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Abstract

Radio-frequency identification (RFID) technology becomes more and more interesting for
safety-related applications. Such applications, like e-passports or access control require a
secure authentication process to check if the RFID tag and the corresponding product is
valid or counterfeit. The elliptic-curve digital signature algorithm (ECDSA) uses asym-
metric cryptography to generate a digital signature which can be used for authentication.
An advantage of elliptic-curve cryptography (ECC) is the short key length in comparison
to other public-key systems like RSA. Therefore, ECC is well suitable for RFID applica-
tions.

In this thesis, we design an elliptic-curve processor with full ECDSA functionality. This
ECDSA implementation is based on the recommended FP160 Standards for Efficient Cryp-
tography Group (SECG) elliptic curve SECP160r1, which has only 160 bits in contrast to
the smallest recommended National Institute of Standards and Technology (NIST) elliptic
curve with 192 bits. This 160-bit elliptic curve is well suitable for a low-area implementa-
tion. In order to fulfill the fierce constraints with respect to power consumption and chip
area, we use a 16-bit datapath. Therefore, an implementation of all required algorithms on
word level is necessary. Additionally, we implement a new field-multiplication algorithm
with implicit fast reduction modulo the special prime FP160. Furthermore, this is basically
the first ECDSA implementation in hardware, which is optimized for low power and low
area and which uses the prime SECP160r1 from SECG.

This hardware module consists of four submodules. A memory module, which com-
prised a latch based 90 × 16-bit dual-port RAM, a 83 × 16-bit ROM, and a 10 × 16-bit
EEPROM. The main part of the arithmetic-logic unit is a 16×16-bit multiply-accumulate
unit, which can calculate a 16 × 16-bit multiplication and a 36-bit addition within one
clock cycle. We use a hybrid control-unit architecture, which means that our controller
consists of a finite-state machine and also micro-coded parts. An AMBA interface is used
for interconnection with other hardware modules.

The ECDSA module has been synthesized by using digital standard-cells from c35b4
CMOS libraries published by Austriamicrosystem AG. Our module requires a chip area
of 18 315 GE and can generate an ECDSA digital signature within 510 831 clock cycles.
The power consumption has been ascertained by using a near-spice simulator at which
one signature-generation operation requires 1 108.0µW@1 MHz with a supply voltage of
3.5 V.

Keywords: ECDSA, electronic signature, RFID, elliptic-curve cryptography, prime-field
arithmetic, low-power processor, low-area processor, SECP160.
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Kurzfassung

Radiofrequenz-Identifikationstechnologie (RFID) wird auch für sicherheitsrelevante An-
wendungen immer interessanter. Solche Anwendungen, wie elektronische Reisepässe oder
Zugangskontrollsysteme, benötigen ein sicheres Authentifizierungsverfahren um überprü-
fen zu können ob ein RFID-Transponder und das dazugehörige Produkt gültig oder ge-
fälscht sind. Der Algorithmus zur Erstellung digitaler Unterschriften mithilfe elliptischer
Kurven (ECDSA) verwendet asymmetrische Kryptografie um eine digitale Unterschrift,
welche zur Authentifizierung verwendet werden kann, zu erstellen. Ein Vorteil der ellipti-
schen Kurven Kryptografie (ECC) ist die kürzere Schlüssellänge im Vergleich zu anderen
Verschlüsselungssystemen mit öffentlichem Schlüssel, wie RSA. Daher ist ECC für den
Einsatz in RFID Anwendungen gut geeignet.

In dieser Masterarbeit designen wir einen Prozessor für elliptische Kurven mit voll-
ständiger ECDSA funktionalität. Diese ECDSA-Implementierung beruht auf der von der
Gruppe für Standards für effiziente Kryptografie (SECG) empfohlenen elliptischen Kur-
ve SECP160r1, welche nur 160 bits im Gegensatz zur kürzesten empfohlenen ellipti-
schen Kurve des Nationalen Instituts für Standards und Technologie (NIST) mit 192 bits
hat. Diese elliptische Kurve mit 160 bits ist gut für eine flächensparende Implementie-
rung verwendbar. Um die anspruchsvollen Auflagen, bezüglich Leistungsbedarf und Chip
Fläche erfüllen zu können, verwendeten wir einen 16-bit Datenpfad. Somit ist eine Imple-
mentierung aller benötigen Algorithmen auf Wortebene nötig. Zusätzlich implementierten
wir einen neuen Feld-Multiplikationsalgorithmus mit eingeschlossener schneller Reduk-
tion modulo der speziellen Primzahl FP160. Darüber hinaus ist das die erste ECDSA-
Implementierung in Hardware, welche auf einen geringen Leistungsbedarf und einen gerin-
gen Flächenbedarf optimiert ist und die die Primzahl SECP160r1 von SECG verwendet.

Diese Hardwarebaugruppe besteht aus vier Untermodulen. Einer Speicherbaugruppe,
welche ein auf Latch basierendes 90×16-bit RAM mit zwei Anschlüssen, einen 83×16-bit
ROM und einen 10 × 16-bit EEPROM beinhaltet. Das gröte Element im Rechenwerk ist
eine 16× 16-bit Multipliziereinheit, welche eine 16× 16-bit Multiplikation und eine 36-bit
Addition in einem Taktzyklus rechnen kann. Wir verwenden eine Kontrolleinheit mit einer
gemischten Architektur, welche sowohl aus einem endlichen Zustandsautomat als auch aus
einem speicherprogrammierten Teile besteht. Als Verbindung zu anderen Baugruppen wird
eine AMBA-Schnittstelle eingesetzt.

Die ECDSA-Baugruppe wurde unter Verwendung von digitalen Standardzellen aus
der CMOS Bibliothek c35b4, herausgegeben durch die Austriamicrosystem AG, aufgebaut.
Diese Baugruppe benötigt eine Modulfläche von 18 315 GEs und kann eine ECDSA digitale
Unterschrift in 510 831 Taktzyklen erzeugen. Der Leistungsbedarf wurde mit Hilfe eines
spice-nahen Simulators ermittelt, wobei ein Arbeitsvorgang zur Unterschriftenerzeugung
1 108.0µW@1 MHz bei einer Versorgungsspannung von 3.5 V benötigt.
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Chapter 1

Introduction

This thesis presents the design and implementation of an elliptic-curve processor which
can generate an elliptic-curve digital signature. In the first section of this chapter, we give
a motivation for this work. In the second section, we present our contribution to this topic
and give an outline of the following chapters.

1.1 Motivation

Radio-Frequency Identification (RFID) technologies become interesting for more and more
areas in our daily life. They are not only used for anti-theft protection systems and
inbound and outbound logistic systems but also for door-locking applications, micro-
payment systems, or anti-counterfeiting purposes. An RFID system mostly consist of
an RFID transponder (a tiny microchip attached to an antenna) and a reader. Usually
a so called passive RFID transponder is used for door-locking applications and micro-
payment systems, which means that only an electromagnetic field is used to supply the
RFID transponder with power and to communicate with it. This electromagnetic field is
generated by the reader and only RFID transponders which are in the reading range of the
reader can be used. The reading range varies from a few millimeters up to three meters for
passive transponders but the power which is available on the RFID transponder decreases
sharply with distance to the reader. Consequently, an RFID transponder should need less
power as possible. Most RFID applications, like for anti-counterfeiting purposes, require
a high number of transponders. Therefore, transponders should be as cheap as possible to
be applicable in practice. The microchip on a transponder should meet low-area require-
ments, because the price of an RFID transponder corresponds directly with the required
area of the microchip.

If we use RFID technology for security-related applications, such as door-locking ap-
plications, micro-payment systems, or anti-counterfeiting purposes, then a cryptographic
secure authentication protocol is required. That can be done by using symmetric or asym-
metric cryptography. Symmetric cryptography means that all members of the authentica-
tion protocol (prover and verifier) use the same cryptographic key and they can use them
for signing or verifying operations. In contrast to symmetric cryptography, asymmetric
cryptography uses an associated key pair which consist of a private key and a public key.
The public key can be used by everyone for verification purposes, but only the prover
knows his own private key and can use it for signing operations. Therefore, asymmet-
ric cryptography is a good choice for an authentication system which is used by a lot of

1



CHAPTER 1. INTRODUCTION 2

members, because the key distribution and the key management is easier. But asymmetric
cryptography is much more intricate than symmetric cryptography, because the algorithms
which are used for asymmetric cryptography are mostly more complex. There exist many
cryptographic principles, which use asymmetric cryptography, but currently only two are
mostly used. These two are RSA and elliptic-curve cryptography (ECC). An advantage
of ECC is the shorter key length in comparison to RSA. Elliptic-curve cryptography with
a key length of 160 bits is as secure as RSA with a key length of 1024 bits, cf. [46]. A
second advantage of ECC is that a more efficient hardware implementation in comparison
to established RSA implementations are possible. Therefore, elliptic-curve cryptography
is a good choice for an authentication system in combination with RFID technology.

This thesis focuses on an authentication and confidentiality system which requires low
power and low area to fulfill RFID-system requirements. So far, the field of research in
case of elliptic-curve cryptography, which is optimized for low-power and low-area imple-
mentations, goes into two directions. The first one implements only basic elliptic-curve
operations with arithmetic in a binary finite field, like F2163 , but they did not implement
a digital signature-protocol. Some examples of such implementations are given by Hein
et al. [25] and Lee et al. [38], which implemented an identification scheme. The second
direction goes towards a full ECDSA implementation by using elliptic-curve cryptography
with arithmetic in a prime finite field. Such implementations are shown by Wolkerstorfer
et al. [56], Auer [4], Hutter et al. [26], and Wenger et al. [54]. They all used the prime field
FP192, which is the smallest recommended prime standardized by the National Institute
of Standards and Technology (NIST) [45]. This prime has a special characteristic which
allows to implement a fast reduction algorithm, the so-called NIST reduction [45].

In our work, we use an elliptic curve which is defined over the prime field FP160. This
elliptic curve is standardized by the Standards for Efficient Cryptography Group (SECG)
[48] and has only 160 bits, instead of 192 bit of the smallest NIST elliptic curve. Therefore,
this prime from SECG should be better for a low-area optimized implementation and we
think the security level of 80 bits should be reasonable for passive RFID systems. At first,
it is necessary to evaluate the prime field FP160, because there exist no fast reduction algo-
rithm in the literature. But the prime FP160 belongs to the family of generalized Mersenne
numbers and Jerome Solinas [53] proposed a technique to find a fast reduction algorithm
for this group of primes. Afterward, we implement the full ECDSA digital signature al-
gorithm, which uses the elliptic curve from SECG. Table 1.1 gives a brief overview of our
implementation results. At last, we compare our implementation results with existing re-
sults to find advantages or disadvantages of this elliptic-curve implementation. This work
is the first one which uses the elliptic curve FP160, for a low-area and low-power optimized
hardware implementation.

Table 1.1: Summarization of our results VDD = 3.3V.

Technology
Area Runtime Power fmax

[µm2] [#GE] [cycles] [µW] [MHz]

ECDSA 0.35µm AMS 1 007 334 18 315 510 831 1 108.0@1 MHz 70
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1.2 Outline

Chapter 2 gives a brief introduction into RFID. There is a short description about con-
struction formats, energy supply, and reading ranges of RFID systems.

Chapter 3 presents the elliptic-curve digital signature algorithm (ECDSA) and gives
some introduction about key generation. Additionaly, we present two other identification
schemes and discuss some advantages and disadvantages of these three protocols.

The following Chapter 4 gives some information about finite fields. Here, we discuss
different algorithms for basic arithmetical operations in finite fields and we present a fast
multiplication algorithm for the special prime FP160. The central part of Chapter 4 gives
information about elliptic curves and arithmetic on elliptic curves. It presents all used
algorithms for elliptic-curve arithmetic and discusses some improvements which we have
done. Chapter 4 is closed by a short introduction into the secure hash standard (SHA-1),
because SHA-1 is defined as hash function for the ECDSA digital-signature algorithm.

In Chapter 5, we give a detailed description of the implementation process and the used
architecture. First, there is an overview of the user interface and the I/O specification of
the ECDSA processor. Afterwards, we discuss different memory architectures and present
the datapath, the main components of the arithmetic-logic unit (ALU) and the control
machine. Also some information about side-channel attacks and methods for low-power
optimization are given. Chapter 5 is closed by presenting the results of our ECDSA module
implementation and we compare our implementation with other related work.

Chapter 6 concludes this thesis and gives some aspects for optimizations and future
work.



Chapter 2

Radio-Frequency Identification

Radio-Frequency Identification (RFID) becomes interesting for more and more areas like
automatic-identification techniques, inbound and outbound logistics, product tracking or
authentication techniques. The market for RFID technology becomes bigger and bigger
every year and this technology finds its way into a lot of new areas. This chapter gives
you a briefly introduction into the RFID technology and different RFID systems.

2.1 Introduction

RFID is a general term for all HF-frequency based techniques to transfer data and power
contactlessly between a reader and a tag. If we use RFID technology for door-locking
applications or micro-payment applications, a secure authentication process is required.
An RFID system consist of two parts, first the RFID reader and the application and second
one or more RFID tags. Figure 2.1 shows a schematic of a basic RFID system. The aim of

Figure 2.1: Schematic of a basic RFID system.

4
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the reader is to supply the RFID tags with power and to communicate with them. There
exist different transmission techniques for communication with one or more tags or to
supply them with energy. The second part of the RFID system is the tag or transponder,
which is the mobile part of the RFID system. In the following sections, we give more
information about RFID tags, construction formats, energy supply, and communication
ranges and frequencies. For more information on this topic we refer to [18].

2.2 RFID Tag

Figure 2.2 is from [18] and gives you an overview of an RFID transponder layout. This
transponder could be placed on an object which should be identified. The construction
format of the housing can be chosen depending on the application. We can separate an
RFID tag into three big parts. The coupling element or antenna, the housing, and the
microchip. Figure 2.3 shows the block diagram of an RFID chip. This RFID chip can
be also divided into two parts, an RF front-end module and a module which include the
functionality of the RFID tag, including cryptographic modules like ECDSA. The RF
front-end module consists of two sub-modules, an analog front-end and a digital front-
end. The analog front-end includes the High-Frequency Modulator (HF-Modulator) with
control functionality, a clock-generation unit and power-supply system which attend all
other parts of the transponder with energy. All operations for communication, like the
header control, the data extraction, the return-link modulation and the encoder are parts
of the digital front-end sub-module. Therefore, the RF front-end module includes all
functionalities to receive and transmit data over a radio channel. The functionality of
the RFID tag comprises the right block in Figure 2.3. It can be a simple memory, if the
transponder has only storage functionality, it can be a complete microprocessor, which
can generate a full ECDSA digital signature (like it is in the case of many e-passport
applications).

2.2.1 Construction Formats

The design or construction format of a transponder depends mainly on the antenna. There
exist many different construction formats, today. The following enumeration presents the
most popular designs and gives a short description of different application areas. The

Figure 2.2: Basic layout of an RFID transponder [18].
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Figure 2.3: Block diagram of an RFID chip.

information about construction formats are from [16, 18, 35].

� Glass Housing: The main application area of glass transponders are the identifi-
cation of animals. These glass tubes have a length of just 12 mm to 22 mm and get
injected under the skin. Figure 2.4 shows a glass transponder. The coil and the ferrit
rod are parts of the antenna. To ensure a smooth supply current, a chip capacitor
is used and the functionality is implement in the chip.

� Keys and Key Fobs: Here, the transponder is used for door-locking applications
or micro-payment applications. It is integrated into a mechanical key or a key fob.
These transponders mostly have to fulfill very high security requirements, if they are
part of an office-access system, for example. Figure 2.5 shows one example of a key
fob transponder taken from [18]

� Contactless Smart-Cards: has the same format as smart cards with galvanic
connections or credit cards. They are also used for door-locking applications or
micro-payment applications. The advantage of this construction format is the size,
because they can use a bigger antenna which is better for an inductively coupled
system.

� Smart Labels: are paper-thin transponders which are applied to a plastic foil of
just 0.1 mm thickness. The plastic foil is adhere to a layer of paper in den most cases.
This construction is thin and flexible and so it could be attached to a luggage, a book,
or all other types of products as a self-adhesive label. Figure 2.7 shows an RFID

Figure 2.4: Layout of a glass transponder [18].
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Figure 2.5: Example of a key-fob transponder [18].

chip with antenna on a plastic foil and Figure 2.6 shows a smart-label transponder
for luggage tracing and identification (both taken from [18]).

2.2.2 Energy Supply

Another possibility to classify transponders is their energy supply. There exist passive
transponders and active transponders. A passive transponder has no energy-supply unit
on the tag. Consequently, the power which is required by the RFID chip is provided by
the reader in type of a magnetic field or an electromagnetic field. If the transponder is
not in the reading range of a reader, no power supply is available. Figure 2.8 shows the

Figure 2.6: A smart-label on a luggage
[18].

Figure 2.7: A smart-label transponder
[18].
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Figure 2.8: Block diagram of a passive transponder [18].

Figure 2.9: Block diagram of an active transponder [18].

energy flow of a passive transponder. The flow P1 in Figure 2.8 means the electromagnetic
energy which is provided by the reader. The transponder needs the energy Pchip to supply
all modules, like a cryptographic chip and the RF front-end module with power. Only
the energy difference P1 − Pchip can be used to transmit data back from the transponder
to the reader. In contrast to the passive transponder, an active transponder uses a
battery to supply the module with power. Figure 2.9 shows the energy flow of an active
transponder. Here, the full energy P1 is used to transmit data back from the tag to the
reader. Therefore, the electromagnetic field of the reader can be much weaker, because
it is only used for communication. But both types of transponders can not generate a
high-frequency signal from its own. They have to modulate the reader field to transmit
data from the RFID tag to the RFID reader.

2.2.3 Frequency and Reading Range

The reading range of an RFID system goes from a few centimeter up to 10 meter. De-
pending on the reading range, different frequencies are used. In the following, we give a
short description of different reading ranges and frequencies [16, 18, 49].

� Closed-Coupling Systems are RFID systems with a range up to one centime-
ter and frequencies up to 30 MHz. They use electrical fields or magnetic fields to
communicate between reader and tag. The small distance between reader and tag
make a high-energy transfer possible. Closed-Coupling systems are mostly used for
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high-security applications.

� Remote-Coupling Systems have a reading reading range up to one meter. They
use inductive coupling for communication and energy transport and the mostly used
frequencies are 135 kHz and 13.56 MHz. Remote-Coupling systems are the most
widely used RFID systems, used for example for anti-theft protection, time recording,
or access control.

� Long-Range Systems have a reading range up to 3 meters for passive transponders.
If active transponders are used, a reading range up to 10 meters is possible. They use
frequencies in the range of Ultra-High Frequency (UHF), like 868 MHz, or microwaves
like 2.45 GHz or 5.8 GHz. These systems are mostly used for product-tracing systems
and stock-management system.

Figure 2.10 shows the frequency spectrum of RFID applications. The following enumera-
tion presents the four most used frequency groups.

� Low Frequency (LF): LF means frequencies about 100 kHz to 135 kHz. This
frequencies are for large ranges and low-cost transponders. An advantage is the
low-power consumption due to the lower clock cycle and the low-absorption rate in
nonmetallic materials and water. Such transponders are used for animal identifica-
tion, as example.

� High Frequency (HF): The HF frequency 13.56 MHz is mostly used for high-speed
and high-end applications or medium-speed and low-end applications. An advantage
is that this frequency can be used worldwide as an Industrial, Scientific and Med-
ical (ISM) frequency. The high clock frequency allow complex applications which
requires a lot of clock cycles and also data-transmission rates between 106 kbit/s and
848 kbit/s are possible.

� Ultra-High Frequency (UHF): These frequencies can not be used worldwide, be-
cause several countries use different frequencies, like 868 MHz in Europe, or 915 MHz
in the USA. UHF frequencies can only be used for short-range devices, because
buildings and other obstacles evoke a strong dampening and high reflection of this
frequencies.

� Microwave (MW): These two frequency ranges (2.45 GHz and 5.8 GHz) are also
be used by amateur radio and radio-location services. The behavior respective
dampening and the reflection are the same as for UHF frequencies. Typical ap-
plications for these frequencies are movement sensors, telemetry transmitters, or
wireless-networking systems.
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Figure 2.10: Frequency spectrum of RFID systems.



Chapter 3

Authentication Protocols

Today, RFID tags are increasingly used for product identification in place of bar codes.
These tags can also be used for product tracking and anti-counterfeiting purposes. This
chapter deals with RFID tags for anti-counterfeiting and presents three different authen-
tication protocols. First, we describe the ECDSA protocol implemented in this thesis.
Second, we describe two other protocols, which are also based on the Elliptic-Curve Dis-
crete Logarithm Problem (ECDLP). Both protocols are based on identification schemes.
We will discuss advantages and disadvantages of these three protocols.

3.1 Introduction

Authentication protocols are used to prove the identity of an user, or in our case an RFID
tagged product. An authentication protocol which is used for anti-counterfeiting purposes
must have some fundamental characteristics, cf. [37]. The following enumeration shows
some important characteristics:

� Scalability: means, that the computational workload of the verifier should not
increase linearly with the number of RFID tags. Because a modern RFID system
has to support many RFID tags.

� Anti-cloning means, that an attacker can not impersonate a tag. It should not
be possible to make a clone of an RFID tag. It is important to implement some
countermeasures which prevents the extraction of secret information.

� Replay attack: means, that it should not be possible to use a message or some parts
of a message to fulfill a valid authentication process, without the private key is known.
A countermeasure to prevent replay attacks is the usage of session tokens. These
are one-time tokens and they have to been generated randomly at every protocol
run. The ECDSA identification protocol, which we use for our RFID tag, fulfill this
requirement.

� Privacy or anonymity: means, that an RFID system should be secure against
tracking attacks. It is a privacy problem, if some part of a message, which is trans-
mitted from tag to the reader is fixed or predictable. An attacker could use this
message to track a tag, and hence its owner too.

� Availability: means that an RFID system has to guarantee a minimal continuity of
service. There exist some attacks, like jamming attacks or denial-of-service attacks,

11
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which prevent the communication between reader and tag. Therefore, it is important
to implement some countermeasures against these types of attacks.

� Side-channel resistance: means a requirement to prevent the extraction of secret
information. Side-channel attacks are one frequently used type of attack to extract
secret information from an RFID tag and consequently to impersonate it. Therefore,
it is important to use algorithms which include some countermeasures against side-
channel attacks.

In generally, attacks could be divide into active attacks and passive attacks. Passive
attacks means that the attacker can only observe the communication between reader and
tag, but it could not influence the communication. In an active attack, like replay attack,
or denial-of-service attack, the attacker can influence the communication between reader
and tag.

In the next sections, we will discuss three protocols. The ECDSA algorithm, Schnorr’s
identification scheme, and Okamoto’s identification scheme. These three algorithms differ
in the message exchange between reader and an RFID tag. They also have a different
computational complexity.

3.2 Elliptic-Curve Digital Signature Algorithm (ECDSA)

The ECDSA digital signature algorithm was proposed by the American National Standards
Institute (ANSI) in the year 1998, cf. [3], as a new digital-signature algorithm for the
financial service industry. They defined SHA-1 as a hash function which should be used.
They also provided some criteria for key generation and secure usage of the ECDSA digital
signature algorithm. The ECDSA authentication protocol can be used to prove the identity
of the signer (identification scheme) or authenticate a message (signature scheme).

The ECDSA digital signature algorithm uses asymmetric cryptography to prove the
assurance of the signer. Algorithm 3.1 shows this algorithm, which was proposed by ANSI
[3]. The first step is to generate a cryptographic secure random number, which is called
the ephemeral key k. At next, a scalar multiplication is performed. This second step is

Algorithm 3.1 ECDSA digital signature generation, cf. [3].

Require: domain parameter D = (q, FR, a, b,G, n, h)
Require: private key d of an associated key pair (d,Q)
Require: message m
Ensure: signature values (r, s)
1: select a random k, with 1 ≤ k ≤ n− 1
2: (x1, y1) = k ·G, convert x1 to an integer x̄1
3: r = x̄1 mod n
4: k−1 mod n
5: e = SHA− 1(m), where e is an integer
6: s = k−1 · (e+ d · r) mod n
7: if (r = 0) ∨ (s = 0) then
8: goto step 1
9: end if

10: return (r, s)
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Algorithm 3.2 Key pair generation, cf. [24].

Require: domain parameter D = (q, FR, a, b,G, n, h)
Ensure: public key Q, private key d

select a random d, with 1 ≤ d ≤ n− 1
Q = d ·G
return (d,Q)

Figure 3.1: Authentication protocol with ECDSA.

the most time intensive part of the whole ECDSA signature-generation process. SHA-1
is used as a hash function to generate a fingerprint of the message m. The long-time
public-private key pair is only used in step six of Algorithm 3.1. An algorithm to generate
an associated key pair is shown in Algorithm 3.2, cf [3, 24]. This algorithm uses the same
domain parameter as Algorithm 3.1 and d means the private key. Figure 3.1 shows the
authentication protocol message exchange which uses ECDSA according to the ISO 9798-3
standard. In the first step, the prover or in our case the RFID tag transmits a certificate
to the verifier, which includes the public key Q. This certificate is signed by a trusted
third party and could get validated by the verifier. If the certificate is valid, then the
verifier transmits a message m to the prover. The prover executes the ECDSA digital
signature algorithm and sign the message m. In the third step, the prover transmits the
signature values r and s back to the verifier. Now, the verifier uses Algorithm 3.3 to verify
the signature values. If the signature is valid, then the authentication process is finish and
the prover is accept, else the prover is reject.

3.3 Schnorr’s Identification Scheme

In 1991, Claus Peter Schnorr, [52] proposed an other authentication protocol, which is
based on an identification scheme. Figure 3.2 shows the message exchange of Schnorr’s
identification scheme. One execution of this protocol requires a set of parameters and
arrangements. We present this parameters in the following enumeration:

� Domain parameters of the elliptic curve D = (q, FR, a, b,G, n, h), where q means
the finite field, a and b are parameters which characterize the elliptic curve, G is the
base point, and n is called the order of the elliptic curve. This parameters have to
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Algorithm 3.3 ECDSA digital signature verification, cf. [24].

Require: domain parameter D = (q, FR, a, b,G, n, h)
Require: public key Q of an associated key pair (d,Q)
Require: message m, signature values (r, s)
Ensure: valid or rejected signature
e = SHA− 1(m), where e is an integer
w = s−1 mod n
u1 = e · w mod n, u2 = r · w mod n
X = u1 · P + u2 ·Q
if X =∞ then

return reject signature
end if
v = x̄1 mod n, with x̄1 is x1 converted to an integer
if v 6= r then

return reject signature
else

return accept signature
end if

be fixed in case of identification.

� Similar to ECDSA, the prover requires a private secret a, such that Z = −a · G,
where G is the base point and Z is the public part of the key pair, similar to ECDSA.

The prover generates, in the first step a secure random number r, which is similar to the
ephemeral key in ECDSA. Afterwards, the prover calculates a new point X with X = r ·G
and transmits the coordinates of this point to the verifier. In the second step, the verifier
generates a random value e and transmits it to the prover. Now the prover calculates y,
where y = a ·e+r mod n and transmits this value back to the verifier. At last, the verifier
can check the identification process by calculating y ·P +e ·Z = X. If y ·P +e ·Z equals to
X then accept the prover, else reject it. From a security point of view, there are the same
critical operations as already described for ECDSA. The two critical operations are the
point multiplication r ·G and the multiplication a · e mod n. In order to prevent attacks

Figure 3.2: Schnorr’s identification scheme [34].
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on this operations, secure algorithms can be used, like the Montgomery ladder algorithm
or the Montgomery multiplication algorithm.

3.4 Okamoto’s Identification Scheme

In 1993, Tatsuaki Okomoto, [47] proposed an identification scheme which has same ad-
vantages as Schnorr’s identification scheme. This identification scheme is also resistant
against active attacks and concurrent attacks, cf. [5, 34]. Figure 3.3 shows the message
exchange of Okamoto’s identification scheme. One execution of this protocol requires a set
of parameters and arrangements. We present this parameters in the following enumeration:

� Domain parameters of the elliptic curve D = (q, FR, a, b,G1, G2, n, h), where q
means the finite field, a and b are parameters which characterize the elliptic curve,
G1 and G2 are two base points and n is called the order of the elliptic curve. This
parameters have to be fix in case of authentication.

� This protocol uses a private key pair (s1, s2), which consists of two secure random
numbers. The corresponding public key Z can be calculated with Z = −s1·G1−s2·G2

At first, the prover generates two secure random numbers r1 and r2, which have the same
functionality as the ephemeral key in case of ECDSA. Afterwards, the prover calculates
X = r1 ·G1+r2 ·G2 and transmits the result X to the verifier. In the next step, the verifier
generates also a secure random number e and transmit this value to the prover. Now, the
prover calculates two values y1 and y2, where yi = ri + e · si mod n and i ∈ {1, 2},
and transmit both values to the verifier. The verifier can use all this information to
identify the prover. If y1 · G1 + y2 · G2 + e · Z = X, then accept the prover, else reject
it. In contrast to ECDSA authentication protocol and Schnorr’s identification scheme,
Okamoto’s identification scheme requires two point-multiplications instead of one point
multiplication. Consequently, Okamoto’s protocol requires much more clock cycles for one
protocol exchange, because the point multiplication is the most time intensive part. From
a security point of view, this protocol has the same critical operations such as we described
for the Schnorr’s identification scheme and the ECDSA authentication protocol.

If only identification is required, the advantage of Schnorr’s and Okamoto’s identi-
fication scheme is, that they require no hash function. But this fact has only a small

Figure 3.3: Okamoto’s identification scheme [34].
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impact to the size of the module area, if a prime field is used. Because almost all func-
tionality and also the memory requirements are determined by the scalar multiplication
algorithm, which is equal for all three protocols. With the exception, that Okamoto’s
protocol requires much more clock cycles.



Chapter 4

Mathematical Basics for ECDSA

Modern cryptographic systems use mathematical principles to ensure their safety. All
algorithms are used there, defined in terms of arithmetic operations. This chapter describes
all algorithms and mathematical basics which are required to generate an ECDSA digital
signature. The fist section contains information about finite-field arithmetics. Finite-field
arithmetic is the basic for all other algorithms which are required for ECDSA. The second
part deals specifically with the arithmetic in elliptic curves. Operations in elliptic curves
are time intensive and so it is important to find fast algorithms. The ECDSA algorithm
needs also a hash function and the third section gives an overview of SHA-1.

4.1 Finite-Field Arithmetic

Fields are abstractions of familiar number systems such as the rational numbers Q or the
real numbers R. A finite field F consists of a finite set of objects called field elements.
We can define two operations, addition (denoted by +) and multiplication (denoted by ·)
between this field elements and this operations must possess certain properties, cf. [24].

1. (F,+) is an abelian group with additive identity denoted by 0

2. (F, ·) is an abelian group with multiplicative identity denoted by 1

3. The distributive law holds: (a+ b) · c = a · c+ b · c for all a, b, c ∈ F

All other operations on the finite field Fp can be defined with this two operations.
Subtraction can be defined in terms of addition and division can be defined in terms of
multiplications. For two field elements a, b ∈ F the subtractions (a − b) can be written
as a + (−b), with −b which is called the unique element in F so that b + (−b) = 0. The
division a

b can be written as a · b−1, with b 6= 0 and b−1 which is called the unique element
in F such that b · b−1 = 1.

The element −b is called the negative element of b and the element b−1 is called the
inverse element of b in F.

The number of elements in a field Fq is called the order of the field. A finite field F
with order q only exists if q is a prime power q = pm. In this definition for q, p, the prime
number is called the characteristic of F and m is a positive integer in Z+. A finite field F
with q elements is denoted with Fq. Furthermore, there is for each q precisely one finite
field Fq. This means that except a different labeling of the field element, two fields of
order q are structurally the same.

17
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Depending on m, we can distinguish between two types of finite fields F. If m = 1, the
field F is called a prime field Fp, otherwise F is called an extension field. A frequently used
type of extension field are binary fields F2m . The choices of p and m can have a dramatic
influence on the performance of algorithms over finite fields. There exist generic algorithms
for arithmetic in arbitrary finite fields and specialized algorithms with a articulate better
performance in finite fields with a particular form, cf. [24]

Binary Fields F2m

A characteristic 2 finite field F2m contains 2m elements. There exist many different ways
to represent elements of F2m . One way is to use the polynomial basis representation.
Here the elements of F2m are the binary polynomials whose coefficients are in den field
F2 = (0, 1). The degree of the polynomial is most m− 1.

F2m =
{
am−1z

m−1 + am−2z
m−2 + · · ·+ a2z

2 + a0 : ai ∈ 0, 1
}

(4.1)

For any m exists an irreducible binary polynomial f(z) which can be found efficiently.
Irreducible of f(z) means that m cannot be factored as a product of binary polynomials
each of degree less than m.

Addition and multiplication operations in F2m can be calculated efficiently by using
standard algorithms for ordinary integer and polynomial arithmetic. This two operations
in binary fields F2m are defined as follow, see [8]:

� Addition: We define two elements a = am−1z
m−1+· · ·+a1z1+a0 and b = bm−1z

m−1+
· · ·+b1z1+b0 ∈ F2m . The element r is the sum from a+b in F2m where r is described
as rm−1z

m−1 + · · ·+ r1z
1 + r0 with ri ≡ ai + bi mod 2.

� Multiplication: We define two elements a = am−1z
m−1 + · · · + a1z

1 + a0 and b =
bm−1z

m−1 + · · ·+ b1z
1 + b0 ∈ F2m . The element s is the product from a · b in F2m ,

where s is described as sm−1z
m−1 + · · · + s1z

1 + s0 when the polynomial a · b is
divided by f(z) and all coefficient arithmetics performed modulo 2.

That was only a brief description of binary fields F2m , because this work deals with elliptic
curves over prime fields Fp. More information about binary fields can be found in standard
literature, e.g. [12, 24].

Prime Fields Fp

For each odd prime, there exist a prime field Fp which contains p elements. There is only
one prime field for each prime, but there exist many different ways to represent these
elements. In this thesis the elements of Fp will be represented by a set of integers:

{0, 1, · · · , p− 1} (4.2)

In an abstract form addition and multiplication in prime fields can defined as follows, see
[8]:

� Addition: We define two elements a, b ∈ Fp. The sum r from a + b in Fp is the
remainder when the integer a + b is divided by p. This operation is known as
addition modulo p and is written a+ b ≡ r mod p.
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Figure 4.1: Representation of a ∈ Fp as an array A.

Algorithm 4.1 Addition of multi-word integers.

Require: a, b ∈
[
0, 2W ·t) and ε

′ ∈ {0, 1}
Ensure: (ε, s), where s ∈

[
0, 2W ·t) and ε ∈ {0, 1}

(ε, S[0])← A[0] +B[0] + ε
′

for i = 1 to t− 1 do
(ε, S[i])← A[i] +B[i] + ε

end for
return (ε, s)

� Multiplication: We define two elements a, b ∈ Fp. The product s from a · b in Fp

is the remainder when the integer a · b is divided by p. This operation is known as
multiplication modulo p and written a · b ≡ s mod p.

The bit length of p is m where m = dlog2 pe. In real implementations, integers with
m bits cannot be used directly because the word size W of the architecture is often
smaller then m. For this reason integers must be split and stored in an array A =
(A[0], A[1], · · ·A[t− 1]) of t W -bit words. The word-length t is defined as t =

⌈
m
W

⌉
. An

example of an array A is shown in Figure 4.1, where the rightmost bit of A[0] is the least
significant bit. The bit representation, shown in 4.1 is used in all algorithms described in
Section 4 and Section 5.

Algorithms for arbitrary primes p and special primes recommended by SECG [48] are
presented in the subsequent Sections 4.1.1 to 4.1.4.

4.1.1 Addition and Subtraction

Algorithms for field addition and field subtraction can be separated in algorithms for
multi-word integers and an optionally reduction step modulo p. The basic operation is the
addition of two single word integers a, b ∈

[
0, 2W

)
and a carry bit ε

′ ∈ {0, 1}. We define
this addition result (ε, s) with the sum s and the carry bit ε as follows, cf. [24]:

w = a+ b+ ε
′

s ← w mod 2W (4.3)

ε ← 0 if w ∈
[
0, 2W

)
, otherwise ε← 1

Algorithm 4.1 is from [24] and illustrates a generic version of a multi-word integer
addition. Arithmetic in a finite field Fp needs also an optional reduction step modulo
p. The complete algorithms for addition and subtraction are shown in Algorithm 4.2
and Algorithm 4.3. There, ¬a means the binary-inverse integer from a. If s ≥ p, a
final reduction operation after the last operation is needed. This versions are used in the
ECDSA module with a word size of 16 bits.
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Algorithm 4.2 Addition in Fp.

Require: a, b ∈
[
0, 2W ·t)

Ensure: s = (a+ b) mod(p)
Use Algorithm 4.1 to calculate (ε, s), with a, b and ε

′
= 0

if ε = 1 then
Use Algorithm 4.1 to calculate (ε, s), with s,¬p and ε

′
= 0

end if
return (s)

Algorithm 4.3 Subtraction in Fp.

Require: a, b ∈
[
0, 2W ·t)

Ensure: s = (a− b) mod(p)
Use Algorithm 4.1 to calculate (ε, s), with a,¬b and ε

′
= 1

if ε = 0 then
Use Algorithm 4.1 to calculate (ε, s), with s, p and ε

′
= 0

end if
return (s)

4.1.2 Multiplication

Field multiplication in Fp can also accomplished in two steps. The first step is to multiply
a and b, which are elements of Fp as integers. Afterwards, the result can be reduced
modulo p as the second step. Algorithm 4.4 and Algorithm 4.5 are two generic versions
of elementary integer-multiplication routines. These algorithms create a 2 × W × t-bit
quantity obtained by concatenation of W × t-bit words a and b. This could be a problem
in products with constraint devices like RFID tags or smartcards. Another problem is
that reduction modulo p needs a division operation which is a complex operation. For
these applications, algorithms with implicit reduction are the better choice. Therefore,
we can use the Montgomery multiplication algorithm cf. Section 4.1.2 or an advanced
version of Algorithm 4.5 with implicit reduction. This sophisticated algorithm for field
multiplication is shown in Section 4.1.2 and uses a technique called fast reduction or NIST
reduction which is described in Section 4.1.3.

There exist some algorithms for field squaring of a ∈ Fp which reduce the number
of required single-precision multiplications by roughly the half. An improved version of
Algorithm 4.5 to calculate the square of a is shown in [24]. An own squaring algorithm
has been renounced since this ECDSA module is optimized for area.

Integer Multiplication

The following two algorithms calculate the 2 × W -bit multiplication result from a, b ∈
[0,W · t]. Both algorithms necessitate a runtime of O(t2) for multiplication of two W × t-
bit integers. There exist some other algorithms like Karatsuba-Ofman multiplication with
a complexity of O(tlog23). But these algorithms are rather interesting for implementation
in software or hardware implementations with binary fields F2m . Algorithms which use
Karatsuba-Ofman multiplication not further mentioned here. For some more information
see [10, 17, 24, 40].

Algorithm 4.4 uses the so called inner product (C [i+ j] +A[i] ·B[j] +U) to calculate
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Algorithm 4.4 Multiplication in Fp - operand-scanning form.

Require: a, b ∈ [0, p− 1)
Ensure: s = a · b

Set C[i]← 0 for 0 ≤ i ≤ t− 1
for i = 0 to t− 1 do
U ← 0
for j = 0 to t− 1 do

(U V )← C [i+ j] +A[i] ·B[j] + U
C [i+ j]← V

end for
C [i+ t]← U

end for
return (c)

Algorithm 4.5 Multiplication in Fp - product-scanning form.

Require: a, b ∈ [0, p− 1)
Ensure: s = a · b
R0 ← 0, R1 ← 0, R2 ← 0
for k = 0 to 2t− 2 do

for For each element of {(i, j)|i+ j = k, 0 ≤ i, j ≤ t− 1} do
(U V )← A[i] ·B[j]
(ε, R0)← R0 + V
(ε, R1)← R1 + U + ε
R2 ← R2 + ε

end for
C[k]← R0, R0 ← R1, R1 ← R2

end for
C[2t− 1]← R[0]
return (c)

the result and Algorithm 4.5 is arranged that the product is calculated from left to right.
But both algorithms are from [24] and create a result with a size of 2×W bits.

Montgomery Multiplication Algorithm

Peter Montgomery proposed in 1985 [43] an efficient algorithm for modular multiplication.
The Montgomery algorithm is a fast algorithm to compute a · b mod p, if the modulo p
has no particular form. This method to multiply modulo p avoids division by p for the
reduction. The idea is to convert the reduction modulo p to a reduction modulo R where
division is easier. It is useful to select R as a power of 2 because in this case a complex
division can be replaced by a simple shift right operation. If we choose R, it is important
that R is relatively prime to p (gcd(n,R) = 1).

An integer a mod p can be represented in the Montgomery domain as [a]R = a·Rmod p.
This transformation is agreeable with an addition

[a+ b]R ≡ (a+ b) ·R ≡ a ·R+ b ·R ≡ [a]R + [b]R (4.4)
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Algorithm 4.6 Montgomery multiplication algorithm.

Require: p ∈ P, a, b ∈ [0, p− 1) , R = 2n, R ·R−1 − p · p′ = 1
Ensure: a · b ·R−1 mod p
T ← a · b
S ← T · p′ mod R
U ← (T + S · p) /R
if U ≥M then

return U −M
else

return U
end if

but not agreeable with a multiplication

[a · b]R = [a]R · [b]R ·R−1 (4.5)

The Montgomery multiplication algorithm, see Algorithm 4.6 transforms two numbers
a, b ∈ [0, p − 1] implicit to the Montgomery domain. In this case, we can define the
Montgomery multiplication a ∗ b as follow:

[c]R = a ∗ b = a · b ·R−1 mod p (4.6)

In order to get the desired result c = a · b mod p, some pre or post computations are
required to remove the factor R−1.

� Pre computation: To remove the factor R−1 from the output, one input operant
should get converted into the Montgomery domain. The Montgomery multiplication
algorithm can be used itself, if one multiplication operant is chosen as a constant
factor R2.

[a]R = a ∗R2 = a ·R2 ·R−1 mod p = a ·R mod p (4.7)

c = [a]R ∗ b = [a]R · b ·R−1 mod p = a · b mod p (4.8)

� Post computation: When both input operants of the Montgomery multiplication
algorithm are in Montgomery domain format the multiplication result is going to be
a · b · R mod p. To remove this extra factor R in the result, performing one more
Montgomery multiplication by a constant factor 1 is necessary.

c = [c]R ∗ 1 = [c]R ·R−1 mod p = a · b ·R ·R−1 mod p = a · b mod p (4.9)

Algorithm 4.6 shows the original version of the Montgomery multiplication algorithm
which was published by Peter Montgomery in 1985, see [43]. In most projects this orig-
inal version is not implemented. There is a variety of other implementations to perform
Montgomery multiplication, which need a different number of basic integer operations like
addition, multiplication or shift operations. Zhang Jia-hong et al. [59] proposed in 2009
a Montgomery multiplication algorithm which only needs 2 · t2 + t + 2 clock cycles for
one multiplication. This published version requires 3 ×W -bit registers and is currently
the fastest implementation of Montgomery multiplication, cf . [59]. In this work, we use
the algorithm proposed by Zhang Jia-hong, with some modifications. The multiplication
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Table 4.1: Time requirements of Montgomery multiplication methods.
Method Multiplications Additional Operations

SOS 2 · t2 + t 4 · t2 + 4 · t+ 2

CIOS 2 · t2 + t 4 · t2 + 4 · t+ 2

FIOS 2 · t2 + t 5 · t2 + 3 · t+ 2

FIPS 2 · t2 + t 6 · t2 + 2 · t+ 2

CIHS 2 · t2 + t 4 · t2 + 4 · t+ 2

Zhang Jia-hong 2 · t2 + t 2

This work 2 · t2 + t 2 · t

unit, which is used for multiplication with implicit fast reduction, has a similar design
than the presented by Jong Zhang Jia-hong but our design required only 2×W + W

2 -bit
registers. It was possible to map the original design to our hardware architecture and we
include some countermeasures against SPA and DPA attacks. The modified Montgomery
multiplication algorithm, which is described in Algorithm 4.7, is only slightly slower and
needs 2 · t2 + 3 · t clock cycles for one multiplication, but it is optimized for area and
reusing operations from multiplication with implicit fast reduction. Table 4.1 constitutes
an overview of different Montgomery multiplication algorithms, cf. [33].

Multiplication with implicit fast Reduction

A second possibility for multiplication with implicit reduction is a combination of a generic
multiplication algorithm in product scan form, see Algorithm 4.5 and an implicite fast
reduction, see Section 4.1.3. But this method only works with special prime numbers, like
NIST primes or other special primes. The described algorithm uses the prime from the
SECP160r1 elliptic curve. For more information about this fast reduction look at Section
4.1.3.

Multiplication with fast reduction uses as origin the multiplication algorithm in pro-
duct-scanning form with a word size of 16 bits. An advantage of this algorithm is that
the current word C[i] of the multiplication result is finished before the next word is cal-
culated. The algorithm for fast reduction which is described in Algorithm 4.17 applies
the reduction modulo p160r1. This algorithm uses the lower and higher 160 bits of the
multiplication result in an interleaved form. At first, the lower 160 bits of the result
c = (C[9], . . . , C[1], C[0]) is calculated and stored. In the next step the element C[10] of
the higher 160 bits is calculated. This element is added at two different places to the lower
result c. The addition of one element is done interleaved by storing the carry bit if one
is generated. For that purpose some additional memory is required to save two separate
carry bits. Then the next element C[12] is calculated and added interleaved. The last to
elements C[18] and C[19] have to be added on three different places to c. All addition
operations are processed modulo p160r1, therefore maybe an additional reduction step is
needed. The number of clock cycles to multiply two integers modulo p160r1 is t2 + 5t in
the worst case. Hence this algorithm is four times faster than the Montgomery multi-
plication algorithm described in Algorithm 4.7. Because the Montgomery multiplication
algorithm must be used twice. One time for multiplication of the integers a and b and a
second time to transform the result from the Montgomery domain to the integer domain.
Algorithm 4.8 describes the multiplication with implicit fast reduction which is used for
field operations modulo p160r1.
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Algorithm 4.7 Our improved Montgomery multiplication algorithm (16-bit word size).

Require: p ∈ P, a, b ∈ [0, p− 1) , R = W t, p
′

= −p−1 mod W
Require: x, y with 176 bits, u and d with 176 bits, reg with 36 bits
Ensure: a · b ·R−1 mod p
reg ← x[0] · y[0]
u[0]← reg[0] · p′

reg ← reg + u[0] · p[0]
reg[0]← reg[1], reg[1]← reg[2], reg[2]← 0
for j = 1 to j < 11 do

for i = 1 to i ≤ j do
reg ← reg + u[i− 1] · p[j + 1− i]

end for
for i = j to i ≥ 0 do
reg ← reg + x[i] · y[j − i]

end for
u[j]← reg[0] · p′

reg ← reg + u[j] · p[0]
reg[0]← reg[1], reg[1]← reg[2], reg[2]← 0

end for
for j = 9 to 0 do

for i = 0 to i ≤ j do
reg ← reg + u[10− j + i] · p[10− i]

end for
for i = j to i ≥ 0 do
reg ← reg + x[10− j + i] · y[10− i]

end for
d[9− j]← reg[0], reg[0]← reg[1], reg[1]← reg[2], reg[2]← 0

end for
u← d− p
if reg[1] > 0 then

return (u)
else

return (d)
end if

4.1.3 Reduction

Reduction a mod p is an important part of modular arithmetic, because it can be a
time and memory expensive operation. In particular, if the prime p has no special form
then the reduction is as expensive as a multiplication operation. Field multiplications
and reductions are used in many cryptographic algorithms. Therefore, it is important to
select moduli with a special form, so that reduction gets faster. This section only presents
the reduction method of Barrett and the fast reduction for special primes, because the
modulus p of the field Fp on which the elliptic curve is defined has a special form. Only the
modulus involved to the signature-generation operation has a general form, but therefore
the Montgomery multiplication algorithm is used to multiply.
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Algorithm 4.8 Multiplication with implicit fast reduction modulo p160r1.

Require: a, b ∈ [0, p160r1 − 1)
Ensure: c = a · b mod p160r1
R0 ← 0, R1 ← 0, R2 ← 0
for i = 0 to i < 10 do

for j = 0 to j ≤ i do
{R2, R1, R0} ← {R2, R1, R0}+A[i] ·B[i− j]

end for
C[i]← R0, R0 ← R1, R1 ← R2

end for
ε1 ← 0 and ε2 ← 0
for i = 0 to i < 9 do

for j = i+ 1 to j ≤ 9 do
{R2, R1, R0} ← {R2, R1, R0}+A[j] ·B[10 + i− j]

end for
(ε1, C[i]) = C[i] +R0 + ε1
εs ← ε2
if i < 8 then

(ε2, C[i+ 1]) = C[i+ 1] + ((R0 << 15) ∧ 0x8000)
(ε2, C[i+ 2]) = C[i+ 2] + ((R0 >> 1) ∧ 0x7FFF ) + (ε2 ∨ εs)
R0 ← R1, R1 ← R2

else
(ε1, C[i]) = C[i] +R0 + ε1
(ε2, C[i+ 1]) = C[i+ 1] + ((R0 << 15) ∧ 0x8000)

end if
end for
if ε1 = 1 then

Use Algorithm 4.1 to calculate (ε1, c), with c, not(p) and ε
′

= 0
end if
if (ε2 ∨ εs) = 1 then

Use Algorithm 4.1 to calculate (ε1, c), with c, not(p) and ε
′

= 0
end if
(ε1, C[0]) = C[0] + (((R0 >> 1) ∧ 0x7FFF ) ∨ ((R1 << 15) ∧ 0x8000))
(ε1, C[1]) = C[1] + (((R1 >> 1) ∧ 0x7FFF ) ∨ ((R0 << 14) ∧ 0x8000)) + ε1
(ε1, C[2]) = C[2] + (((R0 >> 2) ∧ 0x3FFF ) ∨ ((R1 << 14) ∧ 0xC000)) + ε1
(ε1, C[3]) = C[3] + (((R1 >> 2) ∧ 0x3FFF )) + ε1
for i = 4 to i < 10 do

(ε1, C[i]) = C[i] + ε1
end for
if ε1 = 1 then

Use Algorithm 4.1 to calculate (ε1, c), with c, not(p) and ε
′

= 0
end if

Barrett Reduction

On basic method for reduction, which does not exploit a special modulus p, is the Barrett
reduction algorithm. This algorithm finds for two positive integers a and p an integer
c = a mod p. The basic idea of Barret reduction is to calculate the quotient a

p without
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Algorithm 4.9 Barrett reduction algorithm.

Require: p, b ≥ 3, k = blogb pc+ 1, 0 ≤ a < b2k, and µ =
⌊
b2k/p

⌋
Ensure: a mod p
q̂ ←

⌊⌊
z/bk−1

⌋
· µ/bk+1

⌋
r ←

(
a mod bk+1

)
−
(
q̂ · p mod bk+1

)
if r < 0 then
r ← r + bk+1

end if
while r ≥ p do
r ← r − p

end while
return (r)

a division by p, which is a time expensive operation. For this purpose, Barret uses a
pre-calculated value µ, which only depends on p. Therefore, only two multiplications, four
shift-right operations and some addition operations are required to calculate a mod p, cf.
[6, 24, 30] Algorithm 4.9 is from [24] and demonstrates one possible implementation of the
Barrett-reduction method.

Fast Reduction for special Primes

A very well example for algorithms which uses fast reduction for special primes, was shown
by the NIST in FIPS 186-3 [45]. The technique which uses special NIST primes is called
NIST reduction. This reduction method can be expanded to other primes like the primes
in the SEC2 standard for elliptic-curve domain parameters [48].

The mathematical background for NIST reduction is the advantage of special moduli,
called Mersenne numbers m = 2k − 1. However Mersenne numbers are rarely primes
and only these particular primes are cryptographically useful. Mersenne numbers can be
expanded to a bigger family of integers, known as pseudo Mersenne numbers. Pseudo
Mersenne numbers are described by Richard Crandall, see [14]. He defined those as 2k−c,
when c is a small integer. Modular reduction by pseudo Mersenne numbers are very
efficiently done using a few constant multiplications by the small integer c. In 1999,
Jerome Solinas [53] described a bigger family of numbers called the generalized Mersenne
numbers. Solinas show also a method to calculate the reduction a mod p which only a
few integer additions and subtractions. Therefor, he uses a special form of the modulus
p = f(t), where t is a power of 2, which he called generalized Mersenne numbers. All
five NIST primes and the primes in SEC2 standard are based on generalized Mersenne
numbers, cf. [11]

The mathematical description in this section based on the work of Jerome Solinas,
cf. [53, 58]. The generalized Mersenne numbers, described by Solinas has the form m =
2d− c12d−1− . . .− cd, with integers ci ∈ {−1, 0, 1}. If we work in Zp and make a reduction
step after each multiplication, the number do reduce can not be larger than (p−1)·(p−1) <
p2. An integer a ∈ [0, (p− 1) · (p− 1)] can be written as

a =

2t−1∑
j=0

A[j] · 2jW (4.10)

where W is the word size and t is the number of words from integer a. The aim is to find
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some Bi that are linear combinations of Aj such that a mod p is congruent to their sum
and difference. This requirement can be described in a mathematical form as follow:

a =
2t−1∑
j=0

A[j] · 2jW ≡
t−1∑
i=0

B[i] · 2iW mod p (4.11)

Solinas presents an excellent method to find Bi for arbitrary generalized Mersenne num-
bers. In the first step it is necessary to delineate p as a polynomial in 2W . The general
form of this polynomial is:

p = f(2tW ) = 2tW − c1 · 2(t−1)W − . . .− ct ct ∈ {−1, 0, 1} (4.12)

From Equation 4.11, there will be in general 2 · t Aj and t Bi elements. An integer a can
be described as two vector multiplication operations and one addition operation.

a = (A0 . . . At−1) ·

 1
...

2(t−1)W

+ (At . . . A2t−1) ·

 2tW

...

2(2t−1)W

 (4.13)

The next step is to compute the reduction mod p from

 2tW

...

2(2t−1)W

 and write it as a

matrix vector multiplication. 2tW

...

2(2t−1)W

 ≡ X ·
 1

...

2(t−1)W

 mod p (4.14)

Now Equation 4.14 can be used to substitute into Equation 4.13. The result, described
in Equation 4.15, is the finished rule for fast reduction modulo p. Matrix X includes the
information, how the higher bits of a number must be used to reduce a number with only
addition and subtraction operations.

a ≡
(
A0, . . . , A(t−1)W

)
+
(
AtW , . . . , A(2t−1)W

)
·X ·

 1
...

2(t−1)W

 (4.15)

Solinas described in his paper also another way to determine the reduction matrix X.
Therefore he uses a LFSR to describe the reduction role. For more details about this
second method see [53].

Reduction with this method has great advantages if the exponents of the polynomial
p are multiple of the word size W and W = 2k with k ∈ Z+. In this case, only addition
and subtraction operations are needed. If the exponents of the prime in polynomial form,
cf. Equation 4.12 are not a multiple of W , the reduction becomes more complicated,
because bit shifts are required. The NIST primes, defined in FIPS186-3 [45], use this
advantages. In this thesis, primes from SECP160 standard [48] are used and those have
not this simple form. The following enumeration shows findings for fast reduction with
primes from SECP160k1 and SECP160r1. The prime from SECP160r2 is equal to the
prime in the SECP160k1 definition. In Equations 4.16 and Equation 4.17, which show the
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primes from SECP160, are some exponents of the polynom primes. Therefore, the only
possible word size is W = 1 and the square matrix X from Equation 4.14 has 160 rows
and columns. Hence, only the finished reduction direction is illustrated for SECP160k1
and SECP160r1. In the subsequent consideration, symbols and operations described in
Appendix A.2 are used.

� SECP160k1: The prime of the elliptic curve underlying field is described in polyno-
mial form, see Equation 4.16. With the mathematical theory, described by Solinas,
we created an algorithm for fast reduction, see Algorithm 4.10. This algorithm needs
74 additions, 8 rotate-right operation and 64 shift operations. The reduction meth-
ode described by Solinas is not efficient for the prime p160k1. With a combination
from Solinas reduction theorem and Crandall reduction theorem there exist some
possible improvements. The prime p160k1 can retyped to p160k1 = 2160 − 232 − c,
where c = 214 − 212 − 29 − 28 − 27 − 23 − 22 − 1. But those need some additional
multiplications with c instead of shift and addition operations. In comparison to the
other prime from SECP160r1, the improved reduction is still more difficult.

p160k1 = 2160 − 232 − 214 − 212 − 29 − 28 − 27 − 23 − 22 − 1 (4.16)

� SECP160r1: The prime of the elliptic curve underlying field is described in polyno-
mial form, see Equation 4.17. An algorithm to reduce a number modulo this prime
is shown in Algorithm 4.11. This algorithm needs 3 additions, one rotate-right op-
eration and one shift operations. A fast reduction algorithm can be implemented
efficiently for this prime. It is also possible to use this algorithm to create a multipli-
cation method with implicit fast reduction. A cogitable implementation is described
in Section 4.1.2. For this reason the SECP160r1 elliptic curve with prime p160r1 is
selected.

p160r1 = 2160 − 231 − 1 (4.17)

4.1.4 Inversion

Modular-inverse arithmetic is an essential operation in public-key cryptography. In this
work, the modular inverse of an element a ∈ Fp is required twice. One time to convert an
elliptic-curve point from projective coordinates to affine coordinates and a second time to
generate the ECDSA digital signature. The standard modular inverse can be defined as
follow: Assume a is a nonzero element in Fp. An integer x is called the modulo inverse of
a, if and only if a · x ≡ 1 mod p, where x ∈ Fp. The inverse element is denoted with a−1

and there exist some algorithms to compute this. The following subsections present two
different algorithms to solve this problem.

Extended Euclidean Algorithm

The classical algorithm to compute the inverse element in Fp is the extended Euclidean
algorithm for integers. Let a and b be integers, both are not 0. The greatest common
divisor gcd of a and b, denoted gcd(a, b), is the largest integer d that divides both a and
b. To calculate the gcd of positive integers a and b where b ≥ a, we can use the classical
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Algorithm 4.10 Fast reduction modulo p160k1 = 2160 − 232 − 214 − 212 − 29 − 28 − 27 −
23 − 22 − 1.

Require: An integer c = (c319, c318, . . . , c1, c0) in base 2 with 0 ≤ c < p2160k1
Ensure: a mod p160k1

Define si as 160 bit integers
s1 = (c159, c158, . . . , c1, c0) s2 = (c319, c318, . . . , c161, c160)
s3 = ROTL2(s2) s4 = ROTL3(s2) s5 = ROTL7(s2) s6 = ROTL8(s2)
s7 = ROTL9(s2) s8 = ROTL12(s2) s9 = ROTL2(s14) s10 = ROTL2(s2)
s11 = (s2 >> 126) ∧ ¬0x2 s12 = (s2 >> 125) ∧ ¬0x3 s13 = (s2 >> 121) ∧ ¬0x7
s14 = (s2 >> 120) ∧ ¬0x8 s15 = (s2 >> 119) ∧ ¬0x9 s16 = (s2 >> 116) ∧ ¬0xC
s17 = (s2 >> 114) ∧ ¬0xE s18 = (s2 >> 96) ∧ ¬0x20
s19 = (s2 >> 144) ∧ ¬0x2 s20 = (s2 >> 143) ∧ ¬0x3 s21 = (s2 >> 139) ∧ ¬0x7
s22 = (s2 >> 138) ∧ ¬0x8 s23 = (s2 >> 137) ∧ ¬0x9 s24 = (s2 >> 134) ∧ ¬0xC
s25 = (s2 >> 132) ∧ ¬0xE s26 = (s2 >> 112) ∧ ¬0x20
s27 = (s2 >> 146) ∧ ¬0x2 s28 = (s2 >> 145) ∧ ¬0x3 s29 = (s2 >> 141) ∧ ¬0x7
s30 = (s2 >> 140) ∧ ¬0x8 s31 = (s2 >> 139) ∧ ¬0x9 s32 = (s2 >> 136) ∧ ¬0xC
s33 = (s2 >> 134) ∧ ¬0xE s34 = (s2 >> 116) ∧ ¬0x20
s35 = (s2 >> 149) ∧ ¬0x2 s36 = (s2 >> 148) ∧ ¬0x3 s37 = (s2 >> 144) ∧ ¬0x7
s38 = (s2 >> 143) ∧ ¬0x8 s39 = (s2 >> 142) ∧ ¬0x9 s40 = (s2 >> 139) ∧ ¬0xC
s41 = (s2 >> 137) ∧ ¬0xE s42 = (s2 >> 119) ∧ ¬0x20
s43 = (s2 >> 150) ∧ ¬0x2 s44 = (s2 >> 149) ∧ ¬0x3 s45 = (s2 >> 145) ∧ ¬0x7
s46 = (s2 >> 144) ∧ ¬0x8 s47 = (s2 >> 143) ∧ ¬0x9 s48 = (s2 >> 140) ∧ ¬0xC
s49 = (s2 >> 138) ∧ ¬0xE s50 = (s2 >> 120) ∧ ¬0x20
s51 = (s2 >> 151) ∧ ¬0x2 s52 = (s2 >> 150) ∧ ¬0x3 s53 = (s2 >> 146) ∧ ¬0x7
s54 = (s2 >> 145) ∧ ¬0x8 s55 = (s2 >> 144) ∧ ¬0x9 s56 = (s2 >> 141) ∧ ¬0xC
s57 = (s2 >> 139) ∧ ¬0xE s58 = (s2 >> 121) ∧ ¬0x20
s59 = (s2 >> 155) ∧ ¬0x2 s60 = (s2 >> 154) ∧ ¬0x3 s61 = (s2 >> 150) ∧ ¬0x7
s62 = (s2 >> 149) ∧ ¬0x8 s63 = (s2 >> 148) ∧ ¬0x9 s64 = (s2 >> 145) ∧ ¬0xC
s65 = (s2 >> 143) ∧ ¬0xE s66 = (s2 >> 125) ∧ ¬0x20
s67 = (s2 >> 156) ∧ ¬0x2 s68 = (s2 >> 155) ∧ ¬0x3 s69 = (s2 >> 151) ∧ ¬0x7
s70 = (s2 >> 150) ∧ ¬0x8 s71 = (s2 >> 149) ∧ ¬0x9 s72 = (s2 >> 146) ∧ ¬0xC
s73 = (s2 >> 144) ∧ ¬0xE s74 = (s2 >> 126) ∧ ¬0x20

return
(∑74

i=1 si mod p160k1

)

Euclidean algorithm. If b divided a, we get two new values q and r. This four values had
to fulfill the equation b = q ·a+r, where q is called the quotient and 0 ≤ r < a is called the

Algorithm 4.11 Fast reduction modulo p160r1 = 2160 − 231 − 1.

Require: An integer c = (c319, c318, . . . , c1, c0) in base 2 with 0 ≤ c < p2160r1
Ensure: a mod p160r1

Define si as 160 bit integers
s1 = (c159, c158, . . . , c1, c0) s2 = (c319, c318, . . . , c161, c160)
s3 = ROTL31(s2)
s4 = (s2 >> 98) ∧ ¬0x7FFFFFFF
return (s1 + s2 + s3 + s4 mod p160r1)
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Algorithm 4.12 Extended Euclidean algorithm for integers.

Require: positive integers a and b with a ≤ b
Ensure: d = gcd(a, b) and integers x, y satisfying a · x+ b · y = d
u← a, v ← b
x1 ← 1, x2 ← 0, y2 ← 1
while u 6= 0 do
q ← bv/uc, r ← v − q · u, x← x2 − q · x1, y = y2 − q · y1
v ← u, u← r, x2 ← x1, x1 ← x, y2 ← y1, y1 ← y

end while
d← v, x← x2, y ← y2
return (d, x, y)

Algorithm 4.13 Inversion in Fp using the extended Euclidean algorithm.

Require: prime p and a ∈ [1, p− 1]
Ensure: a−1 mod p
u← a, v ← p
x1 ← 1, x2 ← 0
while u 6= 1 do
q ← bv/uc, r ← v − q · u, x← x2 − q · x1
v ← u, u← r, x2 ← x1, x1 ← x

end while
return (x1 mod p)

remainder. The extended Euclidean algorithm is an extension of the classical Euclidean
algorithm. This algorithm can find two integers x and y which fulfill the Equation 4.18.

a · x+ b · y = d = gcd(a, b) (4.18)

Algorithm 4.12 is from [24] and illustrates the extended Euclidean algorithm.
We can use Algorithm 4.12 with inputs (a, p) to calculate a · x ≡ 1 mod p, where

p is prime, a ∈ [1, p− 1]. If the algorithm finished, it solves the Equation 4.18 where
d = gcd(a, p) = 1 and thus a · x1 + p · y1 = 1 mod p. Subsequent to this occurrence
a · x1 ≡ 1 mod p and so a−1 = x1 mod p. Algorithm 4.13 is from [24] and uses the
extended Euclidean algorithm to calculate the inverse element in Fp

One disadvantage of this algorithm is the expensive division operation. There exist
some other versions of Algorithm 4.13, like the binary algorithm for inversion in Fp, in with
the expensive division operation is replaced by a cheaper shift and subtraction operation.
Those algorithms have a runtime of 2 · k, where k is the maximum of the bit length of
a and b. One possible implementation of a binary algorithm for inversion is presented
in Algorithm 4.14 and it is from [24]. It is also possible to create a division algorithm
directly from the binary algorithm, by changing the initialization conditions, cf. [24]. One
disadvantage for implementation in hardware is that the integers x1 and x2 may have a
negative value. In that case some additional storage for the algebraic sign is required.

Montgomery Inversion Algorithm

The basic strategy in Montgomery’s method is to replace modular reduction z mod p by a
less expensive operation z ·R−1 mod p for a suitably chosen R. In 1995, Burton S. Kaliski,
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Algorithm 4.14 Binary algorithm for inversion in Fp.

Require: prime p and a ∈ [1, p− 1]
Ensure: a−1 mod p
u← a, v ← p
x1 ← 1, x2 ← 0
while u 6= 1 and v 6= 1 do

while u is even do
u← u/2
if x1 is even then x1 ← x1/2; else x1 ← (x1 + p) /2

end while
while v is even do
v ← v/2
if x2 is even then x2 ← x2/2; else x2 ← (x2 + p) /2

end while
If u ≥ v then: u← u− v, x1 ← x1 − x2
else v ← v − u, x2 ← x2 − x1

end while
if u = 1 then

return x1 mod p
else

return x2 mod p
end if

Jr. [32] proposed an algorithm which is derived from the extended Euclidean algorithm
and can be divided in two phases. Phase one, shown in Algorithm 4.15, is also called
almost Montgomery inverse, takes the input values a and p. The algorithm produces two
outputs r and k, where r = a−1 ·2k mod p and n < k < 2n. Phase two, shown in Algorithm
4.16, uses the output of phase one and produce the final result x = a−1 ·R mod p, where
R = 2n and 2n−1 ≤ p < 2n. The Montgomery multiplication algorithm can be used
to transform the inverse element x back into integer domain from Montgomery domain.
Figure 4.2 is from [23] and shows the input/output behavior from the Kaliski algorithm.

There exist some optimizations of the Kaliski algorithm in the literature. Erkay Savas
[51] described a correction algorithm which allows fast calculation of an inverse element
when input and output values are in Montgomery domain. Figure 4.3 is also from [23]
and shows different ways to compute the Montgomery inversion, cf. [23]. This work uses
the Kaliski algorithms to compute the inverse element in Fp. The input value, which
has to be inverted, is always in integer domain and the following operation is always a
multiplication, which is provided with Montgomery’s method. After the multiplication,

Figure 4.2: Input/output behavior for Kaliski algorithm [23].
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Algorithm 4.15 Almost-Montgomery inverse (Kaliski phase one).

Require: prime p and a ∈ [1, p− 1]
Ensure: r in [1, p− 1] and k, where r = a−1 · 2k mod p and n ≤ k < 2n
u← p, v ← a, r ← 0, s← 1, k ← 0
while u > 0 do

if u is even then u← u/2, s← 2s
else if v is even then v ← v/2, r ← 2r
else if u > v then u← (u− v) /2, r ← r + s, s← 2s
else then v ← (v − u) /2, s← s+ r, r ← 2r
k ← k + 1

end while
s← r − p
if r ≥ p then return s and k
else then return r and k

Algorithm 4.16 Kaliski phase two.

Require: p, r ∈ [1, p− 1] and k from AlmMonInv 4.15
Ensure: a−1 ·R mod p, where a−1 ∈ [1, p− 1] and R = 2n

for i = 1 to k − n do
if r is even then r = r/2
else then r = (r + p) /2

end for
return r

Figure 4.3: Different ways to compute the Montgomery inversion [23].

the result is available in integer domain, see Equation 4.8. Algorithm 4.15 and Algorithm
4.16 are modified to prevent SPA attacks. Dummy operations are insert to make in
every loop the same sequence of operations. To prevent DPA attacks randomization is
used. The integer a is multiplied with a random value r and then the inverse element of
(a · r)−1 = a−1 · r−1 is calculated. Finally the the random value r is removed by a second
multiplication with a−1 = a−1 · r−1 · r.
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4.2 Elliptic-Curve Arithmetic

The solutions of an equation, defined over Fp, are the points at an elliptic curve E over the
finite field Fp. Depending on the finite field, there exist different forms of elliptic curves.
The two big groups are curves defined over prime fields E(Fp) and curves defined over
binary fields E(F2m).

In a general form, an elliptic curve over a finite field Fq is defined by Equation 4.19,
which is called Weierstrass equation. In this equation the coefficients a1, a2, a3, a4, a5, a6
are elements of Fq and ∆ 6= 0. ∆ is called the discriminate of the elliptic curve, and [24]
defined the discriminate of an elliptic curve E in Weierstrass form as following Equation
4.20.

E : y2 + a1 · x · y + a3 · y = x3 + a2 · x2 + a4 · x+ a6 (4.19)

∆ = −d22 · d8 − 8 · d34 − 27 · d26 + 9 · d2 · d4 · d6
d2 = a21 + 4 · a2
d4 = 2 · a4 + a1 · a3 (4.20)

d6 = a23 + 4 · a6
d8 = a21 · a6 + 4 · a2 · a6 − a1 · a3 · a4 + a2 · a23 − a24

The Weierstrass equation, Equation 4.19 can be simplified considerably by applying an
admissible change of variables. Depending on which field is used, a prime field Fp or a
binary field F2m , exist a simple Weierstrass equation, cf. [24].

� If the underlying field is a prime field Fp, we can transform the elliptic curve E in
Weierstrass form to the simple form shown in Equation 4.21. The coefficients a, b are
elements of Fp and the discriminate change in this case to ∆ = −16·

(
4 · a3 + 27 · b2

)
.

y2 = x3 + a · x+ b (4.21)

� If the underlying field is a binary field F2m , there exits two possible forms of simple
elliptic-curve equations, addicted from coefficient a1. If a1 6= 0 we can transform the
curve E to Equation 4.22, which is called not supersingular. The coefficients a, b are
elements of F2m and the discriminate change to ∆ = b.

y2 + x · y = x3 + a · x2 + b (4.22)

If a1 = 0 we can transform the curve E to Equation 4.23, which is called super-
singular. The coefficients a, b are elements of F2m and the discriminate change to
∆ = c4.

y2 + c · y = x3 + a · x+ b (4.23)

All solutions from Equation 4.19 are points P = (x, y) on the elliptic curve E for
x, y ∈ Fq. On every elliptic curve exist an additional point O, which is called the point
of infinity. The number of points on the curve E, denoted #E(Fq) is called the order of
E. The Hasse Theorem 4.24 appraise the number of points on the curve and the interval[
q + 1− 2 · √q, q + 1 + 2 · √q

]
is called the Hasse interval, cf. [8, 24].

q + 1− 2 · √q ≤ #E(Fq) ≤ q + 1 + 2 · √q (4.24)

The following Sections 4.2.1 and 4.2.2 only describe operations on elliptic curves defined
over prime fields Fp.
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Figure 4.4: Geometric addition of EC points [12].

4.2.1 Curve Arithmetic

If E is an elliptic curve defined over the field Fp, then the set of points E(Fp) together
with the point of infinity O forms an abelian group. This group is used to construct the
elliptic-curve cryptographic system. A simple way to explain the rules to add two points
or double one point is a geometric approach. The following geometric description are from
[24] and some other definitions are in [12].

Let P = (x1, y1) and Q = (x2, y2) be two distinct points on an elliptic
curve. Then the sum R, of P and Q is defined as follows. First draw a line
through P and Q; this line intersects the elliptic curve at a third point. Then R
is the reflection of this point about the x-axis. The double R, of P , is defined
as follow. First draw the tangent line to the elliptic curve at P . This line
intersects the elliptic curve at a second point. Then R is the reflection of this
point about the x-axes 1.

The addition operation is depicted in Figure 4.4, the double operation is depicted in Figure
4.5 and both pictures are from [12].

These formulas to add and double are presented next for elliptic curves over a prime
field, e.g. [12, 24].

1. Add the zero element to it self : O +O = O

2. Add the zero element to a point: for all P ∈ E(Fp) 0 + P = P + 0 = P

3. Add a negative point: a negative point is denoted by −Q. If P (x, y) is a point in
E(Fp) and Q(x,−y) is the negative point to P then P+Q = 0 and Q(x,−y) ∈ E(Fp)

1[24], site 79
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Figure 4.5: Geometric doubling of EC points [12].

4. Add two points: if P,Q are two points in E(Fp), denoted by P (x1, y1) and

Q(x2, y2), and P 6= Q. The sum of P +Q is R(x3, y3, where x3 =
(

y2−y1
x2−x1

)2
−x1−x2

and y3 =
(

y2−y1
x2−x1

)
· (x1 − x3)− y1

5. Double one point: if P is a point in E(Fp), denoted by P (x1, y1), and P 6= −P .

The sum of P + P is S(x4, y4, where x4 =
(
3·x2

1+a
2·y1

)2
− 2 · x1 and y4 =

(
3·x2

1+a
2·y1

)2
·

(x1 − x4)− y1

These formulas for point addition and doubling are defined in affine coordinates. Both
operations require a field inversion and several field multiplications. Since inversion in Fp

is significantly more expensive than a multiplication it may be advantageous to represent
points in a graticule where no inversion for add and double operations is required.

4.2.2 Point Representation

The formulas in Section 4.2.1 are defined in affine coordinates. These add and double
operations can be calculated faster if some convenient coordinates are used. A point
P (x, y) in affine coordinates has a dimension of two and this can be denoted by F2

p. The
same point can be represented by a different coordinate system which has for example a
dimension of three F3

p. Now we can define an equivalence relation f , which transforms a
point in F2

p to a point in F3
p \ {(0, 0, 0)}, where λ ∈ Fp and c and d are positive integers.

(X : Y : Z) = f(x, y) =
{
λc · x, λd · y, λ · 1

}
(4.25)

The point (X : Y : Z) is called a projective point and the point (x, y) is called a repre-
sentative point. The inverse transformation from F3

p to F2
p has two possible cases. All

projective points with Z = 0 do not correspond to any affine point and so the set of this
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points are called the line of infinity. For all points with Z 6= 0 exist an unique point in F2
p

and the inverse function f−1 is

(x, y) = f−1(X,Y, Z) =
{
X/Zc, Y/Zd

}
(4.26)

To transform the Weierstrass equation, Equation 4.19 of an elliptic curve from affine
form to projective form it is necessary to change x by X/Zc and y by Y/Zd and clearing
denominators, cf [12, 24]. The following subsections present the two most commonly used
coordinate transformations.

Standard-Projective Coordinates

This coordinate transformation uses c = 1 and d = 1. The projective point (X : Y : Z)
with Z 6= 0 corresponds to the affine point (X/Z, Y/Z) and the point of infinity O corre-
sponds to the projective point (0, 1, 0). The negative point of (X : Y : Z) is (X : −Y : Z).
The equation of an elliptic curve with standard-projective coordinates is described as
follows.

Y 2 · Z = X3 + a ·X · Z2 + b · Z3 (4.27)

Based on Equation 4.27 the formulas for add and double can be calculated as follow.

� Point addition: Let P and Q are two points in F3
p, denoted by P (X1 : Y1 : Z1)

and Q (X2 : Y2 : Z2), and define that P 6= ±Q. The sum of two points P + Q =
R (X3 : Y3 : Z3) in standard-projective coordinates is defined in Equation 4.28. The
mathematical description for point addition is from [12].

A = Y2 · Z1 − Y1 · Z2

B = X2 · Z1 −X1 · Z2

C = A2 · Z1 · Z2 −B3 − 2 ·B2 ·X1 · Z2 (4.28)

X3 = B · C
Y3 = A ·

(
B2 ·X1 · Z2 − C

)
−B3 · Y1 · Z2

Z3 = B3 · Z1 · Z2

� Point doubling: Let P a point in F3
p, denoted by P (X1 : Y1 : Z1), and define that

P 6= −P . The sum of P +P = S (X4 : Y4 : Z4) in standard-projective coordinates is
defined in Equation 4.29. The mathematical description for point doubling is from
[12].

A = a · Z2
1 + 3 ·X2

1

B = Y1 · Z1

C = X1 · Y1 ·B
D = A2 − 8 · C (4.29)

X4 = 2 ·B · C
Y4 = A · (4 · C −D)− 8 · Y 2

1 ·B2

Z4 = 8 ·B3

In comparison to add and double in affine coordinates no inversion is required. If one of
the input points P or Q is given in affine coordinates, then the number of multiplications,
needed for a point addition, decreases, cf. [12, 24].
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Jacobian Projective Coordinates

This coordinate transformation uses c = 2 and d = 3. The projective point (X : Y : Z)
with Z 6= 0 corresponds to the affine point

(
X/Z2, Y/Z3

)
and the point at infinity O corre-

sponds to the projective point (1 : 1 : 0). The negative point of (X : Y : Z) is (X : −Y : Z).
The equation of an elliptic curve with Jacobian projective coordinates is described as fol-
lows.

Y 2 = X3 + a ·X · Z4 + b · Z6 (4.30)

Based on Equation 4.30 the formulas for addition and doubling can be calculated as follow.

� Point addition: This point addition formulas using mixed Jacobian - Affine co-
ordinates. Let P and Q are two points in F3

p, denoted by P (X1 : Y1 : Z1) and
Q (X2 : Y2 : 1), and define that P 6= ±Q. The sum of two points P +Q =
R (X3 : Y3 : Z3) in Jacobian coordinates is defined in Equation 4.31. The mathemat-
ical description for point addition is from [24].

A =
(
Y2 · Z3

1 − Y1
)

X3 = A2 −
(
X2 · Z2

1 −X1

)2 · (X1 +X2 · Z2
1

)
(4.31)

Y3 = A ·
(
X1 ·

(
X2 · Z2

1 −X1

)2 −X3

)
− Y1 ·

(
X2 · Z2

1 −X1

)3
Z3 =

(
X2 · Z2

1 −X1

)
· Z1

� Point doubling: This point doubling formulas using only Jacobian coordinates.
Let P a point in F3

p, denoted by P (X1 : Y1 : Z1), and define that P 6= −P . The sum
of P +P = S (X4 : Y4 : Z4) in Jacobian coordinates is defined in Equation 4.32. The
mathematical description for point doubling is from [24].

X4 =
(
3 ·X2

1 + a · Z4
1

)2 − 8 ·X1 · Y 2
1

Y4 =
(
3 ·X2

1 + a · Z4
1

)
·
(
4 ·X1 · Y 2

1 −X4

)
− 8 · Y 4

1 (4.32)

Z4 = 2 · Y1 · Z1

In this case no inversion is needed to compute addition of two points or the double of
one point. For some special elliptic curves, the equation for point doubling 4.32 can be
optimized. If a = −3 , then the expression

(
3 ·X2

1 + a · Z4
1

)
can be calculated with only

one field multiplication and one field squaring
(
3 ·X2

1 − 3 · Z4
1

)
= 3·

(
X1 − Z2

1

)
·
(
X1 + Z2

1

)
.

Point doubling can be further more accelerated by using the fact that multiplications with
2, 4 or 8 can be done by several field additions, see [12, 24]. The elliptic curve defined
in SECP160r1 has this special form. This improvement is used for point doubling in this
thesis.

There are different field operation counts for point addition and doubling in various
coordinate systems. Table 4.2 shows an overview about several add and double equations
and uses the following notation. C1 + C2 ← C3 means that the points which have to be
added are in C1 and C2 coordinates, while their sum is is expressed in C3 coordinates.
The variables in Table 4.2 are defined as follow: A = Affine, P = standard projective, J
= Jacobian, I = inversion, M = multiplication and S = squaring. If standard-projective
coordinates or Jacobian coordinates are used, a transformation back to affine coordinates
is required. This transformation requires one inverse and two multiplications for booth
graticule and accessorily one squaring if Jacobian coordinates are used, e.g. [12, 24].
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Table 4.2: Operation counts for point addition and doubling on E(Fp).

Doubling Addition Doubling with a = −3

2A→ A 1I, 2M, 2S A+A→ A 1I, 2M, 1S 2A→ A 1I, 2M, 2S

2P → P 7M, 5S P + P → P 12M, 2S 2P → P 7M, 3S

2P → P 7M, 5S P +A→ P 9M, 2S 2P → P 7M, 3S

2J → J 4M, 6S J + J → J 12M, 4S 2J → J 4M, 4S

2J → J 4M, 6S J +A→ J 8M, 3S 2J → J 4M, 4S

4.2.3 Scalar Multiplication

With elliptic-curve operations from Section 4.2.1 and Section 4.2.2 are only point addition
and point doubling defined. Cryptographic operations are also need methods to compute
k ·P , where k is an integer and P is a point on the elliptic curve E(Fp). This operation is
called scalar multiplication, and the execute time depends strongly with this. The integer k
is randomly selected from the interval [1, n−1] and one possible representation is the binary
representation of k. In this case k = (kt−1, kt−2, · · · , k2, k1, k0), where t ≈ m = dlog2pe
cf. [12, 24]. There are many algorithms described in literature to perform the scalar
multiplication. In this thesis only three algorithms are described, because those are the
most interesting algorithms for this work.

Double-and-Add Algorithm

The left-to-right binary method, see Algorithm 4.17 is a standard method to perform
scalar multiplication. This version is from [24] and is also called Double-and-Add algo-
rithm. To calculate the scalar-point product an additive version of the basic repeated
square and multiply method for exponentiation is used. The number of ones in the bi-
nary representation of k is m/2. Hence the expected running time of Algorithm 4.17 is
approximately m/2 for point addition an m for point doubling, denoted 0.5mA + mD.
But the algorithm has some serious difficulties. The power consumption traces of a point
addition operation and a point doubling operation are not the same, so an attacker can
easily distinguish between these operations and derive the value k. This technique was
described by Jean-Sebastien Coron [13] in 1999.

Algorithm 4.17 Double-and-Add algorithm for scalar multiplication.

Require: k, P, t = dlog2ke
Ensure: Q = k · P
Q← P
for i = t− 2 to 0 do
Q← ECDLB(Q)
if k[i] = 1 then
Q← ECADD(Q,P )

end if
end for
return Q
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Algorithm 4.18 Always Double-and-Add algorithm for scalar multiplication.

Require: k, P, t = dlog2ke
Ensure: Q = k · P
Q[0]← P
for i = t− 2 to 0 do
Q[0]← ECDLB(Q[0])
Q[1]← ECADD(Q[0], P )
Q[0]← Q [k[i]]

end for
return Q[0]

Always Double-and-Add Algorithm

Coron described also an improved version of Algorithm 4.17 in his paper, see [13]. He
used a technique which is called Coron’s dummy addition method, which is one of the
standard countermeasures against SPA. This algorithm is shown in Algorithm 4.18 which
from [28] and which performs an ECADD and an ECDBL operation in every round. The
runtime can appraise with mA+mD. So the always Double-and-Add algorithm, described
by Coron is slower than the standard binary method described in Algorithm 4.17. The
performance of this algorithm can be improved by using a combined addition and double
operation (ECADDBL), which reuses some internal state variables.

Tetsuya Izu, Bodo M”oller and Tsuyoshi Takagi [28, 42] showed, that there exist a
potential security problem in this method if we using projective coordinates. In the case
that k[i] = 0, a point that is used in the current iteration is also an input point in the next
iteration. ECADD and ECDBL involve squaring the Z coordinate so the same Z value
will be squared again. Maybe a side channel can provide hints that the same squaring is
performed again and consequently information in k[i] leak out.

Montgomery Ladder Algorithm

Montgomery proposed in [44] some mathematical theories on elliptic curves which only
work with the x-coordinate. These formulas were original described for the elliptic curve in
Montgomery form and use the fact, that the sum of two points can be computed without
the y-coordinate, if there differences is a known point. There exist some improvements
for this technique to general elliptic-curves in Weierstrass form, e.g. [7, 20, 29]. The
Montgomery ladder algorithm, see Algorithm 4.19 is from [7] and employ the Montgomery
technique to calculate the scalar multiplication. Where P is a known point and P =
R[1]−R[0] throughout the algorithm.

In [7], Eric Brier and Marc Joye described the formulas for point doubling and addition
with Montgomery technique and curves in Weierstrass form. If Fp is a prime field and
the elliptic curve defined over the finite field is given by Equation 4.21, the formulas for
double and add are from [7] and shown in the following itemization.

� Point addition: If P,Q are two points in E(Fp), denoted by P (x1, y1) andQ(x2, y2),
and P 6= Q. The x-coordinate of the sum from P +Q is (x3 and the difference from
P −Q is (x, y) and is always known. Equation 4.33 is from [7] and shows the point
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Algorithm 4.19 Montgomery ladder algorithm for scalar multiplication.

Require: k, P, t = dlog2ke
Ensure: Qx = k · P
Q[0]← P , Q[1]← 2 · P
for i = t− 2 to 0 do

if k[i] = 0 then
Q[1]x ← (R[0] +R[1])x, Q[0]x ← (2 ·R[0])x

else
Q[0]x ← (R[0] +R[1])x, Q[1]x ← (2 ·R[1])x

end if
end for
return Q[0]x

addition in affine coordinates.

(P +Q)x = x3 =
−4 · b · (x1 + x2) + (x1 · x2 − a)2

x · (x1 − x2)2
(4.33)

There exists an additional equation to Equation 4.33 for point addition which is
described in [28]

(P +Q)x = x3 =
2 · (x1 + x2) · (x1 · x2 + a) + 4 · b

(x1 − x2)2
− x (4.34)

� Point doubling: If P is a point in E(Fp), denoted by P (x1, y1), P 6= −P and
y1 6= 0. The x-coordinate of the sum from P +P is S(x4). Equation 4.35 is from [7]
and shows the point doubling in affine coordinates.

(2 · P )x = x4 =
(x12− a)2 − 8 · b · x1
4 ·
(
x31 + a · x1 + b

) (4.35)

If the y-coordinate of a point P is required, there exist an useful feature, described by
Montgomery, to calculate it from the x-coordinate of P . This technique only required the
x-coordinate of P , the x-coordinate of another point Q and the coordinates of the point
P −Q. Equation 4.36 is from [7] and can be used to restore the y-coordinate. There are
P = (x1, y1) and Q = (x2, y2) ∈ E(Fp) \ {0} with P 6= ±Q and P −Q = (x, y) with y 6= 0,
cf. [7, 12, 24]

Py = y1 =
2 · b+ (a+ x · x1) · (x+ x1)− x2 · (x− x1)2

2 · y
(4.36)

This feature is not needed in this thesis because to generate an ECDSA digital signature
only the x-coordinate of a point is required. The advantage of Algorithm 4.19 is that is
insusceptible to SPA and so it is a good choice for this work.

The Montgomery ladder algorithm calculates in every round P + Q and 2 · P . So
some improvements of Equation 4.33, Equation 4.34 and Equation 4.35 are required. One
possibility is to transform the equations from affine coordinates to projective coordinates.
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In this case, no field inverse operation is required. Equation 4.37, Equation 4.38 and
Equation 4.39 are from [7, 29] and illustrate that in standard-projective coordinates.

X3

Z3
=

Z

X
· (X1 ·X2 − a · Z1 · Z2)

2 − 4 · b · Z1 · Z2 · (X1 · Z2 −X2 · Z1)

(X1 · Z2 −X2 · Z1)
2 (4.37)

X3

Z3
=

2 · (X1 · Z2 +X2 · Z1) · (X1 ·X2 + a · Z1 · Z2) + 4 · b · Z2
1 · Z2

2

(X1 · Z2 −X2 · Z1)
2 − X

Z
(4.38)

X4

Z4
=

(
X2

1 − a · Z2
1

)2 − 8 · b ·X1 · Z3
1

4 ·
(
X1 ·X2 ·

(
X2

1 + a · Z2
1

)
+ b · Z4

1

) (4.39)

X4

Z4
=

(
X2

1 · Z2
1 − a · Z2

1 · Z2
2

)2 − 8 · b ·X1 · Z3
1 · Z4

2

4 · Z1 · Z2 ·
(
X1 ·X2 ·

(
X2

1 · Z2
2 + a · Z2

1 · Z2
2

)
+ b · Z3

1 · Z3
2

) (4.40)

Tetsuya Izu and Tsuyoshi Takagi [29] presented in 2001 an improved point-doubling
equation, see Equation 4.40, which share some intermediate variables of point addition.
Therewith, they created a combined Double-and-Add operation (ECADDBL) which re-
quired 15M + 4S to compute P +Q and 2 · P and if a = −3 it reduces to 13M + 4S. In
2002, see [28] they published an improved version of these ECADDBL operation, which is
a little bit faster than the older version of [29]. That improved version only needs 13M+4S
if a 6= −3 and 11M + 4S if a = −3. Both versions need only 7 auxiliary variables for
one point Double-and-Add operation. But there are some hassles with that presented
algorithm if we use it directly in hardware implementation where small area is required.
A multiplication like a = a · b is no problem in software implementations but in hardware
implementations an additional variable to save the result like c = a · b is needed. So the
ECADDBL algorithm presented by Izu and Takagi needs 8 auxiliary variables under these
requirement. Therefore, we used Equation, 4.38 and Equation 4.40 to create a new com-
bined ECADDBL algorithm, which is smaller to implement in hardware and needs only 7
auxiliary variables. This algorithm is presented in Algorithm 4.20 and needs 11M + 6S, if
a = −3. A version for a 6= −3 is not created, because the elliptic curve, used in this work,
is from SECP160r1 and has a = −3.

Countermeasures against DPA

The always Double-and-Add algorithm, see Algorithm 4.18 and the Montgomery lad-
der algorithm, see Algorithm 4.19 are secure against SPA. But it is maybe possible
to break it by using DPA. There exist some countermeasures against DPA, such as
those by Jean-Sebastien Coron [13] or Marc Joye and Christophe Tymen [31]. For this
ECDSA module the countermeasure described by Coron is used. The basic idea is
to randomize the projective coordinates of the base point P . Let P = (X : Y : Z)
the base point described in SECP160 given in standard-projective coordinates, then all
r ∈ Fp \ {0},(r ·X : r · Y : r · Z) represent the same point. Corons idea is to transform
the base point from (X : Y : Z) to (r ·X : r · Y : r · Z) with a randomly selected r be-
fore starting the scalar multiplication. With this technique, the side-channel information
available to the statistic analysis will be randomized. This countermeasure needs only
two multiplications at the beginning of the scalar point multiplication. The countermea-
sure described by Joye and Tymen bases on the randomly selected isomorphisms between
elliptic curves. For more information about that look at [31].
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Algorithm 4.20 Own improved combined Double-and-Add algorithm.

Require: P = (X1, Z1) Q = (X2, Z2) P = (x, y) b
Ensure: X3, Z3 = P +Q X4, Z4 = 2 · P
REG1 = X1; REG2 = Z1; REG3 = X2; REG4 = Z2

REG5 ← REG1 ·REG4

REG6 ← REG3 ·REG2

REG7 ← REG1 ·REG3

REG1 ← REG2 ·REG4

REG2 ← REG5 −REG6

Z3 ← REG2
2

REG2 ← REG7 −REG1

REG2 ← REG2 −REG1

REG2 ← REG2 −REG1

REG4 ← REG5 +REG6

REG7 ← REG2 ·REG4

REG6 ← REG2
1

REG4 ← REG6 · b
REG7 ← REG7 +REG4

REG7 ← REG7 +REG7

REG7 ← REG7 +REG4

REG7 ← REG7 +REG4

REG2 ← Z3 · x
X3 ← REG7 −REG2

REG2 ← REG2
5

REG2 ← REG2 −REG6

REG2 ← REG2 −REG6

REG2 ← REG2 −REG6

REG6 ← REG2 ·REG5

REG2 ← REG4 ·REG1

REG6 ← REG6 +REG2

REG4 ← REG1 ·REG6

REG4 ← REG4 +REG4

Z4 ← REG4 +REG4

REG6 ← REG2 ·REG5

REG6 ← REG6 +REG6

REG6 ← REG6 +REG6

REG6 ← REG6 +REG6

REG2 ← REG2
5

REG5 ← REG2
1

REG2 ← REG2 +REG5

REG2 ← REG2 +REG5

REG2 ← REG2 +REG5

REG1 ← REG2
2

X4 ← REG1 −REG6

return X3, Z3 X4, Z4
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Figure 4.6: Overview of the SHA-1 compression function.

4.3 SHA-1

The ECDSA digital-signature algorithm needs also a hash function to compute the fin-
gerprint of a message. There exist a lot of different hash functions, but the most current
used hash functions are from the SHA family. Table 4.3 shows some primary information
about SHA family and the informations are from [19].

Since a SECP160 elliptic curve is used, it makes sense to use SHA-1 with a 160-bit
hash value. The following section gives a short description of SHA-1.

At the first, the input message M has to be padded and split into message blocks M t

with a size of 512 bits. Suppose that the length of the input message M is l bits, a padded
message block can be create as follow. Append the bit 1 followed by k zero bits to the
end of the message M . Where k is the smallest non negative solution to the equation
l + 1 + k = 448 mod 512. At last, append a 64-bit block to the end, which includes the
number l by using a binary representation. All message blocks M t have now a length of
512 bits. The actual hash function can be divided into two parts, the message expansion
and the state update transformation. Figure 4.6 gives an overview of these two parts.

The message expansion can be defined as follow. A message block M t can be split
into 16 32-bit words, denoted by Mi, with 0 ≤ i ≤ 15. The message expansion function
expanded the message block M t linearly into 80 × 32-bit words Wi and this function is

Table 4.3: Secure hash algorithm properties [19].

Algorithm
Message Size Block Size Word Size Message Digest Size Security

(bits) (bits) (bits) (bits) (bits)

SHA-1 < 264 512 32 160 80

SHA-256 < 264 512 32 256 128

SHA-384 < 2128 1 024 64 384 192

SHA-512 < 2128 1 024 64 512 256
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Figure 4.7: One step of the state update transformation [15].

described in Equation 4.41.

Wi =

{
Mi for 0 ≤ i ≤ 15

(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) << 1 for 16 ≤ i ≤ 79
(4.41)

The state update transformation starts by copying the last hash values Ht−1 into the
five 32-bit state variables A, · · · , E. If the first message block is processed, initial hash
values are used. For SHA-1, the initial hash-values H(0) are constants of the following five
32-bit words, shown in Equation 4.43.

H
(0)
0 = 0x67452301

H
(0)
1 = 0xefcdab89

H
(0)
2 = 0x98badcfe (4.42)

H
(0)
3 = 0x10325476

H
(0)
4 = 0xc3d2e1f0

These state variables are updated in 80 (0 ≤ i ≤ 79) steps afterwards, by using the ex-
panded message Wi and a round constant Ki in step i. A single step of the state update
transformation is shown in Figure 4.7 and described in Algorithm 4.21. The function f in
Figure 4.7 depends on the step number and is defined in Equation 4.44. The round con-
stants Ki are defined in Equation 4.45, which uses a hexadecimal number system. After
80 state update transformations the state variables are added with the last hash values
Ht−1 and then the processing of one message block is complete.

Ht
(0,··· ,4) =

(
At, · · · , Et

)
+Ht−1

(0,··· ,4) (4.43)
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Algorithm 4.21 SHA-1 state update transformation.

Require: At−1, · · · , Et−1

Ensure: At, · · · , Et

for i = 0 to 79 do
T ← ROTL5(A) + fi(B,C,D) + E +Ki +Wi

E ← D; D ← C
C ← ROTR2(B)
B ← A; A← T

end for
return At, · · · , Et

fi =


(B ∧ C)⊕ (¬B ∧D) 0 ≤ i ≤ 19

(B ⊕ C ⊕D) 20 ≤ i ≤ 39

(B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 40 ≤ i ≤ 59

(B ⊕ C ⊕D) 60 ≤ i ≤ 79

(4.44)

Ki =


0x5a827999 0 ≤ i ≤ 19

0x6ed9eba1 20 ≤ i ≤ 39

0x8f1bbcdc 40 ≤ i ≤ 59

0xca62c1d6 60 ≤ i ≤ 79

(4.45)

After processing all padded message blocks M t, the resulting 160-bit message digest,
of an input message M is the value

Ht
0|Ht

1|Ht
2|Ht

3|Ht
4 (4.46)

For more information about SHA-1 see [19]. The SHA-1 module which is used in this work,
only handles with one padded message block. The padding must be done externally. A
message with 447 bits without padding is long enough for an RFID tag with ECDSA to
ensure a secure identification. An extension to process more than one message block can
be done but is not provided yet.



Chapter 5

Implementation of the ECDSA
Hardware Module

The aim of this chapter is to design an elliptic-curve processor with full ECDSA function-
ality and optimization for low-area and low-power consumption. Such a module can be
used to implement secure RFID tags, smartcards, or other devices. This chapter gives an
overview of a hardware ECDSA design in the first section. The following sections give de-
tails about all components which we need in our module. We also describe some measures
for low-power optimization and measures to prevent Simple Power Analysis (SPA) and
Differential Power Analysis (DPA) attacks. The results of our implementation are given
in the last section.

5.1 Overview

The whole design process can be split into two parts. In the first part, which we describe
only briefly, is built a high-level model of the elliptic-curve processor in a language like
JAVA or C++. This high-level model describes the elliptic-curve processor at the system
or architecture level. An object-oriented program language is used to describe all parts

High-Level Model

with

FlexiProvider

High-Level Model

own

implementation

HDL

model

JAVA simulation

HDL simulator

Error

Error

Success

Success

Figure 5.1: Verification process between different models.
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of the ECDSA module, like memory, arithmetic-logic unit (ALU) or the controller. The
segmenting into smaller parts makes the comparing of different implementations easy. We
implemented different algorithms which perform the same operation to analyze them on
reference to memory and run-time requirements. The FlexiProvider Java Cryptography
Architecture (JCA/JCE), see [9], is used as origin to generate test vectors. The testing
of our implementation is a two step approach. In the first step, we use the test vectors,
generated with FlexiProvider, to verify our own high-level software model. In a second
step, we generate new test vectors with our own software implementation to verify the
hardware-description language (HDL) model. This approach has the advantage, that it is
possible to produce also test vectors for sub-modules, like random-access memory (RAM)
or the ALU. Figure 5.1 shows the relations, between the two software models and the
hardware model.

In the second part, we describe the hardware architecture of our elliptic-curve pro-
cessor. The complete hardware architecture is an application-specific integrated circuit
(ASIC) design with digital standard-cells from c35b4 CMOS libraries published by Aus-
triamicrosystem AG [2]. We can divide the architecture of our ECDSA module into four
parts. These sub-modules and the connections between them are shown in Figure 5.2.

� AMBA: The ECDSA module provides an AMBA APB interface [39] as interconnec-
tion to other modules. The interface offers all ports from the AMBA specification.
Section 5.2 gives detailed information about the AMBA interface.

� Memory: The memory sub-module includes a RAM module, a Read-only mem-
ory (ROM) module and an Electrically Erasable Programmable Read-Only Memory
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Figure 5.2: Elliptic-curve processor architecture.
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(EEPROM) module. It offers a 16-bit dual-port interface to read data operations, a
16-bit single-port interface to write data operations, and it has an address space of
8 bits. Section 5.3 shows detailed information about the memory sub-module and
compares different implementations.

� ALU: The ALU sub-module includes a register, a multiplication and addition unit
and some logical elements. Section 5.4 provides detailed information about the
multiply-accumulate unit because it is the most important part in the ALU sub-
module.

� Controller: The control unit includes all algorithms which we need to generate
digital signatures using ECDSA. It has a so called Hybrid design, because some
parts of the control unit are implemented in the finite-state machine (FSM) approach
and some other parts in a micro-code control architecture. Section 5.5 gives detail
information about the FSM part and the micro-coded parts.

5.2 APB Interface

The interconnection to other modules or components is done by an AMBA APB interface.
The Advanced Microcontroller Bus Architecture (AMBA) is published by ARM Ltd. and
specifies different on-chip communication standards, like Advanced High-performance Bus
(ABH), Advanced System Bus (ASB) and Advanced Peripheral Bus (APB). For this work
the APB is used, because it is optimized for low-power consumption and has a simple
interface. Figure 5.3 is from [39] and shows the APB slave interface, which has been
implemented in our ECDSA module. Figure 5.4 shows three states, which we need for
communication over the AMBA APB bus. In fact, the communication process comprises
three states:

� IDLE: The system is in the IDLE state, if no communication over the bus is required.

� SETUP: The bus goes into the SETUP state if a communication is required. In
this state, the module is selected (PSELx) and the address is set using the address
line (PADDR). In order to select read or write access the (PWRITE) line is used.
After one clock cycle, the state of the bus is ENABLE.

Figure 5.3: APB slave interface description [39].
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Figure 5.4: APB state diagram [39].

� ENABLE: This is the data transfer state. All signals from SETUP state have to
be stable and the (PENABLE) signal goes to high. The read or write operation is
done after the next clock cycle and the bus goes back to the SETUP state if an other
transfer follows or it goes to the IDLE state otherwise.

Each port to read and write data ((PRDATA) or (PWDATA)) has a size of 16 bits and
the address port has 8 bits in our APB implementation. Table 5.1 shows the specification
for memory-mapped I\O. The padded message has to be load in blocks of 128 bits into the
memory. The ephemeral key and the random value for randomized projective coordinates
have to be loaded to the correct addresses and afterwards the signature generation can
be started. Before the signature generation is finished, a second randomization value is
required. This second random value is used to randomize the ephemeral key and assure
the Montgomery inversion algorithm against SPA and DPA attacks. This randomization
requires less clock cycles then a time-invariant implementation of Montgomery inversion
algorithm. If the FINISH signal goes to high, the values r and s can be read from
memory. The PRESETn line is specified by AMBA APB specification as active low reset
signal and in our design a signal change is only allowed at the positive edge of the clock
signal PCLK. Figure 5.5 and Figure 5.6 show the timing diagrams of a read operation and
a write operation.

5.3 Memory

The memory sub-module contains three different storage elements. A RAM is used to store
intermediate values, a ROM table which contains constant values such as elliptic-curve
parameters or initial hash-values to calculate the SHA-1 fingerprint, and an EEPROM
module that stores the private static key. The interface is equal to a dual-port RAM
but with some simplifications. Each port in a generic dual-port RAM can be used to
write or read data from any memory location. In our algorithmic design for elliptic-curve
operations, a second write port brings no speed up. Hence, our memory implementation
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Figure 5.5: APB read operation [39]. Figure 5.6: APB write operation [39].

includes only one write port to reduce the required area and power consumption. The
‘Port A‘ of our memory module has only read access and the write operations can only
be done on the address of ‘Port B‘. The RAM also has a dual-port design with only one
write port and has the same port specification as the memory sub-module. The EEPROM
module is connected to memory ‘Port A‘ and the ROM table is split into two parts and
each part is connected to ‘Port A‘ or to ‘Port B‘, but not to both. The memory module
includes 1 440 bits of RAM, 1 328 bits of ROM, and a 160-bit EEPROM module. Figure
5.7 shows the architecture of the memory sub-module. Figure 5.8 shows the address space
of the memory sub-module. The memory address is split into two parts. The higher
4 bits of the address are used to select a 160-bit or a 176-bit word and the lower 4-bit
of the address are used to select the 16-bit element from the word. Each port has a

Table 5.1: APB memory mapped I\O specification.
Address Read Write

0x00 · · · 0x0A ECDSA signature value r first 128-bit block of the padded
message

0x10 · · · 0x1A ECDSA signature value s second 128-bit block of the padded
message

0x20 · · · 0x29 third 128-bit block of the padded
message

0x30 · · · 0x39 fourth 128-bit block of the padded
message

0x50 · · · 0x59 value for randomized projective
coordinates (160 bits)

0x60 · · · 0x69 random value for Montgomery in-
version (160 bits)

0x70 · · · 0x79 ephemeral ECDSA key

0x90 · · · 0x99 EEPROM
static private ECDSA key

0xA0 0x00 - ECDSA signature creation
run
0x01 - finish
0x02 - get new random at address
0x60 · · · 0x69

0x01 - start ECDSA signature
generation
0x02 - restart after new random
insert
0x03 - make soft reset
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Table 5.2: ROM address space.
Address ‘Port A‘ ‘Port B‘

0x90 · · · 0x99 EC parameter b

0xA0 · · · 0xAA EC parameter p Montgomery multiplication fac-
tor R

0xB0 · · · 0xB9 EC basepoint DPL(EC basepoint)

0xC0 · · · 0xCA EC parameter n

0xD0 · · · 0xD9 SHA-1 initial hash-value H(0)

0xE0 · · · 0xE9 SHA-1 round constant Ki

size of 16 bits and consequently the smallest memory element has also a size of 16 bits.
The elliptic-curve operations require seven RAM entries with 10 × 16-bit elements and
additional two 10× 16-bit elements are required to store the ephemeral key and the hash
fingerprint. Therefore, we need nine entries with 160 bits (1 440 bits) to calculate the
scalar multiplication. The signature values r and s are calculated in a prime field with the
size of 161 bits. Therefore, we need entries with 11 × 16-bit elements, but the signature-
generation step requires only eight entries with 176 bits. In order to make the memory
as small as possible, we implement our RAM with two different address spaces. One 160-
bit word is shared to implement either nine 160-bit entries or eight 176-bit entries. The
description above shows only the addressing of the RAM module. In Subsection 5.3.1, we
give some information about different RAM design, like an ASIC design in comparison
to a RAM macro-module, or synchronous read operations in comparison to asynchronous
read operations.

The ROM table includes five entries with 160 bits and three entries with 176 bits.
Table 5.2 shows the ROM-table entries sorted by port and address.

5.3.1 RAM

There exist different types of dual-port RAM architectures in the literature. From the
algorithmic aspect, we need at least 1 440 bits of RAM to generate an ECDSA digital sig-
nature. One possibility is to use a synchronous dual-port RAM macro, such as published
by Austriamicrosystem AG [2]. However, there exist no RAM macro from Austriami-
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Figure 5.9: Synchronous dual-port RAM schematic (taken from Austriamicrosystem AG
[2]).

crosystem AG which has exact 1 440 bits, consequently we had to use the next bigger one,
which has a size of 2 048 bits. Figure 5.9 shows the schematic of an Austriamicrosystem
AG dual-port RAM. This synchronous RAM needs two read lines (RDx) to enable a read
operation and two write lines (WRx) to enable a write operation. The lines for addressing
and data have the same sizes as we described above. Therefore, we need a 19-bit control
word for this dual-port RAM, under the acceptance that we only use one port for write
operations. This RAM architecture needs 8 730 GEs of area [2] and one ECDSA signature-
generation process needs approximately 707 000 clock cycles. The number of clock cycles
is a result from our JAVA high-level model.

Another way is to design an ASIC RAM with digital standard-cells. For that, we use
cells from c35b4 CMOS library [2]. Figure 5.10 shows an ordinary memory element with a
size of 16 bits. The D-Type Flip Flop has the value from input ’d’ and holds it at output
‘q‘, during every positive clock edge. A Multiplexer is used to choose, whether a new value
should be stored or the last value should be back coupling. This basic memory design needs
16 D-Type Flip Flops and 16 Multiplexers to build a 16-bit memory element. However,
this is consequently no good solution for a low-area design. One possible optimization for
this basic memory element is shown in Figure 5.11. The 16 Multiplexers are removed and
instead a clock-gating cell is insert. This memory architecture has several advantages.
First, the area which is required decreases because one clock-gating cell requires less area
then 16 Multiplexers. Second, this design needs less power than the ordinary memory
element, because the D-Type Flip Flops only change its state if a new information has
to be stored and not in every clock cycle. More information about glock gating is given
in Section 5.7. If we have a single 16-bit memory element, the design shown in Figure
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Figure 5.10: Ordinary 16-bit RAM ele-
ment with D-Type Flip Flop.

Figure 5.11: Clock gated 16-bit RAM el-
ement with D-Type Flip Flop.

Figure 5.12: Latch-based 16-bit RAM element.

5.11 is a good choice. But for our 1 440-bit RAM we need 90 × 16-bit memory elements
and therefore some more optimizations are possible. In our work, we used a latch-based
RAM to further optimize the area of our ECDSA module. We adopted the design from
Figure 5.11 and replaced the D-Type flip flop by a latch. But to implement a RAM with
synchronous write capability, some more changes were required. Figure 5.12 shows one
16-bit memory element with a latch as storage element. The 1 440-bit RAM consists of
90 × 16-bit latch-based storage elements. We had to insert two additional 16-bit latch-
based storage elements at the bottom of the two read ports, to get an asynchronous read
and a synchronous write capability. The full latch-based RAM architecture is shown in
Figure 5.13.

Table 5.3, Figure 5.14 and Figure 5.15 give an outline about this different RAM designs.
The synchronous dual-port RAM from Austriamicrosystem AG requires the least area,
but if we compare the product of area and clock cycles, the latch-based RAM is the best
solution. Therefore, we used this RAM design for our ECDSA module.

Table 5.3: Comparison of different RAM architectures
RAM type Area Time Area · Time

[#GE] [kCycles]

Synchronous Dual-Port RAM macro 8 730 707 6.17

Ordinary D-Type Flip Flop RAM 13 100 512 6.70

Clock gated D-Type Flip Flop RAM 12 050 512 6.16

Latch-based RAM 10 300 512 5.27
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Figure 5.13: Asynchronous read / synchronous write latch-based RAM.

5.4 Arithmetic Logic Unit (ALU)

The most important component of the ALU is the 16× 16-bit multiply-accumulate unit.
This multiply-accumulate unit is used for Montgomery multiplication and multiplication
with implicit fast reduction. Also a 16-bit adder for addition and subtraction operations
are needed. Some logical elements are needed for SHA-1 computation. The 16-bit adder
is shared with the multiply-accumulate unit to make a design which is optimized for area.
In order to store some intermediate values, we used a 36-bit accumulator.

Figure 5.14: Comparison of different RAM architectures - area and time requirements.
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Figure 5.15: Comparison of different RAM architectures - area/time product.

5.4.1 Multiplication

The multiply-accumulate unit is the core component of the ALU. This component consists
of a 16 × 16-bit multiplier, a 36-bit adder, and a 36-bit register. Figure 5.16 shows the
block diagram of the multiply-accumulate unit. The multiply-accumulate unit multiplies
two 16-bit values and adds the multiplication result to the values actually stored in the
registers. The 36-bit adder consists of two 16-bit adder and one 4-bit adder, because
now we can use sleep logic if only one 16-bit adder is required. This multiplication and
addition operation is done within one clock cycle. To get a multiply-accumulate unit with
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Figure 5.16: Multiply-accumulate unit.
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Figure 5.17: 16-bit adder unit.

low-power consumption sleep logic is used to switch off the multiplier and the adder to
reduce switching activity. We implemented the multiplier with the Verilog * operation
and consequently the synthesis is done by the Cadence-design tools.

5.4.2 Addition

The 36-bit adder from the multiply-accumulate unit is also used for simple addition and
subtraction operations in two different finite fields. To reduce chip area and to fulfill the
low-power requirements, we used only the first 16-bit adder unit for simple addition and
subtraction operations. The other two adder units, see Figure 5.16, can be switched off
by a sleep logic, which reduces the switching activity. A subtraction operation is required
to calculate the negative value of b, cf. Algorithm 4.3. This negative value is called two’s
complement and it is calculated by a XOR operation of b and 0xFFFF and an addition
of 1 afterwards. In order to implement the multiplication with implicit fast reduction, see
Algorithm 4.8, additionally an interleaved addition operation and some shift operations
are needed. Figure 5.17 shows the 16-bit adder unit with carry save registers in a block
diagram. The shift operations are done by a fixed wired network using multiplexers.

5.4.3 Other Elements

A few additional components are needed to calculate the ECDSA digital signature. The
SHA-1 calculation requires two logical binary operation, a 16-bit XOR operation and a
16-bit AND operation and three bit-wise rotation operations. This rotation operations
are also done by a fix wired network. We also implemented a 8-bit shift register, which
stores the actual needed 8-bit part of the ephemeral key during the scalar-multiplication
process.
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Figure 5.18: Hierarchical structure of the control unit.

5.5 Control Machine

The control unit generates all signals to control the datapath. We implemented all al-
gorithms, which are needed to generate a valid digital signature. The ECDSA digital-
signature algorithm has a very complex design. Therefore, we used a control machine with
a hierarchical architecture. Figure 5.18 gives an overview on the hierarchical structure of
the control unit. The highest level is ECDSA, which we described before in Algorithm 3.1.
This procedure uses the functionality of the next lower level to fulfill all needed operations.
The operations at this second stage are the SHA-1 hash function from Section 4.3, the
ECC scalar multiplication from Section 4.2.3, the Montgomery multiplication algorithm
from Section 4.1.2 and the Montgomery inversion algorithm from Section 4.1.4. The third
stage includes all elliptic-curve operations, which we required to calculate the scalar multi-
plication. In our case, this stage contains only one element, the combined Double-and-Add
algorithm, see Algorithm 4.20. The last stage in our control unit includes all prime-field
operations for the two different prime fields and some shift and logical operations. This op-
erations are used from the combined Double-and-Add algorithm and from the algorithms
in stage two.

From an architectural aspect, we used a so called hybrid control-unit, cf. [4], which
means that our control unit uses a FSM and also some micro-coded parts. We used this
architectural approach, because some algorithms can be simply implement in a micro-
coded based control unit but not in a FSM and vice versa. The micro-coded approach is
used to implement one round into the SHA-1 algorithm, the multiplication with implicit
fast reduction and for the Montgomery multiplication algorithm. All other parts of ECDSA
has been implemented as a finite-state machine. The following two subsections deliver
insights of the FSM and micro-coded control.

5.5.1 Finite-State Machine (FSM)

A finite-state machine describes the algorithm in a set of states. The actual state is stored
in a so called state register. Depending on the current state and the current input signals,
the FSM could be persisted in the actual state or if necessary, change to another state in
every clock cycle. It is important to define a starting point, which is the first state after
power up in order to assure a correct data flow. A FSM is a good choice for algorithms
with a simple and linear data flow, because these algorithms can be described in a few
states with less feedback signals from the datapath. In case of complex algorithms, a



CHAPTER 5. IMPLEMENTATION OF THE ECDSA HARDWARE MODULE 58

Figure 5.19: Overview of the finite-state machine.

FSM is not a good choice in most cases. Because a lot of states are required and the
FSM becomes a very confuse layout. In our work, we used a FSM to describe almost all
algorithms. Figure 5.19 gives an overview of the FSM, which we used as main part of the
controller. This overview includes only some state blocks, which are presentable for the
application flow. The complete FSM which we used to describe the ECDSA algorithm has
103 states. A soft reset with the control word 0x3 is possible at every time in the ECDSA
digital signature generation process and not only from the IDLE state.

5.5.2 Microprogramming

A micro-coded control unit uses a ROM to store the control signals and a counter to
generate the addresses for the micro-code ROM. Figure 5.20 shows a basic example of
a micro-coded control unit. The main parts are the ROM table, a register which holds
the current address, an incrementation unit, and an operation decode logic. Small ROM
tables can be synthesized from a set of combinatorial logical gates. If a big ROM table
is required, a hard-macro ROM table has advantages, because this needs less area than
a synthesized ROM table with combinatorial logical gates. The operation-decode logic
uses a ROM table entry and decodes it to get the control signals for the ALU and the
memory. This concept requires less area because the ROM tables store the information
in a compressed form and only one decode logic is needed. Figure 5.20 shows a micro-
coded control unit which requires no feedback from the ALU. This is the simple case,
in which only a register and an incrementation unit is required to generate the ROM
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Figure 5.20: Overview of micro-coded
control unit without feedback signals.

Figure 5.21: Overview of micro-coded
control unit with feedback signals.

address for the next clock cycle. But most complex algorithms need some feedback signals
from the datapath and in this case an additional condition unit is needed. Figure 5.21
shows a micro-coded control unit with a condition unit to handle feedback signals. The
condition unit can make some changes on the ROM address, according to the level of the
feedback signals. But this feedback from the datapath could make some problems if a
pipelined architecture is used. In some cases, we must break the pipeline to retrieve the
correct feedback signals from the ALU. The algorithms, which we used in this work need
some feedback signals from the ALU, like the carry bit, the is-zero bit, and a bit of the
ephemeral key, but we use no pipeline architecture in our datapath. Figure 5.22 shows
the micro-coded part of the control unit, which is used in this work. It includes three
ROM tables which hold the control signals for SHA-1, the Multiplication with implicit
fast reduction and for the Montgomery multiplication algorithm. We use only one address
register, one incrementation unit, and one operation-decode logic for all three ROM tables
to get a design which requires less area. The 8-bit address register is also shared with
the finite state machine, in which we used it as simple counter. Therefore, we insert an
AND to turn of the addressing of the ROM tables. The controller of this ECDSA module
uses both control-unit architectures as so called hybrid control-unit, cf. [4]. This design
requires some additional logic to change between the FSM and the micro-coded part, but
by using of the optimal control architecture for each algorithm, we get a control unit with
the required minimal area.

5.6 Countermeasure against SPA, DPA, and Timing Anal-
ysis

Simple Power Analysis (SPA) and Differential Power Analysis (DPA) are two types of
side-channel attacks. Side-channel attacks use side-channel information to attack a cryp-
tographic device. Side-channel information are all pieces of information which you get
physically from the device, e.g. the power consumption. This type of attacks try to break
the implementation of an cryptographic algorithm and not the cryptographic algorithm
itself. There exist several side channels like timing, power consumption, or electromagnetic
emissions. These side-channel information can maybe used to extract information which
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Figure 5.22: Micro-coded part of the control unit.

should have been protected, like a private key for instance. Therefore, it is important to
protect a device against side-channel attacks. Timing analyses use the execution time to
extract information. Simple power analysis and differential power analysis are two tech-
niques, which use the power consumption or the electro-magnetic radiation of a device as
information channel. The power consumption of a device based on semiconductor logic-
gates depends on the number of transistors which change their charge in one clock cycle.
If the algorithm, processed on the device, is well-known, the power consumption can be
used to draw conclusions from the actually processed data, like a private key, cf. [4]. In
the following, we will describe some side-channel attacks and the countermeasures which
we have implemented in our module, to prohibit them.

Timing Analysis

If there exist a correlation between the execution time of an algorithm and a secret which is
used by this algorithm, the secret can maybe extract by using timing analysis. Therefore, it
is important to design an algorithm time-invariant, which means there exist no correlation
between the execution time and a secret. One example of an algorithm which is not
time-invariant in relation to the ephemeral key is the simple Double-and-Add algorithm,
see Algorithm 4.17. Because a point-addition operation requires less time then a point-
doubling operation. Therefore, we use in our work the Montgomery ladder algorithm, see
Algorithm 4.19.

Hisayoshi Sato, Daniel Schepers and Tsuyoshi Takagi [50] show that also the Mont-
gomery multiplication algorithm can be attacked by timing analysis. The last subtraction
in the Montgomery multiplication algorithm, see Algorithm 4.6 is not required in every
multiplication operation, consequently it could be a target for a timing attack. We use
an own improved Montgomery multiplication algorithm in our work, see Algorithm 4.7,
which makes this subtraction at all times and uses the last carry bit to decide which RAM
address should be used in the next operation. Therefore, a timing attack such as described
by Sato, Schepers and Takagi should not by possible anymore.
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Simple Power Analysis (SPA)

Simple power analysis uses only a few or even one trace of an encryption operation or
signature-generation operation to extract information. That means, that the power trace
is directly interpretable. One possibility to attack the ECDSA algorithm with simple
power analysis is the scalar multiplication. If we use the simple Double-and-Add algo-
rithm, see Algorithm 4.17, it is easily possible to extract the ephemeral key from the
power consumption trace, because a double operation has a completely different power
consumption as an add operation. In our work, we use the Montgomery ladder algorithm,
see Algorithm 4.19, to prevent the scalar multiplication against this type of attack.

Differential Power Analysis (DPA)

The DPA uses statistical methods to detect extremely small differences in power consump-
tion traces or electromagnetic-radiation traces. Therefore, it is a very powerful attack to
extract some secrets. But this type of attack requires a lot of traces to make a good sta-
tistical analysis possible. For real attacks, several thousand power-consumption traces are
required and they must all use the same secret information. We use Coron’s randomized
projective coordinates [13] to protect the scalar multiplication against differential power
analysis, cf . [41]. An attack with differential power analysis of the multiplication of the
private key kprv with the signature value r is also possible, cf. [27]. This multiplication is
done by a Montgomery multiplication algorithm and this one is also vulnerable to DPA
attacks. Hutter et a . give a solution to prevent this type of attack in [27]. An other pos-
sible solution to prevent this attack is a randomization of the Montgomery multiplication
algorithm, but this randomization is not covered within this work and marked as future
work.

5.7 Low-Power Optimization

Mobile devices have low-power requirements. Therefore, low-power optimization is also
important for our ECDSA module. The power consumption of a Complementary Metal
Oxide Semiconductor (CMOS) integrated circuit can be split into two parts. A static
power consumption, which is caused by sub-threshold currents or drain leakage currents
and a dynamic power consumption, which depends on a so called short circuit current
and the charging and discharging of capacitors. The dynamic power consumption has the
larger proportion on the full power consumption. This depends on the switching activity
α, the parasitic capacity CL, the supply voltage VDD and the clock frequency f . Equation
5.1 show the relation between this four parameters.

P = α · CL · V 2
DD · f (5.1)

The parasitic capacity is a technology depending parameter and can not be changed.
Also the supply voltage depends on the technology and can not made arbitrarily small.
Consequently, the switching activity and the frequency are the important points for low-
power optimization. There exist two major concepts to reduce the switching activity and
we use both in our work.
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Figure 5.23: Clock gating with an AND
gate.

Figure 5.24: Clock gating with a clock-
gating cell.

Clock Gating

Clock gating is a technique to reduce the switching activity of sequential CMOS logic. An
ordinary 16-bit register element, shown in Figure 5.10, changes its internal state in every
clock cycle, even if there is no new data at the datain port. Consequently, clock gating
uses the approach, that a switching activity in the Flip Flop is only necessary if the datain
port also changes. The enable signal, which can be seen in Figure 5.10, can also be used
as a clock gating signal. A simple type of clock gating is shown in Figure 5.23, but this
type should not be used. Because, the enable signal can produce glitches on the clock
tree, which can lead to errors in the memory behavior. In order to prevent glitches on
the clock tree, a clock gating cell has to be used. Figure 5.24 shows the block diagram
of a clock-gating cell, consisting of a latch and an AND gate. Clock gating on a single
Flip Flop is not useful, but it make senses for register which consists of several Flip Flips.
Because, in this case we can use one clock-gating cell for all Flip Flops in the register,
instead of an own multiplexer for every Flip Flop, compare Figure 5.10 and Figure 5.11.
Therefore, clock gating can be used to reduce dynamic power consumption and a clock
gated storage element requires furthermore less area, see Section 5.3. We use clock gating
in all parts of our ECDSA module, but most beneficially in the memory. The clock-gating
cells are built in automatically by the Cadence-design tools.

Operand Isolation

A second approach to reduce the dynamic power consumption is operand isolation, which
is sometimes also called sleep logic. In a combinatorial circuit without operation isolation,
an operation running through all combinatorial gates in each clock cycle. But in most
cases, only a small combinatorial sub-circuit is actually used for an operation, like a
multiplication or an addition. All other sub-circuits have also a switching activity and
require electrical power, but these results are discarded. For this reason, it makes sense
that only the actually used sub-circuit has switching activity and all other parts are on
a constant value. This task is easy to implement, because we have only to insert one
AND gate in the datapath. The AND gate can be controlled by a select signal, which
we generate from the control word. If the select signal is 0, the sub-circuit is disconnect
from the datapath. In our work, we use this technique manually for the multiplication
sub-circuit and the addition sub-circuit in the ALU, because these are the parts with the
highest power consumption. Additionally, we use operand isolation for the data input
port of our memory, if no write operation is required and to switch off the ROM tables
which actually are not in use. The Cadence-design tools supporting also operand isolation
in an automatic way, but these improvements have only a small impact on the power
consumption in our work. Figure 5.25 shows the power consumption of our ECDSA
module. The blue trace (upper line) shows it without operand isolation and the red trace
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Figure 5.25: Operand isolation benefit (simulation with VDD = 3.3 V and f = 5 MHz).

(lower line) shows it with operand isolation. With operand isolation, we get a power-
reduction of approximately 55%.

5.8 Results

We modeled the ECDSA module in several steps from a high-level model in Java to
the post-layout simulation with the power simulation-tool NanoSIM from Synopsys. The
results can be divided into two subsections, a small functional subsection and a bigger
subsection with synthesis results. We discuss the area and power consumption of our
ECDSA module and some timing constraints.

5.8.1 Functional

The aim of this work was to create an elliptic-curve based IP module with low-power
and low-area requirements. This IP module generates an ECDSA digital signature, which
use the elliptic-curve parameters from SECP160r1 [48]. We used the Montgomery ladder
algorithm to perform the scalar multiplication. Standard-projective coordinates are used
to implement a combined Double-and-Add algorithm, which requires only 11 multiplica-
tions, 6 squaring, and 24 addition operations, see Algorithm 4.20. This algorithm used
only the x-coordinate of an elliptic-curve point. In order to generate the full ECDSA
digital signature, some additional functionality is required. Therefore, we implement the
SHA-1 hash algorithm to calculate a SHA-1 fingerprint from the message. Furthermore,
some modular multiplication and inversion algorithms for general moduli are required.
We used a modified version of the Montgomery multiplication algorithm, see Algorithm
4.7 for multiplication and the Montgomery inversion algorithm to calculate the inverse
element. Thus, this module contains all functionality, which is required for a digital signa-
ture generation, without a cryptographic secure random number generator (CSRNG). A
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Table 5.4: Chip area of the ECDSA module for a clock frequency of 5 MHz.
Module Area [µm2] Area [#GE] Area [%]

Memory 602 438 10 953 59.81

ALU 149 313 2 715 14.82

Controller 249 795 4 542 24.80

Others 5 788 105 0.57

ECDSA module 1 007 334 18 315 100.00

Java high-level model is used to generate test vectors and to verify the functionality of our
ECDSA module. We have tested the module after several designs steps, like synthesizes
step or place-and-route step. All simulations have been done successfully and we could
show a correct implementation of an ECDSA algorithm on circuit level.

5.8.2 Synthesis

We used the Cadence-design tools, with the IAIK design flow to synthesize our HDL
model. The HDL model is described in Verilog and we used digital standard-cells from
c35b4 CMOS libraries published by Austriamicrosystem AG (AMS) for the synthesis.
Therefore, all following process-dependent results refer on these 0.35µm process, unless
otherwise is specified. Figure 5.26 shows the layout of our ECDSA module after the
place-and-route design process. The three big sub-modules are marked on this figure to
get an impression of their proportions. We do not show the AMBA interface as fourth
sub-module because it requires only a very small area and can not be assigned to a special
place. The memory consist of a RAM and a ROM table, at which the ROM table is
imbedded in the middle of the memory block. We subdivide the controller in Figure 5.26
in the micro-coded part on the bottom site and the FSM on the upper site. The upper and
right marked area in the ALU is the 16×16-bit multiplication unit, which requires almost
the half area of the ALU. Table 5.8.2 shows the area requirements of the ECDSA module
in terms of µm2, Gate Equivalents (GE) and as a percentage of the total area. The area
of digital circuits is usually specified in GEs, because these values are independent from
the technology. One GE is equal to the size of a two input NAND gate, which requires
an area of 55µm2 at the c35b4 CMOS libraries. Figure 5.27 shows the area consumption
also in a graphical way. The memory requires the largest part of the area. In Table
5.8.2, the area requirements for the memory include the RAM and the ROM table are
shown, but not the area for the EEPROM, because we have only a timing model of the
EEPROM. It is interesting that the ALU requires less area then the control machine. The
reason is that we design an ALU which contains only basic operations which we can use
to perform operations in both finite fields. This relatively simple ALU leads to a more
complex control unit. This design has also a positive influence to the power consumption.
Table 5.5 illustrates the detail area consumption of the ALU. The multiplier is the largest

part of the ALU and the whole multiply-accumulate unit requires more than 60 % of the
area. Figure 5.28 shows the area distribution of the control unit. In our work, we use the
micro-coded approach only for three algorithms, but this sub-system requires only slightly
less area then the finite-state machine. This fact is given by the complexity of these three
algorithms. The AMBA interface and some additional logic is summarized at the Others
item in Table 5.8.2. Our work is a full ASIC designed ECDSA processor. Some other
works like [54, 26] require less area, but they use RAM macros instead of a latch based
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Figure 5.26: Layout after place-and-route.

custom design. Implementations, which use RAM macros can be difficult for passive tags
in high volume, but it could half the chip area for the memory module.

Next, we will discuss the cycle count and the maximum clock frequency of our ECDSA
implementation. The most time intensive part of the signature-generation process is the

Table 5.5: Area requirements of the ALU sub-modules.
Sub-module Area [#GE] Area [%]

Multiplier 1 307 48.16

Adder 159 5.85

Register 191 7.02

Logical units 1 058 38.97

ALU 2 715 100.00
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Figure 5.27: Chip area of the ECDSA module.

Figure 5.28: Area requirements of the control unit sub-modules.

scalar multiplication. We use a combined Double-and-Add algorithm which requires 11
multiplications, 6 squaring and 24 addition operations in the finite field FP160. One
Double-and-Add operation requires 2 959 clock cycles. Figure 5.29 shows the distribu-
tion of the individual finite-field operations. There, we have summarized the multipli-
cation and the square operation because we use no special squaring algorithm in order
to reduce the area requirement. With an optimized squaring algorithm, the number of
required clock cycles can be reduced. The whole Montgomery ladder algorithm requires
about 2 959 · 159 = 470 481 clock cycles only for the point Double-and-Add operation.
Additional clock cycles are needed for Coron’s randomized projective coordinates coun-
termeasure and the key management. Table 5.6 shows the clock cycle-count distribution
for the full ECDSA signature algorithm. The scalar multiplication includes all needed
operations without the Montgomery inversion. Table 5.6 also illustrates that the scalar
multiplication is the most time intensive part of the ECDSA signature-generation pro-
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Figure 5.29: Cycle count of the combined Double-and-Add algorithm

cess. Therefore, it is important to optimize this algorithm to reduce the clock-cycle count
and the power consumption. The full ECDSA digital signature algorithm requires also 7
Montgomery multiplications, which requires 7 ·276 = 1 932 clock cycles and 2 Montgomery
inversion, which requires 2 · 14 801 = 29 614 clock cycles. Figure 5.30 shows these results
also in a graphical way. The second part to characterize the performance of the ECDSA

Figure 5.30: Cycle-count distribution for the full ECDSA signature generation.

Table 5.6: Cycle-count distribution for the full ECDSA signature algorithm.
Scalar Montgomery Montgomery

SHA-1 Total
multiplication multiplication inversion

476 873 1 932 29 614 2 412 510 831

93.35 % 0.38 % 5.80 % 0.47 % 100 %
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Figure 5.31: Current of a signature-generation process with VDD = 3.3 V and f = 5 MHz.

module is the maximum clock frequency. This value is generally limited by the longest
path in our digital circuit. We evaluate our module with a clock frequency of 5 MHz
and a core voltage of 3.5 V. The results after the place-and-route design step indicate a
maximum clock frequency of 70 MHz. Our ECDSA module requires approximately 103 ms
at a clock frequency of 5 MHz to generate the full digital signature. This result gives an
operation throughput of 9.7 Ops/s (ECDSA signature-generations operations per second).
If we reduce the core voltage to 2.5 V the maximum clock frequency decrease to 50 MHz.

At last, we will discuss the power consumption of our ECDSA module. The power con-
sumption results are generated with Synopsys NanoSIM, which is a near-spice simulator.
Thus, these results are more accurate than the power consumption results from Cadence-
Synthesis Tools. The NanoSIM simulation uses a Value-Change-Dump (VCD) file, which
contains the input values for the power simulation. This VCD file can be generated during
the HDL simulation and thus contains data from a real signature-generation operation.
Figure 5.31 illustrates the power simulation result for one signature-generation process.
This simulation uses only an 8-bit ephemeral key, because the NanoSIM power simulation
is very time intensive. A simulation of the full ECDSA operation with a 160-bit ephemeral
key takes approximately more than a month. In Figure 5.31, we marked severally steps of
the ECDSA signature-generation process. After start, the SHA-1 hash value is calculated,
which is followed by the scalar multiplication. The scalar multiplication is the part which
requires the most power. The Montgomery inversion looks very time intensive in Figure
5.31, but this is an illusion because we use only an 8-bit ephemeral key. The power con-
sumption can be calculated from the supply current and the core voltage with Equation
5.2.

P = U · I (5.2)
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Table 5.7: Power consumption for different operation conditions and a clock frequency of
5 MHz.

Operation
Core voltage Average current Power

[V] [mA] [mW]

ECDSA 8-bit 3.3 1.21 3.99

ECDSA 8-bit 2.5 0.84 2.10

ECDSA 160-bit 3.3 1.68 5.54

ECDSA 160-bit 2.5 1.17 2.92

Therefore, the power-consumption trace is very similar to the trace of the current in Figure
5.31. Hence, we can also see the advantage of the Montgomery ladder algorithm. The
power trace during the scalar multiplication has a smooth power consumption. A reduction
of the core voltage decreases quadratically the power consumption. Therefore, it makes
sense to reduce the core voltage from 3.3 V to 2.5 V to minimize power consumption.
Table 5.7 shows the results of the NanoSIM power simulation. ECDSA 8-bit operation
in Table 5.7 means the ECDSA signature-generation process with a 8-bit ephemeral key,
which we use for the power simulation with NanoSIM. The average current and the power
for the full ECDSA operation with a 160-bit ephemeral key are only estimated. We use
the current during the scalar multiplication to estimate the average current over the full
ECDSA operation, because the scalar multiplication requires the most time, see Table 5.6
and the highest current, see Figure 5.31.

5.8.3 Summary and Comparison

In this subsection we will compare our ECDSA module with related work. Table 5.8 shows
the comparison to other modules, but not all of them implement the full ECDSA algorithm.
In some works only the scalar multiplication was implemented. All this implementations
have a different functional scope and also different technologies and clock frequencies.
Therefore, it is difficult to find a fair comparison between all these works. The results
from Lee et al . [38] and Hein et al . [25] are given as a comparison, because they used
arithmetic over a binary field which is quite simpler than the arithmetic over a prime
field. But if we compare our result with the result from Hein we have almost the same

Table 5.8: Comparison of our ECDSA module to related work.

Design Field
Core Techn. Area Clock Power

voltage [V] [µm] [#GE] Cycles [µW]
@1 MHz

Yong Ki Lee [38] F2163 1.5 0.13 12 506 275 816 32.4

Hein [25] F2163 2.5 0.35 11 904 296 000 516.0

Auer [4] Fp192 2.5 0.35 24 745 1 031 000 613.0

Fuerbass [22] Fp192 3.3 0.35 23 656 502 000 1 692.0

Hutter [26] Fp192 3.3 0.35 19 115 859 188 1 508.0

Wenger [54] Fp192 1.8 0.18 11 686 1 377 000 114.0

This work Fp160 3.3 0.35 18 315 510 831 1 108.0

This work Fp160 2.5 0.35 18 315 510 831 585.0
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Table 5.9: Synthesis results with a 180nm technology from UMC.

Operation
Techn. Core voltage Area Power

[µm] [V] [µm2] [µW]@1 MHz

ECDSA 160-bit 0.18 1.6 212 143 192

power consumption. Auer [4], Hutter et al . [26] and Wenger et al . [54] also implement
the full ECDSA algorithm with SHA-1 as hash function. Therefore, these three works
are easy to compare with our implementation. The results from Hutter are very similar
to our work, if we take into consideration the other prime field. According to the result
from Auer, our work requires less area, less clock cycles and also the required power is
slightly smaller. Wenger uses in his work a single-port RAM macro, which requires much
less area to our dual-port ASIC RAM. Consequently, his implementation requires less
area than our module, but the run time of his ECDSA implementation is about 2.5 times
longer. As a conclusion we show the synthesis result, if we use a 180 nm technology from
UMC [1]. Table 5.9 shows the main module information after the place-and-route step.
The power result is generated by using the Cadence-First-Encounter tool, but these are
only a rough estimation. If we use this 180 nm technology, we could reduce the power
consumption about 50 % but the ECDSA implementation by Wenger requires also less
power. A possible reason is the usage of the single-port RAM macro, which requires also
less power than an ASIC dual-port RAM.
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Conclusions

The aim of this work was to design an elliptic-curve processor with full ECDSA function-
ality and optimization for low-area and low-power consumption. Such a processor can
be used to perform a cryptographic-secure authentication in combination with an RFID
system. This secure RFID tags can be used for door-locking applications, micro-payment
applications, or for anti-counterfeiting purposes.

In order to fulfill this challenge to implement a secure RFID tag, which requires low area
and low power, we modeled the elliptic-curve processor in several steps: from a high-level
model in JAVA to a post-layout power simulation with the tool NanoSIM from Synopsys.
The high-level model is used for test-vector generation and it is used to verify all design
steps down to post-layout power simulation. All simulations have been done successfully
and we could show a correct implementation of our ECDSA module. Our elliptic-curve
processor includes all functionalities which are required to generate an ECDSA digital
signature, except of a cryptographic secure random number generator. The calculation of
the SHA-1 hash value can also be done by our ECDSA module.

We use the elliptic-curve parameters from SECP160r1, which is a standardized el-
liptic curve from SECG. All algorithms, which are required to generate an ECDSA digital
signature, are optimized for this elliptic curve. In order to fulfill a fast multiplication
in the prime field FP160r1, we designed a new multiplication algorithm with implicit fast
reduction. This multiplication algorithm requires only t2 + 5 · t clock cycles, where t
represents the number of words. The scalar multiplication is done by using a Montgomery
ladder algorithm in combination with a combined Double-and-Add algorithm, to prevent
side-channel attacks. Our combined Double-and-Add algorithm is a modified version of
the algorithm proposed by Tetsuya Izu and Tsuyoshi Takagi [29], which is optimized to
our memory architecture and datapath layout. This own version of the combined Double-
and-Add algorithm requires 17 multiplications and 24 addition operations to calculate one
point addition and doubling operation. From a hardware architecture point of view, we
use an ASIC design for all sub-modules with a datapath of 16 bits. The memory consists
of a RAM with 1 440 bits, ROM table with 1 328 bits and an EEPROM with 160 bits. A
special feature of our memory is that we can select between two different address spaces.
One address space for operations modulo FP160 with an address space of 9× 160 bits and
a second address space for operations modulo Fn161 with an address space of 8× 176 bits.
The core component in the ALU is the multiply-accumulate unit, which can calculate a
16× 16-bit multiplication and a 36-bit addition within one clock cycle. The 36-bit adder
is also used for simple addition and subtraction operations and includes all functionalities
to execute two interleaved addition operations. Our ECDSA module use a hybrid control-
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Table 6.1: Summarization of our results VDD = 3.3V.

Technology
Area Runtime Power fmax

[µm2] [#GE] [cycles] [µW] [MHz]

ECDSA 0.35µm AMS 1 007 334 18 315 510 831 1 108.0@1 MHz 70

unit, which means that one part is implemented as a FSM and some other parts in a
micro-coded approach.

In relation to other works, our implementation requires less clock cycles and a slightly
lower chip area. The required electrical power is also low in relation to other works. Only
one other implementation requires less power, but they used a totally different memory
architecture. Table 6.1 shows a summarization of our results.

6.1 Optimizations and Outlook

In face of the good results, further optimizations of our implementation are possible. The
following enumeration gives you some possible areas for improvements.

� Memory Architecture: Actually, we use an ASIC dual-port memory architecture
with asynchronous-read and synchronous-write capability. A change to an other
memory architecture, like a synchronous dual-port RAM macro, or a synchronous
single-port RAM macro, would reduce the size of area and the required electrical
power. In contrast, the required clock cycles for one ECDSA digital signature gen-
eration becomes larger. In a second approach, we could use a more sophisticated
sleep logic, which should reduce the required power.

� RAM Size: Our implementation requires 9 × 160 bits of RAM to generate an
ECDSA digital signature. If we change the ECDSA authentication protocol, so that
the scalar multiplication is calculated first and the message which should get signed
is transmitted to the tag afterwards, we can reduce the required RAM elements to
8× 160 bit. This change would reduce the RAM area to about 1 070[GEs].

� Controller: Actually, we use a hybrid control-unit in our ECDSA module. A change
to a pure micro-coded control unit which uses a hard-macro ROM table would also
reduce the size of area of our ECDSA module. But, there we have to solve some
problems with condition jumps and pipeling.

� Square Operation: Actually, a square operation is done by the same algorithm
as for a multiplication operation. If we use a special squaring unit, then we can
reduce the required clock cycles for an ECDSA digital signature-generation process.
But this change would lead to a bigger size of area, because an additional squaring
algorithm is required.

� DPA Resistant Multiplication: An other possible solution to get a DPA resistant
multiplication algorithm is to randomize the particular 16×16-bit multiplication op-
erations and hide them time domain. We did not implement such a countermeasure
and therefore it could be a topic of a future work.



Appendix A

Definitions

A.1 Abbreviations

ALU Arithmetic Logic Unit
AMBA Advanced Microcontroller Bus Architecture
AMS Austriamicrosystems AG
ANSI American National Standards Institute
ASIC Application-Specific Integrated Circuit
CIHS Coarsely Integrated Hybrid Scanning
CIOS Coarsely Integrated Operand Scanning
CSRNG Cryptographic Secure Random Number Generator
DPA Differential Power Analysis
EC Elliptic Curve
ECC Elliptic-Curve Cryptography
ECADD Elliptic-Curve Point Addition Operation
ECDBL Elliptic-Curve Point Doubling Operation
ECDLP Elliptic-Curve Discrete Logarithm Problem
ECDSA Elliptic-Curve Digital Signature Algorithm
FIOS Finely Integrated Operand Scanning
FIPS Finely Ingegrated Product Scanning
FIPS Federal Information Processing Standards
gcd Greatest Common Divisor
HF High Frequency
LF Low Frequency
LFSR Linear Feedback Shift Register
MW Microwave
NIST National Institute of Standards and Technology
RFID Radio-Frequency Identification
SECG Standards for Efficient Cryptography Group
SECP160 Elliptic Curves over Prime Fields with 160 bits standardized from SECG
SOS Seperated Operand Scanning
SPA Simple Power Analysis
UHF Ultra-High Frequency
UMC United Microelectronics Corporation
VCD Value Change Dump
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A.2 Used Symbols and Operations

∧ Bitwise AND operation
∨ Bitwise OR operation
¬ Bitwise NOT operation
⊕ Bitwise XOR operation
<< Left shift operation
>> Right shift operation
ROTLn(a) Rotate left operation, ROTLn(a) = (a << n) ∨ (a >> W − n)
ROTRn(a) Rotate right operation, ROTRn(a) = (a >> n) ∨ (a << W − n)
MonPro(a, b) Montgomery product from a and b, cR = a ∗ b
AlmMonInv(a) Almost Montgomery inverse from a, a−1 · 2k
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