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Kurzfassung

Die numerische Losung von Transportgleichungen ist gegetid flur das physikalische Verstadndnis von
Fusionsplasmen. Eine makroskopische Beschreibung diesespbrtproblems ist mittels einer Konvektion-
Diffusionsgleichung méglich. Schwierigkeiten in der nureehen Behandlung stammen von der Steifheit
der betrachteten Differentialgleichung, die wiederumctiudie Anisotropien innerhalb des Fusionsplas-
mas hervorgerufen wird. Realistische Werte fir die Anigu&n - darunter versteht man das Verhalt-
nis von parallelem Transport zu normalem Transport beekigler Magnetfeldlinen - decken acht bis
zwolf GrolRenordnungen ab. Wahrend der letzten Dekade wuliggmekannten und weitverbreiteten nu-
merischen Methoden zur Lésung von partiellen Differegt@thungen, wie beispielsweise die Finite-
Differenzenmethode oder die Finite-Elemente-Methodeyarschiedene Transportprobleme angewendet.
In dieser Arbeit wird ein konservatives Finites-Differensachema entwickelt, wobei ein unseres Wissens
nach neuer Ansatz fur die Rekonstruktion der numerischessflaktionen mit entsprechend hoher Ord-
nung herangezogen wird. Die entwickelte Methode kann tiaekein adaptives Gitter Ubertragen werden.
Zusatzlich werden geeignete Zeitintegrationsmethodendi&iUntersuchung von zeitabhangigen Proble-
men vorgestellt und analysiert. Des Weiteren werden dregfammpakete zur Lésung von schwachbe-
setzten, linearen Gleichungssystemen bezuglich ihrezi&fiz und Genauigkeit getestet. Hierbei ist die
richtige Wahl der Routine entscheidend fur insgesamte Effizdes entwickelten Programms, da die rAum-
liche und zeitliche Diskretisierung der partiellen Diatialgleichungen zu linearen Gleichungssystemen
mit grofR3en, schwachbesetzten Koeffizientenmatrizen .flthrt die Funktionsfahigkeit und Stabilitat des
konservativen Finiten-Differenzenschemas zu tUberprifemden einige Testszenarien ausgearbeitet und
die erzielten Ergebnisse ausfuhrlich diskutiert.



Abstract

The numerical solution of transport equations plays anngsgeole in the physics of fusion plasmas. In
this context, a macroscopic mathematical description efttansport problem is given by a convection-
diffusion equation. Difficulties in the numerical treatmhemainly arise from the stiffness of the considered
differential equation which is caused by the anisotropigkiwthe plasma of fusion research devices. Re-
alistic values for the anisotropies, i.e. the ratio of patdb perpendicular transport with respect to the
magnetic field lines, cover eight to twelve orders of magtetuvhereby the small parameters may not be
neglected as they lead to essential physics. Since thedaatld the well-known and wide-spread numer-
ical techniques for the solution of partial differentialuagjons, such as the finite difference method and
the finite element method, have been applied to the tranppaiotem. In this thesis, a conservative finite
difference scheme using a high order reconstruction of tihmaemical flux functions is developed. The
formulated method can readily be extended to an adaptivé mbagh is a part of ongoing research. In
addition, a selection of suitable time integration proageduor the investigation of time-dependent prob-
lems is presented and analyzed. Furthermore, three widely library routines for the solution of sparse
linear systems of equations are benchmarked with respgerformance and accuracy. The right choice
of the sparse linear systems of equations solver is crumahé overall performance of the developed code
since the spatial and temporal discretization of the padifeerential equations leads to linear systems of
equations with large, sparse coefficient matrices. So asawepthe operability and the stability of the
scheme, several test case scenarios including an appiidatthe heat transport in a Tokamak are worked
out and studied extensively.
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1 Sparse Linear Systems of Equations Solvers

All numerical techniques used to solve partial differergguations (PDE), such as finite-difference method
(FDM), finite-element method (FEM) or finite-volume methdevVM), perform a spatial and temporal
discretization of the PDE. This discretization of the PDErgwually leads to a linear system of equations.
Subject to the size and refinement of the computational gniel,resulting linear systems of equations
exhibit a more or less sparse structure, i.e. most entreegean. Realistic problems consist of coefficient
matrices of the size of 10°x10° with about 0.05% non-zero entries. Hence, one requirest3MGB

of memory including overhead to store the non-zero entristead of 7400GB for the storage of the full
coefficient matrix. For this reason a sparse storage of tefficient matrix becomes inevitable and will be
discussed in Section 1.1. Furthermore, one is interesteahiimg a fast and numerical accurate sparse linear
system of equations (SLSE) solver, because the solutidmedfriear systems of equations constitutes one
of the most time-consuming steps. The different stratefgiethe factorization of asymmetric coefficient
matrices are outlined in Section 1.2 and in Section 1.3 thelt®of the performed benchmarks are shown.
The conclusions of this chapter have an impact on the chditeeaight SLSE solver, which is the core
element of the PDE solver developed in Chapter 2 and Chapter 3.

1.1 Sparse Matrix Storage Formats

In this section an overview of different sparse matrix sgerdormats is given whereby the two most
widespread variants are described in detail. Before furdussion, the following terms are defined.
Let n denote the number of columns or rows aritie number of nonzero elements of a square matrix

wherer << n?. Since all considered matrices are nonsingular, n is equaktrank of the matrix.

The book of Tewarson [1] shows some packed forms of stor&gditiked lists, an array of unique integers
defining the position of the corresponding value in the mairia format where each nonzero element is
compressed into an item of two storage cells, the first cetestthe row index and the second the value of
the element. These storage formats differ in their memomngemption and computational effort for matrix
operations. Linked lists are well suited for matrix caltigdas in which new nonzero elements are created
or deleted, because there is no need of realignment of thaimerg elements. The main disadvantage of
linked lists lies in the fact that the memory requirement-n3t memory locations to stord, is higher
than in static schemes. In comparison to the linked lisédicsschemes, as the scheme 11l in [1,p. 8], only
need 2 memory locations to store the matrix. Most SLSE solvers agsed in known libraries, make
use of two related formats, the compressed sparse column (fo8@at or the compressed sparse row
(CSR) format, in order to process the large coefficient maridde CSC format and the CSR format are



associated with each other via the relationship
csc(g) - CSR(éT> : (1.2)

Equation (1.1) implies that the matri stored in the CSC format is equivalent to storing the transgos
matrix AT in the CSR format. For this reason interchanging the storaggsfor the row- and column-
indices leads to a transposition of the matrix in the othem&d. The scheme Il in [1,p. 7] represents the
above-mentioned CSC format. The CSC format consists of thoeage arrays for the value of elements
(VE), row indices (RI) and column index pointer (CIP). Any nenz elementy,, can be reconstructed
from these three arrays. The values of the nonzero elementt@ed in the array VE and each element
of VE is linked to a corresponding element of RI which yields tbw index. Furthermore, one requires
the information about the column index. On that accounteleenents of VE are ordered by column and
the CIP array points to the indices of the elements of the V&yatrat match with the first element of the
respective column. To illustrate this description, coasithe subsequent matrix,

0 0 a3 O 0
a1 O 0 ayg O
A= 0O 0 a3 O 0 , (1.2)

a1 0 0 0 ags
O as,» 0 O O

which gives the CSC format representation,

VE = (a1, au1, as2, 13, azs, az4, as45),
RI = (2, 4 5 1, 3 2 4),
CIP = (1, 3 4, 6, 7). (1.3)

Thereby the three storage arrays (1.3) are filled by goingeautively through the columns of the matfix
(1.2). For each column one stores the values of the nonzemnwegits in the VE array and the corresponding
row indices in the Rl array. As mentioned, the elements of Ct&yguoint to the first nonzero element of
the respective column. The relation between the CIP array&nairay is established by means of a linear
index that tags the elements of VE. Since the first columnleifivith nonzero entries, the first element of
the CIP array has to be one. The further entries of the CIP aregyraduced by incrementing the previous
entry with the number of nonzero elements of the actual colum



1.2 Direct Methods for the Solution of Sparse Linear Systems of Equations

The aim of direct methods is the transformation of the caefficmatrix of a linear system of equations,

>

into an upper triangular matrix,

U=[uj] with uj =0 for i > j.

Depending on the chosen algorithm, one obtains an equiveystem with a modified righthand side,

(1.5)
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which can be solved easily by a backward-substitution [25p.

Yn

X = —

" Unn
1 n

X = — |Vi — Z uj xj| for i=n-1n-2,...,1
Ui j=1+1

A variant of the above-described Gaussian eliminationas.td decomposition [3,p. 178], introduced by
the famous English mathematiciatan M. Touring that constitutes the foundation of the library routines
discussed in the later subsections. In fact, the algorittuma sparse LU decomposition are much more
complex [1,pp. 15-106] and can be found in the cited liteabout the library routines. The following
relations and results are obtained for a full matrix repmées@on ofA; nevertheless, the basic understand-
ing of the SLSE solvers is created within these calculati@se denotes the subsequent factorization of
the coefficient matriyd,

>

=L U, (1.6)

as the LU decomposition & whereU is an upper triangular matrix,

Uiz U2 Uiz ... Uinp

0 U2 U2z ... U2p
U= . . . . R

0 0 O ... Umn

andL is an unit lower triangular matrix,



1 0 O 0
l,; 10 0
E: 31 Iz 1 ... O
|n]_ |n2 |n3 1

Using the LU decomposition (1.6), one is able to rewrite thedr system of equations (1.4),

X = (;-Q-

>

from which the yet unknown righthand sigeof Equation (1.5) is apparent. Due to the special forrh pf
the systenk - y = b can be solved by forward substitution [2,p. 35],

yi1 = b

i—-1
Yi = b — lijyj for i=23,...,n
2

A procedure for factorizing the coefficient matAxinto L andU components i€rout’s algorithm[2,p. 36],

i—1
Uj = aj — Z lik Uxj i=21...,)—1,
k=1
-1
Vi = aj — lik Ukj i=],...,n,
2,
ujj = Vi
Yij
ij = —. @a.7)
Yii

One substantial feature of the algorithm is that kiseand u’s on the righthand side of Equation (1.7)
are known when needed and there is never a lack of informa#Amother advantage is saving memory,
because every element of the coefficient madjxs used only once and its storage location is overwritten
by the corresponding;j or lj;. The typical computational cost of such a Gaussian elinangtrocedure

is of the orderﬁ(z—sf‘g) [4,p. 98]. As mentioned, the SLSE solver routines make useat sophisticated
approaches for the factorization of the coefficient masridemore detailed discussion is given in the book
of Tewarson [1,pp. 83-91] including a variant of Crout’s altjom for sparse matrices with a minimization
of fill-in.

So far considerations about numerical stability have bewitted. During the numerical treatment, one



recognizes a high impact of row interchanges on the solutighe linear system of equations. A strategy
for the best possible row interchanges is called partiatpig. In order to illustrate this behavior, think of
subsequent set of linear equations [3,p. 86],

0.400x + 996y = 100
75.3x + 453y = 300.

Using three significant digits and by pivoting on 0.400, ohtams the solutiom = —1.00 andy = 1.01.

With respect to the actual solution= 1.00 andy = 1.00, this yields a huge error of 200% in thealue.
Pivoting on 75.3 gives by contrast the correct result. Tipastial pivoting has to be implemented in the
Crout’s algorithm If the absolute values of tHg are as small as possible, the least roundoff errors are
obtained. This is guaranteed when thein Equation (1.7) are as large as possible, which can bezeghli

by interchanging the row with the largegt with the j-th row.

The proceeding subsections outline the differences bettveee wide-spread library routines concerning
the factorization large asymmetric coefficient matrices.

1.2.1 SuperLU 4.0

SuperLU [5, 6] denotes a set of three ANSI C subroutine libsafor solving SLSE, especially for coef-
ficient matrices with very unsymmetric structure. In thiegis, the Sequential SuperLU is only regarded
because the parallel version, Multithreaded SuperLU, bbasimown a better performance with respect to
our demands in terms of computational speed and memory cgisgn. The sparse Gaussian elimination
consists of two steps. In the first step a triangular facédion is computed,

whereD, andD. are diagonal matrices to equilibrate the systBpandP. indicate permutation matrices.
Pc andP; are chosen in such a way that the ordering of the columns avsl@bA increases the sparsity
of the computed LU factors, numerical stability and patilie. This factorization is also possible for
non-square matrices. The second step consists of saving = b by evaluation of

_1‘D

X
I
>

-1
1.i1.£.g.il.p;1) ‘b

g
ol (o)

At the beginning the rows df are scaled b¥,; and furthermore, the rows @; - b are permuted by; .

1@

The multiplications withL ~* andg‘l, respectively, indicate solving triangular systems ofaguns.



The pivoting strategy of Sequential SuperLU to determirgertw permutatior; is called threshold piv-
oting [6]. Starting from a coefficient matri& where the firsi-1 columns are factorized, one looks for
the pivot for columni. The elemengy,; denotes the largest entry on or below the diagonal of theatlgirt
factoredA, ami = max;>i ]aji | The threshold 6< u < 1 determines the pivot in columnaccording to
the condition|a;j| > u-|ami|. If this condition is fulfilled, the diagonal entrg; is chosen as the pivot;
otherwiseay, is used. The classical partial pivoting strategy is eqenatou = 1. In this casey,; or an
equally large value will be selected as the pivot. Smalléwesofu are preferable if a pre-ordered matrix
exists so that choosing diagonal pivots is good for spasifyarallelism. Naturally, this bears the risk of
less numerical stability. Setting = 0 means that the pivots on the diagonal will be chosen unhegsare
zero.

1.2.2 SuiteSparse 3.6.0

SuiteSparse is a collection of libraries for numerical peais concerning sparse matrices. UMFPACK,
a part of SuiteSparse, offers solver routines for unsymmatrd symmetric SLSEs [7, 8, 9, 10], which
is based on the Unsymmetric-pattern MulitFrontal methdde main step consists of the factorization of
(P-A-Q),(B-R-A-Q)or (P-R71 -A-Q) into the product - U, whereP andQ are permutation matrices,
andR is a diagonal matrix of row scaling factorB.andQ aim at reduction of fill-in.P, additionally, is
designed to enhance the numerical accuracy. After the cofusrordering that reduces fill-in, UMFPACK
scales and analyzes the matrix in order to determine th&egttasymmetric or unsymmetric, for pre-
ordering of rows and columns. Pivots with zero Markowitzt@re eliminated and placed in the LU factors
[11,p. 73]. Then the remaining submatfxs analyzed. In the unsymmetric case COLAMD [12, 13, 14, 15]
is used to calculate the column pre-orderingathich yields, in a first step, the symmetric permutation of

the matrix(S- ST) without evaluating this product. The Cholesky factor@}fg)T(g-g) define an upper

bound regarding the number of non-zero pattern of the fddtéor the unsymmetric LU factorization -
P-S-Q = L-U - without knowingP which ensures a good choice fQc COLAMD is also responsible
for the computation of the column elimination tree, the parstering of this tree, determination of an upper
bound of non-zeros in the LU factors and has a different tiofesfor identifying dense rows and columns.
In order to reduce fill-in, the column pre-ordering might bedified by reshuffling of columns within a
single super-column node. The algorithm uses thresholibpaivoting with no preference given to the
diagonal entry. If the conditiof;j| = 0.1-max|a.j| is fulfilled, an entrya;; within a given pivot column

J i1s chosen and the sparsest row of these is the pivot row. iAolipthe strategy, the factorization 8f
breaks down into the factorization of a sequence of densarrgular frontal matrices, whereby each frontal
matrix is stored as node in the supernodal column elimindtiee. Analogue to the factorization of the
whole matrix by a unifrontal method, each chain of frontatmeas is factorized in a single working array.
A frontal matrix can be understood as a Gaussian eliminatiame or more columns. The frontal matrix
for the elimination of a specific column éf is selected within the pre-analysis phase.



1.2.3 PARDISO 4.1

The third library of investigated SLSE solvers is called PARO [16, 17, 18], a pre-compiled, high-
performance, robust and memory-efficient software. It igliapble for SLSE with large symmetric or
non-symmetric coefficient matrices. To achieve better eetial and parallel performance, the solver re-
lies on Level-3 BLAS update, and pipelining parallelism iplexed within left- and right-looking Level-3
BLAS supernode techniques. The supernode pivoting allows@balance numerical stability and scala-
bility during the factorization process.

In case of non-symmetric coefficient matrices the solveemieines a permutatioyps and scaling matri-
cesD; andDc in order to place large entries on the diagonal [18]. Befoeecthiculation of the numerical

factorization, a fill-in reducing permutatid®, based on the matriRyps - A + (Pups -é)T, is computed.
The parallel numerical factorization is made up of the abde®ned permutation and scaling matrices,

o
=

U-

7o
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>
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o
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>
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whereQ andR are supernode pivoting matrices. A pivoting pertubatioatsgy is applied in the case that
the supernodes cannot be factorized with that strategy.nmidgnitude of the potential pivot is compared
to a constant threshold = ¢ [|Az|| with the machine precisioa and thec-norm of the scaled and
permuted matriXA. To guarantee numerical stability the pivots are kept fratiigg too small by setting
any tiny pivotslii to sign(lii) - £[|Az||. In practice diagonal elements are rarely modified for aglaigss of
matrices. This pivoting approach generally yields not efa@atorizations and an iterative refinement might
be considered.

1.3 Benchmarks for the Library Routines

This section presents the results of the benchmarks of tee timplemented library routines - SuperLU 4.0,
PARDISO 4.1 and SuiteSparse 3.6.0 (see Section 1.2). A Idtat bas been put into the implementation
of a handy and easy to use Fortran interface for the libraugimes. To validate the factorization time of
the SLSE solvers, test cases with real and complex asynmeeieificient matrices, which have different
condition numberk = (Hé”l Hélel)‘l, number of non-zeros and matrix sizes, are performed. For
the generation of the test matrices the sprand function of M¥B [19] and Octave[20], respectively, is
exploited. To be able to perform such an extensive investigaan automatization of the tests becomes
inevitable. The speed of Gaussian elimination is deterchimetest cases which show the CPU time for
solving a SLSE with different number of righthand sides (NRHSvo independent runs of each test case
scenario have have been performed so as to avoid systeheatms in the measurement of the CPU time.
The statistical error, defined as the standard deviationeofitean [21,p. 815], is indicated by the error bars
in the subsequent figures. Furthermore, the accuracy of & Sb&er, defined as the relative precision



max({ [A-x — b . . .. . . .. .
—QLX('M) H) , Is determined for the same set of coefficient matrices alsarcase of factorization time.

The benchmarks have been conducted on a Linux workstatitn faiur CPUs (2593MHz) and a total
memory of 33087116KB.

1.3.1 Test Cases for Real Asymmetric Coefficient Matrices

In this subsection the three library routines are testedhageeal asymmetric coefficient matrices with
varying condition number, number of non-zeros and matze.siThe subsequent figures highlight the
differences with regard to performance and accuracy. Tieslbetween the measured data points are
guiding lines for the eye and possess no further meaning.

The CPU times, required to solve SLSEs with coefficient masriof size of 16x 10*, depending on
number of non-zeros and condition numbers are shown in &igjir. The highest influence on the CPU
time is due to the factorization time. Thus, the factormatiimes of Sequential SuperLU, SuiteSparse
with or without iterative refinement and PARDISO with fourghds are compared. Furthermore, the upper
axis indicating the condition number has no influence on tladirsy of the horizontal axis. Comparing the
performance of PARDISO with different number of threads,ldast results are obtained with four threads
under the constraints of the used test system. A more detaisv on the performance of PARDISO
with different number of threads is given in Figure 1.2. That&Sparse solver routines with and without
iterative refinement share the same factorization proeedtor this reason, the curves of SuiteSparse with
and without iterative refinement fully overlap and cannotilstinguished. In the regime of number of non-
zeros below 39502 the factorization times of all solver ireeg lie within an order of magnitude, whereby
PARDISO reaches slightly worse results. The coefficient matith 39502 has the best condition number
of this set of test cases. In this instance the three solwdimes produce nearly the same result. For
coefficient matrices with a larger number of nonzeros Sugeraches factorization times of an order of
magnitude worse than PARDISO and SuiteSparse, wherebySpaitse yields slightly better results than
PARDISO.
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Figure 1.1: Performance of SLSE solvers for different coefficient nuatsiof size 1Hx 10* with different
number of non-zeros and condition number.

In Figure 1.2 one can observe that the performance of PARDig€@ases with the number of threads,
which is in good agreement with the supposed behaviour. Thlkng factor between the different curves
is approximately two to three. A number of four threads custs the limit of performance of the used
testing system which possesses four CPUs.
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Figure 1.2: Performance of PARDISO solver routine with varying numbethoéads for different coeffi-
cient matrices of size 0« 10* with different number of non-zeros and condition number.

Figure 1.3 illustrates the speed of SLSE solvers for a giweafficient matrix, the largest of the above-
described factorization test case, and different NRHS. €kalting CPU time in the limit of a NRHS of
one is equal to the factorization time. A remarkable fachat the SuperLU shows the flattest slope in
comparison to the other solver routines. Although the PARD$SIver routine has a factorization time of
an order of magnitude better than SuperLU, it intersectsadeSuperLU curve at a NRHS of 1000. The
SuiteSparse without iterative refinement has a flatter dllope the version with iterative refinement and
reaches the best absolute CPU times for different NRHS up ttua w& 1000.
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Figure 1.3: Performance of SLSE solvers for SLSEs with different nundderghthand sides and a coef-
ficient matrix of size 16x 10* with 379848 non-zero entries and a condition number of Z80e

The accuracies of the solver routines for the same set oficieet matrices as in the test case for the
factorization time are shown in Figure 1.4. The curves antd gaints of SuperLU, PARDISO, SuiteSparse
with and without iterative refinement partially overlap. RBISO and SuiteSparse with iterative refinement
display similar accuracy, wherby PARDISO has a bit betteultes SuperLU and SuiteSparse without
iterative refinement yield a slightly worse accuracy tham dther two solver routines, but the produced

values are still within one order of magnitude.
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Figure 1.4: Accuracy of SLSE solvers for different coefficient matriaéssize 1¢ x 10* with different
number of non-zeros and condition number.

The factorization time for coefficient matrices with sliyhihcreasing number of non-zeros and very vary-
ing condition number is apparent in Figure 1.5. In case ofeflp the last data point is missing, because
the corresponding test cases have been aborted after twe. l@antrary to SuperLU, PARDISO manages
all test cases, but the factorization times differ by mosntbne order of magnitude. The curves and data
points of SuiteSparse with and without iterative refinenfally overlap. The outstanding performance of
SuiteSparse is evident from this figure.
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Figure 1.5: Performance of SLSE solvers for different coefficient nuatsiof size 19x 10° with different
number of non-zeros and bad condition number.

In Figure 1.6 the accuracies corresponding to the Figureafiesshown. An image detail of Figure 1.6

showing the relative precision on a shorter length scalbustiated in Figure 1.7. Neglecting SuperLU

due to the missing data point, one notices the similar acgwhtained by PARDISO and SuiteSparse with
iterative refinement. The accuracy of the SuiteSparseorergithout iterative refinement is three orders of
magnitude worse.
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Figure 1.6: Accuracy of SLSE solvers for different coefficient matricéssize 10 x 10° with different
number of non-zeros and bad condition number.
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Figure 1.7: Image detail showing the accuracy of SLSE solvers for dffiéicoefficient matrices of size
10° x 10° with different number of non-zeros and bad condition number
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1.3.2 Test Cases for Complex Asymmetric Coefficient Matrice s

In this subsection the performance and the accuracy of tiee fibrary routines are tested with respect to
complex asymmetric coefficient matrices with varying caiodi number, number of non-zeros and matrix
size. These differences with regard to performance andacgare presented in the subsequent figures.
The lines between the measured data points are guidingtbrtes eye.

The CPU time, required to solve SLSEs with a complex coefftaieatrices of size of 10x 10%, depen-
dent on number of non-zeros and condition number is showrigar& 1.8. the factorization time has
again the highest influence on the CPU time. Thus, the faetitwiz time of SuperLU, PARDISO with four
threads and SuiteSparse with iterative refinement can bpa@d. Furthermore, the upper axis indicating
the condition number has no influence on the scaling of thedwatal axis. Comparing the performance
of PARDISO with different number of threads, the best resaitts obtained with four threads under the
constraints of the used test system. A more detailed vievhempérformance of PARDISO with different
number of threads is given in Figure 1.9. The curves of théeSpiarse solver routines with and without
iterative refinement overlap in the figure, because theyesthar same factorization procedure. It is appar-
ent from the figure that the plotted curves exhibit a simikayse which allows a ranking of solver routines.
The SuiteSparse indicates the best performance for thif sett cases. PARDISO claims the second rank
with a slightly worse performance than SuiteSparse and r&upgields a factorization speed which is a
factor 10 slower.
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Figure 1.8: Performance of SLSE solvers for different coefficient nuatsiof size 1Hx 10* with different
number of non-zeros and condition number.

In Figure 1.9 one can observe the supposed dependence of @ Orithe used number of threads, namely
that the performance of PARDISO increases with the numbenrefitls. The scaling factor between the
different curves is again approximately two to three. A nemtf four threads constitutes again the limit

of performance of the used testing system which possesse€RUSs.
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Figure 1.9: Performance of PARDISO solver routine with varying numbethoéads for different coeffi-
cient matrices of size 0< 10* with different number of non-zeros and condition number.

Figure 1.10 illustrates the speed of SLSE solvers for a go@nplex coefficient matrix, the largest of
the above-described factorization test case, and diff&N&HS. The resulting CPU time in the limit of a
NRHS of one reflects the factorization time. SuperLU showsrethe flattest slope in comparison to the
other solver routines. Although the PARDISO solver routias factorization time of an order of magni-
tude better than SuperLU, it nearly intersects the red Supeurve at a NRHS of 1000. The SuiteSparse
without iterative refinement has once more a flatter slopa tha version with iterative refinement and
reaches the best absolute CPU times for different NRHS up ttua @& 1000.
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Figure 1.10: Performance of SLSE solvers for SLSEs with different numiferighthand sides and a
coefficient matrix of size 10x 10* with 379848 non-zero entries and a condition number of 126e

The accuracies of the solver routines for the same set oficieet matrices as in the test case for the
factorization time are shown in Figure 1.11. An image degaifigure 1.11 showing the relative precision

on a shorter length scale is illustrated in Figure 1.12. PARDANd SuiteSparse with iterative refinement
display again similar accuracy, wherby PARDISO has a biebe#sults. SuperLU and SuiteSparse with-
out iterative refinement yield an accuracy which is threeemaf magnitude worse than the accuracy of

the other two solver routines.
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Figure 1.11: Accuracy of SLSE solvers for different coefficient matricdsize 1 x 10* with different
number of non-zeros and condition number.
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10* x 10* with different number of non-zeros and condition number.
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1.3.3 Conclusion

Surprisingly, the parallelized solver routines of Supeirtisl PARDISO do not yield the best performance
results for the studied asymmetric coefficient matricese figsults for the multi-threaded version of Su-
perLU have been omitted, since a notable number of test cas#d not be performed due to unsettled
issues. In addition, no further releases of the multi-ttleebSuperLU are available - the latest version is
from 2007 - and one might give preference to the distributexsion of SuperLU which is much more
complex to implement. Investigations on large sparse, sgmailinear systems of equations, as discussed
in the article of Gould et al. [22], exhibit a different bel@w. In this case the PARDISO solver rou-
tine demonstrates an overwhelming performance. Conceasymmetric coefficient matrices, it seems
that the results from earlier performed benchmarks [16]oatelated because the comparison involves a
SuiteSparse version with UMFPACK 3. In this thesis, the fa thoment latest versions - UMFPACK
5.5.0, SuperLU 4.0 and Pardiso 4.1 - are compared with eder. dRecapitulating, the best factorization
time is obtained using SuiteSparse which becomes impontaeh calculating steady-state solutions, see
Section 2.3.3. Furthermore, the SuiteSparse withouttiveraefinement yields the best performance for
processing multiple righthand sides up to a NRHS of 1000;itksspne has to mention that the best scal-
ability is reached by SuperLU. Although turning off the @gve refinement worsens the accuracy by up
to three orders of magnitude, the SuiteSparse withouttivereefinement is used in all further computa-
tions since a relative precision of 1% is more than sufficient for each of our prospective appliceti
Depending on the individual demands, one might come to @ireclusions.

20



2 A Conservative Finite Difference Scheme for General
Diffusion Equations in one Dimension

Many interesting physical problems in the field of fluid dynesican be formulated as conservation laws.
This thesis investigates transport processes in fusiosim@a which are mathematically described by a
general diffusion equation. In order to be able to apply a enral scheme, one has to rewrite the one
dimensional (1D) general diffusion equation in a consérediorm, as done in Section 2.1. A good in-
troduction into this topic is provided in the books of Veesieand Malalasekera [23] and Ferziger and
Peric [24]. The fundamental concepts behind the consgevétiite difference scheme (CFDS) developed
within this chapter are analogue to the well-known and wageead FVM in computational fluid dynam-
ics. Discrepancies between classical FVM and the descsbbhdme arise from the new approach for
the interpolation of the numerical fluxes at the cell bouretarsee Section 2.2, which is a crucial part
dominating the performance of the code. Solving the timgedeent general diffusion equation requires,
besides a suitable time integration procedure, the knayeled consistency, stability and convergence of a
numerical scheme. The concepts and derived relations esemied in Section 2.3. Before the developed
scheme can be applied to test cases, Section 2.4 outlinesiiementation of boundary conditions in
the CFDS. Section 2.5 finally shows results about the stalofithe CFDS that is used to solve a general
diffusion equation which generates a Gaussian profile asuic@a In Chapter 3, the presented concepts
are extended to 2D meshes which can be refined adaptively.

2.1 Conservative Formulation of a one dimensional General Diffusion
Equation

A general form of a diffusion equation in 1D is given by

af(n.,t) 0 af(n,t)
g - (D(n)

= - f(n,t 2.1
an v(n)f(n, ))+q(n), (2.1)
whereD(n) describes the diffusivity and accordinglyn) the velocity of convection or advection. The
last termq(n) stands for sources or drains in the system. As described \ledLee [25,pp. 15-46], for
a further numerical treatment the domain of solution is sufddd into N cells. Then Equation (2.1) is

integrated over theth cell,n € [ni_1, ni]. With the cell-volumeF(t) = ,;Ldn f(n,t), and interchange
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of differentiation and integration Equation (2.1) becomes

d';;t(t) = T(Ni-1,t) =T (Ni,H) +Q (2.2)
with
rny = —om S vty 23)
and
ni
Q = / dn a(n)
ni-1

Thus, the value of cell-volumE(t) can only change by numerical fluxé€¢n,t) at the boundarieg;_1
andn; or by a source or draifp;. Integrating Equation (2.1) over the total domain of salntieads to a
conservation law,

JF(t
% = et -TiwY+ Q
-0 —0
-0 (2.4)
with
NN
FOy = [dn fn.y
No
and

UIN
Qt) = /dnq(n,t)'
No

The relation (2.4) is valid if all sources balance the draing the numerical fluxes vanish at the boundaries
of the domain of solution, i.e. a closed system.

2.2 Polynomial Reconstruction of the Numerical Fluxes at the Cell
Boundaries in one Dimension

In order to evaluate the numerical fluxes at the cell bouedarihe functionf(n,t) and its derivative
must be known at the boundaries. In the conservative fotioualadescribed in Section 2.1, instead of the
function f the cell volumeds(t) are calculated. To reconstruct the functibfrom the cell volumes (t)
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[26], we expandf at boundary); into a Taylor series up to the order

2 (n 3)(n.
if(nt) = f<°)<ni,t)+f(1>(m,t)<n—m)+#(n—ni)2+%(n—m)3+--
= jao(t) +ia(t)(n — i) +id(t)(n —mi)®+iast)(n —ni)+---
= 2 (=n)' 25)

The left subscripts, as in Equation (2.5), are used to lgghlhe expansion at a certain boundary and the
elementsa,(t) abbreviate the corresponding polynomial coefficients ef Thylor series. Integration of
Equation (2.5) over thieth cell,n € [nk_1, Nk, and subsequent interchange of integration und summation
yields an expansion for the cell volurig(t) at boundaryy;,

Nk n
i = d ia] — i)}
F(t) nk/l njzoaj(t)(n ni)

= Z)iaj (t) iAj (2.6)
=

with . .
A = (Mk—ni) ™ = (ne_a— i)t
| J J—|—1 9

whereby the matrixAj weights the polynomial coefficients and is only dependerthergenerated com-
putational grid. Based on Equation (2.6), one demands tkateh volumesk(t) within a defined stencil
are approximated by a polynomial of ordethat is expanded at boundany. In this context a stencil is a
subset of points of the computational grid which is used tomstruct the function at a particular boundary.
This allows us to set up a system of linear equations whiclseéslwo determine the unknown polynomial
coefficients at a certain boundary. The number of equatr@gsiired to obtain a well-defined set of equa-
tions, complies with the selected ordeof the Taylor expansion. One has to choose between a vafiety o
stencils which strongly differ in the condition number oétbreated linear system of equations. A severe
restriction, ensuring a good condition number, is the dehfana symmetric stencil around the boundary.
Recapitulating, the value of functioi(n,t) and its derivatives can be reconstructed at the boundaries i
cluding a particular truncation error. In the developed atioal scheme the polynomial coefficerds(t)

are never calculated explicitly; instead of them, one caepthe inverse qAj, iBjx, which is independent

of time and can be used to determine #hgt) from the cell volumes,

ij(t) = > iBjk iFk(t) 2.7
k € symmetric stencil
of boundaryn;
with
n
ok = _zoiAijiij (2.8)
J:
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wherebydy, denotes thdronecker delta Since the inversgBix links the polynomial coefficents with the
cell volumesiK(t), it is possible to formulate a scheme solving Equation (&#ich only makes use of
the jF(t) within the stencil. For instance an appropriate third omlgproximation of functiorf (n,t) at
boundaryn;, which requires a four-cell stencil, is depicted in Figuré.2

Figure 2.1: Four-cell stencil for third order approximation of funatid (n,t) at boundaryy;.

Before proceeding with the derivation of the numerical fluxdtion[” (n7,t) with polynomial reconstruction
of function values, one has to discuss the need for a labefitige cell volumesk(t) with a left subscript.
Independent of the expansion at a certain boundary, Equé2i6é) shall always yield the same value of
cell volume up to a known truncation error. This is an int@tdemand for the polynomial reconstruction
because it makes no sense that a specific cell volume is @p@ted by an expansion at two or more
different boundaries with unequal values. Therefore, veeadle to omit the left subscript distinguishing
the cell volumes. Bearing this in mind, the polynomial coéiits for the above-depicted stencil (see
Figure 2.1) can be calculated with the subsequent formula,

i+2

iaj(t) = k_zliBjk F(t). (2.9)

Using expressions (2.7) and (2.8), one is able to evaluateumerical flux functiom (n,t) (2.3) at bound-
ary i,

rmt) = -0 25 v o)
Ni

and to express the upcomming values of the funcfigp,t) and its first derivative in terms of cell volumes
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F(t) which belong to a chosen stencil,

f(ni,t) iao(t)
iBok F(t)
k € symmetric stencil
of boundaryn;
and
a1 (n.t) Ry
o 3 0§ (=)
with
af(n.t) _
dr’ N Ial(t)

iBuk F(t).
k € symmetric stencil
of boundaryn

For the computational treatment it is advantageous to snbsll contributions from the numerical flux

differences in a matrifl which allows us to rewirte Equation (2.2) in the form of a \wdt(t) containing
the elements;(t) and a vectoQ containing the elementg;,

ot M - Et) + Q.

(2.10)

Thei-th row of the matrixM can be reconstructed from the numerical flux differenigés of the i-th
cell,

li(t) F(Ni—1,t) =T (ni,t)

(=D(Ni-1) i—1Bw+V(ni—1) i-1Bok) F(t) —
k € symmetric stencil
of boundaryn;_1

(=D(ni) iBu + V(i) iBok) Fe(t),
k' € symmetric stencil
of boundaryn;

whereby indice& andk’ of the corresponding stencil determine the column indideseentries oM. In

order to illustrate the proposed procedure for the gerarati M, one considers once again the stencil in
Figure 2.1. The needed values of functiffm,t),

2
finit) = 5 Boif(t),

k=1—-1
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and the values of its derivative,

of(n.1) &
= iBik i t),
on |, kﬂz_l 1k i F(t)

are computed according to Equation (2.9). Hence, one caméis the numerical flux differencést) of
thei-th cell,

i1
i(t) = i (=D(Ni-1) i—1Bw+v(ni-1) i—1Bok) F(t) —
k=I—-2
2
- i (—=D(ni) iBw+Vv(Ni) iBok) F(t). (2.11)
k=1—1

Looking at the column indices which are determined by thecesl of summation in Equation (2.11), it
is apparent that the matrid will be sparse and exhibit a band structure. The band strei@tM only
exists if the computational grid is regular. Especially by 2daptive computational grids, considered in the
developed code, are in general irregular and produce a ggmraetric matrixM without band structure.
The sparsity of the matrix is maintained. Thus, the computat solution of the generated linear systems
of equations relies on the SLSE solvers which have beerttest€hapter 1.

2.3 Time Integration of the one dimensional General Diffusion Equation

After the spatial discretization by means of the develope®&Fconfer Section 2.1 and Section 2.2, the
general diffusion equation transforms into a time-depahdedinary differential equation (2.10). This the-
sis treats only time-independent computational grid§siiities and velocities of advection or convection.
Therefore, the matrij in Equation (2.10) is also time-independent which simgitiee subsequent cal-
culations. A further simplification is the assumption ttreg sources or drains do not depend on time. Since
the relevant and interesting informations of the inveséigasystems are determined by a state of equilib-
rium, implicit time integration schemes become more appatg because they enable larger time stsps
The book of Hairer et al. [27,pp. 27-50] presents a numbeinaé integration schemes and describes the
respective advantages and disadvantages.

The simplest implicit time-integration scheme is a baclkivBuler method [27,pp. 28-30]. Applied to
Equation (2.10), one obtains a time-discretized equation

En+1 — En +At X (M _ErH-l +9> , (212)

where the superscripts refer to the respective time lewelu@ng terms of the same time level leads to

(1-at-M)E™ = E"4AQ
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which can be solved fdg"+1,
-1
o — <l—At'M> -(En—}—At'9>-

Another widely used technique for numerical time integnatis the implicit trapezoidal rule which is
also calledCrank-Nicolsonmethod. This method is based on an approximation of the tntegiation by
means of a trapezoidal rule as implied by the name. Analogugguation (2.12), one obtains again a
time-discretized equation

1= E”+%'<M-En+l)+%'(|\ﬂ'En)+At'Q7

which can be solved for a consecutive time SE8p?,

At -1 At
il <l_E'M) .<(l+?-M>E“+At-9>.

The proceeding subsections cover the definitions of carsigt stability and convergence of numerical
schemes, see Section 2.3.1, and provide a method for therileddion of stability conditions, see Sec-
tion 2.3.2. In order to illustrate the terms and conditionseaemplary analysis of a primitive finite dif-

ference scheme is performed. The derived results can b&fdraed to the original problem. Finally, Sec-
tion 2.3.3 shows the computation of a steady-state solwithout a time-integration, which is applicable
in many instances.

2.3.1 Considerations about Consistency, Stability and Conv ergence of the Numerical
Scheme

Further investigations of numerical schemes require difits of terms like consistency, stability and
convergence [28,pp. 270-281]. This allows one to formutatrditions for acceptable approximations
to the differential problem and to predict stability limigmd different behavior of numerical schemes.
Knowing the stability enables us to determine quantitftitee accuracy of the numerical result.

The consistency condition associates the discretizedtieguaith the differential equation and restricts
the structure of numerical schemes. In particular, comscstimplies that a numerical scheme approaches
the differential equation in the limit of a spatial disceetiion and temporal discretization that both tend
to zero,Ax — 0 andAt — 0. Consistency analysis also yields practical informatiooud the accuracy
and the truncation error of a numerical scheme. An exemglamngistency analysis on the linear advection
equation is reviewed in Hirsch [28,p. 276]. The first stepststs in developing the solution function of the
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discretized schema] in a Taylor series around the valug,

n+1 _ n n Atz n
U = A (W), +7(Utt)i
AX? N
ING NS
uin—l = uin _AX(UX)in + > (Uxx)in B (Uxxx)in, (2.13)

and substituting this back in the numerical scheme. In ej3J& andt subscripts denote partial derivatives
andi or j subscripts aneh or m superscripts, respectively, of the solution functiospecify the position
in space or time level. In the case of a linear advection eguathich is solved by means of a central,
second-order in space and forward, first-order in time fidifference scheme, one obtains the relation,

N+l _
|

Trai U agn = B s B a0 (a2 0 (2.14)

At 2% ! 2 ! 6 ! ’

From the consistency equation (2.14) it is obvious thatigifg+hand side is zero &t andAx tend to zero;

in turn, that means consistency of the considered finitedifice scheme. Furthermore, the accuracy of
the scheme is confirmed as first order in time and second andgyace. Based on the Equation (2.14),

the truncation error and its implications can be derived re@bg one has to choose between two similar

approaches. The first assumes tijatepresents the exact solution of the discretized equaltitime exact

solution of the discretized equation is available, it isggad in the consistency equation,

u ui

. A, o, DX N 9

(U +aly)! = —E(Utt)i —Ta(uxxx)i +0 (02,0 . (2.15)
The bar in Equation (2.15) indicates the exact numericaltgsl which fulfills an equivalent differential
equation for finite values ot andAx. In the computational treatment the limit Af andAx to zero is
never realized and one always gets to an Equation (2.15)ridihkehand side of this equivalent differential
equation is defined as the truncation epr It is more convenient to have an expression for the truanati
error without partial time derivatives. This can be realizesing Equation (2.15) andoung’s theorem
whereby the left-hand side of (2.15) is neglected as a cioreof an order ofAt andAx?. The modified
formula for the truncation error,

At AX?
&g = _Eaz(uXX)in_?a(uxxx)injLﬁ(Atz’sz)’

yields a physical explanation for the instability of the egte. Consider the right-hand side of the modified
equivalent differential equation,

At
U +al, = —Ea2 (U] + O (A2, A%7) .
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It corresponds to a negative viscosity term which amplifesl@ations and strong gradients. For this reason
the scheme is instable. In summary, the determination dftimeation error is a starting point for stability
analysis and yields the accuracy of the scheme. A vanishimgation error provides also another criterion
for the consistency of a numerical scheme. The second agpfoathe determination of the truncation
error starts with the exact solution of the differential agon and produces analogue results.

The stability criterion relates the numerical solution he e£xact solution of the discretized equation. A
stable numerical scheme should not allow ert® grow indefinitely, that is, to be amplified without
bounds, as we progress from one time step to another [283p. Pfiis is mathematically expressed by

lim [g"] < K atfixedAt,

n—o0

whereK is a number independent nfand & is defined as the difference between the computed solution
u! and the exact solutionl’,

n

g = u'-u. (2.16)

The above-defined criterion makes no point about the erranantermediate time step which could be
arbitrarily large; hence, a more general definition has tinbreduced. According té&Richtmyer and Lax
[28,p. 278], any component of the initial solution should he amplified without bound in a stable nu-
merical scheme. This general treatment requires to fotetit@ numerical scheme in a matrix or operator
form,

Ut = c .U, (2.17)

whereby the matrixC depends on the time stég and mesh sizé&x andU denotes a vector containing
the u; at a given time level. Considering the above-defined ma&rixan amplification without bound is
prevented by the condition

0< At
— K for o=t (2.18)
o<mt<T

and for alln, wherebyr andT are fixed numbers and the norm is unspecified for the moment.

Knowing consistency and stability signifies that the iniggged scheme is convergent. This context is
described by the fundamentatuivalence Theorem of L428,p. 281] which states that for a well-posed
initial value problem and a consistent discretization sohestability is the necessary and sufficient con-
dition for convergence. In this sense, convergence meansh® numerical solution approaches the exact
solution of the differential equation at any point and time&x — 0 andAt — 0. A mathematical de-
scription of convergence based on a matrix or form of the migakscheme (2.17) is given bdyichtmyer
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and Mortorj28,p. 296],

i ]G0

whereby the bar indicates the exact solution of the numiesaame.

2.3.2 Von Neumann Method for Stability Analysis and Courant- Friedrichs-Lewy Condition

The investigation of the stability of a numerical schemeafeoSection 2.3.1, is widely studied in literature
[28, 29, 25, 30], but it is still a demanding topic and mostiyited to linear problems. Although this
limitation is used, initial and boundary conditions coroptie the investigations.

A wide-spread technique is théon Neumann methddr stability analysis [28,pp. 283-338], which was
introduced by Von Neumann during World War 1. This methobased on a Fourier decomposition of the
solutionu! and of the errors” defined by Equation (2.16),respectively,

N .
Sin _ Z EJneij~|~Ax
j=—N
N « .
_ v g
j=—N
with
T
kj = JE
. T
— _ 2.19
I'Nax (2.19)

where N is the number of subdivisions of the domain of solution with length Lk; is the wavenumber
and Ejn is the amplitude of thg-th harmonic and denotes the imaginary unit. As a discretization scheme
for the solution exists, this scheme must also hold for tlerer From the resulting equation, one can
determine the absolute value of the rgdt8) of temporally sequential amplitude factors @] is less than

or equal one for any harmonic,

6l = | =

< 1 (2.20)

’ En+1

the considered discretization scheme fulfills the stabddnditon (2.18). By definition, the above-applied
Fourier decomposition is only possible in the case of anitefidomain or periodic boundary conditions
on a finite domain. In fact, most of the studied physical peais involve boundary conditions and non-
linearities; despite the made restrictions, it yet can leéul$o perform a Von Neumann analysis. In the case
of a non-linear differential equation with eventually nooastant coefficients a local Von Neumann analysis
of the linearized problem yields at least a necessary, thowg sufficient, condition for stability. To
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illustrate the procedure, one can consider again the exaaial linear advection equation which is solved
by means of a central, second-order in space and forwardofaler in time finite difference scheme, confer
Section 2.3.1. Plugging Equation (2.16) in the discreiimascheme for thef results in an equation,

n+1 n+1 n
ui — U n Ei —§& _ a — — a

At At - 2AX (y —ULy) — A% (&h1—&"), (2.21)

where theu™ eventually cancel out because they satisfy exactly thensetes demanded. Finally Equa-
tion (2.21) reduces to

n+1 n
A a /on

At = T oAx (ghy—g"q).

The difference scheme for the errors above is the startimg par the Von Neumann stability analysis.
Plugging Equation (2.19) in (2.21) and some algebraic mdains allow us to determine an expression
for the quantity|G

2
G2 = 1+(%) sirf g

® = Kkj-Ax

which apparently does not satisfy Equation (2.20) for ndrie@phase angleg. In such a case the applied
numerical scheme is called unconditonally unstable. Ifdigm (2.20) is fulfilled for a defined ratio dit
andAx the scheme is called conditionally stable and the condisaeferred to aourant-Friedrichs-
Lewy(CFL) condition [28,p. 287]. In the case that Equation (2.8®lways fulfilled, one denotes these
schemes as unconditonally stable.

As mentioned, a detailed analysis of stability can be vemaleding. The investigated general diffusion
equation (2.1), used to model transport in fusion plasnashave complicated, non-constant diffusivities
and velocities of advection or convection and naturallyrmtary conditions are involved. Furthermore,
the developed discretization scheme, confer Section 211Saction 2.2, generally uses an adaptive com-
putational mesh which makes the anaylsis difficult. Everh@ihstance of an equidistant mesh, it is hard
to perform a full Von Neumann stability analysis. During ttemputational implementation some practi-
cal approximations for CFL conditions have proven succés#iuthe book of Hirsch [28,pp. 331-335] a
CFL condition for multidimensional space-centered, cohweediffusion equations, applicable to a wider
range of problems, can be found and the book of Cockburn &@pjp. 384-423] shows further appropriate
conditions.
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2.3.3 Determination of the Steady-State Solution

Considering again the transport problem in fusion plasmashas to figure the interesting quantities which
should be determined. In most of the cases an exact timdegement of these quantities is not important,
instead the steady-state solution contains mainly theaatanformation. If the basic differential equation

is explicitly time-dependent such as in Equation (2.109,datermination of the steady-state becomes easy.
Since a steady-state solution does not change in timeaptntie derivatives can be neglected. In the case
of the regarded differential equation (2.10) one obtairfssguent linear system of equations,

=

FE - o (2.22)

For a simultaneously vanishing source term Equation (2/22)s the trivial solutiorF=0.

2.4 Implementation of Boundary Conditions in the Conservative Finite
Difference Scheme for General Diffusion Equations in one Dimension

So far boundary conditions are not incorporated in the CFDBwi developed in Section 2.1 and Sec-
tion 2.2. In general, one has to distinguish betw&grnchlet boundary conditionsNeumann bound-
ary conditionsand mixed types [21,p. 691]. This thesis discusses onlyrtpeimentation of Dirichlet
boundary conditions that are used to describe walls of fieitgperature as in the case of the investigated
model for the transport in fusion plasmas. For the compantatiimplementation two different approaches
mainly exist which have respective pros and cons. A wideaptechnique uses ghost cells, confer Blazek
[29,pp. 267-297] or Versteeg and Malalasekera [23,pp.2®; outside the domain of solution to model
the chosen boundary condition. Another possibility is thedification of the stencil or of the interpola-
tion function at boundary of the domain. This approach cafobad in the books of Ferziger and Peric
[24,pp. 81-89] or Versteeg and Malalasekera [23,pp. 86-98]

The ghost cell method extends the domain of solution by agdatditional cells~ with specific values
which describe the boundary condition. For instance a teatpes sink can be modeled by ghost cells
with zero temperature. In Figure 258 denotes the ghost cell that is associated with bounggry
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Figure 2.2: Evaluation of functionf (n,t) at boundaryyo according to the specified boundary condition.
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A major advantage of this technique is a simple implemeortatvithout modification of the stencil or
interpolation function; on the other hand, ghost cells cdraxactly set the value of a function or of its
derivative at the boundaries.

The second method makes use of a modification of the intarpolunction at the edges of the domain,
e.g. boundaryyg in Figure 2.2. To illustrate this procedure we consider adblet boundary condition
where the functiorf (n,t) vanishes at edges of the domain. Following Equation (2¥)fanctionf can
be expanded into a Taylor series at boundayy

of (N.t) = oao(t) +oaa(t)(n — No) +0a2(t) (N — No)®+ 0as(t)(n — No)®+---,

whereby the polynomial coefficiepty(t) has to vanish due to boundary condition,

of (Mo,t) = 0.
For the determination of numerical flux functibitn,t) at boundary)g (2.3),

rot) = ~0(n0) “ 51| v tno.)
No

= —D(no) oas(t) +Vv(no) oao(t)

one also has to compute the derivative of the functi@t boundary)g. An approximation of first order to
the derivative is given by subsequent finite difference,

—0

——
ot _ of(not) —af(n1,t) (2.23)
on n, An

From Equation (2.23) one eventually obtains a relationtergought polynomial coefficiepay (t),

130(t)
An

oau(t) = —

Better approximations to the derivative are often requiredi@an be realized using finite differences with
a truncation error of higher order. In the conducted tes@hapter 4 the primitive approximation is always
used and no disturbing influences on the solution are noticed
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2.5 Test Cases for the one dimensional Conservative Finite Difference
Scheme

The subsequent test cases study a general diffusion equatib) with a constant diffusion coefficient
D(n)=1 and velocity of advection(n)=—2n,

of(n,t) 0 <0f(n,t)

which is solved by a Gaussian curve with a full width half nmaxm (FWHM) of %

f(n,t) = e

Since there are no sources in the considered system, thdysttde solution will be in all test cases
f(n,t — o) =0 because particles get lost due to round-off errors and ricahénstabilities. As an ini-
tial profile we choose a rectangular whereby the included arast be equal to the area of the Gaussian
Agaussia= /7. This demand results from the conservativity of the appliecherical scheme. In the subse-
guent test cases the length of the rectangular is 2 and cosistgthe height has to b@@. Furthermore,
the chosen polynomial reconstruction is of fourth order anméstimate for the CFL condition is calculated
by following expression [30,p. 415],

o o ()2 55)

whereby a spatial discretization Af) =0.08 is chosen. Figure 2.3 shows the time evolution of the Gaus-
sian curve and the relative precision using a Crank-Nicotsuoe integrator. Under the considered CFL
conditionccr. =5 the relative error grows only linearily and the CFDS prowebkd conservative.
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Figure 2.3: Time evolution of the Gaussian curve and the relative pi@tigsing a Crank-Nicolson time
integrator and &g = 5 from Osto 5.71s.

The time evolution of the Gaussian curve and the correspgnailative precision for another CFL con-
dition is depicted in Figure 2.4 whereby the same time irstgn procedure is used. In this case an
insufficient CFL conditiorccp. = 25 is tested. As the relative error grows exponentiallyGR®S is not
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conservative.
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Figure 2.4: Time evolution of the Gaussian curve and the relative pi@tigsing a Crank-Nicolson time
integrator and &cr. = 25 from Os to 14.29s.

As shown in Figure 2.5 an optimal CFL conditioge. = 10 leads to a fully stable Crank-Nicolson time
integration and the relative error oscillates around a taonivalue for times larger than 8s. The total cell
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volume is conserved for all times. This behavior for an optiogr, is common for both considered time
integrators.
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Figure 2.5: Time evolution of the Gaussian curve and the relative pi@tigsing a Crank-Nicolson time
integrator and &g = 10 from Os to 11.43s.

In Figure 2.6 a backward Euler time integration of the sarmsedase is performed and the CFL condition
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is againccp. = 5. The time evolution of the Gaussian curve is analogue amdeiative precision grows
also linearily, but not so fast as in the test case for a Craigkisbn time integrator.
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Figure 2.6: Time evolution of the Gaussian curve and the relative pi@tigsing a backward Euler time
integrator and &, = 5 from Os to 5.71s.

Figure 2.7 shows the time evolution of the Gaussian curve bgns of a backward Euler and the corre-
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sponding relative precision for an insufficient CFL condit@gr_. In comparison to the insufficient CFL
condition for the Crank-Nicolson time integrator, the vatde&cr, is by far smaller and instabilites occur
much earlier. As the relative error grows also exponentittle CFDS is not conservative.
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As mentioned an optimal CFL conditiamgr =10 leads to a fully stable backward Euler time integration
which is illustrated in Figure 2.8. The only difference beem both time integration procedures is that the
relative error does not oscillate and is constant for tinaegdr than 8s. The total cell volume is conserved
as well for all times.
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3 Extension of the Conservative Finite Difference Scheme to
two dimensional General Diffusion Equations

The basic concepts behind the developed CFDS are deriveth\@tiapter 2 and can be easily extended
to 2D, see Section 3.1. Difficulties in context with a mulitim@nsional treatment of the general diffusion
equation especially rise from the limited computationabmirces. One simply realizes that the number of
cells N for certain level of mesh refinement grows with the powaf the dimension D. As a further con-
sequence, the resulting linear systems of equations areafrtder N x NP which implies high memory
requirements. Another interesting quantity that allowsoumake predictions about the computational fea-
sibility of the problem is the number of non-zeros of the tioefnt matrix. Beside the dependence on the
level of mesh refinement and dimensionality of the probléma umber of non-zeros is mainly determined
by the order of polynomial interpolation of numerical fluxnfitions at the boundaries, see Section 3.2.
Thus, one has to make a compromise between the desired nfieginent for the problem and a sufficient
order of polynomial interpolation of the numerical flux fuilons. In Section 3.3 the relations for boundary
conditions in 2D are outlined. Section 3.4 eventually pneséhe results of a test case that is analogue to
Section 2.5. Once again the stability of the CFDS, used tcesal2D general diffusion equation which
generates a Gaussian profile as a solution, is studied. Int€&tathe 2D CFDS is applied to heat transport
problems in magnetized fusion plasmas.

3.1 Conservative Formulation of a two dimensional General Diffusion
Equation

A general form of a diffusion equation in 2D is given by the sedpuent expression,

af(x,y,t)

22 = 000y DTy ~v(xy) Tx3D) +a0x). (3.)

wherebyD(x,y) describes the diffusivity and accordinglyx,y) the velocity of convection or advection.
The last ternqg(x,y) stands for sources or drains in the system. A further numletieatment requires a
discretization of the domain of solution. Figure 3.1 showseguidistant regular 2D mesh which is split
up into N cells with N or Ny subdivisions irx- andy-direction, respectively. The axes in Figure 3.1 are
labeled in relation to a highlighted céf. In order to be able to apply the 1D computational treatment t
the 2D case, a linear indéx going down the columns consecutively in an ascending prslassigned to
each cell. In the case of a regular mesh one can calculatedieesi (k) linked with thex-coordinate of
the left boundary and the indicgék) linked with they-coordinate of the upper boundary from the linear
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indexk,

09 = I

(k) = ((k=1) modN)+1,

whereby][-| denotes the ceiling function. Naturally, the informatidroat the boundaries must be provided
by adaptive mesh infrastructure in the instance of irraguleshes.

For a conservative treatment one again integrates Equ@ibhover the area of theth cell as in the 1D
case, confer Section 2.1.
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Figure 3.1: Computational grid in 2D with labeling of the axes in relattorthe highlighted celk.

Defining the cell-volumer(t) = fAk dA f(x,y,t) and applyingGauss’s law{21,p. 687], Equation (3.1)

42



becomes an ordinary differential equation,

T~ [asnreyn+a 32)
A
with
Cxyt) = D(xy) Of(xyt)—v(xy) f(xyt) (3.3)
and
Q = [dagxy).
Ax

As a consequence, the value of cell-voluRecan only change by numerical fluxE$x, y,t) through the
boundaries or by a source or a dr&R. Considering the quadrilateral grid in Figure 3.1, the outlva
pointing unit normal vector to the boundady is

B 1 dy
N dx2 +dy? \ —dx

and the line element is
ds = +/dx2+dy2.

Hence, Equation 3.2 can be evaluated in the case of a quadallgrid and one obtains

d
T~ [ ey dy— iyt 9 +Q
IA
= () +Qk,

wherebyl(t) denotes the numerical flux difference for #h cell. In order to compute the numerical flux
differencely(t), one has to specify the path of integratid#y which moves in a counter clockwise manner
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aroundr,

Ik(t) - / (rX(X7yat) dy_ FY(X7y7t) dX)
A
y

F
i
Jf(x,y,t
= / dy | D(Xi(k)+1,Y) % =V (Xik)+1:Y) F (X1, ¥5t) —
Yi(+1 Xitk+1
of(xy,t
— D% Y) % ) +Wx(Xi(k)»Y) f(Xi(k),y,t)] -
(k)
Xi(k)+1
Jof(xy,t
- / dx [D<X7Yj(k)+l) % —W(XYjm+1) FXYjar1t) —
Xi(k) Yitk+1
df(xy,t
- D(X%Yj) oTxy.t) +Vy (X, Yj) f(xayj(k)vt)] : (3.4)
Vit

A mathematically closed formulation requires that the galof f (x,y,t) and its derivatives at the bound-
aries in Equation (3.4) must be reconstructed from the adllmes. For this reconstruction a polynomial
interpolation of the function at the boundaries is congdexgain, confer Section 3.2. The integrals appear-
ing in Equation (3.4) can be evaluated either analyticallgyomeans of numerical integration procedures.
In the developed code@auss-Legendre quadratureutine [2,pp. 140-155] is exploited for the integration
which allows us to handle complex analytical expressionghie diffusivity or velocity of advection.

If the numerical fluxes vanish at the boundaries of the domBsolution and all sources balance the drains,
the total cell volume is conserved as described in the 1D, casder Equation (2.4).

3.2 Polynomial Reconstruction of the Numerical Fluxes at the Cell
Boundaries in two Dimensions

Analogue to the 1D case, the polynomial reconstruction efiimerical fluxes in 2D is based on a Taylor
expansion of the functiord at the boundaries. Due to the higher dimensionality one didsett four
boundaries. In the following calculations the polynomiaterpolation of the right and left boundary,
respectively, of a cell is described extensively. The poiyial interpolation of the upper or lower boundary
can be done accordingly by rotating the stencils and cooretipg polynomial expansions.
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From the Taylor expansion df(x,y,t) up to ordemin x-direction and orden in y-direction,

m«n

00,00+ TV = S i i1 (1) (X=Xi0) Y (Y= yjgg 1) P (3.5)
=]
with
_ Yk ik
Vi = T
and
Px = (9,1,2,...,m—%, ...... ,0,1,2,..., m—1)
nx
py = (000 L0LLL .1 ,n—1n—-1n-1...n-1),
mx mx

whereby the left subscripts again denote the expansioreataitboundary and the elemepis j k). (t)
abbreviate the corresponding polynomial coefficients ef Thylor series, one can derive again a relation
for the cell volumed(t),

Mo+ Vi

RO = / dx / dyz 0-+128 (1) (X—=Xi(i0)) Px() (y — ik +1/2)py(|)
%i(i Yik+1
m«n
=D iR+ (1) i0.109+2A% (3.6)
=1
with
Pr(h)+1 p()+1
<X'(R)+1 Xl(k)> <X|(k)_xl(k))
P = NOFS]
py(h+1 py(D)+1
.<yj<R>_yj<k)+1/2> _(yj<k>+1—yj<k>+1/z>
py(1)+1

In Equation (3.5) a compact notation for the powers in theldragxpansion is introduced. Along with
the linear indexing of the cell volumes, this allows us to niag multi-dimensional problem to a formal
1D problem for which a matrix formalism and computationaltioes are available. Using the polynomial
approximation (3.6), the cell volumég(t) within a defined stencil should be approached up to a known
truncation error. This demand results in a system of lingaagons for the unknown polynomial coeffi-
cients. A well-posed set of equations is obtained by stetitdt are symmetric with respect to the boundary
and that involvem cells in x-direction andn cells in they-direction. As one can imagine, this demand is
hard to realize in the instance of adaptive meshes. For tiisoge more sophisticated criteria must be
considered. Since the same computational treatment, {aguoial coefficents ) j« )+1/2a4( ) are again
not calculated explicitly; instead of them, one computesitiverse of ) jk)+1.A+ i(k),j(k)+12Bjk: Which
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is independent of time and can be used to determingghey) 1, (t)) from the cell volumes,

i(,jlor1pa () = > (k)i (0 +22Byi F(t)
k € symmetric stencil
of boundary(xm ,yj<k)+1/2)

with
mxn
Ok = Z ()+12P (1), j()+12B -

The inverse ) jk)+v,Bijk links the polynomial coefficents with the cell volunmiggt); thus, it is possible to
formulate a scheme solving Equation (3.1) which only malsesai thef; (t) within the stencil as in the 1D
case. For instance an appropriate fourth orde«direction and third order iy-direction approximation
of function f (x,y,t) at the left boundaryx ), Yj+1»), Which requires a twelve-cell stencil, is depicted in
Figure 3.2.

Ya

Y2
Ys
\A Y
Yig-1
Fianya | Fieny-s | Fia | Fionya Vi
Feany | Fieny Fy Frny Yitge1 i
Feonyea | Fenysa | Fern | Fronysa Yie2
Yitea
Yny-3
Yny-2
Yny-1
Yy
Ynye
Xy Xy X3 Xitg-2 Xif-1 Xigq Xifije1 Xitg+2 X Xnxe1

Figure 3.2: Twelve-cell stencil for fourth order ir-direction and third order ig-direction approximation
of function f(x,y,t) at the left boundary of cef(t).

Using the interpolation formula for the polynomial coeféints; ) j«)+1.a (t), one can evaluate the nu-
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merical flux differencdj, given by Equation (3.4),

() = [l®) —1®)] = [I"Q) = 1" (1)]

with
I msn |
/ dy lD(Xi(k)-klay) > Y Yiwse) i > i(k)+1,j(k)+1/2B1k Fic =
0+ |:1' ke symmetric stencil
pe(1)=1 of boundary(Xix)1.¥j (k) +2)
msn B()
—V(i(k)+1:Y) Z (Y= Yim+2z) ) i(k)+1,j(K)+1/2Bik Fi
= ‘ k € symmetric stencil
px(1)=0 of boundary(xi(k)+17yj(k>+1/z)
Vit msn
|
Kty = dy [D<Xi(k);Y) S o v-viwe)™ Y 109, (k+2Bik Fie =
Vit =1 k € symmetric stencil
px()=1 of boundary(x,-(k) ,yj<k)+1/2)
msn B()
Wi Y)Y Y Viwe) T Y 100:(0-+2Bik P
:1| k € symmetric stencil
px(l )':O of boundary(xi(k> 7yj(k>+1/2)
Xi(k)+1 msn
Px (|
1(t) = dx {D(x Yio11) Z (X=X +1/2) Pell) > i(K)+1/2,j () +1Bik Fk —
Xi(k) 1= | k € symmetric stencil
py(1)=1 of boundary(Xk)+1/-Y;k)+1)
fay Bx(
=Wy (X, Yjk)+1) z (X Xi( )+1/2) i i(k)+2/2i(+1Bik P
I:lI k € symmetric stencil
py(1)=0 of boundary(Xk)+1/-Y;k)+1)
Xi(k)+1 men
Px (|
() = / dx [D(X, Vi) D> (X—Xiks1e) Pl ) > i(k)+2/2j (k) Brk P —
X I=1 k € symmetric stencil
py(1)=1 of boundary(X()+12-Yj(k))
msn
|
—Vy(%,Yjk) (X~ %ig11) P D i+, Bk Fic |
= | k € symmetric stencil
py(1)=0 of boundary(Xk)+1/:Yj(k))

whereby the hat denotes the powers of the polynomial fordteged stencil. All contributions arising from
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the numerical flux differencelg(t) are again subsumed in a mathk, as described in Section 2.2. The
resulting ordinary differential equaton (2.10), which Isample dependence on time, can be solved using
suitable time integration procedures, confer Section 2.3.

3.3 Implementation of Boundary Conditions in the Conservative Finite
Difference Scheme for General Diffusion Equations in two Dimensions

The discussion in this section will be restricted to the iempéntation of Dirichlet boundary conditions that
are used to describe walls of finite temperature as in the alade investigated model for the transport
in fusion plasmas. As mentioned in Section 2.4, for the cdatmnal implementation two different ap-
proaches exist which have respective pros and cons. Eitleamakes use of ghost cells or the interpolation
function is modified at boundary of the domain. The ghostmethod can be readily extended to 2D and
needs no further discussion. For the modification of thepaiation function at boundary of the domain,
one has to adapt the derived formulas.

To illustrate this adaption of the formulas, we considergtencil in Figure 3.2 and a Dirichlet boundary
condition where the functiofi(x,y,t) vanishes at the left edge of the domain. Following Equat®5)(
the functionf can be expanded into a Taylor series at the boun@aryj)1/,),

Liksief O = 1 jaoaat) (x—%igo) P (y = Yjh 1) PV,

whereby the polynomial coefficients k)1, (t) have to vanish fopx(l) ~0dueto boundary condition,

Lj(k)+1/2 f (Xlayj‘ (k)+1/2,t) = 0.

Using the modified interpolation function, it is possiblest@luate the sought numerical fluxirdirection
Ix(X,y,t) (3.3) at the left edge of the domain,

Jf(x,yt
Mx(X1,Yj+12t) = DX, Yjw+12) % + Ve (X1, Yj+12) FX1 Y0112t
(X1,Yj(k)+1/2)
m«n

|
= D(xYjme) Y (Y—YJ(k)+1/z)py()1,j(k)+1/234(t)—

pe(1)=1
mxn

|
—Vx (XL Yj+12) Y (y_Yj(k)+1/2)py()1,j(k)+1/2al(t)-
—_—————

pu(1)=0 -0
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can be approximated by a finite difference of
(X1Yj(K)+1/2)

As in the 1D case, the partial derivati\fé%

first order accuracy,

—0

Af(xy,t) Ltk T O Yo t) = 2001 T 02, Yy t) (37)
ox , B AX ' '
(X1,Y(k)+1/)

From Equation (3.7) one eventually obtains a relation ferstught polynomial coefficient; 1@ (1)),

|
| 2kt px(l) =1
1,j(K)+1/2% (t) - AX for px(l’)!:O

Better approximations to the derivative use finite diffeeswith truncation errors of higher order.

3.4 Test Cases for the two dimensional Conservative Finite Difference
Scheme

As in Section 2.5, the subsequent test cases study a 2D gelifarsion equation (3.1) with a constant

-2
diffusion coefficientD(x,y) =1 and velocity of advectiou(x,y) = X :

—2y
af(x.y,t) [
5 u(uf(x,y,t) ( , ) f(x,y,t)>,

which is solved by a 2D Gaussian curve with a FWHM\y@ in each direction,
fxyt) = e &),

Since there are no sources in the considered system, thadystzde solution will be in all test cases
f(x,y,t — ) =0 because particles get lost due to round-off errors and ricahénstabilities. As an ini-
tial profile we choose a cylinder whereby the included areatrba equal to the area of the 2D Gaussian
Agaussian2o= TT.  This demand results from the conservativity of the apphedierical scheme. In the
subsequent test cases the radius of the cylinder is 1 aneégoastly the height has to be 1. Further-
more, the chosen polynomial reconstruction is of fourtheoid x-direction and third order ig-direction,
respectively. An estimate for the CFL condition is calculiatg following expression [30,p. 415],

A < CCFL.(rri,?x(uvx<xi,yj>u+Hvy<m-,yj>u>+2D( L >)1

AX Ay (Ax)?  (Ay)?

I
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whereby a spatial discretization 8k=0.08 andAy=0.08 is chosen.

Figure 3.3 shows the time evolution of the 2D Gaussian cunekthe relative precision using a Crank-
Nicolson time integrator. Under the considered CFL conditigr, = 10 the relative precision grows only
linearily and the CFDS proves to be conservative.
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Figure 3.3: Time evolution of the 2D Gaussian curve and the relativeipi@t using a Crank-Nicolson
time integrator and acp. = 10. Note that the first four plots have a different scalgr@xis.
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The time evolution of the Gaussian curve and the correspgr@ilative precision for an insufficient CFL
condition is depicted in Figure 3.4 whereby the same timegiration procedure is used. As the relative
error grows exponentially, the CFDS is not conservative.
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Figure 3.4: Time evolution of the 2D Gaussian curve and the relativeipi@t using a Crank-Nicolson
time integrator and ecp. = 25. Note that the first two plots have a different scale/@xis.
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In Figure 3.5 a backward Euler time integration of the saraedase is performed and the CFL condition is
againccg. = 10. The time evolution of the Gaussian curve is analoguelantelative precision decreases
also linearily.
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Figure 3.5: Time evolution of the 2D Gaussian curve and the relativeipi@t using a backward Euler
time integrator and ecp. = 10. Note that the first two plots have a different scale/@xis.
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Figure 3.6 shows the time evolution of the Gaussian curve égns of a backward Euler and the corre-
sponding relative precision for an insufficient CFL conditegr, . In comparison to the insufficient CFL
condition for the Crank-Nicolson time integrator, the vatde&cr, is by far smaller and instabilites occur
much earlier. As the relative error grows also exponemtittile CFDS is not conservative.
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Figure 3.6: Time evolution of the 2D Gaussian curve and the relativeipi@t using a backward Euler
time integrator and acp. = 20. Note that the first five plots have a different scalg/@xis.
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In contrast to the 1D test case, an optimal valuecfgi could not be found for both time integrators. More
challenging test cases concerning heat transport in magddtsion plasmas are performed in Chapter 4.
Especially the occurring high anisotropies, which shoutdrésolved with a high order scheme, are a
benchmark for the chosen mesh refinement and the order obtinegmial reconstruction.
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4 Heat Transport in Magnetized Fusion Plasmas

The so far performed test scenarios for the 2D CFDS (confeid®e®.4) can be used to validate the oper-
ability, but are certainly not suited for a benchmark un@adistic conditions. A widely studied problem,
which is often considered as a benchmark for PDE solver$ieideat transport in magnetized plasmas
[31, 32, 33, 34]. A mathematical description of the heat gpamt in magnetized plasmas is given in
Section 4.1. In Section 4.2 an analytical solution for anild@mium configuration in a Tokamak is com-
pared to the numerical results of the CFDS. A disussion of arttiv model for the Tokamak is given in
Section 4.3. Finally, Section 4.4 concludes this chaptéh wn outlook on future improvements of the
developed CFDS.

4.1 General Diffusion Equation for Modelling Heat Transport in
Magnetized Fusion Plasmas

A macroscopic description of the heat transport in magedtiasion plasmas is given by a general diffusion
equation [31],

of
& = OT+g (4.1)
with
<
r = p-Of -vf, (4.2)

wherebyq is a heat source arld corresponds to the numerical flux function that in turn deiseon the
velocity of advection or convectiom and on the second-order diffusivity tens%r This second-order
diffusivity tensor<|:_)> models a local anisotropic diffusion with different coeffiats for parallel ;) and
perpendicular heat transpoR () [35],

= o A o
D = D <]l —hh> + DHDD. (4.3)

In Equation (4.3)h h denotes the dyadic product of the unit vectors in the magfietd directionB,

‘IUJ

h =
N |

o]

Since the geometries of fusion research devices, e.g. arl@kacan be very complicated, one is inter-
ested in having a coordinate-system independent fornounladf Equation (4.1). According to the book
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of D’haeseleer et al. [36], a co- and contravariant notaitmtuding theEinstein summation convention
is introduced. LeR(ut,u?,u®) denote an invertible transform from Cartesian coordinatgsz to any
curvilinear coordinate systent, u?, us,

x = x(ul,u?,ud)
Rub v w): y = yuh ). (4.4)
z = z(uh,u?,ud)

Using this transformation, the divergence occurring inrtgthand side of Equation (4.1) becomes

or = — ——(vgrh, (4.5)

whereby, /g is the determinant of the covariant metric tenggr that in turn is defined as the dot product
of the tangent basis vectogsandg,

0ij '§

ou dul
ox ox dy oy 0z 0z

od aul T ad aul T au oul”

Il
Q P

The numerical flux functiorl” (4.2) in curvilinear coordinates is obtained by the transfation of the
<
gradient and of the second-order diffusivity tengor

- of .
r = D”gggmm—v'gf
~——
— "
= Ie. (4.6)

Using (4.5) and (4.6), one can rewrite the heat transporatmu (4.1) into a general form which is valid
for any curvilinear coordinate system,

of 19 JRCARNEY
AR ﬂaui@@ a v'f)-l—q. (4.7)

Comparing Equation (4.7) to the conservative form of the 2Degal diffusion equation (3.1), one recog-
nizes that Gauss’s law cannot be applied directly. A coradmey formulation of Equation (4.7) is realized
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by introducing a new variabld,= /g f,

of ([ yiof 2\ .
ot Ay (D dul _Vlcf) +4
with
.1 0
= -
Ve v+ (D 5 9u \/Q)
and
qa = Voa (4.8)

Furthermore, a coordinate transformation of the diffugi#nsorD'l (4.3) is necessary for a generalized
treatment of the heat transport as in Equation (4.7). Thdidyaoduct occurring in the righthand side of
Equation (4.3) needs no further treatment, since it transgdike the components of the vectarFor this
reason one has to consider only the unit ter]%olm Cartesian coordinate?sis equivalent to the Kronecker
delta,

R o i
lcat = 0'€§. (4.9)
Since a tensor is independent of the choice of a particulardooate system, the identity,
1'Ve g = 1Mge, (4.10)

must be fulfilled. Plugging the expression for the unit tenscartesian coordinates (4.9) into the identity
(4.10) yields the following transformation for the unit sem,

i ou'l au'

i gl
]l/ - ]lcrgrt dRI (?Rm
_ 5m ou' ou'!

JR JR™
—————

L gi
= gl (4.11)
The components of the diffusivity tensor occurring in Equa(4.7) are

D' = D, (¢" - A'A) + Dy A", (4.12)

if Equation (4.11) is considered. In the next sections tte transport for two magnetic field configurations

in a Tokamak is studied. The conside@dields are based upon an analytical model which makes use of
the cylindrical symmetry of the Tokamak [37]. A model of arugitprium configuration is presented in
Section 4.2. In this instance an analytical solution for fleat transport is available which is used to
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benchmark the numerical results regarding the resolutidrigh anisotropies. In the Section 4.3 the heat
transport for a divertor configuration is illustrated.

4.2 Equilibrium Configuration in a Tokamak

Since the magnetized fusion plasma has a temperature oflifKo a magnetic confinement is absolutely
essential for fusion research devices. The simplest cdricep closed field configuration is a Tokamak
which generates a toroidal confinement [38, 39]. In order &kenthe discussion of the magnetic field
easier, one introduces cylindrical coordina®eg, Z due to the rotational symmetry of a Tokamak,

X = Rcosp
y = Rsing
7 — 7. (4.13)

For a Tokamak the total magnetic field can be split in a toladd a poloidal part,
B = Etor+§pol-

The toroidal magnetic fiel8,,,,

B, = const, (4.14)

is achieved by external field coils. A toroidal current, flagiiin the plasma, produces accordingAtm-
pere’s law[40,p. 180] the superimposed poloidal magnetic figlg,

Al = Age’. (4.15)
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In Equation (4.15A,, denotes the corresponding vector potential. To obtain aeffod a stable heat
transport, one chooses a poloidal vector potential [37],

Ay = ApoW(R—Ro)*+(Z—20)%)

with

Agpo = const, (4.16)

wherebyRy, Zo denotes the center of the tube. Additionally, the ratio efabsolute values of the poloidal
and toroidal magnetic field must be proportional to

‘ ‘Epol ’ ‘ re
[ Biorll Ro Ofactor’

(4.17)

In Equation (4.17Y_ is the radius of the tube argg,cior indicates the safety factor [38,p. 53]. The values
for the constants appearing in Equation (4.14) to (4.17)hosen in such a way that a fusion research
device like ITER [38,pp. 511-515] is modelled,

Zy = 0
Ry = 5
. = 2
By = 2
Ofactor = 3.

Hence, one can evaluate the components of the diffusivitgaie(4.12) in cylindrical coordinates (4.13),

4%, (Z—20)°
2 2 2
B¢+4A¢70 r
4A2 0 (R—Ro) (Z—2o)
2 2 2
B¢+4A(p70 r

DRR = D, + (Dj—Dy)

D¥* = — (Dj-Dy.)
DRZ

2
4Aé70 (R—Ry)
2 2 27
qu+4Aqo,0 r

D“* = D, + (Dj—Dy)

whereby thep-elements vanish due to the rotational symmetry of a Tokarakther criterion for a stable
transport is that the heat sourgén Equation (4.7) [37], that balances the heat transpogigreticular to
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the magnetic field lines, is proportional to an exponentiattion of the vector potential,

A
g U e
A(p_o I‘2
= eﬁ Yo
with

Since all quantities are determined in cylindrical cooadés, one uses this representation also for the
conservative heat transport equation (4.8),

af 0 ([ prdf _grdf DRR.
- = - T f
at ~ OR (D R Pz wRT
o [ pof ,0f DR\
+ 55 (D SR TP - f)+d (4.18)

whereby the velocity of advectionis set to zero and all derivatives gdirection vanish because of the
rotational symmetry. For the considered heat transportainmak is able to derive an analytical solution of
Equation (4.18) [37],

r’ 2 A(p‘o
Yo —1
r'/

W e w1
f(r)y = 2D Ago r/dr )

(4.19)

In Figure 4.1 the numerical results for the heat transparaggn (4.18), that are obtained by a 2D CFDS
using a fourth order reconstruction of the numerical fluxciion, are compared to the analytical solution
(4.19). To allow a comparison of the numerical results toahalytical solution, the domain of solution
is cut along theR-axis and the ratio of parallel transport to perpendicutangport is set to 0 As one
recognizes easily, the numerical results for mesh sizep td 901x 901 do not reproduce the behavior of
the analytical solution at the boundaries; instead, a Smgaut is observed. In contrast, the core of the
Tokamak is well approximated for all mesh sizes. The smalllggtween the amplitudes of the analytical
solution and of the numerical solutions, respectivehsesifrom a finite mesh size.
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—analytical solution
—— mesh size 301x301
mesh size 501x501
mesh size 701x701
—— mesh size 901x901
— mesh size 1101x1101

R*{(R,Z) / Arb.

0.6

0.4

0.2

Figure 4.1: Cross section along tHe-axis of an analytical solution for an equilibrium configtioa in a
Tokamak forD; =1 andD = 10°, respectively, and comparison to numerical results usipglgnomial
reconstruction of fourth order in each direction and vagyimesh sizes.

The surface (left) and contour plot (right) for a mesh siz&Xd1x 1101 and for the same set of parameters
as in Figure 4.1 are depicted in Figure 4.2. As predicted byatialytical solution, the computed solution
has a rotational symmetry which results in concentric es¢h the contour plot.
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Figure 4.2: Surface (left) and contour plot (right) of an equilibriunmdiguration in a Tokamak fob | =1
andD| = 10°, respectively, using a polynomial reconstruction of fawtder in each direction and a mesh
size of 1101x 1101.

In Figure 4.3 the growth of absolute error in dependence emtésh size is shown, whereby a polynomial
reconstruction of fourth order in each direction is usede ©ther parameters are chosen as in Figure 4.1.
In this context, the absolute error is defined as the abswoaltee of the height difference &=5,Z=0
between the numerical solution for a mesh size of 12A101 and the numerical solution for all other
tested mesh sizes. From the slope between the last two data,pehich is about three, one can estimate
the order of the polynomial reconstruction. This differemedicates that the numerical solutions are not
converged for the considered mesh sizes. Hence, a highérnef@sement must be used.
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Figure 4.3: Absolute value of the error in dependence on the mesh siirgy apolynomial reconstruction
of fourth order in each direction. The transport coefficseat the equilibrium configuration are set to
D, =1andD =10, respectively.

The comparison of the analytical solution (4.19) with thenewical results for the heat transport equation
(4.18), that are obtained by a 2D CFDS using a fifth order recoctson of the numerical flux function,
is shown in Figure 4.4. As in Figure 4.1 the domain of solui®ut along theR-axis and the ratio of
parallel transport to perpendicular transport is set fb ifdcontrast to the numerical solutions obtained by
a fourth order reconstruction of the numerical flux functitre results for mesh sizes of up to 90901
are able to reproduce the behavior of the analytical soluicthe boundaries. Analoque to Figure 4.1, a
small gap between the amplitudes of the analytical solwioth of the numerical solutions, respectively,
appears which arises from a finite mesh size.
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Figure 4.4: Cross section along tHe-axis of an analytical solution for an equilibrium configtioa in a
Tokamak forD; =1 andD = 10°, respectively, and comparison to numerical results usipglgnomial
reconstruction of fifth order in each direction and varyingsim sizes.

The surface (left) and contour plot (right) for a mesh siz&Xd1x 1101 are illustrated in Figure 4.5, using
the same set of parameters as in Figure 4.4. Again, conceinitles appear in the contour plot which is
due to the rotational symmetry.
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Figure 4.5: Surface (left) and contour plot (right) of an equilibriunmdiguration in a Tokamak fob | =1
andD = 10°, respectively, using a polynomial reconstruction of fiftider in each direction and a mesh
size of 1101x 1101.

In Figure 4.6 the absolute error in dependence on the meshssehown again, whereby a polynomial
reconstruction of fifth order in each direction is used. Ttieeoparameters are chosen as in Figure 4.4.
From the slope between the last three data points, whichastdlye, it is possible to make an estimate
for the order of the polynomial reconstruction. This valsan good agreement with the order of the
polynomial reconstruction of the numerical fluxes.
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Figure 4.6: Absolute value of the error in dependence on the mesh sing agpolynomial reconstruction
of fifth order in each direction in the case of an equilibriuanfiguration in a Tokamak fob |, =1 and
D =10, respectively.

In Figure 4.7 the numerical results for the heat transparaggn (4.18), that are obtained by a 2D CFDS
using a fifth order reconstruction of the numerical flux fuoict are compared to the analytical solution
(4.19). For the comparison the domain of solution is againatong theR-axis and the ratio of parallel
transport to perpendicular transport is set t6.1 this case, the numerical results for mesh sizes of up
to 1101x 1101 reproduce neither the behavior of the analytical soiwt the boundaries nor the core of
the Tokamak. To get a better agreement with the analytidatiesn, one has to make use of a higher mesh
refinement or of a polynomial reconstruction of higher ordéris brute force strategy is limited due to the
vast computational costs; instead, it is better to use nsesitth an adaptive refinement corresponding to a
test function, whereby the test function is a guess for the $olution. A computational infrastructure for
the adaptive meshes is under way.
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Figure 4.7: Cross section along tHe-axis of an analytical solution for an equilibrium configtioa in a
Tokamak forD; =1 andD = 108, respectively, and comparison to numerical results usipglgnomial
reconstruction of fifth order in each direction and varyingsim sizes.

The surface (left) and contour plot (right) for a mesh siz&Xd1x 1101 and for the same set of parameters
as in Figure 4.7 are shown in Figure 4.8. Although the heifjth@numerical results does not converge to
the height of the analytical solution, the surface plot lepradicted a rotational symmetry, which in turn
yields the concentric circles in the contour plot.
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Figure 4.8: Surface (left) and contour plot (right) of an equilibriunmdiguration in a Tokamak fob | =1
andD = 10°, respectively, using a polynomial reconstruction of fiftider in each direction and a mesh
size of 1101x 1101.

In Figure 4.9 the absolute error in dependence on the meshssghown again, whereby a polynomial
reconstruction of fifth order in each direction is used. Aller parameters are chosen as in Figure 4.7. The
slope between the last three data points is approximatedy Titis value is in a good agreement with the
order of the polynomial reconstruction of the numerical ésix
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Figure 4.9: Absolute value of the error in dependence on the mesh sing agpolynomial reconstruction
of fifth order in each direction in the case of an equilibriuanfiguration in a Tokamak fob |, =1 and
D =10%, respectively.

A divertor model for a Tokamak is studied in the next sectiGontrary to the model investigated within
this section no analytical solution exists. For this reasmonly possible to make a qualitative comparison
between the numerical result and the assumed solution.

4.3 Divertor Model for the Tokamak

A divertor in a Tokamak is a magnetic field configuration whigproduced by additional external coils in
order to divert the outermost magnetic field lines out of tle@mplasma into a separate chamber where they
intersect a material divertor target [39,pp.331-360]. sTdivertor configuration is used in fusion devices
to exhaust the burnt fuel. In contrast to the limiter conceptvhich the material target is in contact with
main plasma, the recycling of neutrals and the productiampfirities is spatially separated from the core
plasma. Practically, poloidal divertors are chosen bexthespoloidal field is easier to divert than the larger
toroidal field. The poloidal divertor configuration usesls@arrying current in the same direction as the
plasma current for the purpose of the formation of null- op&int, as depicted in Figure 4.10. A X-Point
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marks the spatial position where the net poloidal field, ihgenerated by the toroidal plasma current and
divertor coils, vanishes. The last closed flux surface, eldted separatrix, is produced by the magnetic
field lines passing through the X-Point. As desired, the is#pa devides the plasma into a core region,
where the particles are confined, and into the scrape-ddfldarticles crossing this scrape-off layer move
along the magnetic fields lines to the divertor region whiey tare exhausted.

So as to adapt the analytical model described in Sectionoda? divertor configuration, a new poloidal
field is introduced [37],

(R—Ro)2+(z—zo)2) N

0

+ Aga log((Ro—Ry)*+(Z~21)%)
with
Ap1 = 0.7Ag0. (4.20)

In the calculations following values of the constants areseim,

n = 2
ro = 02-r.
Zy, = 0
Zy = —3-19
Ry = 5
By = 2
Ofactor = 3. (4.21)

The value for the constam, o is calculated according to the relation given by Equatiati74.Based
on the above-described poloidal magnetic field, one is abmpute the required components for the
diffusivity tensor (4.12) appearing in Equation 4.18. lgtiie 4.10 a surface plot of the modelled divertor
configuration using a polynomial reconstruction of fifth@rtch each direction is shown. For the numerical
result a mesh size of 504501 is used and the ratio of parallel transport to perpetali¢ctansport is set to
10%. On a larger length scale (left) only the behavior of the lwe@lasma is observed. As expected, on
shorter length scales (right) one recognizes the typicRoMit including the separatrix.
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Figure 4.10: Surface plots showing a divertor configuration in a Tokamaladarger length scale (right)
and on a shorter length scale (left). The numerical resolbiained by a polynomial reconstruction of fifth
order in each direction and a mesh size of 5®01, whereby the transport coefficients are sdd to=1
andD; =1C?, respectively.

4.4 Conclusion and Outlook

We studied the heat transport in magnetized plasma whicheémehmark for the resolution of a numerical
scheme regarding the high anisotropies of the transpofticieats. In realistic models for Tokamaks the
ratio of parallel transportd;) to perpendicular transporB( ) varies between foand 134 [31, 34]. The
developed CFDS using an equidistant regular mesh is ablestiveeratios ofD, to D, of up to 10.
Considering the simple analytical model (Section 4.2), @w®gnizes the massive influence of anistropy
on the resolution of the numerical scheme. While a fifth ordeeme is able to reproduce an anistropy of
100, it fails in the case of an anisotropy of &0The divertor configuration (Section 4.3) is used to test, if
more complexB-field configurations can be resolved. Using a fifth order seea qualitatively correct
result is obtained In order to exceed this limit an adaptiesimhas been implemented, which is a part of
ongoing research. The so far obtained results using agéapshes show very promising prospects.
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