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Abstract

As a consequence of the enormous progress made in the last few years, modern structure-

from-motion (SfM) techniques now allow the reconstruction of large-scale 3D models from

hundreds of images in just a few hours. Input images, which are required for the recon-

struction process, are easily accessible through Internet photo collection platforms such as

Flickr, Google Images and Panoramio. Additionally, recently evolved 3D reconstruction

databases, such as Photosynth and Photofly, contain a vast amount of freely available

reconstructed 3D scenes. Furthermore, registration and localisation of images from dig-

ital cameras are well explored; that being said, using video cameras rather than images

provides additional temporal information. The known geometry together with the video

information can be exploited to render realistic 3D videos from arbitrary viewpoints. Such

3D videos bring about additional knowledge to the already existent visual information.

Occlusion handling, foreground and background extraction and change detection are only

a few of the applications that are simplified with this additional depth information.

This master’s thesis proposes a novel approach, combining scene models and 2D videos to

render such 3D videos. Additionally, a self-calibration of the camera is implicitly incorpo-

rated into the registration process; hence, one can easily calibrate any camera by taking

a couple of images or a video from an existing 3D model. For this purpose, a standard

pinhole camera with a radial distortion model is used. The radial distortion model is

estimated with a non-linear optimiser through minimising the re-projection error.

Finally, a comprehensive evaluation of the applied techniques is given on the basis of real

self-captured datasets.

Keywords. Structure-from-Motion (SfM), Video Registration, Video Localisation, Pho-

togrammetric Calibration, Direct Linear Transform, 3D Video, Depth Map
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Kurzfassung

Aufgrund des enormen Fortschritts von 3D Rekonstruktionstechniken in den letzten Jahren

ist es heutzutage möglich ausgedehnte 3D Modelle in wenigen Stunden zu rekonstruieren.

Bild basierte 3D Rekonstruktion ist eine bekannte Technik aus der Computer Vision, die

aus mehreren überlappenden Bildern ein realistisches 3D Modell berechnet. Die für eine

solche Modellierung benötigten Bildermaterialien können sehr einfach aus Internetfoto-

sammlungen wie Flickr, Google Images oder Panoramio geladen werden. Zusätzlich zu

den existierenden Fotodatenbanken entstanden kürzlich weitere Plattformen, die solche

rekonstruierten 3D Modelle enthalten. Dadurch ist es möglich den 3D Modellierungss-

chritt zu überspringen und beliebige Modelle direkt aus diesen Datenbanken zu verwen-

den. Zwei der größten und bekanntesten 3D Rekonstruktionsportale sind Photosynth

und Photofly. Ebenso konnte in der Lokalisierung von Kameras anhand von Bildern ein

immenser Fortschritt erzielt werden. Durch die Verwendung von Videos, anstelle von

einzelnen Bildern, können zusätzlich zeitliche Informationen gewonnen werden. Aus den

rekonstruierten 3D Modellen in Kombination mit den Videoinformationen kann ein real-

istisches 3D Video erstellt werden. Mit der zusätzlich vorhandenen Tiefeninformation in

den 3D Videos können Aufgaben wie Vordergrund-, Hintergrund- oder Verdeckungsbe-

handlung vereinfacht werden.

Diese Masterarbeit beschäftigt sich mit der Erstellung eines solchen realistischen 3D Videos

aus einem 2D Video. Der hier vorgeschlagene Ansatz beinhaltet des Weiteren eine Selb-

stkalibrierung, wodurch jede beliebige Digitalkamera durch die Aufnahme einer geringen

Anzahl von Bildern kalibriert werden kann. Um die Genauigkeit der Lokalisierung zu

verbessern wurde ein herkömmliches Pinhole-Kamera-Modell mit einem radialen Verzeich-

nungsmodell erweitert. Die gesuchten Verzeichnungsparameter werden durch Minimierung

des Projektionsfehlers unter Zuhilfenahme eines nicht linearen Optimierers geschätzt.

Abschließend wird eine umfassende Evaluierung der angewendeten Techniken sowie des

vorgeschlagenen Ansatzes anhand von selbst aufgenommenen Datensätzen durchgeführt.

Schlagwörter. Structure-from-Motion (SfM), Video Registrierung, Video

Lokalisierung, Photogrammetrische Kalibrierung, Direkte Lineare Transformation, 3D

Video, Tiefenkarte
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Gelegenheit nützen möchte um allen lieben Personen, die mich während meines gesamten

Studiums unterstützt haben von Herzen zu danken. Ihr alle seid dafür verantwortlich,

dass ich mein Studium erfolgreich abschließen konnte.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introducing the Overall Workflow . . . . . . . . . . . . . . . . . 5

1.3 Structure of the Master Thesis . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

In the field of computer vision three-dimensional (3D) image-based reconstruction is a

method of determining a 3D computer model of arbitrary real-world scenes by taking

a bundle of images from various viewpoints [20, 31, 33, 89, 94]. 3D reconstruction

is a challenging problem in the computer vision community but a great deal of

progress has been made over the last decade due to enormous advancements in 3D

scanning technology and the increasing hardware performance of personal computers.

Furthermore, the increase in bandwidth of the Internet enables nearly everyone to access

and share reconstructed 3D models. As a consequence of these trends new applications,

in fields such as e-commerce and virtual museums, have been developed as addressed by

Bernardini and Rushmeier [9].

In practice, several technologies, which can be classified into active and pas-

sive methods, are available to measure the shape of an object. Active methods interfere

with the object itself, while passive methods simply use a camera to measure the

light emitted by the object. Examples for active methods range from time-of-flight

cameras, triangulation with laser scanners to structured light or modulated light, while

image-based rendering is a characteristic passive method. Figure 1.1 shows a 3D model

reconstructed with an image-based technique similar to the approach addressed by

Snavely et al. [94, 95], which takes as input a number of overlapping images of the same

object, captured from various viewpoints and simultaneously computes a 3D model of

1



2 Chapter 1. Introduction

the underlying scene and additionally estimates the camera pose for each image. This

technique is known as structure-from-motion (SfM) since the 3D model is reconstructed

from images taken at different viewpoints. Other recently proposed image-based

developments are the Photosynth1 project, mainly driven through Microsoft Research

Labs and the Autodesk’s Photofly2 project. Both projects mentioned have a commercial

background, therefore, major investments are to be expected.

(a)

Figure 2: Camera and 3D point reconstructions from photos on the
Internet. From top to bottom: the Trevi Fountain, Half Dome, and
Trafalgar Square.

SfM problems are particularly prone to getting stuck in bad local
minima, so it is important to provide good initial estimates of the
parameters. Rather than estimating the parameters for all cameras
and tracks at once, we take an incremental approach, adding in one
camera at a time.
We begin by estimating the parameters of a single pair of cam-

eras. This initial pair should have a large number of matches, but
also have a large baseline, so that the 3D locations of the observed
points are well-conditioned. We therefore choose the pair of images
that has the largest number of matches, subject to the condition that
those matches cannot be well-modeled by a single homography, to
avoid degenerate cases.
Next, we add another camera to the optimization. We select the

camera that observes the largest number of tracks whose 3D loca-
tions have already been estimated, and initialize the new camera’s
extrinsic parameters using the direct linear transform (DLT) tech-
nique [Hartley and Zisserman 2004] inside a RANSAC procedure.
The DLT also gives an estimate of the intrinsic parameter matrix

Figure 3: Estimated camera locations for the Great Wall data set.

K as a general upper-triangular matrix. We use K and the focal
length estimated from the EXIF tags of the image to initialize the
focal length of the new camera (see Appendix A for more details).
Finally, we add tracks observed by the new camera into the

optimization. A track is added if it is observed by at least one
other recovered camera, and if triangulating the track gives a well-
conditioned estimate of its location. This procedure is repeated,
one camera at a time, until no remaining camera observes any re-
constructed 3D point. To minimize the objective function at every
iteration, we use the sparse bundle adjustment library of Lourakis
and Argyros [2004]. After reconstructing a scene, we optionally
run a post-processing step to detect 3D line segments in the scene
using a line segment reconstruction technique, as in the work of
Schmid and Zisserman [1997].
For increased robustness and speed, we make a few modifica-

tions to the basic procedure outlined above. First, after every run of
the optimization, we detect outlier tracks that contain at least one
keypoint with a high reprojection error, and remove these tracks
from the optimization. We then rerun the optimization, rejecting
outliers after each run, until no more outliers are detected. Second,
rather than adding a single camera at a time into the optimization,
we add multiple cameras. We first find the camera with the greatest
number of matches,M , to existing 3D points, then add any camera
with at least 0.75M matches to existing 3D points.
Figures 2 and 3 show reconstructed cameras (rendered as frusta)

and 3D feature points for several famous world sites reconstructed
with this method.
The total running time of the SfM procedure for the datasets

we experimented with ranged from a few hours (for Great Wall,
120 photos processed and matched, and 82 ultimately registered)
to about two weeks (for Notre Dame, 2,635 photos processed and
matched, and 597 photos registered). The running time is domi-
nated by the iterative bundle adjustment, which gets slower as more
photos are added, and as the amount of coupling between cameras
increases (e.g., when many cameras observe the same set of points).

4.3 Geo-registration
The SfM procedure estimates relative camera locations. The final
step of the location estimation process is to align the model with a
geo-referenced image or map (such as a satellite image, floor plan,
or digital elevation map) to enable the determination of absolute
geocentric coordinates of each camera. This step is unnecessary for
many features of our explorer system to work, but is required for
others (such as displaying an overhead map).
The estimated camera locations are, in theory, related to the ab-

solute locations by a similarity transform (global translation, rota-
tion, and uniform scale). To determine the correct transformation

(b)

Figure 1.1: a) Photograph of the Trevi Fountain in Rome. b) 3D model of the
same object, reconstructed by applying an image-based approach as
described in [94, 95]. These images are taken from Wikipedia3 and
[94], respectively.

In contrast to the passive methods, Figure 1.2 shows a reconstructed model

using the triangulation principle and a standard laser scanner, which is an active method.

Levoy et al. [52] developed equipment for such a 3D laser scanner and used it to scan

and reconstruct Michelangelo David’s statue. Another up-to-date passive method is

Microsoft’s Kinect camera, usually constructed as a novel interface for video gaming;

though, it can also be used for depth measurements and 3D reconstruction. This

consumer depth camera has caused a revolution in the computer vision community since

it is the first affordable depth camera. Another circumstance, which shows the immersive

interest in this new camera technique, is the fact that Microsoft sold approximately eight

million Kinects in just the first two months, as Microsoft announced at 2011 International

CES. The KinectFusion [47, 48, 72], as Microsoft’s 3D reconstruction project is called,

can reconstruct entire scenes in real-time using a novel GPU-based approach. An entire

room, as shown in Figure 1.3, can be reconstructed in only a few seconds by moving the

Kinect camera around in the room.

1http://photosynth.net
2http://labs.autodesk.com/technologies/photofly/
3http://en.wikipedia.org/wiki/Trevi Fountain
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(a) (b)

Figure 1.2: a) Photograph of the head of Michelangelo’s David. b) 3D model of
the same object, reconstructed by using a laser scanner and triangu-
lation principle. These images are taken from [52].

Moreover, finding the position of a mobile device can be interesting for many

applications, such as tourist guiding or augmented reality. Nowadays, most mobile

devices have a Global Positioning System (GPS) module included; however, the receivers

do not always work inside buildings or in environments where the sky is occluded. One

simple solution to overcome this problem is image-based approaches, which are, on

the one hand, more accurate than the position determined by the GPS and, on the

other hand, are applicable in both indoor and outdoor environments. The ability to

determine the pose of an image, with respect to a 3D model, is a highly relevant research

topic [46] which has made a great deal of progress in the last decade. There is an

enormous amount of literature available about both image registration and localisation

[92]. Gordon and Lowe [34] proposed an approach similar to ours by matching feature

descriptors to determine the camera pose. Robertson and Cipolla [82] match images,

which are captured with a mobile device, against a database of views to estimate the

pose of the camera. Another similar project, which utilises databases as well but focuses

on urban environments and the estimation of the GPS position, is addressed by Zhang et

al. [121]. Schindler et al. [87] proposed a novel location recognition method introducing

a vocabulary tree. The work by Oskiper et al. [75] uses a similar approach, focusing

on real-time registration. Simultaneous object localisation and camera estimation on

a pre-computed 3D model is explained in [117]. Sattler et al. [50] proposed a novel

direct 2D-to-3D matching approach that speeds up the localisation time enormously.

Since standard cameras have some sort of distortion included, Josephson and Byrod

[50] incorporated a radial distortion model directly into the random sample consensus



4 Chapter 1. Introduction

(RANSAC) step bringing about more accurate outcomes. Recently, Arth et al. [4]

proposed a novel real-time self-localisation approach from mobile panoramic images by

transferring a GPS prior to a remote server that contains an offline reconstructed urban

model.

Furthermore, the rising Internet capacity has led to extremely large Internet

photo collections. Additionally, this trend together with the increasing sever storage

capacity gave rise to Internet video collection platforms, such as youtube1 and myvideo2.

These platforms allow users to easily share and access videos, such as those of myriad

landmarks from around the world.

Figure 1.3: 3D reconstruction using Microsoft’s Kinect camera, which can re-
construct whole scenes in real-time with just one single hand-held
camera. This image is taken from [48].

To summarise, 3D models are available everywhere and can easily be computed with

several techniques such as SfM. Furthermore, they can also be captured directly with

consumer depth cameras. Additionally, two-dimensional (2D) videos can be found

anywhere on the World Wide Web. However, real 3D videos are not yet widely available,

but are of commercial and academic interest. Through this additional depth information

the difficulty about occlusion is simplified, since the depth defines which objects are in

the foreground and which ones are in the background. This is especially interesting in

the field of augmented reality. Furthermore, using videos instead of images leads to

additional temporal information. Background and foreground modelling is simplified as

well, as the reconstruction process only reconstructs rigid objects. The additional depth

information allows the detection of foreground objects, such as persons or vehicles, in a

simpler way. The same principle is applicable for detecting changes in the videos, too. In

addition, regions without distinctive characteristics (i.e. sky) can be detected and later

extracted from the videos.

1http://www.youtube.com
2http://www.myvideo.de or www.myvideo.at
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Since 3D television sets have become affordable, several semi-automatic and fully

automatic approaches to converting existing 2D video content into 3D videos have been

proposed in recent years. Fully automatic methods require no user interaction, while in

contrast semi-automatic approaches need some kind of user input to assign depth values

to the video frames. As it is not possible to recover a scene geometry from one position

in the image plane, as explained by Brosch et al. [11], fully automatic approaches must

include additional information. The work addressed by Moustakeas et al. [70] utilises

motion to solve this problem. The approach proposed by Zhang et al. [120] synthesises a

3D video directly from the motion of a 2D video by selecting various frames from the

video sequence instead of pre-computing a depth map.

Contrarily, semi-automatic methods require user interaction. Generally, the user assigns

some depth values to pre-segmented regions or even to each pixel in one or more

video frames. This depth information is further propagated through the video frames.

The work proposed by Wu et al. [116] assigns depth values to pre-segmented regions,

while Li et al. [57] and Varekamp and Barenbrug [109] define depth values for each

pixel in several keyframes. Brosch et al. [11] and Guttmann et al. [35] propagate

sparse user-provided depth information, termed scribbles, over the entire monocular video.

In conclusion, the 3D reconstruction process and the modern localisation

approaches enable, along with the Internet image and video platforms, the registration

of videos onto 3D models. Hence, the main focus of this master’s thesis is to extend

the base approaches of registering images to a more sophisticated approach of video

registration. The aim is to take a bundle of images, reconstruct a 3D model and

subsequently register a video onto this model. After finding homogenous regions in the

video the depth for each region can be estimated, which makes it possible to render

realistic 3D videos and accurate depth-map videos from arbitrary viewpoints. Moreover,

the registration process estimates the intrinsic camera parameter for each video frame

separately; therefore calibration of arbitrary cameras is implicitly embedded. As a

consequence, camera parameters of arbitrary images and videos from the web can be

estimated without further knowledge about the camera type or focal length.

1.2 Introducing the Overall Workflow

This section outlines the aim of this master’s thesis and introduces the main workflow.

Figure 1.4 gives a brief overview of the major parts.

First of all, our approach requires a 3D model, which is in our case computed with a state-

of-the-art SfM workflow [45, 81, 94]. Each 3D point holds information about the position,

scale and colour as well as a feature descriptor, which is required during the localisation

process. The next part deals with the image and video view registration and particularly

with camera pose estimation [30, 46, 56, 84, 123]. A 6-point direct linear transform (DLT)

algorithm [39, 118] included into a RANSAC framework [25] calibrates the camera and
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Figure 1.4: Brief overview of the 3D video generation workflow.

additionally estimates the camera pose. Further, the 6-point DLT is substituted by a

pre-calibration step and a 3-point algorithm resulting in more efficient computation [36].

Moreover, to get consistent regions the video frames are segmented with a state-of-the-art

segmentation algorithm [24, 55, 62, 69, 111]. Finally, the depth information from the 3D

model is projected back into the registered video and, as a consequence of this projection

and a robust estimation, each segmented region is assigned a depth value. This additional

depth information leads to a realistic 3D video.

A comprehensive explanation describing the methods used in more detail is given in Chap-

ter 4, which also includes some sample applications and a flow chart to improve the un-

derstanding of the overall workflow. The workflow can be summarised as follows:

1. Capturing or downloading images and videos

2. Computing a 3D model from the images or downloading a pre-computed model

3. Video localisation using 6-point DLT included into a RANSAC framework

4. Non-linear optimisation of the radial distortion parameter

5. Segmenting the video frames into consistent regions

6. Projection of the 3D points onto the segmented video frames to get depth information

7. Rendering 3D video from the pre-assigned depth values

1.3 Structure of the Master Thesis

This chapter has already extensively introduced the motivation and the aims of this mas-

ter’s thesis.

Chapter 2 gives an overview of the basic methods regarding 3D modelling. First, some
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general information about the 3D reconstruction process is given. Second, some basic

background information, which is necessary to understand the 3D reconstruction process,

is addressed. Finally, this section explains the main image-based techniques used to re-

construct sparse and dense 3D models, respectively.

Chapter 3 introduces the methods and techniques required to register a single video frame

onto a pre-computed 3D model. Furthermore, this chapter gives an introduction to camera

calibration including image distortion models. Additionally, the estimation of the radial

distortion parameters through a non-linear optimisation is addressed in this chapter.

In Chapter 4 the entire workflow is presented; explaining the interaction of the various

parts of the 3D video registration pipeline. Furthermore, the 3D rendering process is de-

scribed and some sample applications are illustrated.

Chapter 5 evaluates our approach in terms of accuracy and robustness. Several results

on images and video sequences are presented is this chapter. Finally, a summary of the

obtained results is given.

Finally, Chapter 6 includes final conclusions, addresses some open issues and gives an

outlook on future work.
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This chapter gives an overview of the basic methods regarding 3D modelling. First,

some general information about the 3D reconstruction process is given, the image-based

approach, in particular, is explained in detail. Second, some basic background informa-

tion, which is necessary to understand the 3D reconstruction process, is addressed. This

includes the topics of pinhole cameras, epipolar geometry and image-based 3D recon-

struction utilising the triangulation principle. Next, this section explains the main SfM

techniques used to reconstruct sparse and dense 3D models, respectively. Additionally, a

sparse and a dense 3D reconstruction model computed with our workflow are presented.

9
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2.1 General 3D Reconstruction Methods

As addressed in the introduction, several 3D reconstruction techniques including

time-of-flight cameras, structured light, 3D laser scanners, image-based methods, etc.

have been developed in the last few decades. Figure 2.1 classifies the various approaches

into contact and non-contact methods and, additionally, gives an overview of the best

known techniques. Non-contact methods can be further divided into active and passive

methods. Grey shaded boxes represent some of the most well-known 3D reconstruction

methods, while the red box illustrates an image-based modelling approach. SfM is one of

the most popular image-based modelling approaches and is used as the reconstruction

method throughout this master’s thesis.

3D#
Reconstruc-on#

Contact#
Coordinate#
Measuring#
Machine#

Non6Contact#

Ac-ve#

Time6of6flight#

Structured#Light#

Modulated#Light#

Volumetric#
Techniques#

Laser#Scanner#

Passive# Image#Based#
Modelling#

Figure 2.1: Classification of 3D reconstruction techniques into contact and non-
contact methods. The red box illustrates an image-based modelling
approach, which is used as the 3D reconstruction method throughout
this master’s thesis.

SfM is an approach that takes a number of overlapping images of the same object,

captured from various viewpoints and automatically computes a 3D model of the

underlying scene and additionally estimates the camera pose for each image. SfM has

been a challenging problem in the computer vision community for the last 25 years, but

a great deal of progress has been made over the last decade due to advances in digital

imaging technology. With the premises mentioned in the introduction it is now regarded

as unsophisticated to create such 3D models as state-of-the-art SfM approaches can

reconstruct such large-scale 3D models in only a few hours [2, 44, 45, 78, 81].
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Figure 2.2: Photorealistic 3D reconstruction using Microsoft’s Photosynth1 ap-
proach.

As addressed in the introduction, one of the first and most well-known SfM approaches

is the Photo Tourism project implemented by Snavely et al. [94]. This Photo Tourism

project resulted in the Photosynth development, predominately supported by Microsoft,

which takes as input a number of images, as the Photo Tourism project does, and

stitches these images together to render a photorealistic 3D model. The Photosynth

project allows users to upload their own panoramas as well as create their own 3D

visualisations through a desktop application. Nowadays, mobile applications, for various

mobile platforms, are available that allow users to stitch images together and create

their own visualisations directly on their mobile devices. A visualisation utilising this

approach is shown in Figure 2.2.

Another similar project is the Photofly3 project, developed by Autodesk Labs, which,

in contrast to the Photosynth project, uses cloud computing to render photorealistic

3D models. Additionally, Photofly enables measurements inside the 3D model and the

adding of arbitrary geometry to the model. A person reconstructed with the Photofly

toolbox is shown in Figure 2.3. On top of this project Labatut et al. [16] proposed a

novel method which can reconstruct 3D models acquired through passive stereo techniques.

1Image is taken from http://blogs.msdn.com
2Image is taken from http://www.flickr.com/photos/btl/5762942031/
3http://labs.autodesk.com/technologies/photofly/
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Figure 2.3: 3D reconstruction using Autodesk’s Photofly approach. Several im-
ages from various viewpoints (see bottom area of this image) from
the same person are used to reconstruct an accurate 3D model2.

2.2 Theoretical Background

In this section some mathematical background information regarding Pinhole cameras,

epipolar geometry and image-based 3D reconstruction are addressed, since these tech-

niques are fundamental for the generation of 3D representations.

2.2.1 Pinhole Camera Model

In general, a camera defines a mapping from 3D world coordinates to corresponding 2D

image coordinates. Figure 2.4 shows the basic geometry of an ideal pinhole camera, which

projects a 3D point X onto a 2D point x on the image plane. The origin of the camera

coordinate system is equal to the centre of the camera (C), which is also known as the

projection centre or optical centre, respectively. The X and Y axes of the camera coordinate

system span a plane which is parallel to the image plane and perpendicular to the Z

axis of the camera coordinate system. As per the definition, the Z axis of the camera

coordinate system points in the view direction of the camera and is termed principal axis

or optical axis. Considering Figure 2.5, one can observe that the mapping from a scene

point X = (x, y, z)T to an image point x depends only on the focal length f of the camera,

hence we can define the perspective projection asXY
Z

→ (
fX
Z
fY
Z

)
. (2.1)
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Figure 2.4: Three dimensional illustration of the ideal pinhole camera geometry
taken from [39]. A point X is projected to a point x on the image
plane. The image plane is, in this case, located in front of the camera
centre. The centre of the camera is equivalent to the origin of the
camera coordinate system.

Another important term is known as the principal point (p in Figure 2.4), which is the

intersection point between the principal axis and the image plane, and defines the origin

of the image coordinate system. To express the mapping from X to x in Equation (2.1)

p
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f Y / Z
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Figure 2.5: Illustration of the pinhole camera geometry in two dimensions. The
distance between the camera centre and the image plane (focal plane)
is known as the focal length f . The figure is taken from [39].

in a simpler way we introduce homogenous coordinates and as a consequence we can write

the same equation in the form of a matrix multiplication
X

Y

Z

1

→
fXfY
Z

 =

f 0

f 0

1 0



X

Y

Z

1

 (2.2)
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where f is the focal length of the camera. To simplify further notations the matrix in

the previous equation can be written as diag(f,f,1)[I|0]. Equation (2.2) can be compactly

expressed by writing

x = PX, (2.3)

where X = (X,Y, Z, 1)T , x = (x, y, 1) and P=diag(f,f,1)[I|0].

So far, we have assumed that the origin of the image coordinate system is at

the bottom left corner of the image, but in general this is not the case; therefore, in

addition to the previous definition we are introducing a more generic camera model by

adding a pixel skew s and a principle point offset (px, py), which defines the translation

between the camera coordinate system and the image coordinate system as illustrated in

Figure 2.6. Now we can define a new matrix

K =

f s px
f py

1

 , (2.4)

which contains the focal length f , the principal point offset (px, py) and the pixel skew s.

This matrix is known as the camera calibration matrix and contains the intrinsic camera

parameter. Finally, a more generic model will be introduced, which allows camera rotation

y

0

0 p

cam

x cam
y

y

x x

Figure 2.6: The translation between the camera (xcam, ycam) coordinate system
and the image (x, y) coordinate systems is defined by the principal
point offset (px, py) = (x0, y0). This image is taken from [39].

and translation. This model, which is used throughout this thesis, can be expressed by

P = K[R|t], (2.5)

where t = −RC. R represents a 3×3 rotation matrix and C is equal to the position of the

camera centre referring to the world coordinate system [39].
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Moreover, we should mention that the projection matrix P has eleven degree of freedom

(DOF) hence six point correspondences are necessary to estimate the projection matrix ex-

plicitly, since one correspondence solves two equations. If the intrinsic camera parameters

are well known and only the extrinsic camera parameters (rotation and translation) are

unknown the matrix only has six DOF, therefore three point correspondences are enough

for estimation of the camera pose [39].

More information about camera models and detailed explanations about central projec-

tion can be found in [39] and in [99], which uses the same camera model. For purposes

of accuracy a radial distortion model is introduced which is explained in more detail in

Section 3.3.2.

2.2.2 Epipolar Geometry

Epipolar geometry is fundamental to multiple view geometry, since it defines the relation

between two image planes. It is mainly driven through the epipolar constraint, as it reduces

the correspondence problem from a 2D search to a 1D search on the epipolar line.

C C /

 π

x x

X

epipolar plane  

/

Figure 2.7: Epipolar geometry. The two camera centres, represented by C and
C’, span together with the point X the epipolar plane π. The image
is taken from [39].

As shown in Figure 2.7 the camera centres (C and C’), the image points x and x’ and the

3D point X are coplanar. This plane, denoted as π, is called the epipolar plane. Another

important term is the baseline joining the two projection centres. It is noted that every

point lying on the ray from the projection centre C to the space point X is projected to

the same point x in the image plane. From the coplanarity we can derive the definition

of the epipolar line, which is the intersection between the image plane and the epipolar

plane, as illustrated in Figure 2.8. The epipolar line is defined as l’ and joins the epipole

e’, which is the intersection between the baseline and the image plane. In other words,
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the epipole is the projection from the first camera centre into the second image plane and

vice versa [39].

x

e

X ?

X
X ?

l

e

epipolar line
for x

/

/

Figure 2.8: The epipolar constraint defines that point x in the first images lies
on a line l’ in the second image. This image is taken from [39] (mod-
ified).

From the previous definitions we can derive the epipolar constraint, which states that a

point in the first image is projected into a line, known as an epipolar line, in the second

image and vice versa. By applying the epipolar constraint, the correspondence problem

is reduced from a 2D to a 1D searching problem, resulting in a speed up in the matching

process. The epipolar constraint is visualised in Figure 2.9. A point (white dot) in the

first image (Figure 2.9a) corresponds to a white line (epipolar line) in the second image

(Figure 2.9b) and vice versa [39].

(a) (b)

Figure 2.9: An epipole (white dot) in image a) correspond to an epipolar line
(white line) in image b) and vice versa. These images are taken from
[39].
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Loop and Zhang [59] proposed a new technique, called rectification, to additionally speed

up the searching process by transforming the image in such a way that the epipolar lines

become horizontal. After applying this approach the correspondence problem is solved by

finding a match along a horizontal line, which greatly simplifies the implementation and

speeds up the matching process enormously.

Mathematically the previous geometric explanations can be described in what is known

as the fundamental matrix F , which denotes

x 7→ l′. (2.6)

For corresponding points x and x’ the fundamental matrix F is defined as

x′TFx = 0. (2.7)

From Equation (2.7) we can derive the epipolar lines, where

l′ = Fx (2.8)

and

l = F Tx′, (2.9)

additionally the epipoles

Fe = 0 (2.10)

F Te′ = 0. (2.11)

More information about multiple view geometry and especially epipolar geometry can be

found in [39] and in [99].

2.3 Image-based 3D Reconstruction

First of all, the reconstruction process can be classified into metric, Euclidian and projec-

tive reconstruction depending on the known camera parameter. At this stage we assume

the correspondence problem is solved and a number of correspondences are given. The

user friendliest way to reconstruct a 3D model is the projective reconstruction method,

which makes no assumption of the intrinsic and extrinsic camera parameters. If the in-

trinsic camera parameters are known, a Euclidian reconstruction can be applied, which

reconstructs the 3D model up to an undefined scale parameter. Through self-calibration

and localisation the camera matrixes P and P’, which include the intrinsic and extrinsic

camera parameters, can be estimated [39].

If we assume the correspondence problem is solved and two corresponding points x and

x’, which satisfy Equation(2.7), as given then a simple triangulation can be applied to re-
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X

xx
/

Figure 2.10: Illustrates the triangulation principle. If Equation (2.7) is satisfied,
the rays from the camera centres to x and x’, respectively, span one
plane, hence the rays must intersect in one 3D point X. The image
is taken from [39].

construct the 3D point X, as shown in Figure 2.10. Through the epipolar constraint, both

image points and both camera centres lie in the same plane, hence both rays must inter-

sect at one point X. This triangulation principle only holds when the epiploar constraint

(see Equation (2.7)) is satisfied, which is generally not the case, due to inaccuracies in the

measurements. To solve this problem simple linear triangulation methods can be used,

but if accuracy is important more sophisticated approaches, such as maximum likelihood

estimator (MLE) should be applied [39].

More details about this 3D reconstruction process, and in particular the triangulation

process, are given in [80] and [39].

2.3.1 Sparse Geometry

As a consequence of the progress in the SfM techniques there are now several image-based

reconstruction approaches. One of the first SfM methods was invented by Longuet-Higgins

[58] in 1981. Later on, techniques such as factorization [101], bundle adjustment [105] and

self-calibration [76, 77] had an enormous impact on the progress of SfM techniques.

A more recent reconstruction approach focuses on efficiently matching feature descrip-

tors along multiple images, as addressed by Schaffalitzky and Zisserman [85]. Vergauwen

and Van Gool [112] released a web-based application to reconstruct a model of cultural

heritages. Through a web interface users can upload a set of images from a scene to a pub-

lic server. The fully automatic reconstruction process runs on several computers, which

are connected to a server. After processing, the reconstructed model can be downloaded

through an FTP sever and visualised with a standard viewer. In contrast, Fitzgibbon et al.

[26] and Nister [73] started with a bottom-up approach by first matching small subsets and

then merging these subsets together into a complete model. Another popular approach

is the Bundler implementation developed by Snavely et al. [94, 95], which is especially
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useful for unordered image collections. This implementation, which is written in C/C++,

was the first one to perform well on a large set of Internet image collections. Recently,

Irschara et al. [43] proposed an approach utilising orientation and position priors.

Figure 2.11: Reconstruction of the famous Trevi Fountain in Rome, Italy contain-
ing a 3D point cloud and additional estimated camera positions and
directions are visualised. This image is taken from [95].

Due to the modularity of our approach which allows us to exchange different parts of

the workflow without any influence on the final outcome any of the previously described

approaches could be used to reconstruct a 3D model; however we decided to use Bundler,

since the source code is publicly available and it performs well on big datasets. Bundler

is especially useful for the creation of large-scale architectural models, as addressed in the

article. Another benefit is its performance, since it can reconstruct a dataset consisting of

approximately 100 images (the number our datasets consist of) in a few hours.

In general SfM approaches take any uncalibrated images as input and can then compute

a sparse 3D model incrementally as illustrated in Figure 2.11. Additionally, the relative

camera pose for each registrable image is estimated and is also visualised in this figure.

The project ”Building Rome in a Day” depends on the fundamental implementations of

the Bundler software and aims to reconstruct famous landmarks of cities in less than one

day through clustering and parallel computing [1, 2]. It mainly bases itself on the imple-

mentation of Brown and Lowe [13], however some modifications are included to increase

the robustness of the entire system. For instance, the EXIF information of the focal length

f , if provided by the image, is used for initialisation. These EXIF values are not precise,
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but provide a rough estimate for the purpose of initialisation.

The workflow of a generic SfM pipeline, can be roughly described as follows

1. Find feature points in each image

2. Extract feature descriptor for each feature point

3. Match corresponding feature descriptors

4. Recover 3D model and estimate camera pose through minimising the re-projection

error

5. Repeat the previous procedure by adding one more image in each iteration

Furthermore, small baseline stereo and wide baseline stereo methods are distinguished.

Since in small baseline approaches the difference between two images is marginal the

correspondence problem is simplified. In contrast, in the case of wide baseline techniques

it is harder to find correspondences between the images. On the other hand a benefit of

wide baseline methods is the large triangulation angle, therefore the depth estimation is

more accurate compared to small baseline approaches, which result in a small triangulation

angle.

2.3.2 Densification

Since the approach addressed in Section 2.3.1 leads to sparse models this section aims to

discuss approaches to reconstruct denser models, as these models are more appropriate

for purposes of visualisation. Instead of estimating a depth value for the extracted feature

points only, as is done in sparse 3D modelling, a densification approach determines a depth

value for each pixel visible in the images. For this purpose the entire geometry must be

known, as it greatly simplifies the problem of finding correspondences; therefore, a sparse

model is computed first, as addressed in Section 2.3.1.

Applications utilising this technique range from metric reconstruction for engineering and

scientific purposes to realistic scene reconstruction for the movie and video gaming in-

dustry. According to Furukawa and Ponce [31] densification approaches can be coarsely

classified into

• Voxel-based

• Deformable polygonal meshes

• Multiple depth maps

• Patch-based

approaches.

Jiang et al. [49] recently proposed a novel two-step method for 3D dense reconstruction,
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which exploit seed points. The work by Strecha et al. [96] focuses on depth estimation

from multiple wide-range images, while Van Meerbergen et al. [108] require a small base-

line between the images. Furukawa and Ponce [30] simultaneously calibrate the camera

and reconstruct a dense model for multiple images by applying an additional bundle ad-

justment step. Other approaches utilise voxel carving [90], photo hulls [93] and level sets

[22]. Recently, Goesele et al. [33] proposed a reconstruction approach which takes as input

a set of images from Internet photo collections and directly computes a dense model. The

work proposed by Irschara et al. [44] utilises a vocabulary tree to speed up the recon-

struction process. To summarise, Scharstein and Szeliski [86] published a taxonomy and

comprehensive evaluation of state-of-the-art dense stereo algorithms.

Due to the progress of these image-based modelling approaches several applications con-

centrating on reconstruction of large-scale architectural models have arisen. For example,

the MIT City Scanning project [100] reconstructed a rigid model of the MIT campus

by taking a dataset of several calibrated images, acquired in an outdoor region spanning

several hundred meters. Another dense reconstruction project driven by the Stanford

University [83] used an interactive system of multi-perspective images of a nearly pla-

nar scene for visualising urban landscapes and city blocks. This approach takes as input

a sideways-looking video, which could be captured for instance from a moving vehicle,

and creates multi-perspective strip images, which are later used for reconstruction pur-

poses. Akbarzadeh et al. [3] reconstruct urban 3D models from videos and additionally

geo-reference these models. The 4D cities project [88] aims to reconstruct Atlanta from

historical images. The approaches addressed here are only a small selection from this

wide-ranging research field, but some of the most successful ones. A comparison of re-

cently developed dense reconstruction algorithms and an evaluation of these algorithms

was published by Seitz et al. [89].

Due to the modularity of our approach any of these 3D dense reconstruction methods

can be applied. As addressed in Section 2.3.1, to reconstruct a sparse model the Bundler

method is used; therefore it makes sense to utilise methods which build upon these previ-

ous sparse techniques.

For densification of sparse models Bundler proposes two approaches. The first is the patch-

based multi-view stereo (PMVS) [31] method and the second is the clustering views for

multi-view stereo (CMVS) [29, 31] approach both of which are described in the following

section.

2.3.2.1 Patch-based Multi-view Stereo

Although several researchers have published various densification methods over the past

few years, we decided to use the PMVS /CMVS approach developed by Furukawa et al.

[29, 31], since it cooperates perfectly with the Bundler approach, though all other ap-

proaches to compute dense models would work just as well. This approach takes as input

a sparse set of matched feature points and outputs a dense model consisting of minor
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patches. Through simple global visibility tests false matches are filtered leading to a set

of visible patches. A benefit of this algorithm is that it detects and discards outliers

automatically and no initialisation is required. Figure 2.12 shows the overall process of

Figure 2.12: Illustration of the entire patch-based multi-view stereo reconstruction
process. From left to right: Input image, Harris and difference- of-
Gaussians features, reconstructed patches, filtered patches, final mesh
model. This set of images are taken from [31].

the PMVS reconstruction process, which is ordered as a simple match, expand and filter

procedure [31].

First, Harris and difference-of-Gaussian features are extracted and matched along multiple

images, which results in a sparse 3D model. Then neighbouring pixel of the initial matches

are used to get a more dense model and finally, through a filtering process, the visibility

of each patch is checked to remove inconsistent matches. The last two steps, expansion

and filtering, are repeated n times to increase the number of dense patches and to remove

false matches.

Additionally, this procedure leads to orientated patches instead of single colour points,

which can be useful for several other applications and enhance the visual impression.

As addressed by Furukawa, through a hybrid approach the PMVS method is applica-

ble for various input datasets, such as objects and crowded scenes. Another benefit of

this approach is its performance. As further addressed by Furukawa according to the

Middlebury benchmark test this method outperforms, in four out of six cases, other state-

of-the-art approaches in terms of accuracy and completeness. These advantages, together

with its availability as freeware, had a major impact on our decision for PMVS. In addi-

tion, the CMVS approach [29] builds upon SfM and PMVS respectively. We decided to

use the CMVS, because of the previously addressed reasons, though other densification

approaches could be used as well. The main goal of this CMVS technique is to decompose

similar input images into clusters with a slight overlap and subsequently apply a standard

SfM algorithm to each cluster. This principle is shown in Figure 2.13. The advantage of

this method is that all clusters are independent; hence the reconstruction process can be

parallelised, which results in an enormous speed up in the reconstruction process. The
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Figure 2.13: Illustration of the clustering principle. A number of similar images
are grouped into one cluster and each cluster is, subsequently, in-
dividually reconstructed, instead of reconstructing the entire model
from all available images. Afterwards, the reconstructed subsets are
combined into one final 3D model. This image is taken from [29].

resulting reconstructed subsets are subsequently merged into one model. Applying this

method a 3D model of an enormously large number of image sets can be reconstructed

in a reasonable time in comparison to standard SfM techniques, which use as input the

entire image set.

2.3.3 Reconstruction Workflow

In general a 3D model is reconstructed in two steps. First, a sparse model (see Section
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Figure 2.14: Flow chart of our 3D reconstruction pipeline. First, a sparse 3D
model is reconstructed which is refined through a densification pro-
cess. This workflow outputs a list of 3D points, where each single
point has a 3D position, a colour value, a mean feature descriptor
and a normal vector.

2.3.1) is reconstructed which is normally refined by a densification process (see Section

2.3.2). Figure 2.14 shows a flow chart of our 3D reconstruction pipeline. First, a sparse 3D

model from a number of images is reconstructed. Figure 2.15 shows such a sparse model.
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Figure 2.15: Illustration of all cameras, represented in this figure as red dots, which
have been localised during the reconstruction process.

Cameras, which have been localised during the reconstruction process, are represented as

red dots in this figure. The output of the SfM module is a list of 3D points. Additionally,

each point holds colour information and a list of feature descriptors. In the next processing

step all features for one point are averaged resulting in one feature descriptor for each 3D

point. Finally, a dense model is computed, which gives an additional normal vector for

each 3D point.

The difference between a sparse and a dense 3D model is shown in Figure 2.16. Figure

2.16a illustrates a sparse reconstruction of a construction site, while a dense model is

shown in Figure 2.16b. The sparse point cloud was reconstructed with Bundler [94, 95].

In addition, for reconstructing the dense model a PMVS / CMVS approach, as addressed

in this chapter, was applied.
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(a)

(b)

Figure 2.16: Comparison between a sparse and a dense point cloud. a) Illustra-
tion of a sparse point cloud reconstructed with the Photo tourism ap-
proach. b) Illustration of a dense point cloud applying PMVS/CMVS
on the sparse point cloud computed in a).
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The previous chapter explained the 3D reconstruction process in detail. This chapter

goes on to introduce the methods and techniques used to register single video frames as well

as ordinary images onto the pre-computed 3D model. First, an introduction to camera

calibration, which can be loosely classified into photogrammetric calibration and self-

calibration methods, is given. Next, the correspondence problem, which is solved through

feature descriptors and 2D to 3D matching, is addressed. Subsequently, image distortion

models are introduced, as some kind of distortion is present in customary digital cameras.

Since the radial distortion model is one of the most widely used, it is explained in more

detail including a non-linear optimisation approach which is required to estimate the radial

distortion parameters. For robust localisation the DLT algorithm is incorporated into the

well-known RANSAC algorithm, since outliers are usually present. Finally, the localisation

process utilises some other basic methods, such as bucketing, which are addressed at the

end of this chapter.

27
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3.1 Calibration Methods

For the purpose of 3D reconstruction the estimation of camera parameters is an essential

factor since it is required for Euclidian reconstruction. These camera parameters are also

required for camera localisation. Zhang [123] classified the calibration methods loosely

into two major categories, namely photogrammetric calibration and auto-calibration, re-

spectively.

The photogrammetric calibration method requires the capturing of a number of images of

a calibration target. The exact position and orientation of the calibration target in the 3D

space must be known. Furthermore, reconstructed 3D models can be used as a reference

target as well. In contrast, the auto-calibration methods estimate the camera parameters

directly from several uncalibrated images. In general, these methods do not require any

calibration target. The camera parameters are estimated by moving the camera within

a rigid scene. Moreover, the auto-calibration method can be classified into two special-

isations. Typical specialisations are planar auto-calibration, which requires, contrary to

standard auto-calibration methods, a calibration target, and methods which initialise the

calibration parameters with some prior information. Such initialisation constraints can be

selected from the Exchangeable Image File Format (Exif) information of the images.

In this master’s thesis we focus on photogrammetric techniques; however, a brief intro-

duction to the auto-calibration methods will be given as well. A comprehensive discussion

of calibration methods including both major methods is given in [18].

3.1.1 Photogrammetric Calibration

More than three decades ago, Brown [12] a lot of research had been done in the field of

photogrammetric calibration. Several years later, Tsai’s [107] very popular and well-known

photogrammetric camera calibration had evolved. Tsai’s method is a two-step process and

additionally incorporates a radial distortion model. In the first step, the orientation and

the x and y position of the camera referring to the 3D object reference coordinate system

is determined. In the second step, the focal length of the camera, the translation along

the z-axis and the radial distortion parameters are estimated.

For calibration purposes a pattern similar to a chessboard is most often used, since corners

can be easily extracted with standard corner detection algorithms such as Harris corners

[37]. Figure 3.1 shows a typical 3D calibration target, which provides the essential 3D

information. In the case of photogrammetric calibration a target generally comprises two

or three orthogonal planes. Another possibility to provide such accurate 3D information

is to use a reconstructed 3D model. In this thesis a 3D model, as the one computed in the

previous chapter, is utilised as 3D calibration target.

Later on, another classic and nowadays widely used approach, known as DLT algorithm,

evolved. It was first proposed by Hartley and Zisserman [39] and tries to estimate the cam-

era parameters through a linear transformation. This approach simultaneously estimates
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Fig. 8 A demonstration of casual setup for generating a Tsai and Heikkilä’s training data, b Zhang’s training data, and c test data
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Fig. 9 Effect of training data quantity on calibration accuracy in casual setup. Admittedly, more training points were used for Zhang’s calibration
than for Tsai and Heikkilä’s. However, as indicated by the simulation results in Fig. 4, there was no accuracy improvement in Tsai and Heikkilä’s
results beyong 256 training samples. This is also evident in the present figure and Fig. 14 of our elaborate setup

four data sets each covered a distance of 25–55 cm from
the camera and will be referred to as Board48, Board108,
Board210, and Board400 Data respectively.

The test set for all the three algorithms was created by
moving a wooden board bearing a 100 cm × 85 cm printed
pattern of 17 × 15 checks along a specially constructed rail
at different locations within the SRE space, as pictured in
Fig. 8c, to provide 1,872 accurately measured points in the
SRE coordinates. This data set covered a distance of 100–
265 cm and will be referred to as Rail Data.

4.1.1 Effect of training data quantity

Tsai and Heikkilä’s algorithms were trained using between
50 and 600 points, selected from Screen Data to be evenly

distributed across the screens, and then tested on Rail Data.
The average results of 10 trials for each quantity of training
data are shown in Fig. 9. With Tsai’s algorithm, no signif-
icant improvements in testing accuracy were observed be-
yond 300 training samples. Similar to the simulation results,
Heikkilä’s algorithm produced better results than Tsai’s
with small training data quantities. The overall lower test-
ing errors of Heikkilä’s method than Tsai’s suggested the
presence of high noise in the training data, as discussed in
Sect. 3.1.

Zhang’s algorithm was trained separately on Board48,
Board108, Board210, and Board400 Data, and tested on Rail
Data. As Zhang’s extrinsic parameters were calibrated with
respect to a corner point of the calibration pattern, whose
position in the SRE coordinates varied over different views,

Figure 3.1: Calibration object applied to generate training examples for Tsai’s
model. This image is taken from [97].

the intrinsic and extrinsic camera parameters. Usually six correspondences between 3D

model points and 2D image points are necessary to uniquely estimate the camera param-

eters, since the camera matrix has 11 DOF and one correspondence solves two equations.

As the DLT is used for localisation of the video frames throughout this master’s thesis a

comprehensive explanation and a motivation for choosing this approach is given separately

in Section 3.4.1.

3.1.2 Auto-Calibration

The second category, known as self-calibration or auto-calibration, requires only a

number of different images from an arbitrary scene and automatically determines

the intrinsic camera parameters from these images. Since no calibration targets

with a well-known shape are required for auto-calibration, these approaches can be

easily adjusted for 3D reconstruction. Most of the SfM approaches have such an

auto-calibration method included, such as Bundler [94] to mention just one. A major

advantage of the auto-calibration technique is the fact that no information about the

camera itself is required and any standard camera can be used.

Several classifications of auto-calibration techniques are presented in the literature.

Azizi [5] classifies the auto-calibration methods mainly into Kruppa equations [23], the

absolute quadratic [102] and the modulus constraint [79], as these techniques are called.

Auto-calibration methods can be traced back nearly two decades, when Maybank and

Faugeras [66] proposed the theory behind auto-calibration of a moving camera by

exploiting the epipolar constraint. Later, Hartley [38] published his work focusing on

auto-calibration from multiple views for a rotation camera only. This approach requires

at least three images with a different orientation from the same viewpoint. The work
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differs fundamentally from the work by Maybank and Faugeras [66], since no epipolar

constraints are considered in this approach, because all images are captured from the

same point in space. A drawback of this approach is that it requires some kind of

pre-calibrated camera parameters. Triggs [103] respectively Mendonca and Cipolla [67]

extended Hartley’s work. While Mendonca and Cipolla exploit some properties of the

essential matrix for stable estimating of varying focal length and principal point, Triggs

restricts his approach to planar scenes.

Auto-Calibration Utilising Prior Information. Special cases of auto-

calibration methods are techniques which initialise the calibration parameters with some

prior information. The Photo tourism approach [2, 94], which is one of the well explored

SfM techniques, utilises the Exif information of the images to initialise the intrinsic

camera parameters. This Exif information provides a rough estimate of the calibration

parameters.

Planar Auto-Calibration. A special case of auto-calibration is the planar

auto-calibration technique. This method utilises targets with a chessboard pattern

as the photogrammetric calibration methods do. However, in comparison to the

photogrammetric calibration methods only planar targets are utilised, as shown in Figure

3.2. One of the well known planar auto-calibration approaches is Zhang’s method [123].

Zhang’s work aims to calibrate cameras by freely moving a planar pattern or the camera
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Fig. 8 A demonstration of casual setup for generating a Tsai and Heikkilä’s training data, b Zhang’s training data, and c test data
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Fig. 9 Effect of training data quantity on calibration accuracy in casual setup. Admittedly, more training points were used for Zhang’s calibration
than for Tsai and Heikkilä’s. However, as indicated by the simulation results in Fig. 4, there was no accuracy improvement in Tsai and Heikkilä’s
results beyong 256 training samples. This is also evident in the present figure and Fig. 14 of our elaborate setup

four data sets each covered a distance of 25–55 cm from
the camera and will be referred to as Board48, Board108,
Board210, and Board400 Data respectively.

The test set for all the three algorithms was created by
moving a wooden board bearing a 100 cm × 85 cm printed
pattern of 17 × 15 checks along a specially constructed rail
at different locations within the SRE space, as pictured in
Fig. 8c, to provide 1,872 accurately measured points in the
SRE coordinates. This data set covered a distance of 100–
265 cm and will be referred to as Rail Data.

4.1.1 Effect of training data quantity

Tsai and Heikkilä’s algorithms were trained using between
50 and 600 points, selected from Screen Data to be evenly

distributed across the screens, and then tested on Rail Data.
The average results of 10 trials for each quantity of training
data are shown in Fig. 9. With Tsai’s algorithm, no signif-
icant improvements in testing accuracy were observed be-
yond 300 training samples. Similar to the simulation results,
Heikkilä’s algorithm produced better results than Tsai’s
with small training data quantities. The overall lower test-
ing errors of Heikkilä’s method than Tsai’s suggested the
presence of high noise in the training data, as discussed in
Sect. 3.1.

Zhang’s algorithm was trained separately on Board48,
Board108, Board210, and Board400 Data, and tested on Rail
Data. As Zhang’s extrinsic parameters were calibrated with
respect to a corner point of the calibration pattern, whose
position in the SRE coordinates varied over different views,

Figure 3.2: Planar calibration target applied to generate training examples for
Zhang’s model. This image is taken from [97].

itself in a 3D space without any special knowledge of the motion of the object or the

camera.

A comprehensive evaluation of Tsai’s method, which is a photogrammetric calibration
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technique, and Zhang’s method in comparison to Heikkila’s approach [40] is given in [97].

Another planar auto-calibration method is the approach proposed by Triggs [103].

Auto-Calibration with Printed Distinguishable Markers. Further-

more, Irschara et al. [45] describe a reliable calibration technique which aims to estimate

the calibration parameters with the accuracy of a target calibration technique that does

not require precise calibration patterns. The method is based on printed distinguishable

markers which are deployed in an arbitrary fashion. Moreover, this approach includes a

standard radial distortion model as well.

3.2 Correspondence Problem

The correspondence problem, which is ill-posed, describes the problem of finding related

points in a pair of images or in multiple images. Solving the correspondence problem can

be divided into several parts [39]. The first step is to find similar features across multiple

images. This is done by finding the location of a key feature, then describing this key

feature through a discriminative feature descriptor and finally matching the computed

feature descriptors with other feature descriptors across several images. Different tech-

niques, such as brute force matching or kd-tree nearest neighbour search, can be used to

find related points. How to find discriminative features and how to match these features

efficiently are explained in the following sections.

Additionally, it should be mentioned that if features are matched across video frames, the

method of finding related feature descriptors is known as feature tracking in contrast to

feature matching in the case of images [39].

3.2.1 Feature Descriptor

Feature detection, which is a low-level image processing operation, is one of the basic

methods in computer vision, since it is fundamental for many applications such as image

localisation, object recognition, image stitching, 3D reconstruction and calibration of cam-

eras. It is usually one of the first steps of a processing pipeline, therefore the performance

and accuracy of the subsequently applied algorithms strongly depend on the choice of the

right feature descriptor. Basically, each pixel is examined and when some requirements

are satisfied this pixel is treated as a feature point. Therefore, feature detection results in

a set of feature points that are later used to extract the discriminative feature descriptors.

In general, three different types of image features are separated.

• Edges

• Corners + Interest points

• Blobs



32 Chapter 3. Camera Calibration and Video Registration

Canny and Sobel are one of the well-known edge detection approaches, while Harris corners

and level curves are typical interest point methods. Furthermore, Laplacian of Gaussian

(LoG) and Difference of Gaussian (DoG) can be used to detect interest points as well as

blobs [65].

As a consequence of the fundamental importance of feature descriptors, immersive research

has been done in the last few decades. Recently, Calonder et al. [15] proposed what is

known as the binary robust independent elementary features (BRIEF) descriptor which

is set up on the principle of binary strings, hence the matching process is speeded up.

Other state-of-the-art feature descriptors are speeded up robust feature (SURF) [6], local

energy based shape histogram (LESH) [41], gradient location and orientation histogram

(GLOH) [68] and Scale-invariant feature transform (SIFT) [60, 61] to mention only a few.

A comprehensive performance evaluation of modern feature descriptors can be found in

[68].

One of the most widely used feature descriptors is the SIFT descriptor published by Lowe

[61], as it is invariant to scale and rotation which is required for many computer vision

tasks. Owing to our modularity implementation, any one of these feature descriptors could

be selected for 3D reconstruction and video registration, but we decided to use the SIFT

descriptor, because this approach is scale and rotation invariant and is also robust to noise

and changes in illumination. Furthermore, the SIFT features are invariant to viewpoint

changes and are highly discriminative which is important for our task. Additionally, sev-

eral open source applications for this approach are available free of charge [10, 110, 115].

Since the SIFT descriptor plays an important role in this master’s thesis, detailed infor-

mation is given in this section.

3.2.1.1 SIFT - Scale-invariant Feature Transform

Since SIFT is utilised as a feature descriptor in this thesis, a brief introduction is given.

First, the SIFT algorithm [61] tries to find orientation and scale invariant key features

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

Figure 3.3: Illustration of the principle of the SIFT descriptor for one subregion.
This image is taken from [61].
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by searching through different scales and positions applying a DoG function. Next, an

orientation is assigned to each feature point to remove the rotation dependency. Finally,

the feature descriptor can be computed based on the previously found feature points. The

basic principle of the creation of such SIFT keypoint descriptors is shown in Figure 3.3.

To begin with, the image gradient for each pixel is precomputed and weighted with a

Gaussian function (illustrated as the blue circle). For each 4-by-4 subregion the weighted

magnitude is accumulated into a histogram with eight bins, as shown in the right part of

the figure. This illustration is simplified, since it shows the principle with a patch size of

8-by-8, while throughout this master’s thesis a patch size of 16-by-16 is used. This 16-by-

16 patch is then divided into eight 4-by-4 descriptors, whereas each descriptor consists of

a histogram with eight bins resulting in a 128 dimensional feature descriptor.

Figure 3.4 shows an image from a construction site that is taken from our self-captured

datasets and overlaid with the SIFT feature descriptor illustrated as white arrows in the

figure. These arrows indicate the orientation and the position of the key features. The

Figure 3.4: Image of a construction site overlaid with computed SIFT descriptors.
The arrows show the orientation and the position of the key features.

amount of detected key features depends on the resolution of the underlying image, as

addressed by Lowe [61].

3.2.2 2D to 3D Matching

Once the feature descriptors are extracted from the video frames, or from images, the

next step is to match these features against the features from the pre-reconstructed 3D

model. The matching process is an important part of the registration process as it has an

enormous influence on the run-time and the accuracy of the localisation. Generally, each

point from the reconstructed point cloud has a position X = (x, y, z) referring to the world
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coordinate system, a normal vector n = (nx, ny, nz), an RGB colour and, additionally,

a descriptor. While the position X, the RGB colour and the descriptor are computed

during the sparse reconstruction, the normal vector n is an output of the densification

process. The literature proposes various approximation and non-approximation matching

techniques with different run-times [7, 8, 21, 28, 71, 84]. The easiest, but computationally

most inefficient is what is called brute force method, since it compares every feature

descriptor from the point cloud with every feature descriptor from the video frame. An

advantage of this method is that it is simple to implement and always finds the best match.

Nevertheless, the run-time of this method depends on the amount of feature descriptors

and the dimension of the feature space itself and increases quadratically with the number

of features [8].

A more sophisticated approach is to cluster similar features together and perform a search

in the restricted space. The fast library for approximate nearest neighbors (FLANN)

is a new approach invented by Muja and Lowe [71] and is based on such a clustering

principle. On the other hand, one drawback of these approaches is that they search for an

approximate nearest neighbour, while a brute force method always finds the best match.

Chapter 5
ORTHOGONAL RANGE SEARCHING

y-coordinate, then again on x-coordinate, and so on. More precisely, the process
is as follows. At the root we split the set P with a vertical line ! into two subsets
of roughly equal size. The splitting line is stored at the root. Pleft, the subset of
points to the left or on the splitting line, is stored in the left subtree, and Pright,
the subset to the right of it, is stored in the right subtree. At the left child of the

!

Pleft Pright

root we split Pleft into two subsets with a horizontal line; the points below or on
it are stored in the left subtree of the left child, and the points above it are stored
in the right subtree. The left child itself stores the splitting line. Similarly, the
set Pright is split with a horizontal line into two subsets, which are stored in the
left and right subtree of the right child. At the grandchildren of the root, we
split again with a vertical line. In general, we split with a vertical line at nodes
whose depth is even, and we split with a horizontal line at nodes whose depth is
odd. Figure 5.3 illustrates how the splitting is done and what the corresponding
binary tree looks like. A tree like this is called a kd-tree. Originally, the name

Figure 5.3
A kd-tree: on the left the way the plane

is subdivided and on the right the
corresponding binary tree
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stood for k-dimensional tree; the tree we described above would be a 2d-tree.
Nowadays, the original meaning is lost, and what used to be called a 2d-tree is
now called a 2-dimensional kd-tree.

We can construct a kd-tree with the recursive procedure described below.
This procedure has two parameters: a set of points and an integer. The first
parameter is the set for which we want to build the kd-tree; initially this is the
set P. The second parameter is depth of recursion or, in other words, the depth
of the root of the subtree that the recursive call constructs. The depth parameter
is zero at the first call. The depth is important because, as explained above,
it determines whether we must split with a vertical or a horizontal line. The
procedure returns the root of the kd-tree.

Algorithm BUILDKDTREE(P,depth)
Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P into two subsets with a vertical line ! through the

median x-coordinate of the points in P. Let P1 be the set of100

Figure 3.5: Construction principle for a two-dimensional kd-tree taken from [8].
The feature space is divided into subspaces recursively at each level.
The left part of this figure shows the subspaces and the corresponding
tree nodes are illustrated in the right part of the figure.

The kd-tree principle was first proposed by Friedman [28] in 1977, but since then various

enhancements have been published over the years [91]. A kd-tree is built by splitting

the entire feature space into subspaces through a hyperplane. Figure 3.5 explains the

principle of subdividing for a two-dimensional case. The same principle can be applied

for high dimensional cases, as in our case a 128 dimensional feature space. Through this

restriction the time for finding a related descriptor can be drastically minimised. As shown
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by Berg et al. [8] the construction time of the tree for a constant feature space dimension

d is O(n × logn) and the querying time is bounded with O(n1−1/d + k) while a brute

force method has a run-time of O(n2). A detailed explanation, particularly for kd-tree

construction, can be found in [8].

(a) (b)

Figure 3.6: SIFT feature descriptor matching between video frames for two dif-
ferent resolutions. The top images represent the first video frame,
while the bottom images were captured three seconds after the first
one. a) Image resolution is 653×370. b) Image resolution is 288×163.
The white lines connect corresponding feature points. If d1 is the dis-
tance between the query feature and the nearest neighbour and d2 is
the distance between the query feature and the second nearest neigh-
bour, then matches are only accepted if d1 < 0.6× d2 as proposed by
Lowe.

The vocabulary tree approach, proposed by Nistler and Stewenius [74], is another efficient

matching method, since it scales to large databases and is robust to background cluttering.

Since the 2D to 3D matching process is an important bottleneck in the entire localisation

process, Sattler et al. [84] proposed a novel approach using direct 2D to 3D matching.

While standard direct matching approaches directly search for the nearest neighbour in

the feature space, an indirect matching procedure uses an intermediate representation
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which does not preserve the proximity between the features. This is especially useful for

huge datasets, as the computational cost increases more slowly than for direct matching

techniques.

Figure 3.6 shows the matching between two images, taken from our self-captured datasets,

using SIFT feature descriptors and a nearest neighbour search for the matching purpose.

As shown in both figures most of the extracted feature points are matched correctly, but

there are still some false matches; hence, robust methods have to be applied in the next

step of the workflow to get accurate results. This is done by adding a RANSAC algorithm

in the registration process, as described in Section 3.4.3.

3.3 Image Distortion

Most of the standard cameras have some sort of image distortion included [42]; however,

many standard image applications determine that distortion can be neglected. On the

contrary, for applications such as metric reconstruction and image-based measurements

distortion has a great influence on the accuracy. A comparison of a model including and

excluding a radial distortion model is given in Section 5.3.6.

First, in this section some general distortion models are addressed. Next, since the radial

component has the greatest influence on the accuracy this model is explained in more

detail. Finally, the Levenberg-Marquardt optimisation approach is introduced.

3.3.1 General Distortion Models

Nearly one century ago, in 1919, the first research into camera lens distortion was under-

taken, as addressed by Wang’s article about a new camera lens distortion model [113].

Figure 3.7: New York City seen through a fish-eye lens with a high barrel distor-
tion, which is a type of radial distortion1.

1This image is taken from http://augenklick.wordpress.com
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The focus at that time was on decentering distortion, which consists of tangential and ra-

dial components. Nowadays, thin-prism, radial and tangential distortion components are

the most investigated; however, other components can still be present. Figure 3.7 shows a

photograph of New York City through a fish-eye lens, which has a high barrel distortion,

which is one type of radial distortion.

The various distortion components can be described with several mathematical models

and parameters respectively. Since the accuracy of many applications can be increased

through modelling of the distortion parameter a great deal of literature regarding this

topic is available. Over the years, several approaches with different assumptions have

been published [98, 107, 114], however the fact remains that the main research focus was

on radial distortion models, as the immersive literature about this subtopic shows. The

polynomial model, which is the simplest one, the rational model and the field of view

(FOV) model are a small selection of the most used radial distortion models, alternatively

more complex models can be found in the available literature.

3.3.2 Radial Distortion

As addressed in Section 3.3 the radial distortion model is the best investigated one and

for most applications introducing such a model is sufficient. It can be classified into barrel

and pincushion distortion [119], as shown in Figure 3.8.

Figure 3.8: Illustration of the two different radial distortion models2.

For barrel distortion the image magnification decreases with increasing distance from the

principal axis. In contrast, for pincushion distortion, the image magnification increases

with increasing distance from the principal axis. A typical example of barrel distortion

is the fish-eye lens, while binoculars show pincushion distortion effects. Furthermore, a

combination of both radial distortion components, known as mustache distortion, can be

present as well [32].

2This image is taken from http://www.uni-koeln.de
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Next, we are going to introduce a mathematical model, like the one proposed by Hartley

and Zisserman [39], to compensate for the radial distortion(
xd
yd

)
= L(r̃)

(
x̃

ỹ

)
, (3.1)

where (x̃, ỹ) represents the ideal image position and (xd, yd) is the position after applying

the radial distortion model. The term L(r̃) is a multiplication factor depending only on

the radius r̃, which is computed by

r̃ =
√

(x̃− xc)2 + (ỹ − yc)2, (3.2)

where (xc, yc) represents the radial distortion centre. Various more, or less, complex

models to describe the radial distortion factor L(r̃) are addressed in the literature. In

general, it can be expressed by a Taylor expansion, such as

L(r) = 1 + k1r + k2r
2 + k3r

3 + ...+ knr
n, (3.3)

as proposed by Hartley and Zisserman. Since higher terms of the Taylor approximation

can be neglected the distortion factor is simply computed by

L(r) = 1 + k1r
2 + k2r

4, (3.4)

where k1 and k2 represent the two radial distortion parameters, which are estimated

through a non-linear estimation (see Section 3.3.3). Finally, these two parameters to-

gether with the radial distortion centre (xc, yc) can be seen as additional interior camera

parameters

D = [k1, k2, xc, yc]
T . (3.5)

If we assume the distortion parameters are known the image can be undistorted by applying

x̂ = xc + L(r)(x− xc) (3.6)

and

ŷ = yc + L(r)(y − yc), (3.7)

where (x̂, ŷ) are the undistorted pixels and (x, y) represent the distorted pixels. The radius

r is computed as in Equation (3.2) and the distortion function as in Equation (3.4).

An alternative and more simple model, in comparison to the radial distortion model pro-

posed by Hartley and Zisserman, is the division model published by Fitzgibbon [27], which
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only depends on one parameter k and is defined as

x̂ ∼ x

1 + kr2d
(3.8)

and

ŷ ∼ y

1 + kr2d
. (3.9)

The work of Bujnak et al.[14] is built upon Fitzgibbon’s model, however the major in-

novation of this approach is to include the estimation of the radial distortion parameters

directly into the RANSAC loop. Since the distortion parameters are estimated for each

consensus set in the RANSAC step the outcome is more accurate. As a consequence, we

decided to apply the same approach to a more complicated radial distortion model. To

be precise, we used the distortion model proposed by Hartley and Zisserman. In contrast

to Fitzgibbon’s one parameter model, this model has four parameters; therefore, a more

accurate outcome can be expected for a slightly higher overhead in the optimisation pro-

cess. Furthermore, the radial distortion model applied in this thesis is the same as the

one used by Irschara et al. [45].

3.3.3 Non-linear Optimisation

As shown in Section 3.3.2 the distortion model is generally represented by several

distortion parameters, such as k1, k2,. . . ,kn. These distortion parameters can be

estimated through a non-linear optimisation process, which aims to minimise an objective

function. Several iterative and calculus based (non-iterative) methods are proposed in

the literature. Newton invented the first iterative optimisation method, which was later

refined by Gauss, while Largrange invented the first closed form solution.

One of the most efficient and well-known curve fitting methods is the Leven-

berg–Marquardt algorithm (LMA) invented by Levenberg [54] in 1944 and refined by

Marquardt [64] two decades later. The LMA method utilises both the Gauss-Newton

algorithm and the gradient descent technique to estimate the parameters of the

non-linear objective function. In comparison to the Gauss-Newton algorithm the LMA

is more robust, but for some configurations slower than the Gauss-Newton method and

only a local minimum can be found. In the case of multiple minima the initial guess has

to be close to the global minima, otherwise the global minima cannot be found, since a

non-linear optimisation method only finds a local minima. For convex functions, which

only have one global minima, the initial guess is unimportant, since the LMA always

finds a minimum. The LMA works in an iterative way and tries to minimise Equation

(3.10) in every iteration until a pre-defined bound ε is reached. [54, 64]

In general, for a non-linear function F : Rm → Rn, m < n the LMA method tries to

minimise

S(p) =
n∑

i=1

[yi − f(xi,p)]2, (3.10)
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where xi is the input of the objective function and yi is the output. Like the Gauss-

Newton method the LMA substitutes, in each iteration, the non-linear function through

a linearisation and tries to solve this linearisation problem

min
x∈Rm

‖F (xk) + J(xk)(x− xk)‖22, (3.11)

where J is the Jacobi matrix of the function f . Through an additional constraint

‖x − xk‖22 < rk the error is minimised in each iteration. The outputs of this algorithm

are the optimised parameters p = (p1, p2, . . . , pk).

Basically, our novel approach incorporates two steps, which are applied con-

secutively in one iteration. In other words, from the pre-computed 2D to 3D

correspondences an initial camera pose is estimated and refined with the Levenberg

Marquardt optimiser. Whilst one set of parameters are fixed the other parameters

are refined and vice versa. More specifically, in the first step the camera pose and the

intrinsic camera parameters are estimated through a standard 6-point DLT algorithm

as addressed in Section 3.4.1. Furthermore, in the second step the previous estimated

camera pose is fixed and the distortion model is refined. This refined distortion model

leads to a more accurate camera pose in the next iteration, since the re-projection

error is minimised through the undistortion of the image. This procedure is repeated

until the radial distortion parameters convergence. Since many outliers are present in

a standard set of 2D to 3D correspondences this two-step algorithm is included into a

RANSAC loop, whereas the radial distortion is only refined if the consensus set contains

a minimum number of inliers. The number of RANSAC iterations depends on several

parameters, such as percentage of outliers, confidence of the model and the empirical

threshold parameters, as described in Section 3.4.3. Finally, after a final refining of

the camera pose with all inliers detected through the RANSAC iteration the radial

distortion is refined as well, starting the optimisation process from the precomputed

initial values. This refinement step includes the entire set of inliers found during the

RANSAC iteration, while the previous optimisations only use the actual consensus set.

3.4 Camera Pose Estimation

Camera pose estimation, also known as image localisation or image registration, is essen-

tial for many computer vision applications, especially in the field of 3D reconstruction.

Immersive research has been done in the last few years, hence an extensive amount of

literature regarding image localisation is available [92].

The camera pose estimation approaches can be classified as to the number of known cor-

respondences. The most popular methods are 3-point [36], 4-point [104], 5-point [104] and

6-point [39, 106] algorithms. A 3-point algorithm requires three known correspondences,

while a 6-point algorithm needs a minimum of six correspondences.
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Recently, several image-based localisation applications have evolved. Since GPS is re-

stricted to a line of sight to the sky and is not applicable in indoor environments, image-

based localisation provides a serious alternative. Another advantage of this technique is its

high accuracy. For example, finding the position of a mobile device can be interesting for

many applications, such as guiding a tourist. Other applications are navigation of robots

or pedestrians and augmented reality, as mentioned by Sattler et al. [84].

As camera pose estimation is a highly relevant research topic and registration of video

frames is a major part of this master’s thesis, some related work is addressed in the fol-

lowing paragraph. Robertson et al. [82] match images, which are captured with a mobile

device, against a database of views to find the position of the mobile device. Zhang’s [121]

approach is similar but focuses on urban environments. Schindler et al. [87] proposed

a novel location recognition method introducing a vocabulary tree. Simultaneous object

localisation and camera estimation on a pre-computed 3D model is explained in [117].

Irschara et al. [46] proposed a novel method for fast location recognition by registering

images on to a sparse 3D model. Recently, Sattler et al. [84] demonstrated that direct

2D to 3D matching techniques based on a quantised visual vocabulary tree and a DLT

algorithm included into a RANSAC framework greatly improves the performance of image

registration. Another work assuming the 3D model as known, utilises the 6-point DLT

algorithm to register the images [118]. A similar method using a modified DLT algorithm

is addressed by Triggs [104]. Kaminsky et al. [51] try to align SfM triangulated points with

overhead images, like floor plans and satellite images, by matching the 3D point cloud to

the edges of the images. Another more general approach is demonstrated by Li et al. [56],

which uses adaptive, prioritised SIFT descriptors to speed up the time intensive matching

process. The previously addressed projects are only a select few of many, various other

interesting projects can be found in the literature.

Figure 3.9 shows the registration of three video frames to a pre-computed 3D triangulated

model reconstructed with a state-of-the-art SfM method after applying Algorithm 1 from

Section 3.4.1. The images and videos are taken from our self-captured datasets.

3.4.1 6-Point Direct Linear Transform

The DLT is a popular method in the field of projective geometry, as it can estimate the

projection matrix P from a set of given 3D scene points and the corresponding 2D image

points. It was first proposed by Hartley and Zisserman [39]. Trucco and Verri also provide

a detailed explanation regarding the DLT algorithm [106]. The 6-point DLT algorithm

makes no assumptions about the intrinsic and extrinsic camera parameters; therefore it

is applicable for any configuration without further knowledge about the camera type or

geometry. In general, the DLT method tries to solve

xk ∝ A yk (3.12)
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(a)

(b)

Figure 3.9: Video frame registration for various viewpoints after applying Algo-
rithm 1 to a pre-computed 3D model.

for k = 1, . . . , N . xk and yk are given vectors and A denotes a matrix including the

unknown parameters. Originally the DLT was proposed to find the homography between

related 2D image points by taking n ≥ 4 point correspondences xi ↔ x′i. It determines

the unknown parameters of the 3×3 matrix H of the homogenous transformation

xi = Hx′i. (3.13)

The DLT algorithm [39] is widely used in projective geometry; though, there are now

several modifications of the original DLT algorithm [84, 104]. The procedure can be

easily modified so it can be applied to camera pose estimation and image registration

respectively. As this algorithm is used for camera pose estimation and video registration

throughout this master’s thesis, a comprehensive explanation is given in the next
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paragraph [39].

Given n ≥ 6 correspondences between image points and scene points

xi ↔ X′i the algorithm determines the 3×4 camera projection matrix P . The homogenous

transformation is given by

xi = PX′i (3.14)

for all correspondences i. For each relation xi ↔ X′i a correspondence can be derived 0T −wiX
T
i yiX

T
i

wiX
T
i 0T −xiXT

i

−yiXT
i xiX

T
i 0T


P1

P2

P3

 = 0, (3.15)

where each PiT is a vector of size 4x1, containing the i-th row of the projection matrix P.

The three equations resulting from Equation (3.15) are not linearly independent, there-

fore the first two equations are enough and as a consequence the previous terms can be

simplified to (
0T −wiX

T
i yiX

T
i

wiX
T
i 0T −xiXT

i

)P1

P2

P3

 = 0. (3.16)

Each xi ↔ X′i correspondence results in two equations, as shown in Equation (3.16).

Therefore, six such relations result in 12 linear independent equations, which are stacked

together in a 2n×12 matrix A and subsequently an singular value decomposition (SVD)

is applied to solve this linear system. In general, an SVD decomposes a matrix M of size

m×n

M = UDV ∗, (3.17)

into a unitary matrix U of size m×m, a diagonal matrix D with size m×n including the

eigenvalues and an n×n matrix V . The projection matrix P is then determined by taking

the unit singular vector from matrix V which relates to the smallest singular value in

matrix D [39].

A summarisation of the entire camera pose estimation is given in Algorithm 1, which is

taken in a modified form from Hartley and Zisserman [39].

Normalisation of the input data is an essential part of the entire algorithm. The image

points xi should be normalised in such a way that their centroid is at the origin. Ad-

ditionally, these input values have to be scaled such that the root mean squared (RMS)

distance between origin and the image points is equal to
√

2. These requirements result

in the transformation matrix T1

T1 =

s 0 −scx
0 s −scy
0 0 1

 , (3.18)
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Algorithm 1 Camera Pose Estimation

Input: n ≥ 6 world point (3D) to image point (2D) relations xi ↔ Xi

Output: Projection Matrix P

ALGORITHM:
(1) Normalisation:
A similarity transform (see Equation (3.18)) x̃i = T1xi is applied for normalisation of
the image points xi

A similarity transform (see Equation (3.19)) X̃i = T2Xi s applied for normalisation of
the space points Xi

(2) DLT:
A 2n×12 matrix A is formed by putting Equation (3.16) generated from the relations
x̃i ↔ X̃i. Through an SVD and by taking the unit singular vector with the smallest
related singular value a solution for Ap = 0 is obtained.

(3) Denormalistion:
P in the original coordinate system is obtained by de-normalisation with P = T−11 P̃ T2.

where s denotes the scaling factor and (cx, cy) represents the centroid, which is determined

by taking the mean overall input values xi. For the scene points the normalisation is

similar to the normalisation of the image points. First, the centroid of the scene points is

translated to the origin and then, the input values are scaled such that the RMS distance

between the origin and the scene points is equal to
√

3. This leads to the transformation

matrix T2

T2 =


s 0 0 −scx
0 s 0 −scy
0 0 s −scz
0 0 0 1

 , (3.19)

where s represents the scale and (cx, cy, cz) denotes the centroid of all input points Xi.

Another point, which should be mentioned, is the possibility of degenerated configurations.

For the determination of the projection matrix P two degenerated configurations are

important, which are shown in Figure 3.10. Figure 3.10a shows a degenerated case, where

points and camera lie on a twisted cubic. In the second case, shown in Figure 3.10b, the

points lie on a single plane and a single line that contains the camera intersects with this

plane. For configurations which are close to these degenerated cases the accuracy of the

projection matrix P decreases [39].

One simple way to avoid such degenerated cases is to split the entire image into buckets,

as they are termed, (also known as binning) and only draw one point from each bucket

[124]. This approach is explained in more detail in Section 3.4.4.

Moreover, if just six correspondences are used the algorithm computes an exact solution
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(a) (b)

Figure 3.10: Two critical degenerated configurations. The white dots denote the
camera centre, while the black dots represent the points. These im-
ages are taken from [39].

for the projection matrix P ; however, if the points include some noise an over-determined

system can be applied. In this case the solution is to minimise a geometric or an algebraic

error over all input points [39].

Furthermore, this algorithm can be used for camera calibration. In general, one image

is enough to estimate the intrinsic and extrinsic camera parameters; however, robust

averaging leads to more constant parameters. If the intrinsic camera parameters are known

a 3-point algorithm can be applied instead of the 6-point DLT which, in general, results

in more accurate results. Additionally, there is a noticeable speed up in the computation

time.

3.4.2 3-Point Algorithm

Section 3.4.1 explained the standard 6-point DLT, which makes no assumptions about the

intrinsic and extrinsic camera parameters; therefore the 3×4 projection matrix has eleven

DOF (up to an unknown scale) and exactly 51
2 correspondences are necessary to solve this

linear system. This means that for five points we have to know the correspondence for the

x and the y coordinate and for the last point only the correspondence for the x or the y

coordinate is required.

Like the 6-point DLT algorithm a 3-point algorithm [36] can be applied to estimate the

projection matrix P ; however the 3-point algorithm assumes the intrinsic camera param-

eters as known. As shown in Equation (2.4), the intrinsic camera matrix K has five DOF;

therefore the extrinsic camera matrix, containing the camera orientation and the camera

position, has to have six DOF. To solve a linear system with six unknowns six linear inde-

pendent equations are required; hence, three point correspondences are necessary as every

point leads to two equations.

Since in many applications the same camera is used to capture the images or videos
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throughout one task, it is more efficient to first calibrate the camera with the 6-point DLT

as described in Section 3.4.1 and afterwards apply a 3-point algorithm to estimate the

extrinsic camera parameters. A comparison between the 6-point DLT algorithm and the

3-point algorithm regarding speed up is given in Chapter 5.

3.4.3 Robust Estimation with RANSAC

So far, we have assumed that each 3D scene point is matched to the corresponding 2D

image point; however through introduced noise in the measurement process and because

of features that are not unique this is generally not the case. Therefore, a robust method

to detect these false matches is required. These mismatched points, also termed outliers,

have a substantial influence on the accuracy of the video frame registration procedure,

since a few outliers can lead to a completely different model. The influence of such

outliers for a simple line fitting model is shown in Figure 3.11. The model consists of

ten inliers (black dots) and two outliers (white dots). Figure 3.11a shows the fitted line

after the application of a simple least-square solution including all twelve input points.

As it is clear to see, the line does not fit the model very well. Using the RANSAC

algorithm instead leads to a much better model as illustrated in Figure 3.11b, since the

two outliers are not included in the final model fitting process. To sum up, the RANSAC

method seeks to detect such outliers and additionally endeavours to fit a model to the

remaining data by minimising the error between the estimated model and the remaining

data points. A comprehensive performance evaluation of the RANSAC family is given by

Choi et al. [17].

Algorithm 2 is a modified version of both algorithms, the original RANSAC algorithm

invented by Fischler and Bolles [25] and the adapted one by Hartley and Zisserman

[39]. It is adapted in such a way that it is suitable to estimate the projection matrix P

robustly. Some more supplements are provided by Trucco and Verri [106].

Several parameters affect the performance of the RANSAC algorithm:

• n: Defines the minimum number of points required to estimate the model.

• k: Defines the number of iterations of the RANSAC algorithm.

• t: Threshold value defining whether a point fits the pre-computed model. If the

projection error of one point is smaller than t it is added to the consensus set.

• d: Threshold value defining the number of input points which have to support the

estimated model.

Since the RANSAC performance and the accuracy of the localised frames are highly de-

pendent on these parameters a comprehensive explanation about the choice of these pa-

rameters is given in the next paragraph.

As mentioned in Section 3.4.1 the projection matrix has 11 DOF. The RANSAC algorithm
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(a)

C D
B

A

(b)

Figure 3.11: The RANSAC algorithm aims to fit a line to the given input points by
excluding outliers and minimising the error between the fitted model
and the inliers. a) Line fitted with a standard least-squared method
approach taking all points into account. Black dots denote inliers,
while white dots represent the outliers of the model. b) Line fitted
after applying the RANSAC method which detects the two outliers
and fits a line to the remaining points. These images are taken from
[39].

usually takes as input the minimum required points to estimate a model, hence n = 6.

The number of iterations k is chosen in such a way that with some possibility p a set

of inliers is found. If we suppose that w is the probability of finding an inlier set, then

e = 1− w is the probability of finding a set of outliers; therefore we can write

(1− wn)k = 1− p, (3.20)

which results in

k =
log(1− p)

log(1− (1− e)n)
. (3.21)

In general, p is chosen to be greater than 0.99. Table 3.1 illustrates the required number

of iterations k depending on the probability p that at least one consensus set is free of

outliers and on the percentage of the outliers itself. For example, for a dataset containing
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Algorithm 2 RANSAC algorithm for robust estimation of the projection matrix P

while it < k do
1. Randomly select n points from the entire set S and determine the projection

matrix P applying the DLT algorithm (see algorithm 1) to the selected subset
Si.

2. For each point not included in the subset Si compute the projection error by
using the previous computed projection matrix P .

3. Each point which has a projection error smaller than the distance threshold t is
added to the set Si. This set is also termed consensus set and defines the inliers
of S.

4. If the size of Si (the number of inliers) is greater than a definable threshold d,
a good model has been found. Re-estimate (applying DLT) the model using
all points in Si and determine the normalised projection error regarding all
elements in the consensus set Si.

5. If this normalised projection error is smaller than the previous one, a better
model has been found and is saved.

6. The radial distortion parameters are refined.
end while

Finally, the saved model with the smallest projection error is returned.

Outliers
p 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.9 1 2 4 8 19 49 147 562 3157
0.95 2 3 4 10 24 63 191 730 4107
0.99 2 4 7 16 37 97 293 1122 6314
0.999 3 6 10 23 56 145 439 1683 9472

Table 3.1: Required iterations depending on the probability p that at least one
consensus set is free of outliers and on the percentage of the outliers
itself. The values are computed applying Equation (3.21) and n = 6.

40% of outliers 97 iterations are required to get an inlier set with a probability of 0.99.

The parameter t is usually chosen empirically. Since the radial distortion model is not

treated in the first iteration in our case, it makes sense to choose a slightly greater value

for t at the beginning and decrease it in the following iterations.

A reasonable size of the consensus set d is

d = (1− e)N (3.22)
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where e is the proportion of outliers and N denotes the total number of points.

In conclusion, the RANSAC algorithm is powerful when datasets with outliers are present,

since it can detect such outliers and can fit a robust model by taking only the remaining

inliers into account.

3.4.4 Bucketing

As described in Section 3.4.3, the RANSAC algorithm randomly selects n elements from

the entire input dataset S. Moreover, as addressed in Section 3.4.1 degenerated config-

Figure 3.12: Due to the high compression of feature descriptors in several image
parts, the estimated camera pose can be extremely inaccurate if sev-
eral features are selected from the same area of the image.

Figure 3.13: Illustration of the bucketing principle for an exemplar grid size of 5x5.
First, n grid elements, also termed buckets, are selected randomly.
Next, one element from each previously selected bucket is drawn ran-
domly. With such a technique the probability of degenerated cases
decreases.
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urations can lead to poor results regarding accuracy and it can even lead to a failure of

the localisation process. One such degenerated configuration (compare with Figure 3.10b)

is shown in Figure 3.12, where the feature points lie on a single plane. Selecting points

mainly from this area of the image leads to inaccurate camera poses.

A solution to this problem is to split the input data space S into a subspace [124]. Figure

3.13 shows an image divided into such subspaces, which are also known as bucketing or bin-

ning. Empirical evaluations with our datasets have shown that a grid size of 5×5 results in

the smallest re-projection error. Instead of randomly selecting n elements from the entire

input set, a more sophisticated technique is to first randomly select n mutual subspaces

and in the next step choose one point randomly from each subspace. This technique is

called bucketing and leads to selected samples which are spread over the entire image. It

was first proposed by Zhang et al. [124] in a way slightly different to our approach.

3.4.5 Localisation Workflow

This section briefly discusses our localisation approach, which is shown in Figure 3.14.

First of all, features are extracted from the video frames. Next, these features are matched

Feature'
Extrac+on'

Feature'
Matching'

Localisa+on'
Non6linear'

radial'distor+on'
op+misa+on'

Input&frame&

Sparse&3D&points&
2D&to&3D&

correspondences&

Itera5ve&&

Op5mal&camera&pose&

Figure 3.14: Overview of the localisation workflow. The camera pose is estimated
in an iterative way utilising a RANSAC framework and a non-linear
optimiser.

against the sparse 3D point cloud resulting in a set of 2D to 3D point correspondences.

These correspondences are required for the camera localisation. The localisation process

works in an iterative way. First, the camera position is determined through a 6-point algo-

rithm included into a RANSAC framework. Subsequently, the radial distortion parameters

are estimated through a non-linear optimisation, which minimises the re-projection error.

These two steps are repeated until the model converges. The final outcome is an estimated

camera pose with corresponding radial distortion parameters.

3.5 Summary

Several improvements have been made in this thesis. First of all, directly including the

estimation of the radial distortion parameters into the RANSAC loop significantly min-
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imised the re-projection error. Furthermore, adding a refinement step after finding the

best hypotheses improved our outcomes immensely. Additionally, restricting the 2D to

3D to the 200 best matches resulted in better localisation results and enormous speed-

up. Moreover, estimating four parameters for the radial distortion model instead of only

two, as most approaches do, led to more accurate results. Finally, the bucketing concept

minimised the number of unregistrable frames, since degenerated cases are avoided.
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In the previous chapters we addressed the 3D modelling process, the camera calibration

process and the video localisation process in detail. All these steps are finally required to

render a realistic 3D video from a given 2D video. The 3D video generation process adds

an additional dimension to the 2D information supplied, known as depth information. This

chapter addresses the estimation of these depth values in detail. First of all, the depth

value estimation process requires some kind of consistent regions, which can be determined

through unsupervised segmentation algorithms. The appearance of the 3D video depends

heavily on this segmentation algorithm; hence, it is addressed comprehensively in this

chapter. As already mentioned, the depth information can be used for several other

applications as well; therefore, the generation of depth maps and an approach to detect

changes between the 3D model and the registered 2D video are addressed.

Finally, this chapter presents a flowchart of the entire workflow, which gives an overview

of the various parts of the video registration pipeline and specifically shows the interaction

between the different modules.

53
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4.1 3D Video Rendering

In the previous two chapters the 3D modelling process (see Chapter 2) and the video local-

isation process including the estimation of the intrinsic camera parameters (see Chapter

3) were comprehensively discussed. Now, this section combines all these pre-computation

steps and renders a realistic 3D video from a given 2D video sequence through estimating

a depth value for each superpixel in the video. Figure 4.1 illustrates the workflow of 3D

video rendering process.

3D#to#2D#
Projec,on#

Depth#
Es,ma,on#

2#

Input&2D&Video&

Sparse&3D&points&

For&each&3D&Point&

Op8mal&camera&pose&

2D#to#3D#
Projec,on#

3D&Video&

Segmenta,on#

Figure 4.1: Brief overview of the 3D video rendering process. First, the video
sequence is segmented into consistent regions with a state-of-the-art
segmentation algorithm. Next, all 3D model points are projected
onto the pre-localised video sequence resulting in an estimated depth
value for each pre-segmented superpixel. Afterwards, each superpixel
is projected back into the 3D space resulting in a realistic 3D video
sequence.

At this point, we assume that the video sequence is already localised in the world coor-

dinate system of the corresponding 3D model. Therefore, Equation (2.3) can be applied,

which projects a 3D point X onto a 2D point x on the image plane. The projected points

are undistorted with the previous estimated radial distortion parameters, as addressed in

section 3.3.2. The Euclidian distance from the camera centre to the point X is assigned

to the superpixel that the point x falls into. If several 3D points X are projected into one

superpixel these depth values are accumulated and subsequently robustly averaged. More

precisely, after the robust averaging of all distances projected into one segmented area,

each superpixel is assigned a depth value, representing an average distance between the

camera centre and the corresponding pixels in the 3D model.

Superpixels without corresponding points in the 3D model are not assigned depth value;
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(a)

(b)

Figure 4.2: a) 2D video frame of a construction site. b) 3D video rendered from
the 2D video sequence from a) by applying our 3D video rendering
workflow.
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hence, these regions cannot be used for the 3D video rendering process.

r = K−1x =

rxry
rz

 (4.1)

rx = −rx
d

rz

ry = −ry
d

rz

rz = −d

(4.2)

X = RT (r− t) (4.3)

To summarise, at this point every superpixel with a corresponding 3D point is assigned an

average depth value. Now, this depth information is used to project the segmented regions

into the space leading to a realistic 3D video sequence. One image point x = (xi, yi, 1),

written in homogenous coordinates, is projected into a 3D point X = (x, y, z) through

applying Equation (4.1) to (4.3). First, Equation (4.1) computes a ray from the camera

centre to the space in the direction of the point X. Equation (4.2) normalises the ray,

where d denotes the Euclidian distance from the camera centre and finally Equation (4.3)

determines the projected point in the 3D space referring to the world coordinate system.

Figure 4.2b shows a snapshot of such a 3D video sequence. In addition, to achieve a more

realistic appearance of the 3D video the colour of the corresponding pixels in the 2D video

frame is rendered onto the 3D video as one can see in this figure. For comparison purposes,

the original 2D video is shown in Figure 4.2a. Moreover, a sparse and a dense 3D model of

the same construction site reconstructed with approximately 80 images and modern SfM

approach has already been shown in Figure 2.16.

Since both, the 3D model and the back projected video, can be rendered into the same

scene, changes between the original reconstructed 3D model and the computed 3D video

sequence can be detected visually. Furthermore, regions without a correspondence between

the reconstructed model and the videos (e.g. sky) are detected automatically without

further knowledge of the geometry of the scene.

4.2 Video Segmentation

As addressed in the previous section, the 3D video rendering process requires some sort

of segmentation; hence, this section introduces some basic ideas about image and video

segmentation. First, some general information regarding image segmentation is given.
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Next, several image and video segmentation algorithms are addressed and finally the

outcome of such a state-of-the-art algorithm is shown.

As addressed by Zhang [122] image segmentation has a long history and can be traced

back more than four decades. Since then, a great deal of research has been done resulting

in several discriminative segmentation algorithms which can be classified into five major

categories

• Pixel-based Segmentation

• Edge-based Segmentation

• Region-based Segmentation

• Model-based Segmentation

• Texture-based Segmentation

but the borders between the several categories are not clearly defined. Several methods

from different classes are sometimes combined to advance the outcome of the algorithms.

Furthermore, we should mention that several other classifications are presented in litera-

ture, but most of the segmentation algorithms fall into the five classes addressed here.

Figure 4.3: Comparison of various segmented images after applying the SLIC
superpixel approach for different parameters1. The number of super-
pixels can be easily specified by a single parameter.

Some of the well-known segmentation algorithms are Thresholding, Histogram-based meth-

ods, Region growing, split-and-merge, watersheding methods and clustering methods to

1These images are taken from http://ivrg.epfl.ch/supplementary material/RK SLICSuperpixels/index.html
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mention only a few. Since the fully-automatic image segmentation algorithms were some-

times lacking in terms of accuracy, several semi-automatic segmentation algorithms have

since been published. Nevertheless, in this master’s thesis a fully-automatic segmentation

algorithm is chosen. Morever, Malisiewicz and Efros [63] have shown in their work that no

optimal segmentation algorithms exist. However, they have empirically proved that mul-

tiple segmentation approaches perform better than a single segmentation. Such a multiple

segmentation approach is the work proposed by Kluckner et al. [53], which additionally

incorporates contextual constraints. This approach would significantly enhance the seg-

mentation; however, since the performance is an important issue, as videos rather than

images are processed, this approach is not applicable.

(a) (b)

(c) (d)

Figure 4.4: Original video frame versus videos segmented with the SLIC super-
pixel approach. The number of superpixels can be easily specified by
a single parameter, which is set to b) 100, c) 1000 and d) 5000.

Recently, Lucchi et al. [62] proposed a novel image segmentation technique to determine

consistent regions through an iterative pixel clustering approach. This method is termed

Simple Linear Iterative Clustering (SLIC) and had a major breakthrough two years ago,

since it performs well on various images. The Quick shift image segmentation algorithm,

developed by Vedaldi and Soatto [111], is another widely-known and fast segmentation

algorithm. Furthermore, Comaniciu and Meer [19] proposed a novel non-parametic seg-

mentation method by applying the well-known mean shift procedure. Other recently
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developed image segmentation algorithms were proposed by Felzenszwalb et al. [24], Mori

[69] and Levinshtein et al. [55] to mention a few.

Due to the modularity of our approach, each of these image segmentation algorithms

could be used; however, we decided to segment our images with the SLIC superpixel ap-

proach, as executables are freely available and the number of superpixels can be easily

defined by only one parameter. Moreover, as addressed in the paper, this approach out-

performs several state-of-the-art image segmentation algorithms regarding boundary recall

and under-segmentation error, while the computation time is reduced.

Figure 4.3 shows some fine and rough results after segmenting images with the SLIC su-

perpixel approach for various parameters. Additionally, Figure 4.4 illustrates an original

photograph of a construction site (see Figure 4.4a) and segmented images of the same

photograph for different amounts of superpixles after applying the SLIC approach. The

number of superpixels can be defined by a single parameter, which is set to 100 in Figure

4.4b, to 1000 in Figure 4.4c and to 5000 in Figure 4.4d.

4.3 Further Visualisations and Applications

In this section we will present two more applications, which use the previous computed

depth values in another visualisation. The first application simply computes a so termed

depth map. Depth maps are grey-scale images, where the pixel intensity corresponds to

the Euclidian distance between the camera centre and the corresponding 3D point. The

second application uses a novel approach to detect changes between the reconstructed 3D

model and the registered video sequence.

4.3.1 Depth Map

In this visualisation the depth information for each video frame is represented in so called

depth maps. In general, depth maps are grey-value images, where each grey value repre-

sents a different depth value. In our representation dark regions are closer to the camera

centre, while brighter regions are further away, but this can be done the other way round

as well. Moreover, we should mention that superpixels without corresponding 3D points

are represented as black pixels in this visualisation. Figure 4.5 shows such a depth map

for a video frame taken from our dataset. The original video frame (compare Figure 4.2a)

from which this depth map was computed is the same as the one used for rendering the

3D video in Section 4.1.

The validity of this visualisation is proven as one can simply compare the distance from the

viewer to the crane on the left part of the original video frame to the huge cube-shaped

building in the middle. It is obvious that one cannot easily determine which object is

closer to the viewer. On the other hand, if we take a look at the depth map image it is

clear that the crane is closer, since this region is darker in comparison to the cube-shaped

building in the middle.
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Figure 4.5: Through assigning various grey values to different depth values a
depth map can be created. Dark regions are closer to the camera
centre, while brighter regions are further away. Regions with no cor-
respondence between the 3D model and the video frames (e.g. sky)
are set to black.

In our approach each video frame has to be registered independently which leads to a slight

overhead in the 3D video rendering process. A more efficient way to propagate the depth

information is to use such depth map images as an input to other processing pipelines such

as recently evolved depth propagation approaches, which propagate the depth information

from one frame to another leading to a 3D video as well.

4.3.2 Change Detection

Another way to use the estimated depth values is to detect changes between the recon-

structed 3D model and the corresponding video. Through a standard back projection the

position of the 3D point in the video can be determined. Since the colour of the 3D point

is known a simple way to detect changes is to define a similarity function for the colour

difference, as it is done in Equation (4.4). For each superpixel a ratio rj is computed over

all 3D points Xi which are projected onto superpixel j. N denotes the number of points

projected into superpixel j. Moreover, R(x) returns the red colour component, G(x) the

green one and B(x) the blue one.

rj =
1

N

∑
∀Xi∈Sj

√
(R(Xi)−R(xi))2 + (G(Xi)−G(xi))2 + (B(Xi)−B(xi))2 (4.4)

If the colour of the 3D point and the corresponding pixel in the video frame is similar, then

this similarity function returns a very small value; otherwise a greater value is returned.
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(a)

(b)

(c)

Figure 4.6: a) Single video frame of a construction site. b) Depth map for the
video from a) after applying our change detection approach. c) Bi-
nary image after applying a simple thresholding technique with a
threshold of 0.5 on the grey-scale image from b)



62 Chapter 4. 3D Video Rendering

For simplicity each superpixel ratio value rj is normalised to the range [0, 1] through

applying Equation (4.5).

CDj =
1

1 + rj
(4.5)

Figure 4.6b shows the outcome for one video frame, whereas a high difference between the

video and the 3D model is illustrated as a darker colour and a similarity with a brighter

colour. Another possibility for visualising changes is to introduce a simple thresholding

technique resulting in a binary image. Figure 4.6c illustrates such a binary image after

thresholding Figure 4.6b with a threshold of t = 0.5.

Moreover, we should mention that a standard computer vision algorithm could be directly

applied to the 2D video sequence to detect changes. This would work perfectly as well;

nonetheless, using our approach we do get some additional depth information for the

changed object. We can, therefore, perform a type of occlusion handling, which would not

be possible with standard computer vision algorithms. Finally, we should mention that

this approach only works if a designated colour difference between the 3D model and the

registered video frame is present. Furthermore, this approach is not very robust against

illumination and brightness variations, since it simply computes the colour difference.

However, a colour transformation into another colour space (e.g. HSV) eliminates these

drawbacks.

4.4 Workflow

This section briefly summarises the entire workflow of this master’s thesis which consists

of various exchangeable modules as shown in Figure 4.7.

The workflow incorporates:

• Sparse 3D reconstruction (see Section 2.3.1)

• Densification of the sparse model (see Section 2.3.2)

• Feature selection of the 3D model

• Camera calibration and video localisation (see Chapter 3)

• Splitting video into video frames

• Feature extraction from the video frames

• Segmentation of the video frames into consistent regions (see Section 4.2)

• Estimation of a depth value for each superpixel through projecting the 3D point

onto the image plane.

• Rendering of 3D video sequences (see Section 4.1)
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First of all, some input data is required to render a 3D video. For reconstruction purposes,

a couple of overlapping images from different viewpoints from the same scene are required,

which can be easily accessed through Internet photo collection platforms. Additionally, in

order to render a 3D video, or to detect changes, a video from the same scene is required.

Once the process of downloading or capturing of input data is finished, the first step is to

reconstruct a sparse model of the scene by applying an SfM approach as described in detail

in Section 2.3.1. This sparse reconstruction is later used to create a denser model using

the application of the techniques described in Section 2.3.2. In this master’s thesis the

dense models are only used to improve the appearance of the triangulated model, while

the sparse model is later used as the basis for video localisation A reconstruction of such

sparse and dense models is presented in Figure 2.16.

The output of the sparse model is a list including the 3D position X = (x, y, z) based on the

world coordinate system, the colour (RGB) and a feature descriptor for each triangulated

point. The feature descriptor for each 3D point X is computed through a robust averaging

and is denoted as 3D Feature Selection in the flowchart. To improve the robustness of our

approach and to minimise incorrect matches, only features which are visible in more than

two images are used for further computations. With this step the pre-processing part,

including sparse and dense 3D reconstruction and feature selection, is completed.

To register a video to a pre-computed 3D model, first the video is divided into single

frames and subsequently the feature descriptors are computed for each frame. Through

matching similar feature descriptors from the sparse 3D model and the video frames each

frame is localised as described in Section 3.4.1. We should mention that each video frame is

registered independently; therefore robust techniques to estimate the intrinsic camera pa-

rameters can be applied. The registration process provides the camera pose and additional

robust intrinsic camera parameters, which can be used later to simplify the localisation

process through applying a 3-point algorithm as addressed in Section 3.4.2 instead of the

6-point DLT.

Next, a standard segmentation algorithm (see Section 4.2) is applied to split video frames,

which leads to consistent regions. These regions, which consist of several adjacent pixels,

are also known as superpixels. In the next step the depth for each superpixel is estimated

through a projection of the 3D points. More precisely, each 3D space point X is projected

into the video frame and the Euclidian distance between the point X and the camera cen-

tre is assigned to that superpixel where the projected point X intersects with the image

plane. This extracted depth information leads to additional information about the scene

which can be helpful for several applications, such as 3D video rendering. In conclusion,

this 3D video rendering process, together with computation of depth maps and a change

detection approach has been comprehensively addressed in this chapter.
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This chapter evaluates our approach towards accuracy and robustness and presents

results from some of our experiments. First, an overview of the software and hardware that

was used is given. Second, the captured datasets, including images for 3D reconstruction

purposes and 2D videos for 3D video rendering, are addressed. Additionally, specifications

of the camera used are presented. Next, the evaluated results are shown. This includes the

evaluation of the reprojection error, the estimation of the focal length on images and video

sequences, the estimation of the camera pose and the influence of the radial distortion.

Furthermore, the dependency between different datasets is illustrated through localising

videos onto 3D models captured at different times. Finally, a comprehensive discussion of

the results obtained is given.
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5.1 Testing Environment

In this master’s thesis the proposed platform for 3D video rendering is implemented in

C/C++. The framework includes 3D modelling, feature extraction, feature matching,

camera pose estimation, camera calibration, video segmentation and 3D video rendering

and is platform independent. Furthermore, it has been compiled and successfully executed

on Windows XP / Windows 7, Ubuntu 11.04 and on Mac OSX Lion 10.7 machines.

All evaluations in this chapter were done on an Intel Core 2 Quad @ 2.66 GHz with 4

GB of main memory and Ubuntu 11.04 Natty as an underlying operating system. The

first version of the program is implemented to run on the central processing unit (CPU)

and is not run-time optimised. Nonetheless, owing to the modularity of our approach,

several parts of the workflow such as feature detection and 2D to 3D matching could

be implemented on the graphics processing unit (GPU) to enhance the performance of

the program. Therefore, in this section no run-time evaluations are done, except the

comparison of the 3-point algorithm and the 6-point DLT, since these algorithms are both

implemented on the CPU.

5.2 Input Data

The raw data used for evaluation purposes consists of twelve datasets distributed over

nine days and various times of day. These datasets were captured at a construction

Dataset Date Time #Images

1 2011-05-24 10:00 85
2 2011-05-24 12:00 83
3 2011-05-24 14:00 80
4 2011-05-24 17:00 79

5 2011-05-25 08:30 81
6 2011-05-25 10:30 81
7 2011-05-25 12:00 88
8 2011-05-25 16:30 77

9 2011-05-27 12:00 89

10 2011-05-30 18:00 77

11 2011-05-31 17:30 84

12 2011-06-01 11:00 77

Table 5.1: Overview of the date and time of the twelve captured datasets. On the first
two days, four datasets were captured each day and thereafter only one dataset per day.
The horizontal line separates each day.

site, which is located next to the ICG (Institute for Computer Graphics and Vision -

University of Technology Graz) department. All images were captured without a tripod.
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(a)

(b)

Figure 5.1: a) Photograph of the construction site captured from the 2nd floor
of the ICG building, which is located on the opposite side of the con-
struction site. b) The street map is taken from OpenStreetMap1 and
shows details of the TU Graz campus Inffeldgasse. The area of the
construction site is shaded in grey and the videos were captured from
the three viewpoints indicated on the map (VP1, VP2, VP3).

All evaluations in the following sections use these raw datasets, since no other appropriate

datasets with ground truth data that fitted our intentions were available to us.

Table 5.1 shows the day of capture of the images and videos, respectively. On the first

two days, four datasets of nearly uniform distribution over the day where captured in

order to get datasets with a slight disparity. This is especially interesting as a simulation

of whether images from one dataset are registrable to other datasets, since this can be

important for change detection. Furthermore, the next four datasets were captured on

different days resulting in a higher disparity between consecutive sets.

1http://www.openstreetmap.org
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5.2.1 Images for 3D Reconstruction

Each dataset includes around 75-90 images and twelve additional videos, from three dif-

ferent viewpoints, as shown in Figure 5.1b. Both the images and the videos were captured

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Selection of several images from the first dataset temporally ordered.
The images were taken from two sides (north and west) of the con-
struction site.

by a Canon EOS 5D Mark II. Table 5.2 lists some of the main specifications. A compre-

hensive user manual is available online2. The images were taken in portrait format with

a distance of approximately one metre between two consecutive images. These images,

which have a resolution of 5616×3744 pixels (21 Megapixel CMOS sensor), are used for

the image-based reconstruction. An image selection of various viewpoints from the first

dataset is shown in Figure 5.2. The images were captured from the north and west sides

(see 5.1b) of the construction site. A reconstructed sparse 3D model and a corresponding

dense model based on this dataset, which includes a total of 85 images, is shown in Figure

2.16.

2http://www.usa.canon.com/
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Canon EOS 5D Mark II

Resolution Images 5616×3744 pixels
Resolution Videos 1920×1080 pixels (Full HD)
CMOS Sensor 36×24 mm with 21.1 Megapixels
Shutter 1/8000 sec. to 30 sec.
Exposure ISO 100 - 3200

Table 5.2: Selection of the main specifications of the Canon EOS 5D Mark II which was
used for capturing all datasets including images and videos.

5.2.2 Video Sequences for 3D Video Rendering

In addition to the images, several videos were captured, which have a length of roughly

30 seconds each and a resolution of 1920×1080 pixels (Full HD). From each viewpoint

four different videos were taken, which differ only in the camera properties. In the first

case the camera is static (A), in the second case we allow rotation (B) and in the third

case the camera rotates and changes the focal length (C) during the capturing process.

The last case has no constraints and allows translation, rotation and zooming (D). Since

we captured twelve datasets and each contains twelve different videos we have in total

144 videos. Each video is approximately 30 seconds long; therefore the total material

comprises about 72 minutes of video. Figure 5.3 shows the construction site viewed from

the three different viewpoints.

5.3 Results

This section evaluates our approach in terms of accuracy and robustness by comparing it

with other state-of-the-art approaches because no datasets with ground truth data were

available to us. Since SfM and image-based localisation is a highly relevant research

topic, several researchers have published their evaluated results, which will be used for

comparison in some sections.

5.3.1 Reprojection Error

This section evaluates our approach in terms of reprojection error, which is defined in

Equation (5.1), where n denotes the number of inliers and f(x) is the undistortion function.

The reprojection error E is given in pixels.

E =
1

n

∑
∀inliers

|f(PX)− xtrue| (5.1)

Table 5.3 illustrates the reprojection error for three different viewpoints. Furthermore,

the mean reprojection error is computed for each dataset. For each viewpoint 100 video

frames are localised and the average reprojection error is subsequently computed. This
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(a)

(b)

(c)

Figure 5.3: Photographs from the three different viewpoints. a) Viewpoint 1,
b) Viewpoint 2, c) Viewpoint 3.

is important for obtaining reasonable results, since the RANSAC framework randomly

selects the first inlier set in each iteration.

From this evaluation we can conclude that the reprojection error is at most 1.52 pixels.

Moreover, the reprojection error over all twelve datasets is, on average, less than 0.96

pixel. In conclusion, as presented during this evaluation, the reprojection error of our

approach is in the sub pixel dimension, which is sufficient for our purpose.
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Reprojection Error [pixel]

Dataset Viewpoint 1 Viewpoint 2 Viewpoint 3 Mean

1 0.62 1.09 0.75 0.82
2 0.59 0.94 1.08 0.87
3 0.62 0.91 0.87 0.80
4 0.55 1.31 0.95 0.94
5 1.13 0.58 1.02 0.91
6 0.62 0.54 0.75 0.64
7 0.43 0.84 0.88 0.72
8 0.70 1.11 0.61 0.81
9 0.57 1.26 1.40 1.08
10 0.54 0.95 1.78 1.09
11 0.58 1.34 2.64 1.52
12 0.82 1.65 1.27 1.25

Table 5.3: Reprojection error for all twelve datasets and different viewpoints.

5.3.2 Evaluation of the Focal Length on Images

This section compares the focal length computed with our localisation approach with

three other methods. First, Exif information is extracted from the image files themselves.

These Exif tags contain useful information about the image, such as manufacturer, camera

model, image resolution, focal length and sensor size to mention but a few. As the focal

length and the sensor size are given in mm an equation to transform the focal length to

pixel units is required. Equation (5.2) transforms the focal length (mm) given by the Exif

tags to a focal length in pixel units.

focal length in pixels = image width in pixels × focal length in mm

CCD width in mm
(5.2)

All three equation parameters, which are image width, focal length and sensor size, are

available in the Exif tags; however, the charge-coupled device (CCD) width is not very

accurate as addressed by Snavely. Therefore, this information should be taken from the

user manual of the camera. For the Canon EOS 5D Mark II, which was used to capture

all the datasets, the CCD width is given by 36.0mm as illustrated in Table 5.2. Finally,

applying Equation (5.2) results in a focal length in pixel units of f = 5616× 24.0
36.0 = 3744

pixels.

In the second method we compare our results with the Photo tourism approach published

by Snavely et al. [94]. This state-of-the-art approach estimates the intrinsic camera

parameter and the pose of each camera during the 3D iterative reconstruction process. In

each iteration one image is added and, simultaneously, the intrinsic camera parameters

and the camera pose is estimated.

In the third method we compare our results with the approach proposed by Irschara
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Focal Length [pixel]

Median Mean Standard Deviation

Exif (see Equation (5.2)) 3744 3744 0

Photo Tourism (1853×1236) [94] 3812.1 3822.1 81.5

Irschara et. al. (5616×3744) [45] 3807.52 3807.52 not available

1853×1236 (100%) 3807.9 3807.0 80.2
1390×927 (75%) 3806.1 3829.4 80.6
927×618 (50%) 3785.5 3818.2 83.6
463×309 (25%) 3795.8 3798.2 115.2

Table 5.4: Comparison of the focal length for different approaches including
Exif, Photo tourism, Irschara’s approach and our localisation ap-
proach for different image resolutions. For down-sampled images the
focal length is multiplied by the down-sampling factor to get the focal
length for the full image resolution.

et. al. [45]. This work aims to estimate a calibration with the accuracy of a target

calibration technique not requiring precise calibration patterns. The method is based on

distinguishable printed markers, which are deployed in an arbitrary fashion.

Basically, the focal lengths obtained by the Exif tags and the estimated focal lengths

determined by the Photo tourism and Irschara’s approach are compared to our approach.

Since one requirement of our approach was to locate images with various resolutions, an

evaluation for four different image resolutions is given.

Furthermore, we should mention that we used the SIFT implementation of David Lowe [60,

61], which restricts the image resolution to a size smaller than 2000×2000 pixels; however,

other implementations which can compute the SIFT features at the full resolution, such as

SiftGPU [115] can be used instead. Because of the restriction of Lowe’s SIFT detectors the

original images with a resolution of 5616×3744 are first down-sampled by a factor of three

to an image resolution of 1853×1236. The images are down-sampled with a standard

linear interpolation technique. For further discussion, these down-sampled images are

always referred to as original images (100%).

Since our implementation estimates the focal length for the x and for the y direction and

the other approaches only determine one focal length for both directions, we simply take

the mean f =
fx+fy

2 of these two focal lengths for comparison purposes. All evaluation

results, except Irschara’s approach since this is a pre-calibration technique, are based

on the 85 images from the first dataset. As the image resolution directly influences the

focal length in pixel units (see Equation (5.2)) all down-sampled images are multiplied by

the down-sampling factor leading to the focal length which would be obtained if the full

resolution had been used.



5.3. Results 73

Figure 5.4: Bar graph representing the standard deviation for various image res-
olutions for our approach in comparison to the Photo Tourism ap-
proach.

The mean values are computed with

x̄ =
1

n
·

n∑
i=1

xi. (5.3)

Moreover, the standard deviations are calculated applying

s =

√√√√ 1

n

N∑
i=1

(xi − x̄)2. (5.4)

Furthermore, for the RANSAC implementation we assumed a maximum of 50% outliers

and specified the probability of finding an inlier set with p = 0.99. A detailed explanation

regarding the relevant RANSAC parameters and calculation of these values is given in

Section 3.4.3.

Table 5.4 compares the focal length computed with our technique to the focal length

obtained by the Exif tags of the images and the focal length computed with the Photo

tourism and Irschara’s approach, respectively. From this evaluation one can notice that our

approach works well across various image resolutions. For high resolutions (1853×1236,

1390×927, 927×618) the mean deviation of the focal length between the Photo tourism

approach and our approach is less than 0.5%. For lower image resolutions (463×309) the

deviation increases, nevertheless it is < 1%. Since images with a lower resolution lead

to fewer SIFT keys the run time of the matching process and particularly of the pose

estimation process are accelerated, but as evaluated the accuracy decreases.

Figure 5.4 shows the standard deviation values presented in Table 5.4 in a bar graph.

While the standard deviation of the focal length for image resolutions down-sampled up
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to 50% is more or less equal to the standard deviation derived from the Photo Tourism

approach, it increases significantly for images down-sampled by a factor of four.
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Figure 5.5: Standard deviation of the focal length for
a) Photo tourism approach
b) our localisation approach for different image resolutions.

Another method of representing the robustness of our approach is to plot the focal length

estimated for the images in a histogram. Figure 5.5 shows such a representation. We

should mention that the localisation process fails for some images with a resolution of

463×309 (25%), hence some outliers are present. These outliers, which are the reason for

the higher standard deviation in comparison to the three other image resolutions, are not

represented in the Figure, since one scaling is used for all plots.
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5.3.3 Evaluation of the Focal Length on Video Sequences

This section evaluates the estimation of the focal length for one of the video sequences,

captured from viewpoint 1. The video sequence was taken from the first dataset. Table

Focal Length [pixel]

Median Mean Standard Deviation

1920×1088 (100%) 3822.5 3817.4 36.2
1440×816 (75%) 3805.7 3804.2 42.8
960×544 (50%) 3784.4 3797.2 58.6
480×272 (25%) 3779.6 3781.2 95.1

Table 5.5: Comparison of the focal length of a video sequence for various res-
olutions. It is clear to see that the accuracy (standard deviation)
increases as resolution decreases.

5.5 represents the estimated focal length for different video frame resolutions. It is clear to

see that the standard deviation increases as the image resolution decreases, nevertheless

the computed mean and median value still have a satisfying accuracy. The reason for the

increasing standard deviation is the interpolation in the down-sampling process leading

to different SIFT features. The difference between the evaluation in this section and

Figure 5.6: Bar graph representing the standard deviation of our approach for
different video resolutions.

the evaluation presented in Section 5.3.2 is the different number of images/video frames.

While in the previous case 85 images were registered, in this case only the first 45 frames

of a video sequence were located. Another representation of the standard deviation of the

focal length in the form of a bar chart is shown in Figure 5.6.

As the video sequence used in this section has a lower resolution (1920×1088) in contrast

to the original images (5616×3744), the estimated focal length has to be divided by a
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Figure 5.7: Estimation of the focal length for the first 45 frames of a video se-
quence from dataset 1 for different resolutions.

factor of 1920
5616 = 0.341. This is required to get the focal length that corresponds to the

full image resolution. This additional multiplication step is required to obtain comparable

values.

Furthermore, Figure 5.7 represents the variation of the estimated focal length for different

video frames in one chart. As already addressed, one can see that videos with a high

resolution result in smoother graphs, while decreasing video resolutions lead to higher

variations in the estimated focal length.

5.3.4 Evaluation of the Camera Pose on Images

This section evaluates the accuracy of the camera pose compared to the position estimated

through the reconstruction with the Photo tourism approach by Snavely et al. [94], which

serves as comparable ground truth data for this evaluation. Table 5.6 shows the evaluated

results. As a consequence of the Euclidian reconstruction the scale of the model is un-

known; therefore, to get reasonable results the scale of the model is computed first. This is



5.3. Results 77

Dataset #Images #3D Points Mean Deviation [m]

1 85 19082 1.61e-2
2 83 23538 8.70e-3
3 80 21961 3.36e-2
4 79 35874 4.47e-2
5 81 19701 7.54e-2
6 81 24728 8.40e-3
7 88 40225 5.28e-2
8 77 20286 4.40e-3
9 89 34802 7.93e-2
10 77 22226 7.93e-2
11 84 18829 9.88e-2
12 77 24162 7.18e-2

Table 5.6: Evaluation of the accuracy of the camera pose compared to the posi-
tion estimated through the Photo tourism [94] reconstruction process.
The column #Images denotes the number of localised images, while
#3D Points are the number of reconstructed points. Finally, the
Mean Deviation is calculated, which is averaged over all images from
one dataset.

done by computing the maximum camera distance in each dataset. The maximum camera

distance denotes the maximum distance between two arbitrary cameras in the coordinate

system of the reconstructed model. In general, this maximum distance is the distance be-

tween the position where the first image was taken and the position where the last image

was captured. Since the first and the last images for all twelve datasets were captured

from the same viewpoints the direct distance, which is 48 metres, can be measured. With

this known real distance the given Euclidian model can be scaled to a metric model.

Furthermore, the same images, which were used for the reconstruction, are localised with

our approach. Subsequently, the Euclidian distance between the position determined with

our approach and the Photo tourism [94] approach is computed. Finally, this distance

multiplied with the pre-computed scaling factor leads to the absolute deviation given in

metre.

From this evaluation we can conclude that the mean deviation for all twelve datasets is at

most 0.0988m. Moreover, the mean deviation over all twelve datasets is less than 0.05m.

One reason for these marginal variances is the fact that different radial distortion mod-

els are used. While the Photo tourism [94] approach only estimates the two distortion

parameters (k1, k2), our approach estimates the centre of distortion (u, v) as well.

5.3.5 Evaluation of the Camera Pose on Video Sequences

This section evaluates the deviation for various video sequences, which were captured

from different viewpoints. For this evaluation the first dataset is used. Figure 5.8a shows
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Figure 5.8: 3D plots of the localised video frames for the first dataset.
a) Reconstructed model with the three different viewpoints, b) View-
point 1 (green), c) Viewpoint 2 (red), d) Viewpoint 3 (blue). As seen
here, the estimated camera pose varies along the principal axes. Plots
b), c) and d) are based on the particular camera centre.



5.3. Results 79

the reconstructed 3D model together with the estimated camera pose for each viewpoint.

Different colours mark the three different viewpoints - green for the first viewpoint, red

for the second and blue for the third viewpoint. Based on the world coordinate system

viewpoint 1 is located at (X,Y, Z) = (0.31, 1.94,−11.26), viewpoint 2 at (X,Y, Z) =

(0.30, 5.99,−16.91) and viewpoint 3 at (X,Y, Z) = (0.30, 8.64,−20.43).

Figure 5.8b to Figure 5.8d show the deviation for the three viewpoints in a detailed 3D

scatter plot. We should mention that the evaluated model is scaled to a metric model,

hence the scaling of the axes is given in metres. Furthermore, each of these three plots is

based on the particular camera coordinate system. In this camera coordinate system each

camera is located at (X,Y, Z) = (0, 0, 0). While the standard deviation along the x and

y axis is approximately 0.7cm and 1.3cm, it is around 8.2cm for the principal axis. This

fact is a consequence of the inaccuracies during the photogrammetric calibration.

Standard deviation [m]

Dataset x y z

1 0.0072 0.0132 0.0820
2 0.0152 0.0290 0.1488
3 0.0225 0.0554 0.2013
4 0.0162 0.1037 0.1054
5 0.1475 0.0669 0.1837
6 0.0135 0.1598 0.0388
7 0.0758 0.0324 0.2010
8 0.0618 0.3636 0.2897
9 0.0409 0.0566 0.3105
10 0.0179 0.0535 0.1977
11 0.0494 0.2000 0.1492
12 0.0986 0.1539 0.1519

Table 5.7: Camera pose evaluation on full resolution video sequences captured
from the first viewpoint. The computed standard deviation is given
in metres.

In addition, Table 5.7 illustrates the standard deviation for all twelve datasets. As shown,

the maximum standard deviation is less than 0.37m for all configurations. This is quite an

accurate value, since no tripod was used during the capturing process. Therefore, minor

inaccuracies were included during the capturing process of the video sequences.

5.3.6 Evaluation of the Radial Distortion

As addressed in Section 3.3.2 radial distortion is an issue with many standard digital cam-

eras; therefore, introducing such a model can significantly enhance the accuracy of the

resulting model. Figure 5.9 compares the estimated focal length for one video sequence

from the first dataset without (a) and with (b) an additional radial distortion model. The
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lower resolution of the video sequence (1920×1088) leads to a focal length which is lower,

by a factor of 0.341 (see Section 5.3.3), than the original focal length estimated for images

with a full resolution of 5616×3744. As shown in Figure 5.9b introducing a radial dis-

tortion model leads to significantly smoother focal lengths for each frame compared to a

model without an additional radial distortion model, which is shown in Figure 5.9a. The

variations in the focal length around frame 300 are due to a fast pan in the video sequence,

which resulted in a noticeable motion blur in the extracted video frames.

(a) (b)

Figure 5.9: Focal length f estimated without (a) and with (b) an additional ra-
dial distortion model. The video sequence was taken from viewpoint
1 from dataset 1 and includes rotation but neither zooming nor trans-
lation.

The influence of the radial distortion on real images is shown in Figure 5.10. It com-

pares a photograph undistorted with the parameters (k1, k2) estimated through the iter-

ative 3D reconstruction applying the Photo Tourism approach (Figure 5.10a) to an image

undistorted with our approach (Figure 5.10b). Both approaches are based on the radial

distortion model addressed in Section 3.3.2, but are different in the number of estimated

parameters. While the Photo tourism [94] approach assumes the centre of radial distortion

is in the middle of the image and therefore estimates only the two distortion parameters

k1 and k2, our approach also estimates the centre of radial distortion u and v. A visual

comparison of the two undistorted images shows only a marginal disparity; still, further

evaluations brought about small improvements through the additional parameters. Fur-

thermore, another well known illustration of the radial distortion is what is known as the

radial distortion map, shown in Figure 5.11. As this Figure shows, the radial distortion is

relatively low for points near the image centre, whereas the radial distortion increases for

points further away from the image centre.
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(a)

(b)

Figure 5.10: Comparison of two undistorted images taken from the third dataset
applying a) the Photo tourism [94] radial distortion model and b) our
radial distortion model explained in Section 3.3.2

Figure 5.11: Radial distortion map for the image from Figure 5.10b applying our
radial distortion model.
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5.3.7 Run-time: 6-point DLT versus 3-point Algorithm

This section presents the run time improvements of the 3-point algorithm over the 6-

point DLT. Due to there being fewer unknown parameters with the 3-point algorithm

in comparison to the DLT algorithm a speed-up depending on the number of outliers is

noticeable. Table 5.8 illustrates these enhancements. For a clearer interpretation, Figure

Fraction of outliers e RANSAC k RANSAC d 6-point [s] 3-point [s]

0.2 23 160 0.41 0.10
0.3 56 140 0.96 0.10
0.4 145 120 0.86 0.10
0.5 439 100 2.12 0.10
0.6 1683 80 4.66 0.10
0.7 9472 60 48.24 0.11

Table 5.8: Run-time comparison of the 6-point DLT and the 3-point algorithm
depending on the number of outliers. The run-times are measured in
seconds and include only the camera pose estimation step; the fea-
ture extraction and matching procedure are not included, since both
approaches require the same set of 2D to 3D matches. Furthermore,
the 6-point algorithm includes the additional radial distortion opti-
misation step. The two required RANSAC parameters k and d are
determined through Equations (3.21) and (3.22) with N = 200 and
p = 0.999.

5.12 shows the determined run time values in a graph. This chart illustrates that the
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Figure 5.12: Run-time comparison of 6-point DLT to the 3-point algorithm.
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run-time of the 6-point DLT increases with the number of outliers, while the run-time for

the 3-point algorithm is more or less constant. For the run time evaluation in this section

the first dataset was used, which consists of 18912 3D points. Furthermore, to advance the

validity of this experiment the evaluation was repeated 100 times and robustly averaged,

since the RANSAC loop selects the input points randomly. The empiric threshold value t

(see Section 3.4.3) is set to t = 2, the number of iteration N = 200 and p = 0.999. The

two required RANSAC parameters k and d are determined through Equations (3.21) and

(3.22).

From these outcomes it is clear that calibration of the camera with a 6-point DLT and

then registering the following video frames with a calibrated camera greatly speeds-up

the localisation process by simultaneously preserving the accuracy of the camera pose.

One reason for the slower run-time of the 6-point DLT algorithm is the fact that for each

inlier set an additional refinement step is added. These refinement steps, together with

the radial distortion estimation, have a great influence on the run-time of this algorithm.

5.3.8 Registering Video Sequences onto Different 3D Models

In this section we try to register video sequences onto 3D models taken from different

datasets. The time difference between the captured datasets vary from a few hours to

#Registered Frames

Difference Viewpoint 1 Viewpoint 2 Viewpoint 3 Mean

0 100 100 100 100
1 50 68 62 60
2 16 14 43 24.3
3 16 21 50 29
4 26 22 30 26
5 25 23 33 27
6 15 5 17 12.3
7 6 7 15 9.3
8 0 0 0 0
9 7 9 0 5.3
10 5 0 0 1.6
11 0 0 0 0

Table 5.9: Number of registered frames between a 3D model and a video se-
quence, which was captured at a different time. For each dataset 100
images were used for localisation. The first column defines the differ-
ence between the datasets, while the last one represents an average
number of localised video frames.

several days as addressed in Table 5.1. Table 5.9 presents the number of localised video

frames. In each evaluation 100 video frames were used.

A graphic representation of the values represented in the Table 5.9 is shown in Figure
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Figure 5.13: Number of registered frames between a 3D model and a video se-
quence captured at a different time for a) Viewpoint 1, b) Viewpoint
2, c) Viewpoint 3 and d) Mean of all three viewpoints. In total 100
images were used for localisation.

5.13. From these figures it is clear that the number of localised images decreases as the

distance between the datasets increases. This is a consequence of the building process

at the construction site, since the shape of the building changes over the course of time.

These changes lead to diverse feature descriptors, which results in fewer localised frames.

If the videos and the 3D model are taken from the same datasets all images are correctly

localised.

In addition to this evaluation the reprojection error, as defined in Equation (5.1), is com-

puted for all localised video frames and is shown in Figure 5.14 in what is known as a

confusion matrix. From these figures we can see that 3D models and videos taken from

the same dataset have the smallest reprojection error, illustrated as black squares in the
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(a) (b)

(c) (d)

Figure 5.14: Normalised reprojection error between a 3D model and a video se-
quence captured at a different time for a) Viewpoint 1, b) Viewpoint
2, c) Viewpoint 3 and d) Mean over all three viewpoints. If the 3D
model and the video sequence are taken from the same dataset the re-
projection error is small, while an increasing distance between model
and video leads to a bigger reprojection error.

chart. In conclusion, Figure 5.14d shows the mean reprojection error over all three view-

points. As one can see, the top left and the bottom right corners are brighter representing

a bigger reprojection error. These two corner squares have a distance of twelve, which

means the model is taken from the first dataset and the video is taken from the last one

and vice versa. Therefore, the reprojection error is much bigger in comparison to videos

and 3D models taken from the same dataset, which are represented in the diagonal of

these figures.
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As listed in Table 5.1 the first four datasets were captured on the same day. This is

clearly visible in Figure 5.14b. The 3×3 square in the bottom left corner is darker, which

represents a smaller reprojection error in comparison to the brighter squares. The same

is true for the second day, which also includes four datasets.

5.4 Summary

This section presented the evaluation results of our proposed approach in comparison to

several state-of-the-art implementations.

The results obtained show that our approach is comparable with other modern approaches

in terms of accuracy and robustness. Furthermore, several experiments on real datasets

including images and video sequences led to acceptable outcomes, regarding accuracy of

intrinsic camera parameters and camera pose. Moreover, experiments excluding a radial

distortion model and including an additional introduced radial distortion model demon-

strate a significant enhancement in regards to the robustness of the intrinsic camera pa-

rameters. However, the radial distortion is estimated with a non-linear optimiser which

gives rise to additional run-time costs, since in every RANSAC step the radial distortion

is estimated. A visual comparison of an undistorted photograph with the model applied

by the Photo tourism approach and the model proposed in this thesis has brought about

no considerable difference.

Finally, the dependency between the datasets was represented in the form of a confusion

matrix, which evaluates the possibility of registering a video sequence on 3D models cap-

tured at different days and times of day. This experiment has shown that increasing time

lag between the 3D model and the video sequence resulted in an increased reprojection

error.

In conclusion, all results show that the proposed approach is comparable with other mod-

ern localisation approaches; nevertheless, including an additional radial distortion model,

which is already in the RANSAC loop, results in a high level of enhancement. As a con-

sequence of the increasing accuracy of the intrinsic and extrinsic camera parameters the

accuracy of camera position is enhanced bringing about a better final outcome.
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6.1 Conclusion

This master’s thesis has proposed an approach for rendering realistic 3D videos by com-

bining a 3D model and video sequences. Our approach requires a pre-computed 3D model

which can be reconstructed by utilising modern image-based reconstruction methods. Fur-

thermore, recently evolved 3D reconstruction databases contain an enormous amount of

reconstructed models from famous landmarks around the world, which can also be used

as input.

First of all, an estimation of the camera position is required; hence, a 6-point DLT al-

gorithm included into a RANSAC framework was implemented. Additionally, a radial

distortion model was introduced and optimised by utilising a Levenberg-Marquardt op-

timiser. Comprehensive evaluations make it clear that including such a radial distortion

model significantly enhances the accuracy of the estimated camera parameters and gives

rise to more accurate camera positions. Since the 6-point DLT estimates the camera

pose and the intrinsic camera parameters, a self-calibration of the camera is implicitly

incorporated, resulting in an automatic camera calibration. Hence, our approach has no

restrictions regarding camera calibration and 3D modelling; therefore, any standard digi-

tal camera can be used to capture the required images and videos, respectively.

The fully automatic approach estimates a depth value for each pre-segmented region,

which is extracted using a modern segmentation algorithm. This depth information has

been further utilised to render a 3D video or a simple depth map. By using the additional

depth information new methods for change detection have been applied to the video se-

quences resulting in additional information about the scene and the video sequence. As a

consequence of this additional information, tasks such as occlusion handling can be sim-

plified. Further experiments evaluating the accuracy of the intrinsic camera parameters

have shown the robustness of our implementation.

In conclusion, this master’s thesis proposes a novel technique that renders realistic 3D

videos assuming a 3D model and a 2D video is provided.

6.2 Future Work

Several ideas for future work are:

• As the experiments in Section 5.3.8 show, it is not always possible to register a video

sequence to a 3D model captured at different points in time. Therefore, aligning

different 3D models would lead to the possibility of projecting a video to a 3D model

captured at a different point in time. This would enable one to visibly show changes

between the model and a video sequence with a different time through the back

projection of the video onto the 3D model.

• An extension to an indoor environment is possible. The accurate localisation part,

in particular, can be used to find the exact position of a camera or a mobile device.
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• Semantic tagging can be included. For example, several bounding boxes in one image

could tag objects. These bounding boxes could be propagated to every video frame.

• The first version of the program is implemented to run on the CPU and is not run-

time optimised. However, the modularity of our approach would allow several parts

of the workflow, such as feature detection and 2D to 3D matching, to be run on the

GPU to enhance the performance of the program





Appendix A

Acronyms and Symbols

List of Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

AR augmented reality

BRIEF binary robust independent elementary features

CCD charge-coupled device

CMVS clustering views for multi-view stereo

CPU Central Processing Unit

DLT direct linear transform

DOF degree of freedom

DoG Difference of Gaussian

Exif Exchangeable Image File Format

FLANN fast library for approximate nearest neighbors

GLOH gradient location and orientation histogram

GPS Global Positioning System

GPU Graphics Processing Unit

KNN k-nearest neighbor

LESH local energy based shape histogram

LMA Levenberg–Marquardt algorithm

LoG Laplacian of Gaussian

MLE maximum likelihood estimator

PMVS patch-based multi-view stereo

91
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RANSAC random sample consensus

RMS root mean squared

SfM structure-from-motion

SIFT Scale-invariant feature transform

SLIC Simple Linear Iterative Clustering

SURF speeded up robust feature

SVD singular value decomposition
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