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Abstract

This thesis deals with the differential cryptanalysis of the message authentication code
SipHash. The two main fields of application for SipHash are the authentication of network
traffic and the replacement of non-cryptographic hash functions in hash tables. Therefore,
it is useful that SipHash is fast on short inputs and it is needed that SipHash is secure.
To evaluate the security, we have made a detailed analysis of SipHash. With the help of
an automatic search tool, we are able to produce collisions for variants of SipHash con-
sidering SipHash as a hash function. This includes external collisions for SipHash-1-0 and
SipHash-2-0, internal collisions using chosen related keys for SipHash-1-x and SipHash-2-x,
and semi-free-start collisions for SipHash-1-x and SipHash-2-x. For SipHash-1-x and Sip-
Hash-2-x, we are able to create high probability internal collision producing characteristics.
Furthermore, we present a distinguisher for the finalization of SipHash-2-4. To find these
results, we make use of probability estimation techniques for differential characteristics
and differentials. We extend the automatic search tool with an exact calculation of the
probability of differentials.

Keywords: cryptography, differential cryptanalysis, SipHash, differential probability, col-
lision, distinguisher
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Chapter 1

Introduction

This thesis focuses on the analysis of a rather new message authentication code (MAC)
called SipHash. First, we introduce the two terms hash function and MAC. A hash func-
tion is a primitive, which creates a fixed size output (hash value) out of an input (message)
of arbitrary length. Hash functions are widely used. For example, they are used in digital
signature schemes. For such applications, hash functions must fulfill several security crite-
ria. For instance, it should be hard to find two different messages with the same hash value
(collision). In contrast to hash functions, MACs create a fixed length tag out of a message
and a secret key. Therefore, MACs can be used by two parties to exchange authenticated
messages (including the tag) over an insecure channel. An alteration of the messages by
a third party can be detected. For MACs, it shall be hard to gain the key out of known
message-tag pairs, or to create valid message-tag pairs without the secret key. Amongst
others, internal collisions can be used to forge tags (see Chapter [3)).

Aumasson and Bernstein propose two specific versions of SipHash for use, which are Sip-
Hash-2-4 and SipHash-4-8. Besides the preliminary cryptanalysis of Aumasson and Bern-
stein [ABI12], no other analysis has been published so far. Although we usually cannot
prove the security of MACs by doing cryptanalysis, we can improve the trust in them. To
do this, building blocks of a MAC or reduced versions of it are analyzed. By doing such
analysis on components or reduced versions, we are able to get some insight about the
expected security of the whole MAC.

For the analysis of SipHash, we use an automatic search tool for non-linear differential char-
acteristics developed by Mendel et al. [MNS11al MNS11b, MNS12, MNSS12, MNS13]. A
characteristic is in principle the observation of the progress of the difference of two messages
within a cryptographic algorithm. With the help of the automatic search tool, a collision
can be created. First, a differential characteristic resulting in a collision is searched. Then,
a message pair, which follows the characteristic has to be found. Various algorithms can
be used for such a search. By using this tool, we are able to create semi-free-start collisions
for SipHash-1-x, external collisions for SipHash-1-0, and internal collisions using related
keys for SipHash-1-x considering SipHash as a hash function.



CHAPTER 1. INTRODUCTION 2

Moreover, we extend the automatic search tool for non-linear characteristics with a prob-
ability estimation for characteristics. The working principle of this estimation is based on
the work of Mouha et al. [MVCPI0] and Velichkov et al. [VMCP11]. With the help of
this probability estimation, we are able to create a simple greedy algorithm to find high
probability characteristics for SipHash. With another variant of this greedy approach, we
can find collisions for variants of SipHash (used as hash function), where the compression
consists of two SipRounds per processed message block. Furthermore, we are able to find
differential characteristics resulting in an internal collision for SipHash-1-x with a proba-
bility of 27167 for the characteristic and for SipHash-2-x with an estimated probability of
272363 for the characteristic.

Besides characteristics created with the automatic search tool, we give some manually cre-
ated differential characteristics in this thesis. The result is a distinguisher for four rounds
of the finalization of SipHash, with an estimated probability of 273,

The outline of the thesis is as follows.

e In Chapter [2, we give an introduction to hash functions. We state the theory behind
them and give examples for their need. In addition, we discuss different design
strategies, like Merkle-Damgard construction and the Sponge construction.

e In Chapter 3] we deal with so called message authentication codes (MAC). Besides
the theory, we describe some attacks on them. In addition, we show how to create
MACs from block ciphers and hash functions. The last part of this chapter deals
with SipHash. We summarize the work of Aumasson and Bernstein [AB12] including
the design and preliminary cryptanalysis of SipHash.

e In Chapter[4, we give an introduction into differential cryptanalysis. First, we present
different ways of describing a difference. Then we deal with the two terms differential,
and characteristic and show how to calculate (estimate) the probability of them. After
that we present attacks on block ciphers, hash functions, and MACs using differential
cryptanalysis.

e In Chapter | we present the non-linear search tool for differential characteristics
developed by Mendel et al. [MNST11h]. First, we describe the top level working prin-
ciple of the tool. Then we get more specific and deal with different search algorithms.
After that, we focus on possible propagation methods. At last, we show several ways
for calculating (estimating) the probability of a differential or characteristic.

e In Chapter|[6] we present the results we have achieved during the analysis of SipHash.
Moreover, we show different ways of describing SipHash for the search tool and
evaluate these representations. Furthermore, we show how we have calculated the
probability of the characteristics for SipHash.
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e In Chapter[7| we summarize the most important results and discuss some observations
we have made during the work on this thesis. In addition, we give some ideas for
further research.



Chapter 2

Hash Functions

In this chapter, we give an introduction to hash functions. First, we define the theoretical
aspects. Afterwards we give some applications and show the need for cryptographic hash
functions. Then, different design principles are discussed and some attacks on them are
shown. This chapter is loosely based on [VTJ11], [MvOV96] and [TWO04] if not stated

otherwise.

2.1 Theory

A hash function (Modification Detection Code (MDC)) takes an input (message M) of
arbitrary length and produces an output H(M) = h of fixed size length n called hash
value, fingerprint, or message digest. If a hash function is used for cryptographic purposes,
it should fulfill several security criteria:

e (First) Preimage Resistance: Given a hash value h, it should be hard to find a
message M’, which produces this hash value h = H(M’).

e Second Preimage Resistance: Given a Message M’ it should be hard to find a
second message M"” with the same hash value h = H(M') = H(M") (M' # M").

e Collision Resistance: It should be hard to find any two different messages M’ #
M" | which produce the same hash value h = H(M') = H(M"). Collision resistance
is not necessary for every use case of a hash function.

A way to model an ideal hash function with desirable properties is to use the model of a
random oracle. A random oracle is a theoretical model, which produces for every given
input a new random infinite string. This string truncated to n bits can serve as a hash
value. By using this ideal model of a hash function, we can make statements on the
complexity of finding collisions and preimages, which a hash function should fulfill. In the
upcoming sections, we describe the complexity for finding (first/second) preimages and
collisions, when using a truncated random oracle as ideal hash functions.
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2.1.1 (First/Second) Preimage Resistance

The only way to find a message (preimage), which corresponds to a given hash value, is to
try random messages. To get a probability greater than 50 %, we have to try 2"~ ! different
values. So the complexity for finding a first preimage is 2".

When trying to find a second preimage, we cannot draw any benefits from the fact that
a message is given in addition to the hash value. We can only perform the attack in the
same way as for the first preimage. So it turns out that we have the same complexity for
finding a second preimage, as we have for finding a first preimage.

2.1.2 Collision Resistance and Birthday Paradox

In this section, we deal with the problem of finding collisions, when using an ideal hash
function. The way to find a collision in this setting is to use random inputs until we have
a collision. To give a statement about the amount of inputs needed, we take a look at the
so called birthday paradox.

The birthday paradox has its name, because one needs a much smaller group of people
to find 2 persons, who celebrate their birthday at the same day in a year, as one might
intuitively think. The number of people that are needed to raise the probability above
50% is 23. This can easily be shown by calculating the inverse probability (assumed that
a year has 365 days). [Lenll]

365 364 343 365!

— .. = ~ 0.49
365 365 365 342! 365%

P(no one has the same birthday) =

Now we want to simplify this problem. The problem can be seen as picking samples out of
a ballot box. Each sample is different and after picking one sample, it is returned to the
ballot box. We want to know, how often we have to pick, until we pick the same sample
twice. If there are m different samples in the ballot box, we need to perform approximately
v/m picks. In case of the birthday paradox m = 365.

The previous description of the problem is simplified. However, the results also apply to
our ideal hash function with an output size of n bit. Here we have 2" different output
values (samples in the ballot box). Therefore, it should be sufficient to try 2%/2 different
input messages to find a collision of the output with reasonable probability. Note that we
are only interested in different messages with the same hash value.

Another way to see that creating 22 outputs is sufficient is to look at the amount of

output pairs one could build using the 2*/2 hash values. Using 2™/? outputs, we can create
(2n/2

, ) A~ 2" output pairs.
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2.2 Applications

In this section, we show some use cases for hash functions and state reasons why the
security criteria mentioned in Section [2.1] should be fulfilled.

e Modification Detection. In this scenario, we want to protect a message against
malicious alteration. With the help of hash functions, we do not have to protect
the whole message against modification when transmitting it. Only the smaller hash
value has to be protected. So a message can be sent over an insecure channel, while
the hash value goes over an authenticated channel. Preimage resistance is needed
when an attacker can access and modify the message and is aware of the hash value.

e Commitment. Take a scenario where person A creates a number and person B
shall guess it. After person B tells person A his guess, person A can simply lie
and tell B he guessed wrong every time. In a scenario where A creates a number,
hashes it and gives the hash value to B, B can make a guess and tells A the guess.
With the help of the hash value, it can be verified that the created number of A was
the guessed one or not. Person A cannot change the number anymore. The hash
function in this scenario should be collision resistant, otherwise A is able to create 2
or more numbers with the same hash value. Furthermore, the hash function needs
to be preimage resistant, otherwise B is able to calculate the created number out of
the hash value.

e Digital Signatures. Digital signatures are the equivalent of signatures used in
real life. Such digital signatures are used to sign digital documents, or in general
any data. Many algorithms exist to create such a digital signature for a document.
These signature algorithms take the data, which has to be signed and some secret
credentials as input and create a signature for this input data. Usually such signature
algorithms take the hash value of the document, which should be signed, as input. To
be more precise, the hash algorithm is usually part of the whole signature algorithm.
There exist several reasons for signing the hash value and not the whole document.
For instance, it is usually faster to sign a small hash value. Another reason lies in
the homomorphic properties of some signing algorithms e.g. plain RSA. By using
such homomorphic properties, it is easy to create valid signatures for some data out
of known data-signature pairs. The attacker has no control over the content of the
so created signed data. This crafted signature for the uncontrolled data shall be
useless, which is insured due to the preimage resistance of the hash function. In
addition, the hash function should be second preimage resistant, because otherwise
other versions of signed documents can be created. Furthermore, the used hash
function shall be collision resistant. If a non-collision resistant hash function is used,
problems may arise. For example, one could create two documents with the same
hash value. A third party, which signs one of these two documents, implicitly signs
the other document too.
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e Storage of Passwords. Storing the hash value instead of the password is sufficient
for comparing passwords. If preimage resistance is given, the attacker cannot get the
passwords out of the stored hash values. Here, collision resistance is not needed.

Besides the aforementioned use cases, there exist several other uses for a hash function.
For example: key derivation, part of authentication schemes, building block of MAC or
block cipher, and so forth.

2.3 Design

In this section, we give some of the most common designs used for building hash functions.
In Section we show the iterated construction. Then we deal with the main building
block of a hash function, the compression function (Section [2.3.2)). After that we show
a relatively new design called sponge function (Section [2.3.3)), which is also an iterated
construction.

2.3.1 Iterated Construction

As shown in Figure the iterated construction consists mainly of a subsequently called
compression function f and an output transformation g.

M, Mo M3 M,
w f H1 f H2 f H3 """" Ht—l f Ht g n
TV —=» —» — ’—/;> h

Figure 2.1: Iterated construction.

The message M is padded and split up in ¢ blocks M; of fixed length r. The compression
function takes fixed sized message blocks M; and the chaining variable H;_; of fixed size
w as input and puts out H; of fixed size w. Hj is called the initial value (IV). With the
last chaining value H; the output transformation ¢ is performed. The content of Figure [2.1
written as equations looks like follows:

Hy=1V
H;, = f(Hi—la Mz) 0<e <t
h = g(H:)

The Merkle-Damgard construction presented in [Dam89, Mer89] is an iterated construction
as shown in Figure 2.1 where the output function g is the identity function and therefore,
w = n. To ensure that the Merkle-Damgard construction is secure, we have to consider
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the following aspects.

e The IV has to be fixed in the Merkle-Damgard construction.

e An unambiguous padding, which includes the length of the original message is nec-
essary

e The compression function has to be collision resistant.

However, the Merkle-Damgard construction has some undesirable properties. For ex-
ample, length extensions are trivial [Dam89, [Mer89]. Furthermore, other attacks ex-
ist like herding attacks [KKO05], multi-collisions [Jou04], and second preimages for long
messages [KS04, [ABFT08|. That is why new constructed hash functions switch to other
constructions like wide pipe constructions (w > n) or the sponge construction (see Sec-

tion .

2.3.2 Compression Function

One can say that the compression function is the main building block of nearly every hash
function. In general, a compression function takes a message block M; of fixed size r and
a chaining variable H;_; of fixed size w as input. The information at the input with a size
of w + r is compressed into the output H; of size w.

Dependent on the overall hash construction and the security claims involved, the compres-
sion function must fulfill different security relevant criteria. For instance, if the compres-
sion function is used in a Merkle-Damgard construction, it has to be collision resistant and
should not be easy to invert. Whereas easy inverting is not a problem if the compression
function is part of a sponge function.

There exist two common methods when creating a compression function. Usually a com-
pression function is based on:

e Block Ciphers

e Dedicated Designs

When using a block cipher to create a compression function, the block cipher (E) can be
used in one of the three modes shown in Figure [2.2] One disadvantage when using block
ciphers in one of the modes shown in Figure is the small output size (block size) of
block ciphers. For instance, we have a block size of 64-bit for DES [BCI1] and 128-bit for
AES [DR11]. To deal with the small block length, other construction methods like MDC-2
or MDC-4 [BCH™90] exist. Besides the small block size of common block ciphers there
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H; 4 M; M;
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-

PVany
N

-
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N

=
=
=

(a) (b) (c)

Figure 2.2: Compression function out of a block cipher. (a) Davies-Meyer [Prella] (b)
Matyas-Meyer-Oseas (c) Preneel-Miyaguchi.

may arise other problems. For example, a block cipher might not be designed for frequent
re-keying, which makes the resulting hash function rather slow.

To overcome these problems, dedicated designs like MD4 [Riv91] have been proposed.
MD4 is a hash function, which works as a Merkle-Damgard construction. The message
M is padded and split up in blocks of length 512-bit, which are fed into the compression
function. The compression function consists of the step update function (3 rounds with
16 step updates) shown in Figure which works in Davies-Meyer mode. Out of the
512-bit message blocks, the 32-bit words M; for the state update are created using simple
word permutation. K; is a round constant and f is a bit-wise Boolean function, which is
different for each round. K;, M;, and the result of the Boolean function f are added to
the word A;_; using modular addition. After that, A, ; is rotated by a constant s. The
size of the resulting hash value is 128-bit. Many other hash functions follow similar design
principles as MD4, including MD5, SHA-1, and SHA-2.



CHAPTER 2. HASH FUNCTIONS 10

’ Aiq | B; 1 Ci1 D; 4
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A

Figure 2.3: Step update of MD4.

2.3.3 Sponge Function

In this section, we deal with a rather new construction form for hash functions called the
cryptographic sponge functions. Sponge functions are able to take a message of arbitrary
length and are capable of producing an output value of variable length.

A sponge function models the random oracle presented in Section more closely than
hash functions based on iterated constructions presented in Section Sponge functions
are from particular interest as the winner of the SHA-3 competition Keccak [BDPA13] is
a sponge function. The content of this section is based on [BDPATI].

M1 M2 Mt n h
1
1

— — — —
0fr 1
U % T
1

aip f floe fs floo

c I
. ;
1

L L, L L

absorbing ! squeezing

Figure 2.4: Sponge construction.

In Figure[2.4] the construction of a sponge function F'is shown. The internal state s has the
size b = c+r, where c is called the capacity (length of the inner state $) and r is called rate
(length of the outer state §). The function f can be any secure fixed size transformation
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or permutation. We can distinguish between two phases when producing an output from
an input message M. Those phases are the absorbing phase and the squeezing phase.

e Absorbing. During the absorbing phase the padded message is split up into blocks
of length r. A simple, so called sponge-compliant padding rule for fixed rate r would
be appending a single 1 to the message M, followed by as many 0 until a multiple of
the block length is reached. Each block is xored with the outer state subsequently
followed by a call of the function f.

e Squeezing. After every call of f, the value of the outer state is taken as a part of
the final output string, until the output string has the desired output length n.

Now we want to talk about the security of the sponge construction. As security measures
are usually correlated with the output size of a hash function, increasing the size leads
to more secure functions and a bigger complexity to break them. This is not true for
sponge functions, due to the fact that the output length for sponge functions can be cho-
sen arbitrarily. The inventors of the sponge construction deal with security in [BDPA11]
and [BDPAQS] and give a proof for bounds on the complexity to get collisions, preimages
and second preimages. Here we give simpler attacks to get to similar results considering
some restrictions on the model.

In short, we break the sponge model down into a simple iterated construction as shown in
Figure 2.1} First, we state that the capacity c is bigger than the fixed length of the out-
put n. Furthermore, we allow only permutations for f. Now we can transform Figure

into Figure

Figure 2.5: Sponge construction simplified.

As the outer state is completely overwritten by the message blocks and the message blocks
can be chosen freely (except for the padding), we consider them as independent input.
This leaves the inner state as only effective chaining variable with size ¢. The squeezing
phase simply transforms into the output function g.

Now we can perform the following three attacks:
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e (First) Preimage Attack. At first we have to find a state, which transforms to the
output. To do this, we start guessing values for the inner state at the beginning of the
squeezing phase. The value of the outer state at this positions is already determined
by the first r bits of the output. So the expected complexity of finding a state, which
produces the rest of the output is 2”"7". Now we know the state at the end of the
absorbing phase and the state value at the beginning (which is always the same and
known). A meet-in-the-middle attack can be performed now. The complexity of this
attack is 2¢/2 as we only need the inner state to match. A single message block can
be used to match the values of the outer block without costs. To sum up, we have
a complexity for creating a preimage of 2¢/2 + 277" If ¢ = 2n we get an estimated
complexity of 2™.

e Second Preimage Attack. For creating a second preimage, we already know the
value of the last state of the absorbing phase, which we want to reach. Therefore, we
only have to perform the same meet-in-the-middle attack as for finding preimages.
So we get a total complexity for creating a preimage of 2¢/2. If ¢ = 2n we get an
estimated complexity of 2™.

e Collision Attack. Due to the birthday paradox, we can achieve collisions on the
output with a complexity of 2*/2. Inner collisions can be achieved by searching for
a collision of the inner state with complexity 2¢? and choosing the message blocks
where the collision happens adaptively, so that the outer state also collides and we
have a collision for the full state.

Now we define ¢ = 2n (consider n is of fixed size). With the help of these assumptions,
we are able to give bounds on the complexity, which derive from the output size n. The
complexities for finding a preimage, second preimage, or collision are:

o (First) Preimage: 2"
e Second Preimage: 2"

e Collision: 27/2



Chapter 3

Message Authentication Code
(MAC)

In this chapter, we present so called Message Authentication Codes (MAC). Informally said,
MACs are just hash functions, which use a secret key K. We start with some theoretical
background and three attacks on MACs (Section . Secondly, we introduce a simple
MAC based on block ciphers (Section [3.2)), followed by MACSs based on hash functions
(Section [3.3)). At last we deal with a dedicated MAC design called SipHash (Section [3.4).
The content of this chapter (except Section SipHash) is based on [vTJ11], [MvOV96]
and [TWO04]. If other sources are used, we will give a reference.

3.1 Theory

A Messages Authentication Code (MAC) is a special form of a hash function, which is often
called keyed hash function. MACs take a message M of arbitrary length and produce a
MAC value hg of length n under the influence of a secret key K of length k.

We call a message M with its corresponding MAC value (tag) hx a message-tag pair. The
tag itself does not need to be protected against malicious modifications, because it should
only be possible to create a valid tag by knowing and using the secret key K. This leads
us to the most important use of a MAC. Two parties, who share a common secret key,
can now exchange authenticated messages (including the tag) over an insecure channel. In
contrast to a hash value, the tag has not to be sent over a separated authenticated channel.
The use of a MAC ensures that a message originates from a party knowing the secret key
and it can be verified that the message has not been altered by an attacker.

13
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For a MAC, we have following main security criteria (groups of attacks):

e Forgery attack. It shall be hard to create a valid tag without knowing the secret
key K.

e Key recovery attack. It shall be hard to gain the secret key K by using given tag
and message pairs.

Now we need a measurement for the complexity of an attack. In contrast to hash func-
tions, MACs use a secret key. Therefore, pure offline attacks are unlikely. According to
Preneel [Prellb], the complexity of an attack can be given as a 4-tuple [a, b, ¢, d], with a
being the number of offline calls of the building blocks of the MAC or the MAC itself; b is
the number of interfered message-tag pairs, where the attacker cannot choose the Message
M; ¢ is the amount of message-tag pairs, where the attacker is able to choose the message
M and gets a corresponding MAC value; d is the number of message-tag pairs sent to a
verification device (entity who knows the secret key) for verification of the correctness of
the pair created by an attacker.

A very simple attack is the brute force key search. Here we have several known message-tag
pairs. We try random keys and create MAC values out of the known messages with the
help of these random keys. If a random key leads to a correct MAC value for a message, it
is likely that this key is the correct key (the key used to compute the known message-tag
pairs). Usually k > n and therefore, we have about 2¥=" keys, which lead us to the correct
MAC value. So we need about (ﬂ message-tag pairs to verify the correctness of a key.
We get a complexity of [2’“, {ﬂ ,0, O} for this attack.

A way of forging a MAC value hg for a certain message M is done by just guessing the
MAC value. The probability for a correct guess is 27". To know if a message-tag pair is
valid, it has to be verified by an entity, who knows the secret key. We get the following
complexity tuple [0,0,0,2"]. It is worth noting that it is unlikely that such a verification
process remains undetected.

In [PvO95] and [PvO99], Preneel and van Oorschot presented an attack on iterated MAC
constructions like CBC-MAC (Section or SipHash (Section [3.4). Assume we have an
iterated construction with a chaining value of the size ¢ and an output function g. At first
we look at the case, where ¢ is the identity function or a permutation and therefore, the
size of the MAC value n = c. Here we need about 22 different messages to get two mes-
sages, where an (so called) internal collision happens. An internal collision means that for
two different messages M, the chaining values have the same values from a certain point
on. In the case where ¢ is the identity function or a permutation, an internal collision
is easy to verify. Because if we have two different messages, which have the same MAC
value (external collision), we also have an internal collision. Now we assume that every
message has the same block length and the colliding pair is hx 1 = Hx(2') = Hg(2"). By
appending a message block y to 2’ and receiving a valid MAC value hg o for this chosen
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message, we implicitly get the MAC value for the message z”||y. Message z”||y has the
same MAC value as message 2'||y (hx2 = Hix(2'||y) = Hx(2"||y)), because of the internal
collision of messages ' and z”. Appending the same block y to =’ and x” leads to the
same new chaining variables Hy ; and therefore, to the same MAC value. We get a total
complexity of [0,2"/2,1,0].

This attack does not only apply to hash functions, where g is the identity function. If g is a
function, where ¢ > n, an external collision does not necessarily imply an internal collision.
Therefore, we have some overhead for finding the pair which collides. Here we get a total
complexity of [0,2%%, min (2¢/2,2¢7") ,0]. For an exact description of this attack, we refer
to [PvO99).

At last, we introduce the term pseudorandom function (PRF). A pseudorandom function
takes a message M and a secret key K as input. If K is randomly chosen, a pseudorandom
function of K, and M should not be distinguishable from a true random function of M.
Pseudorandom function are important in the context of MACs, because every secure PRF
can serve as secure MAC [GGMS84]. Many proofs of MAC constructions follow the line of
proofing that the MAC construction is a PRF.

3.2 CBC-MAC

Because block ciphers are well known and standardized (like DES and AES), MACs based
on them are very popular. Here we will show a simple MAC based on the CBC Mode
(cipher block chaining) as it is shown in Figure [3.1]

Figure 3.1: CBC-MAC.

The message M is padded and split up in ¢ message blocks M; of equal length ¢. The
secret key K has the same value for every single encryption shown in Figure 3.1} The IV
is fixed, is usually 0 and can be publicly known. In this case the length of the MAC value
hi is called n and equals c. The chaining values between the block ciphers are called Hg;
and are of length c.



CHAPTER 3. MESSAGE AUTHENTICATION CODE (MAC) 16

There exist security proofs for the CBC-MAC described above by Bellare et al. in [BKR94],
by Bellare et al. in [BPRO5| and by Mridul Nandi in [Nanl0] if the input message M is
of fixed length. If the number ¢ of message blocks is not fixed, we can perform following
three trivial attacks (we will not consider padding in these examples):

e We have a known message-tag pair (x,hr), where the Message consists of exactly
one block hx = Hg(x). Then we can easily create a two block message z||(hy @ )
with the same MAC value hx = Hg(x) = Hg(z||(hgx @ x)).

e We have a known message-tag pair hx1 = Hg(x;) of any multiple block length
and the pair hx o = Hg(x2) with block length one. Out of this information we can
generate a new message with a corresponding MAC value hg o = Hg (21]|(hx1 B x2)).

e We have following three message-tag pairs: hg ., = Hr (1), hi g |lz. = Hi(T1]|22)
and hg,, = Hg(z}). Out of these pairs, we can create a new message-tag pair
hK@dlIl’z = HK(I/1||<hK,m1 S hK,x/l ®© 13)).

Besides this simple CBC-MAC construction, other variants exist, which are able to deal
with flexible length input messages like CMAC [Dwo05].

3.3 Hash Based MAC

Dedicated designs for hash functions are fast, well known and often standardized. For
example, the SHA family of hash functions matches these 3 properties. In this section, we
present four different methods to create a MAC Hy (M) out of a hash function H(M).

The first presented version uses the secret key K as prefix in front of the message M. In this
way, we get the MAC Hg (M) = H(K||M). If a hash function uses the Merkle-Damgard
construction (Section [2.3.1] Figure [2.1)), the following attack applies. Such hash functions
are vulnerable to length extension attacks, because the last chaining value H; is equal to
the hash value h. If we have a known message-tag pair (M, h), it is easy to calculate a
new MAC value A/ by just appending a new message block x to M. We get h' = f(h,x).
A simple countermeasure to avoid this attack is to use the length of the message M as
prefix [PvO95]. Another way to prevent such attacks is by using output transformations.

A second version uses the secret key K as suffix. The resulting MAC is: Hg(M) =
H(M]||K). Here we have the problem that offline attacks are possible. For instance, an
attacker could perform a collision attack on the hash function H and find the two collid-
ing message pairs M’ and M”. By obtaining the MAC value hy for one message M’, the
attacker knows the hash value for the second message M" too (hx = Hx(M') = Hx(M")).

Another method is using the secret key K; as prefix and secret key K5 as suffix for M. We
get as MAC Hyg (M) = H(K,||M||K2). This method is called secret envelope.
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Further discussions about the security of the aforementioned three methods can be found

in [PvO95).

At last we present one popular method called HMAC. The MAC looks like follows: Hy (M) =
H(K,||H(K>||M)). Bellare et al. introduced and proofed the security of HMAC in [BCK96].
This method is used in protocols like IPsec, TLS and so on.

3.4 SipHash

This section deals with a MAC called SipHash. The function has been invented and pre-
sented by Aumasson and Bernstein in [AB12]. As SipHash is the target of our cryptanalysis,
we are going to take a close look at SipHash. At first we give the main reasons, why the
authors of SipHash invented it. Secondly, we present the complete definition of SipHash.
At last we cover the security claims and cryptanalysis made by Aumasson and Bernstein
in [AB12]. The content of the whole section is solely based on [AB12].

3.4.1 Motivation and Applications

Aumasson and Bernstein state that the main motivation for the design of SipHash is the
lack of MACs, which are fast on short input messages. They propose two main fields of
application for SipHash. One is the authentication of network traffic. The other use case
is as replacement of non-cryptographic hash functions in hash tables.

The need for a MAC, which is fast at short inputs, arises if we take a look at the packet
size on an internet backbone. In [BHK™00], Black et al. estimated that roughly one third
of the packets processed have a size of 43 bytes (TCP ACK), one third have a size of
256 bytes (common PPP dialup MTU), and one third have a size of 1500 bytes (common
Ethernet MTU).

The second use case for SipHash is as a replacement for non-cryptographic hash func-
tions in hash tables. Usually the entries in hash tables are quite short. The replacement
of non-cryptographic hash functions shall protect hash tables against the so called “hash
flooding”. Next we will illustrate the benefits of hash tables compared to a single linked
list and the vulnerability of hash tables against “hash flooding”.

For storing data, many different data structures exist. One of them is the so called linked
list. In a single linked list, every data entry points to the next data entry to form the linked
list. Inserting an entry at the beginning takes O(1) operations and indexing/deleting a
certain entry takes O(n) operations if the size of the list is n. If a scan for duplicates is
performed and we are inserting n elements, we get a complexity of O(n?) for creating a
linked list. O(n?) may be a long time if n is quite big. A faster data structure is a so called
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hash table. A hash table may use [ linked lists L[i]. With the help of a hash function H,
the index i of a certain element M is calculated (i = H(M) mod [). The index i decides
in which list M is inserted. Inserting an element takes O(1). If n is the number of already
inserted elements and [ is close to n, we can normally say that indexing/deleting a certain
element takes O(1) operations. Fast searching and deleting of elements is possible, because
hashing M takes O(1) operations and on average there are only a few elements (close to
1 element) in every linked list. We can say that searching and deleting in a list with few
elements takes O(1). If a scan for duplicates is performed and we are inserting n elements,
we get a complexity of O(n) for creating hash tables. An attacker could now try to find
n colliding data entries. The hash table degenerates to a linked list and the number of
operations for creating the table is now O(n?). For a big number of n this takes a lot of
time. To prevent this attack, SipHash with a secret key K can be used instead of the hash
function. Because of the secret key K, an offline search for a collision cannot be performed.

For more information regarding the benefits of SipHash for the 2 above mentioned use cases
and the evaluation of the speed of SipHash, we refer to [AB12]. On the web representation
of SipHash |[AB13], several applications are listed, where SipHash is used. For example,
SipHash is used in Python, Perl 5, Ruby, OpenDNS, and so forth.

3.4.2 Definition

In this section, we deal with the specification of SipHash. At first we introduce the high
level working principle of SipHash. Then we take a look at one individual SipRound.

— (] — o — [a\] o)
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>y T =N = . =) |32 =) S 2
= | Ve 64 Q Q Q Q Q Q Q
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Figure 3.2: SipHash-c-d.

In Figure [3.2] a model of SipHash is shown. To describe the actions performed, we split
the process of generating a MAC value in 3 phases:

e Initialization. The internal state of SipHash consists of the four 64-bit words V,,
Vi, Ve and V;. When speaking of all four words together, we use V' as description of
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the whole state. During the initialization phase, the internal state is initialized with
the initial value and the 128-bit key K is xored to the state words (see [3.1)).

V, = Koy ® 736£6d65707365751¢
V, = K, @ 646£72616e646£6d4
V., = Ky @ 6c7967656e65726114
Vy = K, ® 7465646279746573 14

(3.1)

The keys Ky and K are 64-bit keys generated out of the 128-bit key K. To do this,
the 128-bit key K is split up in 2 halves, where K is the little-endian encoding of
the first half of the key K and K the little-endian encoding of the second half of
K. For example, if K = 0102030405060708090a0b0c0d0f104, we would get Ky =
080706050403020116 and K; = 100f0e0d0cOb0a09;¢. The initial value is the ASCII
representation of the string “somepseudorandomlygeneratedbytes”.

e Compression. The message M is padded with as many zeros (no zeros or more) as
needed to reach multiple block length minus 1 byte. Then one byte, which encodes
the length of the message modulo 256 is added to get to multiple block length.
Afterwards the message is split up in ¢ 8-byte blocks M; to M;. This splitting is
done in the same way as for the key K described above. The blocks M; are again
in little-endian encoding. For each block M; starting with block M, the following
compression is performed. The block M; is xored to V. After that the SipRound
function is performed c¢ times on the internal state. Then the block M; is xored to

Va-

e Finalization. When every message block M; is processed, the constant ff14 is xored
to V.. Subsequently d iterations of SipRound are performed. Finally, V,®V,®V.®V,
is used as the MAC value hyx = SipHash-c-d(K, M).

As shown above, SipHash is parameterizable in the quantity ¢ of SipRounds used for the
compression per iteration (message block processed) and in the quantity d of SipRounds
used during finalization. Such a specific instantiation of SipHash is called SipHash-c-d.

Aumasson and Bernstein propose two specific version for use, which are SipHash-2-4 and
SipHash-4-8.

Now we deal with the SipRound. As SipHash is an ARX based MAC, the SipRound net-
work shown in Figure|3.3| consists only of additions modulo 64, XORs and rotations. Every
operation is an operation of 64-bit.

Next we will discuss our naming scheme for the different variables involved in SipHash.
In Figure one SipRound is shown. We will indicate a specific bit of a word (variable)
involved with V,,,,[i]. In this case ¢ stands for the specific bit of a word (0...63), m for
the message block that the compression processes and r for the specific SipRound. For the
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Figure 3.3: One SipRound.

procession of the first message block, the variable names for the first SipRound would be
Vaaa for the input, A, 1, for the intermediate variable, and V, ;o for the output, which
also serves as input for the next round if the number of rounds is bigger than 1. Words,
which take part in the finalization, are indicated with m = f.

3.4.3 Cryptanalysis and Security

In this section, we present statements and cryptanalysis done by Aumasson and Bernstein
in [AB12].

Aumasson and Bernstein claim that instantiations of SipHash with ¢ > 2 and d > 4
should provide maximum PRF security. Therefore, such variants of SipHash should serve
as secure MAC. They state that such instantiations of SipHash should be as secure as any
other MAC with the same key and MAC value size. They propose two concrete versions
of SipHash:

e The fast proposal: SipHash-2-4.

e The conservative proposal: SipHash-4-8.

Moreover, they do some preliminary cryptanalysis in [AB12]. We would like to present the
most important results for this thesis.

For using internal collisions to forge the MAC value, key recovery, and guessing the MAC
value, the same attacks as presented in Section apply. We have a complexity for forging
a MAC value by using an internal collision of 2%, When performing a brute force key
recovery, 2'?8 evaluations of SipHash and 2 message-tag pairs are needed. Guessing the
MAC value leads to the correct value with a probability of 2764,

Aumasson and Bernstein have tried to find statistical biases for several iterations of
SipRound. They consider differences in the input of V; and search for statistical biases in
Vo® Vy d V. ® Vy after ¢ iterations of SipRound. Such biases are found for 3 iterations of



CHAPTER 3. MESSAGE AUTHENTICATION CODE (MAC) 21

SipRound. For more iterations of SipHash, no biases could be found.

With the help of differential characteristics, several attacks on MACs can be performed
(see Section[3)). To do such attacks, characteristics with an reasonable high probability are
needed. Therefore, Aumasson and Bernstein have searched for linear differential charac-
teristics and present the best in [AB12].

Table 3.1: XOR-linearized characteristic taken from Aumasson and Bernstein [AB12]. The
XOR differences of V,, V4, V., and V; of every SipRound and every half SipRound are shown
as hexadecimal value. The first message block has only a difference in the most significant
bit. The following two message blocks are chosen in a way that V, at the beginning of a
compression contains no difference.

Round Differences Prob.

................................................ S 2 _ _

1 271 (271
e e et et e e e S N 8.t 8...

9 B T T I 8.....1...1.8 913 (9-14)
FR O 9... 8 1.8.1.8 8.1....... 1.....

3 ..1.8..... 1..... 8..... 11a.1.1 8.1.1...8 1. i 24733 (24747)
a...1...8.1.8.11 8.12b413a2...... 8.1.1 8.....1 8.1.1...8 1

4 2.1.......1.8..1 6825e.1322.1..35 22....1....2a413 2. i, 2..82.3 2-—87 (2__134)
22118.344835e.13 £4378453.2172d3. .2....1..2.2261 2 21.8..1.61

5 a..1..24c834e4.3 fe918.6d5a74e34f ..15.b2.f6378443 ... ... .. 2__145 (2__279>
924..74c5e9.8.49 6e9d2b.7.e29f89%e ..15.b2.£6378443 ..15.b2.£6378443

6 9255.c6¢caBa7.4.a 38863c74.922ale7 £81e7cdd6e882.27 f64bca9c2.c7.6ab 24*160 (247439)

al85abedaad33.18

6d5db13cf5b942fd

.e55b6414e4£268¢c

c4c9968648e4d.c7

In Table an XOR-linearized characteristic for 6 rounds of SipHash found by Aumas-
son and Bernstein is shown. Every two rounds of SipHash a message block is injected,
which cancels all the differences in Vj;. Therefore, the characteristic shown in Table
corresponds to a characteristic for SipHash-2-0 with 3 message blocks, when we omit the
padding. The characteristic is the best one found by Aumasson and Bernstein, which ful-
fills the aforementioned properties.
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Table 3.2: XOR-linearized characteristic taken from Aumasson and Bernstein [AB12]. The
XOR differences of V,, V;, V., and V; of every SipRound and every half SipRound are shown
as hexadecimal value. The first message block has only a difference in the most significant
bit. The following two message blocks do not contain any difference.

Round Differences Prob.

................................................ B _ _

1 271 (271)
e ettt e S N 8. 8...

9 1 8... 2 7N 8.t 8.....1...1.8 2713 (2714)
N 9... 8 1.8.1.8 8.1....... 1.....

3 ..1.8..... 1..... 8..... 11a.1.1 8.1.1...8.. 1 8.1.82....... 2.. 2742 (2756)
a...1...8.1.8.11 8.12b413a2...... 92..8....21 82..92..82..82..

4 22..82...21..211 e835621322.1.235 22...21.8.122613 621.c21.42..42.3 2_103 (2_159)
2.11..24ca35e.13 66778453. .57bd22 4.1.c...c212641. 82..82..8.11.6..

5 a21182244a24e613 2ec144fcb8.115dd  c245d93226674453 e2.18..48a34a6.3 2_152 (2_311)
£225f3ce8cd.c6d8 a44f51d8d.9e5616  2.445936acb3e25. a.4.d3.2.a5...51

6 52652.cc868.c689 27baa9d2d.e.fcd8 7ccdb44684.b.8ee 32246acc8cb4ced3 2—187 (2—498)
566.3a5175df891e  2.e5d3.249fb3ea6 4ee9de8a.8bfc67d 2425523ec62cf459

In Table an XOR-linearized characteristic for 6 rounds of SipHash found by Aumasson
and Bernstein is shown. Every two rounds of SipHash a message block is injected. Only
the first message block contains a difference. The second and third message block do not
contain any difference. Therefore, the characteristic shown in Table corresponds to a
characteristic for SipHash-2-4, when we omit the padding. The characteristic is the best
one found by Aumasson and Bernstein, which fulfills the aforementioned properties.

Aumasson and Bernstein also consider characteristics, which have an input difference in
Vy and only the same output difference in V, after some iterations of SipRound. Such
types of characteristic could be used to generate an internal collision in one compression
step using one message block with the same difference as V; and V,,. They state that such
XOR-linearized characteristics do not exist for iterations up to (including) 4 SipRounds.
Furthermore, they state that sparse vanishing characteristics do not exist for sequences of
two message blocks.

The probability of the linear characteristics in Table [3.1] and Table is quite low for
four or more SipRounds. Therefore, it is quite unlikely that these characteristics can
be used in an attack on SipHash-2-4 or SipHash-4-8. We have been able to find non-
linear characteristics (Section , which have a much better probability than the linear
characteristics presented in Table [3.1 and [3.2l However, the probability of them is still
not high enough to threaten SipHash-2-4. In addition, we have found collision producing
characteristics, which are good enough to create semi-free-start collisions.



Chapter 4

Differential Cryptanalysis

In this chapter, we introduce the concepts of differential cryptanalysis, which has been
popular since the work of Biham and Shamir [BS90), [BS91]. We start with a description
of different methods for representing differences in Section .1, Then we deal with the
terms differential (Section and characteristic (Section . After that, we present
attacks using differential cryptanalysis on block ciphers (Section [4.4), and hash functions
and MAC functions (Section . At the end of this chapter, we discuss attacks on the
building blocks of cryptographic algorithms (Section . The content in this chapter is
based on work of Eli Biham [Bih11] and Martin Schlaffer [Schil].

4.1 Difference Representation

4.1.1 General

Differential cryptanalysis works by using pairs of plaintexts, ciphertexts, an intermediate
state, or in general some variable involved in a cryptographic algorithm. For example, such
pairs can be used to deduce the secret key of a block cipher. Usually the difference of such
pairs is taken in an attack. The difference Az between the two variables x” and z” can be
expressed in different ways.

e XOR Differences. These are the differences used by Biham and Shamir in [BS90].
XOR differences are defined on bitlevel. Therefore, 2’ and x” are xored bitwise.

Ax =12 & 2"

e Modular Differences. These differences are defined on word level. The modular
difference of ' and z” is taken.

Ax =2 — 2"

23
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e Signed Differences. Wang et al. use these differences in [WY05]. For each bit i of
x" and 2", we set:

0 z/=2"
Az, =< +1 2/ > 2"
-1 2 <2

Signed differences can be seen as an extension of XOR differences.

e Generalized Conditions. In [CR06], De Canni¢re and Rechberger present gener-
alized conditions. These conditions represent all 16 possible conditions on a pair of
bits. We will treat generalized conditions in more detail in Section [4.1.2]

e Multi-bit Conditions. In contrast to difference representations, which deal with
differences of single bits, multi-bit conditions deal with conditions on more than one
bit. Leurent uses so called 1.5, 2 and 2.5 bit conditions in [Leul2a]. Mendel et al.
use linear two-bit conditions in their attack on SHA-2 [MNS11b]. We will introduce
two-bit conditions in Section [4.1.3

The choice of a suitable difference depends highly on the kind of attack and the involved
cryptographic algorithm. In our work, we will use generalized conditions as well as two-bit
conditions.

4.1.2 Generalized Conditions

In Table [4.1] generalized conditions (one-bit conditions, bit conditions) introduced by De
Canniere and Rechberger [CR06] are shown. By using this difference representation, we are
able to express everything we know about a pair of bits. For example, with the condition
Ax = 7, we can say that any value for 2’/ and x” is possible. Whereas we can also be quite
specific by defining Az = u. If Az = u, the only possible value for ' = 1 and the only
possible value for z” = 0.

Table 4.1: Generalized conditions taken from [CROG].

(«',2") | (0,0) (1,0) (0,1) (1,1) || («,2") | (0,0) (1,0) (0,1) (1,1)
? v vV 3 v = =
- - - Y 5 N
X - v v - 7 VARV
0 N A - v -V
u - v - - B v -V
n - - v - c o A
1 - - - D N
# - - = - E - v vV

Generalized conditions are very practicable for use in automatic search tools (see Chap-
ter [5)).
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4.1.3 Two-bit Conditions

With the two-bit conditions in Table every possible value of a pair of two bits |Az, Ay
can be represented. These two bits do not need to be two consecutive bits of a word.

Table 4.2: Incomplete table of two-bit conditions taken from [Dob13].

(Az, Ay)(1,1)(1,n) (1, u)(1,0)(n, 1)(n, n)(n, u)(n,0)(u, 1) (u, n) (u, u)(u, 0)(0,1)(0,7)(0,u)(0,0)
(2, 2") |(1,1)(1,1) (1,1)(1,1)(0,1) (0, 1) (0,1) (0,1) (1,0) (1,0) (1,0) (1,0)(0,0)(0,0) (0,0) (0, 0)
(z|/”y’|’) (1,1)(0,1)(1,0)(0,0)(1,1) (0,1) (1,0) (0,0)(1,1) (0,1) (1,0) (0, 0) (1 1)(0,1)( 0)(0,0)
0,0 - - - - = - — — — — — - - v
o |- - - - - - - - - - - - - - v -
03 |- - - - - - - - - - - - - - v
T
R A A A A A A A A A A A A A

Some of the two-bit conditions in Table can be captured by using two generalized con-
ditions. For example, in a case where Az = 0 and Ay can be either 0 or u, we are able
to represent this relation with the two-bit condition |0,3|. In cases, where we are able to
write conditions on a pair of two bits by using two generalized conditions, no additional
information is gained by using one two-bit condition instead of two generalized conditions.

However, the majority of the two-bit conditions in Table cannot be expressed by two
generalized conditions. We can see this by comparing the number of 2!6 two-bit conditions
in Table with the number of 28 possible combinations of two generalized conditions.

A rather important subclass of two-bit conditions are the (so-called) linear two-bit condi-
tions. This type of two-bit condition is used already by Wang et al. in [WLET05], and by
Mendel et al. in [MNSIIb|. Linear two-bit conditions only consider two cases: either two
bits have to be equal or they have to be unequal.

4.2 Differential and Probability

In this section, we explain the term differential. Furthermore, we describe methods for
calculating the probability of a differential.

We call the evolution of a difference Aa under a certain function f into the difference Ab
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a differential.
Aa L5 Ab

In addition, we use Aa —> Ab to denote a differential. The differential holds with a
certain differential probability Pr(Aa — Ab). This means, that not every pair (¢’ and
a”) with difference Aa will result in Ab under the function f. Therefore, the differential
probability depends on the function f as well as on the input and output differences Aa
and Ab. Next, we will discuss the effects of several functions f on an XOR difference.

Take the XOR difference Aa, which is formed by the pair of variables o’ and a”. When
performing a rotation or bit permutation on Aa, this operation moves the single bits of a’
and a” in the same way. The XOR differences between the single bits stay the same, they
just move to other positions. Therefore, we can deduce the resulting difference Ab. The

differential Aa —2+ Ab holds with a probability of 1.

For XOR operations on XOR differences, we can calculate the output difference too. If the
input difference Aa (consisting of the two differences Aa; and Aasy) is known, the output

difference Ab = Aa; @ Aas can be deduced. Again the differential Aa i> Ab holds with a
probability of 1. Similar observations can be done for other linear operations over GF(2).
They transform input differences in a predictable way with probability 1.

Usually, a secure block cipher is not only made of the parts described above. It contains
also non-linear building blocks like S-boxes. An S-box is basically a look-up table, where
a certain input is ordered to a certain output. To make statements about the effects of
an S-box on differences, a so called difference distribution table (DDT) is created. A
difference distribution table has all possible input differences Aa (A(a’,a”)) in the rows
and all possible output differences Ab in the columns. The cells denote the number of input
combinations of @’ and a” with difference Aa, which result in the output difference Ab.
We call the entries in the difference distribution table the number of right pairs. Luckily
(for the cryptanalyst), these values are not evenly distributed. Dependent on the S-box,
there might exist differentials Aa — Ab with many entries in the difference distribution
table. This results in a high probability for the differential Aa — Ab. The differential
probability of a differential Aa — Ab can be calculated by dividing the number of right
pairs by the number of all possible input combinations of Aa. In [Sch1l], we can find the
following formula to calculate the differential probability Py for XOR differences (n is the
size of a):

P gy = 10880 = o) 2 A1)

Or for any kind of differences:

a|lf(aoAa) = f(a) o Ab
oy = £10f0230 = 0 020
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The modular addition is a similar hurdle for XOR differences as an S-box. In general,

the differential probability for a differential Aa AN Ab, where f is a modular addition, is
not 1. In contrast to S-boxes, the inputs of modular additions can be rather big (e.g. 64
bits). That is why calculating the differential probability by using a difference distribution
table can be impracticable and other methods are needed. Some methods are presented in

Section [.4]

Calculating the probability of a differential only works for rather simple functions f and
small inputs fast enough to be efficiently used. Furthermore, we want to state that choosing
other differences than XOR differences makes it possible to predict the output differences
Ab (with probability 1) for other functions f as shown above. For example, when using
modular differences, it is easy to predict the output Ab of a modular addition if Aa is
given. But modular differences are difficult to handle if f is linear in GF(2).

4.3 Characteristic and Probability

In this section, we explain the term characteristic. Furthermore, we discuss the relation
between characteristic and differential. Moreover, we state how the probability of a char-
acteristic can be approximated.

A series of differentials, where the output of one differential is the input of another differ-
ential is usually called a differential characteristic, path or trail. Like in [Sch1l], we denote
a characteristic as follows:

Aa1 i) Aag i) Aag i) i> Aar

With the help of such characteristics, the evolution of differences through complex func-
tions (functions with many inputs like block ciphers or hash functions) can be described.
The fraction of the whole algorithm, covered by one differential, depends on the algorithm
attacked. Usually it is only possible and useful to cover only parts of one round, one round
or a few rounds by using a single differential. For example, we have to use characteristics,
because it is normally nearly impossible to use a single differential with complex functions.
In other words, we can define that a complex function should have the difference Aa as
input and the difference Ab as output, but in general, we cannot make any statements on
the differential probability of this differential.

Getting the exact probability of a differential characteristic is not an easy task. One way
to achieve this is to calculate the number of pairs of messages, which follow the character-
istic. A pair a} and af is said to follow the characteristic if it has an input difference Aay,
which leads to an output and a series of intermediate variables that fulfill the differences
according to the characteristic. An input pair, which follows the characteristic, is called a
right pair. The number of right pairs divided by all possible input pairs with difference Aa;
gives the differential probability. For complex characteristics, calculating the probability
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by counting the number of right pairs is not feasible. Therefore, other methods are needed.

A good approximation for the probability of a differential characteristic is to multiply the
probability of each differential of the characteristic. According to [Schll] we get:

Pr(Aay L Aay 2 Aas LT N Aa,) ~
~ Py (Aay — Aag) - Pry(Aag — Aag) - ... - Py (Aa,—y — Aa,)
Equation is only exact if the sub-functions (fi, fa,... , f.) are statistically independent

from each other. In practice, this is not the case for most block ciphers and hash functions.
However, in most cases this approximation is sufficient.

(4.1)

4.4 Differential Cryptanalysis of Block Ciphers

Differential attacks on block ciphers have been popular since Biham and Shamir and their
attacks on DES [BS90), BS91]. In this section, we present the working principle of a rather
easy attack on a block cipher. The used example is taken from [KR11].

K K, Ko 1 K,
P=U, 1% U V; U V,_ U_1y Vi_ U yV.=C
0 0 S 1 1 S i 2 S 1 1 S

Figure 4.1: Simple block cipher with r rounds.

In Figure we can see a simple block cipher. This cipher consists of r S-box calls (r
rounds). Before and after every call of the S-box, a key (or subkey) K is xored to the
state. We denote the state before the XOR operation with the key (K;) by U; and after the
XOR by V;. The plaintext is denoted by P and the resulting ciphertext by C'. We indicate
a difference with AX and the corresponding pair with X’ and X”. For the attack, we use
XOR differences AX = X' & X”. Before we start with the description of the attack, we
point out another important detail.

When looking at the block cipher in a differential manner, we can make the following
important observation:
Vi =UeK
V// — U// EB K
AV, = AU;

We can make statements on the differences of the state, without knowing the secret keys
K;. Now we can start with the attack.
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First we try to find high probability differentials AU; — AVj over the S-box. Next, these
differentials are chained together to get a characteristic, which starts with AP and ends
with AU,_; in round r — 1. This characteristic should have a high probability P.,..,. Now
we need a multiple of chlir plaintext-ciphertext pairs, with a plaintext difference of AP
(the first difference of the high probability characteristic). We know that a part of Pua,
plaintext-ciphertext pairs follows our high probability characteristic and shows the differ-

ence AU,_;. We can use this fact to recover the key K.

We partially decrypt €’ and C” for every plaintext-ciphertext pair to get V!, and V" .
The decryption is done by using every possible value for key K,. For every possible value
for K, and for every plaintext-ciphertext pair, we check if AV,_; equals to AU,_; of our
high probability characteristic. The specific value of K., where most of the times AV,
equals AU,_; is most likely the right key K.

It is worth noting that for this attack only the differential AP — AV,_; and not the
whole characteristic is of importance. We just check if a pair follows the differential. The
probability Py of the differential AP — AV,_; is usually much higher (at least equal)
than the probability P, of the charcteristic AP — AV}, — ... — AV,_;. Further-
more, we want to state that in most ciphers parts of the last subkey can be attacked instead
of the whole subkey at once.

To sum up, we can say that the above mentioned attack is a chosen plaintext attack, which
gains knowledge about the secret key by using statistical analysis. To get insight on more
sophisticated attacks, we recommend the literature given at the beginning of Chapter [4]

4.5 Differential Cryptanalysis of Hash Functions and
MACs

In this section, we describe differential attacks, which can be performed on hash functions

or MACs.

First, we discuss a collision attack on hash functions using differential cryptanalysis. A
collision occurs if we have two different input messages M’ and M" that result in the same
hash value b = h" = H(M') = H(M"). Using differences, we can state that we have a
collision if AM # 0 and Ah = 0. We can split the attack in two parts:

1. Find a characteristic or differential with AM # 0 and Ah = 0, which has a high
probability.

2. Find a message pair, which follows the characteristic and hence, produces a collision.

Finding a characteristic can either be done by hand, or with the help of some semi-
automatic and automatic tools. We will present a tool for finding non-linear characteristics
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in Chapter

If a good characteristic is found (with a certain AM ), we can start to search for a message
pair, which follows the characteristic (or the differential). One way to do this, is to try
random message pairs with a difference AM until a collision producing message pair is
found. To make this attack feasible, a characteristic with a probability higher than 27"/
is needed. Otherwise, we do not draw any benefit from doing the attack in this way due to
the birthday paradox (see Section . However, with the help of the so called message
modification [CMROT], the complexity for finding a message pair, which follows a charac-
teristic, can be reduced.

Since we have no secret parameters involved in a hash function, we can choose a message
pair in a way that it is ensured that parts of a characteristic are followed with probability
1. For example, in the first steps of the compression function of MD4, the message can
be easily modified to follow the characteristic. Therefore, it is said that the probability
of the characteristic in these first steps has nearly no impact on the overall complex-
ity of the attack. For MD4 this kind of message modification is shown by Wang et al.
in [WLET05]. Moreover, Wang et al. used message modification in attacks on SHA-
1 [WYY05a], RIPEMD [WLET05], SHA-0 [WYY05b], and MD5 [WY05]. Besides the
techniques shown by Wang et al., many other methods are developed. For example, mes-
sage modification techniques based on algebraic techniques [SKPIOT7], using tunnels [KIi06]
or using automatic tools [MNSIIbh]. For further details on message modification we refer

to [CMROT].

Next, we will look at differential collision attacks on a MAC function. An attack on iter-
ated MAC functions is describe in Section [3.1] The complexity of this attack depends on
the probability for finding an internal collision. Finding an internal collision has a com-
plexity of 272, where c is the size of the chaining variable (internal state) of the iterated
MAC function. A characteristic or differential with an input message difference AM # 0,
which leads to an internal collision has to be found. To improve the attack described in
Section [3.1], the differential probability of the differential or characteristic has to be higher
than 272, Due to the secret key involved in a MAC, we cannot use any message modifi-
cation techniques.

At last, we want to talk about distinguishers for MAC functions. With the help of a
distinguisher, the MAC can be distinguished from a pseudo random function (PRF). For
instance, this is useful if the proof for security of a MAC function relies on the fact that the
MAC function behaves like a PRF. A distinguisher can be a differential or characteristic
with an input difference AM # 0, any output difference Ahg and a differential probability
greater than 27" (n is the size of hg).
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4.6 Differential Cryptanalysis of Building Blocks and
Reduced Primitives

Because security claims often rely on the security of the building blocks of a hash, or MAC
function, the analysis of them could give some insight into the security of the whole hash,
or MAC function. Therefore, cyptanalysts try to find:

e Distinguisher for a building block.
e Free-start collision (try to find h = H(H]_,, M]) = H(H/ ;, M")).
e Semi-free start collision (try to find h = H(H]_,, M]) = H(H]_,, M/)).

With the help of a distinguisher, we are able to show that a building block of a crypto-
graphic primitive can be distinguished from an idealized version of it. Such a distinguisher
can be found by using differential cryptanalysis. In principle, we only need a differential
for the building block, which holds with a high probability. Some security proofs of the
overall construction of hash functions, and MAC functions rely on the indistinguishably of
their building-blocks. Even if this is not the case, it is better to be on the safe side.

Furthermore, free-start or semi-free-start collision attacks on the whole or parts of the hash
function, or on the compression function can be performed [LM92]. Free-start-collision at-
tacks are trivial if the compression function is a permutation like in SHA-3. However,
semi-free-start collision attacks are not trivial, even in the case of a permutation. The
significance of a semi-free-start collision attack rises with the amount of in advance of the
attack fixed bits of H/_;. If all bits of H!_; can be fixed in advance, we usually can perform
a collision attack on the whole primitive and not only on its building block.

Normally the building blocks of a hash or MAC function are iterated functions itself.
Versions of the building blocks with the dictated number of iterations may lie without
reach for an analysis or an attack. Therefore, so called round-reduced versions of the
building blocks and the whole MAC, or hash function are analyzed to get a good view on
the security margin of the whole cryptographic primitive.



Chapter 5

Automatic Search for Nonlinear
Characteristics

This chapter deals with the automatic search tool for finding nonlinear characteristics de-
veloped by Mendel et al. [MNSI11b]. They use this tool for collision attacks on reduced
SHA-256 [MNS13] and various other primitives [MNS12, [MNSS12, MNS11a].

In Section we describe the basic working principle of the tool. Then we present a
new guessing strategy in Section [5.2] After that, we show some methods for propagating
information (Section [5.3). At last we discuss methods to calculate the probability of a
characteristic (Section [5.4)).

5.1 High Level Attack Overview

In this section, we give a high level overview on the working principle of this automatic
search tool. A collision search can be split in three parts.

1. Find a good starting point for a search.
2. Find a good collision producing differential characteristic.

3. Find a message pair, which follows the characteristic.

Finding a good starting point for the search is mainly done by hand and depends largely
on the function under attack. A starting point should describe the rough shape of the
differential characteristic, by using generalized conditions (Section . This is done by
setting parts of the characteristic, which shall be equal, to condition - and parts, where
the search for the characteristic shall happen, to condition ?. Furthermore, one or more
differences x have to be set to prevent the tool to find the trivial solution by simply setting
all 7 to -.

32
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Once a starting point is defined, the search for a differential characteristic can start. A
guess and determine attack is used to search for a differential characteristic. This is done
by refining one or more bits with condition ? to condition -. The choice of the bits, which
are refined, is called the guess stage. In the determine stage, the effect of setting conditions
from ? to - on other bits is evaluated. It is likely that the conditions on other bits will
also be refined. We call this process propagation. If a contradiction (a state where we can
recognize, that the characteristic is invalid) occurs, the bit which causes the contradiction
is marked as critical. To resolve this conflict, we jump back to earlier states of the search
and try to refine the critical bit there. The guessing and the propagation is done until bits
with condition ? do not exist anymore and we hopefully have a valid characteristic, which
holds with a high probability.

The search for a message pair follows the same principles as the search for a characteristic.
Here, bits with condition - and x are refined. For a - we set either a 0, or 1 and for an x
either a u, or an n.

We will take a closer look on methods for selecting bits (the guessing) in Section . Fur-
thermore, various methods for the propagation will be shown in Section [5.3}

Again, we want to state that this is only a rough overview of the working principle, as
the strategy largely depends on the hash function attacked. For example, the search for a
message pair and a characteristic is sometimes not strictly separated. Therefore, we give
the exact search strategy for every attack performed on SipHash in Chapter [0}

5.2 Guess Strategy

With guess strategy, we mean the strategy of choosing the bits for the refinement of the
conditions. One way of doing this, is simply choosing a single bit randomly [MNSI1h].

Another approach is trying to refine different positions, evaluate the effects of this guess and
take the best one in a greedy like approach. Let us take a closer look at this method. At a
certain stage in the search for a differential characteristic, we have a certain partially deter-
mined characteristic A. We take a certain bit (guess 1) with condition ? of characteristic
A, refine it to - and perform the propagation. The guess leads us to a new characteristic
Bi. We can try to measure the effectiveness of guess 1 by defining several quality criteria.
For example, we can measure how many conditions change in the transition from A to By,
or we can calculate the differential probability of B;. After that we take characteristic A
again and make another guess (guess 2). After propagation we get characteristic By. Then
guess 2 is evaluated. In total we perform n different guesses and select the “best” guess .
On this best characteristic B; another n guesses can be performed. With the help of this
method, simple greedy algorithms can be created. This strategy is discussed in detail in

Section [6.4]
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5.3 Propagation

With the term propagation, we denote the process of determining information that can be
gained from the relation between several bit conditions. The variables of a cryptographic
algorithm and therefore, the generalized conditions are connected with each other via dif-
ferent functions f;. Using these connections (imposed by the different functions) between
the variables, we can probably refine the generalized conditions. For example, if we have
the relation x @ x = 7, we can see that not every value (0,0), (0,1), (1,0), (1,1) defined by
the condition ? is a possible result of this XOR. In fact, we can refine the condition ? to get
x@x = -. In this section, we do not use a A to denote the differences to improve readability.

In the following sections, we will describe different propagation methods. The functional-
ity of these methods is shown by two examples. One example is the addition of two 4-bit
words (a + b = s), the other example is the addition of three 4-bit words with a rotation
by one to the left in between (((a +b) <€ 1) + ¢ = sp).

al4] al3] al2] all]
b4] b[3] b[2] b[1]

cl4] c[3] c[2] c[1] c[0]
s[4] s(3] s[2] s(1]

Figure 5.1: Addition of two 4-bit words, s = a + b.

We use the same definitions to express the operations as in [Dob13]. Therefore, we picture
the 4-bit addition of two words as shown in Figure 5.1 ali], b[i] and s[i] stand for the
individual bits of a, b and s. c[i] represents the carry connecting the bitwise additions. ¢[0]
is always 0.

In Figure 5.2} the operation ((a+b) << 1)+ ¢ = s, is shown. s, is an intermediate variable
and pictures the addition a + b. ¢,[i] represents the single carries of the respective one bit
addition of a[7]+b[z] and ¢,[i] the carry of the one bit addition of s,[i]+c[i]. We do not apply
any restrictions on the value of s,. Therefore, the whole operation ((a +b) << 1) + ¢ = sy
shall be considered as one function and it can be seen as differential (a,b, c) — s.

In the following sections, we discuss different propagation methods. Except for the brute
force method presented in Section [5.3.1] every following method can be realized by the
automatic search tool. After dealing with the optimal method brute force (with respect
to propagation), we discuss the bitslice method in Section m Then we handle the two-
bitslice method in Section [5.3.3] After that we present two methods based on graphs in
Section The section is based on our work done in [Dob13].
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al4] a[3] al2] af1]

p —— ] o4l b3 b2 o[l
caql4] cal3] cal2] ca1] ¢q[0]

Sa Sal4] Sa[3] sa[2] sa[l]

(=1 ]

84[3] 8q[2] sq[1] Sq[4]

’ HEQ 4] 3] 2] f[1]
Cp [4] Cp [3] Cp [2] Cp [1] Cp [0]

' Sb[4} Sb[3} Sb[Q} Sb[l}

Sh

Figure 5.2: Addition of two 4-bit words, followed by one rotation and another addition.

5.3.1 Brute Force

In this section, we describe the method called brute force. In this case the term brute force
refers to whole words. When having the differential (a,b) — s, we try every possible
pair of inputs defined by the generalized condition of a, and b and check if the resulting
output pair is captured by the generalized conditions of s. By doing so, we see, which
pairs of (a’,a”), (V/,b"), and (s',s") are still possible. With this knowledge, the generalized
conditions of a, b, and s can be refined.

Now we want to show the propagation process by using the example of an addition of two
4-bit words (@ + b = s). A similar example is used in [Dob13].

a = 00-- = (a’,a”) = (0000,0000), (0001,0001), (0010, 0010), (0011, 0011)
b= 0001 = (¥, b") = (0001, 0001) (5.1)
s =-001 = (', ") = (0001,0001), (1001, 1001)

By trying all possibilities of the inputs a and b, we end up with the four additions given
in Figure Here, we add generalized conditions.

0000 0001 0010 0011
+ 0001 + 0001 + 0001 + 0001
0001 0010 0011 0100

(a) (b) (c) (d)
Figure 5.3: 4 possible additions defined by the conditions in Equations

The only solution in Figure [5.3) which matches with the generalized conditions of s is
solution (a). So we get following values for a, b and s after propagation.
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a = 0000 = (a’,a”) = (0000, 0000)
b= 0001 = (V',b") = (0001,0001)
s = 0001 = (s, s") = (0001,0001)

In the example shown above, we can see that information does not only propagate from
the input to the output, it propagates from the output s to the input a as well. In general,
we can say that information can propagate in several directions. For example, in the case
of the addition, information can propagate from inputs to the output, from one input to
another input, from the output to the input, and between bits of the same word.

The calculation of ((a+b) <€ 1) +c¢ = s, is done in a similar way as the addition a+b = s
shown above. Here, we try all possible pairs given by the generalized conditions of the
inputs a, b, and ¢ and determine if the resulting output pair matches a pair defined by the
generalized conditions of sy,.

To sum up, we can say that the brute force approach delivers us the best results possible.
That is why we consider the brute force approach as optimal. However, a lot of operations
have to be done to get the results. Therefore, the use of this approach is unfeasible
for practical wordsizes. In the following sections, we provide approaches with a better
performance.

5.3.2 Bitslice

The bitslice approach, as shown in this section, is used by Mendel et al. in [MNSIID],
and by De Canniere and Rechberger [CR06]. When performing the propagation with the
bitslice approach, we split the addition s = a + b into several bitslices as indicated in

Figure [5.4]
all]
2] \bm
2] o] o]
2 \_/ sl

LN

Figure 5.4: Bitslices for a 4-bit addition, s = a + b.

In every bitslice ¢ (1 < i < n), following operations are performed:

ali] @ bli] @ cli — 1] = s[i]
(ald] ABJi]) V (cli — 1] AB[i]) V (ali] A cli — 1]) = ¢[d]
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We will use Equation [5.3] to picture Equations [5.2]
alt] + b[t] + c[i — 1] = (s[d], c[z]) (5.3)

The value of ¢[0] is 0 and the initial condition of the other ¢[i] is ?. In Figure [5.4 we see
that the c[i] are shared between two neighboring bitslices (except for ¢[0] and c[4]). Due
to this connection, information can propagate from one bitslice to another.

In contrast to the brute force method shown in Section |5.3.1}, we only need to “brute force”
the single bitslices, instead of the whole addition with full length words. In general, we
have a performance improvement compared to the brute force method of Section [5.3.1]

The operation ((a +b) << 1) + ¢ = s, can be done in two ways. Either the operation
can be split into the two steps a + b = s, and (s, <« 1) + ¢ = s, or the operation
((a+0b) << 1)+ ¢ = sp, can be performed in one step using a special form of two-bit carries.

If the calculation of ((a+b) <& 1)+c = s is split into two steps with intermediate value s,,
a lot of information might be lost. This lose of information happens, because of the limited
representation capability of the generalized conditions, which represent the intermediate
sum s,. For a better understanding consider following example:

a = 0001
b = 000x

5.4
¢ =0010 (54)
sp = 7777

Using these values, we get following results:

Se = a+ b= 0001+ 000x = 00xx
Sp = (Sq & 1) 4+ ¢ = 0xx0 + 0010 = 7-x0

The brute force approach of Section [5.3.1] gives the two solutions 01u0, and 01n0 for s,.
This results in the optimal solution for s, = 01x0. When using the two step bitslice
approach, we get s, = 7-x0. The reason for the gap between the two different results
of the two different methods lies in the loss of information when representing the inter-
mediate variable s, with generalized conditions. After the first addition only the two
values 00un or 00nu are possible for s,. However, using generalized conditions, s, gets the
value 00xx. The value s, = 00xx includes besides 00un and 00nu, the values 00uu and
00nn too. These values are considered in upcoming operations, where s, is used as an input
((sq < 1)+c = sp). So we lose the ability to restrict s, further and hence, lose information.

Figure [5.5) shows the concept of performing the operation ((a +b) <« 1) + ¢ = s, in one
step. In every bitslice i (1 < i < n), following operations are performed, where r denotes
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N

Figure 5.5: Concept for performing the calculation ((a + b) << 1) + ¢ = s, using bitslices
in one step.

the rotation:

(i—1—=r)modn)+1=k
(alk] + b[k] + calk = 1]) = (salk], ca[K])
(salk] + cli] + cpli — 1]) = (spi], eo[i])

calk — 1] and ¢,[i — 1] are captured using only one two-bit condition |c,[k — 1], ¢p[i — 1]].
For the two bit conditions containing ¢,[0], or ¢,[0], the part representing one of these bit
conditions has to be set to 0. For further information regarding two-bit conditions see

Section or [Leul2b].

When using the concrete values of Equations [5.4] with the method shown in Figure [5.5], we
get as a result s, = 01x0. This result for s, can be considered to be optimal with respect
to the limited representation capability of generalized conditions.

5.3.3 Two-Bitslice

In [Dob13], three different methods for propagating two-bit conditions are presented. In
this section, we present the most promising method.

Figure 5.6: Concept for performing the calculation a + b = s using two-bitslices.

As it is shown in Figure [5.6] the two-bitslice method works by using overlapping two-bit-
wide slices. Two-bitslice i (1 <17 < n — 1) takes the two-bit conditions |a[i 4+ 1], a[i]|, and
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|bli + 1],b[7]| as input and the two-bit condition |s[i 4+ 1], s[¢]| as output. The carries used
in the calculation are c[i + 1], ¢[i], and ¢[i — 1]. In every bitslice i, following calculations
are performed:

la[i + 1], ald]| + [b[i + 1], b[¢]| + c[i — 1] = (|s[¢ + 1], s[i]|, ¢[i + 1])
ali] + b[i] 4+ c[i — 1] = (x, c[i])

The result of x in the equations above is discarded, since si] is already calculated.

For calculating ((a + b) << 1) + ¢ = s, we have two possible approaches. These two
approaches are the same as for single bitslices presented in the previous section. The cal-
culation of ((a +b) < 1) + ¢ = s; can either be done in one step or in two steps.

When splitting ((a + b) <€ 1) + ¢ = s into two steps, we have two separated additions
with two inputs. Namely a + b = s,, and (s, << 1) + ¢ = s,. Compared to generalized
conditions (used in the bitslice approach in the previous section), the two-bit conditions
in the two-bitslice approach can store more information. Let us consider the example in
Section [5.3.2l With the help of two-bit conditions, we are able to capture the fact that
Sq can only have the value 00un or 00nu. With this intermediate value for s,, we figure
out that the result s, can either be 01u0 or 01n0. This result is equivalent to the optimal
result when using the brute force approach of Section [5.3.1|

Figure 5.7: Concept for performing the calculation ((a + b) <€ 1) + ¢ = s, using two-
bitslices.

However, the representation capability of two-bit conditions is not perfect. Therefore, it
is also useful to perform ((a 4+ b) << 1) + ¢ = s, in one step. The principle is the same as
for one-bitslices. In contrast to one-bitslices, we have to ensure that no barrier lies within
a two-bitslice. We call the vertical lines in Figure a barrier. These barriers mark the
transition from carry c[n| to carry ¢[0] (n is the wordsize). If the value of the rotation is
either n— 1 or 1, we need the help of a single one-bitslice as shown in Figure[5.7} For other
rotation values, we just omit two-bitslices, which would contain a barrier (see Figure .
Like for one bitslices, the carries ¢, and ¢, have to be stored together as two-bit condition.
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af3]
b[3]

ca[2]
c[1]

¢p[0]
sv[1]

Figure 5.8: Concept for performing the calculation ((a + b) << 2) + ¢ = s} using two-
bitslices.

5.3.4 Graph

In this section, we present two methods for propagating generalized conditions by using
graphs. The first approach is based on S-functions as described by Mouha et al. [MVCP10].
Using the approach based on S-functions, we are able to propagate generalized conditions
for simple additions. Then, we present a method for propagating generalized conditions
in one step, where the function f describing this step can be a mixture of additions, XOR
operations and rotations. We believe that the method using cyclic S-functions delivers the
same results as the brute force method (Section if some requirements are fulfilled.
The method of cyclic S-functions described by us is similar to the results of Velichkov et
al. [VMCP11]. Graph approaches for propagation are also shown by Leurent in [Leul2b].

Classic S-Functions

S-functions (abbreviation for state functions) as described by Mouha et al. [MVCP10] are
functions, which are capable of calculating one or more outputs by giving a finite state S
and a finite number of inputs. The whole content of this section is just a brief summary of
the work done by Mouha et al. in [MVCPI10]. In contrast to Mouha et al., we use the more
general set of generalized conditions as input and output set for our S-functions, instead
of expressing the differences only using XOR. This makes the method more general.

Figure 5.9: Concept of classical S-functions. Taken from Mouha et al. [MVCP10].

In Figure 5.9 we see an S-function as described by Mouha et al.. The first state S[0] is set
to 0 and every output s[i] can be computed using only the input bits a;[i], as[i],... ax[i] and
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the finite state S[i—1]. An example of such an S-function is the modular addition a+b = s.

cli] cli — 1]
(Sl (S[i —1])

Figure 5.10: Subgraph of the calculation -+ - = 1. The values on the edges represent ali],
bli], and s[i].

Now we want to describe, how a graph can be build and the propagation is done. For
building the graph, we do the modular addition bitwise. Therefore, the one bit carry c|i]
represents the state S[i], which connects the single bit additions (see Figure [5.9). Every
vertex of the graph corresponds to one possible state value, which the state S[i] could have.
A graph for an n-bit addition consists of n subgraphs. These subgraphs consist only of the
vertices, which define the state S[i] and S[i —1] (in the case of the modular additions, these
are the vertices, which correspond to the carry c[i] and c[i — 1]) and the edges connecting
them. These edges are calculated by trying every possible pair of input bits for a[i] and
bli], which is given by their generalized conditions and using every possible carry of the
set of c[i — 1] to get an output s[i| and a carry which belongs to c[i]. If the output is valid
(with respect to the generalized conditions, which describe the possible values for s), an
edge can be drawn from the respective value of the input carry of ¢[i — 1] to the output
carry belonging to c[i]. Such a subgraph is shown in Figure

In Figure [5.11] we see an example of a graph built out of the subgraphs. Valid combina-
tions of n-bit input and output words are symbolized by paths in the graph, which start at
the vertex symbolizing carry = 0 in state S[0] and end in any possible carry in state S[n].
This is how propagation is done.
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Figure 5.11: Graph of the calculation -- 4+ -- = 11. The values on the edges represent
ali], b[i], and s[i].

Cyclic S-Functions

In this section, we show a method to extend the use of S-functions by introducing state
mapping functions m and making the relationship between the states cyclic. Velichkov et
al. showed in [VMCPII] how to calculate the additive probability of ARX based functions.
The method of cyclic S-functions is closely related to the methods shown in [VMCPII].

Figure 5.12: Concept of cyclic S-functions.

In Figure [5.12] the new concept is shown. m; is a function, which maps distinct state
values of S,[i] to S;[i]. It is possible and often the case that more values of S,[i] map to
the same value of S;[i]. S,[i] and S;[i] are in fact the same state and if m; is the identity,
we just speak of S[i]. It is worth noting that every classic S-function can be transformed
into a cyclic S-function by defining every m; as the identity except for the function, which
connects S,[n] with S;[0]. This function maps every value of S,[n| to the state S;[0] = 0.

For instance, the operation ((a 4+ b) << 1) + ¢ = s;, could be described with the help of
S-functions. Like in Section [5.3.2] we picture the system as it is shown in Figure [5.13]

¢, and ¢, serve as state S together. They can be considered as a two-bit condition |c,, cp|.
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af3] af2] afl] af4]
b[3] b[2] b[1] bl4]

¢a[3] cal2] ca1] ca[0] | eql4] ca[3]
c[4] c[3] c[2] c[1]

cpl4] cp[3) (2] cp[1] (0]
spl4] sp[3] sp[2] sp[1]

Figure 5.13: Rewritten system to do ((a +b) << 1) + ¢ = s, in one step.

The vertical lines in Figure [5.13| are areas, where the state mapping function m; is not only
an identity function. As ¢,[0] and ¢;[0] can only be 0, the state mapping functions at these
areas perform following mapping for any value v, of ¢, and vy, of ¢:

o S,[1] = Si[1] : |va, vs| = |0, vs]
o S,[4] = Si[0] : |va, vp] = |va, 0.
So the states in case of the system in Figure [5.2] are:

* Si[0] = |c[3], 0]

® So[1] = |cald], co1]]

o Si[l] =10, c[1]]

o S[2] = |ea[1], c[2]|

o S[3] = [ea[2], u[3]|

o So[4] = |ca[3], co[4]]

For a word length of n and a general rotation to the left by r, the state is S[i] =
lca|(i — r) mod n|, ¢i]|, except for states, where m; is not the identity function. These
are the states S,[r] = |ca[n],c[r]], Silr] = |cal0],co[r]], Soln] = |caln — 1], cp[n]| and
Si[0] = |ca[n — 1], c[0]|. The realization of additions with multiple rotations in between
leads to more mapping functions m;, which are not the identity function. Using additions
with more inputs leads to bigger carries and bigger states.

Now, we want to describe how the graph is built and how information can propagate using
this approach. Subgraph 7 is built as described in the section before, using S;[i — 1] as input
vertices and S,[i| as output vertices. Now, we have to form a graph out of these subraphs.
Subgraphs connected over a state mapping function m;, which is the identity, stay the
same. There exist two ways for connecting subgraphs ¢ and ¢ 4+ 1, which are separated by
a state mapping function. Either the edges of graph i can be redrawn, so that they follow
the mapping from S,[i] to S;[i], or the edges of graph i + 1 can be redrawn so that they
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follow the inverse mapping from S;[i] to S,[i]. We call the so gathered set of subgraphs
“transformed subgraphs”. After all subraphs are connected, we can read out the valid
input output combinations. These combinations are found by searching for minimal circles
in the directed graph. For finding minimal circles, a variant of Dijkstra’s algorithm [Dij59]
could be used. Due to the structure of the graph, the search for minimal circles is very easy.

Si[0]

|n,n| [1,0| )je—"—"—"——|n,0|

Figure 5.14: Graph for ((a +b) << 1) + ¢ = s;. States of the same color can be considered
as equivalent (except for the black ones). The values on the edges represent ali], bli], c[i]
and sy|i]

For clarification, we give the example in Figure [5.14] which uses following generalized
conditions:

a = 1x11
b = AEnb5
¢ = 15nx
sp = 11Ax

When doing propagation in one step using the bitslice approach of Section |5.3.2) none of
the conditions above changes.

To represent the graph in Figure clearly, we use information, which can be gathered
using a bitslice approach, to narrow the value for the carries and therefore, decrease the
amount of edges and vertices in the graph. Performing a state mapping function for doing
addition with rotations in between is in principle merging a set of vertices together. After
this merging, some edges, which have led to separated vertices, may lead to the same ver-
tex. In case of the example in Figure this means that the vertices |u,n| and |1, n| of
So[1] are mapped both on vertex |0, n| of S;[1]. Vertex |1, 0] of S,[1] is mapped on vertex
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|0,0] of S;[1]. The vertex |u,n| of S,[4] is mapped on vertex |u, 0| of S;[0], vertex |1,0| of
So[4] is mapped on vertex |1, 0| of S;[0] and vertex |n, n| of S,[4] is mapped on vertex |n, 0|
of S;[0]. The vertices of S;[0] and S,[4] are in fact the same. Therefore, we can reduce the
problem of finding circles to the problem of finding paths from a vertex |v, 0| of state S;[0]
to the in fact same vertex |v,0| of state S;[4] (this is S,[4] after applying the mapping),
where v stands for any value of a state. Edges which do not belong to a path can be
deleted. These are the red edges in Figure |5.14

To sum up, the results are the values on the edges, which lie on the paths in Figure [5.14
from orange vertex to orange vertex, blue vertex to blue vertex and purple vertex to purple
vertex considering the red vertices as one vertex and the green vertices as one vertex. So
we get following values after propagation:

a = 1ull
b = AAn5
¢ = 15nn
Sp = 11Au

Note that when doing propagation using the brute force approach of Section |5.3.1], we get
the same result.

We consider the presented method based on cyclic S-functions to be equivalent to the brute
force method of Section [5.3.1} The equivalence is only given if the words of the input and
the output are independent of each other. For example, if the same input is used twice
in the same function f, we do not have the required independence. Such a case is the
calculation of s = a + (a < 10).

5.3.5 Discussion of the Propagation Methods

In this section, we will discuss the pros and cons of the different propagation methods.

A complex function like a cryptographic algorithm has to be split in smaller sub-functions
(or in the following often called steps). In theory, the methods based on bitslices, two-
bitslices, and graphs are able to handle functions consisting of additions, rotations, and
XOR operations regardless of the input-size. If the single subfunctions cover more oper-
ations, we usually get a better propagation. However, the complexity for performing the
propagation rises.

The bitslice approach uses generalized conditions for propagation. In the worst case, we
have to try four different bit pairs for every input of the step. In addition, the size of
the carry and therefore, the possibilities that have to be tried, rises with every addition
performed in the step. To sum up, we have a worst case complexity C' for the bitslice
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approach adding n-bit words of approximately C (bitslice) = 4/ -V - n, where I is the num-
ber of different inputs and V' is the number of possible valid pairs for the carry restricted
by its generalized conditions. For the approaches, which are based on graphs, the effort
for searching the path or circles has to be added. The two-bitslice approach uses two-bit
conditions. Therefore, we have to try (worst case) 16 possible pairs. This results in an
estimated worst case complexity of C(two-bitslice) = 167 - V - n.

After dealing with the speed ranking, we will discuss the main advantages of the different
methods.

e The bitslice method is considered to be the fastest.

e Methods based on graphs show the best propagation results when looking at single
steps.

e Methods using two-bit conditions have a better information exchange between the
steps.

When dealing with additions only, we can consider the bitslice approach to be equivalent
to a graph approach based on S-functions. When doing propagation with S-functions, we
are searching for paths in a graph, which start vertex S[0] = 0 and end in any vertex S[n]
(see Figure . Due to the structure of the graph, we can determine if an edge lies
on such a path by just looking at each subgraph independently, starting at the subgraph,
which contains the vertices of S[0]. Edges, which do not start in S[0] = 0 can definitely be
discarded. After that we move on to the neighbor subgraph. Here, we can discard edges,
which start in a vertex, where no edge from the neighbor subgraph ends (the vertex is
not active). This is done for every subgraph after another until we reach the subgraph
containing the vertices S[n|. After we remove the edges here, there might be vertices in
S[n—1], where no edge leads to S[n], but edges arrive from S[n —2|. Therefore, we have to
go through all subgraphs backwards again until nothing changes. So we can find paths in
the graph, without creating the whole graph and just looking at its subgraphs. The same
is in principle done in the bitslice method.

When dealing with steps containing rotations, bitslice and graph method cannot be consid-
ered as equivalent anymore. Here, we have to use cyclic S-functions and search for circles
to be correct, but bitslice approach considers every path, which starts in S;[0] and ends in
Soln] as valid. This difference is visualized in Figure[5.14] However, bitslice approach and
graph approach lead to the same result in the majority of the cases in a practical search

(see Section [6.2).

5.4 Probability

In this section, we will show 4 different methods to calculate the differential probability of
single sub-functions, steps, or differentials.
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e Brute force words.

e Brute force bitslices. (approximation)
e Using S-functions.

e Using cyclic S-functions.

The first method we want to discuss is brute force at word level. It works like the brute
force propagation method shown in Section [5.3.1} In principle, we do the same as for prop-
agation and count, in addition, how many input pairs result in valid output pairs. The so
gathered number is divided by the number of all possible input pairs. This method works
exact, but it is impossible to calculate the expected probability for large word sizes of the
input.

The differential probability can be estimated by splitting up one step into single bitslices.
Then the differential probability of every single bitslice is calculated. These probabilities
are multiplied together to get an approximation for the differential probability of the single
step.

If the sub-function is an S-function, the method for calculating the probability of Mouha
et al. [MVCPI0] can be used. This method provides the exact differential probability of an
S-function. The theory of S-functions and how to propagate conditions by building graphs
is explained in Section . In short, the propagation works by creating a graph (see
Figure consisting of vertices (representing the state) and finding paths in the graph,
which represent valid input output pairs. For calculating the probability, the number of
these paths has to be divided by the number of all possible input combinations. In the
following, we provide a short summary of the results of Mouha et al. [MVCP10]. For finding
the number of correct paths in the graph, we first determine the so called biadjacency
matrix A[i] = [xy;] for each subgraph (see Figure |5.10). x;; stands for the number of
edges, which connect vertex j of the group of the carries belonging to c[i — 1] (S[i — 1])
with vertex k of the group c[i] (S[i]) [MVCP10]. The matrix derived from the subgraph in

Figure [5.10] is:

S O O N
o O OO
o O OO
_ o O =

According to [Chi47], the connection between two vertices in any directed acyclic graph
can be calculated as matrix multiplication. For finding the number of paths between the
vertices of ¢[0] (S[0]) and ¢[n] (S[n]), all the biadjacency matrices of all the subgraphs have
to be multiplied together. To select only the paths, which start in ¢[0] (S[0]) 0 and end in
any vertex of c[n| (S[n]), we have to define the 1 x N matrix L= [1 1 1 .. 1] and the
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N x1matrixC=[1 0 0 .. O}T, where N is the number of distinct states of S[i]. We
get the number of paths as follows:
#Paths = L- Aln]--- A[2] - A[1] - C (5.5)

The number of possible input combinations is gotten by simply multiplying every possible
combination represented by the generalized conditions of all inputs together. If a + b = s
and ¢ = xn, and b = 73 we get as number for all combinations 2-1-4 - 2.

For the example given in Figure [5.11) we get the probability P:

20 0 1 2 0 0 1 1
0000 0000 0
[1111}'0000 0000 0
0001 000 1 0 4
2.2.2.2 8

For more information and methods to shrink the size of the matrices when dealing with
XOR differences we refer to [MVCPI10].

Velichkov et al. showed in [VMCP11] how to calculate the additive probability of ARX
based functions. With a few adaptions, we want to show how to do this using general-
ized conditions. Therefore, we have introduced the concept of cyclic S-Functions in Sec-
tion [5.3.4] After creating a graph like in Figure [5.14] circles in the graph represent valid
input output pairs. As shown in Section [5.3.4], we can transfer the search for circles into a
search for paths. Therefore, we can use a similar method as for S-functions to calculate the
number of circles. This time we have to calculate the biadjacency matrix A[i] out of the
set of transformed subgraphs (see Section for transformed subgraphs). The matrix
Ali] represents the states S;(i) and S;(i — 1). We define the 1 x N matrices L;.

Ly=[1 00 .. 0]
e L,=[0 10 ... 0
. ...
e Ly=1[0 0 0 .. 1]
Moreover, we need the N x 1 matrices C;.

e Ci=[100 .. 0"

«Cy=1[0 10 .. 0]"



CHAPTER 5. AUTOMATIC SEARCH FOR NONLINEAR CHARACTERISTICS 49

eCy=1[000 .. 1"

Here, N is the number of distinct states of S[i]. As S;[n] (this is S,[n] after applying the
mapping) and S;[0] are in fact the same states, we can calculate the number of circles by
summing up all paths which lead from a vertex in S;[0] to the same vertex in S;[n]:

#Circles =Y (Li- Aln] - -~ A[2] - A[1] - Cy) (5.6)

=1

The formula shown above basically sums up the number in the diagonal of the resulting
matrix when all A[i] are multiplied together. This number divided by all possible input
combinations gives us the exact differential probability of one step.



Chapter 6

Cryptanalysis of SipHash

In this chapter, we present our results of the cryptanalysis of SipHash. In the first part
of this chapter, we will discuss our choice for the representation of SipHash within the
automatic search tool, the propagation method, and the probability calculation. These
evaluations are necessary to find a good balance between the quality of the methods and
their performance. Then we move on with the different results. Here, we show distinguisher
for SipHash-1-2, SipHash-2-1, and SipHash-3-0. Furthermore, we are able to present non-
linear characteristics, which improve the results of Aumasson and Bernstein [AB12]. Then,
we show some characteristics, which result in internal and external collisions. With the
help of these characteristics, we have been able to find collision producing message pairs
for various attack scenarios where SipHash is used as a hash function. In Table 6.1} we
summarize the attacks we have made. Table gives an overview of the probability of
characteristics we have found.

Table 6.1: Attacks on different versions of SipHash.

Instance Attack Complexity [AB12] Section
SipHash-1-0 .. few minutes  SipHash is not 6.6.1
SipHash-2-0 external collision one minute collision resistant 6.6.2
SipHash-1-x  internal collision few seconds  SipHash is not 6.6.1
SipHash-2-x (related key) few seconds collision resistant 6.6.2
SipHash-1-x  internal collision few seconds  SipHash is not  6.6.2|(6.6.1
SipHash-2-x  (semi-free-start) few seconds collision resistant \_Eué?_p
SipHash-3-0 2082 three [6.4]
SipHash-2-1 259-2 SipRounds
SipHash-1-2 distinguisher 2022 distinguishable
Finalization 935.0

(4 SipRounds)

20
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Table 6.2: Probability of characteristics.

Instance Type Our Results [ABI12] Section
SipHash-2-1 27936 2756
SipHash-2-2 271275 27159
SipHash-2-4 best 273415 2198
SipHash-2-0 differential 9-108.3 o—134

(2 message blocks) characteristic
SipHash-2-0 9-299.7 9—439
(3 message blocks)
SipHash-1-x 9-167.0
(3 message blocks)
SipHash-2-x 9-236.3
(1 message block)
SipHash-2-x 9-30L5
(2 message blocks) internal ) 560
SipHash-3-x collision 9-279.4 —
(1 message block)
SipHash-3-x 9—396.0
(2 message blocks)
SipHash-4-x 9-328.0

(1 message block)

6.1 Representation of SipHash for the Search Tool

In Section we have discussed the different methods for propagation and representation
of functions. Such a function can be represented by a single step, or we can split it into
smaller steps. This decision effects the quality and performance of propagation (see Sec-
tion[6.1.3). So choosing the right description for SipHash is not trivial and we have to find
a good trade-off between the quality of the propagation and the time that is necessary to
perform the propagation. Therefore, we evaluate and discuss some possible descriptions
of SipHash in this section. As all methods for propagation described in Section are
capable of processing steps containing modular additions, rotations, and XOR (ARX) op-
erations of any size, we can focus solely on the representation of SipHash. However, we
will use the bitslice method to describe the representation.

Note that all XOR operations of SipHash, which are not part of a SipRound, are calculated
as single steps. Examples for such XOR operations are the injection of the keys and message
blocks, or the final 4 input XOR to create the MAC value.
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6.1.1 One SipRound in one Step

In this section, we show methods, which are able to describe one SipRound without using
the intermediate variables A,, Ay, A., and Ag.

In the first presented version, we describe one SipRound by using only the input words of
the SipRound. This results in the following 4 distinct steps:

Vo[l = (Vagne[i = 17] + Vil = 17]) © Vo [i — 30]
S (Ve rli] + Vam e [i]) + (Vamr[i] + Vom.r[i]) (6.1)
® Vom,r[i — 13]))

Vamet1li] = Ve[t = 21 + Vi [t — 21]) @ Vi [i — 37]
® ((Va,m,r[i - 32] + Vb,mﬂ'[i - 32]) + ((Vc,m,r[i] + Vd,m,r[i]) (6-2)
® Vim,r[i — 16]))

Va1l = (Vagmeli = 32] + Vo [i = 32]) + (Veynr [8] + Vi, [1])

. (6.3)
) Vd,m,r [l — 16])
Vernrs1[i 321 = Vegr [i] + Vmr i) 4 (Vg 1] + Ve [1]) 6.4)
® Vomr[t — 13]) '

The two steps described in Step [6.1] and [6.2) contain 8 input words and 4 modular additions
each. Therefore, the complexity for doing propagation in such complex steps is too high.
For these two steps, the worst case complexity would be 224,

By allowing the use of output words of one SipRound as input, we can represent one
SipRound by the following 4 steps:

‘/bmrJrl[Z] :(V;Lmr[z_l’?]+‘/bmr[fl_17])@%mr[ _30]@‘/cm7“+1[l+32]
Vimrt1i) = Vemrli = 21 + Vgt — 21)) @ V[t — 37 @ Vi rs1[2] (6.5)
Va1 [i] = (Vi = 32 + Vomp[i = 32]) + (Ve il + Vam,o[i]) © Vamo[i = 16])

Veama1li + 32 = Vel + Vi i) + (Vi [ 4 Vs [8) © Vo li — 13])

Now we have at most 5 inputs and 3 additions per step. This leads to a complexity (2¢),
with which we can work.

However, when describing a SipRound in the way it is shown in Steps [6.5 we lose much
of the ability to propagate information from the output of one SipRound to the inputs.
Therefore, we also need an inverse description of the SipRound. This is done with the
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following 4 steps:

Vamr[t — 16] = Vo py1[i 4+ 21] @ Vi i1 [i + 21]
S (Vemr1li +32] = (Vemri1[i + 49] @ Vi i+ 17]))
Vit — 13] = Vo [i +49] @ Vi1 [i + 17
B (Vamr+1[i +32] = (Vamrr1[i + 53] @ Vimrsa[i + 53]))
Vame[i] = Vamrs1[i +32] — Vamgps1[i + 53] © Vgmry1[i +53])) — Vomri]
Vermrlil = Ve[t +32) = (Veanrrali + 491 © Vi ra i + 17])) = Vi 4]

(6.6)

In the following, we will call the method of describing one SipRound with the help of the
steps shown in Steps [6.5] and “SIPROUND?”.

We want to state that the equations above are just a schematic of the operations that will
take place. The bit index has to be calculated modulo 64. Another thing, which is not
captured by the equations are the carries. We need one carry for every addition, which
takes place in one step. All the carries of one step have to be stored combined in a single
multi-bit condition. For instance, for the step described with Step [6.4] we would need a
three-bit condition to store the carry (|c;2, ¢;1, Cio| as carry in and |cog, Co1, Cop| as carry out).
Next, we will show the operations, which take place in this step (if bitslice propagation is
used):

Ve, (8] + Viam,e [1] + cio = (2, co0)
Vam,r M + Vo, [Z] +ci1 = (ya Col)
Y B Vomrli —13] =2

z+ 2+ cio = (Vomet1[t + 32, co2)

6.1.2 Combining Additions into single Steps

All methods in this section make use of the intermediate variables A,, Ay, A., and A,. In
the following sections, various methods to unite additions to single steps are shown. These
different methods vary in terms of performance and propagation quality. Usually, the more
additions we combine, the better the propagation quality gets. However, the performance
gets worse. In Section [6.1.3] the methods will be evaluated.

If not stated otherwise, the XOR operations are performed using the following four different
steps for every method given in this section.

= ‘/d,m,r[i - 16] @D Acgmﬂ«[i}
= Apmyli = 17) @ Ve [i + 32]

Ad,m T[Z - 21] % ‘/;17m7r+1[7;]
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Single Additions

By using this method, every addition of one SipRound corresponds to one step. Therefore,
we get four steps containing additions for every SipRound.

V1] + Vo r[i]
Ve[t + Vam,r[d]
Apmr[i] + Acm,r[i]
Aumli — 32+ Agr i)

amr[l
[

cmr 1

‘/cmr+1[z+32
amr+1[

We will refer to this method as “ADD1”.

| =
]
| =
] =

Combining two subsequent Additions

In this section, we present two methods, which use two subsequent additions combined
into one step.

The first method called “ADD2” uses the combination of two subsequent additions of one
SipRound. So we have two addition steps per round. The first step performs the following
additions:
Avmrli = 32] = Varlt — 32] + Vo[t — 32]
V;,m,rJrl[i] = Aa,m,r [Z - 32] + Ad,m,r [Z]

The second step handles the other two remaining additions of one SipRound.

Ac,m,r [Z] = ‘/;,m,r [Z] + V;l,m,r [Z]

‘/c,m,r—i—l [Z + 32] - Ac,m,r [Z] + Ab,m,r [Z]
In addition to group additions within one round, we can overlap these additions by com-
bining two additions of different rounds. This results in more steps compared to “ADD2”.

If the steps connect SipRounds within the same message block, or within the finalization,
we get as first step:

Vamrt1lt] = Aamet — 32] + Agm (1] (6.7)
Agmrt1]t] = Vames1[i] + Vomrs[d]
And as second step:
Vemat1t] = Aemr[t — 32] + Apmr[i — 32]
Acmri1lt] = Vempi[t] + Vamria[d]

If we want to connect SipRounds of different message blocks, we need to replace Step
with the following step.

(6.8)

‘/:z,m,r—l—l[i] = Aa,m,r [Z - 32] + Ad,m,r [Z]
Va,m+1,1[i] = Va,m,r+l[i] S Mm [7/]
Aa,m—i—l,l[i] - Vaﬂn—l—l,l[i] + %,m—f—l,l[i]
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If we want to connect SipRounds of compression and finalization, we need to replace

Step [6.7] with the following step:
Vamat1lt] = Aqmyr[t — 32] + Agm.r|i]
Vasali] = Vamrr[i] @ Mli]
Aq pali] = Vasali] + Vo sali]
In addition, we need to replace Step with:
Vemat1[t] = Aemr[t — 32] + Apm.r[i — 32
Verilil = Venria[i] © FFig
Acrali] = Ve pali] + Va sald]
The resulting method is called “ADD2 overlap”.

Note that only not calculated variables contribute to the complexity. For instance, for
Step using the bitslice method, following variables contribute to the complexity: Ag , ,[i—
32|, Agmrlt], Vomaes1li], and the carry |cii, ciol.

Combining three subsequent Additions

In this section, we present a method of combining three subsequent additions. The addi-
tions hereby always cover two subsequent SipRounds. We get 4 different addition steps for
every SipRound, except for the last SipRound of the whole SipHash function. The first
step on the V, lane is:

Apmrli —32] = Vinrli — 32] + Vi [i — 32]
Vamar+1[t] = Agmr[t — 32] + Agmr[7] (6.9)
Agmrs1[t] = Vamps1[1] + Vomrs1[1]
The second step on the V, lane is:
Va1t — 32) = Agmr[i] + Aamr|i — 32
Avmri1lt —32) = Vamrs1[t — 32] + Vomrs1 [t — 32] (6.10)
Vamrs2li] = Aampi1lt — 32] + Agm i1 i]
The first step on the V, lane is:
Acmrlt —32) = Ve[t — 32] + Vi [i — 32
Vemrt1[t] = At — 32] + Apmr[i — 32] (6.11)
Acomrs1li] = Ve [i] + Va1 1]
The second step on the V. lane is:
Vemrt1[t] = At — 32] + Ap i — 32]
Acmrs1lt] = Vemrs1t] + Vamrs [1] (6.12)
Venri2lt + 32 = Acmri1[i] + Ab i []
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If we want to connect SipRounds of different message blocks, we need to replace Step
with:

Aam[z 39 = amm[z’ 39+ Vi [i — 32]
a ;m,r+1 [Z] a m,r [Z - 32] + Ad,m,r [Z] (6 13)
a m—+1, I[Z] a m 'r+1[7'] @ Mm [7']
Aomi11[% = Vams11[t] + Vem1,1[4]
Moreover, Step needs to be replaced with:
Vamr+1[z_32] amr[‘]+Admr[i_32]
V;zm—l—l 1[2—32] amr+1[l_32]@M [2—32] (6 14)
Agm1, 1[ 32] = Vo112t — 32] + Vi1t — 32] .
a ,m+1 2[2] a m—f—l,l[Z - 32] + Ad7m+1,1 [Z]

If we want to connect SipRounds of compression with finalization, we need to replace

Steps and with adapted versions of Steps [6.13] and Furthermore, we need
to replace Step with:

Aumr[i = 32 = Vioi — 32) + Vi [i — 32]
Venri1lt] = Aemrli — 32) + Apmr[i — 32
Veralt] = Vempia[i] © FFig
Acpali] = Vepali] + Vagald]

Moreover, we need to replace Step with:

Vemrsali] = Aumsli — 32] + Apmsli — 32]
Vesalil = Vemry i) @ FFig
Acpali] = cfl[]+Vd,f,1[i]
Vesoli+32] = Acpali] + Ay pa[t]

We call the resulting description of SipHash “ADD3 overlap”.

Combining three Additions within one SipRound

In this section, we describe the two steps needed to combine three additions within one
SipRound. The resulting method is called “ADD3”. To do the combination, we define the
following two steps. The first step is:

cmr[z] = ‘/cmr[z] + V:i,m,rm
Admr[l] = Acmr[l] EB Vme[i - 16]
Agmrli = 32 = Vnrli — 32] 4+ Voo [i — 32]
]

amr—i—l[Z Aamr[l - 32] + Ad,m,r[ ]
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The second step is:

Aa,m,r [7/] = ‘/a,m,r [2] + %,m,r[z}
Ab,m,r [l] = Aa,m,r[ﬂ SP ‘/b,m,’r [Z - ]-3]
Acmr[i] = ‘/cmr[l] + Vdm?"[z]

]

6.1.3 Comparison of the different Descriptions

For comparing the different methods of representing SipHash, we will use the bitslice
method for propagation. We will look at the methods from two different sides. First,
we give the propagation quality within two SipRounds. After that we evaluate the per-
formance of the different methods by using them in a concrete search for a differential
characteristic.

To measure the quality of the propagation, we borrow the method shown by Eichlseder
in [Eic13]. The method works as follows. Consider |AX| to be the number of possible
valid pairs restricted by a set of generalized conditions AX. Here AX covers the inputs
as well as the outputs of a function. Then |AB| symbolizes the number of possible pairs
using generalized conditions of AB, before a certain propagation method is used. After
the propagation, we get the generalized conditions AA with a number of possible pairs
|AA|. The quality of propagation is measured with the figure of merit I;.

Iy = logz(|ABJ) — logs(|AA])

The higher I,;, the better is the propagation. In Figure [6.1], we show the comparison of
different representations of SipHash using the bitslice approach for propagation. These
different representations are compared to the propagation quality of ADD1. We compare
the propagation quality on generalized conditions of all variables V,, V;, V., Vi, A4, Ay, Ae,
and Ay involved in two SipRounds. The generalized conditions used as starting values for
the propagation are gathered using a search for an internal collision for SipHash-2-x. As
the method SIPROUND does not use the intermediate variables A,, Ay, A., and Ay, we
combine this method with ADDI.

Figure|6.1| can be read as follows. For negative values on the x-axis, the cumulative proba-
bility that more information propagates (compared to the reference propagation method)
for specific propagation methods is given. If a method stays below the reference method
in the area of positive x values, then there are cases where the propagation quality of this
method is lower than the reference method. Therefore, we can say that method ADD3
overlap works best with respect to the propagation quality.

Next, we want to give another way of showing the effectiveness of the different representa-
tions of SipHash aside from pure propagation quality. To do this, we perform a search for
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Figure 6.1: Propagation quality for different representations for two SipRounds.

characteristics, which produce an internal collision. The search is done for SipHash-1-x.
In Table [6.3] we show the number of collision producing characteristics found by using
the different descriptions of SipHash in an automatic search. In this scenario, we see that
ADD2 performs best. However, this does not mean that ADD2 performs best for more
complex versions of SipHash or in another type of search.

Table 6.3: Number of collisions after a 2.5 h search on a single CPU.

’ Method \ # collisions ‘

SIPROUND 3
ADD1 77
ADD2 473

ADD2 overlap 413
ADD3 overlap 127
ADD3 55

Using the results of Figure|6.1, and Table [6.3| combined with our experience on the search
for different types of characteristics, we can state that the method ADD2 overlap is a good
tradeoff between speed and quality of propagation. This is the reason, why we use ADD2
overlap in this thesis.

6.2 Choosing a Propagation Method

Besides choosing a representation for SipHash, we have to decide, which propagation
method we want to use with the resulting steps. We can choose between bitslice prop-
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agation (Section , two-bitslice propagation (Section and propagation based on
graphs (Section . We use ADD2 to compare the different methods. Bitslice ADD1
steps are used in combination with the methods ADD2 two-bitslices and ADD2 graph to
improve their performance. To point out the differences between the propagation methods,
we evaluate the propagation quality and the overall performance in the same way as in

Section [6.1.3]

1 | |
z
= 08| 2
B
=
° 06} .
2,
g —
;C:é 04} 2
E‘ —— ADD1 bitslice
5 0.2+ —— ADD2 bitslice

— ADD2 graph
0r ADD2 two-bitslice |
—00 —116 =58 0 58 116 S8

[method - [ADleitslice

Figure 6.2: Propagation quality of different propagation methods for two SipRounds.
First, we want to show the propagation quality in Figure [6.2] We can see that the two-

bitslice method works slightly better than the graph and bitslice method. Graph and
bitslice method perform equal.

Table 6.4: Number of collisions after a 4.8 h search on a single CPU.

’ Method \ # collisions ‘
ADD?2 bitslice 850
ADD2 two-bitslice 263
ADD2 graph 4

In Table [6.4] we see the number of colliding characteristics found by using the method
in an automatic search. The bitslice method has, for this case, the best balance between
propagation and speed. The approach based on graphs performs worst.

To sum up, we can conclude that we have made the best experience when using ADD2
overlap with bitslice propagation. Besides ADD2 overlap with bitslice propagation, we have
made experiments with many other representations of SipHash using the bitslice method.



CHAPTER 6. CRYPTANALYSIS OF SIPHASH 60

Moreover, we also have used ADD1 and ADD2 with the two-bitslice method. We can
state that if characteristics are found (using a specific search strategy), we usually find the
characteristic with ADD2 overlap using bitslice propagation the fastest.

6.3 Choosing a Representation for the Probability Cal-
culation

In this section, we will discuss which technique we have used to calculate the probability.
Like for propagation, we have to find a suitable representation of SipHash and a calculation
method.

Due to its exactness, we have chosen the method based on cyclic S-functions (Section
for the calculation of the probability within a single step. When grouping the additions
into single steps, we group two subsequent additions of one SipRound into one step. We
end up in the representation called “ADD2” shown in Section [6.1.2]

ad

Vq < 16 < <« 21 —————» U4

Figure 6.3: Representation for the probability calculation of one SipRound.

When dealing with XOR differences, only additions may contribute to the probability in
a negative way. In Section [6.4] we perform automatic searches for characteristics only
consisting of such XOR differences. For performance reasons, we only calculate the proba-
bility of the additions. However, when using generalized conditions, there might propagate
sometimes a 0, 1, u, or n. In those cases, XOR operations might have a probability different
from one. Therefore, we also consider the XOR operations, when we give a concrete value
for the probability. As XOR operations are not S-functions, it is sufficient to calculate the
probability using a bitslice approach. In Figure [6.3] we show the single steps for which
the probability is calculated for one SipRound. Every color symbolizes another step. In
addition to what is shown in Figure[6.3] we also consider the injection of the key, messages,
and constants, as well as the final 4 input XOR in the probability estimation.
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6.4 Automatic Search for Characteristics with high
Probability

Aumasson and Bernstein present in [AB12] two different XOR-linearized characteristics
and state that three SipRounds can be distinguished from an optimal pseudorandom func-
tion (Section . In this section, we present non-linear characteristics, which compete
with the characteristics given by Aumasson and Bernstein. These non-linear characteris-
tics have a better probability than the XOR-linearized characteristics. Moreover, we give
distinguisher for SipHash-3-0, SipHash-2-1, and SipHash-1-2.

First, we introduce our search strategy. We define the search for a high probability char-
acteristic as a greedy search on a graph. The vertices of a graph correspond to a single
valid characteristic, which can be described with generalized conditions. To each vertex,
the probability of the corresponding characteristic can be assigned. These vertices are
connected with edges. An edge between vertex A and vertex B exists, if we can refine
conditions on bits of characteristic A in a way that we get to characteristic B after prop-
agation. We say that A and B are neighbors. Our task is to find a vertex with a high
probability, which has an XOR difference as input, and any XOR difference as output.
We take a characteristic as starting point and try to find the neighbor X with the highest
probability. This neighbor can be reached by guessing one bit (refining its generalized con-
ditions). Usually, we only guess a fraction of all possible bits. Then we search a neighbor
of X with a high probability. We repeat this, until we have a differential characteristic.

After this overview, we give a detailed description of the search strategy. Similar to [MNS11b],
the search algorithm is split in three main parts: decision (guessing), deduction (propa-
gation), and backtracking (correction). Our search strategy extends the strategy used
in [MNS11b| and can be summarized as follows:
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Let U be a set of bits of characteristic A with condition ?. H is an empty set of charac-
teristics at the beginning. L is a set of characteristics. n is the number of guesses. B_ and
B, are characteristics.
Preparation
1. Generate U from A. Clear L. Set i to 0.
Decision (Guessing)
2. Pick a bit from U.
3. Restrict this bit in A to - to get B- and to x to get B.
Deduction (Propagation)
4. Perform propagation on B- and B;.
5. If B_ and B, are inconsistent, mark bit as critical and go to Step 13, else continue.
6. If B_ is not inconsistent and not in H, add it to L. Do the same for B.
7. Increment 1.
8. If i equals n, continue with Evaluation. Else go to Step 2.
Evaluation
9. Set A to the characteristic with the highest probability in L.
10. Add A to H.
11. If there are no ? in A, output A. Then set A to a characteristic of H.
12. Continue with Step 1.
Backtracking (Correction)
13. Jump back until critical bit can be resolved.
14. Continue with Step 1.

To generate the set U, we use following variables of SipHash A,, A., V,, and V.. Except for
Vam,1, and Ve, 1 and V, r1, and V. s, since they are only connected via an XOR to their
predecessors, or are even the same variable. The number of guesses n, which are performed
before choosing the best guess is set to 25. Experiments have shown that 25 guesses gives
us the best characteristics.

We have to mention that due to performance reasons, we do not store characteristics in
H. Instead we store hash values generated out of the characteristics in H. In addition,
we maintain a second list H*. In this list, we store the next best characteristics of L.
Usually, we have a certain chance that the second best characteristic of L goes to H*. If
the second best characteristic is stored in H*, there exists a certain chance that the third
best characteristic of L is stored in H*. This procedure goes on, until one characteristic
is not moved to H*. Then we immediately stop adding characteristics from L to H*. The
characteristics of H* are also used for backtracking. If a characteristic is found and U
is empty, we take a characteristic out of H* instead of H in Step 11. After a while, we
perform a soft restart, where everything is set to the initial values (also H* is cleared)
except for H.

In [MNS11b], Mendel et al. list different methods to check if a characteristic is valid. Here,
we only apply the following check when a differential characteristic is found. For conditions
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with more than two linear two-bit conditions on them, we try both possible bit conditions
and look if the characteristic is still valid. If we find conditions, where none of the two
conditions are valid, we mark these conditions as critical and jump back to an earlier state
of the search.

The characteristics in Table 6.6 and [6.7] compete with the characteristic given by Au-
masson and Bernstein in Table[3.2] As a starting point for the search of the characteristics,
we set all bits of A,, Ay, A, Ag, Vo, Vi, V., and V; to ?. The key is set to -. All bits of
all message blocks are set to -, except for the MSB of the first message block My, which is
set to x.

For the characteristic in Table we get an estimated probability of 27°36. The charac-
teristic given by Aumasson and Bernstein (Table has an estimated probability of 27°¢
for three SipRounds. We see that we do not benefit much from the fact that we can create
non-linear characteristics. The reason for this is the size of the 4 words V,, V;, V., and V.
These words have a size of 64-bit and therefore, the gap between the differences in a word
is still quite large in the first three SipRounds. The characteristics for three SipRounds as
given in Table |6.5, and Table correspond to characteristics for SipHash-2-1 if padding
is omitted.

Table 6.5: Characteristic for SipHash-2-1 with an estimated probability of 27936,

—
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K

Vo,1,1

— =
A

Va,1,1

X

Vaio | x X Vo1, | x

Ve,1,2 x Vaio | x x N

Vas | x Ko X Vo8 | x X===XX~X X X

Ve,s | x X X X x==== | Va,1,3 | Xx—==————=-= S S X x

Va1 X====X x Veen | x x % % S
Vag,2 | ——x===%x=——==—===x-———- X X——--X x====x-=== | Vb,£,2 | XXX~X===——XX~XXX-XX———X-===X=—X——-X=-=X———-----X-=——--X---XX~X~X
Ve

Bt
SRS}
|

|
B

i

I
%
B

B S X====X=———K———————=== X=—X===X-=XX———-X--%X~ | Vg ¢,2 | "XX~—=X————X-—--XX———-X----X-———- X====X—————————= X====X——=———= X=

S onowy

(| X———X—X——-X— XXX —X— oo X——X—XXX———X-—-—---XX-XX——X-—-—XX-X-X

In Table[6.6], we see a characteristic, which corresponds to SipHash-2-2 if padding is omit-
ted. This characteristic competes with the characteristic of Table |3.2l The non-linear
characteristic in Table has an estimated probability of 27275, The linear characteristic
in Table by Aumasson and Bernstein has an estimated probability of 2% after 4
rounds. We can see that we can draw benefits from the fact that the amount of differences
increases after 2.5 SipRounds.

The characteristic in Table corresponds to a characteristic for SipHash-2-4 if padding
is omitted. It has an estimated probability of 273415 while the characteristic created by
Aumasson and Bernstein (Table has an estimated probability of 274%.

So far we have only considered characteristics with only one difference in M;. Now, we
present characteristics, where we are allowed to choose the values for the message blocks
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Table 6.6: Characteristic for SipHash-2-0 (2 message blocks) with an estimated probability
of 27127.5‘

K
Vo, 1,1

Va,i,1

X

‘@,1,2 X

d,1,2 | X X X-————X
X

Vo,1,3

‘/d,Q,i
Vb,2,2
Vi,2,2 | —xx===x==——x----xx--
Vo,2,3 | X——=X=X-XxXX~—

X———XX~—XX

R

——x—x————

X=X x===x====x==== | Vo g1 | ~x=———x--x---

hi | X===X——=X-==—————————— XXXXX X~ ~XXXXXX~X~~~~XX~X~~X~~~X~XXXX~~X~X

Table 6.7: Characteristic for SipHash-2-0 (3 message blocks) with an estimated probability
of 273415,

x Ky
K,
‘/;J,i,i
/1,1 | X
Va,i,2 | % X Vooi,2 |
Ve, x Va2 | % X X====X
Va3 X Vo1, | x X———XX~X: X===Xm=—Xmmm—m———————
Vet,s X x====| Va,1,3 | x====———--= X=———X-———= X X
Va2t X Vaoi | x X=—==X——=—= X X
a,2,2 x====x---1| V2,2 | XXX-X~—=-~ XX——XX:
Ve,2,2 IR S S S xx-—=-x--%- | Vg 0,0 | ~XX———X——--x-
Va3 TXTTTTTTXTX T TXX === X—X—XXX—— ——XXXXXX~X——XXX——— —X—X
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Ve,s,2 —X—X: X XXXXX x—--0x
—===X~-X~———XX—XX———-X---==—= X====X—-——X————-- x== | Vb,3,3 | —"XKXKX—————X--X———X~—XX~— ———-XX~X~X~~X~XXXX~XX~XXX~~X~X~X~X~--
Ve,ss XXXXXX~~X~~X~X~XX~-X1X-XXX-- ¢ ———X~XXXXX~———"" X——==X~XX————==" XX~=-XX~X~XX~~XXXX~X~-~ —X——X-X
‘/a,f,l Aainind Suttated Sub Sttt © Gup © Sutntaind Sl D Sl Gt S Sl B K 5 B ittt X XXXXXX——X——X~X~XX~X1X-XXX—-———X——————- X —==X—X-—X-
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Table 6.8: Characteristic for SipHash-2-0 (2 message blocks) with an estimated probability
of 271083,

M, | x Ky
M, | x————————= X X——=== X X K
Vain Vo1t
Ve,i,1 Va1 | x
Vai,2 | % X Vo,1,2 | %
Vei,2 X Va2 | x X X=——-X
Va3 Voo1,3 | X X===XX~X: X X
Vet,3 Vijt,s | x———————— XX————X———== X X
; ;
Va2, Va,2,1 X
Var2,2 Vo,2,2 | —Xx=X-=-=—xXx----XX X X===X X X==XX
Ve2,2 Va,2,2 | —x x X e
Va,2,3 Vb,2,3 | XX-XX-X—X=X=—=X~-—X======—XX~—X~XXX~XX~—======== XK====== X==X—=X-X
Ve,2,s Vi,2,s
; ;
Vat,1 Ve,e,1
hi | —X=XX-X-X==X===—XXX~=~XX~XX~======== D e XXX====X~X~XX~~X~X
K

Table 6.9: Characteristic for SipHash-2-0 (3 message blocks) with an estimated probability
of 2—299.7‘

M | x K,
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Veo, | ———= X=——=—=—= X==—X=———X——————| 0x——=-x-X X X Vi,2,3 | ——X===X=———X----X-=———---X-X-———X---X-X~-———X~X~-XXX~—XX-—-X~-———-
Vas | x7x X—=——X~X X X————X—X——XX Va3,
Va,3,2 | ~Xm=— =X - =X m X X-XX - oo mXm oo mX—Xm oo mX-X———-m—————=x——x————== | V5 5 | x—-—-= K———X———XXX—KX—————XX—————X~X——X——X——XX—————X——X———X———X——
Ve,3,2 | ~X~——X———XXX~-—-X~X~X~——————XXX-~X~~XX————- X=——X-=—X——X——————=-- x | Va,3,2 | ~XX———X-——XX~—XXXXXX~-----—XX————X~X-X---X-X—————-X----X----—--x-0
Va,3,3 | —mmXm—Xmm = mXmmXo oo Xm XX oo oo oo oo s mX-X—mXoXX-m—m—-m—m=—=X--X- | Vg3 | oo XX mX o XX o XX mX - XXX XX m - oXX - mX - - X o — - X - X XXX XXXXX-X
Ve,3,3 | =mmmmmmm oo m XXX T oo X T XX XX T XX XXX XXX =X | Vaags X=X X—X—XX~X~—X X=—=X-X-X———X-———X-——XX-XXX
Va,g,1 | ——XX====———XX—-XX———X—X-XX~X————X—--X---X———--X-XXX——XX---XX——X- | Vo g1 | -m-mm———-----oX———XX- - oo -X———X-X--XX—— - - - - -X-X——X--X-X--X-XX---X

Rk | ==X—X—XXX-X~-X————XXX~X~X~XX~~X~XXX~XX~—=-X=————--XX-XX~—XX~~X-~X

M, and M3 according to the characteristic. Because of that, we have to modify the search
strategy a little bit. To be able to find good characteristics, we have to search each itera-
tion of the compression after another. At first we add the variables A,, A., V,, and V. of
the first iteration of the compression (M; and the corresponding two SipRounds between
the injection of Mj) to the set of U. If everything in the first compression iteration is
guessed, we continue with the next one. Initially, we set every bit of every variable of the
characteristic to 7, except for the key and the first message block M;. The bits of the
key are set to -. The bits 0 to 62 of M; are set to -. M;[63] is set to x. Out of this
starting point, we can find characteristics, which have an estimated probability of 271983
for 4 SipRounds (2 message blocks) in Table [6.8] and 27297 for 6 SipRounds (3 message
blocks) in Table . This is a big improvement compared to the characteristic given by
Aumasson and Bernstein (Table [3.1]), which has a probability of 273 for 4 SipRounds and
27139 for 6 SipRounds.

Aumasson and Bernstein state in [AB12] that they consider versions of SipHash consisting
of 3 SipRounds to be distinguishable from a pseudorandom function. Here we present
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characteristics for SipHash-1-2 (Table , SipHash-2-1 (Table , and SipHash-3-0
(Table [6.12)), which can serve as distinguisher. These characteristics are not allowed to
have a difference in the most significant byte of their message block, as this byte encodes
the message length. As a starting point, we set all bits of A,, Ay, A, Agq, Vi, Vi, Ve, and V,
to 7. The key bits are set to —. The bits of the message block are set to -, except for one
bit, which contains a difference x. The position of this difference is found in the following
way. We have created XOR-linearized characteristics, containing only one difference in
the message block. The position of this difference is chosen in a way, that the amount of
differences in the most significant bit of the variables of the XOR-linearized characteristic
is maximized.

Table 6.10: Distinguisher for SipHash-1-2 with an estimated probability of 27622,

M, x Ko

K
. 7
Va1 Vo1t
V1,1 Va1,1 X
/. /
Va2 X X Vo,1,2 X
Vea,2 | % Vit X———-X X S —
Vit X Vee1 | x
Va2 | % X X X-—--X: 0| Va,g,2 | x—x x X e
Vet,2 X-=--X X===X-=-X Va,eo | X x X St SR S
Vag,s | === D S ittt X==——X————X—X——-X X Vo,2,3 | X———==X———————=X-——X——X~—~XX~X~XXXX~X~————XX~X~-~XX~—-X----X~-——X
Vee,s | xmmm=mmmm=m O S e s B e S e S [ A e Xmmm—Xmm—— X=X~ XXX~ ==X~ X SV —

hg | =x===—=x—------ XX—XXX~X=———X——XX===——X—X~—-X--X————XX----———X---X

The resulting distinguisher for SipHash-1-2 is shown in Table [6.10] and has a probability of
27622 The distinguisher for SipHash-2-1 (Table [6.11]) has a probability of 27°9% and the
distinguisher for SipHash-3-0 (Table [6.12)) has an estimated probability of 2782,

Table 6.11: Distinguisher for SipHash-2-1 with an estimated probability of 27592,

M, X K,
K,
‘/a.i.i ‘/b,1,1
Ve, Vars .
/ I
‘/3,1,2 X X ‘/b,1,2 x
Ver2 X Vi, X X====X X
Vars | x x x x==== | Vo1,3 | =m—=m—--——- X——XX-X x x x
Vo3 | —=—x X X-——-X x====| Va,1,3 | x===—= X x X S
Va1 | % X x==== | Ve,e,1 | ==X X X====X: X====
Va,g,2 | x===== X X—=——X X-==-X X—=-X Vo,£,2 | ~XX—==X-—==X——X———X—-—-X-----———X—————-X~~—XX~X~XXXX~X~~---XX~XXX
Veg,o | == X=——=—X=——=X——=————=—— X==X—==X——XX————X——X———X———X————————- Vi,z,2 | xx—===x-———x----= X=——=—X=————————= X=——=X=———=—= X==XX=——X————X-———
hg | —=x=———==-= X=X —XXX~——X~——————XX-XX~-X~———XX—X-XX---X-X~——X——XXX

The above mentioned strategies for finding high probability characteristics and distin-
guisher are the fraction of strategies tried by us, which work best. Besides those best
strategies, we have experimented with many others. For example, we have tried to set
more than one difference in the message block or to place single differences in the message
block on other positions. Furthermore, we have tried to leave the message unrestricted and
set random differences after one or a half SipRound. After introducing these differences,
we perform a greedy search upwards to the beginning of the characteristic. If the estimated
probability stays above a certain threshold, we perform a greedy search down the charac-
teristics. The best characteristics we have found using such a search are characteristics,
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Table 6.12: Distinguisher for SipHash-3-0 with an estimated probability of 27582

M, X K,
Ky
Va1 Vo,1,1
Vei,1 Va,1.1 x
/. 4
Va,1,2 X X Vooi,2 x
Ve1,2 X Vi, X X-——-X X
Vais | x x X x====| Vo,1,3 | =—=—————--= X—==XX~-X X X X
Ve,a,3 | —=—x X X===-X x====| Va,1,3 | === X X x X—mmm
Va,1,4 | Xm=== X=mmmo oo X==m- X—---X X=—=-X X——=X Vhb,1,4 | —XX===X===—X=—X=-——X-——X—————————=——-—-X-——XX—X~-X-XX-X-————XX-XXX
Veoi,a X—=—=X X==X===X~—XX————X——X---X-—-X-—————=== | Vg i 4 | XX———-X~———X————XX----X————————-= K= ==X —————— X==XX===X====X====
Va,e,1 | x===—= Xmmm K== D X====X====X~X———X Ve,e1 X====X X——X———X——XX————X—-—X———X———X—————————
hg | ==X=———====X-—X——XX---X—-—————-X~-XX~~X~~~-XX~X~XX~~-X~X-——X~~XXX

which have again only one difference in the message block. In addition, we have put a huge
effort in finding a distinguisher for a variant of SipHash with 4 rounds. However, we have
not found anything with a probability close to 2764

6.5 Search for a Distinguisher for the Finalization

In this section, we will present two distinguishers for a 4 round finalization. Both distin-
guishers have an estimated probability higher than 273%. The search for the distinguisher
has been done by hand. It turns out to be a good choice to place symmetric differences
into the state and to propagate the differences in both directions.

To get the distinguisher shown in Table [6.13] a difference has to be placed in the most sig-
nificant bit of V, s 3 and Vj ;3. The rest of the state contains no difference. If the difference
is propagated forward and backwards linearly, the resulting characteristic has a probability
of 2737, The characteristic in Table contains slight nonlinear tweaks. Therefore, this
characteristic has an estimated probability of 273°.

Table 6.13: Distinguisher for 4 finalization rounds with an estimated probability of 273,

a1 | X X X===-X X Vo,s,1 X=X X X X

Vet | =m0 X X——-X x= | Va,e,1 | === X X———X

a,f,2 X X Vo,g,2 X

— = =

€, £,2 Vaz.2

< <

; .
a,£,3 | X Vo,z,3

-

.53 Vaes | %

/
a,f,4 | X X X Vo4 X

==

a,£,5 X X X Vo258 X-X X=—=X—=X X——=X

S

c,£,6 | T7X X x==== | Vaz,5 X x X Xm X

It turns out to be the second best choice to set V}, 3[31] = V. 3[63] = x and the rest of
the state to —. The best characteristic we have found by using this strategy is shown in
Table and has an estimated probability of 2738,

We have tried to perform automatic searches for a distinguisher for 4 rounds of the final-
ization. With the help of the CodingTool Library created by Nad [Nad10], we have found
linear characteristics, which have the same symmetric state (Vo r3, Vb3, Ve 53, and Vy 73)
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Table 6.14: Distinguisher for 4 finalization rounds with an estimated probability of 273,

Va1 > X X===X Vo,e,1 X X===X

Veei | x XX—==X X A X-——-X X X

Vat,2 Vo,z,2

Ve,t,2 X x Va,e,2 X

Va,t,3 Vo,t,3 X

Vees | x Va,e,s

Vi, Vo,£,a | X% X===X X

Vet,a | X X X Vi,t,a X

Vats X X X=——X Vo,z,5 X X=X X===X x=
Vs X X X X Va5 X————X X————X——X-—-X X

as the characteristic in Table In addition, we have also tried non-linear searches
similar as shown in Section 6.4, We have used the following search strategy. To generate
a starting point for the non-linear search, we introduce random differences in V, 73, V3 1.3,
Ver.3, and Vg ps. After that we perform a greedy search. This greedy search is split into
three steps. At first, only the words in SipRound 2 are considered. In the next step, we
deal with the words of SipRound 1. At last SipRound 3 and 4 are searched together. In all
three stages, only the words V,, V., A,, and A. are guessed. Again, the best results show
a symmetric difference in V; y3 and Vj z3 like the distinguisher in Table[6.13} To sum up,
we are not able to top the result of Table [6.13] with the help of automatic search tools.

6.6 Automatic Search for Collisions

This section describes the automatic search for collisions for SipHash. The section is split
into two big parts. One part deals with searches, which use a traditional strategy (Sec-
tion . Variants of this strategy are used by Mendel et al. in [MNSI1bl IMNSI3|
MNS12, [MNSS12, MNST1a]. When using this strategy, we consider SipHash as hash func-
tion with no secret key. Therefore none of the attacks threatens the security of SipHash.
By using the traditional strategy, we are able to find internal collisions for SipHash-1-x.

After extending the automatic search tool (Section [5)) with a probability estimation, we
are able to use a slightly adopted strategy. This adopted strategy is called impact oriented
strategy (see Section . Note that a similar approach as the impact oriented strategy
has recently be used in an attack at SHA-512. With the help of the impact oriented
strategy, it might be possible to find characteristics resulting in an internal collision, which
are able to threat SipHash as a MAC. However, the probabilities of the characteristics
found by us are too low to be used in an attack. When considering SipHash as a hash
function with no secret key, we are able to produce internal collisions for SipHash-2-x by
using the impact oriented technique.

6.6.1 Traditional Strategy

In this section, we deal with a variant of the search strategy used by Mendel et al.
in [MNS13] and [MNSI1b|. Therefore, we stay close to their description in this Section.
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Mendel et al. split their search strategy into three main parts: decision (guessing), de-
duction (propagation), and backtracking (correction). To find a characteristic, we use
following strategy taken from [MNSI3]:

Let U be a set of bits. Repeat the following until U is empty:
Decision (Guessing)
1. Pick randomly (or according to some heuristic) a bit in U.
2. Impose new constraints on this bit.
Deduction (Propagation)
3. Propagate the new information to other variables and equations.
4. If an inconsistency is detected start backtracking, else continue with Step 1.
Backtracking (Correction)
5. Try a different choice for the decision bit.
6. If all choices result in an inconsistency, mark the bit as critical.
7. Jump back until the critical bit can be resolved.
8. Continue with Step 1.

First, we want to describe, how to produce a semi-free start internal collision for SipHash-
1-x. In the first stage of the search, we try to find a differential characteristic, where a
part of the message is already guessed. Therefore, we add ? and x of the variables A,,
Ay, Ae, Ag, Vo, Vi, Vo, and V; to the set U;. If the search algorithm picks a 7, it tries to
place a -. If the algorithm picks an x, it tries to place a u or it tries to place an n (50%
chance of picking one of the two). Refining the condition x, serves as a kind of indicator
for the probability of the characteristic. If we have a low probability and therefore, many
x, it is hard or impossible to find a combination of u, n for all x. Sorting characteristics
with a low probability out improves our chances to find a message pair, which follows the
characteristic.

Table 6.15: Starting point for a search for a semi-free start collision.

M, Ky
M, | x K,

Vo, 1,1

Va,i,1

— < =
PR

Vo,1,2

Va,1,2

/.
Va2,

T
Vo,2,2

Va,2,2

;
Va,s,1

Vo,3,2

Va,s,2

Va4,

Vo,a,2

NS SSSSSSSSS
NSNS SSSSSSS
@

%

Va,a,2

a,f,1 ‘/C.f.i
hie

In Figure [6.15] the starting point is given. This is not the only possible starting point to
find a good characteristic, but it serves well. As we can see, we have embedded the search
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Table 6.16: Characteristic with parts of the message already guessed for a search for a
semi-free-start collision.

M, Ky

M, | u 01 K

Mj3 | nxxluux--u-xxnx-01-0-1u10x-0uxx0-x--1ux1--x0x-01nxxu0xunuOnx-01-

My | xx--xnxx-x-1-0--uxxxnlu-1x00x-011x1-1000ul1u0-1-x--xxun0llxxxuln
Va,1,1 Vo, 1,1
Vo1 A
‘/;,1,2 ‘/13,1,2
Ve,1,2 Va2 | 1
Va,2,1 Va2, |0
Va,2,2 | 0 1 0---un Vo,2,2 | ul11---11--100----0111011-------~ 001---1-1-11---—————————— 01-0-1
Ve 2,2 | 0--1010--010-—————--- 1--00100-0-u----11011100-01010--0011010---= | Vg 5,5 | u--111---1---0--0--1-10-1--n1------- 10-1---n--Ouu--0--00111--1--
Vaaai |1 0---0 0011 uu 00---0 | Vq,3,1 | 1nnOnnni-nluunu-0--1-Ou-1ulnnuu--n--0un010unn-Oninuu-uunniun0i-1
Va,3,2 | u=nu01-0-u-u-Ou-nuQuinnnu-Oninnn0-1-nOnn0Ouuu-0-u--Ouuununn-0nn0 | V4 3,» | 1--unun--Onn-nn------ On---uOnluu-nu---u----- unninllluluuullu----
Ve 3,2 | ~u0---u----Oununn-1iuinnniiu------- uunn001nnQuu----- 11ul--uOuuul | Vg 3,5 | n-10nn-u-u-0-n0-1uunnunOu-uuu0Oun-n-nuuOunuOn-n-n--uulinnnn-unnu
Va,a,1 | In-nunu--0--nn--nn-u-uluuu-nn--n-n--uu-u---u--0-1uuuu-000n0n-nu- | Vg4, | -n---On----11n-On---0Oni-nnuu--Onuuu-uuu0Ounun-u----== nunuu-u-iul
Va,a,2 | un—-nnnu-u------ uuunu-n-inlin----n------ u--n----n--uunu---nnnn-u | V; 4,2 1-
Ve,a,2 10 00 0--0 Vi,a,2 | 10--1110-0------ 01100-0--1--1----1------0--1----1--0100---0011-1
Vae1 | - 0-———————-= 0---1-1-0-11 0--1 11 1-1| Veen 10 00 0--0

D

for a semi-free start collision into a version of SipHash-1-x with 4 message blocks.

Within a few seconds (usually < 3 s), we get a characteristic like the one shown in Fig-
ure After getting this collision producing characteristic, where a part of the message
is already fixed, we have to guess the rest. To fix the remaining bits and to get a message
pair, we have to add - of A,, Ay, A., Agq, Vi, Vi, V., and V; to the set Us;. We pick -
with many linear two-bit conditions first. Picking conditions with many linear two-bit
conditions should result in more propagation of information. After running the search for
a few seconds (< 5 seconds), we get the message pair and the values of all intermediate
variables as shown in Table [6.17

Table 6.17: Message pairs and state values for a search for a semi-free start collision.

M, Ky
M, | u101100101000001100100000001110000001110010111001101000111010100 K,
M3 | nuuluun00u1uunu0010011u10n10uun01n011un100u0u001inuuuOuunuOnn0010
M, | nu11nnuuiu010001uunnniu11u00u0011u111000u11u0111u00nnun01inunuin

Va1 Vo, 1,1
Ve,1,1 Va1,
V1,2 Vb,1,2 | 0110111000110110010011011010101111110100000100001111001011100111

Ve,1,2 | 1111110000111110000010111101100001001111011111010100000000111001 | V5,1,» | 1000101010001011100101110000100111010001001001001010000101111011
Va,2,1 | 1001000100110101111100101000111100000100010111010011011100011000 | Vg,5,4 | n101001111001010000001110001010111011111011110000111000010101111
Va,2,2 | n1001111100010111111011110010110010111011100011un010001101011100 | V4,55 | u111101110010000100111011100001010011101010110100001100010010011
Ve,2,2 | 00010101001010000111010100100001u0000110111000010101000110100111 | Vg,5» | u11111010100000000111100110n101000111001100n110uu100000011100101
Va,3,1 | 10010110110010100110011110001010010100111001101uu111001010001000 | V4 3,1 | 1nnOnnn10niuunu0011100uiiuinnuu0inli00un010unniOninuuOuunniun0i1l
Va,3,2 | ulnu01100uiu10u0nuluinnnuiOninnn0011n0nn00uuu100u000uuununn00nn0 | V4 3, | 101unun110nninn1010110n000u0niuudnui0iul10iiunninliiuiuuu0iu0001
V3,2 | 1u0111u10110ununni11ulnnni1u0111000uunn001nn0uu0001111ul1iuluuul | V43,5 | n110nn1uiui01n01luunnunOuiuuu0OunOninuuOunuOnOnOn0iuulinnnnOunnu
Va,4,1 | 1n1nunu00000nn00nnOuluiuuuinniOoniniOuuOu000u01011uuuu0000n0n0nul | Vg 4,1 | 0n0100n000111n00n0100n11nnuu000nuuuOuuudOununiul1011inunuuuiiul
Va,a,2 | un11nnnuOu100001uuunuOn1in1in0110n011011u10n1100n10uunul00nnnnOu | Vy 4., | 0100100111001001101000001101011001010011110100111101001011001011
Ve,a,2 | 1101000111010111001110111101000001100100001100000011011010100100 | Vg,4,» | 1000111010010110011000011110111001000101000101011100100101001111
Va,e,1 | 1100001010110000001011100111101011100011001110111101111111010111 | V. ¢ 4 | 1101000111010111001110111101000001100100001100000011011001011011

hy, | 1101010000111000110101001001001010010001110011011111001000001000

In Table we give the resulting message pair (M’ and M"), the state before introduc-
ing the first message block (Vi;1, Voi1, Veir, and V1) and after introducing the last
message block (Vait2.2, Vhit22, Veirzz2, and Viiisa).

For related keys, we are able to produce an internal collision (Table [6.20)) out of following
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Table 6.18: Message pair and state values for semi-free start collision for SipHash-1-x.

Va1, O135F28F045D3718 | Vi.:,,: OE364DABFA10F2E7 | V. ;. FC3EOBDB4F7D4039 | Va,i-1,: 8ABBI709D124A17B
Vi 1+3,1: C2BO2ETAE33BDFD7 | Vi i4p,50 49C9AOD653D3D2CB | V;, i4p,5: D1D73BD0643036A4 | Vg iip,: SEI661EE4515CI4AF
M!: 5941901COE5CD1D4 | M/,,: 92244D62DB018132 | M/ ,: BC913D81B8671AEB
M. D941901COE5CD1D4 | M/, ,: 7CTA4F2C9D297682 | M/ ,: 73D1C7COF8F784D6

starting point (Table in less than 2 seconds. These two seconds include the search
for a characteristic and the search for a message pair, which follows the characteristic. We
use the same search strategies as for the semi-free-start collision in this section. Note that
the value of the key is completely unspecified in this setting and can be chosen freely by
the attacker during the search for a key pair and message pair.

Table 6.19: Starting point for an inner collision using related keys.

M, | 00000111777777772277777727227777722777777227777772777777 X77PP77777 Ko | 7277777727227777722277777722777 777277777222 77 7777277777 P 2277777777
DT B e S
Va1 | 77777777770777077777 770779777077 707 77077077 70777077927 797 20777 Voii | 777777777707770797777727 707770777077 707 7977 70727077707 797770777
Vira | 727722772272227222722772272227222720772077 22722272277 227 72277277 Vars | 727772772272227222722722272227222720272077 22722272277 227 72277277
Vai,2 | 22000000000 00000 0000000000000 0000000007007 0P 777777777 Vo1,2
‘/::,1,2 ‘/d,i,Q
Va,t,1 Ve,e,1
hy,

In Table [6.20, we give the message pair before padding it and splitting it into the single
message blocks. Also the key is given before splitting it into two words. In addition, we
state the value of the states after the collision happens.

Table 6.20: Message pair, key, and state values (after collision) for an internal collision of
SipHash-1-x.

Key 1: 7E088F32FF04B6CA538F5D779B8977DC
Key 2: 96798B0A7653B2521A32C37EF514ED64
Message 1: 86C505B5809B14
Message 2: A7CA9FB497D682
Va: 78F635011CA7A9D1

Vi 8905C0A44CDC9915

Ve 7848440FC46300C7

Vi 58E4588171C619DB

Although the previous described internal collisions can be applied on more complex ver-
sions of SipHash (because the collision happens before the finalization), we also like to
present an external collision for SipHash-1-0. To create this external collision, we use the
same search strategies as for the semi-free-start collision. Only the starting point differs.
However, creating a collision this way takes a lot longer than creating a semi-free start col-
lision. Nevertheless we were able to create the message pair within 10 minutes (including
search for characteristic and message pair). The message pair, the key and the hash value,
which create an output collision for SipHash-1-0 are given in Table In Table the
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Table 6.21: Message pair, key and MAC value for an external collision (SipHash-1-0).

Key: 00000000000000000000000000000000
Message 1: 6605677E1ED8980C203D1A109A441F
Message 2: 6605677E1ED8980C41357A18B9443F

MAC value: F7C93A4B8F6900E6

message is shown before it is padded and split up into the single message blocks.

To sum up, we can say that the guessing strategy works well if the compression consists
only of one SipRound per iteration. However, we are not able to find any valid collision pro-
ducing characteristics for compressions with two or more SipRounds per iteration (message
block processed).

6.6.2 Impact oriented Strategy

In this section, we present an extension of the strategy of Section Here we try to pick
and refine the bit, which has the biggest impact on the characteristic. Or in other words,
we evaluate the guesses according to the amount of information, which propagates if one bit
is changed. In addition, we can make use of the probability estimation for characteristics.
Because of this estimation, we are able to filter for the best characteristics.

Basic Search Strategy

The following algorithm extends the search strategy given by Mendel et al. in [MNSI3]
and follows in principle the search strategy of Section [6.4f The main difference is that we
do not evaluate a guess according to the resulting probability, we take the amount of 7 in
the characteristic as criterion.
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Let U be a set of bits of characteristic A with condition ?. H is an empty set of charac-
teristics at the beginning. L is a set of characteristics. n is the number of guesses. B- is a
characteristic.
Preparation
1. Generate U from A. Clear L. Set i to 1.
Decision (Guessing)
2. Pick a bit from U.
3. Restrict this bit in A to - to get B-.
Deduction (Propagation)
4. Perform propagation on B-.
5. If B_ is inconsistent mark bit as critical and go to Step 13, else continue.
6. If B_ is not inconsistent and not in H, add it to L.
7. Increment 1.
8. If i equals n, continue with Evaluation. Else go to Step 2.
Evaluation
9. Set A to the characteristic of L with the least amount of ?.
10. Add A to H.
11. If there are no ? in A, output A. After that set A to a characteristic of H.
12. Continue with Step 1.
Backtracking (Correction)
13. Jump back until critical bit can be resolved.
14. Continue with Step 1.

For the algorithm, the same considerations, choice of parameters, and restrictions apply as
for the algorithm presented in Section [6.4, Again, we perform a check, if both possible bit
conditions are still valid after a characteristic is found.

For the search for message pairs, we use the traditional strategy of Section [6.6.1, We have
a search consisting of two phases. In the first phase, all bits with condition x of A,, Ay,
A, Agq, Vo, Vi, Ve, and V,; are added to U,. If U, is empty, we continue with the second
phase. In this phase, we have to add - of A,, Ay, A., Ag, Vi, Vi, Vo, and V; to the set U_.
We pick - with many linear two-bit conditions first. After performing these two phases,
we should have a valid message pair as a result.

Internal Collision

In this section, we handle internal collisions. If the probability of an internal collision is
high enough, we also give the messages and states for a semi-free start collision of the
respective SipHash variant.

First, we want to start with internal collisions for SipHash-1-x. We have achieved the best
result with the biggest impact strategy by using the following starting point. As starting
point, we have used a version of SipHash-1-x consisting of 7 message blocks. The bits of
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the first message block, the key, and the last state values are set to -. The rest of the
characteristic is set to 7. We introduce one difference in a random way by picking a bit
out of all A,, A., V,, and V.. This strategy results in a characteristic with an estimated
probability of 2719 The characteristic leads to an internal collision within 3 message
blocks.

In the second stage of the search, we fix the values of the 3 messages to the values found
before and set the internal state variables to ?. By using the so gotten starting point, we
perform a high probability greedy search like in Section [6.4] This high probability greedy
search results in the characteristic given in Table|6.22], This characteristic has an estimated
probability of 27167,

Table 6.22: Characteristic, which leads to an internal collision with an estimated proba-
bility of 27167,

M,y Ky

M, X K

M; | —XX—XXXX======== X=——=XXXX=====—= XXKKK===== O

My | xxx XXX XXXXX XKXXX
Va,1,1 Vo,1,1
; s
Vei,1 Vai,1
‘/3,1,2 ‘/'b.i.Q
V1,2 Va,1,2
Va2,1 Va,2,1 X
Var2,2 X X Vo,2,2 X
Ve2,2 | === X Va2, | % X===-X x
V. X Vi XXX—XXXX XXX ———-X--X-X

a,3,1 d,3,1
Va,3,2 | X~ X—X-—X—XXXXXX~XX~—X~~X~XXXX~X~~~XXX~~XXXXX~X--——X—XXX--=-=—=——- Vo,3,2 | —x—xx XKX—X 1 XXXXK——X—X
Vesa | ———= XXXXX==X~X X=X===X X=X Va,z,2 | xxx ——XXX XXX===XXXXX
Va,a,1 |~ XXX XXX~ XXXXXXXXX~——XX~~XXXX~XXXX~~X~~XX~XXXXX~~~X~XXX Vi,a1 XXXXX XXX
Va,a,2 | xxx XXX XXXXX xxxxx | Vo 4,2
Ve,a,2 Va,a,2
;

Vae1 Vet1

hi

With the help of the characteristic of Table [6.22] we can produce a semi-free-start colli-
sion. In this case, we are able to prefix the value of V,; 1, and V;,; to 0. The values for
the semi-free-start collision are given in Table |6.23] The message pair can be created out
of the characteristic in seconds. However, we cannot state a time it takes to create the
characteristic, since the best characteristic out of many searches has been selected.

Table 6.23: Message pair and state values for semi-free-start collision for SipHash-1-x.

Va.1,1: 0000000000000000 | Vi ;,;: 0000000000000000 | V; ; ;: OCA2F127F5B7A160 | Vg ;-1,,: SDS8FA9B18E275ED4
Vi 1v3,1° OO74TADAB4A268AS | Vi i4p,20 CDA9COAOB5BIF2AE | V, jup5: B0A5CA3667F1A304 | Vg iip,: 94EDIED23F686622
M CAE3CSDF846F8D00 | M/,,: 18701BS50ESEABAOL | M ,: 21027F74580EOEES
M]". CAE3C8DF806F8D00 | M/, ,: 77709CDO1DCFBAOL | M!,,: C1029F745BEEOEF7

Next, we handle the search for a characteristic, which results into an internal collision for
SipHash-2-x. It turns out that collisions within one iteration are possible. The collision
with the best probability has been found by setting only the bits of one compression it-
eration (including the corresponding message block) to ? and everything else to -. The
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difference is introduced into V.,,2[63]. The best characteristic we have found using this
starting point and the best impact strategy has an estimated probability of 272389 In a
second stage, we use the value for the message block of this found characteristic to perform
a high probability greedy search (Section . With this method, we are able to get the
characteristic of Table [6.24] This characteristic has an estimated probability of 272363,

Table 6.24: Characteristic, which leads to an internal collision with an estimated proba-
bility of 272363,

M | X==XXX—=X==XXX~——XXXXXXX~——XX~XXX~X~~XX~XX~XXXX~—=XX———=X—==XX~— Ky

Ky
Vain Vo1t
Veoi,1 Va,1,1 | X——XXX--X~—XXX~——XXXXXXX~~~XX~XXX~X~-~XX~XX~XXXX———XX~-—--X~——XX——
Va,1,2 | XXX=—XXXX———=X~X=X~-——XX~~X~X~X~XXXX~~XX~XXXXXXXXX———XX—====" x==== | Vp,1,2 | X~X——X—-X-X~-=X———XX~-XXX~———X-=-XXX~—X~X~X~X~XX—---X-———X----X-—
Ve,1,2 | XXX==X=X—X—X—XX===—X——=—X-———X——X~X~~X~—X—X~~X--—XX——XXX----X——- | Vg 1o | XX-XXX~X~-XX~XX~XXXX-——XX~———X-=—XX~~X~~XXX~—X~~XXX~~~XXXXXXX==—
Va,1,3 | X——XXX--X~—XXX~——XXXXXXX~~~XX~XXX~X~~XX~XX~XXXX~——-XX———-X---xx-- | V} 1,3
Ve,1,3 Va,1,3
Vat,1 Vet,1
hi

Using the characteristic of Table we are able to produce the semi-free-start collision
shown in Table [6.25] within 10 seconds.

Table 6.25: Message pair and state values for semi-free-start collision for SipHash-2-x.

Va,i,1: 992E9AATD76CEFOE | V4,,5,1: A17197FCAADF73D4 | V. ;,1: 33E9CBC3EBSE4E32 | Vj i-1,3: 3B5E30192818D15C
Va,i+1,1: 8255CD3D3A2B4213 | V45,30 783B1ADCD7BC413C | V., 3: FAS5B40A895829C5B Va,1,30 230701332727C050
M]: C7DCDE77723E8AD8
M!": 5B40A16CD4EOBA54

Next, we want to give some characteristics which result in an internal collision. Those char-
acteristics are the best we have found using only the best impact strategy. The probabilities
of the following characteristics are too low to successfully produce semi-free-start collisions.

Table 6.26: Characteristic, which leads to an internal collision with an estimated proba-
bility of 273015,

My | x=========-—= X——====== XK=~ XXXXX~XXXX====X XXXXX Ko
M | ———-x K
Vo,1,1
Va1 | x X X~ XXXXX—XXXX~———X XXXKX
X—==XX-==== B XX—X——==X-==-= XX—=—=== X=X==X=—======== x===| Vp,1,2 | X X —X—===X-==-X X=X~-X:
X X ~x-=1 | V4,1,2 | ~X~——XXXXXXX~—X~XX~-————X~XX~X~-—X——==-XXX~——XX~X-XX~XXXX~~XXX~XXX
D X—====-= XX——=XX===X————X-===-= XXXXXXX====~ 0| Vo,1,3 X===== XXXX XX S XK======= XX=—===
0 X-X—XX Vi,1,3 | ————X-=—XX————X-XXX—X—X~XX~= XX X=XXXX
————x-=-X————-= X——====== XXXXXX~XXXKX~~XX~——~] - Vi,21 XX—=——X~XXX~X~X~XX~=~XX X—XXXX
Var2,2 X XX X=X XX Vo,2,2 X XX
Ve,2,2 X Vi,2,2 X
Va,2,3 | —===x Vo,2,3
Ve,2,3 Va,2,3
;
Va,e,1 Ve,e1
hi

In Table[6.26], we can see an internal collision for a compression consisting of two SipRounds
per iteration within two message blocks. This characteristic has an estimated probability
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Table 6.27: Characteristic, which leads to an internal collision with an estimated proba-

bility of 272794,

M, X XXX Ky
K,
Va1 Vo1t
Vc,i,i ‘/:i,i,i X XXX
Va,1,2 | XXXXX—XX———XX~~~XXXXX~XX~-———-XXX XXX—X=—X x=== | Vo,1,2 —-X XXKX
Vei,2 XXXX ——X Vi,1,2 |~ XXX-—XXXXX——=XX———X~~—=X-~XXX——--=-= XXXK~X~~XXXX————X--==X——-
Va1,3 | x—xxx-=---= XXX XXX XX~ XX~ ~XXX~=—X—-XX X-XXX—X XX Vo,1,3 | ——x X== X
Veot,s XXX===X~X X xx=== | Vi,1,3 'S XXX===
Vat,a X XXX 0| Vo,1,a
Vc,1,4 Va,1,4
Vae Vee
hg
—301.5
of 2 .

In Table[6.27 we show an internal collision for a compression of 3 SipRounds per iteration
within one message block (within two message blocks in Table [6.28). For a compression
of 4 SipRounds per iteration within one message block, we show an internal collision in

Table [6.29

Table 6.28: Characteristic, which leads to an internal collision with an estimated proba-

bility of 2-3%.

M, | x Ky

My X K,
‘/a.i.i \/b.i.i
Ve.in Vais | x

e

Va1,2 | X Vooi,2 | x
Ve,i2 * Va2 | % X X-—--X
Vaia | x o X Vo,1,3 | © X===X=X~ X
Ves | - X x x==== | V1,3 | === Xmmmmxmmmmm x %
Va,1,4 | Xx-=%% X===== X X==== X=——— XXX ======= x===x-=== | V},1,4 | ~X~X-XXXXXX~XXXXX~~XXXXXXXXX==K===X==X—===============— XXX-X~X~X
Ve,g,a | ——x——x XXXXX XX—=X~=~X~~XXXXXXX--X~ | Vi 1,4 S S x-
Va,2,1 | —x=-xx L L X===== XXXX======= x===x===1 | Vg 5,1 | Xx———xx----= X==——XX=—==X===—X=———X~XXXXX—=——XXXXX~X=—===—=mmm=m x-
Va,2,2 | x===——==-= XX—X—X——————XXX-X———X~X——XX-——————- X=——XXXXX~==—XX~XXX | Vp 2,2 | ~XXXX-—==—= XXXXXXX === XXX~ XXXXX~X———————- XX——————— Xxxxxx--10
Ve,2,2 | X—XXX-————X~X—XXXX X—XXX X=XXXXX==== | V2,0 | ~X———XXXXX--X-——-X X—XXXX X===
Va2,s X XXKX > X Vo,2,3 xx %
V2,8 X Va,2,3 X
Va,2,4 X Vo,2,4
Ve,2, Vi
/ 7
Vat,1 Veen

hi

Table 6.29: Characteristic, which leads to an internal collision with an estimated proba-

bility of 27328,

My | —xx X Ky
K
7 T
Va1 Vo, 1,1
Ve, Va1 | —xx X
Vaoi,2 | xxx XXX X Vooi,2 | —xx X
Ve, XX X Va,1,2 | xxx XXX XX X—X————X XX====
Va,1,3 | Xx% XX—X X-X——XX XX———=XX X-xxxX | Vo 1,3 | XXX XX—X XX——XXXXX—-———X~X-XXX—X-XX~XXXxx--10
Ve,1,3 | —=X———====X~—X—XX~---XX~XXXXX~~-~X~XX XX—X xx-1 | Va,1,3 | XXXXXX—X~=—XX~—XX~X~~X~~XX~XX~~XX~~——XX XXX
V1,4 | XX—===XXX--X~—~ -X XXX~ x1 | Vp,1,a | xxXXK——— XXX XX
Veota 0-———- XXX X Va,1,a XX X
; 7
Va5 | xx x Vo1,
Vc,i,s Va,i,s
/ /
Vat,1 Ve,e,1
hg
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Internal Collision using Related Keys

In this section, we deal with characteristics, which lead to an internal collision. The addi-
tional freedom we use is to choose the key completely free according to our needs.

For the creation of the best found characteristic for a compression consisting of 2 SipRounds
per iteration (shown in Table , we use a starting point, where we place the difference
in the most significant bit of the first message. The rest of the message, as well as the key
can be chosen completely free. The best characteristic we have found by using the impact
oriented strategy has an estimated probability of 27'% and is shown in Table [6.30]

Table 6.30: Characteristic, which leads to an internal collision with an estimated proba-
bility of 27169,

My | x—===X~-XXX~——X Ky | ——=—X—X——X~-———XX~——XX X====X X X=
K | Xx=—======————X—X~XX~-X~X~X XXX——=-XX X

Va,1,1 | —=——X=X==X-———XX——-XX X====X X x= | Vo,1,1 | X=———————————X-X~XX~X~X~X XXX====XX X

Ve —=--X-X--X~———XX———XX X====X X x= | Va,1,1 | - X~XXX~~~——X~XX~X~X~X XXX~===XX X

c,1,1 d,1,1

Vai,2 XX~XXXX X—XXXX~XXX==—====== x==xxxx-xxxx0 | Vp 1,0 | —=X————=x--x---x X———-X-XXx-—-x---1-

Ve XXXXX~XXX~==X \% X———=X-XXX———K——————=—====—=

c,1,2 d,1,2

Va,1,3 | X====X-xxx---X Vo1,

Ve1,3 Va,i,s

Vit Vee1

hi

Using the collision of the characteristic shown in Table [6.30] and the search strategy for a
valid message and key pair described before, we are able to create the pairs in Table [6.31
To be easier to verify, we have included the MAC value for SipHash-2-4. In addition, we
give the state after the collision happens in the first message block. Again, we cannot
state the time it takes to create the characteristic, because it is the best characteristic out
of many searches. The collision producing message and key pair can be created within
seconds out of the characteristic.

Table 6.31: Message pair, key, state values after internal collision, and MAC value
(SipHash-2-4) for an internal collision of SipHash-2-x.

Key 1: 7F166B32181D1FE4041FA4AODBCD3927
Key 2: 7D1EEB2218055CEE041724415BA73CA7
Message 1: 0C40E5F8510C351DBA045A72064A83
Message 2: 0C40E5F8510CF198BA045A72064A83

MAC value: 20A26EAD9B9855BE
Va: 6B2FCACBF912BB2B
Vi 4CB34F2A06657837
V. 6260226FF75DCB88

Va 45F20251CF5EC6CD
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External Collision

By using the impact oriented search strategy, we are able to improve the results of Sec-
tion [6.6.1 for external collisions.

For creating an external collision for SipHash-2-0, we are using the starting point shown

in Table|6.32. The 4 differences introduced with the message have a distance of 16 to each
other.

Table 6.32: Starting point for the search for an external collision for SipHash-2-0.

M, | 00000111-x: X X X Ky | 0000000000000000000000000000000000000000000000000000000000000000
K7 | 0000000000000000000000000000000000000000000000000000000000000000
M R R R R R e e e T Vo | 7772777772707777777707777727 77777777777 777 7277077077777 27707
Viiy | 277272222722722792720797707227727227207907227227 22727227727 777 77 Vis | 277272222722722792290797792727727222207907227227 22727227727 777 77
Vi1 | 77777279797979797207072707277777797979797 979777272727 27 2727277777 Vi1 | 7777797279797979797070707277777797979797 979777972727 27 2727277777
V1o | 277772727272797272722222222227272727272727 272727272222 22 22277777 V1o | 277772727270707272727227222227272727072727 272727272222 22 22277777
Vs | 277277222722700702700007007227727207227900727 227227272 27227 77777 Viors | 277277222222700702790000707227727227007900727 22722727227 727 77777
Vi s | 77777979797979797072070707277777797979797 779797272797 27 2727277777 Vi1 | 7777797979797979797070707277777797979777 779777972797 27 2727277777
Vier | 272227222292292292297279727727727727972797777277777777 7777772277777 Vo1 | 2777797929297920707070707797979797979797 979707272727 27 2727277777
hi

With the starting point of Table [6.32] we are able to create the characteristic given in
Table [6.33] This characteristic has an estimated probability of 27482 and can be found in
less than one minute. The probability of the characteristic is high enough to perform a
successful search for a message pair that follows the characteristic. In Table such a
message pair is given. This message pair can be found within 10 seconds.

Table 6.33: Characteristic, which leads to an external collision for SipHash-2-0.

M; | 000001110x01 100x 1x0 1x00---- Ky | 0000000000000000000000000000000000000000000000000000000000000000
K, | 0000000000000000000000000000000000000000000000000000000000000000
Va,1,1 | 0111001101101111011011010110010101110000011100110110010101110101 | V44,4 | 0110010001101111011100100110000101101110011001000110111101101101
Ve,1,1 | 0110110001111001011001110110010101101110011001010111001001100001 | Vj 4,5 | 011100110x11 100x 1x1 1x11----
Varn 00 Voor.z | 11111101%x01 011x %%0 1x10-——-
Vein %%0 1x00----00011001xx00 111x Vi
Va,a Vo1, | ———= X====XXX XXXX~XXX XX==XX—=X X====XX~X~==
Ve,i,3 | -~ —xx———xxx% X==X—==X x=x=== | Vq,1,3 | =—===x X X X
Vit X X X X Ve,e,1 | -~ —xx———XxxXX X==-X=-=-X X=X===
hy

Table 6.34: Message pair, key and MAC value for an external collision (SipHash-2-0).

Key: 00000000000000000000000000000000
Message 1: 87DDIFC7153613
Message 2: C7DDDFC7553653

MAC value: E401F7FAB8FC092F

6.7 Summary of the Results

In this chapter, we have shown various results. We have found non-linear characteristics
in Section [6.4] which improve the results of Aumasson and Bernstein (Table and Ta-
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ble[3.1)). Moreover, we are able to present a characteristic, which can serve as distinguisher
for the finalization of the proposed version SipHash-2-4.

The best results of the search for collisions are the characteristics for SipHash-1-x (Ta-
ble and SipHash-2-x (Table , which result in an internal collision. Especially the
colliding characteristic for SipHash-1-x has a quite high probability of 27167, which is not
far away from the bound of 2728, where such a characteristic gets useful in an attack.

We are not able to threat SipHash-2-4 and SipHash-4-8 with our results. Nevertheless,
these results provide some insight into the security of SipHash.



Chapter 7

Summary and Future Work

In this thesis, we have analyzed the Message Authatication Code SipHash proposed by
Aumasson and Bernstein in [AB12]. Before we go into a detailed discussion of our results,
we want to give an overview of them.

In [ABI2], Aumasson and Bernstein give the best linear characteristics they have found.
However, the probabilities of those characteristics are not high enough to be used in an
attack. In Section we show non-linear characteristics, which compete with the linear
characteristics of Aumasson and Bernstein. Although the probabilities of our non-linear
characteristics are not high enough to threaten SipHash-2-4, we are able to improve the
results of Aumasson and Bernstein.

Another remarkable result is the discovery of a distinguisher for the finalization of Sip-
Hash-2-4. With the help of this four round characteristic, we are able to distinguish the
finalization of SipHash-2-4 from an idealized version. This distinguisher has been discov-
ered without the use of any automatic search tool.

Furthermore, we have found characteristics resulting in an internal collision for SipHash-1-x
and SipHash-2-x. As far as we know, such characteristics have not been published yet. The
probability of the characteristic for SipHash-1-x is 27157 and the probability of the charac-
teristic for SipHash-2-x is 272363 At least one of those characteristics is not that far away
from the bound of 27'%® where such a characteristic can be useful in attacks.

When considering SipHash as a hash function, we have been able to create internal collisions
using chosen related keys and semi-free-start collisions for SipHash-1-x and SipHash-2-x.
Messages (keys), which result in an internal collision can be produced within seconds out of
characteristics. Note that the generic complexity of SipHash is 212 for an internal collision.

Now we start with a more detailed discussion. We have gone into the analysis of SipHash,

with the hope that we are able to draw benefits from the new propagation abilities of
the automatic search tool developed by Mendel et al. [MNSI1b]. These abilities are the

80
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possibility to group ARX operations to steps of any size and the ability to improve the
information exchange between single steps by using two-bit conditions. However, these two
abilities lead to an enormous amount of different descriptions for SipHash. In fact, it is
rather easy to quantify the propagation quality of these different versions of SipHash. The
problem is to figure out, which one improves a specific search for a characteristic. We have
experienced this problem while searching for collisions by using the traditional strategy of

Section

We have started our analysis of SipHash with the search for collisions using the traditional
strategy (Section in a simple setting, where no secret key is used. After finding col-
lisions for rather simple versions of SipHash, which have the smallest possible compression
of one SipRound per iteration (message block processed), we have not succeeded in finding
collisions for compressions consisting of two or more SipRounds per iteration. At this point,
we have tried a lot of different descriptions of SipHash. However, we have not been able to
find a collision for SipHash-2-x regardless of the choice of the description. This may arise
from the fact that SipRounds are of a rather low complexity, whereas the requirements on
the form of the characteristic to achieve an internal collision are quite high. Besides the
different representations of SipHash, we have focused on other parameters, which can be
varied using the traditional strategy. We have tried various strategies of guessing bits from
words using different heuristics (guess bits more likely from a specific word), and different
starting points for the search. However, we have not been successful in finding any col-
lision for a compression with two SipRounds per iteration using the traditional strategy.
Nevertheless, we have found such collisions after switching to the so called impact oriented
strategy described in Section [6.6.2]

With the help of the impact oriented strategy, we have been able to find collisions for more
complex versions of SipHash. From our point of view, the performed evaluation of the
guesses ensures that the search for the characteristic is not more complex as needed. With
this term, we mean that when using the traditional strategy with just random guesses,
bits are often guessed in areas, where nothing happens (propagates). This may create
holes in the characteristic, where we cannot benefit from the carry effects of the modular
addition anymore. With the help of the probability estimation, we have been able to find
characteristics, which result in an internal collision with rather low probability. Especially
the characteristic, which leads to an internal collision for SipHash-1-x in Table [6.22] is not
that far away from the bound of 27128, where it starts to improve attacks. The introduc-
tion of a decent probability estimation makes also other types of greedy algorithms feasible.

By using the search strategy pictured in Section [6.4] we have been able to search for gen-
eral non-linear high probability characteristics and distinguisher. With the help of this
search strategy, we have been able to find much better characteristic than Aumasson and
Bernstein in [AB12]. Even tough our results do not threaten the security of SipHash, they
give insights on the security margin of the MAC.
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It is part of future work to use the strategies described in this thesis on other hash or MAC
functions. It would be interesting to see, how these strategies perform on functions with
a much more complex permutation (e.g. Keccak). Furthermore, those strategies are quite
simple and further improvement should be possible.
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