vector allocated to a particular template Tk.

chunk_size(Tk) := min(|BOk |, |Tk|)

Then, the guard bit vector size is equal to
∑

k chunk_size(Tk). Let the function state_indexk : Tk →
[0, |Tk|−1] map each state a to a unique number. The guard bit function distinguishes between two cases
as follows.3

guard_bitk(t) := 1�

[(
k−1∑
l=0

chunk_size(Tl)

)
+

{
label_bit_pos(t) if chunk_size(Tk) = |BOk |
state_bit_pos(t) otherwise

]

label_bit_pos(t) :=

|Ok|∑
i=1

({
1� (i− 1) if oki(t)
0 otherwise

)
state_bit_pos(t) := state_indexk(t)

7.2.3 Auxiliary Variables

As already mentioned, label-based guards allow to partition the actual state space into observable states,
and thus provide support for making states private. However, if the number of observable states is smal-
ler than the number of states, bounded synthesis possibly fails to find a solution because the number of
available guard variables is too small. Auxiliary variables increase the number of possible output assign-
ments, and therefore can be used to achieve a more fine-grained partitioning of states into observable
states.

In the following, we present an extension for Algorithm 2, which is based on label-based guards. By
iteratively adding auxiliary variables, it increases the number of available output assignments the SMT
solver can choose, and therefore ensures that we do not miss solutions because of a too coarse state par-
titioning (and consequently too few guard variables). In contrast to immediately adding the maximum
number of auxiliary variables to Ok, the iterative approach ensures that the returned solution is minimal
with respect to the required number of auxiliary variables, and thus has the coarsest state partitioning.
Algorithm 4 shows the modifications to Algorithm 2, beginning in Line 10. Our optimization requires
an additional loop inside the original main loop. In Line 15, we define an initially empty set of auxiliary
labels for each template. We then try to find a solution for the bounded synthesis problem as in the
original algorithm. However, if the solver’s response is UNSAT, we do not increase the bound immedi-
ately. Instead, we add to each set auxk an additional auxiliary variable unless the maximum number of
required auxiliary variables is reached. New auxiliary variables are also added to the output setOk of the
particular process template. Then, the inner while loop is repeated if at least one new auxiliary variable
was added. This inner loop is executed either until a solution is found, or each output set Ok contains
enough auxiliary variables to uniquely identify each state. In the latter case, we increase the template
bounds, and repeat the outer while loop defined in Line 2. This extension can also be refined to addition-
ally include a combination of the state-based and label-based approach, as described in Section 7.2.2.
One possible solution is to decide for each template, whether the number of label-based guard variables

3Note that oki(t) denotes the i-th component of the output label for template Tk in state t.
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|BOk∪auxk | is smaller than the number of state-based guard variables |Tk|. In the positive case, the al-
gorithm encodes the template using label-based guards, in the negative case using state-based guards.
This refinement unites the advantages of both label-based and state-based guards, and keeps the number
of guard variables (and thus the problem size) is kept as small as possible.

9 . . .
10 while increments < max _increments do
11 Cp,← get_cutoffs(Φ′, N , b)
12 all_state_based← false
13 ϕ← instantiate(Φ′, b, Cp)
14 foreach k ∈ [1, k] do
15 auxk ← ∅
16 end
17 while ¬all_state_based do
18 formula← encode(ϕ, b, Cp)
19 res← solve(formula)
20 if res == SAT then
21 return extract_model()
22 end
23 all_state_based← true
24 foreach k ∈ [1, k] do
25 if |B|auxk|+1| < |Tk| then
26 auxk ← auxk ∪

{
aux|auxk|

k

}
27 Ok ← Ok ∪ auxk
28 all_state_based← false

29 end
30 end
31 end
32 b← (b1 + 1, . . . , bk + 1)
33 increments← increments + 1

34 end
35 return UNSAT

Algorithm 4: Optimized Bounded Synthesis of Guarded Systems

7.2.4 Further Optimizations

We observe monotonicity for both conjunctive and disjunctive guards. If a guard g is satisfied by some
global state guard gs, then gs also satisfies each guard g′ which is such that g& g′ = g, i.e. all guard
variables that are true in g are also true in g′. Although monotonicity decreases the number of different
guards the solver needs to consider until an appropriate one is found, we can further restrict the set of
guards by introducing heuristics, and preferring the search for guards with a specific structure. Disjunct-
ive guards are satisfied if at least one process is in some specific state. From this definition we infer
that searching for guards with a small cardinality (i.e., a small number of guard variables is true) is a
reasonable heuristic. By contrast, conjunctive guards are disabled by a process in some specific state.
As a consequence, preferring conjunctive guards with a large number of true guard variables seems
reasonable.4 This optimization is realizable in a similar way as described for iteratively added auxiliary
variables.

4This is enforced by our theoretical results for conjunctive guarded systems, which are currently restricted to 1-guards.
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Finkbeiner and Schewe [38] describe a set of optimizations, some of which we implicitly used in our
description of the encoding (e.g., input elimination). Another encoding-specific optimization mentioned
in [38] as well as by Khalimov et al. [52] is to reduce the number of run graph states that need to be
annotated by exploiting the structure of the particular encoded UCT. In this optimization, only UCT
states that are part of a rejecting SCC (an SCC with at least one rejecting state) need to be considered by
the labelling functions.
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Chapter 8

Implementation and Experiments

8.1 Implementation

We developed a command-line prototype application that implements our guarded synthesis approach.
To this end, we reused parts of the Python-based bounded synthesis tool PARTY [51]. Our prototype
supports synthesis of templates with state-based or label-based guards, and is ready for using auxiliary
variables, SCCs in run graphs, and other optimizations discussed in the previous chapter.

Figure 8.1 illustrates the main steps during the execution of our application. The tool takes an in-
dexed LTL\X specification as well as properties of the desired system, including the guard type, the
maximum bound for each process template, and the desired system size.1 In the preprocessing step, each
liveness property is weakened by adding an assumption expressing unconditional fairness. To this end,
we determine the property types by analyzing the corresponding UCT as described in Chapter 7. We
obtain the desired UCT by converting the negated property into a Büchi automaton. For this task, we
use LTL3BA2 [8], the successor of the LTL-to-Büchi conversion tool LTL2BA [40]. The outcome of
LTL3BA is then interpreted as a UCT. After processing all specification properties, the indexed LTL\X
specification is extended by architectural constraints (provided by System Class), and instantiated under
consideration of the desired template size and the applicable cutoffs (specified by the System Class). In
the succeeding step, the instantiated LTL formula is converted into a UCT automaton using LTL3BA.
Then the UCT automata, architectural properties (in particular the semantics of process template and

1Note that our prototype application is intended to be used for evaluation purposes. At the moment, it does not support auto-
matic computation of cutoffs, and the user must define the size of the system (i.e., the number of processes) to be synthesized.

2Available at http://sourceforge.net/projects/ltl3ba/.
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Figure 8.1: Prototype program flow
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system-classes

helpersparsing

smt

thirdpartytranslation2uct

datastructures

controller

Figure 8.2: Prototype package diagram

guards) provided by System Class, and bounded synthesis constraints are encoded in SMT. The resulting
SMT instance is then solved using the SMT solver Z3 [25]. Note that our prototype relies on the Z3
Python API 3 for encoding and solving SMT problems. If the SMT instance is satisfiable, we obtain
process templates from the model returned by the SMT solver. Otherwise, the bounds for the process
template sizes are increased, and all steps starting from the property instantiation are repeated. This loop
is terminated if either a model is retrieved, or the current process template size exceeds the maximum
bound defined by the user.

Figure 8.2 shows the program’s components. In the following paragraphs, we describe each com-
ponent (i.e., Python package, or Python module).

System Classes The package system-classes provides an extendable hierarchy of system class
descriptions, defining fairness, architecture-specific and system-specific assumptions and guarantees,
cutoff calculation routines, and various special restrictions that apply to the particular system class. So
far, the tool supports conjunctive and disjunctive guarded systems.

Specification Parsing The specification file parsing functionality (package parsing) is reused
from PARTY and extended in order to support quantified template variables. Template variables have
the structure <name>_k, where <name> is some unique identifier consisting of letters and digits, and k
denotes the index of the template the signal belongs to. Quantified template variables have the structure
<name>_k_i, where <name> and k are as for template variables, and i is the index of the process
instance (w.r.t. template k). An example specification is shown in Listing 8.1. It is structured into mul-
tiple sections. The first section GENERAL contains information about the number of templates used in
the system. In the section INPUT_VARIABLES input variables for each template are defined (given as
template variables). Likewise, the section OUTPUT_VARIABLES lists output variables for each tem-
plate. In our example, there is a single template with an input signal r_0 and an output signal g_0.
The section LABEL_VARIABLES contains information that is considered by the label-based approach
only. It defines all output variables which are part of the observable state. The section ASSUMPTIONS
contains assumptions under which the succeeding guarantees must hold (currently not used because the
supported properties described in Section 4.3 only consist of guarantees). The section GUARANTEES

3Available at https://github.com/z3prover.

https://github.com/z3prover
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includes guarantees that must be satisfied by the desired system implementation. Our example lists a
single guarantee, namely mutual exclusion.

1 [GENERAL ]
2 templates : 1
3
4 [INPUT_VARIABLES ]
5 r_0 ;
6
7 [OUTPUT_VARIABLES ]
8 g_0 ;
9

10 [LABEL_VARIABLES ]
11 g_0 ;
12
13 [ASSUMPTIONS ]
14
15 [GUARANTEES ]
16 Forall (i ,j ) G ( ! ( g_0_i=1 * g_0_j=1) ) ;

Listing 8.1: Example for a well-formed specification

UCT Translation The UCT translation functionality is reused from PARTY. As mentioned above,
our tool does not implement the translation routine, but instead relies on LTL3BA [40]. Our implement-
ation is thus responsible for calling LTL3BA, providing the appropriate input, and parsing the external
application’s output.

SMT Encoding The package smt provides functionality for encoding the bounded synthesis problem
and solving the SMT instance. Moreover, this component is responsible for extracting information about
process implementations from a model obtained by the SMT solver.

Other components The module controller is responsible for coordinating the synthesis process
and implements the loop illustrated in Figure 8.1. The packages datastructures, helpers provide
common functionality used by various components. The package thirdparty encapsulates third-
party components (parser, Z3 bindings etc.).
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8.2 Experiments

The evaluation focuses on the impact of our cutoffs on the runtime. We aim at observing whether the
particular cutoffs are low enough to allow us to synthesize a solution in a reasonable time. Furthermore,
we are interested in identifying the main contributors in case of high runtimes. To this end, we consider
different specifications for (conjunctive and disjunctive) guarded systems. Note that in a real-world
scenario, we would solve the synthesis problem for all system sizes up to the cutoff system in a single
run in order to obtain a parameterized system. However, for evaluation purposes we sequentially find
solutions for an increasing number of instances. We also compare the runtime of the label-based approach
with the runtime of the state-based approach, where applicable, i.e., where the number of states of at
least one template is not equal to the number of possible label assignments (observable states). For our
experiments we use a PC with an Intel i7-3770K processor and 16GB RAM. For performance reasons
we do not use any swapping mechanism. The run time is determined by averaging over 10 runs. We set
the timeout period to 1.5 hours.

8.2.1 Conjunctive Guarded Systems

Example 1

Example 1 is a simple arbiter, consisting of one process template. It takes an input r and provides an
output g. The specification requires that each request r is finally granted, and that there are no two grants
at the same time. For label-based synthesis, the observable state depends on the grant signal.

T

r1

g1

T

r2

g2

· · · · · · T

rn

gn

Figure 8.3: Conjunctive Example 1: Black box view

1 [GENERAL ]
2 templates : 1
3
4 [INPUT_VARIABLES ]
5 r_0 ;
6
7 [OUTPUT_VARIABLES ]
8 g_0 ;
9

10 [LABEL_VARIABLES ]
11 g_0 ;
12
13 [GUARANTEES ]
14 Forall (i ) G (r_0_i=1 −> F (g_0_i=1) ) ;
15 Forall (i ,j ) G ( ! ( g_0_i=1 * g_0_j=1) ) ;

Listing 8.2: Conjunctive Example 1: Specification

The synthesized process template is shown in Figure 8.5. It consists of two states — the non-granting
initial state t0, and the granting state t1. A process only moves if every other process in its initial
state. Raising grant signals is not necessarily preceded by requesting the resource, however, each request
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Instances
Runtime state-based Runtime label-based

with cutoffs without cutoffs with cutoffs without cutoffs
2 0.93 0.93 0.93 0.93

3 1.1 5.5 1.1 5.5

4 1.1 42.9 1.1 43.5

5 1.1 631.1 1.1 641.1

6 1.1 TIMEOUT 1.1 TIMEOUT

Table 8.1: Conjunctive Example 1: Runtimes
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Figure 8.4: Conjunctive Example 1: Runtime
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{t0}
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Figure 8.5: Conjunctive Example 1: Process template
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is finally granted, and thus the specification is satisfied. From Table 8.1 we can see that the runtime
increases exponentially if no cutoffs are used, a distributed system with 6 processes cannot be synthesized
within the TIMEOUT period. For the given specification, and |T | = 2, the deadlock detection cutoff
and the property cutoff for the single-indexed property is (2), the cutoff for the double-indexed property
is (3). For this reason, the runtime for synthesis with cutoffs remains constant with respect to the number
of processes for n ≥ 3. Because the number of possible output assignments is equal to the number of
template states, we cannot observe any significant runtime differences between state- and label-based
synthesis.

Example 2

Example 2 is an extended version of Example 1. Additional specification properties ensure the absence
of both initial spurious grants and spurious grants after the grant state is visited.
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· · · · · · T
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Figure 8.6: Conjunctive Example 2: Black box view
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r : {t0}
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Figure 8.7: Conjunctive Example 2: Process template

1 [GENERAL ]
2 templates : 1
3
4 [INPUT_VARIABLES ]
5 r_0 ;
6
7 [OUTPUT_VARIABLES ]
8 g_0 ;
9

10 [LABEL_VARIABLES ]
11 g_0 ;
12
13 [GUARANTEES ]
14 Forall (i ) G (r_0_i=1 * −> F (g_0_i=1) ) ;
15 Forall (i ,j ) G ( ! ( g_0_i=1 * g_0_j=1) ) ;
16 Forall (i ) ( ! ( ( r_0_i=0 * g_0_i=0) U (r_0_i=0 * g_0_i=1) ) ) ;
17 Forall (i ) G (g_0_i=1 −> (g_0_i=1 U ( (g_0_i=0 U r_0_i=1) + G (g_0_i=0) ) ) ) ;

Listing 8.3: Conjunctive Example 2: Specification

The implementation of the synthesized process template (Figure 8.7) is similar to the implementation
of Example 1. Spurious grants are avoided by only granting if a request is seen. Note that the imple-
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Instances
Runtime state-based Runtime label-based

with cutoffs without cutoffs with cutoffs without cutoffs
2 1.9 1.9 1.8 1.8

3 2.0 10.3 2.0 10.1

4 2.0 72.0 2.0 71.4

5 2.0 1054 2.0 1046

6 2.0 TIMEOUT 2.0 TIMEOUT

Table 8.2: Conjunctive Example 2: Runtimes
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Figure 8.8: Conjunctive Example 2: Runtime
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mentation does not react to requests it cannot see, that is, a) requests raised when the process is not
scheduled, and b) requests which are raised when the process is scheduled, but cannot move. This beha-
viour is allowed by our system model as long as fairness is ensured. Table 8.1 shows that the runtimes
for Example 2 are similar to the ones for Example 1. Overall, we observe slightly higher runtimes due
to the additional properties. In this example, the cutoffs are also (2) and (3) respectively. Therefore,
the runtime remains constant for systems with more than two processes. Because the number of states
is equal to the number of output variable assignments, there is no significant difference between the
state-based and the label-based encoding.

Example 3

Example 3 consists of one template with two requests r1, r2, and two grants g1, g2. Both requests
must be granted eventually, however, request r2 has lower priority than r1. That is, if both resources
are requested, only the first must be eventually granted. Requests during a grant phase can be ignored.
Mutual exclusion is specified resource-wise and for pairs of different grants. Moreover, spurious grants
must be avoided. For the label-based approach, we define both grant signals to be part of the observable
state.

1 [GENERAL ]
2 templates : 1
3
4 [INPUT_VARIABLES ]
5 r1_0 ;
6 r2_0 ;
7
8 [OUTPUT_VARIABLES ]
9 g1_0 ;

10 g2_0 ;
11
12 [GUARANTEES ]
13 Forall (i ,j ) G ( ! ( g1_0_i=1 * g1_0_j=1) ) ;
14 Forall (i ,j ) G ( ! ( g2_0_i=1 * g2_0_j=1) ) ;
15 Forall (i ) G ( ! ( g1_0_i=1 * g2_0_i=1) ) ;
16
17 Forall (i ) G ( (r1_0_i=1 * g2_0_i=0) −> (F (g1_0_i=1) ) ) ;
18 Forall (i ) G ( (r2_0_i=1 * g1_0_i=0 * r1_0_i=0) −> (F (g2_0_i=1) ) ) ;
19
20 Forall (i ) G (g1_0_i=1 −>
21 (g1_0_i=1 U ( (g1_0_i=0 U r1_0_i=1) + G (g1_0_i=0) ) ) ) ;
22 Forall (i ) G (g2_0_i=1 −>
23 (g2_0_i=1 U ( (g2_0_i=0 U r2_0_i=1) + G (g2_0_i=0) ) ) ) ;
24
25 Forall (i ) ( ! ( ( r1_0_i=0 * g1_0_i=0) U (r1_0_i=0 * g1_0_i=1) ) ) ;
26 Forall (i ) ( ! ( ( r2_0_i=0 * g2_0_i=0) U (r2_0_i=0 * g2_0_i=1) ) ) ;

Listing 8.4: Conjunctive Example 3: Specification

As shown in Figure 8.11, there exist different valid implementations because we do not specify how
the system has to react in case of requests while being in one of the grant states. The implementation in
Figure 8.11a ignores requests while granting one resource, whereas the implementation in Figure 8.11b
grants requests for resource 1 in any case. From Table 8.3 we see that for n = 2, an implementation
can be found although no cutoffs are used. The constant property cutoffs (c = 2 for single-indexed, and
c = 3 for double-indexed properties) significantly reduce the complexity, and thus allow to synthesize
systems with more than 2 processes. In case of the state-based encoding, the runtime remains constant
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T

r11 r21

g11 g12

T

r12 r22

g12 g12

· · · · · · T

r1n r2n

g1n g1n

Figure 8.9: Conjunctive Example 3: Black box view

Instances
Runtime state-based Runtime label-based

with cutoffs without cutoffs with cutoffs without cutoffs
2 48.6 44.5 46.3 47.3

3 195.0 1946 2380 TIMEOUT
4 3001 TIMEOUT TIMEOUT -
5 3001 - - -
6 3001 - - -

Table 8.3: Conjunctive Example 3: Runtimes
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Label-based with cutoffs
State-based without cutoffs
State-based with cutoffs

Figure 8.10: Conjunctive Example 3: Runtime
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t0

t1

g1

{t0, t1, t2}

r1 : {t0, t2}

t2

g2

¬r1 ∧ r2 : {t0, t1}

(a) Implementation not considering requests in grant states

t0

t1

g1

{t0, t1, t2}

r1 : {t0, t2}

t2

g2

¬r1 ∧ r2 : {t0, t1}

¬r1 : {t0, t1, t2}

r1 : {t0, t2}
(b) Implementation considering requests r1 in grant state t2

Figure 8.11: Conjunctive Example 3: Process templates (not complete)

for n ≥ 4 because of the deadlock detection cutoff (c = 4). For a bound b < 4, the state-based approach
yields a smaller number of guard variables (cardinality b) than the label-based approach (4 possible
assignments for output variables). Thus, we observe smaller runtimes for state-based synthesis. The
increased complexity of label-based synthesis in this example even yields a timeout for n ≥ 4.

8.2.2 Disjunctive Guarded Systems

Example 1

Example 1 specifies a disjunctive guarded system consisting of two process templates, with multiplicity
vector (1, n − 1), that is, independent from the system size there is only one process belonging to the
first template. Each template has a single output (w, g, resp.), and no environment inputs. In the desired
system, instances of both templates must change the state of their outputs infinitely often, and infinitely
often, there must be one process pair i, j, for which wi and gj are true at the same time. For label-based
synthesis, all output signals are defined to be part of the observable state.

1 [GENERAL ]
2 templates : 2
3
4 [INPUT_VARIABLES ]
5
6 [OUTPUT_VARIABLES ]
7 w_0 ;
8 g_1 ;
9

10 [GUARANTEES ]
11 Forall (i ) (G (F (w_0_i=0) ) * G (F (w_0_i=1) ) ) ;
12 Forall (i ) (G (F (g_1_i=0) ) * G (F (g_1_i=1) ) ) ;
13 Forall (i ,j ) G (F (w_0_i=1 * g_1_j=1) ) ;

Listing 8.5: Disjunctive Example 1: Specification
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Figure 8.12: Disjunctive Example 1: Black box view

Instances
Runtime state-based Runtime label-based

with cutoffs without cutoffs with cutoffs without cutoffs
2 1.9 1.9 1.9 1.9

3 9.5 9.8 9.3 9.5

4 110.2 99.6 80.4 79.9

5 128.6 1496 92.9 1309

6 128.6 TIMEOUT 92.9 TIMEOUT

Table 8.4: Disjunctive Example 1: Runtimes
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Figure 8.13: Disjunctive Example 1: Runtime
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Figure 8.14: Disjunctive Example 1: Process template
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The implementation is shown in Figure 8.14. Both process templates lower the output signals in their
initial states (t01, t02). The guards of the two templates ensure that for all pairs of T1, T2 processes, w and g
are raised infinitely often at the same time. The T1 process can always move to state t11, but can only
move back to the initial state if there is at least one T2 process in the grant state. Template T2 processes
can only move if the T1 process is in state t11. Table 8.4 lists the runtime results. We observe that applying
cutoffs yields constant runtimes for n ≥ 5. This is due to the single-indexed and double-indexed property
cutoffs (c = (4, 4), clipped to c = (1, 4)). Furthermore, the deadlock detection cutoff c = (3, 3) (clipped
to c = (1, 3)) causes the runtime improvement for n = 4. The relatively small runtime difference
between n = 4 and n = 5 can be explained by the fact that in case of n = 5 the UCT automata for
the specified properties have only up to 2 additional states compared to n = 4. This also suggests that
the deadlock detection property is a major contributor to the runtime increase. The runtime difference
between label-based encoding and state-based encoding has no theoretical reason, however, it suggests
that the solver “profits” from the label-based encoding for this example.

Example 2

Example 2 is a more complex specification. It defines two templates with multiplicity vector (1, n− 1).
The first template has one output read. The second template takes two inputs req and reqtype, and has
two outputs send and sendtype. According to the specification, the process belonging to the first template
must change its read output infinitely often. Processes belonging to the second template must react on
each request req with a certain reqtype by eventually raising the send output with the corresponding
sendtype. Furthermore, the first process must read when a send signal is raised. For label-based synthesis,
we specify that the observable states of the processes only consider the signal read of the first process
template, and the signal send of the second template.

T1

read1

T2

r1 rt1

st1s1

· · · · · · T2

rn−1 rtn−1

stn−1sn−1

Figure 8.15: Disjunctive Example 2: Black box view

1 [GENERAL ]
2 templates : 2
3
4 [INPUT_VARIABLES ]
5 req_1 ;
6 reqtype_1 ;
7
8 [OUTPUT_VARIABLES ]
9 read_0 ;

10 sendtype_1 ;
11 send_1 ;
12
13 [LABEL_VARIABLES ]
14 read_0 ;
15 send_1 ;
16
17 [GUARANTEES ]
18 Forall (i ) (G (F (read_0_i=1) ) * G (F (read_0_i=0) ) ) ;
19 Forall (i ,j ) (G ( (req_1_i=1 * reqtype_1_i=0) −>
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20 F (send_1_i=1 * sendtype_1_i=0 * read_0_j=1) ) ) ;
21 Forall (i ,j ) (G ( (req_1_i=1 * reqtype_1_i=1) −>
22 F (send_1_i=1 * sendtype_1_i=1 * read_0_j=1) ) ) ;
23
24 Forall (i ) ( ! ( ( req_1_i=0 * send_1_i=0) U (req_1_i=0 * send_1_i=1) ) ) ;
25 Forall (i ) G (send_1_i=1 −>
26 (send_1_i=1 U ( (send_1_i=0 U req_1_i=1) + G (send_1_i=0) ) ) ) ;
27
28 Forall (i ) ! (send_1_i=1 U req_1_i=1) ;
29 Forall (i ) (G ( (send_1_i=1) −> (send_1_i=1 U (send_1_i=0 U req_1_i=1) ) ) ) ;

Listing 8.6: Disjunctive Example 2: Specification

Instances
Runtime state-based Runtime label-based

with cutoffs without cutoffs with cutoffs without cutoffs
2 4.35 4.35 4.32 4.32

3 TIMEOUT TIMEOUT TIMEOUT (*) TIMEOUT (*)

Table 8.5: Disjunctive Example 2: Runtimes

t01¬r

t11r

T1
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t02, t

1
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} {
t12
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¬st, s

t22

st, s

T2

r ∧ ¬rt :
{
t11
}

{
t11
} r ∧ rt :

{
t11
}

Figure 8.16: Disjunctive Example 2: Process template

The implementation shown in Figure 8.16 consists of one process template with 2 states, and one
process template with 3 states. All output signals are lowered in the initial states t01 and t02. The imple-
mentation for template T1 is like in Example 1. The process can always move into the read state t11, but
can only move back to the initial state if there is at least one T2 process in one of the non-initial states.
Processes belonging to template T2 can only move when process T 1

1 is in state t11. If allowed by the
guard, instance of the second template grant requests depending on the request type rt, that is, they either
move into state t12 or state t22.

Table 8.5 shows the runtimes. Because the number of (template-wise) assignments to label variables
is smaller than the number of states in case of the second template, we expect that the label-based syn-
thesis performs better than the state-based synthesis. For n = 2, we observe a small improvement. This
can be explained by the fact that the cardinality of the guard variable set for the label-based encoding is
only smaller by 1 compared to the state-based encoding. In this example, the cutoffs ((1, 6) for single-
indexed and multi-template double-indexed properties, (1, 5) for deadlock detection) do not come into
effect because the synthesis causes a timeout for n ≥ 3. In case of label-based synthesis, one run out
of 10 terminated within the timeout period (one run terminated in 2318s, marked with (*) in the table),
whereas all runs of the state-based approach yielded a timeout.
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8.2.3 Conclusions

In case of conjunctive guards and small specifications, the cutoffs allow us to synthesize systems with
an arbitrary size. Synthesis for conjunctive guarded systems benefits from the size-independent property
cutoffs as well as the deadlock detection cutoffs which are less or equal to the bound for templates with
≤ 2 states. This enables a low runtime for synthesis in case of Example 3, which has a specification
with 8 properties. Even for very small systems, synthesis for our disjunctive guarded examples does
not terminate before the timeout period elapses. Comparing the timeout threshold for conjunctive and
disjunctive guards shows that a timeout is given for much smaller systems (w.r.t. to the number of
instances) in case of disjunctive guards. This is caused by having two process templates for disjunctive
guard examples (instead of a single one as in the case of conjunctive guards), with an overall number of
4 states (Example 1), and 5 states (Example 2), respectively. In general, the primary cause for the steep
increase in runtime is the size of the encoded UCT automata. For example, consider some specification
(p1 – p2) and architecture properties (p3 – p4) of a small conjunctive guarded system.

(p1) (∀i : GFmovesi)→ (∀i : G(ri → Fgi))

(p2) ∀i, j : G¬(gi ∧ gj)

(p3) (∀i : GFmovesi)→ (∀i : GF initi)

(p4) (∀i : GF enabledi → GFmovesi)→ (∀i : GF enabledi)

Instances (p1) (p2) (p3) (p4)
2 5 2 8 11

3 6 2 14 36

4 7 2 22 109

5 8 2 32 318

Table 8.6: Impact of the system size on the size of UCT automata (without consideration of cutoffs)

Table 8.6 illustrates the correlation between system size (i.e., number of process instances) and UCT size
for each property. We see that the symmetry considerations for specification properties (p1) and (p2)
yield constant a number of UCT states (p2), and a small increase with respect to the system size (p2),
respectively. These symmetry considerations do not apply to architecture properties. Hence, instantiating
an architectural property for a higher number of processes has a significant impact on the size of the
corresponding UCT automaton. Naturally, the steepness of the increase strongly depends on the structure
of the translated property. Obviously, the deadlock detection property does not scale with respect to the
system size, making synthesis for larger systems infeasible.



Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis we studied the class of disjunctive and conjunctive guarded systems described by Emerson
and Kahlon [35]. We examined the already existing cutoffs for parameterized model checking of such
systems [35], and investigated solutions for enabling efficient parameterized synthesis. Lifting the cutoff
results for parameterized model checking to the synthesis domain as described in [48] is not possible
easily because a) Emerson and Kahlon only consider systems without environment inputs (closed sys-
tems), and b) the existing cutoffs do not include any kind of fairness. We provided two solutions for
parameterized synthesis. The first solution is to apply parameterized synthesis to closed systems, and
then convert the synthesized closed system into an open one. This approach allows us to directly use
the cutoff results identified by Emerson and Kahlon for model checking, however, suffers from state
explosion, and lacks fairness. Because the used cutoffs depend on the number of states, state explosion
results in exponentially increasing cutoffs, yielding a high synthesis runtime. Furthermore, if the aspect
of fairness is ignored, this approach does not allow us to synthesize liveness properties. Therefore, we
identified appropriate fairness constraints for the considered class, and then revisited the proofs of the
cutoff results from [35]. Considering open systems and fairness, we proved new cutoffs for parameter-
ized synthesis. Our results allow us to directly synthesize safety and liveness properties for the desired
system.

We described logical formulae that represent the desired system implementation as a constraint sys-
tem, allowing us to apply SMT-supported synthesis based on the semi-decision bounded synthesis ap-
proach by Finkbeiner and Schewe [38]. We implemented this algorithm in a Python prototype application
(based on the parameterized synthesis tool PARTY [51]), and evaluated the runtime with respect to our
cutoff results.

9.2 Future Work

The empirical evaluation shows that the new cutoffs enable parameterized synthesis of systems with
small process templates. Nevertheless, the practical use is currently limited due to the high synthesis
runtime for larger process templates as well as more complex specifications. We identified the size of the
encoded UCT automata as a major contributor to the large number of constraints in the SMT instance,
which has a significant impact on the synthesis runtime. One possibility to tackle this problem is to
decrease the size of the formula that is converted into a UCT, for example by replacing the current
fairness constraint by a more compact one. A further drawback is that the used cutoffs depend on the
number of process template states. Finding implementations with a higher number of states is thus only
possible under consideration of distributed systems with an increased number of processes. Obviously
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this connection has a negative impact on the runtime. Hence, revisiting the cutoff proofs and finding
cutoffs without this dependency or even constant cutoffs will be an important part of future research in
this field.

Guarded protocols are not capable of modelling interesting real-world use cases, e.g., cache coher-
ence protocols. However, they serve as a foundation for more advanced classes that allow to model such
ubiquitous distributed systems. It is up to future work to establish efficient synthesis for such systems.
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