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Abstract

Cryptography has become substantial in the digital world. Beside encryption, authen-
tication is a major topic within cryptography. Authentication is important, for instance,
in the world wide web where online banking or services of authorities are used.

In the past years, authentication has reached very small devices. They are accessing
the Internet and use the same services where authentication is required. Such small devices
are often battery powered and have limited resources. In this environment, performing
the hard calculations of authentication is a crucial issue and can hardly be performed by a
general processor. Here, application specific integrated circuits (ASIC) have the advantage
to be tailored to one specific function. ASICs are dedicated hardware modules and perform
calculations in a very efficient way. Efficiency in this context is often measured in the area-
time product which allows to judge the trade-off between the necessary circuit area against
the time the execution of performed task takes.

To perform authentication, several cryptographic systems and protocols are available
and are based on different mathematical hard problems. For constrained devices, the el-
liptic curve discrete logarithm problem is very well suited. Therefore the standardized and
approved Elliptic Curve Digital Signature Algorithm (ECDSA) enjoys great popularity.
Beside this, Bernstein et al. [8] in 2011 introduced an alternative digital signature scheme:
The Edwards-curve Digital Signature Algorithm (EdDSA). On the one hand it has ad-
vantages over ECDSA regarding the speed and on the other hand it circumvents security
issues of ECDSA.

The key difference of EdDSA and ECDSA is the usage of twisted Edwards-curves rather
than elliptic curves in Weierstrass form. These curves have a different defining equation
and thus the point addition and point doubling formulas differ. Beside the definition of
the general EdDSA the Ed25519-SHA512 was introduced in [8] which has all necessary
parameters chosen for an efficient implementation.

In this thesis, a low resources ASIC hardware implementation is presented which is
able to perform the scalar multiplication necessary for the Ed25519-SHA512. The imple-
mentation supports different word widths and those are evaluated for the most efficient
ones. The synthesis on the 0.35µm CMOS-process technology of ams AG1 revealed the
following results for different word widths (the area values in the parentheses include the
area of the memory): 7.4 (44.4) kGE and 2.04 · 106 cycles for 16 bits, 12 (48.8) kGE and
0.8 · 106 cycles for 32-bit hardware, and 27.9 (66.1) kGE and 0.414 · 106 cycles for 64 bits.

Keywords: EdDSA, Twisted Edwards-Curves, Digital Signature, ASIC, Hardware Im-
plementation, Scalar Multiplication

1ams AG ist the new name of the company formerly called austriamicrosystems AG.
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Kurzfassung

In der digitalen Welt ist Kryptographie zu einem wesentlichen Bestandteil geworden.
Dabei spielt neben der Verschlüsselung insbesondere die Authentifizierung eine wichtige
Rolle. Diese ist zum Beispiel im World Wide Web wichtig - speziell etwa beim Internet-
Banking oder bei Online-Diensten von Behörden.

Heutzutage wird Authentifizierung auch auf kleinsten Geräten benutzt. Über sie be-
steht Zugang zum Internet und es ist möglich, auf Angebote zuzugreifen, die eine Authen-
tifizierung erfordern. Diese Geräte laufen oft mit Batterie und bieten daher nur begrenzte
Ressourcen. Da die zur Authentifizierung nötigen Berechnungen aufwändig sind, stellen sie
hier einen kritischen Aspekt dar - sie können einen universellen Prozessor überfordern. In
solchen Fällen empfiehlt sich daher die Benutzung von anwendungsspezifischen integrierten
Schaltungen (ASIC). Es handelt sich dabei um speziell abgestimmte Hardware-Module,
die auf eine Aufgabe besonders zugeschnitten sind und diese effizient berechnen. Gemessen
wird die Effizienz hierbei oft anhand des Flächen-Zeit-Produkts. Dieses ermöglicht die Be-
urteilung des Kompromisses zwischen einerseits einer raschen Berechnung und andererseits
einer kleinen Fläche der Schaltung.

Für die Authentifizierung stehen einige kryptographische Systeme und Protokolle zur
Verfügung, die auf unterschiedlichen mathematischen Problemen basieren. Für einge-
schränkte Geräte ist der diskrete Logarithmus über elliptische Kurven gut geeignet, der
beim Elliptische Kurven Digitalen Signatur Algorithmus (ECDSA) benutzt wird. Daneben
hat Bernstein et al. [8] eine Alternative im Jahr 2011 präsentiert - den Edwards-Kurven
Digitalen Signatur Algorithmus (EdDSA) - der Geschwindigkeits- und Sicherheitsvorteile
bietet.

Der Hauptunterschied zwischen EdDSA und ECDSA ist die Benutzung von Twisted
Edwards Kurven anstatt von Kurven in Weierstraß-Form. Diese Kurven haben eine an-
dere Kurvengleichung und deshalb auch abweichende Gleichungen für die Punktadditi-
on und -verdopplung. Neben der allgemeinen Definition von EdDSA wurde in [8] auch
Ed25519-SHA512 präsentiert, bei dem die nötigen Parameter in Hinblick auf eine effizien-
te Implementierung gewählt wurden.

In dieser Arbeit wird eine ressourcenschonende ASIC-Hardware-Umsetzung präsentiert,
die für Ed25519-SHA512 die nötige Skalar-Multiplikation berechnen kann. Sie unterstützt
mehrere Wortbreiten, die auf ihre Effizienz evaluiert wurden.

Die Synthese mit der 0.35µm Technologie von ams AG2 hat zu folgenden Ergebnissen
geführt (die Flächen in den Klammern sind inklusive der Fläche für den Speicher): 7.4
(44.4) kGE und 2.04 · 106 Takte bei einer 16-Bit-Architektur, 12 (48.8) kGE und 0.8 · 106

Takte bei 32 Bits, und 27.9 (66.1) kGE und 0.414 · 106 Takte bei 64 Bits.

2ams AG ist der neue Name der austriamicrosystems AG.
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Chapter 1

Introduction

Authentication is a fundamental process within the society and is required for any author-
ity and administration. In the digital world this process is conveniently solved by public
key cryptography (PKC) in which an entity can prove that the information is indeed orig-
inated by itself. For example, an entity can sign in on an administration website and fill
in a form or receive information that should not be readable for the public. The PKC
is based on mathematical hard problems that cannot be reversed or are computationally
infeasible. An entity generates a key pair with one private and one public key. It can then
use the private key to prove that it is indeed the one.

For PKC the elliptic curve discrete logarithm problem has been identified to be suit-
able to offer appropriate security for rather small secrets and to therefore be very efficient
compared to other mathematical hard problems such as the integer factorization problem
or the usual discrete logarithm problem. In this context, the ECDSA is a popular crypto-
graphic system. It is standardized by the American National Standards Institute(ANSI),
approved by NIST and even used for high security within governments.

The digital world has evolved and cryptographic applications are not limited to power-
ful personal computers anymore. Cryptography has become a topic for even the smallest
electronic devices. There are mobile phone and even watches with access to the Internet
and thus the problem arises that these constrained devices need cryptography. The limited
computational capabilities of constrained devices implies thus low resource consumptions
and efficiency. Those requirements imply the use of ASICs.

The ECDSA is based on certain elliptic curves and has certain mathematical impli-
cations and algorithmic requirements. In 2007, Edwards introduced in [13] a new form
of elliptic curves that offer more efficient algorithmic with additionally improved security
against attacks. Bernstein et al. in [11], based on Edwards curves, introduced twisted-
Edwards curves and further extended the number of elliptic curves that can be used for
the efficient algorithms. Bernstein et al. in [8] then introduced the Edwards-Curve Digi-
tal Signature Algorithm (EdDSA), a digital signature algorithm which is related to the
ECDSA but uses twisted-Edwards curves and has some algorithmic modifications that
improve security.

For the rather young and not standardized EdDSA, no hardware implementation as
ASIC is known. This thesis’ purpose is to implement such a hardware that is suitable
for low resource requirements. The focus within this is to optimize the algorithmic and
to evaluate the trade off between area and execution time. The Ed25519 signature oper-
ations require the Secure-Hash-Algorightm-512 (SHA-512) hash function but this is not
considered to be a crucial part and was therefore not included in the implementation.

1



CHAPTER 1. INTRODUCTION 2

The signature and verification process are not implemented because this functionality is
straightforward and can be easily appended with a SHA-512 module. Therefore the imple-
mentation includes all necessary modules and functionality to perform the most important
arithmetic ranging from the integer level up to scalar multiplication.

1.1 Outline

In this thesis a historical view, an overview and a general discussion about cryptography
will be provided in Chapter 1. Further, symmetric key cryptography will be touched and
public key cryptography concepts will be presented.

In Chapter 3, the EdDSA signature algorithm will be discussed. This includes the gen-
eral requirements, parameters and the algorithms necessary. Then the suggested explicit
cryptographic scheme Ed25519 will be discussed and the necessary abstractions and the
realization of the presented functionality will be outlined in detail.

The hardware implementation will be presented in Chapter 4. This consists of the
used design flow and consideration of a hardware implementation in general. Subsequent
to this, the implementation will be presented, starting from a high point of view down to
the details. The chapter will end with the discussion about how the implementation was
verified for correct calculations.

In chapter 5, the implementation’s key facts will be presented and the evaluation of the
best configuration will be made. The configurations considered best will then be compared
to previous works regarding the key facts.

The conclusion will be presented in Chapter 6 which will end with suggestions of future
work.



Chapter 2

Introduction to Cryptography

Cryptography comes into play when secrecy is involved. Secrecy has a long history and
so does cryptography. In this chapter we will take a short look at its history. After-
wards, fundamental principles will be discussed and a higher-level view on symmetric-key
cryptography and its counterpart public-key cryptography will be provided. Even though
symmetric-key cryptography will be discussed, the focus will be on public-key cryptogra-
phy, where elliptic-curve cryptography and signature systems will be dealt with in more
detail.

History and Basic Ideas Cryptography has a long history. Even though he was
not the first in history, Julius Caesar is known to have encrypted messages sent to his
troops. Gaius Julius Caesar lived in the first century BC and therefore gives an idea
about the long history of cryptography. As Simon Singh wrote in [36, Page 14], Caesar
used various substitution ciphers. While he was fighting in Gaul, he used the substitution
of replacing Roman letters with Greek ones. Further, the substitution of replacing letters
with those that are three places further down the alphabet is called the Caesar Cipher.
This mentioned cryptographic substitution and other methods until the 20th century were
reversible on paper with a pen. In the 20th century a mentionable evolution took place by
inventing cryptographic machines. A popular example for these was the Enigma machine,
which can be categorized as electro-mechanical rotor cipher machine. It was used in
World War II by the Germans. Simon Singh in [36, Page 149] also says that breaking the
encryption of the Enigma machine shortened the duration of the war as the secret messages
could be read by the Allied. The biggest step in the evolution of cryptography may be
the invention of electronics performing cryptographic methods. Since then, reversing the
encryption with paper and a pen by “hand” got practically infeasible.

A cryptographic method takes some input and by mapping, or some other mathe-
matical relation, it generates output that is not recognized as the input. For a good
cryptographic method, measurements and analysis give no clue about what the actual
input was. These measurements might be statistical, counting the occurrences of single
letters and groups of letters, mathematical calculations, or simple observations that can
be made. In the context of statistical measurements, Shannon 1949 defined in [34, Pages
708-710] diffusion and confusion. He stated that confusion is the relation between the
simple statistics of the output of a cryptographic method (ciphertext) and the simple
description of the used key1. This relation should be as complex as possible. In other

1The key can be seen as the secret password.

3



CHAPTER 2. INTRODUCTION TO CRYPTOGRAPHY 4

words, each bit2 of the ciphertext should be as complex as possible related to as many
bits of the key as possible. This has the effect that an attacker is prevented to use simple
analysis to obtain the secret. Diffusion in his definition is the relation of the statistical
structure of the message and the output of the cryptographic method. This can be illus-
trated, for instance, with the redundancy due to the occurrence of long combinations of
letters. Analysis of representative texts in a specific language give probabilities of single
words’ occurrences. This occurrences can be used when the ciphertext is analyzed. But a
cryptographic method with good diffusion generates output for which analysis results in
useless information. In a wider interpretation, a good diffusion means changing a minimum
amount of input leads to a significantly bigger change of the output.

By looking at the history, we can see the evolution from cryptographic scheme relying
on keeping the scheme secret, to cryptographic schemes that are publicly available and
rely on keeping the key secret. A cryptographic scheme that is not dependent on a secret
key, and thus its security only relies on keeping the scheme secret, does not fulfill its
purpose reliably. This relies on the simple circumstance that as more entities know the
scheme, more possible targets are involved that can be attacked to get information about
the scheme. Once the secret is gained by an attacker all others using the scheme are
vulnerable. In contrast, a (publicly known) well engineered cryptographic scheme which
depends on a secret key serves security more reliable. These cryptographic schemes further
give the possibility to change the secret key if wanted and it is not required to engineer a
new scheme from scratch.

Since their invention, computers, also have been utilized for cryptography. Therefore
all the processed messages have digital representations. Following from this and the fact
that computers in general are based on numbers, cryptography nowadays basically deals
with mathematical problems. Concluding from the fact that the computation power of
computers beat human capabilities by magnitudes, the related mathematical problems
have to be hard to solve. Thus, cryptography is concerned with the design and analysis
of methods that enable a secure communication in an insecure environment.

For a first look at cryptography, some aspects should be mentioned first. The terms
entities, a sender, a receiver and an attacker, can relate to human beings, but not exclu-
sively. As secrecy is a goal in all contexts that in any way deal with private data, an entity
might also refer to a computer system, a web browser and its communication counterpart,
a web server, or something similar. Further, a message is not required to be a human
readable text. This may be a single data packet, when for example a web browser sends a
request for a website or the login information, a wireless LAN adapter sends the password
to the accesspoint, a car is unlocked via a remote control, or any other digitally generated
sequence of symbols.

When thinking about cryptography and a scenario where cryptography is used, there
are basically three entities involved. At a message-based view these are a sender, a receiver,
and an entity which is not wanted by the sender and receiver to get or manipulate their
messages. In literature, concerning cryptography, the two entities communicating are
often called Alice and Bob. During an ongoing communication the role of sender and
receiver might switch and can be either Alice or Bob. The third entity mentioned before
is called Eve. She is assumed to have knowledge about the used cryptographic scheme,
considerable computational resources and is able to read and modify all data that is sent
over the communication channel. In the following, this convention also applies.

2Any data or text that is stored in a computer can be broken into bits. A bit is the smallest unit used
in computers and has two states, either one or zero.
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Cryptography does not imply confidentiality in every case. As stated in [19, Section
1.1], the list below defines basic goals for schemes, this list, however here is not complete:

� Confidentiality: The information transferred between Alice and Bob is not read-
able for Eve.

� Data integrity: Bob can verify that the transferred message received from Alice
has not been modified.

� Authentication: Bob can verify that the received message has indeed been written
by Alice. Eve, in turn, can not create a message that is falsely accepted to have
been written by Alice or Bob.

� Non-repudiation: A third neutral entity can verify that the very origin of the
message created by Alice has indeed been Alice. Thus Alice cannot deny that she
created it.

Depending on its purpose, a cryptographic scheme may combine the desired goals or may
fulfill other goals such as anonymity for their communication entities or access control for
restricting certain resources to specific entities. As an example for a scheme with certain
purpose, with outlook on this thesis’ topic, downloading a web browser’s installation files
does not have to be confidential. Nevertheless for security reasons it is desired to verify the
origin to avoid installing a Trojan horse or some other type of virus. Here, authentication
comes into play as one can verify if the downloaded files have been originated by the
trusted developers who signed it.

2.1 Symmetric-key Cryptography

For the following section and subsections, we refer to the Introduction and Overview sec-
tion in [19, Section 1.1]. Symmetric-key cryptography relies on the idea that Alice and
Bob share a common secret. This secret enables them to use methods that are publicly
available. These public availability however does not harm security as the security is based
on a hard to solve mathematical problem and the shared, but secret key. After agreeing on
the shared secret, Alice uses the related cryptographic method with this key and the mes-
sage as input. Afterwards she sends the obtained result to Bob. He uses the counterpart
method and the shared key to reverse or verify the operation of Alice.

Figure 2.1 shows the basic scenario for symmetric-key cryptography.

Figure 2.1: Communication in an insecure environment
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Depending on the cryptographic goal, the scheme is engineered to fulfill, the above
described methods can vary: for example one of the operations can be encryption and
the other the counterpart-operation decryption, or signature generation and signature
verification. A popular cryptographic scheme based on symmetric-key cryptography is,
for instance, the Advanced Encryption Standard(AES) that serve methods for encryption
and decryption.

To give a little insight into methods of cryptography, the basic procedures to achieve
cryptographic goals will be discussed on a high-level view for two exemplary goals. This
will be done respecting the structure of symmetric-key cryptography. For the following
description, the shared secret key is assumed to be already accessible. Thus, it must be
generated and distributed prior to the actual communication. As the generation procedure
is scheme-specific, it will not be discussed in detail. The key distribution, on the other
hand, will be discussed in the following paragraph, which focuses on key distribution and
management, because this is a significant disadvantage.

Confidentiality As described in short beforehand, confidentiality is achieved by an
encryption- and decryption-method. The whole procedure of encryption and decryption
with all its details is publicly available. This does not threaten the security since only the
knowledge of the key delivers the right results, it merely simplifies the overall process of
establishing a secure channel as only the key has to be shared in a secure way.

When using a encryption method, its output should differ if only a single bit within
the input changes. This input refers to the message as well as the used key, what has
been discussed in the first paragraph of this chapter, regarding confusion and diffusion.
The differing bits of the original output compared to the one obtained with the one-bit-
flipped-input should ideally be distributed over the whole range of output bits and flipping
a certain bit should not be traceable to specific output bits.

Alice uses the encryption method with the shared key and the message as input to
obtain the so called ciphertext. This ciphertext is sent over the insecure channel to Bob.
After receiving the message he uses the decryption method with the same shared key as
used by Alice and the ciphertext as input to obtain the original message. As already
mentioned, Eve is able to read the ciphertext. But due to the lack of knowledge of the
used key, she will not be able to compute the original message.

Data integrity If data integrity is desired the cryptographic scheme changes in some
points compared to confidentiality. After Alice and Bob agreed on a shared key, Alice
and Bob use a message authentication code (MAC) algorithm. Alice computes the au-
thentication tag t using the MAC with the shared key and the message as input. The
authentication tag is then sent along with the message to Bob. As Bob uses the same
MAC algorithm, knows the shared key and received the message, he can compute the
authentication tag t′ on his own. He uses the message and the shared key as input for the
MAC for computing t′ and verify if t = t′. If the verification succeeds Bob knows that the
message is indeed signed with the right shared key and that it is highly probable it was
not modified by Eve and indeed sent by Alice.

2.1.1 Key Distribution and Management

Symmetric key cryptography is based on the idea that two entities share a common key.
This aspect leads to disadvantages regarding key distributing and key management, which
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will be discussed in the following paragraphs. The first discusses the problem of key
distribution concerning the need of two entities participating a communication to agree
on keying material. The second addresses the problem of managing the keying material
in a system that is not limited locally.

2.1.1.1 Key Distribution

Due to the principle of symmetric-key cryptography, the secret key has to be shared
between both entities of communication. Sharing the keying material over an insecure
channel assuming no one else reads it should not be the basis of a cryptographic system.
This would harm the security from the very beginning. The shared key needs to be agreed
on in a secure way. This can be assured by physically meeting or a secured channel.
Meeting in person is not convenient as soon as the entities involved are spatial separated.
The second possibility mentioned could be realized by a trusted courier or an already
secured channel to a central distributing facility. Using a trusted courier gets impracticable
with increasing distance between the entities. Further, in a scenario with two entities
wanting to communicate over a global network such as the Internet, waiting days for the
courier to arrive seems far from good. In a closed environment or a locally limited network
each entity can initially agree on a key with the central key distributer. Entities then
use the secure channel to the distributer to further agree and share keying material when
required. But again, in applications concerning the Internet and global communication this
is impracticable. For the initial agreeing on the keying material, each entity would have to
either physically visit this facility, use a trusted courier or use an already established secure
channel. As illustrated before, the first two possibilities have significant drawbacks. Let
us assume, for now, that the central key distributer has local branches. For a practicable
global system those branches with appropriate keying material would have to be spread
all over the world. Further, each of these entities would have to be trusted and secured to
ensure no leaking of keying material. This would end up in a huge organization that might
never get efficient and convenient for users. Another aspect of the central distributing
facility is the growing amount of necessary distribution in operating state. With the large
number of nodes participating in the Internet in mind, including not only the server but
each computer and mobile device, and assuming each node has separated and secured
applications, each needing a secret key, the resulting amount of distribution cannot be
handled by a central facility.

2.1.1.2 Key Management

With the increasing number of communication partners, another disadvantage arises. For
each of the communication partners, an entity has to store a shared key. This gets imprac-
ticable or impossible in applications with limited storage space. This problem can again
be handled by a central facility with an initially shared key and thus secured channel.
The keys can be managed by the central facility and on demand obtained over the secured
channel. As in the previous paragraph, this is impracticable as soon as the number of en-
tities reach just a fraction of the number of nodes in the Internet. Then the management
efforts evolve to a serious problem.

Another problem can be imagined in a scenario with a central key management facility.
The keying material is shared between at least three entities, both of the end-point entities
and the facility. Therefore, this limits the achievable goals of a scheme as non-repudiation
is not possible, as [19, Section 1.1] clarifies.
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2.2 Public-key Cryptography

Diffie, Hellman and Merkle 1976 in [12] published the concept of a public-key cryptography
scheme to handle the disadvantages regarding the key distribution. The concept was
engineered to enable security over an insecure channel without the requirement to share
a secret previously. Still, the requirement to distribute the public key of an entity in an
authentic way has to be met. In contrast to symmetric-key cryptography, this concept is
not based on the fact that both entities of the communication share the same key, but
each entity has two keys: One for the encryption of messages destined to it, and one for
the decryption of messages it received. Due to this, public-key cryptography is also called
asymmetric-key cryptography.

The underlying idea is to use a one-way function. This means, given the result of such
a function, it is not possible or computational infeasible to reverse the operation without
special knowledge. Here, the pair of keys come into play. In the concept, the public key
and the message are used as input of the one-way function. Only the knowledge of the
private key enables the back transformation to obtain the original message. This requires
the public as well as the secret key to be related in a special mathematical way.

Whereas the concept of Diffie, Hellman and Merkle was the first publicly published,
a public-key cryptographic system was engineered by Great Britain’s Government Com-
munications Headquarters starting at 1969 until 1975, but this was kept secret as Simon
Singh in [36, Chapter 5, Page 211] stated. As Simon Singh writes further, Diffie, Hellman
and Merkle discovered the concept of public-key cryptography and the need of one-way
functions but failed to be the first to publish a working system as they failed to find such
a function. But inspired by their concept, this race was won by Rivest, Shamir and Adle-
man. They found such a one-way function and proposed it 1978. In Subsection 2.2.4 it is
discussed and for more detail see the article of Rivest, Shamir and Adleman [30].

After Rivest, Shamir and Adleman’s scheme, other public-key cryptography schemes
based on different hard to solve mathematical problems were introduced in the following
years. Popular mathematical hard problems, in context of cryptography, will be discussed
in the following sections.

2.2.1 Concept of Public-key Cryptography

An entity has two keys related to it: the private key and the public key. The private key,
as the name already suggests, is kept secret and the public key is distributed to the com-
munication partners in an authentic way. The public and the private key are generated
as a pair with a certain mathematical relation. The generation of the keys is computa-
tionally easy whereas the reverse computation of the private key with only knowing the
public key is computationally extremely difficult. The mentioned mathematical relation
results in the following circumstance: The result of a cryptographic method cannot be
reversed without knowledge of the counterpart key or the computational effort is higher
than trying all possible keys. Therefore, by the use of appropriate long keys, significant
security can be assured. This circumstance is referred to as one-way function.

2.2.2 Exemplary Goals

As the central element, the used keys of the cryptographic system changes in contrast to
symmetric-key cryptography. The procedures to achieve cryptographic goals are exem-
plary discussed in the following.
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Confidentiality The discussion about achieving confidentiality in public-key cryptog-
raphy, in contrast to symmetric-key cryptography, starts with obtaining the keys. To
encrypt a message destined to Alice, Bob obtains an authentic copy of Alice’s public key.
He computes the ciphertext with Alice’s public key and the message as input for the en-
crypt method, and sends it to Alice. Alice computes the original message with her private
key and the ciphertext as input for the decryption method.

Authentication Authentication is used to either check the authenticity of signed data
or an entity.

In general, verifying an entity can be accomplished by a some sort of secret password
or by a system of sending a challenge and checking the response. There, the response can
only be computed with knowledge of the secret key.

Authentication of data serves the ability to reliably verify that the data was indeed
sent by the entity. In turn, this also ensures that the data was not modified as different
data causes a different signature. To be able to do this, an entity needs a unique attribute.
In public-key cryptography this unique characteristic is directly served by each entities’
keys. When Alice wants to write a message to Bob and wants to guarantee him the
ability to verify that she indeed wrote it, she signs it. She uses her private key and the
message as input for the signature generation function to create a digital signature and
sends the signature, along with the message, to Bob. He can verify that the message was
written by Alice with her public key. Therefore he checks if the received signature was
created by Alice. He further checks if the signature was created for the received message.
The verification is only then successful, when both checks succeeded. For public-key
cryptography schemes it is characteristic that only the possessor of the private key can
create a digital signature which passes the verification method. The signature generation
procedure generates different signatures for each message and thus a signature generated
for a certain message is only valid for this message.

2.2.3 Mathematical Hard Problems

The mathematical problems which are used in cryptographic schemes have in common that
an easy calculated result of the related operation cannot be easily reversed to obtain the
original inputs. Such an operation is called one-way function. The mathematical problems
differ in the necessary effort to reverse the cryptographic function. This necessary effort
is here referred to as hardness. The hardness measurement is based on the best known
algorithm to solve the problem. Thus, a new algorithm to solve a particular mathematical
problem might lower the attributed hardness.

The most notable mathematical hard problems, due to their use in cryptographic
schemes, are the integer factorization problem and the discrete logarithm problem. Based
on the discrete logarithm problem, the elliptic curve discrete logarithm problem was de-
veloped.

2.2.4 The RSA Cryptographic Scheme

The RSA is a cryptographic scheme published 1978 by Rivest, Shamir and Adleman. For
detailed description and further information not covered here see their article [30]. In this
section, for simplification the word integer refers to a positive integer.

It was the first public-key cryptography scheme after the concept was published by
Diffie, Hellman and Merkle. 30 years after its publication, RSA is still widely used. The
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hardness of the integer factorization problem forms the base for the hardness of breaking
the RSA. To give an impression of one-way functions and mathematical hard problems,
the principle of the integer factorization problem will be discussed here. Further the
factorization of an 232 digits long integer will be discussed to get an idea of the necessary
effort to reverse a one-way function.

Calculating the result of an integer multiplication is rather simple. Even for rather big
numbers with several hundreds of bits, the result can be obtained in fractions of a second
as soon as a computer is involved. In contrast to this, the reverse operation, namely the
factorization, of a commonly big integer on a single computer takes hundreds of years as
discussed in the following.

Integer factorization is the operation to reverse a multiplication and thus to find the
multiplicands used. The fundamental theorem of arithmetic, see the reprint of Gauss’
Disquisitiones Arithmeticae [18], states that the factorization of an integer is unique.
Thus, once the factorization is completed, this is the only factorization possible. To check
if a number B1 is a factor of the integer A0, the division A0/B1 = A1 has to be carried
out. If the devision has no remainder, B1 is a factor. If B1 is a prime, B1 does not
have to be factorized itself, as primes are only divided by 1 and the prime itself with no
remainder. Basically, integer factors cannot be greater than the product. Thus, a strategy
to find a factor of a number might be to divide by all these numbers until it delivers no
remainder. A division by 1 can be carried out infinitely often with no remainder and
serving no practical information about the factors. The division by the number itself does
not have a remainder too, the result is 1 and also results in no information about the
factors. These divisions are omitted. Further limitations to the factors that are tested can
be made: Only numbers up to the square root of the product must be checked as bigger
numbers would already be the result of the division by a smaller number than the square
root. Every time a factor Bi is found, the search is restarted, but with the result Ai of
the division Ai−1/Bi = Ai as number to be factorized. Repeating this procedure until all
factors are primes delivers the factorization of an integer number. That might not evolve
a problem and can be calculated on paper as long as the number to factorize is small
enough. Imagine to factorize an integer being the product of primes having hundreds
of digits and are of similar length. Although more efficient algorithms than the trivial
trying of all possibilities exist, until now, the integer factorization problem has no solution
which would harm cryptographic schemes based on it using appropriate big integers. The
factorization of the integer described in the following was done using such a more efficient
algorithm.

In the cryptoeprint report [24] the factorization of a 768-bit number was reported in
2010. Specifically this number, called RSA-768, has no special structure that may give the
possibility to accelerate the computation. Therefore it is categorized as the factorization
of a general integer and the best known algorithm was used. The stated computational
effort spent would take almost 2 000 years if it was run on a single core 2.2 GHz AMD
Opteron processor with 2 GB Random Access Memory (RAM). The actual time spent to
obtain the factorization on the specialized hardware was two years. In contrast to this,
the effort to compute the RSA-768 integer by multiplication of its factors is about 0.26
microseconds due to a rough estimation. Thus, the hardness of the integer factorization
is obvious. For information and details of the number-field sieve-factoring method see the
book of Lenstra and Lenstra [27] as this is not discussed here.

The above mentioned estimation with its assumptions is described in the following:
The RSA-768 integer is a 768-bit integer with 232 decimal digits. Its factors are reported
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as two 384-bit integers. For the multiplication, the product scanning form is assumed as
the factors are too wide for commonly used multiplication units in processors. For details
of product scanning multiplication see [19, Subsection 2.2.2, Page 32]. Due to this n2

multiplications of b-bit integer words are needed where n is the number of words the integer
is split into. Each multiplication is assumed to take one cycle whereas for the fetching
of the operands, the storing of the results and the accumulation after the multiplication,
three cycles are added per multiplication. The chosen word width of the multiplication
unit is 64 bits because the AMD Opteron has 64-bit multiplication capabilities, as stated
in the data sheet [1]. Therefore the 384-bit integers are split into 12 words which leads
to n = 12 and further 122 · 4 = 576 cycles are estimated. On a 2.2 GHz processor with
assumed 2.2 · 109 instructions per second, the whole multiplication will take about 0.26
microseconds. A strong emphasis lies on the fact that this is a rough estimation and the
real execution time of the multiplication depends on the possible optimization and the
necessary overhead due to the architecture. As this estimation is thought to illustrate the
contrast between computing the result of an one-way function and reversing it, this rough
estimation is considered sufficient.

2.2.5 Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem is based on the discrete logarithm, more pre-
cisely it is the discrete logarithm with the group of points on elliptic curves over a finite
field. As Hankerson, Menezes and Vanstone write in [19, Chapter 1, Page 1], the use of el-
liptic curves in cryptography was suggested independently by Neal Koblitz [25] and Victor
Miller [28]. In the following paragraphs, the basic mathematical relations are discussed,
starting with groups, continued with finite fields and the discrete logarithm. Here, elliptic
curves over finite fields are developed starting from a geometric point of view. Afterwards
the base is built for the discussion about elliptic curve discrete logarithm problem. Finally,
curve types and coordinate systems are discussed in short. The mathematics discussed
here can be read in Guide to Elliptic Curve Cryptography of Hankerson, Menezes and
Vanstone [19, Subsections 1.2.3 and Section 2.1], Combinatorial group theory of Karrass,
Magnus and Solitar [23, Section 1.1] and Elliptic Curves: Number Theory and Cryptogra-
phy of Lawrence Washington [40] for further details and explanations, and more specific
references will provided alongside the discussion.

2.2.5.1 Groups And Finite Fields

The term group here is meant in a mathematical sense: A group is defined as a set of
elements and an operation that can be carried out. For the group (G, ·), G is the set of
elements and · is the binary operation. Groups and their properties will be discussed in
the following as in [23, Section 1.1]. A group (G, ·) is called finite if the number of elements
in the set G is finite. The binary operation takes two elements of the set. Since (G, ·) is a
group, the following four properties are satisfied:

I Given an ordered pair a, b of elements of the set G, a third element c is uniquely
determined by a · b = c. This is often written as ab = c where the operation’s sign
is omitted.

II The binary operation · of the group (G, ·) is associative: (a · b) · c = a · (b · c).
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III In the set G an element e ∈ G exists, such that e · a = a · e = a for all a ∈ G. e is
called the identity or unit and is also written as 1.

IV In the set G, for each a ∈ G an element b ∈ G exists, such that a · b = b · a = 1. This
element is called the inverse3.

If the following fifth property is satisfied, the group is commutative and is called an
abelian group.

V For each a, b ∈ G of (G, ·), a · b = b · a is true.

Suppose we have a finite multiplicative group (G, ·) of order q, which means the set
of the group has q elements. [19, Page 12] states for an element g ∈ G a smallest integer
t exists, such that gt = 1. Then it is said that t is the order of g. It is stated that for
every element g ∈ G such a t exist. The element g ∈ G form a cyclic subgroup of (G, ·)
with the powers of g as the elements of the set and the same binary operation as G. The
elements of the group are written as 〈g〉 = {g0, g1, ..., gt−1} and the group (〈g〉, ·) is called
a cyclic subgroup of G generated by g. The same applies to finite additive groups, but
then gt = 0, which means adding t copies of g, and 〈g〉 is the set of multiples of g. If an
element g ∈ G exists, such that the order of the element is equal to the order of the group,
the element is called a generator of G.

Groups are a part of the abstract algebra and might seem to be a theoretical construct
with no benefit. But the integer mathematics can be expressed in groups. In context of the
logarithm, the multiplicative group of integers can be replaced by another multiplicative
group. If this group is chosen appropriately it results in increased hardness of comput-
ing the result of logarithm. Before discussing this in more detail, some more necessary
mathematics will be discussed to complete the base of the elliptic curve discrete logarithm
problem.

To describe the elliptic curve discrete logarithm problem it is necessary to discuss finite
fields. A finite field over the prime p is the triple (Fp,+, ·) with a finite number of elements
as discussed in [40, Page 482]. The elements of the set Fp are the positive integers modulo
p: Fp = {0, 1, ..., p − 1}. A finite field has two operations, with symbols + and ·, called
addition and multiplication. With each of these operations a group is defined and will be
discussed in the following:

As discussed in [19, Subsection 1.2.3], the addition operation + together with the set
Fp form the additive group (Fp,+) which is an abelian group. Thus a, b, c ∈ Fp : a+ b = c
and c is the result of the integer addition modulo p: c = a + b modulo p. Further, 0
is the identity and −a is the inverse of a ∈ Fp. Thus, given a ∈ Fp, a + 0 = a, and
a + (−a) = 0. The multiplication operation with all nonzero elements F∗p of the same
set form a multiplicative group (F∗p, ·). Just as the additive group, the multiplicative is
abelian too. Here F∗p is used instead of Fp as there is no inverse for zero and F∗p is the
set of positive, nonzero integers modulo p, F∗p = Fp\{0}. The binary operation is the
integer multiplication modulo p: a, b, c ∈ F∗p : a · b = c and thus the result is calculated as
c = a · b modulo p. In this group the identity is 1 and the inverse of a ∈ F∗p is written as
a−1: given an a ∈ F∗p, a · 1 = a and a · a−1 = 1.

Some more properties apply to finite fields and are listed in the following list. The
interested reader might read [19, Section 2.1] for a detailed discussion.

3If the group(G, ·) is an multiplicative group the inverse of a is written as a−1, in case of an additive
group it is written as −a.
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� For a finite field it is required that the identity elements of the additive and multi-
plicative group are distinct.

� The multiplication distributes over the addition: Given (Fp,+, ·) then a, b, c ∈ Fp :
(a+ b) · c = a · c+ b · c.

� For each prime p a finite field (Fp,+, ·) exists.

� The addition of an additive inverse might also be written without the addition sign:
Given (Fp,+, ·) and a, b ∈ Fp, then a+ (−b) might be written as a− b and referred
to as subtraction.

� Similar to addition, the multiplication with the multiplicative inverse a · b−1 might
be written as a/b and referred to as division.

Beside the mathematical definitions and properties, addition, multiplication and their
counterpart operations in finite fields behave like ordinary integer with a subsequent mod-
ulo operation on the result.

2.2.5.2 The Discrete Logarithm Problem

The name elliptic curve discrete logarithm problem already indicates its relation to discrete
logarithm. But before discussing directly the elliptic curve discrete logarithm problem
itself, the discrete logarithm problem will be discussed here in a basic manner. The
discrete logarithm is similar to the ordinary logarithm, the solution for x in the equation
ax = b, but in contrast operates on a finite cyclic group. The group is assumed to be
written as multiplicative group. A discussion about discrete logarithm can be read in [40,
Chapter 5] and [19, Section 1.2] for discussion about discrete logarithm systems.

The fact that the discrete logarithm operates on finite cyclic groups leads to some
advantage over the ordinary logarithm in the context of computational hardness: The
ordinary logarithm allows using the already calculated powers of a to make bigger “jumps”.
For instance while testing the first 20 powers of a, these are saved. After this, the previous
result ai is not multiplied by a but a20 and then tested whether b is still bigger. If this is
the case, the time doing 19 multiplications was saved. If not, ai can be multiplied with a10

and tested again, which gives a direct hint if either x is between i and i+ 10 or between
i+ 10 and i+ 20. In contrast to this, the finite cyclic group prohibits this shortcut. Take
the group of positive integers less than 17 with the group operation defined as the integer
multiplication modulo 17, ({0, 1, ..., 16}, ·). Here 42 = 4 · 4 = 16 whereas 43 = 13 as
64 mod 17 = 13. As in the general case, observing the results of the group operations
does not give a clue of how many operations are sill necessary. The alternative strategy
left is to calculate the powers of a : ai with increasing i and comparing the result with
b. This is done by calculating the group operation ai−1 · a = ai starting with a1 = a.
Thus, this requires x− 1 group operations. Therefore, beside the value of x, the hardness
of the discrete logarithm problem depends on the used group and the complexity of its
operation.

2.2.5.3 Elliptic Curves Over Finite Fields

In this section some aspects of elliptic curves will be discussed. Elliptic curves will be
developed from a geometric view of elliptic curves, to a group law and end with elliptic
curves defined over finite fields. The discussion in this section refers to Washington’s
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Elliptic Curves: Number Theory and Cryptography [40] and detailed reference will be
provided in the text.

In the context of visualization of elliptic curves, we assume these are defined over real
numbers. By doing so, we get more intuitive visualizations. Elliptic curves are plane
curves as an elliptic curve in affine coordinates has two coordinates. The name might let
one think of shapes with an elliptic form, but it is derived from a mathematical relation.
Silverman in [35, Chapter VI, Page 157] writes therefore that elliptic curves “ ... are the
Riemann surfaces associated to the arc-length integrals of ellipses”. Elliptic curves do not
look like ellipses in general as shown in Figures 2.2 and 2.3.

Figure 2.2: Curve y2 = x3 − x

Figure 2.3: Curve y2 = x3 − x+ 1
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Points on it have affine4 coordinates, x and y, and satisfy the Weierstrass equation5

y2 = x3 + ax+ b, where x and y are the x coordinate and respectively the y coordinate, a
and b are constants determined by the used elliptic curve. Further for the elements x, y, a, b
in the equation, it has to be specified to which set they belong. As a, b are specified to
be elements of the set of a field K, the elliptic curve is said to be an elliptic curve over
K. x, y specify the coordinates of a point on the elliptic curve and are of the set of the
field L, with L ⊇ K. For technical reasons the point at infinity is included in L: ∞ ∈ L.
This has advantages when a third point is calculated out of two known points: Due to
Bezout’s theorem an elliptic curve intersects with a line at exactly three points. For fully
respecting this theorem some special cases have to be discussed. The intersections can be
one of four types and are visualized in Figure 2.4.

The general case, when the line is neither vertical nor a tangent to the curve, is shown
by the blue line in Figure 2.4. As long as none of the two points is a tangent and the
resulting line is not vertical, the angle and the position of the line has no restrictions.
Then it intersects the curve at 3 points.

If the line is geometrically a vertical line, the intersection is defined to be at infinity, see
the magenta and the red line in Figure 2.4. For details about the intersection at infinity
see [40, Sections 2.1, 2.2 and 2.3].

If the line is a tangent to the curve, see the green and magenta line in Figure 2.4, the
point is counted twice and the line intersects the curve at exactly one more point, either
at infinity (magenta) or “normal” (green).

Figure 2.4: Curve y2 = x3 − x+ 1 with 4 different intersections

As a consequence of the y2 in the equation, an elliptic curve is symmetric to the x
axis: By the basic rules of mathematics, for calculating y out of y2, it must be written as
y = ±

√
y2 = ±

√
x3 +A · x+B. The negative of a point P1 = (x1, y1) is defined to be

−P1 = (x1,−y1).
4The representation of points can done in other coordinate systems. This is discussed in Subsection

2.2.5.6.
5This is the Weierstrass equation for elliptic curves which do not have a characteristic of 2 or 3. A more

general equation and discussion for those two cases can be found in [40, Equation 2.1, Page 10].
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By examining the intersection with a line we can define a point-addition operation on
elliptic curves, P1 + P2 = −P3 or P1 + P2 + P3 = 0.

1. General case: A line through two points, P1 = (x1, y1) and P2 = (x2, y2), on
the curve, intersects the curve at one more point if none of the points is a tangent
and the line is not vertical. The line has a slope s = y2−y1

x2−x1
and the third point

P3 = (x3, y3) can be calculated with x3 = s2 − x1 − x2 and −y3 = s · (x3 − x1) + y1.
The mathematical background for this is to find the third root of the equation. This
is eased by the knowledge of the other two roots. Details of the mathematics can be
found in [40, Section 2.2].

2. Tangent: If two points on a curve are very close together, a line through them
converge to a tangent of the curve. As a consequence here, if the point is added
to itself, the line is a tangent of the curve at this point. The tangent is the first
derivation of the equation at this point. Here it is assumed that the line is not
vertical. Again, the line intersects the curve at exactly one other point. By implicit
differentiation of d

dx((y)2) = d
dx(x3 + A · x + B) one gets 2y · dydx = 3x2 + A and

dy
dx = 3x2+A

2y . As the x, y coordinate of this point is available, the slope s of the line

is s = dy
dx =

3x2
1+A
2y1

. When proceeding as in the previous case, but with P1 = P2, we

get x3 = s2 − 2x1 and −y3 = s(x3 − x1) + y1.

3. Vertical case: If the x coordinates x1, x2 are equal, the line through the two points
is a vertical line. Here the y coordinates y1, y2 are not equal. As mentioned before,
∞ is added to the points on the curve and is said to sit on the top of the y axis.
If then a line connecting two points is vertical, the line intersects the curve at ∞,
P3 = ∞. By the circumstance that an elliptic curve is symmetric with respect to
the x axis, y2 = −y1, thus P2 = −P1 and P1 − P1 =∞

4. Vertical tangent: This is case 2 and 3 combined, x1 = x2 and y1 = y2 = 0. First,
the line is a tangent as both points have the same coordinates and second, this
tangent is vertical as both points’ x coordinate are equal. Since the line is a tangent,
the point of the intersection is counted twice and as it is a vertical line, the third
intersection point is at ∞, P3 =∞.

Recapitulating the properties of a group as discussed in Subsection 2.2.5.1, the proper-
ties I, III and IV of a group and further the property V of an abelian group can be shown
to be fulfilled by the point-addition operation with ∞ as the identity element. Showing
that property II, the associativity, is fulfilled is rather complicated and would exceed the
introductive manner of this section. The interested reader might examine [40, Section
2.4, Pages 20-35], who proves associativity by examining the intersections of lines through
three points and handling the different types of intersections of a line and an elliptic curve.

I Two points on the curve can be added by use of the above discussed cases.

III Adding the identity ∞ to a point P1, P1 +∞ = −P3, results in P3 = P1 and is
directly obtained from the above discussed “Vertical case”.

IV As III, using the “Vertical case” and the circumstance that P2 = −P1 is a valid point
on the curve, P1 − P1 =∞.
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V A line through two points remains the same line, regardless which of the points is
the starting point and the end point, therefore P1 + P2 = P2 + P1 = P3 holds.

The points on an elliptic curve and the point addition operation form a group as defined
before in Subsection 2.2.5.1. The operation is usually called “the addition of points on
an elliptic curve”. In the later part of this thesis, the multiplication of a point P with a
scalar n, often referenced as scalar multiplication or point multiplication, will be done by
adding n times the point P .

We discussed the intersection of a line through points on an elliptic curve over real
numbers and developed the group structure of points on an elliptic curve with the point
addition as its binary operation. We may now continue with elliptic curves over finite
fields. A,B, x, y are now elements of this field. This means a point P1 = (x1, y1) has the
coordinates as elements of this finite field. Calculations are done within this field and
remain valid although the group of real numbers is replaced by a finite field. One may
think of layers for the calculation and caution is in some sense necessary, as the operations’
signs are similar but do not mean the same operation: P1+P2 stands for the point addition
of the group of points on an elliptic curve. For calculation this means to proceed as defined
beforehand, for instance in the general case, calculating s = y2−y1

x2−x1
, x3 = s2 − x1 − x2 and

−y3 = s · (x3 − x1) + y1. The division, squaring, multiplication, subtraction and addition
stated in the formulas of the point addition for s, x3, y3 is meant to be done in the field
over which the elliptic curve is defined. In case of finite field over Fq a prime q, regarding
s, this results in doing the numerator’s finite-field subtraction, the finite-field inversion of
the result of the denominator’s finite-field subtraction and the finite-field multiplication of
both intermediate results. This similarly applies to x3 and y3. These finite-field operations,
as discussed in Subsection 2.2.5.1, in turn consist of integer operations with additional
modulo operations, for instance y2 − y1 = integer value(y2) − integer value(y1) mod q.
Note, that the “integer value” is included to distinguish between the elements of the finite
field and integer numbers.

As [40, Chapter 4, Page 95] states, elliptic curves over finite fields have only a finite
number of valid points, as the finite field only has a finite number of possible combinations
for the coordinates x, y of a point P = (x, y). It is further stated, that the exact number
of valid points is difficult to compute for big finite fields, but increases with the number
of elements in the field.

Assuming a point P on an elliptic curve over a finite field E(Fq) and∞ as the identity
element. As discussed in Subsection 2.2.5.3, a t exists and t is the smallest integer such
that t · P =∞. In this manner cyclic subgroups generated by elements of order q can be
defined.

2.2.5.4 The Discrete Logarithm With Elliptic Curves

After discussing the discrete logarithm in general and elliptic curves over finite fields, we
continue with the discrete logarithm with a cyclic subgroup of the group with the set
of points on an elliptic curve defined over a finite field over a prime. The name already
indicates the involved mathematics. In the following, the necessary steps and the layers of
computation are outlined and the main aspects are recapitulated in short to give a rough
overview. For a more detailed discussion see the referred sections and the referenced
sources.

To proceed top down, we start with the discrete logarithm. This is to find a solution
for k in the equation ak = b, with given a, b as we discussed in Subsection 2.2.5.2. As the
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structure of computed data permits shortcuts, this is done by computing the powers of
one after another and comparing these results with the specified result. The next topic
is the group to which the elements a, b belong to, that leads to the cyclic subgroup of
the group of points on an elliptic curve with the point addition as the group’s binary
operation and was discussed in the previous Subsection 2.2.5.3. In this group, copies of
the generating point on the elliptic curve are summed up for calculating a multiple of a
point, the scalar multiplication. As a consequence of the circumstance that the group
operation is addition and not multiplication, the discrete logarithm here computes k out
of a · k = b. The scalar multiplication, see Subsection 2.2.5.3, in turn, stands for several
finite-field operations, as previously stated in Subsection 2.2.5.1. These operations cover
the basic usual mathematical operations, addition, subtraction, multiplication, inversion
and negation, and are computed as their pendants in usual mathematics with a trailed
modulo operation.

Regarding the scalar multiplication, the drafted summing up of copies of a specific
point would results in a repeated point addition, therefore calculating kP would need
k − 1 point addition operations. That can be shortened by a “double and add”. This
procedure takes P as the initial value of the intermediate result R, starting with the most
significant bit being 1 and testing each bit down to the least significant, R is doubled and,
according to whether the bit is either set 1 or 0, either P is added to the intermediate
or not. For instance we perform the scalar multiplication of a point with 19. The most
significant bit set corresponds to 24 = 16, therefore the bits for 23 = 8, 22 = 4, 21 = 2
and 20 = 1 are tested. For illustration the index of R will be increased for each bit tested,
starting with R0 = P . The first bit tested, 23, is not set 1, so R1 = 2 · R0. The same
applies to 22, so R2 = 2 · R3. The bits for 21 and 20 are both 1, so the intermediate and
afterwards the final result get R3 = 2 · R2 + P and R4 = 2 · R3 + P . Here, instead of 19
additions, the result is obtained after four doubles and two additions.

2.2.5.5 Curve types

The family of elliptic curves is not limited to curves in Weierstrass form. Due to the intro-
ductive manner of this section, besides the already mentioned and analyzed Weierstrass
curves, twisted Edwards curves will be discussed. As a central topic in this thesis, see the
next Chapter 3 for further discussion on twisted Edwards curves.

Different types of curves are expressed by different equations defining such a curve.
Those types differ in the way the point addition is done, as discussed in Subsection 2.2.5.3,
its formulas are derived from the curve equation. Certain formulas for the point addition
of a curve type can have benefits over other types regarding various disciplines. While
one type can be the fastest in computation on certain specific architecture and a specific
hardware, another type can have attack-resistance advantages over others.

As different types are still part of the family of elliptic curves, it may seem reasonable
that some curves of one type may be convertible to other types. This is not true in general,
but for instance, as Bernstein, Birkner, Joye, Lange and Peters stated in [11], for every
Montgomery curve a twisted Edwards curve can be calculated. As a consequence, it is
possible for curves to be converted into another type to take advantage of this type’s
properties. See Figure 2.5 for the visualization of a twisted Edwards curve and Figure 2.6
for a Montgomery curve. For using such a conversion, one converts the curve equation and
the input point for the scalar multiplication. Then the result of the scalar multiplication
can be calculated using the new curve’s point-addition formulas and then finally the point
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is converted back to the original curve.

Figure 2.5: Twisted Edwards curve 10x2 + y2 = 1 + 6x2y2

Figure 2.6: Montgomery curve 3y2 = x3 + 10x2 + x

2.2.5.6 Coordinate systems

As mentioned in Subsection 2.2.5.5, different types of curves can provide certain advan-
tages. Similar to this, coordinate systems allow, for instance, to optimize the speed of cal-
culation for a particular architecture or hardware. The chosen coordinate system also has
an influence on the space requirements during calculation as different coordinate systems
store additional values. The coordinate system has a direct impact on the point-addition



CHAPTER 2. INTRODUCTION TO CRYPTOGRAPHY 20

formulas. Therefore the changes relative to affine coordinates will be discussed. The dis-
cussion in this section should be understood in the context of elliptic curves and thus be
read as a rough overview. The interested reader can obtain further and more detailed
discussion in [19, Section 3.2].

The affine coordinate systems in the context of elliptic curves lets a point on an elliptic
curve have an x and a y coordinate. Affine coordinates here are used as reference to
compare other coordinate systems with.

Projective coordinates introduce an additional z coordinate and the usage of this can
vary. When using the standard projective coordinates, the z coordinate is used to save
calculations of inversions. Instead of performing the inversion in every point-addition
operation, the z coordinate is used to accumulate the denominators. The only necessary
inversion is when calculating back to the affine coordinates. This inversion is rather expen-
sive in the context of the computational effort. The benefit of this depends on the actual
architecture and hardware. For example, the hardware implemented with 32 bits word
width of this thesis needs 73 384 cycles for doing one inversion in the finite field, in contrast
to one finite-field multiplication with 143 cycles. Further hardware implementation details
will be presented in Chapter 4.

There are various other coordinate systems with certain benefits and special purposes.
Beside the affine and the standard projective coordinates, Jacobian projective coordinates
are mentioned to point on the diverse possibilities arising from the coordinate system.
Within Jacobian projective coordinates (X : Y : Z) each affine point is represented as
(x, y) = (X/Z2, Y/Z3). This coordinate systems has an impact on the curve equation. For
detailed discussion on this see [19, Section 3.2].

2.3 Security Measurement

The security of a cryptographic scheme is an important property. Assuming a scenario
as sketched in Section 2.1, Alice and Bob want to communicate in such a way that Eve
cannot read their messages. Further, let’s assume Eve has the considerable knowledge
of cryptography and computational resources. Eve then chooses the best known proce-
dure to reverse the encryption and to read the decrypted messages. Depending on the
cryptographic scheme Alice and Bob use, this takes a specific amount of time. This time
depends on the available computational power under Eve’s control. More computational
power shortens the time, thus time seems not to be a good measurement. The number of
operations necessary to reverse the encryption, however, is independent of computational
power. Therefore a valid measurement on how secure a scheme is can be the necessary
operations with the best known algorithm.

Besides this there is a similar measurement that is based on the necessary amount
of work and gives the security of a cryptographic scheme in bits. In National Institute
of Standards and Technology’s (NIST) recommendation regarding key management [4,
Section 5.6], the amount of necessary work to break a cryptographic scheme is compared
with the necessary amount of work performing a brute force attack on a symmetric key
cryptographic scheme with X-bit key size. The cryptographic scheme is then said to have
a security of X bits. The levels of security listed in Revision 3 of NIST’s recommendation
in [4] are 806, 112, 128, 196 and 256. For the security levels 128, 196 and 256 the AES,

6In NISTS’s Special Publication in [5, Section 1.2, Page 6], it is stated to use 80 bits security until the
end of 2013 with acceptance of a certain amount of risk.
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Security Symmetric key Integer Elliptic curve
level algorithm factorization cryptography

128 bits AES 128 RSA, key size 3 072 bits ECDSA, key size 256-383 bits

196 bits AES 196 RSA, key size 7 680 bits ECDSA, key size 384-511 bits

256 bits AES 256 RSA, key size 15 360 bits ECDSA, key size 512+ bits

Table 2.1: Excerpt of NIST’s comparison of cryptographic schemes.

with these specified key sizes in bits, is used for comparison.
NIST’s recommendation includes comparable security levels for RSA, see discussion

about RSA in Subsection 2.2.4. The cryptographic scheme ECDSA, based on the elliptic
curve discrete logarithm problem discussed in Subsection 2.2.5, is also included. In the
following Chapter 3 the EdDSA scheme will be discussed. This relies on the same mathe-
matical problem as the ECDSA does and is therefore considered to have the same security
level. An excerpt of NIST’s table can be seen in Table 2.1. For the full table see [4, Page
63] and for a more detailed discussion see the surrounding section [4, Section 5.6].

The table shows that for RSA, in order to achieve the same security as AES, a quite
high key size is necessary. For elliptic-curve cryptography the table states smaller key
sizes, approximately twice of the security level.

2.4 Summary

We discussed basic ideas of cryptography and discussed aspects of symmetric-key cryp-
tography as well as public-key cryptography. We took a look on elliptic curves and the
discrete logarithm and discussed the mathematical backgrounds the elliptic curve discrete
logarithm problem implies.



Chapter 3

Edwards-curve Digital Signature
Algorithm

In this chapter, we will take a look at the Edwars-curve digital signature algorithm
(EdDSA). It was introduced by Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter
Schwabe and Bo-Yin Yang in 2011 [8]. EdDSA is a variant of ElGamal’s signature system
[14] just as Schnorr’s signature system [33], the Digital Signature Algorithm (DSA) and
ECDSA. The most obvious difference to other signature systems is that EdDSA uses
twisted Edwards curves rather than Weierstrass curves. The use of this type of curves
explains the choice of name EdDSA: Edwards-curve Digital Signature Algorithm. The
authors do not claim any novelty of their modification with respect to other signature sys-
tems but emphasize the importance of the selection of a good combination of modification
to achieve top performance. EdDSA is a generalization of the introduced and discussed
explicit signature system Ed25519-SHA512. EdDSA can be used with other choices of
elliptic curves and other parameters.

First, the parameters will be presented in Section 3.1. For a subset of the param-
eters further discussion will be provided. Second, the operations on the protocol layer
will be presented in Section 3.2. Afterwards, security consideration will be made in Sec-
tion 3.3 and a comparison to the ECDSA will be provided in Section 3.4. Finally, the
Ed25519 is discussed in Section 3.5: The set of chosen parameters will be presented and
the mathematical backgrounds and techniques involved will analyzed.

3.1 EdDSA Parameters

The authors of EdDSA [8] define various necessary parameters that have to be fixed. After
listing these, a limited choice will be discussed in particular.

The parameter b ≥ 10 is subsequently used to define length in bits of other parame-
ters. This parameter has an influence on the used hash function, the primes, the necessary
arithmetic operations and their word width, and the digital signature’s length. H stands
for the cryptographic hash function with a 2b-bit output. Hash functions will in short be
discussed in Subsection 3.1.2 and will be used for generating the pairs of keys, the signa-
ture generation and verification. These operations will be discussed in Section 3.2. The
prime q is used for the elliptic curve’s underlying finite field Fq. This prime influences the
arithmetic, especially the computation of the reduction in the finite field. The (b− 1)-bit
encoding of elements of the finite field Fq will be used for packing the xy coordinates of a

22
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point. This procedure will be explained in Subsection 3.1.4. The parameter d, used in the
curve equation, has to be a non-square element of Fq. There is no solution for a non-square
element in Fq for the equation d = x2. The prime ` between 2b−4 and 2b−3 is used within
an additional constraint, which will soon be discussed. It is further used for the signature
generation and verification calculations. Base point B is used for scalar multiplication ful-
filling B 6= (0, 1) of the set E = {(x, y) ∈ Fq × Fq : −x2 + y2 = 1 + dx2y2}. The constraint
mentioned above is: When choosing parameters ` and B, `B = 0 must be satisfied. Here
`B means the `th multiple of B. In Subsection 2.2.5.1, cyclic subgroups with a generat-
ing element have briefly been discussed. Here B forms such a cyclic subgroup with a set
〈B〉 = {0B,B, ..., (`− 1)B}

3.1.1 Curve

As already mentioned, a major difference to other digital signature algorithms, e.g.,
ECDSA is the use of twisted Edwards curves [11]. By a slight modification with respect to
the curve equation of Edwards curves (see the article of Edwards [13]), x2+y2 = 1+dx2y2,
twisted Edwards equation are defined with the equation ax2 + y2 = 1 + dx2y2. Twisted
Edwards curves’ coverage of elliptic curves that can be transformed from Weierstrass form
is significantly increased. They also cover all Edwards curves. Such a transformation was
in short discussed in Subsection 2.2.5.5. These curves can further be used with the fast
and unified addition-law (for details see Subsection 3.5.1.3). The term “unified” means
that it can be used for addition as well as for doubling. Within the EdDSA, the parameter
a of the twisted Edwards curve equation is fixed: a = −1.

3.1.2 Hash Function

Hash functions are used to generate a “fingerprint” as output for input data. This finger-
print is also called a “hash”. The input does not have to be of a certain length. A hash
function has a fixed output length which can be truncated if less output data is required.
The NIST published a recommendation of hash functions in [15]. These are of the SHA
family with varying hash lengths and therefore a hash function with appropriate length
can be chosen out of these.

The hash function maps each possible combination of input bits to a certain output.
The output of a hash function changes if a single bit flips and a single flipped bit will
propagate over the whole range of output bits. Ideally, when flipping a single bit, the
changes in the output are uniformly distributed over the whole range.

In general a hash function computes its output iteratively, where one part of the input
Ii of the current iteration i is the output of the previous iteration Oi−1. The other part is a
fixed-length part of the hash function’s input, using all data of input during the iterations.
The number of iterations is fixed for a certain hash function. Hashes are also used for
verifying the data integrity. Hypothetically, if a hash function would not have a fixed
number of iterations, data integrity based on hashes could not be verified.

Assume an input that can be any combination of bits with a fixed length. A hash
function has a fixed output length. As the input has more possible combinations than
the output, the hash function maps certain inputs to the same output. This is called
a hash collision. Although such collisions are unavoidable due to the limitations of the
output length, finding such a collision may not be trivial. For a hash function, none of the
following tasks should be computable in considerable time because this could be critical
for the security of the application:
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� For a given hash h, finding an input m such that hash(m) = h.

� For a given input m1, finding another input m2, such that hash(m1) = hash(m2).

� Finding any two different inputs m1 and m2, such that hash(m1) = hash(m2).

In the context of EdDSA, the hash function is used for several activities: Generating the
secret key as well as the public one, calculating the signature and verifying a given signature
and its message. Like Schnorr’s signature system [33] and in contrast to ElGamal’s and
some variants of ElGamal’s signature system, EdDSA is not vulnerable to attacks by
merely finding hash-collision (see the paper [8, Page 131]). This improvement is achieved
by hashing not only the actual message, but using additional secret data. This additional
data varies depending on the context and is either a part of the hashed secret key or the
public key and the base point B multiplied with some scalar. Further discussion about
this is provided in Section 3.3.

3.1.3 Primes

A prime is an integer number which has no divider other than 1 and the prime itself, as
already discussed in Subsection 2.2.4. Further, discussed in Subsection 2.2.5.1, for each
prime q a finite field over this prime Fq exists.

Some primes enable a faster calculation in a finite field over these certain primes. These
are called Mersenne primes and are of the form Mn = 2n − 1. Beside the rare Mersenne
primes, also pseudo Mersenne primes exist, which enable fast calculation too. These are
of the form q = 2m − k with 0 < |k| < 2bm/2c, see the article of Jerome A. Solinas in [37].
Mersenne primes and pseudo Mersenne primes enable fast reduction used in the context
of finite-field multiplication: The multiplication of two elements of a finite field Fq over a
pseudo Mersenne prime q = 2m − k with each element ∀e ∈ Fq : 0 ≤ e < q. Details of
the procedure will be discussed in Subsection 3.5.1.2. Calculating the modulo, involving
rather big numbers, is expansive in the context of computation time as stated in [19,
Subsection 2.2.4]. Here, this can be traded in by some integer operations: multiplications,
additions and subtractions. More precisely, there are dm/ne + d(s + 1)/ne single-word-
integer multiplications necessary, where n is the input width of the multiplication unit and
s = dlog2(k)e. Further, there are d(m + n + 1)/oe + dm/oe single-word-integer additions
and 2 · d(m + 1)/te single-word-integer subtractions, where o is the input width of the
adder unit and t the input width of the subtraction unit. These are the results of the
discussion in Subsection 3.5.1.2.

In the context of EdDSA, the primes q and ` are used. The have certain requirements
as described in the following: The prime q of the finite field for the elliptic curve is
required to be q ≡ 1 (mod 4). Each point on the twisted Edwards curve has an x and
y coordinate: ∀x, y ∈ Fq : {0, 1, ..., q − 1}. If the point is given in projective coordinates
this applies to the z-coordinate too. `, in turn, is used for the constraint regarding the
parameter base-point B and further when calculating the b-bits S of the 2b-bit signature
(R,S): S = little endian enc(f(secret key, public key,message) mod `). See Subsection
3.2.1 for details.

Implicitly, as a b − 1-bit encoding of a coordinate is necessary and an element of Fq

represented by an integer needs dlog2(q − 1)e bits, q can have at most b− 1 bits.
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3.1.4 b-Bit Point Encoding

The b-bit point encoding is used for generating a point representation that can be trans-
ferred to other systems. Therefore, the encoding must be well defined, otherwise the
verification of a signature could not be done, failing to calculate the base point B. The
point encoding further compresses a point with x and y coordinates, each coordinate being
an element of Fq and, as discussed in the previous Subsection 3.1.3, needing b − 1 bits.
The compression reduces the length in bits from 2(b− 1) = 2b− 2 to b.

Each point in affine coordinates P ∈ E = (x, y) can be encoded as b-bit string P = (x, y)
with y in the (b− 1)-bit encoding and x giving the missing bit, which is either 1, if x is
negative, or 0 if it is negative. A point P given in this encoding: y can be directly read
by taking (b− 1) bits, x can easily be recovered by solving x = ±

√
(y2 − 1)/(dy2 + 1) and

taking the solution according to the b-th bit.

3.2 Signature Operations

In general, there are two operations regarding a digital signature. On the one hand,
generating a signature of a message, called signing a message, on the other hand verifying
a received signature for a received message. These two operations will be discussed in
this section and algorithms for executing these operations will be presented in pseudo
code. For signing a message and afterwards verifying it, a private key and a public key are
necessary. These two keys must be generated once and can be reused for future signing
operations.

3.2.1 Signature Generation

The signature generation for a given message M is shown below(Algorithm 2) in pseudo-
code(see [8, Chapter 2]).

Before generating a signature, one has to generate the secret and the public key. The
secret key is a b-bit string k and does not have to be generated for each message. Thus
a secret key can be used for several signatures. The algorithm for the generation of the
keys is also shown below (Algorithm 1). By hashing the secret key k, an integer value a is
determined. This is multiplied with the base-point B and b-bit encoded (see Subsection in
3.1.4) into A. For public key generation only one half of the hashed secret key is used. The
rest of the calculated hash hb, ..., h2b−1 is used while generating a signature of a message as
additional input for the hash function beside the actual message. This method of hashing
not only the message serves additional security as discussed in Section 3.3.

Algorithm 1 Key-pair generation

procedure KeypairGen( b )
k ← randomNbits(b) . k = b-bit random value
(h0, h1, ...h2b−1)← H(k)
a← 2b−2 +

∑
3≤i≤b−3 2ihi ∈ {2b−2, 2b−2 + 8, ..., 2b−1 − 8}

A← a ·B
A← b bit encoding(A)
return k, hb, ..., h2b−1, A, a

end procedure
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Algorithm 2 Signature generation

procedure SigGen(hb, ..., h2b−1, A, a, l, B,M)
r ← H(hb, ..., h2b−1,M) . ∈ {0, 1, ..., 22b − 1}
R← rB . ∈ E
S ← (r +H(R,A,M) · a) mod l
R← b bit encoding(R)
S ← little endian encoding(S)
return (R,S)

end procedure

3.2.2 Signature Verification

Given the public key A, a message M and an alleged signature, the verification process is
shown in pseudo-code in Algorithm 3. The message and its signature may be transmitted
over an insecure channel. As long as it can be ensured that the public key has been
originated by the sender, it can be verified that the intended sender has written and
signed the message. The public key A of the sender is parsed for A ∈ E, the signature
of the message is parsed for R ∈ E and S ∈ {0, 1, ..., (q − 1)}. If successful, the equation
8 · S · B = 8 · R + 8 ·H(R,A,M) · A is checked and only if it is satisfied the signature is
accepted, otherwise it is rejected.

Algorithm 3 Signature verification

procedure SigVerify((R,S), A) . Signature (R,S)
try

A← parse for point(A)
R← parse for point(R)
S ← parse little endian(S)
if (8 · S ·B = 8 ·R+ 8 ·H(R,A,M) ·A) then

return ACCEPTED
else

return REJECTED
end if

catch parseError
return REJECTED

end try catch
end procedure

3.3 Security Considerations

Beside the general security of elliptic-curve cryptography and the discrete logarithm prob-
lem, discussed in Section 2.2, some aspects were taken into account when EdDSA was
developed. In this section they will be discussed. The discussion will concern the per-
message generated ephemeral key and the input of the hash function within the calculation
of the signature. The security level discussed in Section 2.3 is dependent on the chosen
parameter. EdDSA is an asymmetric/public-key cryptography scheme and it is of the
family of schemes based on the elliptic curve discrete logarithm problem. Therefore the
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rule of thumb for elliptic-curve cryptography applies to EdDSA too: its security level is
related to the chosen parameter b and is approximately b

2 bits.
One substantial security issue is the right implementation of the key generation.

EdDSA uses randomness for the secret key generation, but does not use randomness
to generate the session (ephemeral) key. The session key is calculated deterministically by
utilizing the hash function and will be discussed in Section 3.4. The authors of EdDSA
in [8, Pages 131-132] state that the secretly, deterministically obtained session key does
not threaten the security as it almost has a uniform distribution modulo `, and it is in-
distinguishable from a truly randomly generated session key. Further, it adds security
in some sense since a bad implementation of a random-number generator does not harm
the security and ensures a foolproof session key by design. In ECDSA, if the same ran-
domly generated ephemeral key is ever used twice, the secret key can be computed. A
prominent example, as [8, Chapter 1] notes, was Sony’s ECDSA implementation of code-
signing for the PlayStation3 that revealed Sony’s long-term secret key. Further, as shown
in [29], even the knowledge of a few bits of r for hundreds of signatures lets one gain
knowledge of the long-term secret key. EdDSA is therefore resistant by taking the current
message into the input of the hash function as well as the secret key when generating
r ← H(hb, ..., h2b−1,m), thus taking advantage of the distribution of the hash function.

Regarding the hash function, EdDSA further has the property to be resistant against
hash collision. In contrast to ECDSA, which hashes the message when calculating the
signature, stated in [16] and [21], but like Schnorr’s signature system, EdDSA extends the
input of the hash function. Schnorr hashes the message together with data calculated from
the per-message random session key. This and further details can be examined in his paper
in [32, Page 243]. EdDSA includes the public key into the calculation and therefore in
[8, Page 132] it is stated that this is an inexpensive countermeasure against simultaneous
attacks on multiple keys.

3.4 Differences between EdDSA and ECDSA

ECDSA is widely used and is standardized by ANSI in [2] and NIST approved, see [16],
in contrast to EdDSA. They have a few aspects in common, beside its similar name.
Both are digital signature algorithm and rely on elliptic-curve cryptography. EdDSA,
however, has some modifications compared to ECDSA. These modification are made
due to speed optimization and security consideration. They will be summarized in the
following. The interested reader might examine the paper [8] which introduced EdDSA
and contains detailed comparisons to other signature algorithms, the discussion about
ECDSA of Johnson, Menezes and Vanstone in [21], ANSI’s standard and the publication
of NIST.

The most obvious difference is the usage of twisted Edwards curves in EdDSA over
curves with Weierstrass form. As a consequence, the fast and unified addition law can be
used for addition as well as for doubling. This in turn is a countermeasure against side
channel attacks as addition and doubling cannot be distinguished.

As pointed out in [8], EdDSA is a variant of ElGamal’s signature algorithm just as
ECDSA. ElGamal in [14, Chapter 3] defined the message m to be in an integer interval
0 ≤ m ≤ p where p is a large prime. He uses m to calculate S of the signature (X,S).
ECDSA in this sense replaces m with the output of the hashed message H(m) when
calculating S. EdDSA therefore adds further data when calculating the S part of the
signature: ElGamal’s m is replaced with H(R,A,m), where R is the other part of the
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generated signature (R,S). As discussed in Section 3.3 this is done to meet security
concerns.

The modification aims in a similar direction regarding the session (ephemeral) key.
ECDSA defines the session key to be randomly selected within 1 and the large prime n,
where n is a domain parameter. EdDSA instead calculates this session key r out of the
secret key and the actual message. This causes a security improvement and is discussed
in Section 3.3. r = H(hb, hb+1, ..., h2b−1,m) is therefore calculated, with hb, hb+1, ..., h2b−1
are determined by hashing the secret key, H(k) = (h0, h1, ..., h2b−1).

3.5 Ed25519-SHA512

EdDSA was introduced by Bernstein, Duif, Lange, Schwabe and Yang in [8] as a digital
signature algorithm with no fixed parameters but with constraints concerning the selection
of them. In the same paper, they further proposed an “explicit” EdDSA with fixed
parameters. In this section, the chosen parameters will be discussed and the possibilities
of an implementation of the necessary arithmetic will be shown.

Ed25519-SHA512 (in short Ed25519) is a proposal of an Edwards-curve digital signa-
ture algorithm with carefully chosen parameters. The curve chosen is birationally equiv-
alent to Bernstein’s Curve25519 from [9]. This Curve25519 is the Montgomery curve
v2 = u3 + 486662u2 + u over the same field Fq. When introduced, Curve25519 set new
speed records for Diffie-Hellman computations on a Pentium III and does not have struc-
tures that allows an attacker to speed-up an attack (see [9, Chapter 3]) by exploiting
these structures and reducing the complexity. The following parameters are chosen: The
length in bits is chosen to be b = 256. For hash-function H, SHA-512 is chosen which
has an output of 2b bits. The prime q used for the finite field Fq is 2255 − 19 as it is in
Curve25519. The (b−1)-bit encoding is usual little-endian encoding of {0, 1, ..., 2255−20}.
` is chosen to be the prime 2252 + 27742317777372353535851937790883648493, the same
as for Curve25519. Parameter d for the elliptic curve is d = −121665

121666 ∈ Fq. The base-point
B used for scalar multiplication is B = (x, 4/5) ∈ E where x is positive (see Subsection
3.1.4).

Parameter d is determined by transforming Curve25519 to a twisted Edwards curve.
The curve is thus the Edwards curve x2+y2 = 1+ 121665

121666x
2y2 transformed from Curve25519

using the equivalence x =
√

486662u/v and y = (u− 1)/(u+ 1) and is further isomorphic
to the twisted Edwards curve −x2 + y2 = 1 − 121665

121666x
2y2 since −1 is a square in Fq as

discussed in [8, Page 130]. As also shown in [8, Page 130] the choice of base point B
corresponds to [13] choice u = 9.

Regarding the security of Ed25519, [8] states a security level of 2128 that is comparable
to AES-128 or RSA with approximately 3 000-bit key length. It is further stated that it
has no special structures that would comprise the security and the parameters are chosen
in a way that does not lower the security. The EdDSA uses keys with 32 bytes length and
signatures of 64 bytes length.

3.5.1 The Arithmetic of Ed25519

As defined in Subsections 3.2.1 and 3.2.2, the signing and verification procedure depend
on operations on the elliptic curve. These operations are rather complex and can be
broken into layers of execution and an illustration of these can be seen in Figure 3.1. Each
layer executes one or more operations on the underlying layers. For example, a scalar
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multiplication R = rB is calculated when generating the signature (R,S) of a message,
with R = point encodingb−bit(R). Subsequently operations on the underlying elliptic
curve are performed, which in turn operate on further underlying layers. In the following
paragraphs, the layers of execution are in short mentioned and described “bottom-up”.
This means starting at the lowest layer up to the topmost layer. Here the lowest layer
is meant to be the integer arithmetic. In the context of building hardware as integrated
circuits one might think of further layer(s) describing the electric current through the
devices. Since engineering digital integrated circuits is commonly done above the layer of
calculating the electric current, this will not be considered in this thesis.

Figure 3.1: Layers of arithmetic

3.5.1.1 Integer Arithmetic

The bottom layer of the used arithmetic in Ed25519 is simple standard integer arithmetic.
In the context of Ed25519, operands are commonly b = 256 bits wide integers. For most
hardware architectures this is too wide to be processed at once. However, this operands
can be broken into smaller partitions called words and these words can then be processed
one word after each other. Therefore it is not necessary that an arithmetic unit must be
able to process 256 bits long operands. The operations needed for the upper layers are
addition, subtraction and multiplication. In the following paragraphs these will therefore
be discussed in short. References to algorithms which for processes them word by word
are provided in the book of Hankerson, Menezes and Vanstone [19, Chapter 2].

Addition and Subtraction. These two operations take n-bit inputs and generate a
n + 1-bit output. The one additional bit is generated by the operations. It is the most
significant bit and in case of addition it is called carry bit, when a subtraction is performed,
it is commonly called borrow bit.

When an integer of w bits length is added or subtracted, with w being greater than
the according hardware-unit input-width v, the integer is broken into dw/ve words and
called multi-word integer. These words are processed from the least significant upwards
and this addition or subtraction is called multiprecision addition or subtraction. Within
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the operations on single words, the carry or borrow bit generated is passed on to the next
operation on the next more significant word. Concluding, processing w-bit operands with
a v-bit hardware unit takes dw/ve operations. Pseudo code of the algorithms performing
a multiprecision addition and subtraction, and discussion can be found in [19, Subsection
2.2.1].

Multiplication. In contrast to addition and subtraction the multiplication serves a 2w-
bit result on two w-bit inputs.

If the operands of w bits width are multiplied and w > v, where v is the input width
of the multiplication unit, the operands are again broken into words and the operation
is called multiprecision multiplication. This is similar to the multiprecision addition and
subtraction but a bit more complex: Each v-bit word of integer a is multiplied with each
v-bit word of integer b. The single f = dwv e pieces of a, b are indexed, starting with index 0
at the least significant word a0, up to the most significant one af−1. Therefore the integer a
can be computed out of its pieces: a = a0+(a1 << v)+(a2 << 2v)+...+(af−1 << (f−1)).
The same applies to integer operand b and similar for the result c, but here up to the last
piece of the 2f words ci. A single multiplication of two v-bit words ai and bj results in
a 2v bits width. The lower word is added to the intermediate result cu+t and the upper
word is added to cu+t+1. Due to the addition to the intermediate result, a carry bit might
be generated. This must be either propagate starting at the next higher word or handled
somehow else.

The procedure described above does not specify the order with which the words are
multiplied. There are two popular algorithm that differ mainly in this aspect. The
operand-scanning form processes the operands from least significant to most significant
word, the product-scanning form in contrast calculates one result word after each other
starting at the least significant. Both have in common that a multiplier unit is assumed,
which has the same input width as the word size and have an output twice as wide as the
input. More details and pseudo code for both form can be found in [19, Subsection 2.2.2].

As each word of operand a is multiplied with each word of b, with both operands being
of the same size1, the overall process of multiprecision multiplication includes dwv e

2 single
multiplications. As mentioned beforehand, the result of each single word multiplication
is added to the intermediate results. For calculating a multiprecision multiplication the
mentioned additions regarding the intermediate results may or may not influence the
necessary amount of cycles and depends on the used architecture of hardware: While
calculating the multiplication of two single words, the result of the previous multiplication,
added to the accumulator’s value, might be saved back to the accumulator or directly to
memory. Thus, such an architecture does not require extra cycles for writing to the
memory. Such an architecture is presented in Chapter 4 and was implemented in the
context of this thesis.

3.5.1.2 Finite-Field Arithmetic

Finite fields are used for the elliptic-curve cryptography as discussed in Subsection 2.2.5.
As mentioned in Subsection 2.2.5.1, for each prime p a finite field exists and this finite
field then has p elements. Each finite-field operation with valid elements of the finite field
as input always results in a valid element of the finite field. The operations used on this
layer are commonly called modular addition, modular subtraction, modular multiplication,

1Here the maximum storable size is meant. The width of the actually stored integer may be less.
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modular inversion and modular negation. These operations result in integer numbers
modulo the prime q = 2255 − 19: x ∈ Fq : x ∈ {0, 1, ..., (q − 1)}. Within this thesis,
the operations on this layer are called, for instance, finite-field addition. Thus, the word
modular is replaced by finite field to clearly show the belonging. Therefore finite-field
addition, negation, subtraction, multiplication, inversion and division are based on the
underlying integer arithmetic and the fast reduction, and will be discussed in the following.
Pseudo code and further details for the algorithms discussed here can be found in the book
Guide to Elliptic Curve Cryptography in [19, Section 2.2].

Finite-Field Addition. This is based on an integer addition. The integer addition
may result in an integer greater than prime q for the finite field. The maximum width
of the result is w + 1 bits with w being the width of the input operands, if only the
width is considered. But due to the fact that the operands are a, b ∈ Fq the result
c ∈ {0, 1, ..., 2 · (p− 1)}. As it is solved in the latter for reduction, if the result c ≥ q then
q is subtracted once and the results is in c ∈ {0, 1, ..., (q − 1)}.

Finite-Field Negation. Negation in the finite field is done by performing −a = q − a.
As operand a ∈ Fq and therefore q > a, the integer subtraction will always result positively,
thus −a ∈ Fq and testing for a negative integer value is not necessary. As an alternative,
and assuming a finite-field subtraction is already available, the negation could be realized
by a finite-field subtraction too, calculating −a = 0− a.

Finite-Field Subtraction. As a finite-field addition includes an integer addition, finite-
field subtraction includes an integer subtraction. But compared to addition, finite-field
subtraction is even simpler: If the result of the integer subtraction is negative, a borrow
bit is generated. Thus the result does not have to be checked separately: If a borrow bit
is generated q is added. Assuming the availability of a finite-field negation, alternatively
the subtraction could be realized by negating the subtrahend and performing a finite-field
addition.

Finite-Field Multiplication. For finite-field multiplication the operands
a, b ∈ {0, 1, ..., (q − 1)} are at first multiplied in usual integer manner. The result cint
may be greater than q: cint ∈ {0, 1, ..., (q − 1)2} but it has to be ensured that the result c
satisfies c ∈ Fq. Due to this cint must be reduced and c is obtained. Therefore finite-field
multiplication consists of an integer multiplication with a reduction as discussed in the
following.

Reduction. Reduction modulo p that has no special form can be an expansive part of
a finite-field multiplication as stated in the book Guide to Elliptic Curve Cryptography
in [19, Subsection 2.2.4]. But here the used prime q is a pseudo-Mersenne prime of the
form q = 2w − k. A pseudo-Mersenne prime provides the ability as a Mersenne prime
to perform fast reduction. The length w of the binary representation of the used prime
is 255 bits. A detailed discussion about reduction and especially fast reduction can be
found in the paper of Taschwer in [38]. One “round” of a fast reduction is done as follows:
Take the more significant w bits starting at the w+ 1-th bit, multiply it with 19 and add
it to the lower w bits. By doing this twice, an integer result is obtained with maximum
width w + 1 in bits. Therefore the result may still be greater than q. If this is the
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case either once subtracting q or twice subtracting q results in an integer less than q.
Therefore, if the first subtraction result is still greater than q, a second subtraction is
necessary. The circumstances regarding the bit quantities are discussed in the following.
Note that the discussed bit quantities are always assumed to be the maximum possible,
whereas the operation counts are assumed to be the minimum possible but as great as
necessary to be true for all possible inputs. Further, it is assumed that the multiplier
unit’s input width and the addition unit’s input width are greater than the width of the
binary representation of the k part of the prime. Note that in the following the width of
an integer and an arithmetic unit’s input and output is measured in bits.

1. The result R of a multiplication of two w bits wide integers is 2w bits wide.

2. The upper w bits are multiplied with k = 19, where o = dlog2(k)e = 5. The product
will be w+o bits wide because, when doing a multiplication, the widths of the factors
are added. The multiplication needs dw/re single multiplications, with r being the
input width of the multiplication unit.

3. This product is added to the lower w bits of R. The sum will be w + o + 1 wide
because the bigger summand in the addition is w+ o bits wide and the addition can
generate a carry bit. This multiprecision addition is done with d(w+o+1)/se single
integer additions, where s is the input width of the addition unit. With this step,
the first round is complete and the intermediate result is the w + o + 1 bits wide
integer, the result of the last addition.

4. The second round starts with already smaller integers. Again we take the upper
part, above the lower w bits. Here this is only o+ 1 bits. The multiplication with 19
results in a o+ 1 + o bits wide product. This multiplication needs only d(o+ 1)/re
single multiplications.

5. The second round ends with the addition of the last product to the lower w bits of
the result of round one. The addition needs dw/se single addition steps.

Summarizing the considerations above the reduction of the result of a multiplication of
two elements of the finite field, each w bits wide, can be calculated with dw/re+d(o+1)/re
single-word-integer multiplications, d(w+ o+ 1)/se+ dw/se single-word-integer additions
and 2 · d(w + 1)/te single-word-integer subtractions. o is the width of the integer k, the
input width of multiplication unit is r bits, the input width of the addition unit is s bits
and the input width of the subtraction unit is t bits.

Inversion. The most expansive operation in the finite-field arithmetic is inversion. The
inversion is necessary for the above layer of elliptic-curve operations and computes R−1

of an element R such that R ·R−1 = 1 mod q. The inversion of a valid element of the set
1, 2, ..., q − 1 results in an element of this set.

There are several algorithms available for computing the inversion in a finite fields.
The most populars are the inversion by exponentiation, the Montgomery inversion and
the extended Euclidean algorithm. To get an idea of how intensive the calculation, is
regarding the execution time, the inversion by exponentiation and the extended Euclidean
algorithm will be presented in short. Note that the following considerations are made in
the context of the finite field of Ed25519.
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Inversion by exponentiation obtains the inverse a−1 by calculating ap−2. Therefore the
intermediate result u gets initialized with a. Then starting at the second most significant
bit, down to the least significant bit of p − 2, executed for each single bit, u is squared
and further, if the current bit of p − 2 is 1, u is multiplied by a. The pseudo code is
shown in Algorithm 4. The inversion by exponentiation has a fixed run-time per prime
depending on the number of bits that are set in the binary representation of the prime.
In the context of (pseudo-) Mersenne primes, the number of bits which are set, may be
high. For example the prime used in Ed25519 p = 2255 − 19 has 252 bits set of its lower
254 bits. Thus one inversion by exponentiation takes 506 finite-field multiplications and
is therefore very expansive in terms of run-time.

Algorithm 4 Inversion by exponentiation

procedure InvExp(a, p)
u← a
for second most significant bit(p) down-to least significant bit(p) do

u← u2

if current bit(p) = 1 then
u← u · a

end if
end for
return u

end procedure

The extended Euclidean algorithm is based on the Euclidean algorithm to compute
the greatest common divisor(gcd). Computing the gcd is done by iteratively decreasing
the operands a, b until one is zero. The other operand is, in turn, the result. The greater
operand is decreased: in case b ≥ a : b ← b mod a, otherwise a ← a mod b. Thus,
the greater operand is replaced by the remainder of the integer division of the greater
one divided by the lower one. By extending the Euclidean algorithm in a special way, it
generates the integers x and y in each iteration as by-product, satisfying ax+ by = d with
d = gcd(a, b). Exploiting this circumstance and further gcd(a, p) = 1, where p is the prime
of the finite field, in the iteration before one operand equals zero, one of the operands is
1. Due to this and the served x and y: a−1 = x is maintained by the satisfied equation
ax+ py = 1.

In the context of computer arithmetics, the binary inversion algorithm based on the
extended Euclidean algorithm might be more efficient. It replaces the division by bitwise
shifts and subtractions, as due to the binary representation of numbers shifts are far less
expansive. The binary inversion algorithm has, like the extended Euclidean algorithm,
a variable run-time. The run-time for one inversion is at maximum 510 iterations. In
each of the iterations, one operand is shifted left until the operand becomes odd, whereby
this is accompanied with one left-shift and a conditional integer addition2. One iteration
ends with a comparison of the operands and an integer subtraction. For an estimation of
run-time see the following paragraph and for detailed explanation of the binary inversion
algorithm see [19, Subsection 2.2.5, Page 40].

To give a rough estimation of the run-time of inversion by exponentiation and binary
inversion algorithm, some assumptions have to be made. These assumptions are believed to
reflect the circumstances in usual applications: For an approximation assume a uniform

2If the along calculated x (or y) integer is odd, the prime q is added to x (or y).



CHAPTER 3. EDWARDS-CURVE DIGITAL SIGNATURE ALGORITHM 34

distribution of zeros and ones for the operands. Further assume that a left-shift, an
integer subtraction and a comparison of two operands take as long as an integer addition,
checking if a single bit is set (oddness) takes 1 cycle and that the arithmetic unit uses
the same word size for the inputs of all of its operations. Also define n as the number
of words into which the 255-bit integers are partitioned. As a consequence of the taken
assumptions the integer multiplication takes n2 cycles whereas integer addition takes n.
As for the inversion by exponentiation finite-field multiplication is used, this is assumed
to take twice as many cycles as integer multiplication does although the reduction-part
of the finite-field multiplication performs two multiplications on its own. But due to
the small value of the operand, 19, and the according small size of the operand, this
special multiplication with 19 can be optimized to finish in a similar time as an addition.
However, on a more detailed view, since a reduction is rather complicated according to the
number of subsequent operations it contains (two multiplications, two additions and two
subtractions), a certain overhead should be calculated. For the common word-width of 32
bits: n = 8. Inversion by exponentiation therefore takes≈ 506·2·64+254·1 = 65 022 cycles.
The binary inversion algorithm takes, due to the assumptions, 255 iterations. Further, in
half of the iterations the even integer is shifted left twice. In each iteration two comparison,
if the operands are one, 3.5 oddness checks, 2 · 1.5 = 3 left-shifts, 0.5 · 1.5 = 0.75 integer
additions, one comparison of the operands and one integer subtraction are performed.
This takes ≈ 255 · ((2 + 3 + 0.75 + 1 + 1) · 8 + 3.5) = 16 702.5 cycles. As one can see, with
the previous assumptions, regarding the run-time, the binary inversion algorithm beats
inversion by exponentiation by a factor ≈ 3.9 on this word width.

3.5.1.3 Group Operations

Elliptic-curve operations are based on finite-field arithmetic, see discussion in Subsection
3.5.1.2, and executed according to the used curve’s addition and doubling formulas, see
Subsection 2.2.5.5. These two operations are discussed in Subsection 2.2.5.3. The operands
are always points on the curve. Depending on the chosen coordinate representation, see
Subection 2.2.5.6, addition and doubling formulas differ, the number of coordinates, a point
P ∈ E has, can vary, as well as the coordinates’ meaning3 of the point. In case of affine
coordinates, a point has an x- and a y-coordinate, points in other point representations can
have additional coordinates. Choosing from different point representations with different
formulas is a trade-off between complexity, the needed time of calculation and the required
space needed to store intermediate results as well as coordinates’ data. In this section the
addition and doubling will be discussed with different point representations.

Elliptic curve’s two operations are doubling and addition. The doubling operation
requires a single point. It adds the point to itself and results in some other point. The
addition operates on two points and results in their sum. Even though doubling and
addition may let one think of doubling or adding the coordinates of points, these op-
erations can also be derived from a geometrical representation of points on an elliptic
curve as shown in Subection 2.2.5.3. In terms of needed time for computing the re-
sult, doubling a point is cheaper than adding two points. When operating on twisted
Edwards-curves, the unified addition rule can be utilized and thus the addition rule can
be used for doubling as well. This addition rule for points with affine coordinates is
(x1, y1) + (x2, y2) = ( x1y2+x2y1

1+dx1x2y1y2
, y1y2+x1x2

1−dx1x2y1y2
). x1, y1, x2, y2 are the coordinates of the two

input points, d is the parameter as it is in the curve equation. The twisted Edwards-curve

3For instance Jacobian coordinates the projective point (X : Y : Z), Z 6= 0 corresponds to (X/Z2, Y/Z3).
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point-addition has no restriction for its inputs as the point addition other curves have, as
its denominators 1 ± dx1x2y1y2 are nonzero (see [11, Chapter 6]). There are specialized
doubling formulas which are more efficient. This is due to the simple fact that every xmyn,
if P1 = P2, becomes x1y1 and must not be recalculated for x1y1, x1y2, x2y1, x2y2.

As discussed in short in Subsection 2.2.5.6, different representations of points on a
twisted Edwards curve are possible. At the time this thesis was written, there were ad-
dition and doubling formulas available for affine, extended, inverted and projective point
representations. Different representations give certain advantages, for instance speed, im-
provements or security considerations. Using a different coordinate system involves a
modification to the curve equation and in turn causes differences in the addition and dou-
bling formulas. The affine formulas, as stated in the paper which introduced the EdDSA
[8], are presented above. The extended coordinates store X, Y , Z and T for each point
which represents x, y in this way: x = X/Z and y = Y/Z. This may lead to the impression
of projective coordinates, but there is the additional T , used with the formula x ·y = T/Z.
This representation was introduced by Hisil, Carter, Wong, Dawson in [20] - for further
discussion and the explicit formulas please consult this paper. Bernstein and Lange in [6]
introduced “inverted Edwards coordinates”. These, in contrast to projective coordinates,
work with x = Z/X and y = Z/Y and have the advantage of adding two points with
saving one multiplication within the finite field. Although the inverted coordinates have
a speed advantage, they are not complete anymore, thus separate checking for certain
points is necessary, for instance the neutral point as clarified in [6, Page 4]. When twisted
Edwards curves were introduced by Bernstein, Birkner, Joye, Lange, Peters in [11], their
fast and unified addition formulas where presented and used projective coordinates. As
discussed in Subsection 2.2.5.6, projective coordinates save time by reducing the amount
of inversions during the computation.

3.5.1.4 Scalar Multiplication

A scalar multiplication multiplies a point on an elliptic curve with a scalar. In the previous
Subsection 3.5.1.3 on elliptic curves, point addition and doubling are defined. The stated
multiplication is calculated by repeating addition and doubling. Different approaches are
available for performing the scalar multiplication. These will be discussed in the following
and throughout this section we refer to the book Guide to Elliptic Curve Cryptography [19,
Subsection 3.3.1] as it discusses all methods. Note that in the following we only consider
methods for “unknown point”, assuming that the point to be multiplied is not known and
no optimizations can therefore be arranged. Multiplying a known point can be sped up
by precomputing the multiples of the multiplied point. However, the multiplication of a
known point is not considered in the following analysis because the discussed methods
can be extended to use the precomputed data anyways. Note that the Montgomery mul-
tiplication is not discussed here because it is not applicable due to the fact that it is only
possible when Montgomery curves are involved. It only computes the x coordinate of the
multiple of the point and recovers the y coordinate from the resulted x coordinate. Only
computing the x coordinate is possible due to the special form of curve equation.

Double-and-Add. The first scalar multiplication discussed is the double-and-add algo-
rithm. This serially tests each bit of the scalar and, according to its value, either doubles
the intermediate point, or doubles it and afterwards adds the base point to it. The testing
of bits can be executed from most significant down to the least significant or in the reverse
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order and for pseudo code see [19, Subsection 3.3.1]. The double-and-add can again be
implemented with different strategies having different advantages. It is possible to do this
with resistance against side-channel-attacks. In the context of scalar multiplication, the
information most valuable but threatened is the scalar, with which the base point is mul-
tiplied. The leakage of information can take place in form of varying computation time
and power consumption4. To be resistant, the scalar multiplication can be calculated by
always performing the addition after the doubling on the underlying elliptic curve, but
according to the current bit of the scalar either discarding the result of the addition or
not. Let us assume that the unified addition-law is utilized for double as well. An imple-
mentation then can conditionally add the base point but, due to the unified addition-law,
power-traces will not give information whether the bit was set or not, as the doublings and
the additions are indistinguishable. Assuming the double-and-add algorithm adds the base
point only if the bit is set and that about half of the bits of the scalar are set. Then each
iteration of the loop will cause a doubling and in half of the iterations the addition of the
base point will be carried out. Therefore the run-time can be approximated m·A

2 +m ·D,
with A representing one point addition and D representing a doubling.

Non Adjacent Form. By replacing the binary representation of the scalar, as discussed
in the previous paragraph, with the non-adjacent form (NAF), the run-time can be re-
duced. As will be discussed in a moment, adding and subtracting a point takes almost
equal time. Instead of only adding points but also subtracting them, the necessary num-
ber of operations can be reduced. For the algorithm and detailed description of the NAF
of an integer see [19, Subsection 3.3.1]. In the context of elliptic curves, computing the
negative of a point is very cheap. For elliptic curves in Weierstrass form, the negative
of a point is calculated by taking the negative of the y coordinate. Regarding an elliptic
curve over a finite field, this is done by a single finite-field subtraction. In the context of
twisted Edwards curves, the negative of a point is calculated by taking the negative of
its x coordinate and thus the same consideration concerning the run-time as for elliptic
curves in Weierstrass form apply to twisted Edwards-curves. Said this, we specify a point
subtraction as the normal point addition but with the negative of a point. Therefore a
point subtraction is a point addition with an additional finite-field negation. Due to the
complexity of the point addition, the finite-field negation will be, due to the results of the
hardware implementation presented in Chapter 4, about 100 times faster. Thus it can be
said that the run-time of point subtraction and point addition are almost equal. As dis-
cussed in [19, Page 98] an integer scalar can be easily converted from binary representation
to the NAF, a signed digit representation. Using the NAF of a scalar, the approximate
number of digits being nonzero decreases from m

2 to m
3 and therefore the number of nec-

essary operations decrease in the same manner: The digits in the NAF of an integer can
be either 1, 0 or -1. Therefore, after the doubling, according to the current digit, a point
addition, a point subtraction or no operation will be performed. As discussed in [19, Page
98] the NAF of an integer has the property of having at most one digit more than the
binary representation and therefore the number of iterations in the loop corresponds up to
one possible extra iteration with the number of digits in the binary representation. Using
the NAF of a scalar, the run-time in terms of additions (subtractions) and doublings can
be approximated with m·A

3 +m ·D. Therefore the number of necessary point additions is
significantly decreased compared to the simple double-and-add algorithm.

4When executing addition only if the current bit is set, the run-time and the power-consumption of the
multiplication varies and an attacker might be able to reconstruct the secret key by doing measurements.
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Window NAF and Sliding Window. The in the previous paragraph discussed method
of NAF can be extended in such a way that each digit may not only have a value of 1, 0
or -1, but also lower and greater values. This method is called window NAF and details
can be examined in [19, Subsection 3.3.1]. Each nonzero digit of the scalar is odd and
the range of values depends then on the chosen window width w ≥ 2: Let k be the scalar
and ki the digits in the w-width NAF of the scalar. Then |ki| < 2w−1. In window NAF
of a scalar, the number of nonzero digits decrease as the window width w increases. Each
nonzero digit in window NAF can lead to a point addition or point subtraction of the
intermediate point and a multiple of the point being multiplied. As a consequence, the
precomputation of multiples of the multiplied point is necessary. Therefore, with increas-
ing window width, more precomputation and space to store these multiples is necessary.
For a more detailed description, pseudo code of the necessary calculation of the window
NAF of an integer scalar and pseudo code of the scalar multiplication see [19, Section 3.3].

Out of the window NAF method, a sliding window method can be employed. It uses
the above discussed window NAF representation of a scalar integer but parses the scalar
in the reverse direction. The parsing is done in such a way that the greatest window with
a width t ≤ w is searched with the integer u ← {ki, ..., ki−t−1}, u mod 2 = 1 and ki are
the single digits of the window NAF of the scalar. Therefore a variable-length window
slides over the scalar. The sliding window method allows greater multiples of the point
and therefore needs more precomputation but reduces in turn the necessary amount of
point operations.

As discussed within the comparison of window NAF and the sliding window method
in [19, Pages 101 and 102], the better method of those two depends on the available space
for storing the precomputed multiples and the costs of precomputation relative to the
computation point operation regarding the run-time.



Chapter 4

Hardware Implementation

A central processing unit (CPU) of a personal computer’s functionality is in general not
limited and can do every kind of computation. In contrast, a hardware implementation,
for instance of a cryptographic system, has a very distinct purpose. It is of a very spe-
cial kind and has no other purpose than doing dedicated computations. Such a hardware
implementation therefore is a specialist. Efficiency in this context may have several inter-
pretations and might be the power consumption per finished calculation. For hardware
implementation of cryptographic systems the product of the area and the time are often
used.

At the beginning of this chapter the goals of the presented hardware implementation
will be specified and related work will be discussed. The used design flow, provided by
the Institute for Applied Information Processing and Communications (IAIK), will be
presented. After that, the implemented hardware architecture, components, algorithmic
details and the implemented test bench and high-level model will be discussed.

4.1 Goals

The main goal of the hardware implementation presented in this thesis was the low re-
sources consumption for the implementation of a Edwards-curve Digital Signature Algo-
rithm over a prime field.

The Edwards-curve Digital Signature Algorithm (EdDSA) is a non-standard digital
signature algorithm. It operates on twisted Edwards-curves and further has modifications
relative to the standardized ECDSA which results in improved security and speed. In
spite of the advantages of EdDSA over ECDSA, it is rarely used and implemented.

The resource consumption is judged by the area-time product where the area of the
hardware implementation is multiplied with the necessary cycles to perform the operation.
The area of the synthesized hardware is measured in the technology independent unit gate
equivalent (GE) after the synthesis step. After synthesis, the hardware is already mapped
to standard logic-cells. The technology independence is achieved by dividing the measured
metric value of the hardware’s area by the area one negated-and (NAND) gate takes. Such
a NAND gate is defined to be a NAND gate with two inputs, driver strength one and
commonly consists of four transistors. For more details and discussion on this topic see
[22, Pages 4 and 37]. Within this work, the time an operation takes is measured in cycles
and is thus independent from the actual frequency the hardware runs with.

The chip area increases with the word width of the architecture. A larger word width

38
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results in more transistors within the datapath as it is able to process larger numbers. The
number of cycles in contrast usually decreases with increasing word width, because fewer
words have to be processed. Let us assume, for example, the integer addition with 256-bit
large operands and a word size of 32 and 64 bits. To process the operands one word after
another, a 32-bit implementation needs eight cycles. As the word width doubles to 64 bits
only half of the time is necessary to perform the same operation. The necessary area, in
turn, for 64 bits doubles because processing twice as large inputs require twice as many
logic gates.

A secondary goal was to implement the chip in such a way that there is a central
definition of an implementation-wide used word size. This enables the evaluation of per-
formance, chip area and efficiency at different word sizes.

4.2 Related Work

There exist numerous elliptic-curve-cryptography implementations for Weierstrass curves.
In contrast, implementations with twisted Edwards curves are not very common. On
the one hand, this might be caused by the relatively young Edwards curves, introduced
in 2007 [13], and the even younger twisted Edwards-curves, introduced in 2011 [8]. On
the other hand, this might be caused by the fact, that for cryptography some elliptic
curves in Weierstrass form are standardized by ANSI [2], are NIST approved [16] and
are used in popular signature algorithm like the ECDSA. Beside a twisted Edwards-
curve hardware implementation on an Field-Programmable Gate Array (FPGA) no other
hardware implementation is available at the best knowledge of the authors. In Section 5.3
the implementations of elliptic curve in Weierstrass form are compared to the results of
this thesis’s implementation.

In Baldwin et al. [3] an implementation of a cryptographic system using twisted Edwards-
cuves over prime fields was on a FPGA. The implementation was then used to analyze the
speed for simple-power-analysis (SPA) resistant as well as non-SPA-resistant algorithms.
The implemented elliptic curve processor has capabilities to compute the elliptic curve
point addition and point doubling operations on the one hand for Weierstrass curves us-
ing Jacobian projective coordinates and on the other hand for twisted Edwards-curves.
The implementation and the architecture are also capable of varying the number of arith-
metic and logic units (ALU). The algorithms for double-and-add, double-and-add-always
were implemented and were analyzed concerning their performance and efficiency for both
types of curves. This analysis included the maximum frequency, the area, the time, the
power and energy consumption as well as the area-time product. The authors concluded
from their results that an SPA resistant twisted Edwards-curve architecture with one
ALU and four ALUs give comparable performance to the non SPA resistant Jacobian
double-and-add architecture. The non-SPA-resistant twisted Edwards-curve architecture
outperforms all Jacobian architectures regarding the time, the area-time product as well
as the energy consumption.

Kocabas et al. [26] implemented a binary Edwards-curve hardware targeted to very
constrained devices such as passive Radio Frequency Identification (RFID) tags. The
implementation uses mixed w coordinate with common Z-coordinates together with the
Montgomery ladder. The usage of the w coordinate and the Montgomery ladder for
binary Edwards-curves were proposed in [7]. The Montgomery ladder is a efficient way
to calculate the scalar multiplication and is applicable where differential point addition
and differential point doubling are possible. It has further protection against side-channel
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attacks as point addition and point doubling is performed for every bit in the scalar,
regardless if the bit is set or not. Together with the Montgomery ladder, the mixed w
coordinate simplifies the computation of point additions and doublings and reduce the
need of memory to store intermediate results. It is calculated out of the x, y coordinates
once at the beginning of the scalar multiplication. After the completion of the scalar
multiplication, the x, y coordinates can be restored from the w and Z coordinate. The
implementation was verified on an FPGA and synthesis results are reported for the used
GF (2163) with varying word widths of the architecture.

Chatterjee and Sengupta [10] presented a binary Edwards-curve implementation on an
FPGA. It uses the ternary representation of the scalar and was targeted to optimize the
speed by an effective use of the FPGA’s lookup tables. The ternary representation of the
scalar for the scalar multiplication is discussed in Subsection 3.5.1.4. Therefore the scalar
multiplication uses the double-and-add algorithm and, due to the ternary representation
of the scalar, less point additions are performed. Because of the targeted high speed and
the usage of a large number of registers, the implementation uses 240 064 GE.

Satoh and Takano [31] introduced an ASIC hardware implementation of an elliptic
curve processor. The supported elliptic curves are of Weierstrass form over prime fields.
The architecture is scalable in terms of field size, supports both, binary and prime fields,
and can be configured for different word widths. It was targeted on a 0.13µm-CMOS
standard cell library. For scalar multiplication, the NAF form of the scalar was used.
For the reduction in the prime field, no special form was exploited. This work is used
for comparison in Section 5.3, due to the lack of other comparable implementations with
twisted Edwards curves and Edwards curves, although it utilizes Weierstrass curves.

Another elliptic-curve cryptography implementation with Weierstrass curves was in-
troduced by Wolkerstorfer [42]. It is targeted on passively powered RFID tags. Thus
the implementation was optimized for low area and low power consumption. The hard-
ware implementation is realized supporting both, binary fields and prime fields. It uses
Montgomery multiplication and is capable of calculating the inverse using the extended
Euclidean algorithm. Different field sizes were evaluated: 192 bits, 224 bits and 256 bits.
The suitability for RFID application was evaluated with 0.35µm, 180nm and 90nm tech-
nologies. The hardware implementation results are used for comparison in Section 5.3.

Wenger and Hutter in [41] compared elliptic-curve-cryptography implementations over
binary field and over prime field. The two fields were of comparable size and the imple-
mentations were evaluated on scalar-multiplication level as well as at the protocol level.
The implementations share the same controller: A processor with Harvard architecture
that is optimized for elliptic-curve cryptography. As target technology a 130nm CMOS
process technology was used. On the protocol level, to carry out signature generation and
signature verification, the binary field implementation forfeited some low resource advan-
tages over the prime field implementation as additional arithmetic was necessary. Their
implementation results are presented in Section 5.3. There the prime field implementation
is listed on the scalar-multiplication level.

Fürbass and Wolkerstorfer presented an elliptic-curve-cryptography processor [17] tar-
geted for RFID applications. The implementation is able to carry out ECDSA operations
on a Weierstrass curve and uses the Montgomery addition ladder for scalar multiplication.
It operates with affine coordinates and utilizes the Montgomery multiplication that has
an integrated reduction. For the Montgomery multiplication the numbers have to be con-
verted to the Montgomery representation. The 160-bit and 192-bit implementations were
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evaluated on different process technologies, 0.35µm, 250nm and 130nm1.

4.3 IAIK Design Flow

The IAIK-design-flow is provided by the IAIK and serves as a design flow for Very-Large-
Scale Integration (VLSI) development. It enables VLSI development for FPGAs of Altera
and Xilinx as well as ASICs based on standard library cells with manifold options and
operations. For ASIC development it has standard cell libraries support for ams AG2 and
UMC that seamlessly integrate into the Cadence Design Systems flow. The developer can
compile his hardware-description-language (HDL) code, synthesize and place-and-route
it. The popular languages Verilog and VHDL are supported as input HDL. After each of
the mentioned steps, the output can be simulated using the Cadence’s NCSim simulation
suite and further one has the option to simply get the textual output in the console or
inspect the simulation in a graphical user interface.

In this section the compilation, the synthesis, the place-and-route and the simulation
steps will be discussed. The interested reader might examine [22, Subsection 4.2.6] about
VHDL and the process of compilation and synthesis.

4.3.1 Compilation, Synthesis and Place-and-Route

The hardware is developed by writing HDL code. This HDL code is hardware independent
and, as other programming languages, can be compiled which creates a model that has
timing information and can be simulated using simulation software. If the compilation
is successful, the next step, synthesis, produces hardware for a certain technology that
already includes models of components from the used technology and cell library. The
models include accurate timing restrictions and electrical details. The result of the syn-
thesis can be simulated but will be more time consuming due to the detailed models. The
next step towards a physical chip is to perform the place-and-route operation. Within
this, the components and component groups get placed within the standard cell area and
the wires for the signals between them get routed. After the place and route, the chip’s
layout is finished regarding the electrical details of the chip. As for the compilation and
synthesis before, the result or the place-and-route can be simulated and checked to behave
still as intended. Additionally, further checks are usually performed that check the layout
according to the design rules defined for the target technology and check the layout against
the schematic. For a more detailed discussion about place-and-route see [22, Subsection
11.3.6].

4.3.2 Simulation

The simulation is used to inspect, debug and analyze a circuitry. This circuitry can be
the result of one of the previously discussed operations with different levels of complexity.
The IAIK design-flow utilizes the Cadence’s NCSim simulation suite. Because the circuitry
usually does not perform any operation without the appropriate stimuli from outside, the
simulation further needs a so called test bench that sends a certain sequence of signals to
the device-under-test (DUT). The simulation environment therefore provides an interface
to access the DUT’s signals, simulation parameters and simulation operations.

1The authors mentioned 150nm but listed 130nm results.
2ams AG is the new name of austriamicrosystems.
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The simulation loads the result of either the previous compilation, the synthesis or
the place-and-route and starts the test bench. The test bench must be tailored to supply
the DUT with the necessary input signals and to read the DUT’s output signals in the
intended way and interpret them. Thus a test bench is developed to “talk” with one
certain DUT. A simulation suite provides functionality of controlling the simulation time.
The test bench uses this to apply logic values to the virtual input pins of the DUT at
the desired point of time and for a certain duration of simulation time, and watches and
measures the DUT’s logic values of the output pins during simulation time. The values
correspond to the DUT’s specific electrical voltage levels but for development of digital
integrated circuits this electrical details are unnecessary and abstracted.

The IAIK-design-flow and the utilized Cadence NCSim simulation suite provide sup-
port of the programming language TCL for the test bench. The IAIK-design-flow provides
the basic functionality for controlling the simulation time, applying stimuli signals to sin-
gle pins as well as to collections of pins (ports), and reading the levels of single pins and
ports. The simulation complexity and the time consumption increase if the result of the
synthesis or place-and-route is used. These already include cells and gates with realistic
parameters attached, based on the used fabrication process. In case of place-and-route,
even parasitics due to the resulting wire lengths are included. The IAIK-design-flow sup-
ports console-text output in batch mode as well as the display of the simulated signals in a
graphical user interface. The developer can inspect the transitions of the signals over time.
In both modes, the simulation is done by executing the test bench. For simulation with
the textual mode, the test bench must implement the checking for errors of the results to
get an automatic test bench. In contrast to that, with the graphical user, interface the
developer can inspect the changes and states of the signals optically.

Details on the test bench are presented in Subsection 4.9.2 and the required data
generation is presented in the Subsection 4.9.1.

4.4 The Architecture

The architecture of a hardware implementation of a complex system like a cryptographic
system, strongly advises the usage of abstraction. This is meant in such a way that certain
groups of similar functionality are formed and each of these groups becomes a submodule.
Further abstraction in terms of arithmetic levels, necessary for elliptic-curve cryptography,
will be discussed in the following. Whereas an implementation not necessarily requires
the abstraction and encapsulation of functionality in submodules, the contrary approach,
a flat collection of transistors, got impracticable long ago, as Kaeslin in [22, Subsection
4.2.1] states.

The hardware implementation presented here was made with a separated controlpath,
datapath and memory as illustrated in Figure 4.1. The figure shows the main modules
and the signals between the modules. The signals ware not visible in all detail because
some of the control signals are bundled or have a minor relevance. Note, that the size of
the modules is not representative as the modules area consumption anyhow depends on
the used word width. In the illustration the dependence of the bus access on the busy
signal of the controlpath was illustrated by the multiplexers located above the memory
unit which are controlled by the busy signal. The bus interface has some address checking
implemented and sends control/start signals to the controlpath in case of write access by
the bus to the dedicated command addresses. The controlpath in turn is responsible for
the control signals to the datapath and the memory.
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Figure 4.1: Illustration of the architecture

The interface of the implementation has an address port, a data-in and a data-out
ports with the same width as discussed in following Section 4.5. Beside that, there are the
usual clock and asynchronous reset input signals, a busy signal, a chip-select and write-
enable signal. The interface was chosen to be simple but it enables direct reading from
the memory and writing into it. The implementation’s targeted purpose is to calculate
the scalar multiplication on the twisted Edwards-curve of the Ed25519, although all the
arithmetic operations can be started via the memory mapped interface. This will be
discussed in Subsection 4.5.4.

The implementation of the sub modules will be discussed in detail in the following
Sections 4.6 - 4.8. In this section a coarse overview is provided.

The controlpath holds the logic and further is responsible for the correct execution of
sequence of operations. It is in control of the memory and the datapath. The arithmetic
levels are illustrated in Figure 3.1. Each of these levels represent some operations and
each of those operations’ logic is contained in the controlpath.

The datapath consist or simple integer arithmetic and copy functionality. In the dat-
apath are multiplexers which use the input control-signals to direct the input data-signal
to the appropriate functionality and multiplexers that direct the resulting signals to the
output port.

This implementation has a centrally defined word width m which is used throughout
the design. Thus the operations and sub modules take integers of m bits length, for
instance the multiplier as well as the adder does. The data signals, the internal as well as
those used for the interface to the outside, are of m bits length. The word width will be
discussed in the following Subsection 4.4.1.

The chip is designed to be synchronous, which means there is a global clock throughout
the implementation, and every memory element and state transition within the chip can
change its state only dependent on this clock, as Kaeslin defines in [22, Subsection 5.2.1].
Therefore it is possible to be either dependent on the rising or the falling edge of the
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clock. This hardware implementation is designed to use the rising edge of the clock.
An illustration of one cycle is shown in Figure 4.2. Kaeslin [22, Section 5.5] states the
advantage of a synchronous design over an asynchronous one. Timing problems simply
do not arise by the methodology of synchronous design and the usage of modern design-
automation flows and standard-cell libraries. For this implementation no clock gating is

Figure 4.2: Illustration of a synchronous design

used. This is a technique to reduce the power consumption by disabling the clock transition
for specific parts and modules that are not used.

4.4.1 Word-Width Consideration and Limitations

The word width m is centrally defined and can be chosen at compile time. The implemen-
tation is down to the last nook dependent on the central definition and scales everything
relative to it. This regards the size of the ports of the modules as well as of the interface,
the width of the used signals, the internal structures and it also applies to every oper-
ation that is implemented in such a way that this operation processes each word of the
operand. When choosing the word width, three restrictions have to be respected and will
be discussed in the following.

The first one is that a word width has an upper limit of 256 bits. This is caused by
the fact that the operands have at maximum 256 bits. In general, a greater word width
reduces the necessary cycles for multiprecision operations as the number of cycles depends
on the quotient of n = 256

m : m is the used word width and resulting n is the number of
words each register has. A word width greater than 256 bits only increases the necessary
area of the hardware implementation without a benefit. Then, only unused bits would be
added and thus this would cause unnecessary big arithmetic units. A greater value is not
considered reasonable and is therefore not supported by the implementation.

The second restriction is that the word width must be a power of two and is based on
three design decisions. Firstly, the word width is defined to be equal to the address width
and restrictions to the address width also limit the word width. This has the background



CHAPTER 4. HARDWARE IMPLEMENTATION 45

to minimize the internally stored addresses: Smaller addresses need less bits when stored.
Therefore the memory-address block is always3 located at the very beginning starting with
the address zero. The implementation’s properties need a fixed location in the address
space because in these properties essential information is stored. Information such as
the amount of addressable memory and the addresses of the command addresses that is
crucial for any device accessing by bus. As the memory reserves the lower end of the
address space, another fixed address is induced by linking the address width to the word
width. With this linkage, there is a fixed end of the address space that can be used for the
properties. Secondly, there must be no gap within the whole address block used by the
memory: Internally the addresses width is minimum width possible to address all words
in the memory. Gaps within this block would result in a larger address block and would
unnecessarily increase the size of any address storage. Thirdly, within the memory are
blocks that are strongly related. These are the registers which consist of one or more
words. The sum of the words’ widths of a register is 256 bits. In case of a word width
smaller than 256 bits, the address of each memory word can be split into a register part
and a word part. As a consequence of this and that there must not be a gap between
the last word of one register and the first word of the next register, the number of words
within a register must be a power of two. Other amounts of words would generate a gap.
For instance if the register would be split into 7 words, the first word address would be
‘000’ in usual binary representation, the second one would be ‘001’ and so on up to the
seventh with ‘110’. In this case the word address ‘111’ would not be used as the next
register has a different register address and its word address starts at ‘000’.

The third restrictions is that the word width must be at least 16 bits, which is based
on some preliminary design decisions: The first decision is that the address width is equal
to the used word width. The second decision is that a direct memory-interface is used.
The third is that all the operations of the implementation can be started by bus access
and that the static properties can be read. The first decisions link the address width and
the word width and thus restrictions for the address limit the word width too. Therefore,
the word width has a lower limit that is influenced by the three types of addresses: The
sum of the necessary addresses must be expressible with an integer which is at maximum
as wide as the word width used in the implementation. The number of words in the
memory decreases with a higher word width whereas the number of addresses for starting
the operations and reading the properties are fixed numbers. In detail there are 16 register
in the RAM and three Read-Only Memory (ROM) entries necessary with each 256 bits
wide and thus 19 · 28 bits of memory are used and split into words with a specified size.
In case of eight bits word-width a register would be split in 32 words and the necessary
word-address width for this is five bits. The address width, by decision, is the same as
the word width and therefore three bits would be left for the register address. But, for
distinguishing between the 19 registers4 also five bits would be necessary and thus eight
bits are no applicable value for the word width. The next greater candidate for the word
width is 16 as it is the next power of two. In case of 16 bits, the word-address width is
four and by the linkage of word width and address width, the rest of the address width
can address 4 096 registers. Therefore 16 is the first and smallest power of two that fulfills
the requirements. Regarding the next powers of two, the necessary word-address width
further decreases whereas the addressable words increases.

3The size of the memory-address block varies with different word widths.
4Here the 17 addresses for the commands and 15 addresses for the special properties are not mentioned

as eight bits are already to small for the memory addresses.
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As a consequence of the above three restrictions and limitations the word width can
have either a value of 16, 32, 64, 128 and 256 bits. Each of these word widths were tested
for correct computation and an evaluation of their efficiency will be presented in Section
5.2.

4.5 The Interface

As Kaeslin in [22, Subsection 4.2.1] states, modularity within an architecture and ab-
straction of functionality is an important design principal for modern hardware designs.
Modularity then implies the use of interfaces to enable the outside to access the inside
functionality and data. An interface of a hardware implementation in general offers the
“outer world” the possibility to control the behavior of the hardware and to get informa-
tion of it. In the following, the interface of the presented hardware implementation will
be discussed. This includes the used signals and their characteristics, how a bus access is
performed and further the accessible data. This includes the implementation’s properties
as well as the functionality, which operations are available and which parameters must be
set.

The interface to a bus which connects devices. These devices may be of diverse types
but they have the interface for the bus they are connected to in common. The bus specifies
the procedure on how a communication between two devices takes place and thus how data
is transferred between them. This hardware implementation’s interface was not destined
to a particular known bus and only has the necessary signals to communicate with the
test bench. In the following, these communications will be presented.

4.5.1 General Considerations and Characteristics

Figure 4.3: Illustration of the architecture including the interface

This section presents and discusses the signals and their purpose, characteristics and
details, and how to access the different parts of the implementation.

The interface of the implementation which is connected to the outside controller enables
direct memory access. The implemented operations can be started by write accesses
to the addresses they are mapped to. By reading certain addresses properties of the
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implementation can be obtained. An illustration of the interface of the implementation is
presented in Figure 4.3. There are single bit signals for the outside communication: the
usual clock and asynchronous reset signals, a chip-select, a write-enable and a busy signal.
Further the interface has an address-input, a data-input and a data-output port, which all
share the same width as the word width used throughout the implementation as discussed
in the previous Subsection 4.4.1. Beside the data output, there is a second output signal
which gives information whether or not an operation is started and running.

The clock is generated outside and is delivered through the interface. It is used as
global clock for the implementation. This implementation is synchronous and sensitive to
the rising edges of the clock. Synchronous means that every part of the chip is dependent
on the clock as it is discussed in Section 4.4.

The asynchronous reset input resets all inner states of the implementation and is
propagated into all sub modules. It ensures a well determined starting point at the next
clock cycle after the reset signal ended. The reset of the implementation is active high. For
further information about reset signals in general and especially asynchronous reset-signals
see Kaeslin’s discussion in [22, Pages 210, 296 and 303].

A bus access is done by applying an address to the address input, applying the chip
select and specifying the direction, either read or write, and accordingly applying an
input at the data-input port when writing. An access can have three purposes. The
most obvious is to access the chips internal memory, with either a read operation or a
write operation on the internal memory. Such accesses are discussed in Subsection 4.5.2.
Secondly, there are certain addresses which are used to start a computation on the chip. If
these addresses are used for any write operation, the according command is started at the
next rising edge. The starting procedure and the available commands will be discussed in
Subsection 4.5.4. Thirdly, there are some special addresses that can be read for obtaining
constants from the implementation such as the number of registers, the word width or
similar properties. These accesses and the available properties are discussed in Subsection
4.5.3. According to the above mentioned three different types of addresses, the address
space is divided into blocks. The actual explicit addresses included in those blocks and
further the number of addresses vary with different word widths. The address space and
the location of the blocks is illustrated in Figure 4.4. The address space is greater than the
actual usable space, determined by the memory, the special addresses and the command
addresses. Each row in the illustration specifies the 256 bits wide portion called register.
Each register is further split into n words, each m bits wide, where m is the word width
used implementation-wide and n = 256

m . Each word has its own unique address and is
discussed in Subsection 4.4.1. The curled lines should illustrate that the number of words
per row depends on the used word width.

The usable memory is located at the lowest addresses starting at address zero. The
command addresses that are used for starting the different functions of the implementation
are located immediately after the last address used by the memory and leave no gap of
unused addresses between. The special properties addresses are located at the very end
of the address space and thus leave a gap between them and the commands’ addresses.
As the number of used addresses by the memory varies according to the used word width,
the explicit addresses of the single commands vary too. The similar apply to the special
addresses: due to the varying end of the address space, depending on the value of the word
width, these addresses vary too. But in contrast to the commands’ addresses the special
properties’ addresses can be calculated by the knowledge of the word width. To obtain
the addresses of the commands the special properties deliver the necessary information
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Figure 4.4: Schematic illustration of the address space

to calculate them. The address of each property, command and memory word of the
implementation is calculated at compile time depending on the word width. The only
exception of course is the first word in the first register as this is always zero.

For the following discussion it first has to be clarified that the memory must have
an interface with data ports that have the implementation-wide used word width. The
reason for this is that all calculations within the implementation are done with this word
width and therefore need the operands with this word width from the memory. Further
the interface of the chip is used for direct memory access. The width of the address,
the data-input port and the data-output port of the interface are all of the same width,
which is the implementation-wide used word width. This has three main causes: the
area, simplicity and continuity. Using another port width than the implementation’s
word width would increase the necessary area of the implementation as well as it would
increase the complexity. This is because then an additional logic and wiring for accessing
the memory by the bus would be necessary as the memory must have an interface with
the implementation’s word width. Assuming that the chip’s interface uses another word
width, there are different ways to handle this. For instance it would be possible to leave
the memory’s interface untouched and to implement additional logic in the bus interface
that stores the data in a buffer until, for instance, the whole 256 bits of the operand are
transferred. Another possibility might be to implement additional ports in the memory
module and to directly connect this to the outside interface without buffering. Further,
a possibility would be to provide an output-data port that has double the width of the
implementation’s word width. In this case, less modification would be necessary as the
memory already has two read ports for fetching both operands of calculations. If the
data-input port should be of the double width too, this would have a higher impact on
the additional efforts necessary as the memory currently has only one write port. As a
consequence either the memory would need a seconds write port or the write access would
span two cycles. Each of these possibilities have in common that they will increase the
implementation area and the complexity of the logic necessary for accessing the memory.
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The third reason for the usage of the implementation’s word width for the bus-interface
ports is continuity. The word width throughout the implementation is pinned to a single
specified word width. Using another word width for the interface interferes with this
continuity.

The operands used in the finite-field operation, the elliptic-curve operations and the
scalar multiplication are 256 bits wide. For a word width less than 256 bits, the width of the
operands is wider than the data input of the implementation. Then, the operands cannot
be transferred from the outside to the implementation within a single cycle. Therefore
some options are discussed in the following. An option would be to implement a separate
function in the implementation’s bus interface that manages the storage of the data in
memory at the appropriate location. For instance, a write to a certain address with a
value of zero means that in the following cycles the operands for the integer addition are
transfered. The interface, in turn, takes the data from the inputs, knows where to put
the single words in memory and thus enables the correct calculation of the addition. This
would be convenient for the accessing device but, in turn, needs extra logic within the chip.
The actually chosen option is to enable direct memory-access to the internal memory from
outside. Therefore it is assumed that the data is written at the appropriate addresses in
the memory before the actual computation starts. The outside controller transfers the
data words sequentially by writing into memory by bus access. The direct memory does
not threaten the computation in terms of critical internally used variables. Only big data
is stored in this memory, including coordinates of points and the scalar used for the scalar
multiplication and therefore the arithmetic cannot be harmed by any wrongly addressed
write. It also enables the debugging during development in a way that the test bench
has convenient functionality to read and write the specific addresses in the memory of
the implementation by bus access. On the one hand this functionality in the test bench
reduces the implementation’s area and on the other hand the programming in a high level
language can be accomplished in a more convenient way than it can be done in hardware.

4.5.2 Bus Access

The interface to the test bench is implemented as a so called bus slave. Thus it only
answers to bus request and therefore just reacts. In the following the procedures for
reading and writing to the chip over the bus will be discussed.

The interface of the implementation has some signals for controlling the access. It
has an address port for specifying the destination. This regards reading and writing
into memory, reading properties such as the used word width or the number of registers,
and starting an operation. When accessing the implementation by bus, the active-high
chip-select signal has to be ‘1’ and the active-high write-enable signal determines if either
reading (‘0’) or writing (‘1’) is desired. According to the write-enable signal, the data
input or data output will be involved in the operation. There is a busy signal, active high,
which gets ‘1’ at the first rising edge after a command is started. Starting at this point of
time, until the computation is finished, the input at address, data input and data output
is ignored. Each bus access is finished in the next cycle without any handshake-procedure
or other signals involved. As long as no command is started and the busy signal is ‘0’, each
cycle can be used to either write or read. If a read operation is carried out by accessing
the, the resulting data will be stable at the data output of the chip from the next rising
edge for one cycle. Assuming a read operation at cycle i: the desired address to read
must be stable at this point of time within cycle i when the clock has the next rising edge,
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Figure 4.5: Illustration of a read bus-access from the RAM

immediately after the rising edge and for the whole duration of cycle i + 1, the result is
stable at the data output. In the following, two illustrations of bus accesses are included
and will be discussed. There, the signals are drawn over time and the addressed word’s
value in RAM is shown per cycle. The time is split by vertical gray dashed lines into clock
cycles and as the architecture is synchronous, the logic calculates the new values within
the cycles and the memory elements change their value at the cycle borders. The single
pin signals are illustrated as a waveform that are either low or high and the transitions
from these states as vertical lines. A multiple-pins signal (port) is illustrated with two
horizontal lines and a textual description of the value between these lines. A change of
the port’s value is drawn with two crossing lines. It is, however, not intended to specify
the duration of time the change of the value takes but just to illustrate that the value
changes and takes a specific amount of time depending on the electrical details of the
hardware. An illustration of a read bus-access is shown in Figure 4.5. There, the value
“A” of a word in the RAM is read and stable at the data-output port during the next
clock cycle after the bus access. The bus access starts anytime within a clock cycle but
respecting the basic timing constraints. Coarsely, these constraints regard a certain short
time before and after the clock’s rising or falling edge, depending on what the hardware
implementation is sensitive for. Further details about the mentioned timing constraints
can be found in [22, Subsection 4.3.6]. The illustration the input signals change at the
same point of time even though it is only necessary that all the relevant signals are set up
until the end of the desired clock cycle.

The illustration in Figure 4.6 shows a write bus-access to the RAM. The same state-
ments and constraints as for the read bus-access apply here. The differences of the write
bus-access with respect to the read bus-access are the set high write-enable signal and the
clock cycle the data transfer takes place. The data only needs to be stable at the data
input for at most a single cycle, depending on the point of time relative to the rising edge
of the clock, more precisely until the corresponding clock edge, but again respecting the
time constraints as mentioned for the read bus-access. The data is processed or written
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right after the next rising edge. In case of a bus access with a memory address, the data
is written at the desired location at the rising edge of the clock, and in case of a command
address, the operation is started at the rising edge.

Figure 4.6: Illustration of a write bus-access into the RAM

4.5.3 Special Addresses

The implementation has some read-only properties that can be read by bus access. These
serve information about the used implementation details that may vary according to the
used word width. A write operation on these addresses will simply have no impact. The
addresses space spanned by the used address width is organized in blocks and the discussed
read-only properties are located at the very end at the highest addresses. Details for this
address space separation are discussed at the beginning of this Section 4.5. How the
properties’ value can be read will be presented in Section 4.5.2.

During development, the supported word widths were tested and the test bench was
implemented in such a way that, by specifying the used word width, the addresses of
the read-only properties where calculated. By reading the values of these properties, the
addresses of the commands were calculated as well as those of the single words of the
registers for accessing the memory. This was implemented to ease the switching between
the different word widths supported. In case of any switching, the addresses change and
therefore did not have to be adapted to the according word width by hand. This had
the advantage, during development, that changes in the number of used registers did not
require the modification and maintenance of any addresses within the test bench.

The readable properties of the implementation will be discussed in the following. The
first properties discussed will be the addresses and offsets necessary to define the operands
used within operations. These values are necessary to load the addresses that will be
used for the operation as their operands’ location is variable. The operation of loading
addresses and their purpose is discussed in Subsection 4.5.4.1. Further properties that
can be read are the word-part’s width of the addresses in memory and the minimum
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width of the register part of the addresses due to the number of memory registers used.
These values vary depending on the word width and are therefore used to calculate the
destination addresses when writing into memory by bus. An important property is the
start of the address block where the command addresses are located. These command
addresses depend on the number of registers in memory and the used word width. By
knowledge of the start address of this block, the explicit addresses can be calculated. Each
operation that can be started has a unique command address, which will be discussed in
the following Subsection 4.5.4. The number of register in the memory is also readable
as property. Whereas not all registers are writable and their values are constant, this
value serves the upper limit for accessing the memory. Which registers in the memory are
writable will be discussed in Section 4.8. When using the chip for scalar multiplication,
the registers in memory where the operands are stored have a fixed position. This regards
both, where the inputs have to be written to and where the result is stored. The operands
for the scalar multiplication are the point to multiply, the initial point’s value and the
scalar the point is multiplied with. General considerations about the scalar multiplication
are listed in Subsection 3.5.1.4 and some details of the implementation presented here will
be discussed in Subsection 4.6.2. Another property is the used implementation’s word
width. Whereas this is redundant information as this must be known to be able to read
this property and a simulation error would occur with a not matching word word width,
anyhow, it was used as verification during development as this information was checked
against the specified one.

4.5.4 Command Addresses

The chip presented here can perform the necessary arithmetic up to the scalar multipli-
cation for the twisted Edwards curve used within the Ed25519. Each of the implemented
operations has its own unique address. The command addresses form a block without gaps
as discussed in Section 4.5. The operations used within the computation of the scalar mul-
tiplication can be started separately by simple bus access as described in Subsection 4.5.2.
By performing such a write bus-access, the operation gets started. Immediately after the
start, the busy signal of the interface gets active as long as the computation lasts. During
this duration any bus access is ignored and the operation can only be stopped by the asyn-
chronous reset signal that results in a full reset. The arithmetics can be seen as broken
up into layers of arithmetics as presented in Subsection 3.5.1 and further the operations
available are listed below, grouped by their abstraction layer and ordered from the integer
up to the scalar multiplication. Prior to the presentation of the operations, the procedure
to specify the operands is presented. The discussion about the command addresses also
include the necessary operands. The corresponding addresses must be loaded into the con-
trolpath and the data must be transferred to memory before the operation is started. For
the single operations, some restrictions must be respected regarding the chosen operand
locations in memory. Due to the need of additional space for the intermediate results,
some operations use fixed registers in memory to store these intermediates. Therefore
those locations in memory are not allowed to be used as input operands. Those restric-
tions are noted when relevant. While an operations is performed, other operations may
be used subsequently and their restrictions regarding the forbidden memory locations of
the subsequent operations are inherited. For instance the finite-field multiplication uses
the integer multiplication and the reduction and thus the restrictions of those operations
also apply to the finite-field multiplication.
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4.5.4.1 Loading Addresses of Operands

The loading of the addresses that are used for the operands can be seen as helping operation
and is therefore even below integer arithmetic. Most operations that can be started have
no fixed address to load the operands from. Specifically this is true for all operations from
integer up to elliptic-curve cryptography regarding the abstraction levels of arithmetics.
Thus, all the operations below the scalar multiplication have operands variably located in
memory. Therefore, if an operation should be started, the addresses of the operands must
already be well defined. If they are not, there will be simply no meaningful result as the
addresses previously used will be reused again. When the operations with variable located
operands are called internally, the locations within the memory were either fixed while
development or depend on the operands and are passed to the subsequent operation.

The operands are loaded into the controlpath’s internal storage. At the start of the
next operation the stored addresses are used to perform the calculation. Loading the
operands address is done by writing to a fixed position in the memory. Nevertheless it
is not guaranteed that the width of the integer is equal to the word width and that this
integer is aligned to the word borders within a register. As long as the implementation
can assemble the addresses within a single register, this will be done: The implementation
may be modified in the future and as a consequence the addresses for loading may not fit
in a single register any more. The explicit addresses and the eventually necessary offsets
within the words and the memory must be determined by reading the special properties
as described in Subsection 4.5.3.

At maximum there are three parameters regarding the location in memory of the
operands for the operation: Two addresses for the input operands, however not all oper-
ations use both addresses, and one address for the output where the result will be stored
in. For instance the integer multiplication need a forth register and in such a special case
a fixed register is used. Therefore this register must not be used as any of the other ad-
dresses. In the following it is assumed that, when two operands are used, operand “a” is
the one on the left side of the operator and “b” is on the right side. Exemplary assume a
subtraction a− b: here a is on the left side and b is on the right side. Beside the two input
parameters a and b there is a third address that can be loaded into the controlpath and
which determines the register where the result is stored in and is called “w”. Therefore
assume a subtraction with prior loaded addresses and data transferred to the memory at
the corresponding locations. The inputs a, b have been transferred to registers and the
result will be stored at w. The subtraction will be then performed calculating w ← a− b.

4.5.4.2 Integer Arithmetic

For this layer of abstraction command addresses for addition, subtraction and multiplica-
tion are defined. These three operations use both loadable read addresses to specify the
input operands and the write address to specify the location the result will be stored. In
contrast to addition and subtraction, the multiplication additionally uses a forth register
to store the upper 256 bits of result. This is always the same fixed register in memory
and therefore this register must not be used for any of the operands and the lower 256-bit
register of the result.
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4.5.4.3 Finite Field

The implementation has command addresses for these listed finite-field operations: addi-
tion, negation, subtraction, multiplication, inversion and division. These operation except
the negation and inversion, take two operands. The two exceptions take only one operand.
As previously stated for operations with two operands, operand a is fixed to be the operand
on the left side and b on the right side. For single operand operations, operand a of the
loadable addresses is used to specify the memory location for the operand. Due to the re-
lation to finite-field operations, the fast reduction is listed here. It uses integer operations
to calculate the result of any finite-field multiplication as discussed in Subsection 3.5.1.2.
The result is written into the location in memory specified by w. Due to the length of the
intermediate result, the register used by the normal integer multiplication and the opti-
mized multiplication, three registers must not be used. Finite-field addition uses one fixed
register for the intermediate result. The finite-field subtraction and negation in contrast
do not need and reserves any additional register. The finite-field multiplication has one
directly reserved register but also indirectly reserve the register for the reduction, the mul-
tiplication and the optimized multiplication as this operations are called while execution.
The finite-field inversion uses the finite-field multiplication and needs a separate register
to store intermediate results. Therefore it indirectly has the restrictions from finite-field
multiplication of usable registers for its operands. Relative to the inversion, the finite-
field division has one more reserved register for the intermediate result and inherits the
restrictions from the inversion.

4.5.4.4 Group Arithmetic and Scalar Multiplication

For the elliptic-curve operations the doubling and addition two points on the elliptic curve
are necessary. Each of these points has the three coordinates x, y and z and therefore it
is not possible to specify the single coordinates of each point independently as only two
input addresses are accessible via the load operation. Therefore this is solved by specifying
the addresses of the registers where the x coordinates of both points are stored and the
corresponding y and z coordinates are fixed to be at the following for the y coordinate and
the one after the following for the z coordinate. The elliptic-curve operations, doubling
and addition, call the underlying finite-field operation several times and therefore inherit
almost all restrictions from all finite-field operations. The only exception is the one register
reserved for the finite-field division as this operation is not used while computation but
is necessary for computing the affine coordinates from the projective ones that are used
throughout the implementation. The operations need five additional registers to store the
intermediate results.

As a consequence of all the restrictions, regarding the reserved registers, there are eight
registers left that can be used as inputs where for each point three consecutive registers
are necessary and therefore the possible combination are limited.

The scalar multiplication, in turn, uses only fixed registers and allows no freedom
in placing the operands. It expects the base point and the initial point’s value to be
transferred to specific registers. The scalar with which the base point is multiplied with
is also expected to be transferred to a certain register.
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4.6 The Controlpath

The controlpath of an implementation is responsible for the control of the sequence of
operations. It is in control of the memory and thus responsible that the data is available
for computation when necessary. The controlpath computes the addresses and signals
them to the memory within the cycle before the data is needed. The controlpath also
controls the operations of the datapath using the control signals. It switches between
functionality, enable and disabled modules, and routes the signals in the right direction
by controlling multiplexers. As the controlpath contains all the logic, it is natural that
its complexity increases with the complexity and number of the implemented operations.
In case of elliptic-curve cryptography there are several levels of abstraction necessary.
All operations, except the integer arithmetic operations, are certain sequences of other
operations.

The controlpath is implemented using a finite state machine and is described in Sub-
section 4.6.1. In this context each operation is represented as a state and is further split
into single steps of execution. As a consequence of the composed operations, it may be
necessary to switch to another operation during execution of one operation and afterwards
continue at the previous operation at the next step. This is done via saving the currently
used addresses, the current state and step before another operation is started and will be
discussed in a paragraph in Subsection 4.6.1. The operations are implemented in such
a way that there can be a no “loop” as this would harm the successful execution of the
operations. A loop in this context is meant as follows: For instance assume an operation
A that uses operation B. A loop would be if B in turn uses A or uses another operation
that uses A. The implemented context-switching behavior has one separate entry for each
operation. A loop then would cause the overwriting of the information whose operation
started the operation A in the first instance and thus would cause an infinite loop.

4.6.1 State Machine

The purpose of the controlpath is to manage the memory and the datapath. It calculates
and sends the addresses of the necessary data of the next cycle to the memory and sets
the signals to the datapath whose basic operation should be done within it. The addresses
that are necessary depend on the currently performed operation and the step of the op-
eration. As stated in [22, Section 1.7] the controlpath can be implemented using a finite
state machine, a stored program that is executed using a program counter and microcode
instructions, or a combination of these techniques. In a microcode the operation and the
operands are encoded. In the following, the techniques will be discussed in short. For
further details see the discussion of Kaeslin in [22, Section 2.2] where the suitability and
decision hints are discussed in detail. Details regarding the controlpath in general will be
presented and in the following subsection implementation details will be presented as well.

A controlpath can be implemented using a stored program. During execution, the
program counter is used to determine the current position in the program. One instruction
of the program after the other is read and executed. One entry in the program determines
which instruction to execute and specifies the involved operands. Such an entry is called
microcode. The current microcode is fetched, interpreted and executed, and afterwards the
program counter is modified accordingly. In case of data dependent branches, the program
counter is set to the desired jump destination whereas in the other cases it is increased
and points on the next instruction that is executed in the next cycle. Architectures with



CHAPTER 4. HARDWARE IMPLEMENTATION 56

program memory not necessarily require, that its entries have a fixed length and therefore
may vary. Additionally, these architectures with program memory, program counter and
microcoded instructions are considered general purpose. The sequence of operations, the
used data and thus the result depends on the program in the program memory. Therefore,
any algorithm can be executed on these architectures that fits into the available resources.
Processors in personal computers are of this type of architecture.

A finite-state machine (FSM) has a finite set of states. It can only be in one state
at a time but can change its state to one of its other states. The change of the state is
called a state transition and such a transition can only take place at the border between
two cycles when the clock signal has the edge the implementation is sensitive to. A FSM
remains in its state until a state transition is triggered. For instance a state will run a
fixed number of cycles until the result is ready and thus consists of a fixed number of
steps. Within the steps, the addresses of the data’s memory location that are used, for
example, are increased until all words are processed. A state within a FSM may thus be
the addition of two very long integers that are processed one word after another starting
from least significant up to the most significant.

As Kaeslin in [22, Subsection 2.2.1] discussed, a FSM is suited for algorithm and
sequences of operations that do not overly depend on the actual data. Dependence on
data is meant is such a way that the values of the data influence which operation is
performed and thus result in branches and different sequences of operations according to
the data. It is further stated that an implementation with a general purpose processor with
program memory and microcoded instructions is better suited for this kind of purpose.
FSM architectures have advantages over general purpose processors. The complexity of
the datapath, the necessary operations and memory requirements are known in detail and
thus the architecture can be tailored to meet these requirements. It will therefore be more
efficient and smaller implementing a FSM with some counters.

The controlpath was implemented using a finite-state machine. Each operation on
the arithmetic’s layers has its own state with one exception. This exception regards the
integer addition and subtraction which share the same state but differ in the internally
saved parameters. Further, there are some transfer operations that have an additional
state. They are used implementation internally, are thus not accessible by bus access and
share the same state but the transfers operation’s detail again depend on some specific
parameters. As already mentioned for the integer addition, integer subtraction and the
transfer operation, some of the states need an additional storage in the controlpath. The
storage is used for parameter and algorithmic variables. These storages of the single states
only need at most just a few bits and are not accessible by bus access.

State Transitions. A FSM can have multiple states but can always be only in one state.
It can change its state and this is called a state transition. The hardware implementation
presented in this thesis may change its state during calculation of one operation or by a
stimulus through a bus access.

The FSM of the implementation presented in this thesis has a certain set of possible
states. Each of these operates with one or two operands that reside in the memory and
calculate a result that is again stored in the memory. In each step within a state, certain
operations of the datapath are signaled to be executed and the datapath in turn needs
data from the memory. The datapath itself only executes basic tasks with the delivered
data and the controlpath has to signal the memory which data of the memory is read
and/or written. Therefore the controlpath was implemented to have three registers that
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the memory’s address inputs are connected to. During state transitions these registers are
used for transferring the address-parameter to the next state. The design of calculation on
different layers of arithmetic abstraction, executing operations on the underlying layer and
afterwards jumping back to the “caller” was implemented in such a way which reminds
of a context switch in computer software. If a state transition is triggered, the control-
path automatically saves the current context and when this state in turn has finished
its computation, the implemented automatism takes care of restoring the context of the
caller. The context saving and restoring here regards the current status, the step within
it, and the parameter addresses of the state. The sequence of operations and the probably
necessary state transitions do never build a loop as discussed previously in this section.
Note, that in here a loop is not considered to be as in programming languages, a do-while
loop or some similar. Assume observing the states the FSM has during a scalar multi-
plication and drawing a graph of the states of the FSM, the single states are the nodes,
the state transitions are the edges and every state transition results in a new edge and
a new node. The graph has the scalar multiplication as its root and every elliptic-curve
addition and doubling is a node that is connected to the scalar multiplication. Each of
these additions and doublings has further finite-field-operations nodes connected to it and
this is continued until integer operations at the end. After finishing an operation the edge
is gone backwards. Therefore having no loop results in the circumstance that on every
path from scalar multiplication to an integer operation no operation is listed twice. When
implementing context saving, the available size of space to save the current context to is
a crucial property as if it is too small, data will be lost and will end in an error. Within
this implementation the, necessary storage space has a hard upper bound because no loop
is possible. This upper bound is simply the number of possible states multiplied with the
size of one context save. This circumstance led to the idea of assigning each state a fixed
unique number and to use this as index in the context saving array where each element
holds three addresses, the calling state and its step. As mentioned, some operations need
further storage to save algorithmic variables but again, as no loop is ever generated within
any path in the graph, each state is finished before it is called again and initializes its
variables in the first cycle.

4.6.2 Details of Operations

The preliminary description of the necessary operations and arithmetics in Subsection
3.5.1 can be extended with the some details. These notable details of the implementation
presented in this thesis are discussed in this section.

The implemented integer addition and subtraction operations behave like unsigned
integer operations known from software programming-languages like C or C++ and are
discussed in Subsection 3.5.1.1. If the addition results in a number that does not fit into 256
bits an overrun happens. Then the 257-th bit gets cut off and internally stored as the carry
bit. The similar applies for subtraction: If the result gets less than zero, then a borrow bit
is generated and stored. The result of a−b is then ∀a, b|0 ≤ a < b < 2256, a−b = 2256+a−b.

The multiplication of the integer arithmetic is performed using the product-scanning
form as discussed in Subsection 3.5.1.1 and again behaves like the unsigned integer multi-
plication of software programming-languages even though here no overrun will be gener-
ated and the upper 256 bits will be saved. No overrun can occur because of the operands
which are limited to 256 bits and the 512-bit result fits into the two registers used. The
product-scanning form of the multiplication was implemented using an accumulator. The
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listing of this form was taken from [19, Subsection 2.1.2] and slightly modified as presented
in Algorithm 5. The modification regards the used accumulator that is here width opti-
mized in contrast to the template product-scanning algorithm. Here, the inputs a, b are
multiple words long and their single m-bit words get accessed by a[x] and b[y] respectively,
where x, y are the indices ranging from the least significant word 0 to the most significant
n− 1. In the same manner but with a different number of words, the accumulator r and
the result c are accessed: r[z], c[w]. The accumulator r is of size 2m + dlog2(256/m)e

Algorithm 5 Product-scanning form of a multiprecision multiplication with an accumu-
lator

procedure Mul( a, b ) . a, b are the operands
r ← 0
for k = 0 to 2t− 2 do

for each element of i, j|i+ j = k, 0 ≤ i, j ≤ t− 1 do
r ← r + a[i] · b[j]

end for
c[k]← r[0]
r ← r >> m . Shift right by m bits

end for
c[2t− 1]← r[0]
return c . Return the result c

end procedure

because at most 256/m chunks of 2m-bit integers are added and can at most result into
dlog2(256/m)e extra bits before one word is transferred to c and the value of r is shifted
right. Note that the accumulator must be chosen wider if the amount of shifted out bits is
less than the extra dlog2(256/m)e bits necessary for the carry bits of the additions when
summing up the single products in the accumulator.

The reduction is used for finite-field multiplication. There, the two operands are
multiplied in integer manner and afterwards reduced to be less than the finite field’s
prime. The operands are elements of the finite field and thus are integers in the range
{0, 1, ..., p−1}, where p is the prime of the finite field. Due to the special form of the used
prime, a fast reduction technique can be used. It consists of some sub steps, including a
multiplication of the upper 255 bits with 19 (a five-bit integer). Although performing a
usual multiprecision integer-multiplication is possible, this multiplication can be replaced
by a specialized multiplication that takes the very limited width of the operand into
account. This specialized multiplication is tailored to multiply a 256-bit integer with a
small constant: it is basically implemented as the multiprecision multiplication in the
product scanning form. For each word in the result it multiplies all words of the two
operands whose added indices are equal the index of the destination word and sums up
those products. But here the information of the number of words the small operand
contains is available and thus used to skip multiplications that anyway result in zero will.
For detailed information see the discussion in Subsection 3.5.1.2.

The elliptic-curve point-doubling was implemented using the dedicated doubling for-
mulas. The elliptic-curve addition and doubling were implemented using five 256-bit
register storing intermediate results. The explicit formulas for doubling and addition were
taken from [11, Chapter 6] and are listed in Algorithm 6 and Algorithm 7. There, all
the operations are meant to be performed within the finite field. The listed formulas
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Algorithm 6 Twisted-Edwards addition

procedure twistedAdd( P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2), a, d)
A← Z1 · Z2

B ← A2

C ← X1 ·X2

D ← Y1 · Y2
E ← d · C ·D
F ← B − E
G← B + E
X3 ← A · F · ((X1 + Y1) · (X2 + Y2)− C −D)
Y3 ← A ·G · (D − a · C)
Z3 ← F ·G
return P3 = (X3, Y3, Z3)

end procedure

Algorithm 7 Twisted-Edwards doubling

procedure twistedDbl( P1 = (X1, Y1, Z1), a)
B ← (X1 + Y1)

2

C ← X2
1

D ← Y 2
1

E ← aC
F ← E +D
H ← Z2

1

J ← F − 2H
X3 ← (B − C −D) · J
Y3 ← F · (E −D)
Z3 ← F · J
return P3 = (X3, Y3, Z3)

end procedure



CHAPTER 4. HARDWARE IMPLEMENTATION 60

need seven registers for the intermediate variables. Due to the used curve, its parameter
a = −1 influences the formulas in such a way that the multiplication is replaced with a
finite-field negation. To reduce the number of necessary registers of the implementation,
these formulas were slightly modified whereas the results are equal to the original formu-
las. As the implementation does not have a separate storage for the resulting third point,
one of the points’ registers which is used for the inputs, will be used for the destination
registers too. Therefore, it had to be ensured that no input is overwritten before its value
is used and thus all lines in the procedure that list one of the coordinates as input must
be processed before this input is overwritten. To find out how to reduce the number of
necessary registers, the dependencies between the variables has to be analyzed. When a
variable is not used anymore it can be used for the other calculations. As soon as the
input-dependent lines are processed, the destination registers can be used to store other
intermediate results before they get their final value. In the implemented twisted-Edwards
addition, two variables relative to the original formulas were saved by reusing the register
B in line G ← B + E as the variable B is not used after this point of execution and
resulting in B ← B + E. Further, by using the Z3 destination register for intermediate
results and replacing B with Z3, one register less is used. The modified formulas are
listed in Algorithm 8 By doing similar replacements and modifications for the doubling
formulas, the number of necessary registers were reduced from seven to five. Here the line
H ← Z2

1 is moved after the D ← Y 2
1 line and thus after the H-line all values of the inputs

are used and the destination registers can be used without threatening the inputs. The
variable E gets replaced with −C in all lines as the parameter a is minus one and thus
only six registers are used for intermediate results. The variable B is only used once when
computing X3 and thus by putting the line X3 ← B − C after the H-line and modifying
the final X3 line to X3 ← (X3 − D) · J the variable B can be used for F . Therefore F
can be replaced by B and thus one register less is used. By moving the Y3 line to end
behind the Z3 line and as it is not dependent on J it can be used for storing the result
of J as used for X3 and Z3. Here a third variable less is used for the computation of a
twisted-Edwards doubling. Because the twisted-Edwards-curve addition needs five, the
free fifth register while calculating the twisted-Edwards doubling is used during computa-
tion for intermediate results. The resulting formulas are listed in Algorithm 9. Some of

Algorithm 8 Modified twisted-Edwards addition

procedure twistedAddModified( P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2), a, d)
A← Z1 · Z2

Z3 ← A2

C ← X1 ·X2

D ← Y1 · Y2
E ← d · C ·D
F ← Z3 − E
Z3 ← Z3 + E
X3 ← A · F · ((X1 + Y1) · (X2 + Y2)− C −D)
Y3 ← A · Z3 · (D − a · C)
Z3 ← F · Z3

return P3 = (X3, Y3, Z3)
end procedure

the formulas in the addition Algorithm 8 and Algorithm 9 are still concatenations of more
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Algorithm 9 Modified twisted-Edwards doubling

procedure twistedDblModified( P1 = (X1, Y1, Z1), a)
B ← (X1 + Y1)

2

C ← X2
1

D ← Y 2
1

H ← Z2
1

X3 ← B − C
B ← D − C
Y3 ← B − 2H
X3 ← (X3 −D) · Y3
Z3 ← B · Y3
Y3 ← B · (−C −D)
return P3 = (X3, Y3, Z3)

end procedure

than one finite field operation and are split into single operation in the implementation.
Different strategies for implementing the scalar multiplication were discussed in Sub-

section 3.5.1.4. The implementation presented in this thesis uses double-and-add. As
presented preliminary at first in each iteration the point Q is doubled, the current bit in
the scalar is read and if this bit is set, the base point B is added to Q.

4.7 The Datapath

The datapath consists of the data-processing units of the hardware. It takes the inputs
and calculates the results due to the signals received from the controlpath. As stated
in [22, Section 1.7] the datapath does not only operate on data input but may also have
some buffers and accumulators. Further it is stated that the operations in a datapath often
include arithmetic and logic operations but can also include the functionality of switching
and routing.

In Figure 4.7 the datapath is shown including the three basic modules with their
control signals. Please note the only extra signal that crosses the main data-flow direction
from the top to the bottom. This is the carry-/borrow- bit signal that can be used for a
conditional copy operation after a finished addition or subtraction. There can always be
only one module that directs its data to the memory and according to the architecture of
the memory with one write port there would not be a purpose of a second result.

In the following the included operations in the implemented datapath will be presented
in short. These operations are the integer arithmetic operations addition, subtraction and
multiplication, and the copy functions. All the operations in the upper abstraction levels
are certain combinations of these few operations.

4.7.1 Copy Operation

The copy functionality in general takes the input data received from the memory, may or
may not modify it and sets data signals to the data output directed to the memory. Beside
the very basic one-to-one copy, the implementation also has a conditional copy, a copy
function that can set the most significant bit zero and one that sets a whole word zero.
The conditional copy selects the data directed to the output depending on a condition:
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Figure 4.7: Illustration of the datapath with its modules and signals

Dependent on the set condition bit, either data from port A or port B of the memory
interface is directed back to the output port to the memory. This conditional copy further
has an automatism implemented which stores the generated carry and borrow bit of the
addition and respectively the subtraction. The automatism prepares a conditional copy
dependent on the result of the operation and thus can be used directly after one of these
operations. In Figure 4.8 an illustration of the different modes of the copy operations is
shown. There, the different modes are signaled by the controlpath and controls which data

Figure 4.8: The copy operation’s modes

is signaled to the RAM. On the right the condition register is shown with the different
modes.
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4.7.2 Addition and Subtraction

Addition and subtraction are two very basic operations on which all the other operations
depend on. In this implementation the width of the operands are basically 256 bits
wide but the addition and subtraction unit’s word width is in general less than this.
As discussed in Subsections 3.5.1.1 and 4.6.2, addition and subtraction are implemented
as multiprecision operations which process one word after another, starting from the least
significant up to the most significant. The utilized operations in the datapath do not care
about which word is currently processed and always do the same job. They generate a
carry and respectively a borrow bit automatically which is used the next time the addition
or subtraction is carried out and the bit was not reset by a controlpath signal. The addition
is implemented using by extending the inputs by one bit and after addition returning this
highest bit as carry and the rest as the regular result. The subtraction is performed by
extending the operand A with an additional ‘1’ bit, subtracting operand B of this and
toggling the additional most significant bit in the result. By doing so, the most significant
bit, representing the borrow bit, is set ‘1’ if operand B was bigger and set ‘0’ otherwise.
An illustration of the described module can be seen in Figure 4.9. On the left the mode

Figure 4.9: The addition and subtraction module in the datapath

selects the desired output and on the right the generated carry and borrow bit register
with the update and clear functionality is shown.

4.7.3 Multiplication

The integer-multiplication functionality in the datapath is used for usual multiprecision
multiplication and the special optimized multiprecision multiplication with 19 used in
the fast reduction. It consists of a dedicated multiplier with the implementation-wide
used word width and an accumulator necessary for the multiprecision multiplication. The
multiplication functionality in the datapath has several signals to control the behavior
of the datapath due to the complexity of the multiprecision multiplication presented in
the Subsections 3.5.1.1 and 4.6.2. Beside the chip-select for the multiplication, there are
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signals to determine the operation and signals to specify the operands. The operation can
either clear the accumulator, multiply and accumulate, multiply, accumulate and shift the
least significant word out or shift the least significant word out. Due to the multiplication
with 19, signals to specify the operands are necessary. For this multiplication mode the
signals specify whether operand A is the data received from input A or the concatenation
of the data from input B and the most significant bit of input A. The signals also specify
whether operand B is the data from input B or the integer 19. In the illustration in Figure

Figure 4.10: The multiplication module with the multiplier and the accumulator

4.10 the multiplier, the adder and the register of the accumulator are shown. The different
line widths are used to point the different widths of the signals out. Due to the different
modes the multiplication supports, the module consists of some multiplexers which are
used to switch the single data that is actually used. The controlpath sets the signals that
control the accumulator and the output mode. Due to according signals, the accumulator
is either updated with the actual multiplier result added to the previous accumulator
value, the previous accumulator value or zero and additionally the value can be shifted
right by one word width. Note that the adder of the multiplication unit is a separate one
and not the adder of the addition unit.
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4.8 The Memory

The memory in the implementation is on the one hand, responsible for storing operands,
results and intermediate results. Therefore a random access memory is used. The memory
is also used to store constants that are relevant for the Ed25519 computations in the read-
only memory. Both types are accessible through the memory interface, however the ROM
is not writable. In every cycle one word can be written and two words can be read at once
and therefore has one write-address- and one write-data-signal input and two read-address-
signal inputs and two read-data-signal outputs. Both types of memories are organized in
registers of 256 bits width. Each of these registers is split into words of the same size as
the implementation-wide word width, each of these words has a separate address and can
be accessed using this address. The number of words n each register consists of is the
result of n = 256

m , where m is the implementation-wide used word width. Therefore this
number depends on the used word width. As discussed in Subsection 4.4.1 the word width
is restricted to a power of two. Due to this, the address of the first word of a register is
the last word’s address of the previous register plus one. The address block of the RAM
is located at the very beginning at zero. The address block of the ROM is located right
after the one of the RAM, leaving no gap between. An address has a register part and
may have a word part. In case of 256 bits word width, there is only one word used per
register and an address has no separate word-part. In the other cases an address can be
split into them at bit borders. Due to the restriction regarding the word width to be a
power of two, there are no gaps with unused addresses in the address space the memory
spans.

4.8.1 Random Access Memory

The random access memory allows read and write operations and thus it is natural that
the values stored in the RAM change while the chip is running.

The RAM consists of 16 registers of 256 bits width and thus 4 096 bits. Six of these are
used for storing the base point of the twisted-Edwards curve and the intermediate point
during the calculation of the scalar multiplication and after finishing the result point. For
the scalar multiplication one further register is needed for storing the scalar. The twisted-
Edwards addition and doubling need five register for the storage of the intermediate values.
The four remaining registers are necessary for the multiprecision multiplication, the op-
timized multiprecision multiplication, finite-field operations (addition and multiplication
share one reserved register), and the fast reduction. The RAM in this implementation is
instantiated simply by defining the signal as an array of words. Each of these words in
turn is of VHDL’s unsigned type with the implementation-wide used word width. This is
considered natural as it reflects the circumstances of the architecture with words of the
defined word width. Although it can be the case that there is no word-part within an
address, when a 256 bits word width is used, each address always has a register part. In
the RAM’s logic the index of the word within the array is calculated with the register part
of an address multiplied with the number of words per register. In case of 256 bits word
width, the number of words per register is 1 and the index is then equal to the register
index.
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4.8.2 Read-Only Memory

For this type of memory only read access is possible and the values stored in it do not
change during execution time. In this implementation the ROM is used to store the prime
2255 − 19, the number related to the prime and used for the inversion by exponentiation
2255 − 21 and the d parameter of the used twisted-Edwards curve in Ed25519 −12665

12666 .
These values are calculated during compile time using the built-in VHDL capabilities of
the unsigned data-type. For the calculation of the d parameter by VHDL it was necessary
that some finite-field operations were implemented. These operations are realized again
using the capabilities of the unsigned data-type. The access to the three ROM entries
where implemented using simple range checking of the address and subtracting the first
address of the RAM entry off the address. The three constants that are necessary result
in 768 bits of ROM.

4.9 Verification by Software

Like software, hardware should be verified in order to prove that the implemented code
behaves as intended. As the name indicates, hardware has a direct connection to physics
and therefore the verification of hardware is at least as computationally hard as software,
which has a pure digital environment. In this section, the simulation and verification
of hardware will be discussed and afterwards the used techniques and details will be
presented. The interested reader might examine Kaeslin’s discussion about functional
verification [22, Chapter 3] that relates to the efforts made for simulation and verification
of the presented hardware implementation. Beside the functional verification, Kaeslin
in [22, Chapter 12] discusses verification techniques to check the implementation against
errors within the synthesis. These checks are covered by the IAIK-design-flow and are
discussed in short in Section 4.3.

Software is executed in a pure ideal, digital environment. Hardware simulations take
complex models into account and is therefore considered to be a computational intensive
task. Software in general can be executed, tested and the functionality verified on the
target platform in seconds. The verification of hardware implementation can be done by
simulations, running programmable hardware or by building the specific hardware and
test it in realistic environment. These techniques have in common that they imply more
effort than necessary for verification of comparable software.

Simulations can be carried out within minutes and the result can be inspected as
discussed in Subsection 4.3.2. The problem with this is that it is just a simulation and can
only be as accurate as the used models. Hardware, written in some hardware-description
language, has several intermediate stages until the final layout of the chip is reached. The
single stages towards the final result are of increasing complexity and contain more detailed
models of the physics. A simulation with less details can be carried out in acceptable time
and covering more test cases. More detailed models of the simulated hardware can be used
to verify specific critical functionality and based on this, the developer can make evident
statements. Beside the bare simulation time, the time to reach a level of complexity is the
sum of the preceding stages.

The second mentioned possibility, namely to use programmable hardware, is an option
where some abstracted functionality is tested. It can hardly be used for a detailed sim-
ulation of a design where the exact behavior of single gates or exact timing are subject
of interest because of the substantial difference between those two systems: On the one
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side the hardware implementation targeted to get a chip and on the other side a pro-
grammable chip which has fixed logics and gets a new routing between the single blocks.
Due to the naturally resulting differing locations of the blocks, the routing of wires is
substantial different and thus the signals’ propagation time is. Additional to the limited
simulation capabilities of this hardware, buying the necessary equipment can already be a
serious barrier. For detailed information about field-programmable logic see [22, Subsection
1.2.3].

The third possibility of producing the hardware directly will be impracticable and no
option in the general case. This takes a significant amount of time and is to costly in most
cases to verify functionality at an early stage of development.

As discussed in this paragraph, simulation can be used to verify HDL code without
extra costs and was thus used for the hardware implementation presented here. Prior the
actual implementation of the hardware, a highlevel model was created and parallel to the
hardware a test bench was developed. The highlevel model together with the test bench
were used to verify the functionality of the implementation on an automatic level and will
be discussed in the following sub sections.

4.9.1 Highlevel Model

A highlevel model (HLM) is a software program that is used to simulate the hardware. It
behaves as the modeled system regarding the algorithm at a certain abstraction level. The
included details depend on the chosen abstraction level. The HLM provides the ability to
evaluate and debug algorithmic details on an abstracted level. It is further used to generate
test data which consists of input data and the corresponding outputs. The DUT can then
be tested for correct calculations when the inputs were applied and the calculation returns
the result.

The HLM presented here was implemented before the actual hardware was. On the
one hand it was used to get an idea of the hardware architecture and its components and
verify the used algorithms. On the other hand it was utilized to produce verification data
for the simulation of the hardware implementation. The correctness of the highlevel model
was verified using the C reference-implementation and is presented in Subsection 4.9.1.2.

The HLM was written in the programming language Java. As discussed in Subsection
3.5.1 the arithmetic consists of multiple abstracted layers and some arithmetic operations
within these layers. It has a separate class for each of these operations. As it is for the
hardware implementation, the model has a centrally defined word width. The modeled
operations are implemented in such a way that the operations split the operands into words
and process them word by word as it is done in hardware. For modeling the operands the
java.math.BigInteger class was used because it supports the basic arithmetic operations
and can handle integer numbers much wider than the at least necessary 256 bits. The
operations itself were realized processing not the whole 256 bits at once but word by
word although the BigInteger supports all the necessary operations. This was done in
order to get more detailed insight before the actual hardware was implemented and thus
not to struggle with algorithmic details in the more complicated hardware-description-
language environment. For the integer operations, the algorithms from [19, Subsections
2.2.1 and 2.2.2] were implemented. The multiprecision multiplication was tested with
both prominent variants, the product-scanning and operand-scanning form, because at
this time the one to be used within the hardware implementation had not been chosen
yet.
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Although the BigInteger class has a built-in modulo operation which could be used to
calculate the results for the finite-field operations, the fast reduction was implemented us-
ing the same algorithm as latterly used for the hardware itself and discussed in Subsection
3.5.1.2.

The elliptic-curve operations in the HLM are based on the same formulas for twisted-
Edwards curves of [11, Section X] as used for the hardware implementation but not in-
cluding the optimizations discussed in Subsection 4.6.2. By using the original formulas,
the HLM needs seven 256-bit intermediate-result variables and can be used to verify that
the optimizations lead to a correct algorithm.

The HLM’s scalar multiplication was implemented using the double-and-add method.
For each bit, a twisted-Edwards-curve doubling was performed and, according to the bit’s
value, either a twisted-Edwards-curve addition with the base point is carried out or the
this addition is skipped.

4.9.1.1 Design-Flow Integration

The IAIK-design-flow provides functionality based on central makefile. For using the HLM
within the design flow, a console based program is necessary which takes its parameter by
command line.

The highlevel model was built in such a way as to take parameters from the command
line that specify the word width to use internally and for which of the modeled operations
test data should be generated. With the parametrization by command line, the HLM
integrates in the IAIK-design-flow. The design flow checks for test data before a simulation
is started and invokes the Java HLM which in turn outputs to the console. This output
contains debug and status messages as well as the test data with a predefined pattern and
is written on the appropriate file by the design flow. The design flow catches the HLM’s
output and extracts only lines with the defined pattern in it. The pattern is “TCL”, but
the position is not limited to only line starts. The HLM prints lines like “TCL add 1 5 6”
to the console, the design flow does not filter it out and writes it on the simulation input
file. The design flow takes this input file and tries to execute it. Therefore the test bench
in this example is expected to have a function defined and named “TCL add” taking three
parameters. According to the currently selected tests in the makefile different test data
gets generated.

In the following Subsection 4.9.2 the test bench is presented which takes the generated
test data.

4.9.1.2 Verification of the Highlevel Model

The highlevel model is used to verify the functionality of the hardware implementation.
Therefore it delivers the input data and the expected result. This expected result was
calculated within the highlevel model with a model of the hardware implementation. The
highlevel is not the first node in the chain to verify the hardware implementation and
therefore its functionality must be checked for correctness.

The highlevel model is written in Java and has convenient capabilities to calculate
twisted-Edwards curve operations. To verify that the implemented highlevel model indeed
calculates the operations correctly the EdDSA C-reference-implementation of Bernstein,
Duif, Lange, Schwabe, Yang available in the SUPERCOP5 toolkit was used. At the time

5The website of the SUPERCOP benchmarking-toolkit is http://bench.cr.yp.to/supercop.html.

http://bench.cr.yp.to/supercop.html
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of the implementation of the highlevel model the latest available version6 of the toolkit
was used. The SUPERCOP toolkit has been developed for measuring the performance of
cryptographic software like hash function and secret- as well as public-key cryptography
systems.

The C reference-implementation was used to verify the results of the scalar multiplica-
tion implemented in the highlevel model Java. It was extended to take the command-line
arguments, execute either the twisted Edwards curve point addition, doubling or the scalar
multiplication with the desired input. Therefore the algorithmic was not modified but only
the capabilities of specifying the inputs and printing the result hexadecimally coded to
the standard out of the console application. The reference implementation was used as
binary, compiled with the GNU Compiler Collection (GCC) C-compiler7.

The extended command-line-parsing capabilities enable to switch between different
operations and modes. The testable operations are the twisted-Edwards curve operations
point addition and point doubling as well as the scalar multiplication. Additionally the
reference implementation’s used base point can be printed to output and enabled the veri-
fication whether the calculated base point in the highlevel model is correct. The procedure
of verification of the operations was as follows: Firstly the highlevel model executes the
reference implementation with some parameters specifying the functionality to test and
some parameter that control the input data. The high level model captures the generated
output that includes the input parameters passed to the reference implementation’s arith-
metic and the calculated result. These values are hexadecimally coded and are parsed
by the highlevel model. Lastly the highlevel calculates the operation on its own with the
captured input parameters and compares this with the captured result.

4.9.2 Test Bench

The test bench’s purpose is to interact with the DUT, simulate stimuli and read the DUT’s
output. It must be tailored for the DUT to be able to interact with it. To enable the
timing of critical interaction with the DUT, the test bench needs either control of the
simulation time or at least knowledge of it to act appropriately.

The test bench implemented for this hardware implementation is written in TCL. The
very basic functionality of simulation time controlling, and reading and writing single as
well as collections of pins is provided by the IAIK-design-flow.

4.9.2.1 Hexadecimal-String Manipulation

The test bench for the hardware implementation, on the base of the TCL functions pro-
vided by the IAIK-design-flow, is equipped with hexadecimal-number functionality. This
was necessary due to the limitations of integer variables within TCL 8.4 as therein inte-
gers are limited to be 32 bits wide. The implemented hexadecimal functionality includes
creation, arithmetic, bitwise, manipulation and analysis operations. The value of the hex-
adecimal numbers are represented and stored as strings. The implemented functions parse
and process the strings character wise but are implemented carefully to not mess up with
single bits where necessary.

The test bench has functionality to create some special hexadecimal numbers: Firstly
the important conversion from usual integer to hexadecimal-number string. Secondly

6The used version is available at http://hyperelliptic.org/ebats/supercop-20120225.tar.bz2.
7Available for several platforms at the website http://gcc.gnu.org/.

http://hyperelliptic.org/ebats/supercop-20120225.tar.bz2
http://gcc.gnu.org/


CHAPTER 4. HARDWARE IMPLEMENTATION 70

hexadecimal numbers with all bits being set can be created and the number of ones is
specified by parameter. Finally a function was implemented that delivers a hexadecimal
number that is filled with ones in a specified range: from least significant up to a specified
bit no bit is set, then up to the second specified border all bits are set. The arithmetic
operations that are implemented are the addition and the subtraction. There are two
versions of the operations - one that operates on two hexadecimal numbers and the other
which operates on an integer and a hexadecimal number. The processing of the string
is done character wise and is like the previously discussed multiprecision addition and
subtraction, see Subsection 3.5.1.1, with a word width of four bits. The bitwise operations
are and, or, exclusive or and not. Again, the single characters are processed one after
another. In the case that two hexadecimal numbers are processed that differ in width,
the shorter hexadecimal number’s missing bits are assumed zero. For the not operation,
the width in bits of the number must be specified since the hexadecimal number has no
predefined upper limit for its width as the usual integer variables but it is only limited
by the physical memory of the simulation-running computer. Beside the integer and
bitwise operations, other manipulation functions are implemented. These include left and
right shift operation, concatenation and cutting operation. As analysis functions a simple
compare function is included, which of the two operands is greater, as well as difference
visualization function.

4.9.2.2 Stimuli, Readouts and Checks

The test bench includes functionality for controlling the simulation time, interaction with
the device-under-test and hexadecimal number operations. As soon as these are available,
functions on a higher abstraction level can be realized. The bus access in general is dis-
cussed in Subsection 4.5.2 but in the following, the bus-access functions and the functions
for the start of operations on the chips are presented from the test bench’s point of view.

The lowest level in the test-bench-to-chip interaction hierarchy is represented by func-
tions to set and read pins and is available by the basic functionality of the IAIK-design-
flow. The next higher is to perform bus access with reading and writing to addresses.
Therefore signals have to be sent in a certain combination and sequence. The bus-access
read -function as well as the write-function starts with setting the chip’s chip-select signal
active and the corresponding value to the write-enable signal. Further, the desired address
has to be applied to the address-input port and if the operation is writing into the chip,
the data has to be applied to the data-input port. If it is a reading access, the result is at
the chip’s output during the next clock cycle. Each bus access always takes one cycle, with
the exception that the result of a read bus-access is available during the next cycle, but
multiple consecutive can be performed leaving no unused cycle in between. Thus it is pos-
sible to perform any sequences of n bus accesses, read and write, in n cycles, as long as no
operation on the chip is started. The whole process of performing an operation on the chip
is a concatenation of bus accesses, waiting until the busy signal gets inactive and further
bus accesses to reading the result out of the memory. The necessary parameters regarding
the right location of the operands depend on the single operations. Because the operands
for the operations are always 256 bits wide, the test bench was extended with functionality
to read and write 256 bits wide integers by consecutive bus accesses, each transferring a
single word. Except for the scalar multiplication, the addresses of the operands have no
fixed location and are discussed in Subsection 4.5.4.1. The addresses have to be specified
by writing the register numbers to a fixed location and afterwards start the load-addresses



CHAPTER 4. HARDWARE IMPLEMENTATION 71

operation by another write to the corresponding command address. This is the same for
all operations except the values of the transfers and therefore this sequence of bus accesses
a TCL function is provided too. At this point of functionality, a testing environment can
be conveniently implemented. The test bench is implemented in such a way that it has
some high-level test-functions which are called by recorded and filtered output of the Java
high-level model. These test-functions take care of loading the addresses, transferring the
data into memory, starting the operations, waiting for its finish, reading out the result
and comparing the read with the expected one.



Chapter 5

Results

In this chapter, the results for the hardware implementation will be presented. First, the
key facts, the used tools and technology, and the figures of merit to judge the synthesized
hardware will be summarized and presented. A more detailed discussion about those
aspects can be found in Chapter 4. Second, the results of different word widths of this
work’s implementation are listed and analyzed. Finally, the results that were judged best
will be compared to previous work.

5.1 Synthesis Aspects

The judgment of the efficiency in context of low resource hardware-implementations will be
done by using the necessary area after the synthesis and the time to execute a scalar multi-
plication. These parameters substantially depend on the used word width. The hardware
implementation was implemented to support different word widths: 16, 32, 64, 128 and
256. The data processing modules, the adder and the multiplier, are instantiated using
the word width. The syntheses were performed with the different word widths supported,
although the multiply-accumulate module consumes a huge amount of area when 64 bits
and above were used. Therefore the results for 64 bit word width is already considered
questionable in context of low resource hardware-implementations and results above 64
bits are added for completeness as they are basically supported by the implementation.

For the synthesis, the IAIK design flow was used. This utilizes the Cadence Encounter
RTL compiler. The ams hitkit 4.0 with the 0.35µm C35B4 technology was used for
synthesis and was integrated into the design flow as discussed in Section 4.3. The C35B4
is a Complementary Metal Oxide Semiconductor (CMOS) technology with four metal
layers.

The area is measured in µm2 by the synthesis tool but is presented here in gate equiv-
alents (GE) as this represents a technology independent measurement for the area. A
gate equivalent is the area of one NAND gate (see Section 4.1). The time the operations
take to finish is measured in cycles and the listed values were measured during the sim-
ulations. For simulations, the Cadence NCSim suite was utilized. For the comparison of
efficiency, the area-time product was used and is calculated by multiplying the area (GE)
with the time (cycles). For measuring the area, the time and the maximum frequency
of the hardware implementation, it was synthesized with one megahertz. This frequency
is low enough to obtain a synthesis result with no extra optimization from the synthesis
tool. As a result, the synthesis delivers the critical path. The critical path is the longest

72



CHAPTER 5. RESULTS 73

Table 5.1: Synthesis results for different word widths

Word width Atotal T AT-prod. Ano−mem Ano−memT- Fmax

[bit] [GE] [cycles] [MGE] [GE] prod. [MGE] [MHz]

16 44 440 2 042 625 90 774 7 404 15 124 21.083

32 52 887 801 537 42 391 16 085 12 893 14.315

32 (corrected) 48 841 801 537 39 147 12 039 9 650 14.315

64 66 087 414 465 27 391 27 880 11 555 8.414

128 126 985 279 297 35 467 88 417 24 695 4.911

256 370 783 221 441 82 106 331 122 73 324 2.528

chain of transistors the data must traverse within one cycle of the clock. The data needs a
certain time to get through the critical path and out of this time the maximum frequency
was calculated. After this, the hardware implementation was synthesized again with a
frequency a little lower than the maximum frequency. The synthesis result of this run was
then simulated again to verify correct results. The results were not used for the synthesis
results presented because the synthesis tool already applied optimizations noticeable for
the area and critical path values and thus would complicate the comparison of different
word widths.

5.2 Varying Word Width

The hardware implementation supports different word widths and was synthesized with
all of them. The syntheses were run with a cycle frequency of one megahertz. In the
following the results will be presented.

Results Overview. In Table 5.1, the key parameters of the synthesis are presented.
This consists of the area in gate equivalents, the time of one scalar multiplication, the area-
time product (AT-product) and the maximum frequency of the hardware implementation.
The time in cycles was measured with a scalar consisting of all ones. Although this is not a
typical value, it is the worst case and is therefore considered as representative. These cycle
counts are therefore the cycle counts if the double-and-add-always scalar-multiplication
would have been used. The area is listed twice: once the total area of the hardware
implementation and the second time the total area minus the area of the memory module.
On the one hand this is done to point out the word-width dependence for the arithmetic
and logic. On the other hand there were no efforts made to optimize or lower the necessary
area of the memory because the focus was on implementing the arithmetic and logic. The
listed area-time products have the unit MGE, which stands for mega gate equivalents.
Thus, the area-time products’ unit remain the area’s unit. Note, that the second line
for 32 bits that is titled “32 (corrected)” has a lower area consumption than the normal
32 bits’ value. This includes the mean value for the controlpath area of the 16-bit and
64-bit version. The reason for this is an untraceable doubling of the necessary area for
the controlpath and will be discussed in the context of the single modules’ areas in the
following.

In Table 5.1, the area-time products for the total area, including the memory, states
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Figure 5.1: The area-time products for different word widths

the best values for the 64-bit hardware, followed by the 128-bit and 32-bit versions. In
these values, the shorter time of higher word widths weights more than the lower area.
This is because the area of the memory stays almost constant and thus the lower area of
the arithmetic and logic relative to the total area weights less. Consecutively, the area-
time products, which do not take the area for the memory into account, were considered
to emphasize the tradeoff between area and time. Again, the 64 bits have the lowest value,
followed by the 32 bits and the 16 bits. These observations are illustrated in Figure 5.1.
The maximum frequency decreases with the factors, from the lower word width to the
next greater and starting at 16 bits, 0.679, 0.5878, 0.5836 and 0.5148.

In Figure 5.1 the AT-products over the word widths are shown. It contains two data
rows, once the area of the memory is included and once it is excluded. When it is included
the cycle counts have a greater influence in the AT-product. Then the differences between
the data points are higher and deliver the 64-bit architecture most efficient. When it is
excluded, the tradeoff between area and time is considered to be reflected better as the
area of the memory is at a high level. Thus, here the cycle-count decrease is weighted the
same as the area decrease.

Areas of Chip Components The hardware implementation consists of certain blocks
and builds a hierarchical tree. This hierarchy is represented in Table 5.2 with different
indentions and the area of one block consists of the sum of its sub blocks that are below
it in the hierarchy. The areas are presented in Table 5.2. The necessary area for the
memory needs more than the half of the total area for the lower word widths 16, 32
and 64 bits. But at the higher word widths, the multiplier becomes becomes the more
dominant part. The necessary area for the control path remains almost constant with only
the 32-bit architecture having a considerable greater value. That is unexpected, because
only internal memory elements are sized according to the minimum width necessary to
hold the number of words and small supporting logic for loading the addresses of the
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Table 5.2: The synthesized areas of the single components in gate equivalents

Module 16 bits 32 bits 32 bits, 64 bits 128 bits 256 bits
corrected

Memory 37 036 36 802 36 802 38 207 38 568 39 661

Controlpath 4 509 8 386 4 340 4 171 4 221 4 097

Datapath 2 385 6 918 6 918 22 700 82 769 324 987

Mult.-accumulate 1 756 5 739 5 739 20 437 78 201 315 981

Add./sub. 189 371 371 735 1 462 2 918

Total 44 440 52 887 48 841 66 087 126 985 370 783

operands vary. The analysis of this circumstance revealed that at this point, the synthesis
tool drastically synthesized more logic gates. Further analysis of the detailed logic gates
showed that the synthesis tool took many more gates compared to the 16-bit and 64-bit
versions: 2.5 times more “AND into NOR”, four times more multiplexer, twice as many
inverters, more than twice as many NAND and NOR gates, five times more “OR into
NAND” and twice as many clock inverters. Due to this observation, a corrected 32-bit
version is listed. The only difference to the original 32-bit synthesized result is that the
area of the controlpath is the mean value of the controlpaths’ areas of the 16-bit and 64-bit
synthesized results. The mean was chosen because it is considered the most reasonable
value. The datapath increases in size with increasing word widths. The multiply-and-
accumulate module increases with the factors 3.2674 from 16 to 32 bits, 3.5613 from 32
to 64 bits, 3.8264 from 64 to 128 and 4.0406 from 128 to 256 bits. Therefore, if only the
multiplier’s area was considered, lower word widths would be preferable. The adder’s area
in contrast increases almost linearly with factors ranging between 1.96 and 1.99 when the
word width is doubled.

Beside the synthesized area, the different word widths used for synthesis influence the
number of cycles too. In Table 5.3, the amount of cycles necessary to calculate the single
operations are listed. The operations include the scalar multiplication, the two elliptic
curve operations on the twisted-Edwards curve, the fast reduction for the prime of the
underlying finite field and the multiprecision addition and multiplication. For the scalar
multiplication, the worst case for the scalar was tested with all bits in the scalar being
set. Then, in each iteration of the double-and-add algorithm, the twisted-Edwards-curve
addition had to be performed. In this table, the necessary count of cycles for the scalar
multiplication is less than the half when doubling the word-width from 16 bits to 32 bits:
39.241%. From 32 bits to 64 bits the cycle-count decrease is not that high and the 64-bit’s
cycle-count is 51.71% of the 32 bits. For the word-width, steps from 64 to 128 bits and 128
to 256 the speedup further decreases: the 128-bit version’s cycle count is 67.39% of the
64-bit version’s and the 256 bit version’s is 79.285% of the 128-bit one’s cycle count. The
decreasing speed up is caused by the necessary overhead when switching the states in the
finite-state machine and the different word-width-dependent run-times of the operations.

These results of Table 5.3 are illustrated in Figure 5.2: For the single operations,
all cycle counts are divided by the maximum value for that operation. In all cases, the
16-bit architecture has the highest cycle count. Therefore, for instance, the cycle counts
for the scalar multiplication are divided by the 16-bit architecture’s value. For a better
visualization of the speedups of the different word widths, the cycle counts for the single



CHAPTER 5. RESULTS 76

Table 5.3: The amount of cycles for the single operations

Operation 16 bits 32 bits 64 bits 128 bits 256 bits

Scalar multiplication 2 042 625 801 537 414 465 279 297 221 441

Twisted-Edwards addition 4 965 1 933 993 667 528

Twisted-Edwards doubling 3 011 1 195 623 421 334

Finite-field inversion 194 832 73 384 36 948 24 802 19 741

Multiprecision multiplication 258 66 18 6 3

Multiprecision addition 17 9 5 3 2

Fast reduction 122 74 50 38 31

operations where connected by lines. The graph has a logarithmic y scale to respect
the word-width doubling on the x scale. In the diagram, the slopes of the lines become
less steep for increasing word widths, as discussed. The speedup by increasing the word
width for scalar multiplication, the finite-field inversion, the addition and the doubling on
the twisted-Edwards curve are very similar. This is considered to be based on the fact
that these operations consist of many subsequent operations and therefore share the same
average speedup. The multiprecision multiplication on integers has the steepest slope
for the word width doubling from 16 to 32 bits as it is natural because of the quadratic
influence of the number of words.

The comparison of different word widths’ area-time products lead to the result that
the 32-bit architecture is best suitable for the scalar multiplication. For very constrained
conditions with the low area footprint, it is considered to be more important that another
metric is used, one in which the lower area has a greater impact. Then the 16 bits may
be preferable.

5.3 Comparison to Previous Work

In this section, the hardware implementation results of this thesis are compared to related
work. To the authors’ best knowledge, there is no previous ASIC hardware implementation
on twisted Edwards-curves over a prime field of a comparable size. Further, there is no
previous work on an ASIC hardware implementation on Edwards curves over a prime
field of comparable size too. There is an FPGA implementation for twisted-Edwards
curve in [3]. There is also Edwards curve FPGA implementations in [39]. Nevertheless
hardware implementations on ASIC and FPGA are not comparable. For comparison, four
ASIC hardware implementations of elliptic curves over prime fields are presented. Two
of these are of a comparable field size and the other two are of smaller size. Although
the used elliptic curves are in Weierstrass form, due to the lack of comparable candidates
using Edwards curves or twisted Edwards curves, those are used. Further discussion about
related work is given in Section 4.2.

In Table 5.4, the synthesis results of the implementations of [31], [42], [41], and [17]
are compared to the best results of this thesis. For a better comparison, the total areas
excluding the areas for the memories are used because of the significant differences of gate
equivalents per memory bit. The synthesis results of this work ends up with 9 to 9.6 GE
per memory bit and is much greater than for instance the 2.96 GE per bit of [31]. The
time is measured in number of cycles per scalar multiplication for the worst case with all



CHAPTER 5. RESULTS 77

Figure 5.2: The normalized execution times of the different operations

bits of the scalar are set.
The one-bit difference between this work’s synthesis results and those listed in the

upper part of the table, 256 bits versus 255 bits, is considered negligible as stated in [41,
Chapter 3]. In the synthesized area result of [31], the area of the binary-field controller
is excluded because for comparison with this work this is not relevant. The hardware
implementation of [31] supports different word widths. For comparison the one with the
best area-time product was used. The implementation of Wolkerstorfer in [42] has the
capability of dual field computations. On the one hand, it can operate on elliptic curves
over prime fields, and on the other hand over binary fields. It is stated that this capability
has no great impact on the area. The implementation can be used with different field sizes
resulting in different synthesis results. For a direct comparison the well suitable 256-bit
architecture is used. The results of the other widths are listed too. For the results of this
thesis, the 32-bit, 64-bit and 32-bit with corrected controlpath area are considered. The
results of Wenger et al. [41], Fürbass et al. [17] and the two other results of Wolkerstorfer
[42] are for smaller field sizes.

For the following analysis, if not stated explicitly, this work’s corrected 32-bit synthesis
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Table 5.4: The area, time and area-time product

Field size Area Time AT-prod.
[bits] [GE] [cycles] [MGE]

Satoh et al. [31], 32 bits 256 39 920 880 000 35 130

Wolkerstorfer [42] 256 14 807 1 175 500 17 406

This work, 32 bits 255 16 085 801 537 12 893

This work, 32 bits, corrected 255 12 039 801 537 9 650

This work, 64 bits 255 27 880 414 465 11 555

Fürbass et al. [17] 192 13 183 502 000 6 618

Wenger et al. [41] 192 8 535 1 312 616 11 203

Wolkerstorfer [42] 192 11 773 677 500 7 976

Wolkerstorfer [42] 224 13 423 904 900 12 147

result is used for comparison. The listed synthesized area in Table 5.4 of [31] is at high level
and even higher than the 64-bit ASIC hardware architecture of this thesis. The time of [31]
for carrying out a scalar multiplication is roughly at the level of the 32-bit architecture
of this thesis implementation. In context of the area-time product the implementation
results of this thesis are about 2.7 to 3.6 times better than the one of [31]. The three
results of [42] give a hint of the influence of different field sizes on the area and the cycle
count and further are of comparable efficiency. The area and the cycle count of the 256-bit
results of [42] is a little higher and has an AT-product about 1.8 times higher. The other
two results’ AT-products of [42] with the smaller field sizes are about 0.8 times and 1.25
times this work’s results. The result’s AT-product of [17] is about 0.685 times the one of
this work, but operates on a smaller field. Its area is only 9% higher but the cycle count is
lower and about 0.626 times the one of this work. On the one hand, the area result of [41]
is smaller and about 0.71 times the area of this work’s result. On the other hand it takes
about 1.64 times more cycles. Although it operates on a smaller field, its AT-product is a
little higher and about 1.16 times of this work’s result.



Chapter 6

Conclusion

Cryptography has reached the very constrained electric devices such as mobile phones and
embedded systems. To be able to perform cryptographic calculation on these devices, it
is crucial to be efficient and to meet low resource requirements. ASICs deliver in this
context the optimal solutions as they are very distinct and flexible. They can be tailored
to fulfill exactly the requirements and are therefore in a superior position over general
purpose processors.

The Ed25519 is an Edwards-curve Digital Signature Algorithm (EdDSA) with fixed
parameters. It has good properties for low resource implementations and is therefore a
considerable alternative to the standardized Elliptic Curve Digital Signature Algorithm
(ECDSA).

This thesis’ purpose was to implement a low resource hardware to perform the arith-
metic necessary for the explicit cryptographic scheme Ed25519 as defined in Chapter 2.
The low resource quality is evaluated by the area-time product that pose as figure of merit.
It factors in both critical properties of area and execution time.

This thesis can be split into two main parts. First, the analysis of the Ed25519: The
cryptographic surroundings were discussed in and the mathematical backgrounds were
developed in Chapter 2 from a very basic level up to considerations in context of the
implementation. Its specifications were discussed, security considerations were made and
the differences to the ECDSA were analyzed in Chapter 3. Finally, the different approaches
and algorithms available for implementations on the single abstraction levels were discussed
in Chapter 3. The second part of this thesis is the low resource hardware-implementation,
its presentation, analysis and discussion. In Chapter 4, related work and the work flow
utilized were presented. This includes a rough view on hardware implementations in
general and the stages on the way to the final chip layout. The different word widths
supported by the implementation and their impact were discussed. Then the details of
the single modules were presented: Starting with the chip’s interface that is used to
communicate to the outside and transfer data input and output, over to the controlpath
that manages the operations and their sequences. Subsequently, to the datapath that
performs the operations, and finally the memory. At the end of the chapter, the test
bench and the highlevel model were discussed, and how the hardware implementation
was verified for correct calculations. Afterwards, in Chapter 5, the synthesized results
of the developed hardware implementation were evaluated for the one with the lowest
resource consumption. This was judged by area-time product that evaluates the tradeoff
between the consumed chip area and the cycle count to perform the operation. Then, these
synthesis results were compared to hardware implementations of related works which were
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measured with the same metric.
The hardware implementation presented in this thesis is able to perform a scalar mul-

tiplication in projective coordinates with an arbitrary point on the used curve. It has func-
tionality to carry out an inversion in the finite field with the inversion-by-exponentiation
algorithm. The inversion is necessary to transform the obtained projective point on the
curve back to affine coordinates.

The analysis of the synthesis results revealed that the area of the necessary memory
has a big impact on the results: For the 16-bit architecture it consumes 82.3 % of the
total area, 75.4 % for 32 bits and 57.8 % for 64 bits. The area-time product with the total
area and the time necessary for one scalar multiplication is then the lowest for the 64-bit
architecture. When excluding the area of the memory from the calculations, the 32-bit
architecture has the lowest resource consumption. Those two architectures take a total
area of 48.8 gate equivalents (GE) for the 32 bits and 66.1 GE for 64 bits, and perform a
scalar multiplication in 801.5 kilo cycles (kCycles) and 414.5 kCycles respectively. With
the used 0.35µm CMOS technology, the synthesis outputs the areas of 2.667 mm2 for 32
bits and 3.601 mm2 for 64 bits. The time that one scalar multiplication takes on this
architectures, run with the maximum frequencies, is 55.99 milliseconds for 32 bits and
49.26 milliseconds for 64 bits.

In this work, a hardware implementation was presented, that carries out a scalar
multiplication for the EdDSA with a reasonable security of about 128 bits. The achieved
resource requirements implies that it can be integrated into constrained devices with only
a few square millimeters of necessary area. It is able to calculate the computationally
intensive part of the key generation, signature generation and signature verification in
fractions of a second. The EdDSA allows a straight forward implementation due to the
unified and complete elliptic-curve point-addition formula. Because of this completeness it
is secure against simple power analysis and as a result of the unified formula, no additional
checks for exceptional points is necessary. By only a slightly modified protocol relative to
the ECDSA, the EdDSA gains additional security improvements.

6.1 Future Work

The presented hardware implementation was tailored for the Ed25519-SHA512 and can
carry out the scalar multiplication and the finite field inversion. Due to this specialization
there arise further tasks and questions.

Based on this thesis’ hardware implementation, the completion of the signature gen-
eration and process would be very interesting. That might raise the value of the imple-
mentation from a theoretical level to a practically relevant module.

A considered worthy future work is to bring the hardware implementation to a certain
platform of a constrained device. There, the evaluation of the necessary modification and
resulting resource requirements is of interest, especially the power consumption.

This thesis’ attention was to develop the arithmetic and logic for a low resource hard-
ware implementation and thus the used memory was instantiated in a very straight for-
ward array of flip flops. Therefore, this leaves open the field for optimization regarding
the memory as it is done in related works.

When developed, some design decisions were made. It is considered to be of value to
break up these and to generate a flexible parameterizable hardware that can be reused
and synthesized by specifying these parameters. In this context, the circumstance that it
was developed for one certain twisted Edwards-curve with a finite field over one certain
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prime comes into play. This has a deep impact on the developed arithmetic: This prime is
a so-called pseudo Mersenne prime and enables the use of fast reduction. This suggests to
modify the hardware implementation in such a way that it can compute the fast reduction
by simply specifying the used prime in an abstract way.

Another considered worthy modification is to enable a configurable multiplier. This
should be instantiated independently from the other modules’ word width and thus enables
the exploration of the optimal word width of the implementation in more detail.



Appendix A

Definitions

A.1 Abbreviations

AES Advanced Encryption Standard
ALU Arithmetic and Logic Unit
ANSI American National Standards Institute
ASIC Application specific integrated circuit
AT-Product Area-Time Product
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
DSA Digital Signature Algorithm
DUT Device Under Test
ECDSA Elliptic Curve Digital Signature Algorithm
EdDSA Edward-curve Digital Signature Algorithm
FF Finite Field
FPGA Field Programmable Gate Array
FSM Finite State Machine
GE, kGE, MGE Gate Equivalent, 103 Gate Equivalents, 106 Gate Equivalents
HDL Hardware-Description Language
IAIK Institute for Applied Information Processing and Communications
kCycles Kilo (1 000) Cycles
MAC Message Authentication Code
NAND Not-And
NAF Non-Adjacent Form
NIST National Institute of Standards and Technology
PKC Public Key Cryptography
RAM Random Access Memory
RFID Radio Frequency Identification
ROM Read-Only Memory
SPA Simple-Power-Analysis
SHA, SHA512 Secure Hash Algorithm, Secure Hash Algorithm 512 bits
VLSI Very-Large-Scale Integration
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Technical Specifications

The technical specifications of the hardware implementation with different word widths.

16 Bits

Process Technology: 0.35µm CMOS, standard cell library

Area: 2.426 mm2

Maximum frequency: 21, 083 MHz

Time for one scalar multiplication: 0.09688 s

Functionality:
� Scalar multiplication for Ed25519-SHA512

� Finite-field Inversion

32 Bits

Process Technology: 0.35µm CMOS, standard cell library

Area: 2.667 mm2

Maximum frequency: 14, 315 MHz

Time for one scalar multiplication: 0.05599 s

Functionality:
� Scalar multiplication for Ed25519-SHA512

� Finite-field Inversion
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64 Bits

Process Technology: 0.35µm CMOS, standard cell library

Area: 3.608 mm2

Maximum frequency: 8, 414 MHz

Time for one scalar multiplication: 0.04926 s

Functionality:
� Scalar multiplication for Ed25519-SHA512

� Finite-field Inversion



Appendix C

Final Chip Layouts

The place-and-route results for 16 bits, 32 bits and 64 bits will be presented. For the
results in the Figures C.1, C.2 and C.3 a frequency of 1 MHz was chosen.

85



APPENDIX C. FINAL CHIP LAYOUTS 86

Figure C.1: Place-and-route results of the 16-bit architecture
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Figure C.2: Place-and-route results of the 32-bit architecture
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Figure C.3: Place-and-route results of the 64-bit architecture
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