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Zusammenfassung 

 

Ein Brain-Computer Interface (BCI), zu Deutsch Hirn-Computer-Schnittstelle, erlaubt es dem 

Benutzer ein Gerät oder ein Programm auf Basis seiner Hirnaktivität zu steuern. Ein solches 

System kann Personen mit eingeschränkter Kommunikationsfähigkeit helfen, neue Wege zur 

Interaktion mit ihrer Umwelt zu finden. Im Zuge dieses Projektes wurde ein BCI entwickelt, 

das durch Interpretation der Hinströme auf Grund unterschiedlicher visueller Reize 

Entscheidungen trifft und diese, über eine Netzwerkverbindung, an ein entferntes Gerät 

weiterleitet. Visuelle Reizfolgen mit konstanter Frequenz generieren ein so genanntes steady-

state visuell evoziertes Potential (SSVEP), welches von der Kopfhaut abgeleitet und verstärkt 

wird. Das entwickelte BCI analysierte das Elektroenzephalogramm (EEG) des Benutzers und 

extrahierte, entsprechend der verwendeten Reizsequenz, Merkmale aus den Signalen. Diese 

Merkmale wurden online zu definierten Befehlen klassifiziert. In den durchgeführten 

Experimenten wurden drei unterschiedliche Konfigurationen getestet. Zwei Systeme basierten 

auf Stimulation mit konstanter Frequenz, wobei ein System Leuchtdioden (f-VEP LED) und 

das andere System einen Monitor als Lichtquelle (f-VEP on-screen) verwendete. Im dritten 

System erfolgte die Stimulation mittels pseudo-randomisierter Sequenz auf einem Monitor (c-

VEP on-screen). Zur Stimulation mittels Monitor wurde ein Programm implementiert, das 

BCI Kontrollen visualisierte und über eine Netzwerkverbindung mit dem BCI verbunden war. 

Das BCI selbst wurde in einer Rapid-Prototyping Umgebung implementiert. In Summe 

nahmen elf gesunde Probanden teil, wobei jeder Proband Experimente zu jeder der drei 

Konfigurationen mit machte. Die Experimente umfassten einen Genauigkeitstest der 

Klassifikation und eine Robotersteuerung mit visuellem Feedback. Die c-VEP Konfiguration 

zeigte mit 94.51 % mittlerer Klassifikationsgenauigkeit den besten Wert. Die f-VEP LED 

Konfiguration erreichte durchschnittlich 83.64 %, während die f-VEP on-screen 

Konfiguration einen Durchschnittswert von 84.18 % zeigte. Ein Quade-Test zeigte signifikant 

bessere Klassifikationsgenauigkeit (p = 0.0168) und signifikant schnellere Steuerung 

(p = 0.0187) der c-VEP on-screen Konfiguration. In allen mit f-VEP basierenden BCIs 

durchgeführte Experimenten zeige die „on-screen“ Stimulation vergleichbare Ergebnisse und 

kann nun für weitere Anwendungen verwendet werden. 
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Abstract 

 

A Brain-Computer Interface (BCI) allows a user to control a device or a program on base of 

the brain activity. Such a system may help people, who have only limited or no possibility to 

communicate with their environment. Within this thesis a BCI system was developed that 

performs tasks based on specific brain waves caused by visual stimulation. Visual stimuli 

with constant stimulation cycles generate a so called steady-state visual evoked potential 

(SSVEP). A biosignal amplifier provided a signal that was used for further signal processing. 

The BCI analyzed the users’ electroencephalogram (EEG) online and extracts features, which 

are related to the type of visual stimulation. Via network connection, the BCI sent the 

corresponding command to a remote device. Three configurations of the BCI were used for 

the experiments in this work. Two of the three configurations were based on visual 

stimulation with constant frequencies. The only difference between these configurations was 

the stimulating light source, where one configuration used LEDs (f-VEP LED) and the other 

one used a computer screen (f-VEP on-screen). The third configuration used pseudo-random 

sequences in combination with a computer screen for stimulation (c-VEP on-screen). For the 

on-screen stimulation, a software was implemented that visualizes the BCI controls and 

communicates with the BCI via a network connection. The BCI was developed within a 

rapid-prototyping environment. For each configuration an online classification accuracy test 

and a robot control in combination with visual feedback were performed. Eleven healthy 

subjects participated in experiments for each of the configurations. In all experiments the c-

VEP on-screen configuration showed the best results. The mean online classification accuracy 

was 94.51 %. The f-VEP LED configuration showed 83.64 % average online classification 

accuracy. The f-VEP on-screen configuration showed quite similar results to the f-VEP LED 

configuration. In this configuration the average online classification accuracy was 84.18 %. A 

Quade-test showed that the c-VEP on-screen configuration provided significantly higher 

classification accuracy (p = 0.0168) and significantly faster movement of the robot 

(p = 0.0187) than the f-VEP LED and the f-VEP on-screen configuration. In all experiments 

performed with the f-VEP based BCIs, the on-screen stimulation module showed nearly 

similar results compared to LED stimulation. Therefore, the on-screen solution works and can 

be used for further experiments. 
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1. Introduction 

1.1. The VERE Project 

As the work presented in this thesis is part of the VERE project, this section should give the 

reader an idea on what the project is about. 

 

The VERE project deals with the virtual embodiment and robotic re-embodiment (VERE) of 

people. A user should be able to act and feel with a surrogate, also with the feeling that the 

foreign body or virtual avatar is the own body. Two principle concepts are followed within 

the project. The first idea is the embodiment in an avatar in a virtual reality environment. The 

robotic embodiment is the second concept in the VERE project. The user is embodied in a 

physical robot and controls the device from a remote position. This could give people who are 

not able to move the chance to participate in real world activities. The main research topics to 

fulfill these considerations are: the construction of an embodiment station that reads and sends 

signals from and to the user, the extraction of the operators’ intentions (through monitoring of 

brain signals and physiological signals), an overall software platform (for the different 

streams of work) and the investigation of the philosophical and ethical principles concerning 

the embodiment (VERE, 2010). 

 

VERE is an integrated Project funded under the European Seventh Framework Program, 

Future and Emerging Technologies (FET), Grant Agreement Number 257695. 

1.2. The visual system 

When light shines at the eye, it passes the cornea and the lens. At the back of the eye, the light 

shines at the retina. The retina is part of the central nervous system (CNS) and contains 

several types of neurons involved in the generation of electrical signals out of visual stimuli. 

Two of them are the photoreceptor cells, which are directly located on the epithelium at the 

back of the eye. Because of their shape, they are named rods and cones. However, the shape is 

not the only difference, they also have individual functions. Rods are more sensitive to light 

than cones. The temporal resolution is 55 Hz for cones and 12 Hz for rods (Tessier-Lavigne, 

2000). Moreover, the wavelength dependence of cones allows color vision. In total, there are 

three types of cones, where each type is sensitive to a specific frequency range: short 

wavelength cones (blue), medium wavelength cones (green) and long wavelength cones (red) 
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(Purves, 2004). The number of rods is 1,2 * 10
8
 and 20 times higher than the 6 * 10

6
 cones 

(Faller et al., 2004, Tessier-Lavigne, 2000).  

 

To reach a receptor, the light has to travel through layers of interneurons and ganglion cells. 

The cells in the retina have no homogenous distribution. On one hand, the so called fovea is 

an area with thinner layers of neurons and more cones, than anywhere else at the retina. 

Although, more rods exist in total, the spatial resolution in the fovea is higher for cones (due 

to the high concentration of cones in this area). On the other hand, the blind spot is an area of 

the retina with no photoreceptors. This blind spot is the path that is used by the optic nerve 

fibers to leave the retina. The bundle of nerve fibers leaving the eye is called the optic nerve 

(Tessier-Lavigne, 2000).  

 

Incoming light activates pigment molecules in the photoreceptors. Instead of generating an 

action potential, the activated receptor generates a hyperpolarization. Interneurons transmit 

the signal to ganglion cells, which generate trains of action potentials leading to the optic 

chiasm in the diencephalon. The ganglion cells receive information from circular receptive 

fields consisting of a group of photoreceptors. These receptive fields have a center area that is 

directly connected to the receptors (through bipolar interneurons). Neighboring receptor cells 

build a surrounding area around the center. The ganglion cells receive signals from the 

surrounding area via lateral pathways. The connection to neighboring receptors is realized 

with horizontal cells and amacrine cells (Figure 1).  
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There are two types of receptive fields: on-center and off-center. In on-center fields the 

ganglion cells are excited, when light hyperpolarizes the receptors in the center. Exposure of 

the surrounding area would inhibit the ganglion cells. Off-center ganglion cells fire when the 

light at the center receptors is turned off or when the neighboring receptors are illuminated. 

The number of on-center fields and off-center fields is nearly the same. Furthermore, every 

receptor cell sends signals to both types of receptive fields (Tessier-Lavigne, 2000). Such an 

organization of receptive fields allows the extraction of useful information like contrasts or 

edges and directional movement in the image. 

 

The axons of the ganglion cells leave the eye through the optic disk and lead to the optic 

chiasm in the diencephalon. Here, about 60 % of the nerve fibers cross the fibers from the 

other eye (Purves, 2004). This crossing causes a splitting of the visual field. The left area of 

the visual field is projected to the right half of the brain and vice versa. After the optic chiasm, 

the fiber bundles form the optic tract. Main targets of the ganglion cells are: the lateral 

 

Figure 1: Network of the photoreceptors and the corresponding neurons. Ganglion cells are connected to 
the optic chiasm. Horizontal cells build connections between photoreceptors. Amacrine cells build 
connections between ganglion cells. Bipolar cells provide a direct connection from photoreceptors to 
ganglion cells. Modified from from (Purves, 2004). 
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geniculate nucleus of the thalamus, the pretectum and the superior colliculus in the midbrain. 

The midbrain controls eye and head movements. The pretectum, which lies between the 

midbrain and the thalamus, is responsible for the pupillary light reflex. Most important 

destination of the ganglion axons is the lateral geniculate nucleus. It is part of the primary 

visual pathway and leads to the primary visual cortex (also called striate cortex) lying on 

Brodmann’s area 17. Nerve fibers, which come from the fovea, are projected to the posterior 

end of the visual cortex. An interesting fact is that the nerve fibers of both eyes are mixed in 

the visual cortex for the first time. Before reaching the cortex, the nerves run along distinct 

paths (Figure 2). 

 

Within the lateral geniculate nucleus the cells are not only separated by their origin, but also 

by size. There are magnocellular and parvocellular layers, where each layer is connected to 

different types of ganglion cells. Therefore, the primary visual pathway consists of parallel 

streams providing different information. First, the magnocellular pathway transmits transient 

signals after visual stimuli. Second, the parvocellular stream sends durable signals, which also 

contain information about color. Third, the koniocellular pathway also provides color 

information, but only with respect to cones sensitive to short wavelengths.  

 

 

Figure 2: The primary visual pathway consists of the optic nerve from the eye to the optic chiasm. After 
crossing nerve fibres from the other eye the optic tract leads to the lateral geniculate nucleus in the 
thalamus. This nucleus consits of six layers, where each layer is destination of fibres from one eye. From 
the lateral geniculate nucleus, the neurons mainly project along the optic radiation to the layer IV of the 
striate cortex. Modified from (Purves, 2004). 
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At the visual cortex, the signals from the thalamus are combined, which allows the extraction 

of depth information, based on the binocular information. The primary visual cortex projects 

to other areas of the cortex, where visual information is interpreted together with signals from 

other senses.  

1.3. Electroencephalogram (EEG) 

Electroencephalography is the non-invasive derivation of brain waves over the cerebral 

cortex. Therefore, at least two scalp electrodes are used to measure the voltage related to a 

reference or another scalp electrode (Olejniczak, 2006). 

1.3.1. Signal Generation 

Action potentials are the common way to transmit information between neurons. Amplitudes 

of up to 100 mV are the highest potential differences in the CNS (Zschoke and Hansen, 

2002). However, the trans-membrane potential difference only exists about 1-2 ms and there 

is hardly any chance to measure the corresponding electrical field variations outside the cell. 

Therefore, the derived EEG signals must origin from another source: the synapses. They 

which act as potential generators within the cerebral cortex (Li and Jasper, 1953). An 

activated synapse causes a local change of the membrane potential of the receiving neuron. 

The remaining part of the cell surface, which is not affected by the synapse is the post-

synaptic membrane. This leads to another potential difference between sub-synaptic and post-

synaptic membrane. Such a post-synaptic potential lasts about 10-100 ms, which is much 

slower than the corresponding action potential (Zschoke and Hansen, 2002). Synapses can 

either have inhibitory or excitatory behavior. The corresponding potentials are the inhibitory 

post-synaptic potentials (IPSP) and the excitatory post-synaptic potentials (EPSP), 

respectively. 

 

A post-synaptic potential causes the movement of ions through the intercellular space. Due to 

the tissue specific impedances the ionic current causes a field of potential differences, which 

is called cortical field potential. This field potential can lead to potential differences even at 

the scalp, which are the base for EEG measurements.  

During the presence of a post-synaptic potential, the synapse sets up an electric dipole related 

to the rest of the cell. Neurons (mainly pyramidal cells) can have up to 10000 synapses per 

cell and every single synapse generates such a dipole (Zschoke and Hansen, 2002). Therefore, 

the sum of the synchronized dipoles defines the strength of the resultant field. However, the 
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orientation of the dipoles is quite more important for EEG derivations. Only normal to the 

scalp oriented dipoles generate a measureable signal on the skin surface. Groups of pyramidal 

cells, which are oriented the same way, are called open fields. About 30 % of the neurons in 

the cerebral cortex are aligned normal to the scalp (Zschoke and Hansen, 2002). The EEG 

signal generated by a post-synaptic potential depends on the type of the synapse and also on 

the location of the synaptic connection (Figure 3). 

 

The field potentials are influenced by the glia cells too. During neuronal activity the 

extracellular concentration of potassium can increase up to three times of the normal value 

(Zschoke and Hansen, 2002). The permeability of potassium ions through the glia cells 

membrane is very high. So glia cells act like a potassium buffer, which avoids a too high 

depolarization of the surrounding neurons. In unison, the glia cells themselves get 

depolarized. Because of inter-cell connection or also called gap junctions, the depolarization 

expands to other glia cells. Together, the connected cells can form electric dipoles and so they 

are possible generators for field potentials. 

1.3.2. Signal Derivation 

The most important carriers of charge on the skin are sodium and potassium ions. To reduce 

the skin impedance, an electrolyte containing ions is used. Then, an electrode provides 

connection to the EEG device. Usually, the electrodes consist of Au or Ag/AgCl. During 

connection the positive metal ions of the electrode diffuse to the electrolyte and set up a 

double layer containing metal ions and ions from the electrolyte (e.g. Cl
-
). This double layer 

causes a permanent DC offset voltage and also parasitic current at the beginning of the 

 

Figure 3: Both, the location and the excitatory or inhibitory behavior of the post-synaptic potentials 
influence the resultant field potential. An axodentric EPSP results in the same signals in the EEG as an 
axosomatic IPSP. This is why the behavior of the synapse cannot be extracted out of the EEG derivations. 
Modified from (Zschoke and Hansen, 2002) 
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connection. In Au electrodes the ions in the double layer underlie only marginal movements, 

which is a problem for the measurement of low frequencies. In contrast the Ag/AgCl 

electrodes allow the chloride ions to pass the border between electrode and electrolyte. So the 

signal of this electrode type depends less on frequency, than Au electrodes. The impedance of 

the electrodes should be equal for all electrodes (a value about 5 – 10 kΩ is desirable) 

(Zschoke and Hansen, 2002). 

 

In principle, a differential amplifier is used to derive EEG signals, caused by the low 

amplitude of the derived signals and the high influence of noise (e.g. 50/60 Hz power line). 

Requirements for EEG amplifiers are linearity, high common mode rejection ratio (CMRR), a 

high input impedance and flatness over the used frequency range (Epstein, 2011). 

 

There are some conceptual techniques to derive the EEG. In every case the signals are 

extracted through the potential difference of one to another or one to more derivation points. 

First principle is the unipolar derivation, which uses a common reference. In this 

configuration each derivation point gets the same reference potential. The reference point can 

be chosen anywhere on body. In general, the best location of the reference is as far away from 

the scalp as possible. So, no cortical signals would be derived with the reference electrode. 

Unfortunately, the reference could record other artifacts, which are caused by large skeletal 

muscles or the heart and do not occur on the scalp. To avoid muscular and ECG artifacts, it is 

advisable to choose a reference point that is not far away from the brain (e.g. the earlobe). Of 

course, any other position on the scalp can be the reference point. But a reference placed on 

the head and also on the earlobe, is affected by cortical signals, which may cause a distortion 

of the differential signal (Zschoke and Hansen, 2002). 

 

Another possible type of derivation is a bipolar setup. Here the signal is the potential 

difference of two recording electrodes. The great advantage of such a configuration is the 

robustness against artifacts. Usually, artifacts appear similar in neighboring derivations. This 

leads to a cancellation of the artifacts in a differential signal. Also field potentials of 

neighboring recordings are quite similar, so that the derived signal is affected by cancellation 

too. Therefore, only phase shifted signal components can be measured with a bipolar setup. 

The obtained signals have a decreased amplitude compared to unipolar derivations and also 

inversed polarity (Zschoke and Hansen, 2002).  
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In addition, there are setups with a virtual reference. The reference signal can for example be 

the average of all recorded EEG or just the surrounding electrodes, as for the Laplacian 

reference (Hjorth, 1975).  

1.3.3. International 10-20 System 

Although every human brain differs in shape and size, the relative position on the cortex of 

the functional areas is nearly constant. An asymmetric shape of the head leads to asymmetries 

in the brain. This is why a relative positioning system is used, according to the international 

10-20 system. Starting from the nasion and inion, the electrodes are placed in relative 

distances of 20 %. The nasion is the intersection of the frontal bone and the nasal bones. The 

inion is a projection of the occipital bone. From each landmark, the initial step to the first 

electrode is 10 %. This leads to a setup of 19 signal deriving electrodes. Also configurations 

with more electrodes are possible (see section 0, Figure 18) (Zschoke and Hansen, 2002).  

 

1.3.4. Visual Evoked Potentials 

After stimulation of the retinal receptor cells in the eye, the corresponding signals run through 

the visual pathway to the occipital lobe. The resulting potentials generated by the visual 

cortex can be recorded at the positions O1, Oz and O2 of the 10-20 system. For this 

derivation, the earlobe or the Fpz position can be chosen as reference point (Bach et al., 

2005). There are two general forms of visual stimulation: stimulation with short light flashes 

or pattern reversal stimulation (Paulus, 2005). For flash stimulation either light emitting 

diodes (LED) or a stroboscope, with a flash duration of about 10 µs are used (Bach et al., 

2005). Usually, pattern reversal stimulation is performed with a screen using inverting 

checkerboards. The optimal check-size is in the range of 0.1° to 0.3° of visual angle (Harter, 

1970). As an alternative, VEPs may be evoked using the so called pattern on/off stimulation 

(Bach et al., 2005). Thereby, the pattern appears out of a homogenous background. Figure 4 

shows an evoked potential, generated by flash stimulation. The latencies of the peaks can vary 

with age and stimulus frequency. The brightness of the visual stimulus should be more than 

100 cd/m² (Bach et al., 2005). Also the size of the total stimulating area affects the amplitude 

of the VEP. Usually, larger stimulation area leads to higher amplitudes in the signal. 

However, (Bartl et al., 1978) showed that the enhancement of the measured signal decreases 

for larger stimulation areas. The VEP amplitude strongly decreases for stimulation areas less 
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than 7.5° x 7.5° visual angle. A visual stimulus should have a rise time from dark to bright 

less than 10 ms ((Bach et al., 2005). 

If the visual stimulation frequency is less than 3.5 Hz the VEP is called transient. Stimuli over 

6 Hz are leading to a sinusoidal shape of the corresponding EEG (Regan, 1989) (Figure 5). 

This phenomenon is called steady state visual evoked potential (SSVEP). The spectrum of an 

SSVEP shows a strong peak at the fundamental stimulation frequency and its corresponding 

higher level harmonics. The group of (Müller-Putz et al., 2008b) investigated the optimal 

electrode position for recording the SSVEP and the higher level harmonics. When pattern 

reversal stimulation is used, two inversions per cycle occur. This is why the resulting SSVEP 

reaches its maximum in spectral power density (PSD) for the second harmonic of the 

stimulation frequency. In order to avoid the confusion between the frequency of the SSVEP 

and the one of the stimulation pattern, the latter is characterized by the number of reversals 

per second. 

 

 

Figure 4: Visual evoked potential after flash stimulation. In diagnostic the P100 peak at 100 ms is very 
important, because this peak is used for latency and amplitude measurements. The amplitudes of VEPs 
lie in the range of 5 µV – 10 µV. Modified from (Russo et al., 2002). 

 

 

 

 

Figure 5: An SSVEP evoked by 12 Hz stimulation. Modified from (Russo et al., 2002). 
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(Regan, 1966) investigated the influence of stimulation color to the SSVEP amplitude. He 

found that the maximum PSD in the spectrum of an SSVEP depends on the stimulation color 

(Figure 6). The highest amplitude is achieved using red light and 10 – 12 Hz for stimulation. 

For white flickering the highest amplitude is reached at 15 Hz (Pastor et al., 2003).  

1.3.5. Photic-Induced Seizures 

After high excitation of pyramidal cells in the cerebral cortex the inhibitory mechanisms may 

be insufficient, to prevent a simultaneous activation of a large number of neurons. Such a 

behavior may lead to seizures, similar to those observed from epileptic patients. 

Abnormalities in the EEG, caused by visual stimuli, are called photoparoxysmal response. In 

their anthology about photic- and pattern-induced seizures, (Fisher et al., 2005) describe some 

characteristic parameters of visual stimuli, which can increase the risk to provoke seizures, 

such as flash rates between 15 and 25 cycles. Also the stimulation color influences the 

sensitivity, where red light is more likely to provoke seizures than sources emitting white 

light. Stimulation patterns with spatial change rates of 0.3° of visual angle provoke seizures 

more often than other patterns. All these parameters show values that are close to the VEP 

maximizing ones. As a consequence, a BCI based on VEPs should only be used by people 

without any known photo sensitivity. Around 0.3 – 3 % of the people show abnormalities in 

the EEG related to visual stimulation. Nevertheless, the number of people that suffer from 

light induced seizures is much lower (1 per 10000) (Fisher et al., 2005). 

1.4. Brain-Computer Interfaces 

A Brain-Computer Interface (BCI) is defined as a system or device that provides the user a 

communication channel, without using the normal neuromuscular output pathways of the 

 

Figure 6: Visual stimulation performed with three different colors: red (dotted line), yellow (dashed line) 
and blue (solid line). The amplitude of an SSVEP depends on the selected frequency and on the color of 
the stimulus. Modified from (Regan, 1966). 
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body (Wolpaw et al., 2002). It allows people to interact with their environment, even if they 

have limited or no possibilities to control their muscles. There exist two distinct types of 

BCIs. On one hand, there are independent systems, which do not require any normal output 

pathway of the brain, to generate the task specific signals in the EEG and to extract the 

intention of the user. On the other hand, there are dependent systems that require activity in 

the normal output pathways of the brain, to generate the signals in the EEG (Wolpaw et al., 

2002). An example for a dependent system is a VEP based BCI, where the user has to gaze at 

a specific target for visual stimulation. Various data acquisition techniques like 

electroencephalography (EEG), functional magnetic resonance imaging (fMRI), near infrared 

spectroscopy (NIRS), magnetoencephalography (MEG) and electrocorticography (ECoG) can 

be used to build a BCI system (Weiskopf et al., 2004, Coyle et al., 2004, Leuthardt et al., 

2004, Wolpaw et al., 2002, Mellinger et al., 2007, Pfurtscheller et al., 1993). The EEG-based 

BCI is the most common one due to the low cost of the required components, the non-

invasive signal derivation and the short time constants. After amplifying and pre-processing 

the brain waves that are in the range of about +/-100 µV, the data can be analyzed with task 

specific algorithms. However, EEG has only a limited spatial resolution, as a channel is 

influenced by millions of neurons. Higher spatial resolution can be achieved with ECoG 

based BCIs. The usage of ECoG based BCIs is restricted, because of the invasive signal 

derivation. 

 

For signal processing several algorithms are used to extract BCI specific features like the 

signal amplitudes, latencies or the power density of parts of a limited frequency band. On 

base of the extracted features, a translation algorithm generates a device command that can be 

used to control a wheelchair, robots, prostheses, neuroprostheses or virtual avatars (Wolpaw 

et al., 2002, Müller-Putz and Pfurtscheller, 2008, Millan et al., 2004). 

 

The performance of a BCI depends on the time, the system needs to identify the users’ 

intention, based on the features. The faster the extracted features expose a specific behavior, 

the faster the reaction time of the BCI can be. In addition the performance also depends on the 

maximum number of commands that can be used. Systems are more flexible, if the user can 

choose from more commands within one identification cycle. (McFarland et al., 2003) 

investigated the dependence of the ITR on the trial duration and the number of targets. The 

ITR provides a measure to compare different BCI systems. The calculation of the bits/trial of 
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a BCI is explained in (1) that is only valid, if the classification accuracy is the same for each 

provided class. Also the number of trials per class has to be the same during the tests. 

 

           ( )        ( )  (   )      (
   
   

) (1) 

 

It is based on the bits per trial Btrial, the number of targets N and the probability P for correct 

classification of a target. Using (1), the bits/min (Bmin) can be calculated via (2), in which ttrial 

is the duration of a trial in minutes. 

 

     
      

      
  (2) 

 

1.4.1. Visual Evoked Potentials based BCIs 

There exist several different paradigms, which can be used to construct a VEP based BCI. 

(Vidal, 1977) built a BCI stimulating different areas on the retina, allowing discrimination of 

the resultant VEPs. More common are BCIs that exploit the formation of SSVEPs in the 

visual cortex (Middendorf et al., 2000, McMillan et al., 1995). Two main methods are used, to 

code the information relevant on a single control element: phase coding and frequency coding 

(Wang et al., 2008). A phase coded system uses one common frequency for all target stimuli. 

This leads to the same response in the EEG, but phase shifted. Frequency coded systems use 

targets with different stimulation frequencies. The resultant EEG shows an SSVEP at the 

corresponding target frequency.  

 

In their survey, the group of (Zhu et al., 2010) investigated 58 different BCI systems based on 

SSVEP, which used stimulation frequencies in the range of 4 to 50 Hz. They compared 24 

BCIs using light stimulation with LED, 14 BCIs using on-screen stimulation with 

checkerboards and 18 systems using on-screen stimulation with solid rectangles. All other 

BCIs presented, used different stimulation methods that are not relevant for this work. BCIs 

based on LED stimulation showed the highest median ITR (42 bits/min), followed by 

rectangular stimulation (35 bits/min) and pattern reversal (26 bits/min). The high ITR of the 

LED stimulation may be caused by the possibility to produce arbitrary frequencies and 
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therefore more targets are possible. As it can be seen in (1), the number of targets highly 

affects the ITR. Frequently used stimulation colors were red, green and white. 

 

Usually, SSVEP based BCIs are systems depending on eye movements of the user. This 

reduces the usability of such a system to people, who are able to control the muscles of their 

eyes. Locked-in patients suffering from amyotrophic lateral sclerosis (ALS) are not able to 

use such a system. However, locked-in patients would benefit most from a communication 

channel offering high bit like SSVEP based BCIs. As the amplitude of an SSVEP also 

depends on attention (Russo et al., 2002), it is possible to design an BCIs using SSVEPs that 

does not require any muscular activity, as it was presented by (Allison et al., 2008). The 

authors built a system using two overlapping images, which are oscillating with different 

frequencies. While the images are flickering, the user has to concentrate at one of the images. 

The study showed that about half of the subjects were able to generate differences in SSVEPs, 

which are sufficiently large to control a BCI.  

 

The features of an SSVEP based BCI are often extracted through spectral analysis. A first 

approach with Fast Fourier Transformation (FFT) and threshold detection was presented by 

(Cheng and Gao, 1999). Another approach for feature extraction is the lock-in amplifier 

system (LAS) that provides information about the amplitude of the target signal (Middendorf 

et al., 2000). Also the incorporation of higher level harmonics increases the classification 

accuracy (Müller-Putz et al., 2005).  

 

In the last years many improvements were introduced with respect to signal processing 

algorithms. The minimum energy (ME) combination algorithm allows the setup of a 

multichannel SSVEP based BCI system (Friman et al., 2007). This leads to feature channels, 

which have an improved signal-to-noise ratio between the target signals compared to the 

ongoing EEG. The ME is also implemented within the Bremen BCI (Volosyak et al., 2009b) 

that was used to evaluate the usability of SSVEP based BCIs (Allison et al., 2010). Five 

controls (13, 14, 15, 16 and 16.5 Hz) were used, to navigate within a speller matrix and to 

select a character. The study showed that people can use the BCI with a mean accuracy of 

95.78 % and an ITR of 13 bits/min. Thereby young and female subjects seemed to perform 

best. A later study showed that the performance decreases for frequencies above 30  Hz, 

compared to a medium frequency range of 12 - 30 Hz (Volosyak et al., 2011). 
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In a later publication the Bremen BCI reached a mean ITR of 61.70 bits/min and a mean 

accuracy of 96.79 % (Volosyak, 2011). 

 

Another multichannel approach is based on canonical correlation analysis (CCA), that is used 

as a spatial filter to maximize the correlation between the sinusoid template signals and the 

target signal in the EEG (Lin et al., 2006, Bin et al., 2009a). Later, a combined frequency and 

phase coding BCI used the CCA for feature extraction (Jia et al., 2011). This allows 

stimulation through sinusoidal signals of the same frequency. For discrimination, every 

stimulation target starts flickering with a unique phase. Therefore, the system provided 15 

targets and reached a mean ITR of 66.5 bits/min. 

 

Of special interest for this work are on-screen solutions, embedded in a virtual environment. 

Unfortunately, the presence of the higher level harmonics and the given refresh rate of the 

screen may decrease the number of valid frequencies for on-screen stimulation. The optimal 

frequencies for a typical 60 Hz monitor are: 6.67, 7.5, 8.57, 10 and 12 Hz (Volosyak et al., 

2009a). A BCI using these frequencies can include the first two harmonics into feature 

extraction. Several groups combined different frequencies within one target to increase the 

overall number of possible targets (Mukesh et al., 2006, Wang et al., 2010, Shyu et al., 2010). 

With pattern reversal stimulation the maximum number of possible frequencies can be 

increased too. In this case, the second harmonic is the most dominant frequency, caused by 

the visual stimulation. Therefore, the lowest stimulation frequency can be chosen in the range 

of 3Hz or 6 reversals per second.  

(Lalor et al., 2005) implemented a 3D gaming environment, where the user has to balance 

along a rope. Two inverting checkerboards allow movement to the left and to the right. Visual 

stimulation is performed with 17 and 20 reversals per second. An EEG buffer of 2 s length is 

used to process signals recorded from O1 and O2. For feature extraction FFT is used, 

followed by a linear discriminant analysis (LDA) to calculate a classifier. The system 

achieved a mean ITR of 10.3 bits/min, based on a mean accuracy of 89 %. 

 

Another SSVEP based BCI system allowed to control a car within a computer game 

(Martinez et al., 2007). Four checkerboard targets move together with the car along a virtual 

track, providing an improved visual feedback. In their paper, the authors compared the 

performance related to low- and medium-frequency range. Best results were reached with 
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pattern reversals between 12 and 17 Hz. A 120 Hz CRT monitor was used for stimulation. 

The mean accuracy was 96.5 % and the ITR was 30 bits/min.  

 

An approach for avatar movement in a virtual reality was presented by (Faller et al., 2010). 

The authors implemented an SSVEP based BCI, using red rectangles on a computer screen 

for visual stimulation. The avatar can be controlled with three targets (12, 15 and 20 Hz). The 

resultant positive predictive value (PPV) achieved for movement through a virtual apartment 

was 94.7%. Instead of the ITR, 10.9 activations per minute were presented as a result.  

The “brain response interface” was presented by (Sutter, 1992). He used a CRT monitor to 

visualize a speller matrix with 64 keys. The refresh rate of the CRT was adjustable, so that the 

user could change the stimulation frequency. For stimulation, M-sequences were used instead 

of constant frequencies. M-sequences are pseudorandom binary sequences, which are nearly 

orthogonal compared to shifted versions of the same sequence. Every target flashed with a 

phase shifted version of the same M-sequence. Target identification was performed through a 

cross-correlation between the raw EEG and a normalized template. One sequence cycle took 

about 1.5 s, including a time lag of approximately 20 ms between the target sequences. The 

evaluation of the system performance showed that subjects were able to write about 10 – 12 

words per minute. This is a very high rate compared to the ITRs of modern BCIs. However, 

the author used transcutaneous electrodes, which provide larger signal amplitudes compared 

to electrodes placed on the skin surface.  

 

Another BCI that uses M-sequences for stimulation was presented by (Bin et al., 2009b). 

They introduced the code-based VEP (c-VEP) BCI, which is a mixture of time and frequency 

modulation, similar to the Code Division Multiple Access (CDMA) method in mobile 

communication. Later, the same group implemented a multichannel BCI based on c-VEP (Bin 

et al., 2011). For target identification the correlation coefficients between trained templates 

and the raw EEG were used. Therefore the canonical vector calculated with a CCA was used 

as spatial filter to maximize the correlation coefficients. They set up a 32 target system with a 

sequence length of 1.05 s. The resultant mean online accuracy was 85 %, which led to an ITR 

of 108 bits/min. 
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1.5. Motivation 

A Brain-Computer Interface (BCI) allows a person to communicate and interact with his/her 

environment without using natural pathways. The most common way, to measure signals 

from the brain, is the non-invasive EEG, which records signals from the intact scalp. Persons 

with disabilities in muscle control or disorders of the neural pathways (e.g. after spinal cord 

injury, amyotrophic lateral sclerosis, muscular dystrophies, multiple sclerosis,…) are able to 

use such a system as a new communication channel (Wolpaw et al., 2002). Due to the high 

information transfer rate (ITR), BCIs using SSVEPs are suitable to control continuous 

processes, like moving an avatar (Zhu et al., 2010). In the last few years virtual reality (VR) 

systems and also games were set up with a BCI as input channel (Lalor et al., 2005, Martinez 

et al., 2007, Faller et al., 2010). All these systems use on-screen stimulation that is either 

directly implemented within the application or depending on a specific framework (e.g. Open 

Inventor based frameworks in the case of (Faller et al., 2010)). A new on-screen stimulation 

module that is coupled with a BCI and also usable for nearly all graphics application based on 

OpenGL would increase the usability of the whole BCI system. Also the consideration of 

alternative stimulation techniques like in (Sutter, 1992) and (Bin et al., 2011) may increase 

the BCI performance with respect to continuous controlled devices or avatars. 

 

1.6. Goals 

Usually, SSVEP based BCIs use stimulation, in which a light source flashes with a constant 

frequency. Such a light source could be a LED or a computer screen. At the presence of 

SSVEPs, the brain waves derived from the scalp contain sinusoidal signals with the frequency 

of the visual stimuli. An alternative type of stimulation based on code sequences instead of 

constant periods was presented by (Bin et al., 2011, Bin et al., 2009b) and (Sutter, 2001, 

Sutter, 1992). Both types of stimulation should be implemented and compared concerning 

their performance. In a former work at g.tec an SSVEP based BCI using Fast Fourier 

Transformation (FFT) for PSD analysis and Minimum Energy (ME) combination was 

implemented (Prueckl and Guger, 2010). A linear discriminant analysis (LDA) was used to 

calculate a classifier for target identification. As the ME and LDA algorithms are already 

implemented for online and offline analysis, a reimplementation of these tools is not 

necessary for this work. 
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The aim is to build a BCI using SSVEPs and VEPs based on stimulation with pseudo-random 

sequences that can be used to control continuous processes with visual feedback. For that 

reason a system is required that allows the user to change the current task after arbitrary time 

of execution. The system should provide the user the possibility to switch the task every 

200 ms. Also the latency of the system should not exceed 3 s. The latency depends on the 

length of the EEG buffer used for signal processing and the applied temporal filters. This is 

important, as the buffer length may affect the classification accuracy. A low accuracy of the 

system would decrease the maximum ITR that may be achieved. 

 

For switching between the different states, the system must be able to provide a sufficient 

number of controls. In this work at least four commands are necessary (forward, backward, 

turn left and turn right), to steer an e-puck robot (Mondada et al., 2009). The user should be 

able to move a robot along a given route only by using the BCI and a visual feedback channel. 

The system should offer the possibility to increase the number of possible commands, if 

necessary.  

 

The BCI requires a visual stimulation unit to evoke the corresponding EEG signals. In this 

work an on-screen module should be realized that allows stimulation within any OpenGL 

based graphics application. Here, the host application should provide visual feedback of the 

moving robot. For this, a unified interface has to be defined, which allows visualization of 

BCI controls and communication with the BCI. The design of the stimulation module should 

also give the possibility to load and unload BCI controls during runtime, so that the user can 

switch on and off the module, without restarting the host application. For portability reasons, 

the module should be realized as a dynamic linked library (DLL) in MS Windows (Microsoft 

Corporation, Redmond, USA) or as a shared object (SO) in LINUX.  
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2. Methods 

2.1. System Overview 

The complete experimental setup is shown in Figure 7. The user is sitting in a comfortable 

chair in front of the computer screen and the BCI controls and has to steer a robot along a 

given route. A computer screen provides video feedback of the robot’s movement via a video 

camera above the route. This video system was implemented by the Technical University of 

Munich (TUM) and contains a software package to visualize the video stream (Video-Client 

and Video-Server) coming from a camera for image recording with 60 frames (section 2.3.5). 

The same monitor also includes either eight LEDs (affixed to the monitor) or four on-screen 

BCI controls (depending on the configuration). The user has to gaze at either the LEDs or the 

on-screen targets to perform actions. To manage on-screen stimulation in combination with 

visual feedback, the BCI-Overlay module was implemented (section 2.4). It is a dynamic 

library that other graphics applications can include at runtime to embed BCI controls within 

the displayed image. The module uses an UDP connection, to communicate with the BCI 

model. This allows a separation of the stimulation module and the BCI model. 

 

The recorded EEG data from the user is sent to the online BCI based on MATLAB/Simulink 

(g.BCIsys, g.tec medical engineering GmbH, Austria). All signal processing, feature 

extraction and classification is performed with the BCI system g.BCIsys (section 2.6 and 0). It 

is based on the strategy of rapid prototyping, which is presented in (Guger et al., 2001). 
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Within this work, three BCI configurations according to Table 1 were implemented and 

compared to find a suitable setup for continuous control of a robot. The system based on 

frequency coded stimulation with LEDs is called f-VEP LED, the system using on-screen 

frequency coded stimulation is called f-VEP on-screen and the system using code modulated 

stimulation is called c-VEP on-screen (Bin et al., 2009b). The f-VEP LED configuration uses 

eight LEDs (4 flickering LEDs for the directions and 4 small green LEDs to instruct the user 

which LED to designate as the target). 

 

All f-VEP configuration use a ME combination for feature extraction and an LDA based 

classifier. The c-VEP configuration uses features based on correlation coefficients extracted 

through a CCA algorithm, followed by an LDA based classifier. 

 

 

Figure 7: Complete experimental setup for the robotic control experiments. The user has to gaze at the 
monitor, which presents the video feedback from the Video-Client. To elicit relevant brain patterns, either 
LEDs on the border of the monitor or on-screen targets are used. The Video-Client includes the BCI-
Overlay for visual stimulation and presentation along with the visual feedback received from the video 
server. The g.BCIsys represents the BCI model analyzing the EEG signals online and it sends the 
classification result to the robotic device (e-puck). The EthoVision tracking system is used to analyze the 
movement of the robot and evaluate the performance. 
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In all configurations, the user can select a command by attending to one stimulus out of four 

(forward, backward, turn left, turn right). If the classification gives no confident result, the 

BCI remains in idle state, which is represented by the so called pseudo zero class. Otherwise, 

classification results are sent to the e-puck robot via the Bluetooth connection (section 2.2.6).  

Finally, the system uses the EthoVision (Noldus, Wageningen, Netherlands) tracking system 

and a camera to record the movement of the robot for accuracy calculation and to measure the 

time to complete the task. 

 

2.2. Used Hardware 

2.2.1. Biosignal Acquisition Device 

The g.USBamp (g.tec medical engineering GmbH, Schiedlberg, Austria) is a biosignal 

amplifier that used during this thesis. The amplifier allows the acquisition of biosignals like 

EEG, EOG, EMG and ECG. A 24 bit analog-digital converter (ADC) is built in for each 

channel and acquires data with a maximum sampling rate of 38400 Hz. In total 16 channels 

are available on one device. They are arranged in groups of 4 channels, where each group 

provides one ground and one reference channel. Each of the A/D converters is 64 times 

oversampled compared to the 38400 Hz sampling rate. The range for incoming signals is +/- 

250 mV, with a resolution below 30 nV with respect to the 24 bit A/D conversion. The input 

impedance of the amplifier is higher than 10
10

 Ω. An application programming interface 

(API) in C provides access to the g.USBamp via MS Windows and LINUX operating 

systems. A MATLAB/Simulink interface is available that allows to configure the channels 

and to define filters (e.g. high-pass, low-pass or notch-filter) (g.tec, 2011d).  

Table 1: This table presents the three BCI configurations used in the three conditions in this work. 
The c-VEP differs from the others in terms of the visual stimulation and the signal processing. The 
two f-VEP setups allow us to evaluate and compare the performance of the on-screen and LED 
stimulation methods. 

Name c-VEP on-screen f-VEP on-screen f-VEP LED 

Visual stimulator 60 Hz Display 60 Hz Display LED 

Stimulation type code-based frequency-coded frequency-coded 

Stimulation sequence 63 bit M-sequence constant periods constant periods 
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2.2.2. EEG Cap and Electrodes 

For EEG recordings the electrodes have to be placed on the scalp. A cap, like the 

g.GAMMAcap2, provides a comfortable way to keep the electrodes in place (Figure 9). In 

total, 74 positions are labeled on the cap, with respect to the international 10-20 system (g.tec, 

2011a).  

 

In this work, the cap is used in combination with active g.LADYbird electrodes consisting of 

a sintered Ag/AgCl crown. The ground electrode is a passive g.LADYbirdGND. As reference 

electrode an active ear-clip electrode is used (Figure 10) (g.tec, 2011e). Because of the usage 

 

Figure 8: The g.USBamp from g.tec offers 16 DC-coupled input channels in 4 independent groups, 8 

digital trigger inputs and 4 digital outputs. 

 

Figure 9: The g.GAMMAcap2 from g.tec. A chin-belt is used, to fix the cap to the users’ head. 
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of active electrodes, no abrasive gel is required. Nevertheless, conductive gel is necessary to 

connect the electrodes with the skin surface. To connect the electrodes to the amplifier a 

driver box, the g.GAMMAbox, is necessary. This driver box provides up to 16 signal 

channels, 1 reference channel and 1 ground channel (g.tec, 2011b). 

 

 

2.2.3. Driver Box for Visual Stimulation 

For visual stimulation with LEDs a stimulation device is needed, which controls the light 

sources. Therefore, the g.STIMbox, a digital I/O box that provides 14 inputs and 16 outputs is 

used. It is connected to a PC via USB and is accessed through a MATLAB/Simulink 

interface. The corresponding Simulink block allows defining the stimulation frequencies, 

which are available on specific output ports of the g.STIMbox. Connected to USB, the 

g.STIMbox provides 5 V with the maximum of 200 mA overall output current (g.tec, 2011c). 

 

 

 

Figure 10: g.LadyBIRD electrodes. From left to right: active electrode, passive ground electrode and 
active ear-clip electrode. 

 

 

 

 

Figure 11: The g.STIMbox (left) and a single LED for visual stimulation (right). 
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2.2.4. Photodetector 

The g.TRIGbox is a pulse generator that allows triggering light flashes in combination with a 

photo-sensor of the type: Silicon NPN Phototransistor, SFH 309 P (OSRAM, Munich, 

Germany). Each trigger pulse has an output Voltage of 200 mV and duration of 20 ms. An 

output port of the g.TRIGbox is compatible with a digital input port of the g.USBamp. The 

minimum duration of 20 ms of the trigger pulse is caused by a sample and hold circuit. 

Therefore, the slew rate of the voltage change is much shorter than the whole trigger pulse. 

Input voltage from the sensor: minimum 0.5 mV (low level inputs) and maximum 5 V (high 

level inputs) (g.tec, 2011e). 

 

The g.TRIGbox is used to measure the flickering of the light sources. This allows an 

evaluation of the flash accuracy of the visual stimulation. 

 

2.2.5. Noldus Tracking System 

EthoVision
®
 (Noldus, Wageningen, Netherlands) is a tracking system, which is specialized on 

movement tracking of animals. During the experiments, the system was used to track the 

movement of an e-puck. Therefore, a video camera is required, which is connected to the 

computer via a Picolo Diligent (Euresys, Angleur, Belgium) video-grabber board. A 

calibration has to be performed, before the tracking system is ready to use. During the 

calibration, the user has to define an arena and a scale. Only within this arena, the tracking is 

valid of the moving object. The scale allows the system to store the tracking data in real-

world units. After calibration, the user has to define a point on the object that represents the 

tracking point, for which EthoVision stores the coordinates with a corresponding time stamp. 

 

2.2.6. Robot (e-puck) 

The education robot or e-puck is a small robot – its diameter is 75 mm – developed at the 

Ecole Polytechnique Fédérale de Lausanne (EPFL) (Figure 12). The device consists of a 

microcontroller including a 16 bit processor running at 64 MHz and a digital signal processor. 

Two step motors allow the e-puck to move. To communicate with an external device, a 

Bluetooth radio link and a RS232 serial interface can be used. Moreover, the robot consists of 

several sensors and extensions, which are described in detail in (Mondada et al., 2009).  
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In this thesis, the e-puck was used to move according to commands from a BCI. A Simulink 

S-function was used to establish a Bluetooth communication channel to the robot, which was 

implemented in a former project at g.tec. The resultant Simulink block generates the 

commands STOP (0), FORWARD (1), RIGHT (2), LEFT (3) and BACK (4), dependent on 

the selection of the BCI.  

 

 

2.3. Used Software and Libraries 

2.3.1. MATLAB/Simulink 

MATLAB (The MathWorks Inc., Natick, United States) is a high-level programming 

language that provides an environment for algorithm development, signal processing and 

numeric computation. It is developed to perform matrix operations. Toolboxes allow 

expanding the functionality, for a quick implementation of specific algorithms or programs. 

The programmer can solve computing problems in less time for development than with C or 

other programming languages (MathWorks, 2011b). MATLAB interprets scripts and 

therefore its usage is limited for tasks that need high computing performance. This is why 

MATLAB is able to execute C or C++ programs within so called MEX-files (MATLAB-

executable) (MathWorks, 2011a). 

 

Simulink (The MathWorks Inc., Natick, United States) is a tool for model based system 

design, simulation and analysis. It provides a graphical user interface (GUI), which allows the 

 

Figure 12: The e-puck is a small robot, which can move through two independently controlled wheels. 
The figure shows the robot that was used in the presented experiments. The red arrow informs the user 
about the current direction of the robot. For tracking purposes, the pink square was placed on the center 
of the e-puck. 
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programmer to “draw” the model as a block diagram. Both discrete and continuous can be 

performed, as well as linear and non-linear behavior of the system. Simulink requires 

MATLAB to run and is able to use variables as input signals or to call MATLAB functions. 

Various models can be used together or as sub-systems. This provides a highly flexible 

environment, in which the programmer can define and change models in a comfortable way 

(MathWorks, 2011d).  

 

A simulation in Simulink takes place in several stages. In the initialization phase the required 

libraries are loaded, data types, block parameters are defined and initial values are assigned. 

After initialization, the engine calls the update, derivative and output function of each block 

and for each stimulation step (MathWorks, 2011c). 

 

With the help of so called S-functions, parts of the model can be defined outside of the 

Simulink environment. An S-function may be written in MATLAB, C, C++ or FORTRAN 

and is integrated into the simulation, using a specific calling protocol. This requires that an S-

function provides embedded function blocks. An S-function that is written in C, has to define 

the following functions, which will be called by Simulink: mdlInitializeSizes, mdlInitialize 

SampleTimes, mdlStart, mdlOutputs, mdlUpdate and mdlTerminate. In addition, optional 

functions can be defined. The functions mdlOutputs and mdlUpdate will be called for every 

time step, within the simulation loop (MathWorks, 2011c).  

 

2.3.2. Signal Processing Tools 

As mentioned in section 2.2.1, g.tec provides software to access the g.USBamp. The g.HIsys 

software package contains a Simulink block set for tuning the amplifier settings. This allows 

online processing of the acquired data, within a Simulink model. Therefore, g.tec provides the 

a Simulink libraries called g.RTanalyze and g.Highspeed (g.tec, 2011e).  

 

In this work, the offline analysis of pre-recorded data is mainly performed with the help of 

g.BSanalyze. This tool provides an environment for biosignal processing and contains spatial 

and temporal filters, spectral analysis, correlation, classification and visualization tools. 

g.BSanalyze can either be called from MATLAB or used as a standalone program (g.tec, 

2011e). 
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2.3.3. UDP Interface 

The User Datagram Protocol (UDP) is a minimized network protocol that does not require 

prior arrangement to send packages from one network endpoint to another one. It was 

introduced in 1980 and allows fast communication within a network. A UDP package 

contains sender and destination address with the corresponding port, the package length, a 

checksum and the data (Postel, 1980). The protocol does neither perform an initiating 

handshake nor can it guarantee that the package ever is received. Therefore the programmer 

has to be careful using UDP.  

 

The g.UDPinterface allows the setup of a UDP connection and to transmit or receive data. It 

can either be used as a C based DLL or in MATLAB/Simulink. In all versions four functions 

are necessary for remote communication: gUDPinit, gUDPrecv, gUDPsend and gUDPclose.  

 

2.3.4. OpenGL 

This section provides an overview of the Open Graphics Library (OpenGL), which is useful 

for a better understanding of the technical details of the BCI-Overlay. OpenGL is a 

standardized software interface, which provides access to graphics hardware. It allows the 

user to set up a model out of geometric primitives like points, lines and polygons. OpenGL is 

a state machine with various state variables that define the behavior of the currently drawn 

primitives. A change of the state does not affect previously drawn objects.  

 

The state information is stored in the so called OpenGL context, which is managed by a 

window-system like MS Windows or Ubuntu based on a Debian LINUX distribution. In 

addition, the contexts contain objects like textures, display lists, etc. New primitives are 

always drawn within the current active context. 

 

OpenGL allows displaying a 3D scene on a 2D screen. This is achieved by viewing-, 

modeling-, projection-and viewport-transformations. The viewing-transformation sets the 

view-point to the scene its orientation. The modeling-transformation gives the programmer 

the possibility to translate, rotate and scale the model (e.g. an asymmetric scaled cube leads to 

a rectangular box). To specify the field of view and the way of how to look at the scene, the 

projection-transformations are used.  
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Similar to the color representation of a computer screen, OpenGL uses the Red-Green-Blue-

Alpha (RGBA) model. The color values represent the saturation of each color. Together, all 

three colors lead to an additive color impression. The alpha value can be used for 

transparency. All color values are stored in the color buffer, for every single pixel. 

 

OpenGL supports the combination of source and destination color values, which is known as 

blending. Here, the alpha value can be used to weight the source and destination values. This 

leads to a transparency effect of the combined pixel. Of course, there are many possibilities, 

on how blending functions can be used (e.g. weighted overlapping of images, implementation 

of color filters, inverting the color values…). 

 

Display lists can be used, to increase performance. They store precompiled command 

sequences for later use. Multiple calls of the same commands can be rendered more efficient 

than repeated individual calls. Moreover, some graphics hardware stores the commands in a 

form, which is optimized for the used instructions. Display lists are also used to store Fonts. 

Fonts define the appearance of a set of characters on the screen (e.g. in ASCII format).  

 

Texture mapping is another performance increasing feature of OpenGL. Instead of defining a 

surface structure with a vast number of primitives, a texture can be used as a single object. A 

texture underlies the same transformations as the textured primitive. Textures are stored as 

simple data arrays containing color and alpha values and can be used for all primitives. 

Therefore textures can have various dimensions (1D, 2D and 3D). 

 

A detailed and well explained specification of OpenGL functions and techniques can be found 

in (Shreiner, 2009). 

2.3.5. VideoClient 

The VideoClient is an OpenGL based application provided by the Technical University of 

Munich (TUM). It is used to remotely display received video streams, recorded by up to two 

cameras (each with a resolution of 640x480 pixels). A VideoServer program is used to 

acquire video data. The VideoClient is implemented in C++ using the Qt framework and is 

split into a thread for each display, to ensure a 60 Hz refresh rate of the video stream. This 

allows the system together with the two cameras to visualize the recorded scene in 3D. For 
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stereoscopic view, for example in a head-mounted-display (HMD), the VideoClient starts an 

OpenGL context for each view. Within this work only one camera was used to visualize 

visual feedback on a single Monitor in 2D. 

 

2.4. BCI-Overlay 

The BCI-Overlay is a runtime loadable module based on OpenGL. It is implemented as a 

dynamic linked library (DLL) for MS Windows and as a shared object for LINUX and can be 

used by OpenGL based host applications, to embed targets for visual stimulation within the 

displayed scene. The host applications could be virtual reality environments or real-world 

videos, acquired with a camera. The BCI-Overlay works as a visual stimulator and can be 

used in combination with a biosignal analyzing system like a BCI. Figure 13 shows an 

example for the usage of the BCI-Overlay, as it is used for the presented experiments. 

 

 

During the initialization phase, the user can set several options of the BCI-Overlay via 

network commands. First, there is the choice between two temporal stimulation types: f-VEP 

and c-VEP. During f-VEP stimulation each control flashes with a specific frequency. 

 

Figure 13: Example for the usage of the BCI-Overlay. Four BCI controls flash together within a running 
video application (Video-Client). The spatial stimulation type is set to SOLID flickering and the temporal 
type could either be f-VEP or c-VEP. In this example, the user has to control a robot only by using the BCI 
and a visual feedback on the screen. The green border is an indicator and shows the user the active task. 
A task is active as long as the user gazes at the BCI control and the classification result of the BCI model 
is valid. 
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Therefore, the BCI-Overlay sends the number and values of possible frequencies. The c-VEP 

system uses a stimulation sequence containing high and low frequencies. As each control uses 

a phase shifted version of the same sequence the BCI-Overlay sends the length of the 

sequence to the BCI. Together with the number of displayed controls and the sequence length, 

the expected phase shift can be calculated. The second option is the spatial stimulation 

pattern: CHECKERBOARD, SOLID or TRANSPARENT. In CHECKERBOARD mode each 

BCI control is formed by an 8x8 matrix of alternating black and white quads. More details of 

stimulation with pattern reversals can be found in section 1.3.4. The SOLID type can be seen 

in the example in Figure 13. Here, controls switch between black and white above a 

homogenous area. If other shapes than quads or rectangles are required, the user has to choose 

TRANSPARENT mode. Only the area defined in a bitmap is flickering in solid mode, the 

remaining part of the quad or rectangle is transparent.  

 

The BCI-Overlay provides an indicator, realized as a border around the BCI control. It is 

either used to provide the user with a feedback about selected command or to direct the user’s 

gaze to a specific target (e.g. during training or feedback run). 

 

In case no bitmap is available for a flickering target, a text can be defined within the rectangle 

(Figure 13). Controls containing a bitmap do not support checkerboard stimulation. The text 

and the bitmaps for all controls have to be defined in the mask-file. If has neither a text nor a 

shape defining bitmap, it will be a solid rectangle. 

 

2.4.1. Technical description 

The implementation of the BCI-Overlay was done in object-oriented C++. The BCI-Overlay 

is defined within a class named BCIOverlay and is instantiated once at the start of the 

program. This approach is based on the principle of singleton-pattern (Gamma et al., 2004). 

Two threads are running within BCIOverlay. The first one is the display thread of the host 

graphics application and handles all the initialization and drawing commands. Therefore, all 

communication between the graphics application and the BCI-Overlay takes place in the 

drawing thread. The second thread is the network thread, which manages the UDP based 

communication with the BCI (see section 2.5). Triggers are the only exception and can be 

sent out of the drawing thread. It should be mentioned that UDP packages may not reach the 

receiving side. Therefore, the standard commands have to be acknowledged. Concerning 
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trigger commands, it is only allowed to use the command for synchronization of the 

stimulation with the BCI. In case of a lost package, the last synchronization event is longer 

ago than usual, but this has no effect on the performance of the system.  

 

The communication between the two threads is based on state flags and a local loopback 

socket or a so called socket pair. The socket pair is used by the drawing thread, to inform the 

network thread that states have changed (Figure 14). This is necessary, as the network thread 

is only activated by incoming network commands. 

 

The host graphics application has to initialize and control the BCI-Overlay. This is realized 

with the help of an abstract interface class that provides the following public functions: Init, 

Draw, Displayed and Close. All of them are implemented within BCIOverlay class. 

2.4.2. Drawing Thread 

The Init function registers the current active context and thereby ensures that the BCI controls 

appear only within registered contexts. The graphics application has to provide several 

parameters, such as the screen refresh-rate, the path of the mask-file and network parameters 

(local IP address, local port, remote IP address and remote port). Within the Init function, the 

socket for the UDP connection is established and the network thread is initiated. In case the 

BCI controls should be displayed on multiple screens Due to the possible usage of more than 

one drawing context, the Init function has to be called once for each context. It takes care that 

the network connection is established only once, even for multiple calls.  

 

 

Figure 14: The BCI-Overlay works with two simultaneously running threads. One thread is the drawing 
thread of the host graphics application. The second thread manages the UDP based communication with 
the BCI. The threads communicate through state flags. In addition, a local loopback socket is used to 
awake the network thread. 
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Changes in the state of the BCI are handled by the Draw function. If the BCI is active the 

OpenGL commands are executed and the BCI controls begin to flash, otherwise nothing will 

be displayed. All drawing operations are performed in the relative area from -1 to 1 in x and y 

direction. Therefore, the size of the BCI controls can be defined in relative values too. The 

depth (z-direction) is always set to zero. The host application has to setup the appropriate 

transformations of these coordinates, to define the position of the BCI controls in the scene. 

To increase the performance most of the drawing commands are stored in display lists, which 

are redefined after each change of the BCI controls. This update process is done in the Draw 

function, to avoid conflicts during drawing. All OpenGL state variables are stored at the 

beginning of the function and will be reset at the end of the function. The reset guarantees, 

that the OpenGL states stay unchanged in the host graphics application. As the BCI controls 

are flat areas, the depth test is disabled during drawing, to avoid artifacts caused by 

overlapping primitives. Because of disabled depth test, the visible data depends on the order 

of the drawing calls. The lighting state is set inactive, so that the BCI controls always flash 

with the same intensity and the same colors. 

 

Textures are used to draw arbitrary shapes on base of bitmap images and to write text into the 

drawings. Each BCI-control consists of a rectangle and a texture. An alpha test of the textured 

primitive ensures that the BCI control is transparent for undefined regions.  

 

After each call of the Draw function, the host application must call the Displayed function. 

This function sets the display list for the next frame. Therefore, all initialized contexts have to 

flash synchronously. The next display list is loaded after every context has called and finished 

the Draw function. Whenever a state change of the module has to be reported to the BCI, the 

local loopback socket is used to force the network thread sending the command. Only the 

trigger command is sent directly from the Displayed function, to minimize the delay between 

sending and receiving.  

 

At termination of the host application, the Close function has to be called for every registered 

context. As long as more than one context is still active, the Close function will only unlink 

the context. If the last context is closed, the function releases the loopback socket and sets a 

flag, to terminate the network thread. 
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2.4.3. Network Thread 

Except triggers, all network communication is handled by the network thread. A list of all 

valid commands is shown in Table 3 in section 2.5. This section focuses on the state changes 

in BCIOverlay and the definition of the BCI controls. A list that is describing the states used 

by BCIOverlay can be found in Table 2. 

 

The network thread ignores any UDP command unless it originates the remote IP address and 

port, which were registered at startup. Once the network connection is established, 

BCIOverlay switches into the CONNECTED state and waits for an UpdateMask command, to 

define the BCI controls. An update command provides the path to a mask-file, which is used 

for parsing the BCI controls within the network thread. Afterwards BCIOverlay is in 

CHANGED state and begins to define the display lists and textures within the drawing thread. 

Finally, the state changes to READY, when each registered context has finished the update. 

Now, the BCIOverlay can switch to ACTIVE, if a Run command is received. A state diagram 

of BCIOverlay can be found in Figure 15. 

 

Table 2: States of BCIOverlay. The referred commands in the description are all network commands and 
should not be mistaken with any internal functions. 

State Description 

WAITING 

This is the initial state at the start of the program. Any incoming UDP 

command will be ignored exempt the Init and the End commands. This state 

is set, whenever the connection the BCI is closed. 

CONNECTED 

As soon as the BCI-Overlay receives an Init command, it changes its state to 

CONNECTED. Therefore, CONNECTED can be reached from any state. It is 

also used as a temporary state, during the extraction of new BCI controls from 

the mask-file. 

CHANGED 

If an UpdateMask command is received, the BCI-Overlay sets the 

CHANGED state. This state can only be reached from ACTIVE, READY and 

CONNECTED. The BCI-Overlay stops drawing and the BCI controls will be 

redefined.  

READY 

This state is reached automatically, after successful update of the BCI controls 

and the corresponding display lists and textures. The only possible previous 

state is CHANGED. 

ACTIVE 
This state can only be activated out of the READY state. A Run command 

sets the state and the BCI-Overlay begins to draw the BCI controls. 
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The network thread remains sleeping and listens to the local port for incoming c. An incoming 

command awakes the network thread and the command is interpreted. After execution of the 

corresponding commands, all commands in the sending queue will be sent to the BCI. If no 

command is received, the thread leaves the receive function after two seconds. Also the 

loopback socket can awake the network thread, just by sending an arbitrary character. This is 

used for example during updating, when a “re;;” command is added to the command queue 

and the loopback socket awakes the network thread, to send the command. As long as there 

are commands available on the listening socket, the network thread will process and execute 

the corresponding commands before going to sleep. 

 

 

 

Figure 15: State diagram of BCIOverlay. The initial state after program start is WATING. After connection 
to the BCI, BCIOverlay changes to CONNECTED state. Out of this state BCIOverlay can define BCI 
controls and runs through the states CHANGED and READY. A run command from the BCI sets 

BCIOverlay to ACTIVE state. 
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2.5. Network Communication between the BCI and the BCI-Overlay 

The BCI-Overlay and the MATLAB/Simulink BCI-model use UDP packages to communicate 

with each other. The packages are strings, which are split by the separator character “;”. Two 

consecutive semicolons (“;;”) indicate the end of the command. Commands are only valid, if 

the source IP and the source port is registered at the destination. The network protocol is used 

to initialize the BCI-model and the BCI-Overlay, as well as for sending trigger commands. 

Table 3 lists the valid commands and their possible parameters .Definition of a command: 

<command>;[<param_1>;<param_2>;…;<param_n>;];. 
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Table 3: Commands, which are used by the BCI model and the BCI-Overlay to communicate with each 
other. 

Command Parameters 
Direction 

BCI ↔ Overlay 
Description 

in - ↔ “Init”: Initialize Connection. 

gp - → “Get Paradigm”: Request the list of supported 

Paradigms. 

lp 1-END: List of Paradigms ← “List of Paradigm”: The BCI-Overlay returns a list of 

supported Paradigms. 

gf 1: Name of Paradigm → “Get Features”: Request the settings for a specific 

Paradigm. 

Name of Paradigm: SSVEP 

fl 1: Name of Paradigm 

2: c-VEP length 

3: # of frequencies 

4-END: List of frequencies 

← “Feature List”: The BCI-Overlay returns a list of 

features for the chosen Paradigm. 

um 1a: Name of maskfile 

1b: “-“ 

2: Indicator ID 

→ “Update Mask”: Stop visual stimulation and update the 

controls specified by the maskfile. In case the indicator 

has to be set or unset, then the filename is has to be set 

to “-“, to prevent from stopping the visual stimulation 

re - ← “Ready”: The mask change is done; the Overlay is 

ready to flash. 

ru - → “Run”: Start the visual stimulation. 

rn - ← “Running”: BCI-Overlay is stimulating. 

en - ↔ “End”: Terminates the connection. 

er 1: Error command ↔ “Error”: Error command contains the description of the 

error. 

tr 1-END: List of IDs ← “Trigger”: Contains a list of the IDs, which have flashed 

since the last display refresh cycle. 

sf 1: Name of Paradigm 

2:SSVEP-Mode 

3: BCI-Mode 

→ “Set Flash-Mode”: Sets the flash mode for certain 

Paradigm. 

SSVEP-Mode (default mode: 2):  

1…solid quad, 2…transparent bitmap, 3…checkerboard 

If no bitmap is available for a target, mode 1 is used for 

this target. 

BCI-Mode (default mode: 1): 

1...f-VEP, 2...c-VEP 

fs 1: Name of Paradigm ← “Flash-Mode set”: Acknowledge for the “Set Flash-

Mode” command. 

iu - ← “Indicator Updated”: The Overlay signals that the 

Indicator has been updated, in response to a 

“um;-;<ID>;;” command. 
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To establish a connection between the BCI model and the BCI-Overlay, both modules have to 

be active. If one module is activated, it sends an “Init” command to the other one. Only in 

case the receiver answers with an “Init” command, in response to an incoming “Init” 

command, the modules are connected. The BCI model is controlled by the Simulink engine 

and starts within the initialization phase. On the other side the BCI-Overlay is driven by the 

Video-Client and thus, it is ready as soon as the Video-Client has been fully initialized. Once 

the network connection has been established, the BCI model and the BCI-Overlay exchange 

information concerning the paradigm and the corresponding stimulation parameters, such as 

frequencies or the temporal stimulation sequence. Afterwards, the BCI model quits the 

initialization phase and waits until the simulation loop of the Simulink engine starts.  

 

Before the BCI-Overlay is able to start the visual stimulation, it has to be informed by the BCI 

model about the used controls. This is done by the “UpdateMask” command that contains a 

path of the mask definition. Moreover, the “UpdateMask” command can be used to stop the 

simulation and also to set the indicator control. The indicator shows the user the current 

control, which can be used during training to direct the users gaze and also in free running 

mode provide the user a feedback about the classification result. After the successful 

definition of the controls, the BCI-Overlay is ready to start the visual stimulation. The BCI 

model sends the “Run” command to initiate the visual stimulation by the BCI-Overlay. 

During stimulation a trigger command provides information about the phase of flickering. 

 

If either the BCI model or the BCI-Overlay terminates, the terminating side sends an “End” 

command. A new start requires again an initialization phase. The sequence diagram in Figure 

16 shows an example, for the communication between the BCI model and the visual 

stimulation module. 
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Figure 16: Sequence diagram of the interaction between BCI model, the BCI-Overlay and the 
Video-Client. The BCI model is based on Simulink and therefore controlled by the Simulink calls. 
The BCI-Overlay runs within the Video-Client. The BCI model and the BCI-Overlay communicate 
via UDP commands. A dashed arrow indicates the return of a function call. 
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2.6. Visual Stimulation 

The visual stimulation is either accomplished through LEDs (Figure 17b) or by using the 

BCI-Overlay in combination with a computer screen (Figure 17a). For comparative reasons, 

white stimulation color and an identical spatial pattern is chosen for all configurations. 

Because of the homogenous on/off stimulation of the LEDs, the on-screen solutions use white 

rectangles without any spatial patterns. 

 

Each on-screen BCI control fills an area of 4.2 cm x 3.2 cm corresponding to a visual angle of 

3.0° x 2.3°, with respect to the distance of 80 cm to the screen.  This relationship results from 

equation (3) (Kaiser, 1996): 

 

          (
 

   
) (3) 

 

 

Figure 17: User interface for controlling the robot with the SSVEP based BCI and the video images of the 
track and the moving robot. (a): Screen stimulation with 4 targets to move forward, backward, left and 
right, which was used for f-VEP on-screen and c-VEP on-screen. The camera picks up the robot (red circle) 
and the track that the subject should follow with the robotic device. The green frame shows either the 
current classification result or (in training mode) the current target. (b): The f-VEP LED configuration for 
the experiment with four LEDs mounted on the screen frame. The four green LEDs indicate the current 
target LED during training. 

 



  39 

Whereas α represents the visual angle, S the size of the visual target and D the distance 

between the eye and the target. The display, which was used for the experiments, is a Belinea 

1930 S2 with 300 cd/m² luminance and a reaction time of 5 ms. Due to the 13.44 cm² of a 

single flickering target, the luminous intensity is 0.4 cd.  

 

For LED stimulation a white diode of the type WU-2-104WDwas used. Luminous intensity is 

1.5 cd and the area covered by the LED is 0.57° x 0.57° visual angle (0.8 cm x 0.8 cm at a 

distance of 80cm). Therefore, the resulting luminance is 23437.5 cd/m². 

 

The frequencies used for the f-VEP based BCIs are similar for LED and for on-screen 

stimulation. This allows a better evaluation of the BCI-Overlay performance. Both systems 

work with 8.57, 10, 12 and 15 Hz. As the frequencies used in (Volosyak et al., 2009a), also 

these frequencies do not overlap within the first two harmonics.  

 

Stimulation of the c-VEP system is performed on-screen only. Therefore the BCI-Overlay is 

used to visualize stimulation sequences. The stimulation sequences are so called M-

sequences. These binary sequences are used for non-linear signal analysis and also in multi-

input systems (Sutter, 2001). Moreover they have an autocorrelation function, which is an 

approximation of the unit impulse function. This is very important, because of the used 

features of the c-VEP system are based on correlation coefficients. The used M-sequence in 

the implemented c-VEP based BCI consists of 63 bits, which leads to a duration of 1.05 s for 

a whole flash cycle. Every stimulating target uses a phase shifted version of the reference 

sequence. The phase shift depends on the number of targets and results in 0.25 s or 

15 samples for four targets. 
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2.7. Electrode Setup 

The EEG data is recorded using eight active electrodes from the scalp over the visual cortex. 

Figure 18 shows the used positions according to the international 10-20 system. The 

corresponding ground electrode is positioned on Fpz. The right earlobe is used for a reference 

electrode. Within the used feature extraction algorithms (ME combination and CCA), spatial 

filtering of the EEG channels leads to improved feature channels for the further processing. 

Therefore, multiple channels over a sufficiently large area above the visual cortex are 

required, to achieve the best results. The configuration used in this work is based on the setup 

of (Prueckl and Guger, 2010). This configuration is used for the f-VEP configurations as well 

as for the c-VEP configuration. 

 

 

 

  

 

Figure 18: Electrode setup for VEP based BCI systems. The positions PO7, PO3, POz, PO4, PO6, O1, Oz, 
and O2 (blue channels) are the signal channels, derived with active g.LADYbird electrodes. A passive 
ground electrode (g.LADYbirdGND) is placed On Fpz (orange). An active earclip electrode is used on the 
right earlobe (orange) as a reference. 
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2.8. Signal Processing 

2.8.1. Pre-Processing 

The acquired EEG data is recorded with a sampling frequency of 256 Hz and then bandpass 

(f-VEP LED and on-screen: 0.5 – 60 Hz, c-VEP on-screen: 0.5 – 30 Hz) filtered and Notch 

(48 – 52 Hz) filtered to remove noise, baseline drifts and power line interference. Both f-VEP 

configurations use a higher low-pass to analyze also harmonic components of the stimulation 

frequency. The lower cutoff frequency is 0.5 Hz for every BCI system used in this work. A 

high value for the lower cut-off frequency may decrease the amplitude of the VEPs (Bach et 

al., 2005). In literature, common filter settings for VEP analysis are e.g. 1 – 250 Hz (Paulus, 

2005) and 0.3 – 100 Hz (Bach et al., 2005).  

2.8.2. Minimum Energy (ME) 

The f-VEP configurations use features based on spectral analysis of the EEG. The extracted 

feature is the SNR between a target signal (power density of a specific frequency range) 

compared to the base EEG (power density of the estimated noise). Thereby it is assumed that 

the EEG is comparable to white or pink noise. The analyzed spectrum is not directly 

calculated from the derived EEG channels, but from combined channels that result from the 

ME combination. These channels are the result of a spatial filter operation and contain an 

improved SNR of the target signals. The weight vector w results from the following 

minimization problem in (4): 
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(   ̃  ̃ ) (4) 

 

Thereby,  ̃ represents the EEG without the target signals. The cancellation of the target 

signals in the EEG takes place via equation (5):  

 

 ̃     (   )      (5) 

 

Y is a matrix containing the pre-processed EEG derivations. X represents a model matrix, 

which consists of the sinusoidal signals of the target frequency and its higher level harmonics. 

A detailed description of this algorithm can be found in (Friman et al., 2007).  
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2.8.3. Canonical Correlation Analysis (CCA) 

The CCA is used for multivariate variables, to compute the correlation coefficients between 

the two data sets. Compared to the ordinary correlation, the canonical correlation analysis 

(CCA) is independent from the used coordinate system. Therefore, it provides the maximum 

correlation of the variables, which is also called the canonical correlation. The algorithm and 

implementation is based on the tutorial of (Borga, 2001). Equation (6) shows the 

corresponding maximization problem. The correlation coefficient ρ should be maximized, 

with respect to ̂  and  ̂ . The two vectors  ̂  and  ̂  are the normalized base vectors for 

canonical correlation. X and Y are the analysed multidimensional variables. 
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The calculation of the maximum correlation is based on the eigenvalue equations (7) and (8). 

Thereby, C is the covariance matrix of the multidimensional variables. In these equations 

more non-zero eigenvalues may be possible. The eigenvalues represent the squared 

correlation coefficients. This is why the highest eigenvalue leads to the canonical correlation. 

The corresponding eigenvectors are the base vectors from (6). 
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      ̂     ̂  (8) 

 

Further details on the CCA can be found in (Borga, 2001). When used for the c-VEP based 

BCI the multidimensional variables X and Y can be replaced by the multichannel EEG signals 

and a set of templates. Therefore, the used features are not based on spectral analysis, but on 

the relationship between the derived EEG and a template sequence. For online processing the 

canonical base vectors act as spatial filters, like they are used in (Bin et al., 2011). An online 

and an offline version of the CCA were implemented. An online Simulink block loads the 

template sequences, which are extracted from a training session and the correlation 

maximizing weight vectors (through spatial filtering). The corresponding S-function 

computes the correlation coefficient between the weighted template and the weighted EEG 

online. A MATLAB function, allows offline calculation of the canonical correlation 

coefficients, which are used as features signals for the calculation of the classifier. 
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2.8.4. Classification and Pseudo Zero Class 

For target identification an LDA based classifier is used. The LDA is a method that is used for 

discrimination and classification based on feature signals. During a training session a linear 

discriminator is calculated, based on data, which can be matched to a previously defined 

class. This discrimination is based on feature vectors containing all necessary attributes of the 

individual classes. The resultant classifier is used online to predict the actual class based on 

the corresponding features As all configurations in this work use four targets, an LDA 

implementation is used that compares one class with the rest and repeats the comparison for 

each class. Each comparison provides score with respect to the discrimination. The final 

classification result is the class providing the highest score (Bishop, 1995). 

 

A pseudo zero class provides an idle state, which is used, when no target is selected. Based on 

the classification scores only, it is not possible to detect, if the user has selected any target. 

This is achieved by rejecting any classification result, for which the residual error probability 

is larger than a predefined limit. (9) shows a Softmax function, which transforms the output of 

the discrimination function into a value p, which lies between 0 and 1. In the equation, qi is 

the distance to class i and τ is the so called temperature, which is used to adjust the gap 

between the resultant probabilities (Sutton and Barto, 1998). N is the total number of possible 

classes. 

 

   
     

∑       
   

 (9) 

 

2.9. Online BCI model 

2.9.1. f-VEP 

In the configuration used in this work, BCIs based on f-VEP require a training session, before 

the system can be used online. Therefore, the user has to focus on the indicated targets. The 

extracted features are saved together with an indicator flag, which is used for trial 

identification. To calculate a valid LDA classifier, the user has to perform a training run. 

Figure 19 shows a schematic flow diagram. The LDA classifier is calculated offline based on 
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the trained features. Offline calculation is performed with the g.BSanalyze functions. Then, 

this classifier is used online in the Simulink BCI-model.  

 

The Simulink model for the BCI using LED stimulation can be found in Figure 20. The 

g.USBamp block provides the EEG data with a sampling rate of 256 Hz for online processing. 

Within the Minimum Energy block several parameters can be configured like the EEG buffer 

length and the re-estimation time of the features. For the presented experiments the EEG 

buffer is set to 1, 2 and 3 s. The feature re-estimation interval is 200 ms for all configurations. 

A temporal median filter of 2 s is used to smooth the feature signals. Together with the EEG 

buffer length, the median filter influences the reaction time of the BCI. The inter-feature 

median is subtracted from each feature channel to improve the discrimination of the features. 

The Apply Classifier block uses the offline calculated classifier to identify the selected target. 

If the classification result does not lie within a 97 % confidence interval, it will be rejected 

and the output is assigned to the pseudo zero class.  

 

An e-puck robot is connected through the epuck Control block and receives a translated 

command that is based on the classification result. The Paradigm block is used to select the 

operation mode, where training, feedback or free run can be used. For the visual stimulation 

based on LEDs, the g.STIMbox block controls the flash cycles of the light sources. For every 

session, the corresponding data is stored in a .mat file. The file contains the EEG data, the 

flash indicator flag and the classification result, which are needed for offline analysis after the 

training run. All blocks, used in the model of the f-VEP LED configuration were provided by 

 

Figure 19: Flow diagram of the f-VEP based BCIs. The ME algorithm is used to improve the SNR between 
the target signal and the base EEG, which is then used as a feature for classification. The offline 

calculated LDA classifier is used for online target identification. 
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g.tec and was already used in the work of (Prueckl and Guger, 2010). Therefore, this model is 

the reference model to test the performance of the on-screen stimulation. 

Figure 21 shows the model for f-VEP system using the BCI-Overlay for on-screen 

stimulation. The parameters are similar for f-VEP LED and the f-VEP on-screen models, 

except of the adapted Paradigm and the Interface Unit block. The Interface Unit loads the 

specification of the BCI controls. During simulation the Paradigm block manages the UDP 

connection to the BCI-Overlay. Again, the Paradigm block can switch between training, 

feedback and free run mode. The Interface Unit was provided by g.tec. The Paradigm block 

had to be extended, to control the BCI-Overlay. All communication between the BCI-model 

and the BCI-Overlay is performed within a C based S-function that is used by the Paradigm 

block. 

 

 

Figure 20: Simulink model of the f-VEP based BCI with LED stimulation. The g.USBamp block provides 
the acquired EEG data. The Minimum Energy block computes the features every 200 ms. Inter-feature and 
temporal median filters are used to smooth the feature signals. Classification is performed within the 
Apply Classifier block. The Paradigm block can switch between training, feedback and free run mode. 
Visual stimulation is controlled by the g.STIMbox block. The classification result is sent to the robot via 

the epuck Control block. 
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2.9.2. c-VEP 

Like the previously defined systems, the c-VEP based BCI requires a training session. In 

contrast, this BCI configuration uses only one reference target for training that is stimulating 

with an M-sequence during the whole training run. These stimulation cycles are averaged 

during offline analysis, to calculate a template of at least two cycles length. The resulting 

template is 1.05 s times the number of repetitions, caused by the 63 bit M-sequence (section 

2.6). Phase shifted indicator flags are applied to the trained data, to extract the feature signals 

for the classifier. As well as for the f-VEP configurations, an LDA is used to calculate the 

classifier. The CCA algorithm is used to calculate the spatial filter for the EEG data and the 

template data (see section 2.8.3). The features are the correlation coefficients between the 

combined EEG data and the templates. For each target there exists an individual set of 

templates, which is a phase shifted version of the reference template set. Figure 22 depicts the 

flow diagram of the c-VEP based BCI. After the training session, the classifier is used for 

online classification.  

 

Figure 21: Simulink model of the f-VEP based BCI with on-screen stimulation. The g.USBamp block 
provides the acquired EEG data. The Minimum Energy block computes the features every 200 ms. Inter-
feature and temporal median filters are used to smooth the feature signals. Classification is performed 
within the Apply Classifier block. The Paradigm block can switch between training, feedback and free run 
mode. In contrast to the LED based stimulation, the Paradigm block directly controls the BCI-Overlay. The 
BCI controls are defined through the Interface Unit. The classification result is sent to the robot via the 

epuck Control block. 
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The corresponding implementation in Simulink is shown in Figure 23. The g.USBamp 

provides data with a sampling rate of 256 Hz. Feature extraction is performed in the CCA 

block every 200 ms. The EEG buffer length has to be multiple of the template length, where 

the minimum length is the duration of one M-sequence cycle (here: 1.05 s). Also 2.10 s and 

3.15 s buffers are possible. Longer buffer lengths are possible, but not be considered in this 

work, because of the decreasing reaction time of the BCI. The rest of the model works similar 

to the f-VEP based BCI with on-screen stimulation, including the confidence interval for 

classification, which is set to 3 %. 

 

Figure 22: Flow diagram of the c-VEP based BCI. A CCA algorithm is used to calculate a spatial filter that 
maximizes the correlation between the trained data and the averaged template. The resulting correlation 
coefficients are used for LDA based classification and identification of the selected target. The offline 
calculated templates and the spatial filters are used for feature extraction during online processing. 
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2.10. Experimental Procedure 

Eleven subjects aged 27.36 +/-5.84 years participated in all experiments (ten male and one 

female). All subjects were in good health, with normal or corrected to normal vision, who 

volunteered to participate. Each subject participated in one session that lasted about two 

hours. The whole session contained three experiments with each subject, one for each 

configuration: f-VEP LED, f-VEP on-screen and c-VEP on-screen. The order of these 

conditions was counterbalanced across subjects to avoid any possible training or fatigue 

effects.  

 

Each subject first performed a BCI training run, depending on the used configuration, to set 

up a subject specific classifier. In the experiments using the f-VEP LED and the f-VEP on-

screen configuration, the training contained 20 trials per class (80 trials in total). A single trial 

was formed by 3s dark time and 7s flash time. During the flash time all light sources flickered 

at their predefined frequency. A green indicator showed the user the current target. This cue 

 

Figure 23: Simulink model of the c-VEP based BCI with on-screen stimulation. The g.USBamp block 
provides the acquired EEG data. The CCA block computes the features every 200 ms. Inter-feature and 
temporal median filters are used to smooth the feature signals. Classification is performed within the 
Apply Classifier block. The Paradigm block can switch between training, feedback and free run mode. 
Also the Paradigm block controls the BCI-Overlay. The BCI controls are defined through the Interface 

Unit. The classification result is sent to the robot using the epuck Control block. 
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started together with the visual stimulation. The f-VEP training is split into four individual 

runs, to avoid tiring effects. 

 

The training of the c-VEP configuration contained one run with a single reference target. 

Therefore, the duration of the training session depended on the sequence length and the 

number of cycles, but not on the number of targets. The training contained 200 stimulation 

cycles of the selected M-sequence. From the 200 trained sequences, 190 trials were available 

to calculate the classifier, which leads to 760 trials in total for four classes, as each set of trials 

was phase shifted version of the others. As there was only one flickering target during c-VEP 

training, no cue was necessary do direct the gaze of the user. 

 

After the training run each subject performed a feedback run containing 5 trials per class 

(20 classification in total), to test the performance of the classifier. The feedback run was 

equal for each configuration (c-VEP on-screen, f-VEP on-screen and f-VEP LED). During the 

feedback run the system presented four targets to the user either stimulating with constant 

frequencies or with pseudo-random sequences. A cue showed the user the current target s/he 

had to gaze at. The cue was realized either as a green LED for the f-VEP LED configuration 

or as a green border around the on-screen target in the c-VEP on-screen and the f-VEP on-

screen configuration. One trial consisted of 3 s dark time and 7 s flash time. The cue and the 

stimulation targets were active during flash time only. 

 

Next, the subject had to steer the robot along a given track as fast as possible. In this run no 

cue was used and the user had the possibility to choose between four commands (forward, 

backward, left and right). Depending on the configuration, either a green LED or a green 

border around the target showed the user the current active selection of the BCI. This gives 

the user additional feedback, if the system is in idle state or not. The entire track was 170 cm 

long and contained four 90° turns - two to the left and two to the right (Figure 24). Each 

subject was told to move as accurate as possible along the track. The pseudo zero class was 

enabled during the experiment. Therefore, the robot stopped when no control was detected, 

which was the case for bad feature signals or when the user did not focus on any target. This 

led to a delay decreasing the performance of the system. 
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During all experiments, the used hardware setup for the VideoClient and the BCI-Overlay 

consisted of a PC with an AMD Phenom II X4 955 (4 x 3.2 GHz) processor, an Nvidia 

GeForce 8600GT graphics card and 4 GB RAM. The operation system was an Ubuntu using a 

LINUX 2.6.33-29-realtime kernel. 

 

2.11. Quade-Test 

The Quade-test is a non-parametric statistical test and an extension of the Wilcoxon-signed 

rank test for two or more groups. The null-hypothesis for this test is that the groups have the 

same median (Quade, 1979). In this work the test is used to compare the classification 

accuracies and the time of movement of the three configurations.  

  

 

Figure 24: Setup of the track with the e-puck robot. 
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3. Results 

3.1. Technical Performance Tests 

This section describes some technical experiments, which ensure a valid setup of the tested 

systems. Critical aspects are the flash accuracy of the display for on-screen stimulation, the 

trigger accuracy for synchronizing the BCI-Overlay with the c-VEP BCI model and the 

tracking accuracy of the robotic movement within the test environment. 

3.1.1. Trigger Accuracy Test 

Two test runs were performed to evaluate the delay caused by the transmission of UDP 

commands. In the first test run a package with one byte was sent 10000 times. The initial 

sender was based on MATLAB and used the g.UDPinterface to send and receive commands. 

After receiving a command, the BCI-Overlay sent back the same command, so that the round-

trip-time (RTT) could be measured. A second test was similar to the first one, but with bigger 

packages containing 72 bytes (Table 4). 

 

The maximum delay observed in both tests was about 2 ms. It is important to keep in mind 

that the RTT measures double the time of a trigger command from the BCI-Overlay. This is 

why the maximum delay observed for a trigger command is about 1ms. Figure 25 shows that 

the outliers were very rare, compared to the amount of packages sent. The mean RTT of a 

package with 72 bytes reaches about 400 µs. The test conditions were similar to the 

performed experiments later. 

Table 4: The trigger accuracy test contained two runs. The round trip time was measured by the 
MATLAB test program. 

Parameter Test run 1 Test run 2 

Number of packages 10000 10000 

Data size (byte) 1 72 

Mean Round-Trip-Time (RTT) (ms) 0.367 0.414 

Standard deviation of RTT (ms) +/- 0.147 +/- 0.138 

Min RTT (ms) 0.089 0.243 

Max RTT (ms) 1.006 2.074 
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3.1.2. Flash Accuracy Test 

Measurements of 10 minutes were used to evaluate the flash accuracy of the on-screen 

stimulation. The measurement setup included a photo detector connected to the g.TRIGbox. 

For signal acquisition a g.USBamp with a sampling rate of 38.4 kHz and a corresponding 

Simulink model was used. Target frequency was 15 Hz, resulting in more than 8000 measured 

periods. The host application, which included the BCI-Overlay, was the Video-Client (further 

details see 2.3.5). Table 5 summarizes the results of this test. The maximum error was 

33.33 ms, which resulted from a delayed call of swap-buffer by the host application. 99.7 % 

of the flashes occurred within the expected number of frames. The signal jitters with a 

standard deviation of +/- 1.18 ms around the given period.  

 

 

Figure 25: Round-Trip-Time of the 72 bytes packages. The figure is plotted with semi logarithmic 
scale. Most of the packages have RTTs less than 500 µs. 

 

Table 5: Flash accuracy of more than 8000 stimulation cycles. 

Parameter 
Frequency Time 

Hz ms 

Ideal 15.00 66.67 

Measured mean 14.99 66.72 

Standard deviation +/- 0.21 +/- 1.18 

Max error 5.00 33.33 

Mean error -0.01 0.05 
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Figure 26 shows the acquired durations. The effective jitter, excluding outliers, is less than the 

overall standard deviation. The standard deviation of the regular signal is +/- 84 µs, which is 

at least two orders of magnitude smaller than the sampling rate of the amplifier (256 Hz) and 

the refresh rate of the screen (60 Hz). 

The error generated by an outlier is in any case a multiple of the screen refresh cycle, as it is 

caused by a delayed swapping of OpenGL frame-buffers. One reason for these artifacts may 

by background processes, which are executed by the operating system of random time points 

(Figure 27). 

 

3.1.3. Tracking Accuracy Test 

A marker with the dimensions of 1 cm x 1 cm was placed on the robot. This size of the 

marker was necessary to ensure detection by the tracking system. The marker position was 

measured over 2 min without any movement of the robot. In ideal case, the tracking system 

detects the same point every time. However, the tracking system underlies inaccuracies during 

measurement. Figure 28 shows the distribution of the acquired data points. The median in x-

direction and in y-direction was used, to estimate the zero point. 

 

Figure 26: Display jitter of the Belinea 1930 S2 monitor and the BCI-Overlay running within the Video-
Client. The red bar shows the ideal value of 66.67ms, due to the 15Hz stimulation of the target. 

 

 

 

Figure 27: Outliers during visual stimulation are caused by a delayed call of the swap-buffer command. 
The errors are always multiples of 16.67 ms, because of the 60 Hz refresh rate of the display and the 
vertical synchronization of the graphics card. The plot shows a semi-logarithmic scale for a better view 
on the rate of the outliers. 
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The histogram in Figure 29 shows the distribution of the data points around the estimated zero 

point. In total 2440 data points were acquired. The maximum Euclidian distance between the 

estimated zero point and the data points was 1.23 cm. The mean error distance was 0.45 cm, 

with a standard deviation of +/- 0.25 cm. 

 

3.2. Online Classification Accuracy Test 

3.2.1. Classification Result without Pseudo Zero Class 

 

An overview of the classfication accuracies for the individual configurations is provided in 

Table 6, Table 7 and Table 8. Table 6 contains the classification accuracy for the f-VEP LED 

 

Figure 28: Distribution of 2440 measured positions of a steady marker with a size of 1 cm x 1 cm. 

 

 

 

 

Figure 29: Histogram of the data points in x-direction and in y-direction. The data points are spread 
around the estimated zero point. 
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configuration. The f-VEP on-screen configuration is shown in Table 7 and the c-VEP on-

screen configuration can be seen inTable 8. The mean accuracy is calculated using the last 3 s 

of data in all trials. Three different buffers were used for classification, to show the 

dependence of the classification accuracy on the EEG buffer size. An online classification test 

was performed in combination with the 2.0 s EEG buffer for f-VEP systems and the 2.1 s 

EEG buffer for the c-VEP system. All other results were calculated offline on base of the 

recorded EEG data. In all tests the c-VEP system provided better results on average over all 

subjects.  

 

A Quade-test showed significant better accuracy for the c-VEP on-screen configuration 

compared to the others (p = 0.0168). An ANOVA was not possible in this case, because the 

test data does not come from normal distribution. 

 

Table 6: Classification accuracy of the f-VEP LED configuration after 20 trials in total. Three EEG buffer 
sizes were used: 1.0 s, 2.0 s and 3.0 s. The 2.0 s configuration was tested online; all other accuracies 
were calculated offline on base of the EEG data, recorded during the online experiment.  

Subject f-VEP LED 

# 

mean accuracy  

(1.0 s buffer) 

(%) 

mean accuracy  

(2.0 s buffer) 

(%) 

mean accuracy  

(3.0 s buffer) 

(%) 

1 100.00 98.65 100.00 

2 58.37 75.72 80.57 

3 88.09 88.44 93.09 

4 78.01 85.57 95.70 

5 98.08 100.00 99.99 

6 94.42 96.63 96.58 

7 43.03 40.76 38.56 

8 73.71 72.45 70.57 

9 74.16 84.62 91.46 

10 65.63 77.19 78.95 

11 100.00 100.00 100.00 

mean 79.41 83.64 85.95 

std-dev 17.88 16.58 17.69 
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Table 7: Classification accuracy of the f-VEP on-screen configuration after 20 trials in total. Three EEG 
buffer sizes were used: 1.0 s, 2.0 s and 3.0 s. The 2.0 s configuration was tested online; all other 
accuracies were calculated offline on base of the EEG data, recorded during the online experiment. 

Subject f-VEP on-screen 

# 

mean accuracy  

(1.0 s buffer) 

(%) 

mean accuracy  

(2.0 s buffer) 

(%) 

mean accuracy  

(3.0 s buffer) 

(%) 

1 99.83 98.14 98.50 

2 72.99 77.14 84.35 

3 76.13 83.05 78.83 

4 93.62 97.26 97.93 

5 99.66 100.00 99.52 

6 93.47 95.09 91.37 

7 46.85 42.48 45.32 

8 57.85 80.77 86.60 

9 72.25 89.28 89.97 

10 57.98 62.75 75.36 

11 100.00 100.00 100.00 

mean 79.15 84.18 86.16 

std-dev 18.43 17.25 15.21 

 

Table 8: Classification accuracy of the c-VEP on-screen configuration after 20 trials in total. Three EEG 
buffer sizes were used: 1.05 s, 2.1 s and 3.15 s. The 2.0 s configuration was tested online; all other 
accuracies were calculated offline on base of the EEG data, recorded during the online experiment. 

Subject c-VEP on-screen 

# 

mean accuracy  

(1.05 s buffer) 

(%) 

mean accuracy  

(2.1 s buffer) 

(%) 

mean accuracy  

(3.15 s buffer) 

(%) 

1 96.29 98.29 100.00 

2 87.95 90.39 94.71 

3 91.96 95.85 94.83 

4 94.70 93.42 91.55 

5 94.06 95.83 98.16 

6 94.85 97.97 95.11 

7 72.33 80.49 81.20 

8 89.77 95.00 96.35 

9 98.40 96.88 94.18 

10 94.95 96.84 99.68 

11 96.74 98.66 97.42 

mean 92.00 94.51 94.84 

std-dev 6.87 4.98 4.93 
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Another comparison of the three configurations is provided in Figure 30. Here, the accuracy 

of every system is plotted against the duration of one trial. Each curve contains the average 

accuracy over eleven subjects and 20 trials. The accuracy values were calculated every 

200 ms. Apart from the small differences in the EEG buffer sizes (c-VEP: 2.1 s; f-VEP: 

2.0 s), the data was smoothed with moving median window filter (c-VEP: 1 s, f-VEP: 2 s). 

Nevertheless, the c-VEP configuration reaches a higher accuracy level in shorter time, 

compared to the f-VEP based BCIs. 

 

The dependence of the systems reaction time on the EEG buffer length is demonstrated in 

Figure 31. In this example only the c-VEP configuration is shown. Smaller buffer sizes 

improve the reaction time, while the loss in accuracy is very small. Table 8 shows a decrease 

of less than 3 % of the mean accuracy, when an EEG buffer of 1.05 s is used instead of 3.15 s. 

Compared to this, the accuracy the f-VEP systems decreases about 7 %, caused by the change 

from 3 s to 1 s (Table 6 and Table 7). 

 

In Figure 30 and Figure 31, no visual stimulation takes place prior to the vertical bar. The 

expected accuracy would be 25 %, which is the probability of random classification, within a 

four-class system and a very large number of trials. However, this is not the case in the 

presented results. First, the small number of trials enlarges the interval for random 

classification (Müller-Putz et al., 2008a). Second, in the example shown, the EEG buffer 

contains data from the previous run. Therefore, the classification result is more influenced by 

the target signal of the previous and different trial, than by random classification. 

 

Based on the accuracy curve in Figure 30, the trial duration for a valid classification can be 

assumed as 2.8 s for the c-VEP system and as 3.7 s for the f-VEP configurations. These time 

points represent the start of constant classification accuracy over time. For ITR calculation the 

same settings as in the experiments for robot movement are used. This leads to an ITR of 

34.4 bits/min for the c-VEP based BCI, with respect to the 4 targets and the 94.51 % mean 

accuracy for the 2.1 s EEG buffer. The f-VEP on-screen solution has an ITR of 18.0 bits/min, 

based on the 2 s EEG buffer and the 84.18 % mean accuracy. The ITR for f-VEP with LED 

stimulation is 17.8 bits/min. Here, the settings were the same as for the f-VEP system with 

on-screen stimulation. 
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Figure 30: Online accuracy test for the three configurations: c-VEP on-screen, f-VEP on-screen, f-VEP LED. 
The vertical bar indicates the start of visual stimulation. The EEG buffer was 2.1 s for the c-VEP system and 
2 s for the f-VEP systems. A moving median filter of 1 s for c-VEP and 2 s for f-VEP was used to smooth the 

data. 

 

Figure 31: Comparison of the c-VEP accuracies achieved for 1.05 s, 2.10 s and 3.15 s EEG buffers. The 
vertical bar indicates the start of the visual stimulation. 
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3.2.2. Classification Result with Pseudo Zero Class 

On base of the EEG data acquired during the classification accuracy test (section 3.2.1), 

another classification accuracy test was performed introducing an additional pseudo zero 

class. Table 9 provides the classification accuracies for the individual subjects after 20 trials 

in total. In this experiment a 2 s EEG buffer was used for f-VEP systems and a 2.1 s EEG 

buffer for the c-VEP system. The mean accuracy was calculated over all trials, using the last 

3 s of each trial.  

Again, the c-VEP configuration provided the highest accuracies. The f-VEP configurations 

showed quite similar results compared to each other. A Quade-test was performed and 

showed significantly higher accuracy than the others (p = 0.0055). 

 

The reaction time of the c-VEP system is slower compared to the setup without the pseudo 

zero class, it is still shorter than for f-VEP setups (Figure 32). The benefit of the pseudo zero 

class is that the BCI remains in idle state, when the user has not selected any target.  

Table 9: Classification accuracy with pseudo zero class over 20 trials in total. The performance of all 
three configurations was evaluated: f-VEP LED, f-VEP on-screen and c-VEP on-screen.   

Subject f-VEP LED f-VEP on-screen c-VEP on-screen 

# 

mean accuracy  

(2.0 s buffer) 

(%) 

mean accuracy  

(2.0 s buffer) 

(%) 

mean accuracy  

(2.1 s buffer) 

(%) 

1 97.63 93.46 88.63 

2 8.28 34.24 64.45 

3 57.02 38.33 83.24 

4 31.93 77.88 86.32 

5 90.48 86.73 80.98 

6 90.12 81.41 91.21 

7 0.00 0.68 20.47 

8 39.71 8.43 65.64 

9 53.18 47.75 92.64 

10 40.19 18.96 53.50 

11 100.00 100.00 91.34 

mean 55.32 53.44 74.40 

std-dev 33.76 34.23 21.08 
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Figure 33 shows the average false positive classifications of all sample points in one trial over 

all subjects. In the first 3 s, no stimulation takes place. Therefore, the positive classifications 

are either resulting from delayed classification of samples from the previous trial or by 

insufficient rejection of the classification result.  

 

 

Figure 32:  Online accuracy test for the three configurations: c-VEP on-screen, f-VEP on-screen, f-VEP 
LED. The vertical bar indicates the start of the visual stimulation. The EEG buffer was 2.1 s for the c-VEP 
system and 2 s for the f-VEP systems. Moving median filter was set to 1 s for c-VEP and 2 s for f-VEP. 

 

 

 

Figure 33: Classification accuracy and false positive classifications. In this test c-VEP on-screen system 
was used with a 2.1 s EEG buffer. The doted curve at the start of the trial represents the classifications 
caused by the remaining samples of the previous trial. The solid curve indicates the false positive 
classifications, when the system is idle and during stimulation of any other class. The vertical bar 
indicates the start of the visual stimulation. 
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This leads to false positive assignments of a sample to any class that is not the target class. In 

a system without pseudo zero class, the false positive rate would be 100 %. The pseudo zero 

class provides a decrease of false positive classifications down to 11.82 %, which is the 

maximum number of false positive classifications during the ten seconds of the trials.  

 

For ITR calculation of the BCIs using the pseudo zero class, the new trial times are 3.4 s for 

the c-VEP system and 3.8 s for f-VEP with LED stimulation and 4.2 s for f-VEP with on-

screen stimulation (Figure 32). The calculation is based on the mean accuracies of the 2 s and 

2.1 s test runs. Because of the introduced pseudo zero class, the number of classes has 

increased to five. Therefore, the ITR is 17.5 bits/min for the c-VEP based BCI, 6.9 bits/min 

for the f-VEP based BCI with LED stimulation and 5.6 bits/min for the f-VEP based BCI with 

on-screen stimulation. 

3.3. Controlling a Robot 

The estimated maximum error of the Noldus tracking system was 1.23 cm. The data was 

filtered with a 15 samples median filter to eliminate outliers and the minimum step size 

between two points was set to 1.5 cm. The median filter length is based on the 25 Hz 

sampling rate of the tracking system and the 2.5 cm/s maximum speed of the robot. Figure 34 

shows an example for a detected track. The data was taken from subject 8 including runs with 

four different input types: Keyboard, c-VEP on-screen, f-VEP on-screen and f-VEP LED.  

 

Not all subjects were able to handle the task as well as the subject in Figure 34. Subjects with 

deviations of more than +/- 2*σ (standard deviation), either from the ideal track or from the 

path length, were excluded from the test. The intention of the outlier correction was avoiding 

comparison of inadequate data, caused by shortening the track. A list of the deviations that 

were achieved by the subjects can be seen in Table 10. The subjects 3, 6 and 11 had to be 

excluded due to their inaccuracy. As subject 7 was not able to move the robot along the track 

using any of the f-VEP configurations, it had to be excluded too. 
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Figure 34: Tracked movement of the robot. Data was taken from subject 8. The individual curves show the 
way, the robot took for each of the four selected control paradigms. 

 

Table 10: Deviation in length and the mean deviation from the ideal line of the track. The length of the 
track was 170 cm. Four subjects had to be excluded from the experiment because of their high 
deviations. The outliers are highlighted with grey background.  

Subject Keyboard f-VEP LED f-VEP on-screen c-VEP on-screen 

# 

deviation 

in length 

mean 

deviation 

from track 

deviation 

in length 

mean 

deviation 

from track 

deviation 

in length 

mean 

deviation 

from track 

deviation 

in length 

mean 

deviation 

from track 

cm cm cm cm cm cm cm cm 

1 3.70 0.81 18.60 1.47 21.60 1.33 15.40 1.29 

2 0.60 0.70 -9.30 1.21 27.30 1.78 -12.60 1.82 

3 6.00 0.99 32.60 2.93 -11.70 2.93 15.30 2.15 

4 -6.40 1.16 19.80 2.18 9.90 1.65 18.20 1.16 

5 6.00 1.22 -4.60 0.97 35.00 1.15 10.40 1.50 

6 0.70 1.30 18.10 3.07 26.50 2.57 39.10 3.29 

7 -4.40 1.17 - - - - -4.80 1.29 

8 3.50 0.84 12.90 1.38 9.60 2.25 15.90 0.71 

9 -0.40 0.55 32.40 2.60 49.70 3.51 24.90 1.15 

10 1.00 0.72 17.40 1.28 24.70 1.25 1.60 1.15 

11 -1.20 1.49 65.10 1.68 28.70 1.45 -3.00 1.34 

mean 0.83 1.00 20.30 1.88 22.13 1.99 10.95 1.53 

std-dev 3.74 0.28 19.68 0.72 15.72 0.76 14.10 0.66 
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Table 11 shows the time, the subjects needed to move the robot from start to end of the track. 

For comparison only the durations achieved on valid data sets were used. A Quade-test 

showed that the c-VEP configuration is significantly faster than the f-VEP LED and f-VEP 

on-screen configurations (p = 0.0187). 

 

The keyboard run was excluded from outlier detection and every comparative test. It is just an 

additional measurement and should give the reader a feeling about the achievable values. 

  

Table 11: Duration of movement for every subject and configuration. Grey highlighted subjects were 
excluded from the tests. The mean values are calculated for all subjects.The corrected mean is based on 
data without outliers.  

Subject Keyboard f-VEP LED f-VEP on-screen c-VEP on-screen 

# 
time time time time 

s s s s 

1 93.00 176.00 170.00 149.00 

2 92.00 451.00 187.00 163.00 

3 97.00 351.00 426.00 194.00 

4 91.00 469.00 252.00 272.00 

5 100.00 335.00 312.00 233.00 

6 96.00 243.00 183.00 209.00 

7 99.00 - - 507.00 

8 91.00 422.00 1158.00 298.00 

9 89.00 844.00 679.00 145.00 

10 97.00 365.00 1256.00 298.00 

11 91.00 198.00 150.00 177.00 

mean 94.18 385.40 477.30 240.45 

std-dev 3.56 180.65 395.42 99.71 

corrected mean 93.29 437.43 573.43 222.57 

corrected std-dev 3.57 189.29 431.36 64.26 
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4. Discussion 

The chosen white stimulation with solid rectangles provided a good comparative 

configuration. This allowed an evaluation of the BCI-Overlay and its performance.  

Nevertheless, it is quite interesting to see the behavior of the individual configurations, when 

spatial stimulation patterns are used for stimulation. In further experiments, such a test could 

also compare c-VEP and f-VEP with more than four targets.  

 

Also test runs with targets of individual shape are very interesting. In this case, the training 

for f-VEP systems may become time consuming, as each control has to be trained 

individually. Nevertheless, this problem could be solved with the introduction of alternative 

classification techniques or with decreasing the trial duration. The c-VEP system is trained 

with only one reference target. This may lead to a stronger dependence on the shape and size 

of the controls. Of course, the templates could be trained individually for each target, but this 

would take more time for training. In f-VEP systems the SNR between the target signal and 

the base EEG depends on size and shape. Nevertheless, a change of the training paradigm will 

not improve the feature signals.  

 

In all experiments performed with the f-VEP based BCIs, the BCI-Overlay showed nearly 

similar results compared to LED stimulation. Therefore, the on-screen solution works and can 

be used for further experiments. The design of the module allows usage in real world video 

application, as it was used in the presented experiments, but also in virtual reality 

applications, where the user could interact with the virtual environment. 

 

In the c-VEP based BCI, a cutoff frequency of 30 Hz was chosen that is also the highest 

stimulation frequency (caused by the 60 Hz refresh rate of the screen). Compared to spectral 

analyzes of the EEG, the CCA uses the whole spectrum for feature extraction, which includes 

also nuisance signals and artifacts. This is why the filter contained a low cutoff frequency. 

 

Classification accuracy tests with the c-VEP system showed very good results, also with short 

EEG buffers. The used stimulation sequence took 1.05 s, which is the minimum EEG buffer 

size too. This is why faster systems require shorter sequences. The maximum number of 

controls depends on the sequence length, such that shorter sequences allow fewer controls 

than longer sequences.  
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The results for the classification accuracy are based on 5 trials per class only (20 trials in 

total), so that the results have to be interpreted very carefully. The validity of classification 

results with respect to the number of trials is shown in (Müller-Putz et al., 2008a). The lower 

the number of trials, the higher is the threshold for confident accuracies that are better than 

random classification. For example, results in a four class system with 10 trials per class are 

random until 40 % classification accuracy. Nevertheless, the presented results are in the range 

of 80 % - 100 %. Only subject 7 showed accuracies in the range of 40 % - 50 %, which may 

be caused by random classification. 

 

Subject 7 was not able to use the f-VEP configurations. The usage of the c-VEP was possible, 

but the accuracy was bad compared to the other subjects. Therefore it was excluded from the 

evaluation of the robot experiment. Nevertheless, this subject may be a hint, that the feature 

extraction of the c-VEP system works with people, which are not able to use f-VEP systems. 

 

The reaction time of the used monitor was 5 ms, which produces a delay and therefore a phase 

shift. Nevertheless, the flash accuracy test showed that the jitter of the visual stimulation was 

very low compared to the used sampling rates. So, the delay seems to be constant and the 

resulting phase shift is the same in all signals. This is why the reaction time had no influence 

on the performance of the system. 

 

The latency of the f-VEP configurations was much higher than the latency of the c-VEP 

configuration. One reason for the higher latency is the temporal moving median filter that was 

used. The filter length was bigger for the f-VEP configuration (2 s) compared to the c-VEP 

configuration (1 s). This was necessary, because of the less robust features of the ME 

combination compared to the features based on the CCA. 

 

Compared to the c-VEP based BCI presented by (Bin et al., 2011), the ITR is very low with 

34.4 bits/min, which was reached without pseudo zero class. It is important to notice that the 

ITRs presented in this work are not really comparable. The implemented configurations work 

nearly continuously and allow the user to change the state within 200 ms. The trial durations 

for the ITR are based on the latency of the system. Nevertheless, the high ITR of 108 bits/min 

in (Bin et al., 2011) results from the 32 targets (the BCI presented in this work uses only four 
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targets). The c-VEP configuration can also be used with more controls, than the four targets 

used in the performed experiments. 

 

The pseudo zero class allows the user to remain in an idle state. However, it is no real zero 

class and not trained by the system. The user can set a threshold for the confidence interval of 

valid classification. Therefore, the system rejects false positive classification, with the 

tradeoff of additional false negative classifications. This is also the reason for the decreased 

performance, when the pseudo zero class is enabled. The value for the maximum false 

positive classifications (11.82 %) is just estimation and should be replaced by a false positive 

test run that lasts several minutes, to see the false positive classification, when no target is 

selected. 

5. Conclusion 

In all tests the c-VEP configuration showed significant improvements compared to f-VEP 

LED configuration. It performed better than the f-VEP configurations in all tests. Also the c-

VEP on-screen configuration is faster than the other configurations. Therefore this system is 

the recommended BCI for further experiments. The BCI-Overlay is working as good as the 

LED stimulation and provides the possibility to include BCI controls in any OpenGL based 

graphics application. 
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7. Appendix 

7.1. XML Mask-File 

This section contains the specification of the mask-file, which is used to define the BCI-

controls. Important for the usage of SSVEP controls is the Image type. To distinguish SSVEP 

controls from any other icon, the Image type contains a Format attribute. If this attribute is set 

to “SSVEP”, the control will be recognized by the BCI-Overlay. The data of the Image can be 

either the string “solid” for a rectangular control or a hex-code of the desired bitmap. Within 

the MaskConfig type the screen is divided into a matrix, in which the controls can be aligned. 

Also the control size is defined in the MaskConfig type. In the mask, a sequence of commands 

based on the SingleCommandType specifies all BCI controls, which are all flickering at the 

same time. The mask-file contains additional attributes due to its usage in other BCI types. 

However, they are not needed by the SSVEP based BCI and therefore not further explained 

(Putz et al., 2011). 

 

<?xmlversion="1.0"encoding="iso-8859-1"?> 

<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<!-- 

  Definition of different types: 

  DispSymbolType: Sympbols will be able to be displayed only by a text or 

by an ICON which 

                  for which only the path where the icon is stored has to 

be defined 

 

  For the control interface there are three different possibilites of 

commands: 

 

  SingleCommandType: This type states a single command. This type requires, 

the instruction, the command position 

                     who the command should be displayed at the interface 

(either text or icon) and the command type (see below)  

                     and optionally a parameter. The type requires the 

command name as an attribute and the optional the GroupTag  

                     or the command ID optionally 

--> 

 

<!-- Definition of the complex type image--> 

<xs:complexTypename="Image"mixed="true"> 

<xs:attributename="Format"use="required"> 

<xs:simpleType> 

<xs:restrictionbase="xs:string"> 

<xs:enumerationvalue="SSVEP"/> 

<xs:enumerationvalue="hex"/> 

<xs:enumerationvalue="hexRGB"/> 

<xs:enumerationvalue="binary"/> 

</xs:restriction> 

</xs:simpleType> 

</xs:attribute> 
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</xs:complexType> 

 

<!-- Definition of the MaskType (lines and cols are restricted to a number 

>= 2 and <= 10--> 

<xs:complexTypename="MaskConfig"> 

<xs:sequence> 

<xs:elementname="NoLines"minOccurs="1"maxOccurs="1"> 

<xs:simpleType> 

<xs:restrictionbase="xs:integer"> 

<xs:minInclusivevalue="1"/> 

<xs:maxInclusivevalue="10"/> 

</xs:restriction> 

</xs:simpleType> 

</xs:element> 

<xs:elementname="NoCols"minOccurs="1"maxOccurs="1"> 

<xs:simpleType> 

<xs:restrictionbase="xs:integer"> 

<xs:minInclusivevalue="1"/> 

<xs:maxInclusivevalue="10"/> 

</xs:restriction> 

</xs:simpleType> 

</xs:element> 

<xs:elementname="BtnSize"minOccurs="1"maxOccurs="1"> 

<xs:simpleType> 

<xs:restrictionbase="xs:double"> 

<xs:minExclusivevalue="0"/> 

<xs:maxInclusivevalue="1"/> 

</xs:restriction> 

</xs:simpleType> 

</xs:element> 

<xs:elementname="SelectedBox"type="xs:string"minOccurs="0"maxOccurs="1"/> 

<xs:elementname="EditBox"minOccurs="0"maxOccurs="1"> 

<xs:complexTypemixed="true"> 

<xs:attributename="Rows"use="required"type="xs:integer"/> 

</xs:complexType> 

</xs:element> 

<xs:elementname="Logo"minOccurs="0"maxOccurs="unbounded"> 

<xs:complexType> 

<xs:sequence> 

<xs:elementname="Path"type="xs:string"/> 

<xs:elementname="Position"type="xs:string"/> 

</xs:sequence> 

</xs:complexType> 

</xs:element> 

</xs:sequence> 

</xs:complexType> 

 

<!-- Definition of the DispSymbolType: Display of a command (text or icon)-

-> 

<xs:complexTypename="DispSymbolType"> 

<xs:sequence> 

<xs:elementname="Text"type="xs:string"minOccurs="1"maxOccurs="1"/> 

<xs:elementname="Icon"type="Image"minOccurs="0"maxOccurs="1"/> 

</xs:sequence> 

</xs:complexType> 

 

<!-- Definition of the SingleCommandType: This type states a single 

command. This type requires, the instruction, the command position 

                     who the command should be displayed at the interface 

(either text or icon) and the command type (see below)  
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                     and optionally a parameter. The type requires the 

command name as an attribute and the optional the GroupTag  

                     or the command ID optionally--> 

<xs:complexTypename="SingleCommandType"> 

<xs:sequence> 

<xs:elementname="ICONPosition"type="xs:string"/> 

<xs:elementname="DispSymbol"type="DispSymbolType"/> 

<xs:elementname="CommType"> 

<!--Different command types are: 

            single:        

            doubleselect: for secrete operation, when a choice have to be 

done twice before execution 

            closemask:    this command type will close a submask 

--> 

<xs:simpleType> 

<xs:restrictionbase="xs:string"> 

<xs:enumerationvalue="single"/> 

<xs:enumerationvalue="standby"/> 

<xs:enumerationvalue="doubleselect"/> 

</xs:restriction> 

</xs:simpleType> 

</xs:element> 

</xs:sequence> 

<xs:attributename="CmdID"type="xs:string"use="required"/> 

</xs:complexType> 

 

<!--    Start definition of the xml file: The "Mask" includes a --> 

 

<xs:elementname="Mask"> 

<xs:complexType> 

<xs:sequence> 

<xs:elementname="MaskConfig"type="MaskConfig" /> 

<xs:elementname="ControlTyp"minOccurs="1"maxOccurs="1"> 

<xs:simpleType> 

<xs:restrictionbase="xs:string"> 

<xs:enumerationvalue="continuous"/> 

<xs:enumerationvalue="singleFlash"/> 

<xs:enumerationvalue="RCFlash"/> 

<xs:enumerationvalue="patternFlash"/> 

<xs:enumerationvalue="cursor2D"/> 

<xs:enumerationvalue="cursor1D"/> 

<xs:enumerationvalue="cursor1Dfeedback"/> 

</xs:restriction> 

</xs:simpleType> 

</xs:element> 

<xs:elementname="Symbols"maxOccurs="unbounded"> 

<xs:complexType> 

<xs:sequence> 

<xs:elementname="SingleCommand"type="SingleCommandType"maxOccurs="unbounded

"minOccurs="0"/> 

</xs:sequence> 

</xs:complexType> 

</xs:element> 

</xs:sequence> 

<xs:attributename="MaskName"type="xs:string"use="required"/> 

</xs:complexType> 

</xs:element> 

</xs:schema> 
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