

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Graz University of Technology

Institute for Computer Graphics and Vision

Master Thesis

Transfer Learninig with Random

Forests

Lukas Daum
October 30, 2011

Thesis supervisors

Univ. Prof. DI Dr. Horst Bischof

DI Dr. Christian Leistner

Abstract

Random Forests are a machine learning method. They can be used for classification

and regression tasks. Several object detection algorithms also use Random Forests as

classifiers. These object detectors need to be trained on positive example images which

show the objects of interest and on negative example images which do not show these

objects. Positive and negative examples are drawn from the same domain which is called

the target domain. This target domain also denotes the domain, which the learner should

perform well at.

Transfer Learning methods have the goal to gain more information about a target

domain by extracting relevant information from a source domain. The source domain

denotes a domain which is similar to the target domain but not the same. When classifiers

like Random Forests are trained on data from a target domain, Transfer Learning methods

can be used to add additional knowledge from a source domain. Since preparation of target

training data can be very expensive the ability to reuse data from a source domain is very

beneficial.

This Master Thesis addresses combination of Random Forest based methods with

methods of Transfer Learning. PCA, Sparse Coding and Transfer Boosting are combined

with Random Forest based methods. We also propose a Transfer Learning method for

Random Forests. Random Forests have a strong mechanism to find out how similar one

example is to a batch of other examples. This mechanism is used to remove examples from

the source domain data which are not similar to the data from the target domain. These

removed examples are so called outliers. Remaining examples can then be transferred to

the target domain.

The aim of this master thesis is to compare these Transfer Learning methods amongst

each other and to other state of the art methods. Evaluation of these methods on two

classification tasks and two object detection tasks show that Transfer Boosting in combi-

nation with Random Forests can improve the performance on a given task as well as the

removing of outliers in the source data set. For PCA and Sparse Coding the experiments

iii

iv

did not show any performance improvement compared to Random Forest based methods

without Transfer Learning.

Keywords: Transfer Learning, Machine Learning, Random Forests, Computer Vision,

Hough Forest, Transfer Boosting, PCA, Sparse Coding, Pedestrian Detection, Face De-

tection

Kurzfassung

Random Forests sind machine learning Methoden. Sie können für Klassifizierung und Re-

gression verwendet werden. Einige Objekt detektierungs Algorithmen basieren ebenfalls

auf dem Prinzip von Random Forests. Diese Detektoren müssen auf positiven und nega-

tiven Beispielen trainiert werden um Objekte in einer Szene detektieren zu können. Posi-

tive Beispiele bezeichnen Bilder die Objekte von interesse beinhalten. Negative Beispiele

bezeichen Bilder die keines dieser Objekte zeigen. Positive und Negative Beispiele stam-

men aus der selben Domäne, der so genannten target domain. Diese target domain beze-

ichnet auch die Domäne auf welcher der trainierte Detektor angewendet werden soll.

Transfer Learning Methoden verfolgen das Ziel, zusätzliche Informationen über diese

target domain zu sammeln. Dazu werden Informationen aus einer so genannten source do-

main verwendet. Diese source domain ist eine Domäne welche ähnlich aber nicht identisch

zur target domain ist. Neben den Daten aus der target domain können so zusätzliche Daten

aus der source domain für den Trainingsprozess verwendet werden. Diese zusätzlichen

Daten können die Genauigkeit eines Klassifizierers verbessern. Das Sammeln von Daten

aus einer target domain kann ein sehr aufwendiger und zeitintensiver Prozess sein. Deshalb

ist es vorteilhaft wenn bereits vorhandene Daten aus einer source domain wiederverwendet

werden können.

Diese Masterarbeit behandelt die Kombination von Transfer Learning Methoden und

Methoden die auf dem Prinzip von Random Forests basieren. PCA, Sparse Coding und

Transfer Boosting werden mit Radom Forests kombiniert und eine spezielle Transfer Learn-

ing Methode für Random Forests wird vorgestellt. Random Forests bieten ein gutes

Werkzeug um herauszufinden wie ähnlich ein bestimmtes Beispiel einer Menge von an-

deren Beispielen ist. Auf diese Weise können Beispiele aus den source domain Daten

entfernt werden, die sich zu sehr von den Daten der target domain unterscheiden. Diese

Beispiele werden als outliers bezeichnet. Beispiele, die keine outliers sind können als

zusätliche Daten verwendet werden.

v

vi

Das Ziel diese Masterarbeit ist es, diese Transfer Learning Methoden untereinander,

und mit anderen modernen Methoden, zu vergleichen. Die Evaluierung dieser Methoden

in zwei Klassifizierungsproblemen, sowie zwei Objekt Detektierungsproblemen zeigt, dass

Random Forests mit Transfer Boosting bessere Resultate liefern können. Auch das Ent-

fernen der outliers aus den source domain Daten kann die Resultate verbessern. PCA

und Sparse Coding hingegen führten in den Experimenten zu keiner Verbesserung der

Resultate im Vergleich zu Random Forest Methoden ohne Transfer Learning.

Keywords: Transfer Learning, Machine Learning, Random Forests, Computer Vision,

Hough Forest, Transfer Boosting, PCA, Sparse Coding, Pedestrian Detection, Face De-

tection

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Transfer Learning . 2
1.3 Object detection with Random Forests . 4
1.4 Goal of this Master Thesis . 5
1.5 Organisation of this Master Thesis . 6

2 Related Work 7
2.1 Image Features . 7

2.1.1 Pixel-Pair Features . 8
2.1.2 Haar Features . 8

2.2 Object detection . 9
2.2.1 Introduction to object detection . 9
2.2.2 Performance Measurement for Object Detectors 10

2.3 Machine Learning . 11
2.3.1 Decision Trees . 11
2.3.2 Random Forests . 13

2.3.2.1 Bagging . 13
2.3.2.2 Proximities . 14
2.3.2.3 Outliers . 16

2.3.3 Hough Forests . 16
2.3.3.1 Training Process . 17
2.3.3.2 Detection of Objects . 19

2.3.4 Boosting . 23
2.4 Transfer Learning . 25

2.4.1 Introduction to Transfer Learning 25
2.4.1.1 Inductive Transfer Learning 26
2.4.1.2 Multi-task Learning . 27
2.4.1.3 Self-Taught Learning . 28
2.4.1.4 Transductive Transfer Learning 28

2.4.2 Comparison of TL to other Machine Learning concepts 28

vii

viii CONTENTS

2.4.3 Transfer Learning Algorithms . 29
2.4.3.1 Transfer Boosting . 30
2.4.3.2 Transfer Learning with PCA 32
2.4.3.3 Transfer Learning with Sparse Coding 35

2.5 Chapter Summary . 39

3 Transfer Learning for Random Forest based Methods 41
3.1 General Machine Learning . 41

3.1.1 Transfer Learning with Outlier Detection 42
3.1.2 Transfer Boosting . 43

3.2 Image Classification . 46
3.2.1 Transfer Learning with PCA . 46
3.2.2 Sparse Coding . 46
3.2.3 Image Feature Boosting . 47

3.3 Object detection . 49
3.4 Chapter Summary . 50

4 Experiments 53
4.1 20 Newsgroups Dataset part 1 . 53
4.2 20 Newsgroups Dataset part 2 . 57
4.3 Character Image Classification . 58
4.4 Pedestrian Detection . 62
4.5 Face Detection . 71
4.6 Experiment Conclusions . 75
4.7 Chapter Summary . 76

5 Conclusion and Outlook 79
5.1 Conclusion . 79
5.2 Outlook . 80

Bibliography 82

List of Figures

1.1 Overview of different Transfer Learning Settings 3
1.2 Example of object detection on TUD Pedestrian set 4

2.1 Examples of Haar Features, image taken from [24] 9
2.2 Detection Process of a Hough Forest, images taken from [15] 17
2.3 Illustration of Hough Forest training . 18
2.4 A Hough Image Example . 20
2.5 Detection diffusion at different object scales 21
2.6 Types of Transfer (from [39]) . 26
2.7 Example of Sparse Features for Digit Classification 36

4.1 20 Newsgroups Inductive Transfer: Error Graphs. 56
4.2 Handwritten Character Classification: Basis Vectors 60
4.3 Handwritten Character Classification . 61
4.4 TUD-Campus: Recall-Precision Curve . 65
4.5 TUD-Campus: ROC Curve . 65
4.6 TUD-Crossing: Recall-Precision Curve . 66
4.7 TUD-Crossing: ROC Curve . 67
4.8 TUD-Crossing and TUD-Campus: Barinova and Gall Recal-Precision

Curve from [4] . 68
4.9 TUD-Pedestrians: Recall-Precision Curve 68
4.10 TUD-Pedestrians: ROC Curve . 69
4.11 FDDB: Recall-Precision Curve . 73
4.12 FDDB: ROC Curve . 74
4.13 FDDB: Official ROC Curve [19] . 75

ix

List of Tables

3.1 32 Image Channels from [15] . 48
3.2 Combination of TL methods with Hough Forests 49

4.1 20newsgroups2. Accuracy of different methods using only 2 labeled training
samples. 55

4.2 20newsgroups3. Accuracy of different methods. 58
4.3 Accuracy of different methods on the classification of Handwritten Charac-

ters. Accuracy given in percent of correct classifications 61
4.4 TUD: Average number of Tree Nodes . 63
4.5 TUD: Processing Time . 64
4.6 TUD-Campus: Equal-Error Rates . 66
4.7 TUD-Crossing: Equal-Error Rates . 67
4.8 TUD-Pedestrians: Equal-Error Rates . 69
4.9 Faces in the Wild: Average number of Tree Nodes 71
4.10 FDDB: Processing Time . 72
4.11 FDDB: Equal-Error Rates . 73

xi

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.2 Transfer Learning . 2

1.3 Object detection with Random Forests 4

1.4 Goal of this Master Thesis . 5

1.5 Organisation of this Master Thesis 6

1.1 Motivation

In machine learning the performance of a learner on a specific task is always dependent

on the quality and quantity of data it was trained on. Thus, there is the need to carefully

handcraft as much data as possible to achieve a good performance. Since this is a time

consuming process there is a high interest in speeding up this process. For this purpose

transfer learning can be used. Transfer learning tries to take into account some additional

data, which is already present, to increase a learners performance. DT denotes the target

domain, which the learner should perform well at. This is the domain of the training and

test data. DS denotes the source domain, which is similar to DT but not the same. DS

provides additional data to increase the performance on DT .

An example shows the problem and how Transfer Learning can help to improve a

learned model. We assume that a company wants to install a camera inside a public

building to measure the number of persons passing this camera. Therefore, the camera is

connected to a computer which is running an object detector. This detector should use a

machine learning method to distinguish persons from other objects or background. This

1

2 Chapter 1. Introduction

learner needs to be trained on data examples to learn a model. In this case, the target

domain DT is the domain of persons including the view angle of this specific camera,

the light setting inside this building and camera related properties like color scheme or

resolution. To obtain data for this target domain someone needs to take pictures with

this camera and to label them. The labels need to be stored along with the corresponding

images. This is a very time consuming process because a high number of labeled images

is needed to yield good results in detection. The responsible technician decides to use

Transfer Learning because he has access to many other object detection data sets which

are labeled already. The source domain DS is chosen as the domain of persons in an

outdoor setting. The technician labels only a few images from DT and adds the existing

data set from DS . During the process of Transfer Learning parts of DS data which are

relevant for DT are used as additional examples for training. The data set for DS includes

a very high number of examples and it is still strongly related to DT . Thus, the detector

with the trained learner yields good detection results while the technician did only label

a few examples himself.

Especially in computer vision the collection and the labeling of data is very time

consuming. For object detection tasks one has to collect images showing the object.

Furthermore, each image has to be assigned a label. The form of these labels depends

on the used machine learning algorithm. Some methods are able to use weakly labeled

data. For images a weak label could be the count of objects inside the image or the

information whether or not the image contains the desired object. A more precise label

is the set of object bounding boxes for every image or even a complete segmentation for

every object inside the image. The easiest solution of this problem is to use data that is

already available and labeled. Many detection data sets are available at popular machine

learning repositories. Some of them also contain different forms of labels and can therefore

be used by many different learning algorithms. Since these data sets may not be of the

same distribution as the target task, Transfer Learning is needed to make use of this data.

1.2 Transfer Learning

Transfer Learning (TL) is a sub-field of Machine Learning. The main focus of TL is the

use of some auxiliary data Xs which is drawn from a so-called source domain DS . This

additional data should improve the performance of a learner or classifier which is trained

on data Xt, drawn from DT and evaluated on data Xu which is also drawn from target

domain DT .

1.2. Transfer Learning 3

(a) Setting for Inductive Transfer
Learning

(b) Setting for Self-taught Learning

(c) Setting for Transductive Transfer
Learning

Figure 1.1: Overview of different Transfer Learning Settings

Figure 1.1 illustrates the main settings of transfer learning. Subfigure 1.1(a) shows the

setting of inductive transfer learning with training data which is drawn from the target

domain DT and auxiliary data from source domain DS . In this case the auxiliary data

contains labels which correspond to the class labels used in domain DT . Thus, the samples

contained in Xs can be used directly as additional samples for training.

Subfigure 1.1(b) shows the setting for self-taught learning which is a special form of

inductive transfer learning where Xs does not contain any labels. Thus, the auxiliary data

cannot be used as additional data for training but may help to find some common patterns

which can be used to improve the quality of the trained learner.

Subfigure 1.1(c) shows the setting for transductive transfer learning. Here the labeled

training data Xt is drawn from source domain DS and thus its is hard to train a learner

for DT which yields a good performance. Therefore, some unlabeled examples from DT

are used to aquire some knowledge about the target domain. These samples in Xs can be

used to shift the representation of samples in Xt so that they become more similar to the

target domain samples. [39]

4 Chapter 1. Introduction

1.3 Object detection with Random Forests

Random Forests are learners or classifiers which are very popular because of the advantages

they have over other kinds of machine learning algorithms. While they are very simple

and can handle large amounts of data, they also yield very good results in classification

and regression tasks compared to other state-of-the-art machine learning methods. A

Random Forest is an ensemble of decision tree classifiers. Each tree is trained on the

whole input data. Starting at the root node of each tree, the data is then split into two

subsets according to the splitting rule defined for the tree. This process is repeated until

every example inside the data set reaches a leaf node. Test examples will also reach leaf

nodes when evaluated and will then be assigned the same label as the training examples

which ended up in the same leaf. [2] [8] [17]

Figure 1.2: Example of object detection on TUD Pedestrian set

Object detection In object detection, the goal is to find one or more specified objects

within a given scene. The result of this detection process is a number of detections. Each

detection contains the objects position within the scene. Depending on the detector a

detection may also contain information about the object size and orientation. To visualize

a detection, a bounding box is drawn for each detection as shown in figure 1.2. Object

detectors can use machine learning methods to learn object models. This means that

1.4. Goal of this Master Thesis 5

they learn to distinguish between different object classes. The learned model is contained

inside the trained classifier as a mapping of input features to a specific object class output.

The advantage of this approach is that the developer does not need to have that much

knowledge about the detection task because the system can learn by examples. Therefore,

a classifier is trained on some positive example images which contain an instance of the

object and some negative example images which do not contain an object. Thus, the

quality of such an object detector depends on the quality of the used learning algorithm.

Since Random Forests became very popular in machine learning many approaches have

been developed which use them for object detection. They can be trained on small images

showing only parts of the desired object. These small images are called image patches.

When trained on these image patches they are able to detect different parts of the object

seperately. The use of image patches makes them a very robust method for detection tasks

because they are able to detect partially occluded or rotated objects.

1.4 Goal of this Master Thesis

The goal of this thesis is to compare different methods of Transfer Learning (TL) in

combination with Random Forest based methods. We show how to combine PCA, Sparse

Coding, Transfer Boosting with Random Forests and Hough Forests. We also propose a

new method called transfer learning with outlier detection (TLOD). This method is based

on the ability of Random Forests to find outlying examples within a certain object class.

TLOD can also be used with Random Forests and Hough Forests.

These 4 TL methods will be evaluated on 4 different tasks. The first task is the

classification of newsgroup entries which belong to different newsgroup categories. The

second task is a classification task on handwritten character images. The third task is a

pedestrian detection task and the fourth task is a face detection task. For each task the

performance of our methods will be discussed. Our results will also be compared to the

results of other methods.

Finally we want to identify cases where it is beneficial to use these TL methods and

cases where they should not be used. Therefor we measure the impact of TL on the

different tasks and compare these results to the results of Random Forest based methods

without TL.

6 Chapter 1. Introduction

1.5 Organisation of this Master Thesis

Chapter 2 will discuss related work in computer vision, Machine Learning and Transfer

Learning and. Section will discuss image features used in computer vision. Section 3.3

will introduce the field of object detection. Section will discuss Decision Trees. Section

2.3.2 will introduce Random Forests [8] which are simple and powerfull classifiers and

which is widely used in machine learning and computer vision. Section will discuss Hough

Forests which are Random Forest based object detectors. Section will discuss the concept

of Boosting algorithms. Section 2.4 will introduce Transfer Learning and discuss the

main categories of TL which are Inductive Transfer Learning, Self-Taught Learning and

Transductive Transfer Learning. Section 2.4.1.1 will review some methods of Inductive

Transfer Learning, section 2.4.1.3 will review some methods of Self-Taught Learning and

section 2.4.1.4 will describe methods of Transductive Transfer Learning.

Chapter 3 will present our methods to combine Transfer Learning with Random Forests

to improve their performance. This chapter is divided into tree parts. The first part

will discuss Transfer Learning for Random Forests in general machine learning scenarios.

The second part will discuss Transfer Learning for Random Forests specialized for image

classification tasks. The third part will discuss Transfer Learning for Hough Forests which

are Random Forest based Object Detectors.

Chapter 4 will present experimental results for the used Transfer Learning methods

and the Object Detector with TL. Sections 4.1, 4.2 and 4.3 will compare the used TL

methods to some state-of-the-art methods. For this purpose, popular machine learning

data sets will be used. Section 4.4 and section 4.5 will show the results for two object

detection tasks, both for the Object Detector without TL and for our solution.

Chapter 5 will give a conclusion of the work presented in this thesis and an outlook to

possible future work.

Chapter 2

Related Work

Contents

2.1 Image Features . 7

2.2 Object detection . 9

2.3 Machine Learning . 11

2.4 Transfer Learning . 25

2.5 Chapter Summary . 39

This chapter will discuss the concepts which are used for our work. The chapter is

divided into four sections. The first section will discuss concepts of image features for

computer vision. The second section will give a short introduction to object detection

with a focus on Random Forest based methods. The third section will discuss machine

learning methods like Random Forests [2] [8] [17], Hough Forests [15] and boosting [45].

The fourth section will give an overview of Transfer Learning concepts and will discuss

the methods we use for our work.

2.1 Image Features

An image feature is one specific attribute of a digital image. Such a feature can represent

attributes like pixel values at a specific image position, color, or more advanced properties

like information about edges inside the image or even the occurance of a complex pattern

inside the image. These are just a few examples and there are many more possibilities

of what a feature can describe. For each feature and image a specific feature value for

this image can be calculated. For instance, if the feature is defined as the color at a pixel

position then the feature value may be red for one image but green for another one. Thus,

7

8 Chapter 2. Related Work

the feature defines what is observed and the feature value is a specific observation for a

given image. To describe a single image usually more than one feature is needed. When

a set of N features is defined it is called a feature space F = {f0, f1 . . . fN} where fi is

one single feature. The features contained in F can be used to describe a single image by

calculating a feature value vi for each feature fi. The result is a vector of feature values

V = {v0, v1 . . . vN} which represents the available information about the given image. A

very simple example for an image feature is the raw pixel value. The raw pixel value is

the color or grayscale value of a single pixel inside the image. When F is the set of all

pixel positions inside an image then V contains exactly the same information as the image

itself. In this section we will discuss two common types of features which are used for our

work.

2.1.1 Pixel-Pair Features

A Pixel-Pair Feature is defined by two pixel locations p(x, y) and p(u, v) inside the image.

The raw pixel values from both pixel positions are combined by an arithmetic operation.

Usually p(u, v) is subtracted from p(x, y) as shown in equation 2.1.

v = p(x, y)− p(u, v) (2.1)

Since the pixel pair feature observes two positions it provides information about dif-

ferences inside the image.

2.1.2 Haar Features

Haar Features [50] are advanced features which are able to provide information about

edges inside an image.

Figure 2.1 shows different kinds of Haar Features. Each feature consists of black regions

and white regions. The sum of all pixel values inside the white regions are subtracted from

the sum of all pixel values inside black regions.

v =
∑

p(black)−
∑

p(white) (2.2)

The different kinds of Haar Features shown in figure 2.1 can be used to detect edges

at different angles. Features A and C are able to detect vertical edges, Feature B is able

to detect a horizontal edge, and D and E can be used to detect diagonal edges. For each

Haar Feature the size of regions and the position inside the image window is variable.

2.2. Object detection 9

Figure 2.1: Examples of Haar Features, image taken from [24]

It is very time consuming to calculate many Haar Features at once because a high

number of pixel values needs to be read out. Thus, an Integral Image [50] can be used

to speed up this process. An Integral Image is a special representation of the original

input image where each pixel value is the sum of all pixel values above and to the left.

To calculate such an Integral Image every pixel needs to be read once. Every rectangular

region of a Haar Feature can then be calculated as the difference of the integral value of

the upper left corner and the bottom right corner [50].

2.2 Object detection

In this section the basic concept of object detection will be explained and how machine

learning methods can be used for Object Detectors. Hough Forests [15] which are used

for our work will be discussed in detail.

2.2.1 Introduction to object detection

An Object Detector is a method to detect objects of interest within one or more images.

These objects can be things like cars, different animals, persons and many more. De-

pending on the detection algorithm an Object Detector is able to give a hypothesis about

10 Chapter 2. Related Work

object properties like position inside the image and object dimensions. Two quantities

determine the quality of an Object Detector. The first one is the rate of true positive

detections which is the rate of correct detected objects. The second one is the rate of false

positives which are false detections or duplicate detections of the same object. While it is

possible to fully programm an Object Detector it is a common approach to use machine

learning algorithms to learn object representations. The benefit of this approach is that

the Detector can be trained on examples which reduces the complexity of the system from

a developers view.

Examples for Object Detectors using machine learning methods are the Viola-Jones

Detector [50] [24], object detection via Codebooks [29] [28], Hough Forests [15] and Ran-

dom Subwindows for Robust Image Classification [34]. The latter three methods use

Random Forests to learn object properties.

2.2.2 Performance Measurement for Object Detectors

To measure the performance of an Object Detector the detection hypothesis needs to be

compared to the original labels of the used evaluation data set. The PASCAL ∗ project

provides rules for performance measurement of detection algorithms which are based on

the detection of object bounding boxes. For each test image Ik a set of ground truth

bounding box rectangles Gk = {g1 . . . gn} needs to be available, where n is the number

of objects contained in image Ik. These rectangles are compared to detections made by

an Object Detector Dk = {d1 . . . dn}. The area of overlap Ao represents the quality of a

single detection and is calculated as shown in equation 2.3.

Ao =
size(di ∩ gi)
size(di ∪ gi)

(2.3)

Here, size(di∩gi) denotes the size of the overlap area and size(di∪gi) denotes the sum

of area size for di and the area size for gi. If Ao > 0.5, the detected rectangle is treated

as a positive detection. Otherwise the rectangle is regarded as a false positive otherwise.

Multiple detections of the same object are also counted as false positives. Thus, only the

most accurate detection is taken.

Based on the number of true positives and false positives, recall, precision and f-

measure of the object detector can be calculated as described in [1]. Equations 2.4, 2.5

and 2.6 show the calculation of recall, precision and f-measure values.

∗http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/htmldoc/

2.3. Machine Learning 11

Recall =
TP

nP
(2.4)

Precision =
TP

TP + FP
(2.5)

F −measure =
2 ·Recall · Precision
Recall + Precision

(2.6)

TP is the number of true positive detections made by the detector. FP is the number

of false positive detections and nP is the real number of positives. These calculations are

done for multiple threshold values to obtain a recall-precision curve as a final output and

performance visualization.

2.3 Machine Learning

This section will explain the concept of decision trees [49] [41] [42] and how they are used

to create Random Forests [2]. Another topic within this section is boosting [45] which is

a method to build ensemble classifiers.

2.3.1 Decision Trees

Decision trees [49] [41] [42] have a long history in machine learning since they have several

advantages over other classification algorithms. They can handle high dimensional data

sets in an efficient way with low computational effort and without the need to reduce the

dimensionality. [8]

The algorithm to grow a random decision tree is shown in algorithm 1. This is the

decision tree model we use for our work. There are various different decision tree algorithms

that are similar to this algorithm but have different splitting rules, stopping criteria and

feature selection rules.

12 Chapter 2. Related Work

Algorithm 1 Random decision tree growing algorithm [8]

• Require: Training set X with N samples and M features.

• Require: Number of random drawn features for splitting F ≤M

• Require: Splitting rule S to measure the quality of a split

• Require: Stopping criterion C. e.g. given data Y contains only one class

1. Create decision tree, provide training set X to it’s Root Node

2. Recursively grow nodes starting at the Root Node

3. If(C is met) Stopping Criterion

– Make the node a Leaf Node and store the class label.

4. Else

– Take F random features out of M to split X into two sub sets X(l) and
X(r)

– Find the best split according to splitting rule S
– Store the best split’s feature index and threshold for this node
– Create a left child node, providing X(l) instead of X
– Create a right child node, providing X(r) instead of X

Breiman [8] proposes the use of Classification and Regression Trees (CART) [49] as

decision tree implementation. They use the Gini Criterion as splitting rule S, and the

stopping criterion C is met when one of the statements below is true for the observed

node.

• All samples have the same value for the chosen split feature.

• All samples belong to the same class.

• Tree depth has reached a defined maximum value.

• Number of samples is less than a defined minimum.

• Number of samples in one or both child nodes is less than a defined minimum.

• The split improvement according to S is less than a defined minimum.

The C4.5 algorithm [41] [42] is similar to CART but uses Information Gain as splitting

rule S, which is related to the entropy of the given data set.

2.3. Machine Learning 13

Another group of decision tree algorithms is introduced by the FACT algorithm [33].

It was invented to reduce the feature selection bias of traditional decision tree algorithms

like CART and C4.5. Well known successors of the FACT algorithm are QUEST [32],

CRUISE [25] [26] and GUIDE [31]. These algorithms use different mathematical models

to find optimal splits instead of choosing the best out of a random set.

2.3.2 Random Forests

Random Forests [2] [8] [17] are ensemble classifiers that consist of multiple decision trees.

Each tree is trained seperately and has an internal structure which is different from all

other trees in the forest. This happens because every node split inside a decision tree is

chosen from a few random splits. For the classification of one sample every tree in the

forest will vote for a class, and the most popular class is the classification output for the

forest classifier. Thus, a false classification by one tree can be corrected by other trees

voting for the correct class. The percentage of votes for the most popular class is also

called the confidence. Random Forests offer several benefits which makes them a viable

choice over other classifiers. Every tree within the ensemble is based on randomly selected

features, the output hypothesis for one example is averaged over the whole forest. Thus

overfitting can be avoided very well. This means that the ability to generalize on new

data is improved. Random Forests are also well suited to use Bagging [6] which is another

method to reduce vaiance and overfitting. Another advantage of Random Forests is, that

they are computationally fast and that they can handle a high number of data examples.

2.3.2.1 Bagging

Bagging or Out Of Bag Error Estimation [7] is a technique to get an unbiased error

estimation during the training phase. When training a single tree Ct for the forest, an

In Bag Set Bt needs to be generated. This set is a bootstrap sample filled by randomly

choosing samples from the original training set. Samples which are already in Bt are

replaced to avoid duplicates. The remaining samples form the Out Of Bag Set OBt. The

tree is trained using Bt and afterwards used to classify OBt. After all trees have been

trained the classifications of their Out Of Bag Sets are combined. For each sample the

most popular class is the hypothesis and the percentage of votes for other classes is the Out

Of Bag Error. When Bagging is used there is no need to estimate the test error by more

time consuming methods like k-Fold Cross Validation. Algorithm 2 shows how Bagging is

used [8]. The use of Bagging has several benefits. No tree within the ensemble is trained

14 Chapter 2. Related Work

Algorithm 2 Random Forest growing algorithm with Bagging [8]

• Require: Training set X with N samples and M features

• Require: Tree count T

• For(t = 0 to T),

1. Create a unique In Bag Set Bt by random subsampling from X with replace-
ment

2. The corresponding Out Of Bag Set OBt = X −Bt
3. Train a new decision tree Ct on Bt

4. Classify examples in OBt using tree Ct
5. Store votes in a global voting matrix V

6. Add tree Ct to the forest

• The Out Of Bag Error for each sample x in X is the percentage of false votes stored
in V

on the whole data set. Thus Bagging reduces variance and the possibility of overfitting

on the training set. This may increase the accuracy of the forest because it improves its

ability to generalize on new data examples. Another benefit is, that there is no need for

a seperate evaluation data set. In [6] the concept of Bagging is described more in detail.

2.3.2.2 Proximities

For a data set with N samples and M features that is used on a Random Forest, one

can compute a Proximity Matrix. Equation 2.7 shows the Proximity Matrix P which is a

N ×N matrix where pxy and pyx represent the proximity of samples x and y.

P =


p(1, 1) p(1, 2) · · · p(1, N)

p(2, 1) p(2, 2) · · · p(2, N)
...

...
. . .

...

p(N, 1) p(N, 2) · · · p(N,N)

 (2.7)

Every time a data set is shown to the tree each sample will end up in a specific leaf

node which is its terminal node. When two samples x and y share the same terminal

node, the value of pxy and pyx is increased by one. In a Random Forest the proximities

of all trees are summed up to get the proximity matrix for the forest. Samples with high

proximity values are more similar to other parts of the data set than samples with low

2.3. Machine Learning 15

proximity [8].

Algorithm 3 Proximity calculation [8]

• Require: Data set X with N samples and M features

• Require: Set of Trees T

• Require: Proximity matrix P of size N ×N

• Set all elements in P to 0

• For(each tree t in T),

1. Put X down tree t, perform splits as defined in t

2. When one sample x reaches a leaf node n:

– For(each other sample y in n),
∗ Set proximity P (x, y) = P (x, y) + 1
∗ Set proximity P (y, x) = P (y, x) + 1

Algorithm 3 shows how the proximity matrix P is calculated for a given data set

X. This proximity matrix contains the proximities for all trees within the forest. Thus

proximities between two samples are only high if they share leaf nodes in many trees. P

shows general proximities between all samples which means that the class labels are not

taken into account. The average proximity a(i) for a sample i cam be calculated using P .

The average proximity a(i) is the proximity of i to all other samples with the same class

label. Thus it shows how similar a sample i is to the rest of its class.

a(i) =
n∑
j=1

(
p2(i, j) · sameclass(i, j)

)
(2.8)

Equation 2.8 shows how the average proximity a(i) for a specific sample i can be calcu-

lated. Here sameclass(i, j) = 1 if i and j share the same class label and sameclass(i, j) = 0

otherwise. This means the average proximity a(i) is the sum of proximities between i and

all other samples j which belong to the same class as i. The average proximity provides

information about similarities within a certain class. Samples with a high average prox-

imity are more similar to the other samples in their class than samples with low average

proximity [8]. The average proximities can be further used to find outliers which are

samples with low similarity to the rest of its class.

16 Chapter 2. Related Work

2.3.2.3 Outliers

Random Forests provide a simple way to identify outliers in given data sets. Therefore, a

data set with N samples and M features is shown to the forest. Proximitiy matrix P and

the corresponding average proximities a(i) for all samples i are calculated as described

in section 2.3.2.2. Using the average proximity a(i) the Raw Outlier Measure can be

calculated for sample i.

r(i) = N/a(i) (2.9)

Equation 2.9 shows how the raw outlier measure r(i) is calculated where N is the total

number of samples and a(i) is the average proximity of sample i. Using these raw outlier

measures one can calculate the median value of all Raw Outlier Measures within a certain

class c.

o(i) =
r(i)−m(c)

d(i)
(2.10)

Equation 2.10 shows how the final Outlier Measure o(i) is calculated for a specific

sample i. Here r(i) is the Raw Outlier Measure of sample i, m(c) is the median value of

Raw Outlier Measures for all samples with same class label as i and d(i) is the absolute

deviation of r(i) from median m(c). The final Outlier Measure for sample i is 0 if r(i) lies

on the median m(c), -1 if r(i) is below the median m(c) and 1 if r(i) lies above the median

m(c). Thus, samples with o(i) = 1 are possible candidates for outlying examples within

their class. This means, that the outlier has a low similarity to the other samples within

its class. This can help to find samples which are misslabeled, of bad quality or harmfull

to the learned model. These outlier measures are also used in a Transfer Learning method

which is part of our work.

2.3.3 Hough Forests

Invented by Gall and Lempitsky [15], Hough Forests are object detectors based on the

Random Forest framework. A single Hough Forest is trained on positive and negative

example patches in order to detect the object contained in the positive examples. These

sample patches are extracted randomly from positive or negative training images. In

addition to the usual training process for Random Forests, Hough Forests also learn center

offsets. A center offset defines a two dimensional vector which denotes the offset from a

certain patch to a possible center of an object. Once trained, the Hough Forest will produce

2.3. Machine Learning 17

Figure 2.2: Detection Process of a Hough Forest, images taken from [15]

a hypothesis of object center positions when given a test image or image sequence. Figure

2.2 shows how Hough Forests detect an object. Image (a) shows three sample patches

and image (b) shows their votes for the center where each vote has the same color as

its corresponding patch. Image (c) shows the output image after all votes were made.

The pixel with the highest density is the detected center. Image (d) shows the detection

rectangle based on the output image from (c).

2.3.3.1 Training Process

For training of a Hough Forest, small image patches pi are extracted out of all training

images. When given a positive example, N patches are taken at random positions inside

the image and these patches are labeled as positive examples or foreground examples.

Furthermore, the offset from the patch center to the center of the object from where it

has been extracted needs to be stored as additional information. This offset oi is the core

element for the voting process of the detection phase and defines the Hough Forest. For

images which contain multiple objects at once, N patches are sampled from each object

using only random positions inside the bounding box of the corresponding object. Since the

positive patches are sampled based on a bounding box instead of an accurate segmentation,

there will be many positive patches which do not show parts of the object but parts of

the background. While these samples are false positive training examples and thus lower

the quality of training data, the underlying Random Forest can cope with this number of

wrong labeled examples. When given a negative example, patches are drawn randomly

from any position inside the image and are labeled as negative examples or background

examples. For negative examples there is no need to store additional information like an

offset.

18 Chapter 2. Related Work

Figure 2.3: Illustration of Hough Forest training

Growing the trees: All decision trees inside the Hough Forest are grown, based on

the information of all sample patches P = {p1, p2 . . . pM} where M is the total amount of

positive and negative patches. Starting at the root node of a tree the patches Pn entering

node n are split into two subsets. This split should decrease the uncertainty of either

class distribution or offset direction. Since it may not be possible to decrease the class

uncertainty and the offset uncertainty at once, only one of them is observed at once. A

random choice decides whether the class uncertainty or the offset uncertainty is optimized.

An exception of this random choice occurs when only positive examples are left. In this

case always the offset uncertainty is decreased. Figure 2.3 schematically shows the process

of growing a single tree. The red rectangles denote background patches and the green

rectangles denote foreground patches including their offsets oi visualized as green arrows.

Node N-0 is the root node which is trained on the complete set of patches. The split in

N-0 is chosen to decrease the class uncertainty and seperates the two background patches

from the two foreground patches. The background patches end up in leaf node L-2 while

the foreground examples can be further seperated according to their offset to decrease

offset uncertainty. L-3 will now also store the offset of the head-patch whereas L-4 will

store the offset of the foot-patch.

Node Splits: Every time a set of patches Pn enters a new node, a specified amount

of possible splits is generated randomly. Each split is defined by a pixel pair feature.

According to the values of the chosen pixel pair feature a patch is passed to the left child

node or to the right child node.

2.3. Machine Learning 19

PixelPair(p(x, y), p(u, v)) < τ (2.11)

Equation 2.11 shows the decision criterion for passing a patch to the left child node.

PixelPair(p(x, y), p(u, v)) denotes the value of a pixel pair feature and τ is a handicap

value which is also chosen randomly for each possible split. If this criterion is not met,

the patch is passed to the right child node. As mentioned before a split can either try to

minimize the class uncertainty or to minimize the offset uncertainty. If a node should split

the set of patches with respect to the class uncertainty, the split is chosen which minimizes

CLU(Pn) as shown in equation 2.12.

CLU(Pn) = |Pn| · Entropy(class(Pn)) (2.12)

In equation 2.12 Entropy(class(Pn)) denotes the standard entropy over the class labels

for all examples in Pn. When the node should decrease the offset uncertainty, the split is

chosen which minimizes OU(Pn) as shown in equation 2.13.

OU(Pn) =
m∑
i=1

(o(pi)− o(Pn))2 · f(pi) (2.13)

In equation 2.13 o(pi) is the offset vector for example pi, o(Pn) is the mean offset

vector over all m examples in Pn, f(pi) = 1 if pi is a foreground patch and f(pi) = 0

otherwise. Once a set of patches cannot be split any more, the node containing these

patches is defined as a leaf node and stores the offsets of all foreground patches within this

node. The reason to form a leaf node depends on standard decision tree stopping criteria

as defined in section 2.3.1.

2.3.3.2 Detection of Objects

Once the Hough Forest is trained, it can be used to detect objects in one or more test

images. Each test image is divided into a set of image patches. One patch is created

for every pixel inside the image to create a patch set P t =
{
pt1, p

t
2 . . . p

t
l

}
where l is the

total number of patches. Again, the patch set is put down the forest and at every node

the patches are further split according to the learned pixel pair tests. When one or more

patches enter a leaf node, the offsets learned in the training phase are used to update the

hypothesis Ht. Therefore, the position of a possible object centroid PosCn is calculated for

every offset.

20 Chapter 2. Related Work

PosCn = coords(pti) + on (2.14)

In equation 2.14 coords(pti) is the center position of the image patch pti and on is the

offset with index n. For a certain position PosCn , the pixel value at this position Ht(PosCn)

is recalculated as shown in equation 2.15.

Ht(PosCn) = Ht(PosCn) + (
w(on)∑
iw(oi)

·N) (2.15)

(a) Test Image from TUD-Pedestrian
data set

(b) Corresponding Hough Image

Figure 2.4: A Hough Image Example

In equation 2.15
∑

iw(oi) is the total sum of weights of all offsets which are present

at this leaf node. N is the number of offsets in this node. Usually the weight of a single

offset is one. Note that offsets will only be present inside leafs which contain at least

one positive examples. Thus, pure background leafs will not update Ht at all. The final

hypothesis Ht which is called a hough image looks similar to the example shown in figure

2.3.3.2 where the left image 2.4(a) shows the input image and 2.4(b) the corresponding

hough image.

Pyramid Detection: Sample images used to train the Hough Forest do not have high

variations in size since they can be scaled to a uniform size. In comparison test images

may contain objects at different scales. Thus, the detector may fail in detecting an object

when it is too small or too big.

Figure 2.5 illustrates the problem that occurs at different scales. The coloured rectan-

2.3. Machine Learning 21

Figure 2.5: Detection diffusion at different object scales

gles denote sample patches and the arrows represent center offsets used for voting. The

center image shows an optimal voting where the image is exactly the same scale as the

images used during training phase. The hough votes will more likely produce an area of

high density in the hough image. The left image is at a higher scale. Thus, the center

offsets are too short to reach the center of the object which leads to a large area with

intensities higher than background intensities but will not produce a local maximum at

the object center. For smaller scale objects the hough votings will also have troubles to

hit the center. In addition there will be less patches which can be classified as foreground

patches.

A common way to solve this problem is to build an image pyramid where the original

test image S is available at different scales Si and to run the Hough Forest on every

scale seperately. When this is done a single hypothesis will be available for every scale.

According to figure 2.5 a hypothesis Hi for scale image Si will show small center votes of

high intensity when the detected object has the same scale as the objects used for training

sT . The more the scale of the detected object deviates from sT the lower the intensity of

the center vote will be. When multiple hypotheses Hi with different scales are available,

an object will produce the most accurate center vote in the hypothesis where the object is

shown at a scale which is closest to sT . When this hypothesis is scaled so that the scale of

the object is equal to sT , this hypothesis will show the highest local maximum intensity at

the objects center. In reality not every possible object scale can be covered because this

would lead to very high calculation costs. Thus, only a few scales are used to detect very

22 Chapter 2. Related Work

small objects or very big objects relative to the training scale sT . If the object we want to

detect is half the size of the training object we need to doule the size of the test image. If

the object we want to detect is twice the size of the training object we need to shrink the

test image to half its original size. An important fact to consider is that a higher scale for

a test image results in more test patches to vote for, whereas a smaller scale results in less

patches. Thus, the output hypothesis Hi of every scale needs to be normalized according

to its input scale.

Hi(x, y) = Hi(x, y) · N ·M
n ·m

(2.16)

In equation 2.16 N ×M denotes the pixel size of original input image S and n ×m
denotes the pixel size of the scaled image Si. After all scale images Si are normalized they

can be further postprocessed to find a bounding box based detection hypothesis.

Postprocessing As mentioned before, the output of a Hough Forest with paramid de-

tection are N hypotheses Hi in hough image form. Every hypothesis Hi represents one

of N different scales which are chosen by the user. A postprocessing step is needed to

calculate object bounding boxes for given hough images. These bounding boxes are the

final output of a Hough Forest detector and show the positions and size for each detection.

Algorithm 4 Postprocessing method as defined by [15]

1. Calculate N Hough images H = {h1 . . . hN} for N given scales.

2. Rescale hough images H so that all images are the same size.

3. Find the maximum pixel value vmax ≥ t, where t is a defined threshold value, for all
images hi ∈ H and add a detection rectangle dt with centered at this point.

4. Set the detection rectangle size according to the original scale of the image which
contained the maximum pixel value vmax.

5. Suppress voting elements for detection dt by setting all pixels inside the detection
rectangle to zero for all scale images.

6. Repeat these steps until no detection can be found any more.

Algorithm 4 schematically shows how detection rectangles can be found from a pyramid

of hough images. The peak values inside the hough images define the centers of object

detections. For each peak the size of the detection rectangle is defined by the original

scale of its corresponding hough image. Detections with high peak values are found before

2.3. Machine Learning 23

detections with lower ones. Thus, strong detections can occlude weaker ones which may

make it hard to detect objects which are occluded by more than 50%.

2.3.4 Boosting

Boosting [45] is a method to create ensemble classifiers from a set of so-called weak clas-

sifiers. One single weak classifier may have very low predictive power but an ensemble

of such classifiers has much more predictive power. Thus, the ensemble forms a strong

classifier by combination of many weak classifiers. This strong classifier has higher accu-

racy than just one single weak classifier. For Boosting many weak classifiers are created.

In an iterative process the best weak classifiers are selected according to their percentage

of correct classifications. The final ensemble classifier combines the output of all selected

weak classifiers to get a hypothesis.

Algorithm 5 shows the AdaBoost algorithm which is the boosting algorithm we used in

our work. First a labeled training data set X needs to be available as well as a set of weak

classifiers C. The weak classifiers may be constructed by a person or may be generated

by another program. It is also possible to use a set of random weak classifiers. Since

the quality of the final ensemble classifier depends on the quality of weak classifiers it is

beneficial to have C containing as many weak classifiers as possible. During the boosting

process all samples x in X are assigned a weight which specifies their importance. Initially

all samples within a class are assigned the same weight. In each iteration the weak classifier

is chosen which is able to minimize the classification error on X. This weak classifier Ci
is added to the ensemble. After that the weights of all samples are updated. Those

samples which were assigned the wrong class label by Ci are increased. In the next

iteration step these samples will yield a higher error if they are assigned the wrong label.

Thus, weak classifiers chosen at early stages are more general and should classify many

samples correctly. Weak classifiers chosen at higher iteration steps are more specialized in

classifying some few but difficult examples.

24 Chapter 2. Related Work

Algorithm 5 AdaBoost Algorithm [45]

• Require: A labeled training set X with m samples

• Require: Vector of true labels for X, L = {l0 . . . lN} where labels are drawn from
Y = {0, 1}.

• Require: A positive number of boosting iterations N

• Require: A set of weak classifiers C

• Assign each sample x in X a weight, forming weight vector w0 = {w1 . . . wN}

• Initalize weight vector w to wi = 1
2k . k is the number of samples within the class of

x

• For (t = 0 to N)

1. Normalize all weights wi to form a probability distibution by dividing through
the total sum of weights

wti =
wti∑m
i=1w

t
i

2. For each weak classifier Ci, classify all samples in X and calculate the error
e(Ci) =

∑m
i=1w

t
i · e(xi, Ci) where e(xi, Ci) is 0 when the samples is classified

correctly and 1 otherwise

3. Add the weak classifier with the lowest error e(Ci) to the ensemble

4. Calculate reweighting factor βt = min e(Ci)
1−min e(Ci)

where min e(Ci) is the error for
the weak classifier, chosen in this iteration step

5. Update the sample weights

wt+1
i = wti · β

εi
t

where εi is 0 if xi is classified correctly and εi is 1 otherwise

• The final ensemble hypothesis h(x) for example x is calculated as

h(x) = 1 if
T∑
j=1

αtht(x) ≥ 1
2

T∑
j=1

αt , 0 otherwise

where αt = log 1
βt

and ht is the hypothesis of the weak classifier added in iteration t

2.4. Transfer Learning 25

2.4 Transfer Learning

This section will discuss the main concepts of Transfer Learning and its different subcat-

egories. Example methods for the different kinds of Transfer Learning will be mentioned

and the Transfer Learning methods which are used for our work will be described in detail.

2.4.1 Introduction to Transfer Learning

Machine learning is a large field in computer science. There are many powerful algorithms

which could be of great value in everyday life. The majority of these methods have one

aspect in common. They need to be trained on some data to fulfill a given task. The

accuracy of a machine learning method is highly dependent of the quality and quantity of

this training data. Thus, one wants to use as many examples of high quality as possible.

In this context, quality means that the sample improves the accuracy of the learner on new

examples. These new examples are drawn from a so-called target domain DT . Training

samples should also be drawn from this domain to ensure good results. In most cases

these data has to be carefully handcrafted to ensure high quality samples. This process is

very time consuming. At this stage transfer learning comes into game. Transfer learning

methods try to use additional data from a so-called source domain DS . This domain is not

equal to the target domain DT but it is somehow related and similar. A source domain

data set may contain samples which are outdated, weakly related to DT , from a different

distribution or even unlabeled. Thus, transfer learning methods provide a way to reuse

data which is alread present. Transfer learning methods try to extract information from

source domainDS which is also relevant for target domainDT . This additional information

can improve the accuracy of a trained machine learning method. There are different types

of transfer learning methods. The way how information is transferred depends on the type

of the used transfer learning method.

Figure 2.6 shows the different types of transfer as defined by [39] . Here, the target

domain denotes the domain where the learner should perform well at, whereas the source

domain denotes the domain of the auxiliary data. In order to transfer knowledge from one

to another domain, the number of features in these domains has to be equal. An example

is the transfer from one vision task to another, where both are based on images of the

same size. If target domain A is the domain of handwritten characters and source domain

B the domain of handwritten digits, the transfer of information could yield good results

even if there are only a few sample instances of every class in A because both domains

may share some attributes like strokes or curves. The more different the source domain is

26 Chapter 2. Related Work

Figure 2.6: Types of Transfer (from [39])

from the target domain, the less impact transfer learning will have. In fact it is very likely

to have some kind of negative transfer. This means that the use of a specific auxiliary

data set lowers the performance on the target task instead of increasing it. [39]

2.4.1.1 Inductive Transfer Learning

Inductive Transfer Learning (ITL) [39] describes a case, where labeled data is available for

a target domain DT and some additional data for a so-called source domain DS . The goal

of this strategy is to increase the performance on the target domain by taking knowledge

from the source domain data into account. In a real world task, only a few examples

from the target domain may be available, and collecting new labeled examples is a very

time consuming process. In object detection , for instance, one has to collect a large

number of images that contain the detected object. In addition, valid labels have to be

provided. This can be done by drawing object-bounding boxes, shapes or providing other

information about contained objects.

The idea behind Inductive Transfer Learning is to use data that is already available,

labeled and of a similar domain to improve learning without the cost of collecting new

2.4. Transfer Learning 27

examples. For ITL, the general assumption is that some parts of the source domain data

may be similar to the target domain DT and can be used as additional data. Samples

from DS , which are not similar to DT can then be removed or assigned a lower weight

to lower their impact. Methods of ITL usually have their specific way to find out which

parts of DS are similar to parts of DT or a way to find out which parts of DS can improve

the classification on DT . It is also very important for the use of ITL methods that the

chance of improving the learned model is higher the stronger source domain DS is related

to target domain DT . In this case more parts of DS can be used effectively for the training

process.

Examples for Inductive Transfer Learning are Transfer Boosting [10], Instance Weight-

ing [22], Migratory-Logit (M-Logit) [30], Actively Transfer Knowledge (AcTraK) [46] and

Transfer Learning for Support Vector Machines [51].

2.4.1.2 Multi-task Learning

Multi-task Learning (MTL) [9] is a special case of Inductive Transfer Learning. In MTL

a learning task T a is learned together with n other learning tasks T b =
{
T b1 , . . . , T

b
n

}
.

Examples Da from T a and examples Db from T b are combined to form a multi-task data

set Dab. The learner for task T a is then trained on Dab instead of Da. This method

can improve the accuracy on task T a because the number of training examples increased.

Tasks T b should be related to the original task T a and the representation of all tasks needs

to be the same. This means that examples in all tasks need to share the same feature

space. It is possible to use MTL on multiple image classification tasks where all images

have the same size. It is not possible to use MTL to mix image classification with other

reprentations like audio-signals.

Example of MTL: Task T a is an image classification task. The goal is to identify

all images which show motorcycles. The learner is trained on images of motorcycles and

on imagages which show other objects. The resulting classifier produces false positive

classifications for images which show bicycles because they are similar to motorcycles. In

MTL one can simply add the task T b1 of identifying bicycles to the multi-task scheme.

Now the learner has the information that bicycles are not motorcycles. This may reduce

the false positive rate and thus, improve the accuracy on the original task.

28 Chapter 2. Related Work

2.4.1.3 Self-Taught Learning

Self-Taught Learning (STL) is another special case of Inductive Transfer Learning. In

this case there are no labels available for the auxiliary data drawn from source domain

DS . Since the examples from DS are not labeled they cannot be used as additional

training examples but may share some common attributes with the training examples

from DT . Thus, the auxiliary data is used to find a more expressive feature representation.

The training data from DT can be transformed to this new feature representation. This

strategy can improve the performance of a machine learning algorithm on DT as the quality

of descriptive features is improved. Examples for STL methods are Transfer Learning with

PCA [48] or Sparse Coding [27] [44] [37].

2.4.1.4 Transductive Transfer Learning

In Transductive Transfer Learning (TTL) labeled data Xs is only available for the source

domain DS . Data Xt drawn from target domain DT is available but unlabeled. The

examples in Xt are used to shift the distribution of examples in Xs towards the distribution

of Xt. This approach is very usefull for real world tasks, especially when it is easy to collect

additional samples for target domain DT , although the costs of labeling are very high. An

example for this scenario is the detection of pedestrians through a camera which is placed

in a public site. Since the camera takes pictures on its own, additional examples of the

target domain are available without any additional costs. This results in a high number

of unlabeled examples, which increases the additional costs of labeling because of the high

quantity.

Examples for TTL are Domain Adaption [12], Sample Selection Bias for Transfer

Learning (SSB) [52] [18] and Covariate Shift [47] [43]. Jing Jiang presented a Survey on

Domain Adaptation of Statistical Classifiers [21]. Here the term Domain Adaptation is

used to denote Transductive Transfer Learning whereas there is also a method of Trans-

ductive Transfer Learning which is called Domain Adaption.

2.4.2 Comparison of TL to other Machine Learning concepts

As already mentioned one reason to use Transfer Learning (TL) is that data may be used

for training which is already available. This data may have a weak relation to the domain

of interest. This data Xs is called source data and is drawn from a source domain DS . Xs

can then be used by a TL algorithm in addition to a target training set Xt which is drawn

from target domain DT where DT is the actual domain of interest. No additional costs

2.4. Transfer Learning 29

occur for the use of data set Xs because it is already labeled and ready to use. Besides

Transfer Learning there are other concepts which have a focus on reducing labeling costs.

Semi-supervised Learning (SSL) is an approach where training data is split into a

labeled part Xl and an unlabeled part Xu. Usually the number of examples in Xl is

much lower than the number of examples in Xu to guarantee a low overall labeling effort.

Different from TL the data sets Xu and Xl are both drawn from the domain of interest

DT but labels are missing for Xu. Many TL methods also perform SSL. For instance

Transductive Transfer Learning algorithms are defined by using labeled data only for Xs

and not for Xt. Self-taught Learning, on the other hand, is defined by using labeled data

only for Xt and not for Xs.

In Unsupervised Learning (USL) no labels are available for training data. Thus, there

is no cost for labeling at all when USL methods are used. Unsupervised Transfer Learn-

ing (UTL) is a subfield of Transfer Learning and combines USL with Transfer Learning

methods. UTL defines methods where there are no labels available for Xt and Xs.

Multiple-instance learning (MIL) [13] is another approach to reduce the cost of labeling

data examples. In MIL data examples are not labeled per instance. MIL introduces so

called bags where one bag consists of multiple example instances. Each bag gets assigned

exactly one label. In a two class scenario where the positive class has label 1 and the

negative class has label 0 the labeling scheme is defined as follows. A bag is labeled 0 if all

contained instances are negative as well. If one or more positive examples are contained

in the bag it is assigned 1. Different from TL all data examples used for MIL are drawn

from domain DT . The bag labeling scheme which is used for MIL also results in some false

positive training examples. This means that examples with a bag-label of 1 may have a

true label of 0 but are labeled incorrectly.

2.4.3 Transfer Learning Algorithms

This section will describe the transfer learning algorithms which are used for our work.

The following enumeration gives a overview of the used methods.

1. Transfer Boosting

2. Transfer Learning with Principal Component Analysis (PCA)

3. Transfer Learning with Sparse Coding

Transfer Boosting (TrAdaBoost) [10] is an Inductive Transfer Learning algorithm which

is known to work well in combination whith various classifiers. Due to the fact that

30 Chapter 2. Related Work

Transfer Boosting builds an ensemble of classifiers, it is easy to combine it with Random

Forest based methods. Transfer Learning with PCA and Transfer Learning with Sparse

Coding [27] [44] [37] are both self-taught learning methods. They try to use information

from a source domain to find more general features. These features are then used to

describe the examples from the target domain. Both methods showed in [44] that they are

able to improve the accuracy of support vector machines (SVM) and Gaussian discriminant

analysis (GDA) on image classification tasks.

2.4.3.1 Transfer Boosting

Transfer Boosting (TrAdaBoost) [10] is an algorithm for Inductive Transfer Learning which

is based on the AdaBoost algorithm [45]. Transfer Boosting takes training data Xt from

a target domain DT and additional data Xs from a source domain DS . Both data sets

are used to train a classifier where the target domain denotes the domain of interest.

Information should be transferred from DS to DT to increase the amount of information

about target domain DT . Since examples from Xs may be used in addition to Xt it is

beneficial if DS is somehow related to domain DT . The stronger the relation the more

information can be transferred. The minimal relationship between Xt and Xs to make use

of both data sets is that they need to share the same feature space. The goal of Transfer

Boosting is to increase the amount of correct classifications on examples from domain DT .

Therefore, a validation set Xv can be used which is also drawn from DT .

Transfer Boosting Process Transfer Boosting is an iterative process where a weak

classifier is added to an ensemble in every iteration t. A weak classifier can be every type

of classifier. For Transfer Boosting a target training set Xt and a source training set Xs

are used. Xt is drawn from target domain DT which is the domain the final classifier

should perform well at. Xs is drawn from source domain DS .For T iterations the first step

of the Transfer Boosting process is the initial weighting of all samples from Xt and Xs.

w0(xi) =
1

2 ·
∑

n=1 c(xi, xn)
(2.17)

Equation 2.17 shows how the sample weights are initialized. Here c(xi, xn) = 1 if xi
and xn share the same label and c(xi, xn) = 0 otherwise. Thus, the total weight sum of all

samples WAll = 1 which makes the initial set of all weights w0 a probability distribution.

At the beginning of each iteration step t sample weights are used to calculate a probabilistic

weight pti for each sample xi.

2.4. Transfer Learning 31

pti =
wt(xi)∑
n=1w

t(xn)
(2.18)

Equation 2.18 shows how pi is calculated which is the weight of corresponding sample

xi divided by the sum of all weights wt. Now weight vector pt =
{
pt1, p

t
2 . . . p

t
n+m

}
is used

as sample weights to train a weak classifier, where n is the number of samples in Xs and

m is the number of samples in Xt. After the new weak classifier Ct is trained the classifier

is evaluated on data sets Xt and Xs.

et =
n+m∑
i=n+1

wti ·
∣∣li − cti∣∣∑n+m

i=n+1w
t
i

(2.19)

Equation 2.19 shows how classification error et for each example xi is calculated where

li is the true label of sample xi, cti is the voted class label for sample xi in this iteration

and wti is the weight of sample xi. Thus, the error is simply the sum of weights of false

classified example divided by the total sum of weights of all samples.

After error et has been calculated the sample weights are updated in each iteration

t. This is the most important step for Transfer Boosting because the weights of samples

which can improve the performance will be increased whereas the weights for samples

which may harm the perfromance will be decreased. Therefore, two weight update factors

β and βt are calculated.

βt =
et

1− et
(2.20)

β =
1

1 +
√

2 ln n/N
(2.21)

Here, N is the number of transfer boosting iterations and n is the number of examples

in auxiliary data set Xs. Using these values, weights for examples of Xt and Xs are

updated seperately. For examples in Xs which are wrong classified in this iteration the

update looks as defined by equation 2.22.

wt+1
i = wti · β|li−c

t
i| (2.22)

In equation 2.22
∣∣li − cti∣∣ = 0 if example xi is classified correctly and

∣∣li − cti∣∣ = 1

otherwise. Thus, the weights of false classified samples from Xs are decreased relative to

the maximum number of iterations whereas the weights for correct classified samples from

32 Chapter 2. Related Work

Xs are not updated at all. For examples in Xt the weight update is done as shown in

equation 2.23.

wt+1
i = wti · β

−|li−cti|
t (2.23)

Thus, the weights of wrong classified examples in Xt are increased to raise the chance

that they will be classified correctly in the next iteration step. Correctly classified examples

in Xt are not updated at all. An important fact is that error et needs to be larger than zero

and smaller than 0.5 in order to get a proper weight update. When et = 0 samples in Xs do

not seem to harm the performance on Xt and thus no reweighting can be applied. When

et ≥ 0.5 the weight updates would not work as intended and thus the iterative process

needs to be aborted. A summary for the TrAdaBoost algorithm is shown in Algorithm 6.

2.4.3.2 Transfer Learning with PCA

Principal Component Analysis (PCA) [48] is a dimensionality reduction technique which

is used for tasks as image compression. While it is able to reduce the dimensions of a given

data set it does also find patterns inside the data. These patterns can be used to transform

the data and to improve seperation of different classes. If a training set Xt from target

domain DT is used to train a classifier, PCA is used to calculate a transformation matrix

Fpca. This transformation matrix encodes patterns within Xt and is used to transform

Xt into a new form Xf . For Transfer Learning another data set Xs which is drawn from

source domain DS is used in addition to calculate Fpca. Thus, information from Xs is

transferred to Xt because patterns encoded in Fpca are the most significant patterns found

in Xts = Xt ∪Xs.

First the mean vector M = {m1,m2 . . .mK} is calculated where K is the number of

features used in Xts = Xt ∪Xs and mi is the mean value for feature i.

mi =

∑N
j=1Xts(i, j)

N
(2.24)

In Equation 2.24, i is the index of the feature and j is the index of an example inside

Xts. N is the total number of examples in combined data set Xts. Mean vector M can

then be used to normalize Xt by dividing each feature value by its corresponding mean

value.

2.4. Transfer Learning 33

Algorithm 6 TrAdaBoost Algorithm from [10]

• Require: A labeled auxiliary set Xs from domain DS with N samples

• Require: A labeled training set Xt from domain DT with M samples

• Require: A unlabeled validation set Xv from domain DT

• Require: A positive number of boosting iterations I

• Require: A weak classifier C

• Require: Vector of true labels for Xs and Xt, l = {l0 . . . lN+M} where the first N
elements belong to Xs and the latter M elements to Xt

• Assign each sample x in Xt and Xs a weight, forming weight vector w0 =
{w1 . . . wN+M} where the first N elements belong to Xs and the latter M elements
to Xt

• Initalize weight vector w

• For (i = 0 to I)

1. Calculate distribution vector pi by dividing each weight through the sum of all
weights contained in wi

2. Train a weak classifier Ci on the combined set Xts with use of distribution pi

and get vector ci = {c0 . . . cn+m}, which contains the classification results for
Xts

3. Calculate error ei for classifications on Xt using the classification results from
ci

ei =
n+m∑
j=n+1

wij ·
∣∣∣lj − cij∣∣∣∑n+m

j=n+1w
i
j

4. Calculate βi = ei/
(
1− ei

)
and β = 1/

(
1 +

√
2 ln N/I

)
5. Set weights wi+1

j = wij ·β|
lj−cij| if j ≤ N − 1 and wi+1

j = wij ·β
−|lj−cij|
i otherwise

• Get final hypothesis

hf (x) = 1 if
I∏

i=[I/2]

β
−ci(x)
i ≥

I∏
i=[I/2]

β
−1/2
i , 0 otherwise

34 Chapter 2. Related Work

Xn =


Xt(1, 1)/m1 Xt(1, 2)/m2 · · · Xt(1, N)/mN

Xt(2, 1)/m1 Xt(2, 2)/m2 · · · Xt(2, N)/mN

...
...

. . .
...

Xt(M, 1)/m1 Xt(M, 2)/m2 · · · Xt(M,N)/mN

 (2.25)

Where Xt(x, y) denotes the value of feature y for example x and M is the total number

of examples in Xt. The next step is, to calculate covariance matrix C.

C =


c(1, 1) c(1, 2) · · · c(1, N)

c(2, 1) c(2, 2) · · · c(2, N)
...

...
. . .

...

c(M, 1) c(M, 2) · · · c(M,N)

 (2.26)

Where c(x, y) is the covariance for features x and y. Note that c(x, y) is equal to c(y, x)

an thus does not need to be calculated twice. Equation 2.27 shows how covariance c(x, y)

is calculated.

c(x, y) =
∑M

i=1(Xt(i, x)−mx)(Xt(i, y)−my)
M − 1

(2.27)

In Equation 2.27, Xt(a, b) is the value of feature b for example a. Covariance matrix

C will be of format N × N where N is the number of features used in Xt and Xs. The

next step is the calculation of eigenvectors and eigenvalues of matrix C. As a result we

get a matrix of eigenvectors E with eigenvectors as rows and a vector of eigenvalues e.

The eigenvector with the highest eigenvalue is the so-called principle component which

means the eigenvector which describes the data best. Matrix E needs now to be sorted by

the eigenvalues starting with the principal component, and also each eigenvector has to

be converted to unit-vector length if not done already. Now the first R ≤ N eigenvectors

can be used as a transformation matrix. This transformation matrix will be denoted as

Fpca. Using Fpca, one can transform a training data set Xt and every evaluation data set

before it is passed to the learner. As one can se, matrix E can have a maximum of N

eigenvectors which can not be exceeded. Thus, Fpca can also have N rows at maximum.

Once the transformation matrix is calculated it can be stored for later use. The proccess

of data transformation for training data Xt is described by equation 2.28.

Xf = Fpca ×Xm (2.28)

2.4. Transfer Learning 35

Equation 2.28 shows the simple transformation step where Fpca is the transformation

matrix with the selected eigenvectors as rows and Xm is the normalized form of data Xt

as shown in equation 2.25 with data examples as columns. This step is done once during

training for training data set Xt. After that the learner is trained on the transformed data

Xf instead of being trained on Xt. For the trained learner every evaluation data set Xtest

also needs to be transformed befor being passed to the learner. Note that in this case, Xm

represents the normalized form of Xtest instead of Xt.

Dimensionality Reduction PCA is commonly used as a technique for the reduction

of dimensionality. While it is able to find patterns in a given data set it can also be used

to reduce the dimensions of a data set. Since the eigenvectors in Xf are sorted according

to their descriptive power, the dimensions can be effectively reduced, minimizing the loss

of performance. Thus, it is possible to use PCA as a technique for transfer learning and

to decrease the dimensionality of the given data set simultaneously.

2.4.3.3 Transfer Learning with Sparse Coding

Sparse Coding [27] [44] [37] has the goal to represent every example in a data set by a

sparse vector of base vectors. The base vectors encode strong patterns within the given

data set. This means one base vector represents one single pattern. A sparse vector is a

linear combination of base vectors where most elements are zero. This is possible because

the combination of only a few base vectors is needed to represent one single example.

Sparse vectors are also called activation vectors.

Figure 2.7 (from [44]) shows base vectors which are learned for a digit classification

task. The base vectors on the right side of figure 2.7 show typical strokes for handwritten

digits.

For Transfer Learning some target training data Xt from target domain DT and source

training data Xs from source domain DS are used. The calculation of basis vectors is based

on Xts = Xt ∪ Xs instead of Xt. The intention is to find more general basis vectors by

providing more information. The actual classifier is trained on At where ait is the activation

vector for xit with respect to the basis vectors. Since Xs was involved in the calculation

of basis vectors some information is transferred from Xs to Xt.

For Sparse Coding we first take target training set Xt and auxiliary training set Xs

to create a combined set Xts = Xt ∪ Xs with a total of M examples and N features.

This set can then be used to find sparse feature representations which consist of a set

36 Chapter 2. Related Work

Figure 2.7: Example of Sparse Features for Digit Classification

of base vectors b = {b1, b2, . . . , bk} and a set of activation vectors a = {a1, a2, . . . , ak}.
Every example in Xts can then be represented by a combination of basis vectors. The

corresponding activation vector represents the weights for every basis vector.

As proposed in [27] the basis vectors and activation vectors are found by iteratively

optimizing only one of them where the number of iterations I may be chosen by the user.

First the basis vectors are initialized to random values. In each iteration step activations

are calculated using the Feature-sign search algorithm. Then, the basis vectors are updated

to increase their expressive power. After all I iterations are done, the basis vectors can

be stored in matrix form as basis matrix B. When training a learner, the training data

set Xt is transformed into its activation vector form At with respect to the basis matrix

B. A test data set Xtest also needs to be transformed into the activation vector form. An

overview of the whole process is shown in algorithm 7.

Feature-sign search algorithm To find good activation vectors the Feature-sign search

algorithm can be used as proposed in [27]. When given a fixed set of basis vectors b =

{b1, b2, . . . , bk} with k basis vectors which are stored in basis matrix B a combination of

these basis vectors needs to be found for every example xi in Xts. For each xi process

optimization step as shown in equation 2.29.

minimizeai(‖xi −Bai‖
2 + γ ‖ai‖1) (2.29)

In Equation 2.29, γ is a constant which is chosen by the user and ai is the desired

activation vector for example xi.

The complete Feature-sign search algorithm as defined in [27] is shown in algorithm

2.4. Transfer Learning 37

Algorithm 7 Sparse Coding algorithm

• Require: A target training set Xt

• Require: A auxiliary training set Xs

• Require: A target test set Xtest

• Require: A number of iterations I and a number of desired basis vectors k

1. Initialize k basis vectors with respect to combined training set Xts = Xt ∪Xs and
store them in basis matrix B

• For I iterations:

(a) Calculate activation vectors A for Xts

(b) Update basis vectors B with respect to A

2. Train a learner on At which is the activation vector matrix for Xt with respect to B

3. Evaluate learner on Atest which is the activation vector matrix for Xtest with respect
to B

8. When given an initial activation vector ai which is of zero-vector form the algorithm

iteratively updates ai until an optimal solution is found.

Finding basis vectors Given a fixed set of activation vectors a = {a1, a2, . . . , ak} which

are stored in activation matrix A one can use the lagrange dual algorithm, as proposed in

[27] to find the corresponding k basis vectors. The optimization problem which needs to

be solved in this case is shown in equation 2.30 .

minimize ‖Xts −BA‖2F (2.30)

In Equation 2.30, Xts is the combined training set without labels, B is the matrix

which holds the basis vectors and A is the activation matrix. The first step to find the

optimal bases is to optimize the lagrange dual D(λ) where each λi in λ is a dual variable.

D(λ) = trace(XT
tsXta −XtsA

T (ATA+ diag(λ)−1)(XtsA
T)T − c · diag(λ)) (2.31)

In Equation 2.31, diag(λ) is the diagonal matrix with elements of λ and c is the

constraint with
∑k

i=1B
2(i, j) ≤ c. This optimization can be solved by using conjugate

38 Chapter 2. Related Work

Algorithm 8 Feature-sign search algorithm [27]

• Require: The matrix of basis vectors B

• Require: A example xi, taken from Xts

• Require: A activation vector ai which needs to be optimized

• Require: Sign vector θ which holds the signs of basis vectors where θj =∈ {−1, 0, 1}

• Require: The active set S which holds the indices of choosen basis vectors

1. Initialize ai = 0, θ = 0 and S = {}

2. Choose the basis vector which maximizes
∣∣∣∂‖xi−Bai‖2

∂ai(j)

∣∣∣, where j is the index of a basis
vector

• If ∂‖xi−Bai‖2
∂ai(j)

> γ then set θj = −1 and add basis vector index j to active set
S.

• If ∂‖xi−Bai‖2
∂ai(j)

< −γ then set θj = 1 and add basis vector index j to active set
S.

• Otherwise go to step 2 and choose another basis vector.

3. The Feature-sign step:

• Create matrix B̂ which contains the basis vectors defined in active set S

• Create vector â which contains the elements of ai for the active set S

• Create sign vector θ̂ which contains the elements of θ for the active set S

• Calculate ânew = (B̂T B̂)−1(B̂Txi − γθ̂/2)

• Perform a discrete line search from â to ânew. At every point where the sign of
a coefficient changes and at the final point ânew calculate the objective value
∂‖xi−Bai‖2

∂ai(j)
. Choose the point with the lowest objective value and update ai

• Remove al zero values from ai

4. Optimality checks:

• If ∂‖xi−Bai‖2
∂ai(j)

+γ · sign(ai(j)) = 0 and ai(j) 6= 0 proceed to next step, otherwise
go to step 3 and do not add any activations

• If
∣∣∣∂‖xi−Bai‖2

∂ai(j)

∣∣∣ ≤ γ and ai(j) = 0 return ai as optimal solution, otherwise go to
step 2

2.5. Chapter Summary 39

gradient or Newton’s method. The calculation of the gradient and the Hessian are shown

in equations 2.32 and 2.33 .

∂D(λ)
∂λi

=
∥∥XtsA

T (AAT + diag(λ)−1ui)
∥∥2 − c (2.32)

∂2D(λ)
∂λi∂λj

= −2((AAT+diag(λ))−1(XtsA
T)TXtsA

T (AAT+diag(λ))−1)i,j((AAT+diag(λ))−1)i,j

(2.33)

In Equation 2.33, ui is the unit vector with index i. Once the optimal solution for

D(λ) is found, the matrix of basis vectors B can be calculated in one step by using the

equation shown in 2.34 .

BT = (AAT + diag(λ))−1(XtsA
T)T (2.34)

Where diag(λ) denotes the diagonal matrix with respect to the optimal solution found

for D(λ).

2.5 Chapter Summary

This chapter described the basic concepts which were used for our work. Section 2.1

describes two kinds of image features which are methods to extract information from digital

images. Section 3.3 gives a short introduction to the field of object detection. Section 2.3

describes basic machine learning concepts such as Random Forests, Hough Forests and

Boosting. Section 2.4 gives an introduction to Transfer Learning (TL), describing the

main categories of TL. The Transfer Learning methods which we are using are discussed

in detail.

Chapter 3

Transfer Learning for Random

Forest based Methods

Contents

3.1 General Machine Learning . 41

3.2 Image Classification . 46

3.3 Object detection . 49

3.4 Chapter Summary . 50

This chapter will describe our different methods to combine Transfer Learning with

Random Forest based methods. The chapter is divided into three sections. The first

section describes Transfer Learing for Random Forest which can be applied on all machine

learning tasks. The second section will describe Tranfer Learning for Random Forests

in an image classification scenario. The third section will describe Transfer Learning for

Hough Forests which are Random Forest based object detectors.

3.1 General Machine Learning

The Transfer Learning methods discussed in this section can be used on every machine

learning task when Random Forest based classifiers are used. In addition to a training

data set Xt from target domain DT another data set Xs from a source domain DS needs

to be availabe so that information can be transferred from DS to DT .

41

42 Chapter 3. Transfer Learning for Random Forest based Methods

3.1.1 Transfer Learning with Outlier Detection

As mentioned in section 2.3.2.3, Random Forests have a strong, built in mechanism to

find outliers in a given set of data. Outliers denote examples which may lie outside the

common distribution of a certain class. A single example may be an outlier because it is

a very special and rare instance of the corresponding class but it can also be an outlier

because it is labeled incorrectly and does not belong to this class. For transfer learning

we will use this outlier measure to find examples in auxiliary data Xs which are different

from the examples in training data Xt. All outliers are removed from Xs forming a new

set Xo which does not contain the outliers. After this step the classifier can be trained

using Xt and Xo.

Outlier Suppression After the outlier measures are obtained for all samples in Xts =

Xt ∪Xs those examples which are declared outliers are removed from Xs to form Xo. If

the number of examples in Xs is greater than the number of examples in Xt, the process of

outlier suppression may be divided into smaller batches. The use of small batches ensures

that data in Xs does not corrupt the outlier measure. While a single example from Xs

may be regarded an outlier in a certain leaf, it may not be an outlier when there are many

similar examples in Xs which end up in the same node. Thus, we want Xt to be larger

in number of examples than Xs so that the measurment of outlierness is mostly based on

Xt. Therefore, Xs can be divided into k smaller sets
{
X1
s , X

2
s . . . X

k
s

}
. The evaluation of

outliers is then processed for every pair (Xt, X
j
s). The examples from Xj

s which are not

declared outliers are then added to Xo. Finally, the classifier is trained on Xto = Xt ∪Xo.

The summarized algorithm for this approach is shown in Algorithm 9.

Memory saving solution for outlier calculation: The calculation of outlyingness

incorporates the calculation of a N × N proximity matrix where N is the number of

examples in a given training set Xt. When Xt contains a high number of examples this

may cause memory issues because the proximity matrix could not fit into memory.

Algorithm 10 shows a way to solve this problem. Instead of calculating a proximity

matrix we store only the final leaf node id or pointer for each sample and tree. This results

in a T × N matrix Y . This matrix Y can be used to look up proximities when needed.

To calculate the outlier measure we first lop over all examples to calculate their average

proximity ai and raw outlier measure ri. After that is done class medians of raw outlier

measures can be calculated and the final outlier measure for each example xi can be set

3.1. General Machine Learning 43

Algorithm 9 Transfer Learning with Outlier Suppression

• Require: A target training set Xt

• Require: A auxiliary training set Xs

1. Train classifier on Xt to build a model for prediction

2. Divide Xs into smaller batches
{
X1
s , X

2
s . . . X

k
s

}
so that every batch Xi

s has m sam-
ples, where m < M and M is the total number of examples in Xt

3. For every pair Xj
ts = Xt ∪Xj

s

• Evaluate classifier on pair Xj
ts

• Calculate outlier measures

• Add all examples from Xj
s which are not declared an outlier to Xo

4. Retrain classifier on Xo

within another loop over all examples. This algorithm needs less memory. The drawback

is that it takes longer because proximities cannot be stored and need to be calculated by

looping over all examples each time they are needed.

Drawbacks of this method: The major drawback of this approach is that there is

no mechanism to measure whether or not an outlier may harm the performance. In

comparison, transfer boosting reweights examples according to the error rate on training

set Xt. Thus, the quality of the final solution is strongly dependent on the quality of data

set Xt. If some important parts of the target distribution are missing in Xt, they will

also not be taken from Xs. Even if Xs contains these missing parts they will very likely

be regarded as outlying examples and will be discarded. Thus, the use of this method

may imply a tradeoff between possible negative transfer and possible waste of usefull

information.

3.1.2 Transfer Boosting

Transfer Boosting as described in section 2.4.3.1 can be used in combination with Random

Forests by simply using single Decision Trees as weak classifiers. Then, the final classifier

found by the Transfer Boosting process is a Random Forest with I trees where I is defined

by the number of Transfer Boosting iterations. Algorithm 11 illustrates the adapted

version of the TrAdaBoost algorithm for Random Forest classifiers.

44 Chapter 3. Transfer Learning for Random Forest based Methods

Algorithm 10 Memory saving solution for outlier calculation

• Require: A labeled data set Xt with N samples and C classes

• Require: A number of trees T inside a forest

• Require: A initial set of raw outlier measures R with N elements ri = 0

• Require: A initial set of outlier measures O with N elements oi = 0

1. Show Xt to a trained or untrained Random Forest F

2. For each sample xi in Xt store the final leaf node id for each tree. Result is a T ×N
matrix Y .

3. For (i = 0 : to : N)

• Set average proximity ai = 0

• For (j = 0 : to : N)

– Calculate proximities p(i, j) by the use of Y .
– Set ai = ai + p(i, j)2 if i 6= j and if both share the same class label

• Set raw outlier measure ri = N/ai

4. Calculate class medians mc for each class c

5. For (i = 0 : to : N)

• Set final outlier measure oi = ri−mc
di

where di is the absolute deviation from ri
to mc

Drawbacks of this method: Since the Transfer Boosting process is stopped when

the classification error ei within an iteration is ei = 0 or ei ≥ 0.5 this method may be

problematical on specific machine learning tasks. When a single Decision Tree classifier

Ci can predict the examples in Xt with ei = 0 the process would be stopped. To avoid

this effect the stopping criteria for a single Decision Tree can be adjusted so that a smaller

tree is generated with lower predictive power. When ei ≥ 0.5 the task is too complex to

get reasonable classification results from a single Decision Tree. In this case a Random

Forest with R trees can be used as weak classifier Ci instead of a single Decision Tree.

The resulting classifier would then be an Ensemble of Random Forest where R needs to

be chosen that 0 < ei < 0.5 if possible.

3.1. General Machine Learning 45

Algorithm 11 Adapted TrAdaBoost Algorithm for Random Forests

• Require: A labeled auxiliary set Xs from domain DS with N samples

• Require: A labeled training set Xt from domain DT with M samples

• Require: A unlabeled validation set Xv from domain DT

• Require: A positive number of boosting iterations I

• Require: Vector of true labels for Xs and Xt, l = {l0 . . . lN+M} where the first N
elements belong to Xs and the latter M elements to Xt

• Assign each sample x in Xt and Xs a weight, forming weight vector w0 =
{w1 . . . wN+M} where the first N elements belong to Xs and the latter M elements
to Xt

• Initalize weight vector w

• For (i = 0 to I)

1. Calculate distribution vector pi by dividing each weight through the sum of all
weights contained in wi

2. Train a Decision Tree classifier Ci on the combined set Xts with use of distri-
bution pi and get vector ci = {c0 . . . cn+m}, which contains the classification
results for Xts

3. Calculate error ei for classifications on Xt using the classification results from
ci

ei =
n+m∑
j=n+1

wij ·
∣∣∣lj − cij∣∣∣∑n+m

j=n+1w
i
j

4. Calculate βi = ei/
(
1− ei

)
and β = 1/

(
1 +

√
2 ln N/I

)
5. Set weights wi+1

j = wij ·β|
lj−cij| if j ≤ N − 1 and wi+1

j = wij ·β
−|lj−cij|
i otherwise

6. Add the trained Decision Tree to the Random Forest

• Get final hypothesis

hf (x) = 1 if
I∏

i=[I/2]

β
−ci(x)
i ≥

I∏
i=[I/2]

β
−1/2
i , 0 otherwise

46 Chapter 3. Transfer Learning for Random Forest based Methods

3.2 Image Classification

For image classification Transfer Learning with Outlier Detection and Transfer Boosting

can be used as decribed in section 3.1. In addition, information about example images

needs to be provided by some sort of image feature such as pixel pairs or Haar Features.

This section will describe how Transfer Learning with PCA and Sparse Coding can be used

to calculate image feature representations. These image feature representations include

information about target domain DT as well as information about source domain DS .

Thus, information is transferred from DS to DT .

3.2.1 Transfer Learning with PCA

Principal Component Analysis (PCA) can be used to form feature representations for

image data. When used for Transfer Learning a data set Xt from target domain DT

and a auxiliary data set Xs from source domain DS are used to calculate these feature

representations. Knowledge is transferred from DS to DT and encoded in the new feature

representation. Algorithm 12 illustrates the method. The data in Xt and Xs is available

in form of digital images. The images from both data sets are used to calculate the

PCA transformation matrix Fpca. This matrix can then be used to transform every given

example xi into a new form xfi . For this transformation xi is provided in form of a raw

pixel value vector with n elements. Since the dimension of data can be reduced using PCA

the resulting feature vector xfi has m ≤ n elements. Transforming all examples from Xt

we get Xf
t . Since the classifier is trained only on Xf

t , labels need to be available for Xt

but not for Xs. Every example that is shown to the classifier during training and testing

needs to be transformed first. In our case a Random Forest is used as classifying method.

Inside this forest every node split is based on transformed values xfi instead of xi.

3.2.2 Sparse Coding

Algorithm 13 illustrates how we combined Sparse Coding with Random Forests. Image

data sets Xt and Xs are used to calculate basis vectors B. For this calculation the raw

pixel value vector xi of every example image is used. The number of basis vectors in B is

not dependent on the size of xi. Thus, it is possible to decrease the number of basis vectors

for high dimensional images and to increase the size of basis vectors if image dimensions

are very small. Once B is calculated every example image xi can be represented by an

activation vector ai. The size of ai is exactly the number of base vectors as ai represents a

3.2. Image Classification 47

Algorithm 12 Transfer Learning with PCA

• Require: A labeled training set Xt from domain DT with M sample images

• Require: A unlabeled auxiliary set Xs from domain DS with N sample images

• Require: A unlabeled validation set Xv from domain DT

1. Combine Xt and Xs to form Xts

2. Calculate PCA transformation matrix Fpca for Xts as described in section 3.2.1

3. Use Fpca to transform Xt into Xf
t

4. Train a classifier on Xf
t

5. Use Fpca to transform Xv into Xf
v

6. Evaluate classifier on Xf
v

specific linear combination of base vectors to describe xi. Instead of training and evaluating

of the raw pixel values the activation vectors are used to train and test the classifier. Data

set Xt is transformed into a set of activation vectors At which is used for training. To

evaluate the trained classifier Av is used which is the set of activation vectors for Xv. In

our case a Random Forest is used as classifier. Every node split within the forest is based

on a specific element inside an activation vector ai instead of a raw pixel value from xi.

3.2.3 Image Feature Boosting

As already mentioned in section 3.2.1 and section 3.2.2 Transfer Learning with PCA and

Sparse Coding use a fixed set of features for one task. For Sparse Coding the number

of features N is defined by the number the basis vectors contained in B. For Transfer

Learning with PCA the number of features N is defined by the size of transformation

matrix Fpca. Since we want to compare these methods to typical vision feature methods

like pixel pairs and Haar Features we need a method to find a reasonable set of these vision

features.

Viola and Jones [50] [24] already showed a robust way to select the most powerful

features when a high quantity of random features is available. Therefore, an adapted

version of the AdaBoost [45] algorithm is used. We take a set of random features and use

the AdaBoost algorithm on a given data set Xt as described in section 2.3.4. As weak

classifiers pixel pair features or Haar Features are used as described in section 2.1. For the

48 Chapter 3. Transfer Learning for Random Forest based Methods

Algorithm 13 Transfer Learning with Sparse Coding

• Require: A labeled training set Xt from domain DT with M sample images

• Require: A unlabeled auxiliary set Xs from domain DS with N sample images

• Require: A unlabeled validation set Xv from domain DT

1. Combine Xt and Xs to form Xts

2. Calculate basis vectors B for Xts as described in section 2.4.3.3

3. Calculate activation vectors At for data set Xt with respect to B as described in
section 2.4.3.3

4. Train a classifier on At istead of Xt

5. Calculate activation vectors Av for data set Xv with respect to B as described in
section 2.4.3.3

6. Evaluate classifier on Av

boosting process we set the number of boosting iterations I to I = N to get an ensemble

of N features. These N features are then used to convert image data before shown to our

Random Forest.

Image Channels: When pixel pair features or Haar Features are used we also calculate

32 image channels as proposed in [15]. Each feature is restricted to use one channel to

calculate the feature value. Thus, the 32 channels need to be calculated for training images

as well as for test images. Table 3.1 shows how the channels are calculated.

Channel(s) Description
1-3 Channels of the lab color space for the input image
4 Absolute values of first-order derivative ∂

∂x

5 Absolute values of first-order derivative ∂
∂y

6 Absolute values of second-order derivative ∂2

∂x2

7 Absolute values of second-order derivative ∂2

∂y2

8-16 Nine HOG-like channels [11]
17-32 Channels 1-16 after min and max filtration with filtersize 5× 5

Table 3.1: 32 Image Channels from [15]

3.3. Object detection 49

3.3 Object detection

For our object detection method we use a Hough Forest detector. Algorithm 14 illustrates

how the Transfer Learning (TL) methods discussed in sections 3.1 and 3.2 can be combined

with Hough Forests. Image data set It from target domain DT and an image data set Is
from source domain DS are used. For training random patches are extracted from It and

Is to form patch sets Xt and Xs. The combined patch set Xts = Xt∪Xs is used to train a

Transfer Learner T which internally builds the final trained Hough Forest H. As usual for

Hough Forests every positive image patch xi inside Xts has a corresponding center offset.

This center offset denotes the distance and direction from the patch center to the center

of the object it is part of. The center offsets will be stored inside the Hough Forests leaf

nodes as two dimensional offset vectors.

TL method Combination with Hough Forests
TL with Outlier Detection is used to find outlying examples in Xs with respect

to Xt. Xto = Xt ∪Xo is used to train a Hough Forest
where Xo is Xs without outlying examples. This was
explained in section 3.1.1.

Transfer Boosting is used to iteratively add single trees to the Hough For-
est. The trees are trained on Xts where all examples
in Xts are weighted so that the classification on Xt

is as good as possible. This was explained in section
3.1.2.

TL with PCA is used to transform Xt to another representation Xf
t .

For this transformation Xts = Xt ∪ Xs is taken into
account as explained in section 3.2.1. The final Hough
Forest is trained on Xf

t instead of Xt. During testing
all example patches xv are also to be transformed into
xfv before being evaluated.

Sparse Coding is used to transform Xt into a set of activation vectors
At. For this transformationXts = Xt∪Xs is taken into
account as explained in section 3.2.2. The final Hough
Forest is trained on At instead of Xt. During testing
all example patches xv are also to be transformed into
activation vectors av before being evaluated.

Table 3.2: Combination of TL methods with Hough Forests

Table 3.2 shows how the different Transfer Learning methods are combined with Hough

Forests. TL with Outlier Detection and Transfer Boosting try to use additional examples

from Xs during training. TL with PCA and Sparsecoding are used to create image feature

50 Chapter 3. Transfer Learning for Random Forest based Methods

representations which encode knowledge about Xts = Xt ∪Xs. These learned features are

used to transform the data before it is shown to the Hough Forest. Thus, there is no

need to use additional image features like pixel pairs or Haar Features within tree nodes.

In addition also the image patches in the testing phase need to be transformed to this

representation so that the input format stays consistent.

Algorithm 14 Transfer Learning with Hough Forests

• Require: A labeled image data set It from domain DT

• Require: A labeled image data set Is from domain DS

• Require: A unlabeled validation set Iv from domain DT with V sample images

• Require: A Transfer Learner T which internally builds the Hough Forest H

1. Extract random image patches from It to form patch set Xt with M sample image
patches

2. Extract random image patches from Is to form patch set Xs with N sample image
patches

3. Combine Xt and Xs to form Xts

4. Use Xts on T to obtain the trained Hough Forest H

5. For(k = 0 to V)

• Get evaluation data Xk
v by extracting a patch for every pixel inside image Ikv

• Use Xk
v to obtain a hough image hypothesis hkv for image Ikv

• Postprocess hkv to get a set of detections dkv for image Ikv
• Compare dkv to the original labels of Ikv to get a performance measure

3.4 Chapter Summary

In this chapter it is explained how different Transfer Learning (TL) methods can be com-

bined with Random Forest based methods. Within this chapter Xt denotes a target

training set from target domain DT which is the domain of interest. Xs denotes an ad-

ditional training set from source domain DS which should provide additional information

for training.

Section 3.1.1 describes how Transfer Learning with Outlier Detection can be used to

remove examples from Xs which are outlying to the distribution of Xt. Xto = Xt ∪Xo is

3.4. Chapter Summary 51

then the final training set where Xo is Xs without outlying examples.

Section 3.1.2 describes how Transfer Boosting can be used to add Decision Trees to

a Random Forest where each of these trees is trained on a specific weighted version of

Xts = Xt ∪Xs. During this process the Transfer Boosting algorithm tries to transfer as

much information from Xs to Xt.

Section 3.2.1 shows how TL with PCA can be used to create image feature representa-

tion which take into account Xts = Xt ∪Xs instead of Xt. These feature representations

can then be used to train classifiers like Random Forests.

Section 3.2.2 describes how Spase Coding can be used to represent images as linear

combination of base vectors. The calculation of base vectors takes into account Xts =

Xt ∪Xs. These linear combinations are called activation vectors and can then be used to

train Random Forests or other classifiers.

Section 3.3 shows how the TL methods discussed in sections 3.1 and 3.2 can be com-

bined with Hough Forest object detectors. For each method of TL a specific way to

combine it with Hough Forests is discussed.

Chapter 4

Experiments

Contents

4.1 20 Newsgroups Dataset part 1 53

4.2 20 Newsgroups Dataset part 2 57

4.3 Character Image Classification 58

4.4 Pedestrian Detection . 62

4.5 Face Detection . 71

4.6 Experiment Conclusions . 75

4.7 Chapter Summary . 76

In this section we will present the results of experiments done and compare our methods

to results of state-of-the-art methods. All experiments have been done using an Acer

Aspire 7750G Notebook with an Intel Core 2 Duo T9400 at 2.53GHz, 4GB RAM and

a 32Bit Windows Vista Home as operating system. For image and matrix operations

openCV [38] was used. For Sparse Coding we used a matlab implementation which was

provided by Lee et al. [27]. For our object detection tasks the comparison of found

detection rectangles to the original bounding box labels and for plotting Piotr’s Image

& Video Toolbox for Matlab [40] was used.

4.1 20 Newsgroups Dataset part 1

Experiment Description: The first task is a classification task on the 20newsgroups2
∗ data set [39]. It is one version of the popular 20newsgroups † data set. This version was
∗http://www.cs.columbia.edu/˜wfan/software.htm
† http://people.csail.mit.edu/jrennie/20Newsgroups/

53

54 Chapter 4. Experiments

processed for the use of the AcTraK [46] algorithm. A downloadable version of the data

as well as an implementation of the AcTraK algorithm can be found at [14] ‡.

The data set is designed for an Inductive Transfer Learning setting as defined in section

2.4.1. It consist of 4 different categories which are Comp, Rec, Sci and Talk. Each of these

categories defines a single domain. They are similar but not identical. For each of these

4 domains a training set and a evaluation set is available. Each set contains about 2000

examples of 2 different classes. Class 0 denotes negative examples and class 1 positive

ones. As for every inductive transfer setting, we have a target training set T , a target test

set V and an source data set S, whereas T and V share the same domain. S is drawn from

a different but related domain and should improve the performance on V . When testing

one domain against another, T and V are drawn from the same domain, whereas S is

drawn from a different one. As an example, Comp vs. Rec means that Comp is the source

domain and Rec is the target domain. Thus, T and V are the training and evaluation sets

from category Rec and S is the training set from category Comp.

This experiment was chosen to compare our solution of Tranfer Learning with Outlier

Detection (RF-O) and Random Forests with Transfer Boosting (RFTB) to TrAdaBoost

without Random Forests and AcTraK [46]. Our Random Forest methods with Transfer

Learning are also compared to non-Transfer Learning methods. As baseline methods we

used a simple Random Forest (RF) and the results of a Support Vector Machine (SVM)

from [39]. Our Sparse Coding solution could not be used for this experiment since it

requires image data to calculate Sparse Features. Transfer Learning with PCA was also

excluded in this experiment since it works similar to our Sparse Coding solution and should

be compared to that.

Experiment Setup: Each of our Random Forest based methods was configured to grow

all trees to full extent to get the best possible performance per tree. This was done by

setting the maximum number of trees to 100 which could never be reached. Our Random

Forest with Transfer Boosting (RFTB) was configured to create a forest of 10 trees.

For this specific data set we could not increase this number because after 10 trees the

internal classification error within the Transfer Boosting process was 0 and caused the

algorithm to stop. Thus, all other Random Forests have also been configured to create 10

trees per forest. For RFTB the source data set S was used in addition to T for training.

The Random Forest with Outlier Detection (RF-O) used data set T for training and

additional samples from S which were not declared outliers. As first baseline method we
‡http://www.cs.columbia.edu/˜wfan/software.htm

4.1. 20 Newsgroups Dataset part 1 55

used a simple Random Forest (RF) which was trained solely on T . As second baseline

we trained a Random Forest (RF+S) on the combined set of T and S. This should give

information about the relationship between the domains of T and S. If they are strongly

related the performance of RF+S should be better than the performance of RF. If the

relation is weak, negative transfer should occur in this case and the performance of RF+S

should be lower than the performance of RF.

Experiment Results: Figure 4.1 compares RFTB and RF-O against our 2 baseline

methods RF and RF+S. The error graphs show the classification error on the test set V

in relation to the number of used training samples from T . The number of samples used

from S was always set to the maximum. Image (a) in Figure 4.1 shows that domains of

Comp and Rec are strongly related since there is no negative transfer for RF+S. In this

case all of our methods had about an equal performance when all samples from T were

used. All other images show a negative transfer for RF+S which means that samples in

S harmed the learned model. In these 4 cases out of 5 RFTB showed the best overall

performance and RF+S the worst. All images in Figure 4.1 show that methods which use

additional data from S are better than RF when only a few samples from T are used for

training.

20newsgroups2 [39].
Source v.s. Target Accuracy %

SVM RF TrAdaBoost RF-O RFTB AcTraK
Comp v.s. Rec 49.1 68.8 77.2 79.5 80.6 82.1
Comp v.s. Sci 52.7 49.9 57.3 61.1 61.4 78.0
Rec v.s. Sci 59.1 50.1 67.4 62.7 65.1 70.6
Rec v.s. Talk 60.2 58.1 72.3 69.5 70.8 75.4
Sci v.s. Talk 57.6 66.8 71.3 73.7 74.5 75.1

Table 4.1: 20newsgroups2. Accuracy of different methods using only 2 labeled training
samples.

Table 4.1 compares the accuracy of different methods in percent of correct classifica-

tions when only using 2 labeled samples in set T as stated in [46]. In 3 of 5 cases RFTB

performs better than the TrAdaBoost with other classifers than Random Forests. In 2 of 5

cases even RF perfoms better than the SVM baseline. AcTraK has the best performance

in all 5 cases, but it uses a domain expert to label an unknown number of additional

samples from T to increase performance.

56 Chapter 4. Experiments

(a) Comp v.s. Rec (b) Comp v.s. Sci

(c) Rec v.s. Sci (d) Rec v.s. Talk

(e) Sci v.s. Talk

Figure 4.1: 20 Newsgroups Inductive Transfer: Error Graphs.

4.2. 20 Newsgroups Dataset part 2 57

Experiment Conclusion: The experiment showed that the use of an additional data

set S is especially usefull when only a few training samples in T are available and Transfer

Learning should be used in ths case. When domains of T and S are weakly related negative

transfer can occur if T and S are used for training without a Transfer Learning method.

RF-O reduces negative transfer because the most outlying examples are removed from S

but can not find all examples which harm the learned model. RFTB can avoid negative

transfer very well. Even when many examples are used from T , RFTB can still increase

the performance by extracting parts of S which do not harm but improve the learned

model. Thus, RFTB can also be used when many trainig samples are available for T

and the relationship between domains of T and S are weak or unknown. The additional

computational effort is moderate and additional cost for labeling does not occur.

4.2 20 Newsgroups Dataset part 2

Experiment Description: Another text classification task based on the 20newsgroups

data set has been discussed by [16] [39]. Here, the data is preprocessed in a different way

and will be denoted as 20newsgroups3 [39]. This data set has been used for the LWE [16]

algorithm. The data and an implementation of the LWE weighting scheme can also be

found online [14].

The data set is designed for an Inductive Transfer Learning setting as defined in section

2.4.1. The task structure is the same as for the 20newsgroups2 data set. There are

4 domains which are Comp, Rec, Sci and Talk. For each domain a training set and a

validation set is available which both include about 2000 examples. T and V are drawn

from the same domain and S is drawn from another one. Domains are tested against each

other. For instance Comp vs. Rec means that T and V are drawn from domain Rec and

S is drawn from domain Comp.

This experiment has been done to compare our solutions for Tranfer Learning with

Outlier Detection (RF-O) and Random Forests with Transfer Boosting (RFTB) to other

Transfer Learning methods such as LWE [16], pLWE [16], TSVM [23]. Our Transfer

Learning methods are also compared to some non-Transfer Learning baselines such as

simple Random Forests (RF) and Support Vector Machines (SVM). As for the experiment

discussed in section 4.1 our solutions for Sparse Coding and Transfer Learning with PCA

are excluded from this experiment because the experiment does not involve image data.

58 Chapter 4. Experiments

Experiment Setup: As for the experiment shown in section 4.1 only 10 trees could be

trained for RFTB since an internal classification error of 0 caused the Transfer Boosting

process to stop. Thus, all other Random Forest based methods have also been restricted

to use 10 only trees. All trees have been allowed to grow to their full extent by setting

the maximum tree depth to 100. The maximum depth which was actually reached was

about 20. RFTB used target training set T and source training set S, RF-O used T and

in addtion those examples from S which have not been declared outliers. As baseline we

trained a simple Random Forest (RF) only on T .

20newsgroups3 [39].
Source v.s. Target Accuracy %

SVM RF TSVM RF-O RFTB pLWE LWE
Comp v.s. Rec 81.5 91.8 89.6 92.2 92.6 91.9 98.1
Comp v.s. Sci 71.1 83.2 76.9 80.1 83.4 78.7 97.4
Rec v.s. Sci 78.1 83.5 89.9 81.7 86.0 88.4 98.2
Rec v.s. Talk 68.2 87.1 89.9 85.5 88.9 72.1 99.2
Sci v.s. Talk 75.7 87.1 85.5 85.4 87.6 83.3 96.9

Table 4.2: 20newsgroups3. Accuracy of different methods.

Experiment Results: Table 4.2 shows the accuracy of different transfer learning al-

gorithms on this data set when all 2000 samples from T and all 2000 samples from S

are used. The LWE algorithm has the best performance in all 5 cases. In 4 of 5 cases

RFTB performs better than pLWE, and in 3 of 5 cases it performs better than TSVM.

RF-O shows negative transfer which results in its performance being slightly lower than

the performance of RF in 4 out of 5 cases.

Experiment Conclusion: This experiment shows that RFTB is at a par with TSVM

and pLWE. Only the LWE algorithm could outperform the RFTB method. RF-O showed

a loss of performance due to negative transfer. This occured because RF-O could not

remove all harmfull examples from S. Thus, the outlier measure is not a good way to

determine whether an example helps or harms the learned model. RFTB did not show

negative transfer since its performance is always better than the performance of RF.

4.3 Character Image Classification

4.3. Character Image Classification 59

Experiment Description: For the Self-taught Learning [44] setting the experiment of

handwritten character classification from [44] is used to compare Transfer Learning with

Random Forests to other approaches. The task consists of a target training set T which

is drawn from the domain of handwritten characters, a target test set V which is also

drawn from this domain, and a source training set S which is drawn from the domain

of handwritten digits. T contains 1000 images of handwritten characters from a to z but

without x. This results in 25 classes where the class labels are about equally distributed. V

contains about 37000 images of handwritten characters from a to z, without x. S consists

of 2500 images of handwritten digits from 0 to 9. The 10 classes within S are equally

distributed. Every image in T , S and V is available in a 28 × 28 grayscale format. This

scale is not changed during the whole experiment.

This experiment has been performed to compare Random Forests with Sparse Cod-

ing (RF+SC) and Random Forest with PCA (RF+PCA) to other Self-taught Learning

algorithms which are not using Random Forests. Since RF+SC and RF+PCA provide

learned feature representations for digital images, they are also compared to Random

Forests with different kinds of traditional vision features such as Haar Features and pixel

pairs. Random Forests with Transfer Boosting and Transfer Learning with Outlier Detec-

tion can not be evaluated on this data set because the label space of T and S is not related

to each other. Since Self-taught Learning does not take the labels of S into account, it

does not matter that labels for S do not correspond to the labeling scheme for T . In this

case, S is only used to find better features to classify V and all classifiers are trained solely

on T .

Experiment Setup: All of our Random Forest based methods have been allowed to

grow their trees to full extent. Each forest was configured to train 100 trees. This was

done because more trees could not further increase performance. For Random Forests

with Sparse Coding (RF+SC) 100 Basis Vectors have been calculated from all images

contained in T and S to transfer additional information from S to T . Therefore, 1000

iterations of Sparse Coding [44] have been done in matlab. These Basis Vectors are shown

in Figure 4.2.

Random Forest with PCA (RF+PCA) calculated 100 PCA-Eigenvectors as feature

representations from T and S as defined in section 3.2.1. Random Forest with Haar Fea-

tures (RF+Haar) used a fixed set of 100 random Haar Features. Random Forest with

pixel pair features (RF+PixPair) used a fixed set of 100 random pixel pair features.

Thus, all of these methods used a fixed set of 100 features. As a baseline we used a Ran-

60 Chapter 4. Experiments

dom Forest with raw pixel value features (RF+Raw). RF+Haar and RF+PixPair calcu-

lated their feature values from 32 image channels as described in section 3.2.3. RF+SC,

RF+PCA and RF+Raw used only 1 gray scale channel. All methods were trained iter-

atively on 25 to 1000 examples from T . S was only used for RF+SC and RF+PCA to

transfer information during the feature learning phase.

Experiment Results: Figure 4.3 shows the error rates of our methods in relation to

the number of used training samples from T . As expected RF+Raw yields the lowest

performance values. RF+SC performed slightly better than RF+Raw and RF+PCA.

RF+PixPair and RF+Haar outperformed the other 3 methods although the features used

were created at random. RF+Haar performed slightly better than RF+PixPair.

Table 4.3 compares the results of our methods to result of equivalent algorithms us-

ing either support vector machines (SVM) or Gaussian discriminant analysis (GDA).

SVM/GDA denotes the result of the algorithm that performed better. In all cases,

RF+Haar had the best performance followed by RF+PixPair. RF+PCA and RF+SC per-

formed better than the best of the SVM/GDA baselines in most cases but even RF+Raw

could achieve almost equal performance.

Experiment Conclusion: Random Forest classifiers yielded a better performance in

combination with PCA and Sparse Coding than SVM or GDA classifiers. Thus, they

Figure 4.2: Handwritten Character Classification: Basis Vectors

4.3. Character Image Classification 61

Handwritten Character Classification
Classifier Accuracy %

Sample Count
100 500 1000

SVM/GDA 39.8 54.8 61.9
PCA+SVM/GDA 25.3 54.8 64.5
SC+SVM/GDA 39.7 58.5 65.3
RF+Raw 38 60.6 69.3
RF+PixPair 60.4 81.3 85.1
RF+Haar 63.8 82.7 85.5
RF+PCA 32.8 59.8 66.3
RF+SC 31.8 62 70.8

Table 4.3: Accuracy of different methods on the classification of Handwritten Characters.
Accuracy given in percent of correct classifications

should be favoured over SVM and GDA. RF+Haar and RF+PixPair outperform RF+PCA

and RF+SC even when random Haar Features and pixel pairs are used. Thus, traditional

vision features are a better choice than our PCA and Sparse Coding methods.

Figure 4.3: Handwritten Character Classification

62 Chapter 4. Experiments

4.4 Pedestrian Detection

Experiment Description: In this section we will present the detection performance of

our Hough Forest with transfer learning on a pedestrian detection task. Since we wanted

to compare Hough Forests with different transfer learning methods to the original Hough

Forest [15] we tried to reproduce the experiment settings of [15] as good as possible. The

TUD pedestrian data set which was presented in [3] is used to train the Hough Forest

and parts of this data set are used for testing. The following list shows which parts of the

TUD data set have been used.

• train-400: This subset contains 400 images. Each image shows one walking person.

The set contains different persons and different background locations. This set is

used as training set.

• tud-campus-sequence: This subset contains 71 images. Each image shows multiple

persons walking in front of the TUD campus. This set is used as test set.

• tud-crossing-sequence: This subset contains 201 images. Each image shows multiple

persons crossing a street. This set is used as test set.

• tud-pedestrians: This subset contains of 250 images. Each image shows one ore more

pedestrians. There are no overlapping objects. Persons and background locations

vary. This set is used as test set.

The second data set we used is the INRIA person data set which has been presented

in [11]. The set consists of 1126 positive examples and 453 negative background images.

Each positive example shows one person from a front view while the samples from the

TUD data set show pedestrians from a side view. As in [15] we used the negative samples

from the INRIA set as negative background samples for all classifiers during training. For

transfer learning the positive examples from the INRIA set formed our auxiliary data set.

This experiment was chosen to compare our Hough Forest with Transfer Learning

(HFTL) to the original Hough Forest as presented in [15]. We also compare HFTL to our

Hough Forest implementation without Transfer Learning to show how Transfer Learning

can improve the learned model.

Experiment Setup: Before training we needed to preprocess the positive training ex-

amples to fit a certain object scale. As in [15] we scaled all images in the train-400 data

4.4. Pedestrian Detection 63

TUD: Average number of Tree Nodes in 1000
Classifier Nodes Classifier Nodes
Combined 73.2436 Outliers 60.4332
Gall 69.4239 TrBoost 100.0755
PixPair 37.151 PCA 38.0556
Haar 30.8102 SparseCoding 58.0488

Table 4.4: TUD: Average number of Tree Nodes

set so that each contained object had a height of 100 pixels. For the positive examples

from the INRIA set we chose to use the ones which where of 64 × 128 pixel size. We

removed 12 pixels from the left- and right side and removed 14 pixels from the top- and

bottom border to reduce the amount of false positives in the training set. The resulting

images were then scaled to 40× 100 pixel images. The negative examples from the INRIA

set were used as they are.

For the training process patches of size 16× 16 were used. 100 patches were extracted

from every positive example object and 100 patches from each negative example image.

Since some of our transfer learning methods took very long to process the data we decided

to skip bootstrapping as described in [15]. We tried to compensate the missing bootstrap

patches by extracting not only foreground patches from every object in every positive

training image but also extracting 100 background patches from every positive training

image. This setup results in 40000 positive training patches and 85300 negative training

patches in target training set T and 112600 positive auxiliary patches in source training

set S. For each forest 15 trees were trained as done in [15]. The maximum depth of each

tree was set to 100, simply to ensure that each tree is grown to its full extent. Table 4.4

shows the final number of tree nodes within each classifier. The values are averaged over

all trees in the forest.

Each classifier used a fixed set of 100 features to ensure equal conditions for all our

methods. The 100 pixel pair features and 100 Haar Features were chosen out of 106

total features. The 100 final features were found by a boosting process as described in

section 3.2.3. Both, pixel pair features and Haar Features were calculated on top of 32

image patch channels as described in section 3.2.3. The PixPair Hough Forest used the

pixel pair features and was trained on T without the auxiliary set S. The Haar Hough

Forest used the Haar Features and was also trained on T without the auxiliary set S. The

Combined Hough Forest used the pixel pair features and was trained on the combined set

of training data T and auxiliary data S without any modifications on these data sets. The

64 Chapter 4. Experiments

TUD: Processing Time in seconds per image
Classifier Training Detect Classifier Training Detect
Combined 1.6793 88.2 Outliers 8.0971 85.1857
Gall 105.6338 25.3954 TrBoost 6.2749 86.5857
PixPair 1.5833 27.7 PCA 1.4578 295.5143
Haar 1.6197 104.9714 SparseCoding 11.2504 312.7

Feature Preparation Time in seconds per image
Boost PixPairs 112.3474 Boost Haar 109.8357 Sparse Features 173.9376

Sample Image Count
TUD training 853 INRIA training 1126 Sum training 1979

Table 4.5: TUD: Processing Time

Outlier Hough Forest also used pixel pair features and was trained on the combined set

of training data T and auxiliary data S. In this case the outlier measures for all examples

in the auxiliary set S have been calculated. These outliers have then been removed from S

before final training. 50% of the patches from the INRIA person images were considered

outliers. The TrBoost Hough Forest also used pixel pair features and was trained on

the combined data set of T and S. The iterations of transfer boosting were configured

to produce an ensemble of 15 trees. The PCA Hough Forest used 100 PCA features

calculated on top of only 1 grayscale image patch channel. The SparseCoding Hough

Forest used 100 Basis Vectors which have also been calculated on top of one grayscale

image patch channel. PCA Features and Basis Vectors were calculated from the combined

data set of T and S and used raw pixel intensities as input values. Table 4.5 shows the

processing time which was needed to find features and to train the final classifiers.

The resulting Hough Forests were tested on the 3 test data sets tud-campus-sequence,

tud-crossing-sequence and tud-pedestrians. 4 scales were used to form the image pyramid

of hough images. The scales were [0.30.40.50.6]. For the SparseCoding Hough Forest

every fourth pixel was used to add hough votes to the hypothesis image. This was done

to reduce the processing time. The original Hough Forest [15] (Gall) and all of our other

Hough Forests used every pixel to generate their Hypothesis. The postprocessing method

which was described in section 2.3.3.2 was then used to find the final detection rectangles.

To find the optimal rectangle size a simple brute force search was used. For this procedure

the rectangle width was in the range of [20− 50], and the rectangle height in the range of

[80− 100].

4.4. Pedestrian Detection 65

Figure 4.4: TUD-Campus: Recall-Precision Curve

Figure 4.5: TUD-Campus: ROC Curve

66 Chapter 4. Experiments

TUD-Campus: Equal-Error Rates
Classifier EER Classifier EER
Combined 0.839378 Outliers 0.759076
Gall 0.714754 TrBoost 0.853701
PixPair 0.736134 PCA 0.738351
Haar 0.662162 SparseCoding 0.715789

Table 4.6: TUD-Campus: Equal-Error Rates

Experiment Results: Figure 4.4 shows the recall precision curve for the tud-campus-

sequence set, Figure 4.5 shows the corresponding ROC curve and Table 4.6 shows the

equal-error-rates (EER) for this test set. This data set contains many overlapping objects,

and thus the recall is lower than for the other TUD test sets. The TrBoost Hough Forest

had the best performence but the Combined Hough Forest reached almost the same

level. The Outlier Hough Forest did not perform that well, thus the removing of specific

outliers lowered the performance. The SparseCoding Hough Forest performed almost

as good as the non-transfer learning algorithms and the PCA Hough Forest even had a

slightly better EER than the non-transfer learning forests.

Figure 4.6: TUD-Crossing: Recall-Precision Curve

Figure 4.6 shows the recall precision curve for the tud-crossing-sequence set, Figure 4.7

4.4. Pedestrian Detection 67

TUD-Crossing: Equal-Error Rates
Classifier EER Classifier EER
Combined 0.885899 Outliers 0.880781
Gall 0.845158 TrBoost 0.884634
PixPair 0.837506 PCA 0.833000
Haar 0.772475 SparseCoding 0.766112

Table 4.7: TUD-Crossing: Equal-Error Rates

shows the corresponding ROC curve and Table 4.7 shows the equal-error-rates (EER) for

this test set. This set does not contain overlaps and the objects in the scene do not vary

much in their size. Thus, this task is a less difficult task for the detector than the other

2 pedestrian sets. On this set the TrBoost Hough Forest achieved the best performance

which was just slightly better than the performence of the Combined Hough Forest.

Again the removing of outliers reduced the quality of the learned model. The PCA

Hough Forest was almost as good as the non-transfer methods. Only the SparseCoding

Hough Forest performed significantly worse than all other methods.

Figure 4.8 shows the results for the tud-crossing-sequence (left) and the tud-campus-

sequence (right). The image was taken from [4]. The dark blue curve represents the

Figure 4.7: TUD-Crossing: ROC Curve

68 Chapter 4. Experiments

method of Gall et al. [15] while the light blue curve represents the method of Barinova

et al. [4]. On the tud-crossing-sequence the method of Barinova et al. [4] yields the best

performance because they developed a postprocessing which is specialized in detection of

overlapping objects. On the tud-campus-sequence our inductive transfer learning methods

performed better.

Figure 4.9 shows the recall precision curve for the tud-pedestrians set, Figure 4.10

shows the corresponding ROC curve and Table 4.8 shows the equal-error-rates (EER) for

Figure 4.8: TUD-Crossing and TUD-Campus: Barinova and Gall Recal-Precision Curve
from [4]

Figure 4.9: TUD-Pedestrians: Recall-Precision Curve

4.4. Pedestrian Detection 69

TUD-Pedestrians: Equal-Error Rates
Classifier EER Classifier EER
Combined 0.753065 Outliers 0.730051
Gall 0.805508 TrBoost 0.752613
PixPair 0.696223 PCA 0.436090
Haar 0.654867 SparseCoding 0.441718
Gall+Bootstrap [15] 0.865

Table 4.8: TUD-Pedestrians: Equal-Error Rates

this test set. The tud-pedestrians data set contains no overlaps but the pedestrians have

high variations in size and the scenes show different locations. Some locations include very

difficult backgrounds or other objects which could yield false positive detections. On this

set the original Hough Forest by Gall et al. [15] performed significantly better than all of

our methods. For our methods the Combined Hough Forest had the best performance

which was slightly better than the performance of the TrBoost Hough Forest. Removing

the outliers in the auxiliary set resulted again in a loss of performance and the PCA- and

SparseCoding Hough Forests had very low performance.

Figure 4.10: TUD-Pedestrians: ROC Curve

70 Chapter 4. Experiments

Experiment Conclusion: The use of additional auxiliary training data improved the

performance of Hough Forest based methods. The results of the Combined Hough Forest

showed that the domains of target data and source data have a very strong relationship to

each other since no negative transfer occurred. The TrBoost Hough Forest could further

increase the performance in 2 out of 3 cases and thus showed to be the most robust of

our Transfer Learning methods. The Outlier Hough Forest removed examples from the

auxiliary set which could have improved the learned model. This behaviour makes them

a bad choice for strongly related data sets.

We tried to achieve the performance of our TrBoost Hough Forest with our non-

Transfer Learning methods. Therfore, we increased the number of image patches which

were extracted from positive training images. When we increased this number from 100 to

500 the performance of the PixPair Hough Forest was about equal to the performance of

our TrBoost Hough Forest. Thus, we needed the 5-fold number of samples in T to achieve

the performance of the TrBoost Hough Forest. This means that the 112600 patches in S

are worth about as much as 160000 additional patches in T . For this comparison it is also

important that increasing the number of training patches in T is only possible to some

extent. Since patches are sampled randomly from training images, patches will contain

more redundant information if more patches are sampled per image. Thus, there is a limit

were performance can not be further increased. When this limit is reached data S can

be used to add additional information. Taking this into account the best solution would

be to maximize the patch sample count to this limit and then use additional data S to

further improve the learned model.

For our Self-Taught Learning methods PCA Hough Forest and SparseCoding Hough

Forest we found that there is no benefit when they are used to learn feature representations.

While the PCA Hough Forest achieved about the same performance as our Hough Forests

with vision features, the SparseCoding Hough Forest showed lower performance. Both

methods should not be used when it is possible to use vision features such as pixel pairs

and Haar Features.

4.5. Face Detection 71

Faces in the Wild: Average number of Tree Nodes in 1000
Classifier Nodes Classifier Nodes
Combined 54.34148 Outlier 24.39938
Gall 70.11037 TrBoost 78.956683
PixPair 22.067 PCA 44.3858
Haar 20.20478 SparseCoding 46.542511

Table 4.9: Faces in the Wild: Average number of Tree Nodes

4.5 Face Detection

Experiment Description: The second detection task was the detection of faces in

various scenes on the FDDB data set [20] which was presented in [19]. This data set is

using the images from the ”Faces in the Wild” data set [5]. The FDDB is divided into 10

folds, each of them providing a training set T containing about 300 images. This leads

to a total of about 3000 images. The images show faces of different persons at different

angles and size. Every image contains one or more faces. We resized the images so that

the average height of face rectangles was at 50 pixels, preserving the aspect ratio.

As auxliliary data S we used the GENKI-4K [36] data set which is part of the ”MPLab

GENKI database” [35]. This data set contains 4000 images of persons in frontal view. Each

image contains exactly one face rectangle. All images in this set were also rescaled so that

the height of each face rectangle was at 50 pixels.

This experiment was chosen to compare our Inductive Transfer Learning methods

TrBoost Hough Forests and Outlier Hough Forests to non-Transfer Learning methods.

It should also provide information about the quality of features learned by PCA Hough

Forests and SparseCoding Hough Forests.

Experiment Setup: Our experiment setup followed the guidelines described in [19].

Thus, we trained a detector for each of the 10 folds. Every detector had to be evaluated

on one fold and trained on the nine remaining folds. For every Hough Forest detector 15

trees were trained as in the experiment described in section 4.4. Each tree was allowed

to grow to its full extent by setting the maximum tree depth to 100. The size for image

patches was set to 16×16 pixels. For training 20 image patches were extracted from every

face rectangle and another 20 patches were taken from the background of the same image.

This was done for the FDDB set as well as for the GENKI-4K set. This leads to 54000

background patches and about 77000 positive patches per fold for the FDDB data and

80000 positive and 80000 negative patches for the auxiliary set.

72 Chapter 4. Experiments

FDDB: Processing Time in seconds per image
Classifier Training Detect Classifier Training Detect
Combined 0.1271 14.4948 Outliers 0.3927 14.2803
Gall 9.3954 13.2784 TrBoost 0.5462 14.1869
PixPair 0.0426 14.7958 PCA 0.0486 13.8858
Haar 0.0412 21.0173 SparseCoding 0.5560 144.6540

Feature Preparation Time in seconds per image and fold
Boost PixPairs 11.3887 Boost Haar 7.6333 Sparse Features 18.23856

Sample Image Count per fold
FDDB training 2554 GENKI training 4000 Sum training 6554

Table 4.10: FDDB: Processing Time

For the PixPair Hough Forest 100 pixel pair features were used which were found

by a boosting process from 40000 random pixel pairs. For the Haar Hough Forest 100

haar features were used. These features were also found by a boosting process from 40000

random haar features. Both pixel pair features and haar features were calculated on top

of 32 image patch channels as described in section 3.2.3 and both were trained solely on T .

The Combined Hough Forest also used the 100 pixel pair features and used the auxiliary

data S from the GENKI-4K set in addition to the remaining FDDB folds. The Outlier

Hough Forest used the 100 pixel pairs, data set T and parts of S. For auxiliary data S

only patches from the GENKI-4K images were used which were not considered outliers in

this case. About 60% of the GENKI-4K patches were considered outliers in this case. The

TrBoost Hough Forest also used the 100 pixel pair features, data set T and the auxiliary

data set S. The sample patches and the trained trees themselves were weighted in the

transfer boosting process. The PCA Hough Forest used 100 PCA features which were

computed from raw pixel values of one grayscale channel. The SparseCoding Hough

Forest used 100 Base Vectors which were also calculated from raw pixel values of one

grayscale channel. Both the PCA Hough Forest and the SparseCoding Hough Forest

calculated their feature representations from the combined set of T and S. Table 4.9

shows the average number of tree nodes for each detector. The values are averaged over

the number of trees contained in each forest. Table 4.10 shows the processing time for

each detector.

For testing each fold was evaluated on the Hough Forests which were trained on the

9 remaining folds. The SparseCoding Hough Forest extracted an evaluation patch for

every fourth pixel inside each image. The Gall Hough Forest and all of our Hough Forests

extracted one patch for every pixel inside the test image. For the hough image pyramid

4.5. Face Detection 73

FDDB: Equal-Error Rates
Classifier EER Classifier EER
Combined 0.740430 Outlier 0.737380
Gall 0.735457 TrBoost 0.744109
PixPair 0.737324 PCA 0.602386
Haar 0.743814 SparseCoding 0.541836

Table 4.11: FDDB: Equal-Error Rates

we used the following six scale values [0.1, 0.2, 0.4, 0.6, 0.8, 1]. The resulting hough images

were then postprocessed all at once per method. The postprocessing method which was

described in section 2.3.3.2 was used to find the detection rectangles. Using this postpro-

cessing method we performad a brute force search to find the optimal rectangle size. The

range for the rectangle width was set to [30− 60] while the range for rectangle height was

set to [50− 90].

Figure 4.11: FDDB: Recall-Precision Curve

Experiment Results: Figure 4.11 shows the recall-precision curve and Figure 4.12

shows the corresponding ROC curve for this task. The equal-error rates (EER) for all

detectors are shown in Table 4.11. The PCA Hough Forest and the SparseCoding

74 Chapter 4. Experiments

Hough Forest had a lower performance in comparison to all other methods. The methods

which used the additional auxiliary set performed slightly better than the ones which

were trained on the training set only. The TrBoost Hough Forest had the best equal-

error rate. The Outlier Hough Forest did not perform as well as the simple Combined

Hough Forest. This means that the outliers could have helped even more to refine the

learned model.

Figure 4.13 shows the official ROC curve from [20]. When we compare the results

from this image to our results the true positive rate of our methods is slightly higher. The

best method shown in Figure 4.12 had a lower false-positive rate than our methods. The

false-positive rate is shown in total false-positives in figure 4.12 while the false-positive

rate is shown in false-positives per image for 3000 images in Figure 4.12.

Experiment Conclusion: This experiment showed that the use of additional source

data S can improve the performance on this task. Again the results of the Combined

Hough Forest showed that the domains of T and S are strongly related. Thus, only mini-

mal negative transfer occurred for this method. The TrBoost Hough Forest could further

improve the performance on this task and showed the best overall performance. The Out-

Figure 4.12: FDDB: ROC Curve

4.6. Experiment Conclusions 75

lier Hough Forest again removed usefull parts of S which resulted in a lower performance.

Thus, the TrBoost Hough Forest is the most reliable method which transfers the most

usefull parts of S and also avoids negative transfer.

The PCA Hough Forest and the SparseCoding Hough Forest showed the lowest

performance on this task. Thus, vision features should be favoured over the feature rep-

resentations found by these methods.

4.6 Experiment Conclusions

Our experiments were based on a Transfer Learning setting with a target training set T and

a source training set S where information should be transferred from S to T . We evaluated

Random Forest based methods with Transfer Boosting (RFTB), Transfer Learning with

Outlier Detection (RF-O), Random Forest based methods with PCA (RF+PCA) and

Random Forest based methods with Spase Coding (RF+SC).

RFTB showed the best use of additional data S. This method could transfer the

highest amount of usefull information and avoid negative transfer very well. RF-O showed

to remove usefull information from S when domains of T and S were strongly related.

When the relationship was weak, RF-O showed to lower negative transfer but could not

Figure 4.13: FDDB: Official ROC Curve [19]

76 Chapter 4. Experiments

avoid it as well as RFTB. Thus, RFTB should always be used when some additional data

S is available. The additional computation time is moderate. In a worst case scenario

the performance with Transfer Boosting should be at least as good as without Transfer

Learning at all. Transfer Boosting is also easy to combine with classifiers different from

Random Forests.

Self-Taugh Learning methods Transfer Learning with PCA and Sparse Coding have

been used to learn feature representations for image data. Therfore, they use T and S

so that additional information from S is transferred to learned feature representations.

In combination with Random Forest based methods these learned feature representations

showed to yield lower performance than traditional vision features such as pixel pair fea-

tures or Haar Features. Thus, vision features should be preferred.

4.7 Chapter Summary

This chapter presented the results of our experiments. We compared the results of our

different Random Forest based methods with Transfer Learning to results of Random

Forest based methods without Transfer Learning. We also compared our results of Random

Forest based methods with Transfer Learning to other state-of-the-art methods.

In sections 4.1 and 4.2 we showed our results for two classification tasks on different

versions of the 20Newsgroups data set. This set was designed for transfer learning purpose.

We compared the results of a simple Random Forest to the results of Random Forests which

used additional auxiliary data during the training phase. We also presented some reference

results which were achieved by other methods for classification.

In section 4.3 we showed our results on a character classification task. We compared

Random Forests using pixel pair features, haar features and raw pixel values to a Random

Forest using PCA features and in one case sparse features. The latter two methods also

used additional data from a handwritten digit database to compute the feature represen-

tations. We also presented some reference results from [44] for this task.

In section 4.4 we performed a pedestrian detection task on the TUD-pedestrian data

set [3]. We compared the results of Hough Forests with different feature representations

to Hough Forests using axuiliary data from the INRIA person data set. We also compared

PCA features and sparse features to other feature representations which are typical for

vision tasks. Our results were also compared to the results from Gall et al. [15] and

Barinova et al. [4] which used the same set of data.

In section 4.5 we showed our results for a face detection task on the FDDB [20] data

4.7. Chapter Summary 77

set. We compared the simple Hough Forest methods with different feature representations

to Hough Forests which used additional auxiliary data from the GENKI-4K [36] data set.

The results for different feature representations were also compared among each other.

Section 4.6 summarized the results of our experiments. The usefullnes of our Tranfer

Learning methods were also discussed within this section.

Chapter 5

Conclusion and Outlook

Contents

5.1 Conclusion . 79

5.2 Outlook . 80

5.1 Conclusion

In section 3 we presented our methods to combine Random Forests and Transfer Learning.

The Transfer Learning methods we tested in our experiments where a simple combination

of training data and auxiliary data with and without outliers in the auxiliary set, Transfer

Boosting, PCA and Sparse Coding. PCA and Sparse Coding also introduced new feature

representations which have been compared to traditional vision features such as pixel pairs

and Haar Features.

Our experiments in section 4 showed that the use of an auxiliary data set can improve

the performance of Random Forest based methods. The experiments on the 20newsgroup

data sets in sections 4.1 and 4.2 showed how our methods are able to cope with negative

transfer. Transfer Boosting avoided negative transfer better than all other tested methods.

This implies that Transfer Boosting is a valid choice when additional data is used which

is only weakly related to the target domain. For the vision tasks we showed in section

4.4 and in section 4.5 the Hough Forest with Transfer Boosting showed slightly better

performance than the Hough Forest which was simply adding the auxiliary data to the

training data. The removing of outliers in the auxiliary set lowered the performance. This

happened because the auxiliary data we used was still strongly related to the original

training data. In this case the outlier patches were providing useful information to refine

79

80 Chapter 5. Conclusion and Outlook

the learned model. It can be difficult to find out how much an auxiliary data set is related

to the original training set. Thus, Transfer Boosting is the best choice which can ensure a

good performance while reducing the risk that the learned model is polluted by outlying

examples.

For PCA and Sparse Coding our experiments showed that traditional vision features

like pixel pairs and haar features yield better results in combination with Random Forest

classifiers. The experiments in section 4.3 show that PCA and Sparse Coding features are

on a par with the raw pixel value representation. The computation of PCA features is

at least as fast as for pixel pairs and haar features while the computation time for sparse

features is very high. Thus, vision features are superior to these Self-Taugh Learning

methods.

5.2 Outlook

The detection tasks in section 4.4 and in section 4.5 could be repeated with different

auxiliary data sets which are less related to the training data. This should indroduce

negative transfer when both sets are only combined without special Transfer Learning

methods. In an optimal case a detector trained on only the training set should perform

better than a detector using the auxiliary data as well during training. Transfer learning

approaches can then be used to find out whether they can improve the quality of the

learned model.

The framework we used for our experiments could be expanded by new Transfer Learn-

ing methods and feature representations for image based tasks. Even the Random Forest

itself could be exchanged by other classifiers such as support vector machines. All experi-

ments we discussed can be repeated with different methods. The framework also includes

loading and saving schemes for some popular machine learning data formats.

The Hough Forest detector we used could be extended so that it is possible to learn and

detect multiple classes instead of only foreground and background. Therefore, a seperate

hough image pyramid needs to be created for each class. The background would also need

to be defined as seperate class in this case. The Transfer Learning methods we used and

the Random Forest itself are able to handle multiple classes. The postprocessing method

we used could then be applied to the hough images for each class seperately. Thus, objects

of different scales can be trained and detected. Another interesting experiment would be

to combine data sets which were used for experimens in section 4.4 and section 4.5. This

approach is known as multi-task learning [9] and could improve the performance on both

5.2. Outlook 81

data sets.

82

Bibliography

[1] Agarwal, S., Awan, A., Roth, D., and Society, I. C. (2004). Learning to detect objects in

images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26:1475–1490.

[2] Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized

trees. Neural Computation, 9:1545–1588.

[3] Andriluka, M., Roth, S., and Schiele, B. (2008). People-tracking-by-detection and

people-detection-by-tracking. In CVPR. Online Reference: http://www.mis.tu-

darmstadt.de/node/382, Visited on October 30, 2011.

[4] Barinova, O., Lempitsky, V., and Kohli, P. (2010). On detection of multiple object

instances using hough transforms. In CVPR, pages 2233–2240.

[5] Berg, T. L., Berg, A. C., Edwards, J., and Forsyth, D. (2004). Faces in the wild

dataset. Online Reference: http://tamaraberg.com/faceDataset/index.html, Visited on

October 30, 2011.

[6] Breiman, L. (1996a). Bagging predictors. In Machine Learning, volume 24, pages

123–140.

[7] Breiman, L. (1996b). Out-of-bag estimates. Technical report, Statistics Department,

University of California, Berkeley, CA. 94708.

[8] Breiman, L. (2001). Random forests. Machine Learning Journal, 45:5–32. Online Ref-

erence: http://www.stat.berkeley.edu/˜breiman/RandomForests/, Visited on October

30, 2011.

[9] Caruana, R. and Pomerleau, D. (1997). Multitask learning. In Machine Learning,

volume 28, pages 41–75.

[10] Dai, W., Yang, Q., rong Xue, G., and Yu, Y. (2007). Boosting for transfer learning.

In Proc. 24th Int’l Conf. Machine Learning, pages 193–200.

[11] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detec-

tion. In International Conference on Computer Vision & Pattern Recognition (CVPR),

volume 2, pages 886–893.

BIBLIOGRAPHY 83

[12] Daumé, H. and Marcu, D. (2006). Domain adaptation for statistical classifiers. In

Journal of Artificial Intelligence Research, volume 26, pages 101–126.

[13] Dietterich, T. G. and Lathrop, R. H. (1997). Solving the multiple-instance problem

with axis-parallel rectangles. Artificial Intelligence, 89:31–71.

[14] Fan, W. (2011). Collection of data and software for machine learning problems. Online

Reference: http://www.cs.columbia.edu/˜wfan/software.htm, Visited on October 30,

2011.

[15] Gall, J. and Lempitsky, V. (2009). Class-specific hough forests for

object detection. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR’09), pages 1022–1029. Online Reference:

http://www.vision.ee.ethz.ch/˜gallju/projects/houghforest/index.html, Visited on

October 30, 2011.

[16] Gao, J., Fan, W., Jiang, J., and Han, J. (2008). Knowledge transfer via multiple

model local structure mapping. In Proc. 14th ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining, pages 283–291.

[17] Geman, D., Amit, Y., and Wilder, K. (1997). Joint induction of shape features and

tree classifiers. IEEE Trans. PAMI, 19:1300–1305.

[18] Heckman, J. (1979). Sample selection bias as a specification error. In Econometrica,

pages 153–161.

[19] Jain, V. and Learned-Miller, E. (2010a). Fddb: A benchmark for face detection in un-

constrained settings. Technical Report UM-CS-2010-009, University of Massachusetts,

Amherst.

[20] Jain, V. and Learned-Miller, E. (2010b). Fddb: Face detection data set and bench-

mark. Online Reference: http://vis-www.cs.umass.edu/fddb/, Visited on October 30,

2011.

[21] Jiang, J. (2008). A literature survey on domain adaptation of statistical classi-

fiers. Online Reference: http://sifaka.cs.uiuc.edu/jiang4/domain adaptation/survey/,

Visited on October 30, 2011.

[22] Jiang, J. and Zhai, C. (2007). Instance weighting for domain adaptation in nlp. In

ACL 2007, pages 264–271.

84

[23] Joachims, T. (1998). Making large-scale support vector machine learning practical.

In Schölkopf, B., Burges, C. J. C., and Smola, A. J., editors, Advances in Kernel

Methods: Support Vector Learning, pages 41–56. The MIT Press. Online Reference:

http://svmlight.joachims.org/, Visited on October 30, 2011.

[24] Jones, M. J. and Viola, P. (2003). Face recognition using boosted local features.

Technical Report TR2003-25, Mitsubushi Electric Research Laboratories.

[25] Kim, H. and Loh, W.-Y. (2001). Classification trees with unbiased multiway splits.

Journal of the American Statistical Association, 96:589–604.

[26] Kim, H. and Loh, W.-Y. (2003). Classification trees with bivariate linear discriminant

node models. Journal of Computational and Graphical Statistics, 12:512–530.

[27] Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2007). Efficient

sparse coding algorithms. In NIPS, pages 801–808. Online Reference:

http://ai.stanford.edu/˜hllee/softwares/nips06-sparsecoding.htm, Visited on October

30, 2011.

[28] Leibe, B., Leonardis, A., and Schiele, B. (2008). Robust object detection with inter-

leaved categorization and segmentation. In International Journal of Computer Vision,

volume 77, pages 259–289.

[29] Leibe, B. and Schiele, B. (2003). Interleaved object categorization and segmentation.

In British Machine Vision Conference, pages 759–768.

[30] Liao, X., Xue, Y., and Carin, L. (2005). Logistic regression with an auxiliary data

source. In Proceedings of the Twenty-Second International Conference on Machine

Learning, pages 505–512. ACM Press.

[31] Loh, W.-Y. (2009). Improving the precision of classification trees. Annals of Applied

Statistics, 3:1710–1737.

[32] Loh, W.-Y. and Shih, Y.-S. (1997). Split selection methods for classification trees.

Statistica Sinica, 7:815–840.

[33] Loh, W.-Y. and Vanichsetakul, N. (1988). Tree-structured classification via general-

ized discriminant analysis. Journal of the American Statistical Association, 83:715–728.

[34] Marée, R., Geurts, P., Piater, J., and Wehenkel, L. (2005). Random subwindows for

robust image classification. In CVPR, pages 34–40. IEEE.

BIBLIOGRAPHY 85

[35] MPLab (2011a). The MPLab GENKI Database. Online Reference:

http://mplab.ucsd.edu, Visited on October 30, 2011.

[36] MPLab (2011b). The MPLab GENKI Database, GENKI-4K Subset. Online Refer-

ence: http://mplab.ucsd.edu, Visited on October 30, 2011.

[37] Olshausen, B. A. and Fieldt, D. J. (1997). Sparse coding with an overcomplete basis

set: a strategy employed by v1. Vision Research, 37:3311–3325.

[38] OpenCV (2011). OpenCV online Reference and Download. Open

Source Computer Vision by Intel and Willow Garage. Online Reference:

http://opencv.willowgarage.com/wiki/, Visited on October 30, 2011.

[39] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Trans-

actions on Knowledge and Data Engineering, 22(10):1345–1359. Online Reference:

http://www1.i2r.a-star.edu.sg/˜jspan/SurveyTL.htm, Visited on October 30, 2011.

[40] Piotr, D. and Vincent, R. (2011). Piotr’s image & video toolbox for matlab. Online

Reference: http://vision.ucsd.edu/˜pdollar/toolbox/doc/, Visited on October 30, 2011.

[41] Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the 5th

Australian Joint Conference on Artificial Intelligence, pages 343–348. World Scientific.

[42] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

ISBN: 1-55860-238-0.

[43] Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. (2009).

Dataset Shift in Machine Learning. MIT Press. ISBN: 0-262-17005-1.

[44] Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. (2007). Self-taught learning:

Transfer learning from unlabeled data. In Proceedings of the Twenty-fourth Interna-

tional Conference on Machine Learning, pages 759–766.

[45] Schapire, R. E., Freund, Y., Barlett, P., and Lee, W. S. (1997). Boosting the mar-

gin: A new explanation for the effectiveness of voting methods. In Proceedings of the

Fourteenth International Conference on Machine Learning, pages 322–330.

[46] Shi, X., Fan, W., and Ren, J. (2008). Actively transfer domain knowledge.

In Proc. European Conf. Machine Learning and Knowledge Discovery in Databases

(ECML/PKDD 08), pages 342–357.

86

[47] Shimodaira, H. (2000). Improving predictive inference under covariate shift by weight-

ing the log-likelihood function. In Journal of Statistical Planning and Inference, 90 (2),

pages 227–244.

[48] Shlens, J. (2005). A tutorial on principal component analysis. In Systems

Neurobiology Laboratory, Salk Institute for Biological Studies. Online Reference:

http://www.snl.salk.edu/˜shlens/, Visited on October 30, 2011.

[49] Timofeev, R. (2004). Classification and regression trees (cart) theory and applica-

tions. Master’s thesis, CASE - Center of Applied Statistics and Economics Humboldt

University, Berlin.

[50] Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of

simple features. In Computer Vision and Pattern Recognition (CVPR 2001), volume 1,

pages 511–518.

[51] Wu, P. and Dietterich, T. G. (2004). Improving svm accuracy by training on auxiliary

data sources. In ICML, pages 871–878.

[52] Zadrozny, B. Z. (2004). Learning and evaluating classifiers under sample selection

bias. In In International Conference on Machine Learning ICML04, pages 903–910.

BIBLIOGRAPHY 87

	Introduction
	Motivation
	Transfer Learning
	Object detection with Random Forests
	Goal of this Master Thesis
	Organisation of this Master Thesis

	Related Work
	Image Features
	Pixel-Pair Features
	Haar Features

	Object detection
	Introduction to object detection
	Performance Measurement for Object Detectors

	Machine Learning
	Decision Trees
	Random Forests
	Bagging
	Proximities
	Outliers

	Hough Forests
	Training Process
	Detection of Objects

	Boosting

	Transfer Learning
	Introduction to Transfer Learning
	Inductive Transfer Learning
	Multi-task Learning
	Self-Taught Learning
	Transductive Transfer Learning

	Comparison of TL to other Machine Learning concepts
	Transfer Learning Algorithms
	Transfer Boosting
	Transfer Learning with PCA
	Transfer Learning with Sparse Coding

	Chapter Summary

	Transfer Learning for Random Forest based Methods
	General Machine Learning
	Transfer Learning with Outlier Detection
	Transfer Boosting

	Image Classification
	Transfer Learning with PCA
	Sparse Coding
	Image Feature Boosting

	Object detection
	Chapter Summary

	Experiments
	20 Newsgroups Dataset part 1
	20 Newsgroups Dataset part 2
	Character Image Classification
	Pedestrian Detection
	Face Detection
	Experiment Conclusions
	Chapter Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

