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Abstract

This thesis presents a methodology to determine the positions of transmitter equipped aircraft
and vehicles, solely over time of signal arrival (TOA) measurements. For this purpose, the
target must send out a signal which is received at a set of three or more base stations,
distributed over the area of interest. Since the developed system measures TOA values with
high accuracy and base station positions are known, the location of signal emission can be
determined over a so called hyperbolic navigation, or Multilateration (MLAT) calculation.

The work presents a calculation method that firstly calculates algebraic solutions, followed
by an iterative accuracy enhancement, which takes advantage of redundant measurements.
Furthermore, optional methods for solution ambiguity resolution, measurement outlier detec-
tion and solution error estimation are explained. In addition to the presented algorithms and
techniques, the work is extended by results derived from real field test data.

Keywords: Multilateration, MLAT, Hyperbolic Navigation, Secondary Surveillance Radar,
SSR, Robust Adjustment, Outlier Detection

Kurzfassung

Diese Arbeit präsentiert eine Methode zur Ortung von Flug- und Fahrzeugen, welche mit
einem Sender oder Transponder ausgestattet sind. Dazu sind mehrere Empfänger notwendig,
die über die zu überwachende Fläche verteilt aufgestellt werden und deren Position bekannt
ist. Die Empfänger messen ein ausgesendetes Signal und bestimmen dessen Ankunftszeit mit
hoher Genauigkeit. Anschließend kann die Position des Senders an einer zentralen Stelle, über
eine so genannte Multilaterationsberechnung, bestimmt werden. Dabei werden die Ankunft-
szeitmessungen aller Empfänger verarbeitet.

Die hier präsentierte Vorgehensweise für diese Berechnung ermittelt zuerst mathematisch
exakte Lösungen. In einem zweiten Schritt werden diese Primärlösungen, unter Zuhilfenahme
von redundanten Messungen, verfeinert. Außerdem werden Verfahren zur Ausreißerdetektion,
Positionsfehlerbestimmung und zur Auflösung von Lösungsmehrdeutigkeiten präsentiert. Am
Ende der Arbeit wird die Theorie mit Berechnungsergebnissen vervollständigt, welche aus
Daten ermittelt wurden, die von einem Feldversuch stammen.

Schlüsselwörter: Multilateration, MLAT, Hyperbelnavigation, Sekundärradar, SSR, Aus-
gleichung nach Parametern, robuste Ausgleichung, Ausreißerdetektion
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1 Introduction and Motivation

This thesis presents a technique for aircraft and vehicle detection, which emerged out of Radar
technology during the last decades. This new position finding method, called Multilateration
(MLAT), follows a different approach than Radar, as it uses several distributed receiving
units. In order to facilitate the understanding of the principle and the advantages of this new
method, the following sub-chapter gives a short overview of Radar history. Subsequently, the
basic principle of MLAT is explained, followed by a motivation for this topic.

1.1 Conventional Radar

Since the early 1930s Radio Detection and Ranging (RADAR) systems were developed by
several countries to determine aircraft, ship and vehicle positions. Huge research in this field
was performed before and during World War II, since the position of friendly and enemy
aircraft was a valuable information [1]. Whereas Radar systems were just used for military
purposes in the beginning, after the end of World War II Radar technologies found their way
into civil air traffic control [2].

The basic principle of Radar is simple: A transceiver sends out an electromagnetic high
frequency signal pulse, which propagates to an object. As soon as the pulse reaches the ob-
ject’s surface, a fraction of the signal power is reflected. Depending on the surface’s geometry
and material, the reflected signal, also called echo, is scattered to different directions. If a
part of this reflection propagates back to the point of emission, the Radar’s receiving unit
measures it there. Electromagnetic waves propagate at constant speed (approximately speed
of light) and so, when knowing the time the signal took to propagate to the object and back,
it is possible to calculate the distance between transceiver and object. The calculation of the
transceiver to object distance, also called range r, is simple:

r =
c · t
2

(1.1)

Here c denotes the speed of light(1) and t the round trip time, i.e. the time between pulse
emission and echo reception. However, in order to get the full position information, also the
angular direction in which the object is located has to be known. This so-called azimuth ϕ is
determined by knowing the direction the interrogation signal was sent to. For this purpose,
highly directional antennas are used to send the interrogation pulses and also to receive just
echoes from the expected direction [4]. In order to cover the area of interest the main lobe of
the antenna needs to sweep over the whole area while constantly sending interrogation pulses.

These so-called Primary Surveillance Radar (PSR) systems which work with passive re-
flections are able to detect objects which reflect the detection signal well enough in order to be
measured at the receiver. As a big part of the signal power is absorbed during the reflection,
the power of the measured echoes is generally much lower than the power of the transmitted
pulse.

(1)Speed of light: c = 299 792 458ms−1 from [3]

1



Figure 1.1: Radar principle

During the Second World War it became important to be able to differentiate between
friendly and enemy aircraft, and so the system Identification Friend or Foe (IFF) was devel-
oped by the Allies. In IFF, friendly aircraft were supplied with equipment which was detecting
the Allies radar transmissions and answering to them, in order to indicate that the aircraft
was a friend [1]. Out of the IFF technology the civil Secondary Surveillance Radar (SSR)
technology has emerged in the 1940s and is still in use today. In SSR, aircraft are equipped
with active transponders which receive the radar’s interrogation signal and answer to it after
a delay time of 3µs [1, p. 176].

Figure 1.2: SSR principle taken from [5]

SSR radar technology made it possible to use much less transmitting power at the radar
site: The detection signal does not have to travel to the object to be detected and back, but
just one way to the transponder. The transponder then emits a new signal that propagates
the same distance. Furthermore instead of weak signal reflections active transponder replies
are detected at the site [4]. SSR technology enabled aircraft also to transmit information like
identification or barometric height back to the interrogating station (see Chapter 2.6). The
disadvantage of such systems is, however, that just cooperative targets, i.e. objects equipped
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with transponders, can be detected. However, nowadays almost every aircraft has to be
equipped with a SSR transponder (see [6]). In aviation, En-Route and Airport Surveillance
Radar (ASR) systems mostly use a combination of PSR and SSR in order to detect aircraft
and to identify them over SSR [7, p. 173].

This conventional Radar technology, however, faces some problems: Firstly, directional
antennas are needed which either are turned around or can change their directionality. In
both cases the costs for these antennas are high and update rates are limited to 4 to 12
seconds, as antennas typically rotate at this speed [8]. Additionally, Radar depends on the
availability of Line of Sight (LOS) propagation, and so parts of the area to be observed can
be shadowed by terrain obstacles (see [8]).

1.2 Multilateration

Nowadays, thanks to the available computational power, a new type of radio detection sys-
tems is in use: This technology is known under the terminologies Hyperbolic Navigation
or Multilateration (MLAT). In contrast to Radar, such systems consist of several ground
stations which are distributed over the area of interest. These ground stations, also called
Remote Units (RUs), listen for SSR replies which are emitted by aircraft or vehicle transpon-
ders in the area around them. If a transponder emits a reply, it is received at each Remote
Unit at a different time, depending on the distance between transponder and RU. Out of this
time of signal arrival (TOA) information from three or more stations, it is possible to calcu-
late back to the point of signal emission. The calculation task is performed by the so-called
Target Processor (TP) which receives the TOA measurements from all Remote Units over a
communication interface. Figure 1.3 shows such a scenario:

Figure 1.3: MLAT principle

The big difference between MLAT and Radar systems is the distributed system architec-
ture. There is no more need for a big directional antenna, on a tower: The Remote Units
which can be mounted on masts, are equipped with omnidirectional bar antennas and basi-
cally just need a communication interface and a power supply. The TP fits into a conventional
server rack that can be located on an arbitrary place, if necessary also outside the system’s
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area of operation. According to [8], Multilateration systems have the following advantages in
comparison to conventional Radars:

• Higher update rate: As Radars need turning antennas, their update rate is restricted
to 4 to 12 seconds. This is not the case in MLAT as the whole area is monitored at
once.

• In system redundancy: Multilateration systems normally own more than the mini-
mum amount of base stations. So the failure of a single base station can be recovered
by other stations.

• High system scalability: The principle can be used for airport area aircraft and
vehicle monitoring, or for wide area, with a coverage that exceeds conventional SSR.

• Lower acquisition and maintenance costs (see also [9])

MLAT systems can be realised in many ways, so it is important to categorise them. As
accurate time measurement is essential in MLAT systems, two types of systems can be defined
(see [10]):

Common Clock Systems measure time with high accuracy at one central position, nor-
mally at the Target Processor. The Remote Units may be constructed simple, as the system’s
complexity lies at one central point. However, it is necessary that the propagation delay from
each RU’s receiving antenna to the point of time measurement is constant and well known.
This is achieved by installing expensive communication systems between RUs and TP, such
as fiver optic or microwave links.

Distributed Clock Systems decode the replies and timestamp them directly at every
Remote Unit. As the communication latency does not matter, this information is then sent
to the target-processing unit over a conventional communication link like Ethernet. The
disadvantage of such systems is that every Remote Unit has its own timebase, and so the
units have to be synchronised.

Since laying of dedicated fiver on airports or microwave links are expensive and difficult to
implement, the prototype system, developed in the course of this thesis, forms a distributed
clock system. The title of this thesis already states that the system shall operate passively
further. The difference between active and passive MLAT systems is the following:

Active systems are equipped with an interrogator unit which is capable to send SSR
interrogations. Such systems are able to detect all transponders in their reach as they can
interrogate them.

Passive systems just evaluate SSR signals which are available anyway in the area of in-
terest. Therefore, they are dependent on other SSR systems which perform the interrogation
work. However, no sending license is required to operate such passive systems.

4



1.3 Motivation

This master’s thesis concerns the core element of a Multilateration system: The Target
Processor or calculation unit. This unit receives time of signal arrival (TOA) measurements
from Remote Units and performs the calculations in order to determine the position of sig-
nal emission. The thesis was written in the course of a Multilateration system prototype
development, performed by the company AviBit Gmbh in Graz, Austria, in cooperation with
the Institute for Broadband Communication (IBK) at Graz University of Technology. The
system is planned to be a passive Multilateration system with distributed time measurement,
capable of calculating 2D and 3D position fixes. As long-term objective of the Multilateration
project, AviBit aims to collect the necessary expertise, in order to equip airports with fully
operational MLAT systems. The Target Processor, implemented by the author along with
this thesis, represents one step in this progress.

This work explains the mathematical basics of the Multilateration calculation first: Chap-
ter 2 gives formulae and algorithms which are necessary to solve the hyperbolic positioning
problem. Furthermore a small overview over the SSR radar technology is given, explaining
some features which are essential for the developed system. Chapter 3 discusses design issues
of a MLAT calculation unit and explains how the theory of the previous chapters can be
applied in order to build a flexible and real time capable MLAT Target Processor. The actual
prototype implementation is presented in Chapter 4. Furthermore, that chapter contains
calculation results in order to prove and explain some implementation details and also some
principles which were firstly just handled theoretically. Those results were obtained from
data, which was accumulated in a real field test in the ORF Park in Graz, Austria. Finally,
Chapter 5 gives an evaluation of single measurements performed in the field test, investigates
errors and discusses possible system improvements.
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2 Theoretical Background

This chapter tries to explain the theoretical principles which build the base for the Mul-
tilateration calculation. It starts with a chapter which explains the problem of hyperbolic
positioning itself and presents algorithms to solve it in the subsequent chapters. Additionally,
some fundamental information about SSR is provided, as the prototype developed in course
of this work is working with Secondary Surveillance Radar reply signals.

The theory about the MLAT calculation was mainly accumulated over papers, publications
and Internet sources, as it was not possible to find any books about Multilateration theory.
The reason for this may lie in the topic’s similarity to Global Navigation Satellite Systems
(GNSSs). Y. E. Yang states the following in [11]:

“The working principle of a Multilateration system is similar to that of the Global Po-
sitioning System (GPS), except that instead of broadcasting timing signals, the sensors
match up reply messages from target aircraft or mobile transponders, determine their
time difference of arrival (TDOA) to derive the target positions.”

Due to this similarity, two books about GPS ([12] and [3]), written by B. Hofmann-Wellenhof,
were used to elaborate the theory in the subsequent chapters. Furthermore, some books and
scripts from the fields of avionics and geodesy were consulted.

2.1 The Problem of Hyperbolic Positioning

Hyperbolic positioning systems are used to determine the geometrical position of a high
frequency signal transmitter. In order to be able to calculate this position the signal has
to be received at three or more geometrically diverse located base stations. This chapter
explains the principle that lies behind such a positioning calculation in order to motivate the
theoretical basics explained in the following chapters.

To keep things easy we make the following assumptions in the subsequent explanations:
Firstly, the signal emitted by a transmitter propagates to all directions in the same way; i.e.
an omni-directional antenna is used. Secondly, we assume that the signal can propagate to the
receivers without being blocked by obstacles, i.e. we have Line of Sight (LOS) communication.

The scenario is the following: A signal is generated by the transmitter, leaves the trans-
mitting antenna, propagates to the base stations and reaches them at different times. The
receiving time is denoted as time of signal arrival (TOA) and the time the signal was sent out
as time of signal emission (TOE) in the future.

Such a scenario is illustrated in Figure 2.1: The mobile located at (−20, 30) emits the
signal which is received at the base stations S1 to S3. The distances between target and
the i-th base station di result out of the geometry and are d1 = 42.43m, d2 = 76.16m and
d3 = 28.29m. Assuming the signal is being emitted at the time te = 0ns, it will be received
by each station at ti = di

c , where c denotes the speed of light. This leads to the following
receiving times: t1 = 141.52ns, t2 = 54.03ns and t3 = 94.35ns.

If now both, the TOE and TOA, were known to the system, the positioning calculation
would result in a normal triangulation calculation: The distance di between transmitter and

6



Figure 2.1: MLAT scenario for mobile at (−20, 30) and receiving stations at S1 = (−50, 0),
S2 = (50, 0) and S3 = (0, 50). Units are given in metres.

receiver i could be calculated simply via the equation

di = c (ti − te) (2.1)

where c is the speed of light, ti the TOA at the station i and te the TOE. In the two
dimensional case we can set up the following formula for each station, where the position of
station i is denoted by xi and yi and the transmitter position is given by the coordinates x
and y:

di = c (ti − te) =
√

(xi − x)2 + (yi − y)2 (2.2)

As equation (2.2) gives a circle with centre (xi, yi) and radius di, the problem can be solved by
intersecting two of such circles, thus by knowing di for two different stations. Figure 2.2 shows
such circles for the stations S1 and S2 in the previously discussed scenario. However, this
intersection leads to an ambiguous solution: the correct solution (−20, 30) and the wrong
solution (−20, −30). The wrong solution has to be eliminated in a second step, e.g. by
respecting the measurement of the third station, which gives an additional circle.

Passive Multilateration systems, however, do not know at which time the signal was
emitted. The terminology passive means here that the system is just evaluating signals that
are anyway available in the area of interest, without communicating with the targets to be
detected. The time of signal emission, which was essential in the previous calculation, can,
however, only be determined if communication between system and target is possible e.g. by
interrogating a SSR transponder. Therefore, another approach for the calculation has to be
found which solely considers the TOA at different stations.

Useful information which can be retrieved from TOA measurements is the time difference
of signal arrival (TDOA) for each pair of base stations. Starting from this TDOA, the
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Figure 2.2: Intersecting circles with centres in S1 = (−50, 0) and S2 = (50, 0) and radii
d1 = 42.43 and d2 = 76.16. Units are given in metres.

difference in target-station distance (∆dij) for the stations i and j can be calculated as

∆dij = di − dj = c (ti − tj) (2.3)

By inserting equation (2.2) into the above formula we come to the following equation, which
describes a hyperbola with the focal points in the stations’ positions (xi, yi) and (xj , yj):

∆dij = di − dj =
√

(xi − x)2 + (yi − y)2 −
√

(xj − x)2 + (yj − y)2 (2.4)

Figure 2.3 shows such a hyperbola for the stations S1 and S2 in the scenario discussed before.
For every point P on the hyperbola the equation |d1 − d2| = ∆dij holds.

Figure 2.3: Hyperbola with focuses in S1 = (−50, 0) and S2 = (50, 0) and |d1 − d2| = 33.73.
Units are given in metres.
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This problem can newly be solved by intersecting more of these hyperbolas. If Figure 2.3
is supplemented by the hyperbolas that result out of base station S3, the scenario looks like
in Figure 2.4.

Figure 2.4: Intersecting hyperbolas for base stations S1 = (−50, 0) and S2 = (50, 0) and
S3 = (0, 50) target at (−20, 30). Units are given in metres.

Here the solution is ambiguous as well: The three hyperbolas intersect in the correct
position (−20, 30) but also in (25.65, −53.92). This ambiguity has to be resolved in a later
step; some convenient ways to do so are presented in Chapter 2.2.2. Of course, the intersection
points can also be determined mathematically by arranging more hyperbola equations in a
system of equations. Chapter 2.2 explains how such a solution can be determined.

As seen in this example, it is necessary to have three TOA measurements in order to
calculate a two dimensional solution. If the problem is expanded to three dimensions, the
hyperbolas turn into hyperboloids which are three-dimensionally analogical to the hyperbola.
The calculation again intersects the hyperboloids; however, since a third position coordinate
is determined also an additional measurement is needed. So a three dimensional calculation
can be performed if at least four measurements from different Remote Units are available.

These three or respectively four measurements are the minimum amount of measurements
which are needed to come to a solution. Unfortunately, TOA measurements are never exact
in reality: In fact, they suffer from measurement errors like noise, distortions during wave
propagation, multipath propagation or shadowing. This leads to measurement inaccuracies
and to missing measurements. Of course, a position calculated with such error-affected mea-
surements leads to a solution with less accuracy. Because of this, it makes sense to design
hyperbolic positioning systems in a way, so that more than just the minimum number of base
stations receive the signals from targets in the area of interest. Furthermore, this increases
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the in-system redundancy and gives more freedom in the positioning calculation. Due to the
additional measurements, the system of equations, which describes the intersecting hyperbo-
las, becomes overdetermined and this redundancy can be used to get more accurate solutions,
as shown in Chapter 2.3. Additionally overdetermination can also be used to resolve solution
ambiguities (see Chap. 3.4.3) and to estimate the solution accuracy (see Chap. 2.5).

The subsequent chapters will explain the calculation for the overdetermined and non-
overdetermined case. As it is easier to explain and understand the theory in two dimensions,
all algorithms are explained for the two dimensional case for the rest of this theoretical
introduction. The step into the third dimension is mostly quite straightforward and is shown
in Chapter 2.4.

2.2 Algorithms for Closed Solutions

The solutions presented in this section are mathematically exact, which means that they use
algebraic approaches to solve the problem of hyperbolic positioning. Basically, the problem
can be defined by the following system of equations which is set up by writing down equation
(2.2) for different stations:

c(t1 − te) =
√

(x1 − x)2 + (y1 − y)2

c(t2 − te) =
√

(x2 − x)2 + (y2 − y)2

c(t3 − te) =
√

(x3 − x)2 + (y3 − y)2

(2.5)

Since we have three unknowns in the two dimensional case (the coordinates x and y and
the TOE te) we need three equations to solve the problem. Respectively, we require three
TOA measurements (ti) of three different base stations to come to a solution. If we expand the
problem to the third dimension, we need one more measurement from another base station.

As the system is non-linear, it cannot be solved simply over e.g. a Gaussian elimination,
but other strategies have to be used. The straightforward way, as presented in [13], would be to
solve the system by using conventional mathematical strategies like insertion or substitution.
However, there already exists a solution for this problem which is not that confusing, but
clearly arranged in matrix and vector calculations. This solution which was initially developed
for the Global Positioning System (GPS) is presented in the next chapter.

2.2.1 Bancroft’s Algorithm

The algorithm presented here was initially published 1985 by Stephen Bancroft in [14] as an
attempt to solve the system equations for the GPS in a closed form. The algorithm “[...] is
algebraic and noniterative in nature, computationally efficient and numerically stable [...]”,
as Bancroft states in [14]. A good explanation of the algorithm’s application to hyperbolic
positioning systems is found in [15]. The latter paper builds also the base for the illustrations
in this chapter.

The calculation starts with the system of equations shown in formula (2.5). First, we
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square each equation to get them into form (2.6) and the subsequent simplification leads us
to the form shown in (2.7).

c2(ti − te)2 = (xi − x)2 + (yi − y)2 (2.6)

2(xix+ yiy − c2tite) = x2 + y2 − c2t2e + x2
i + y2

i − c2t2i (2.7)

By arranging three equations of the form (2.7) to a system of equations, it is possible to write
it down by using matrix and vector notation. In order to do this, we describe each station
by vector ~si and the target to be located by vector ~x. Each station vector consists of two
Cartesian coordinates for the station’s location (xi, yi) and the time of signal arrival (TOA)
at the station (ti). The target vector contains the unknown target coordinates (x, y) and the
also unknown time of signal emission (te). In order to get all variables into the same scale
and dimension, the time variables are multiplied by the speed of light (c) which leads to the
so-called pseudo ranges ri and re respectively.

~si =

 xiyi
c ti

 =

xiyi
ri

 ~x =

 x

y

c te

 =

xy
re

 (2.8)

In the following deviations, the Lorentzian inner product, denoted by
〈
~u,~v
〉
, is used in order

to simplify the mathematical representation.

〈
~u,~v
〉

= u1v1 + u2v2 − u3v3 ~u =
[
u1
u2
u3

]
, ~v =

[
v1
v2
v3

]
(2.9)

By using these notations, we can write down the system of equations (2.7) as follows:

2A~x = λ~1 +~b (2.10)

where

A =

x1 y1 −r1
x2 y2 −r2
x3 y3 −r3

 (2.11a)

λ =
〈
~x, ~x

〉
= x2 + y2 − r2e (2.11b)

~1 = [1 1 1]T (2.11c)

~b =


〈
~s1, ~s1

〉〈
~s2, ~s2

〉〈
~s3, ~s3

〉
 =

x
2
1 + y2

1 − r21
x2

2 + y2
2 − r22

x2
3 + y2

3 − r23

 (2.11d)

Since our goal is to calculate the position ~x of the target, we multiply equation (2.10) on both
sides by the inverse of A:

~x =
1
2
λA−1~1 +

1
2
A−1~b (2.12)
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With some substitutions, we get to the simpler form:

~x = λ~d+ ~e (2.13)

~d =
1
2
A−1~1

~e =
1
2
A−1~b

By applying the Lorentzian inner product onto both sides of equation (2.13), and by following
the derivation shown in Appendix A.1, we get to this quadratic equation in λ:

λ =
〈
~x, ~x

〉
= λ2

〈
~d, ~d
〉

+ 2λ
〈
~d,~e
〉

+
〈
~e,~e
〉

(2.14)

This equation is then brought into the normal form

αλ2+βλ+ γ = 0 (2.15)

α =
〈
~d, ~d
〉

β = 2
〈
~d,~e
〉
− 1

γ =
〈
~e,~e
〉

and finally the quadratic equation is solved, which leads to the ambiguous solution:

λ1/2 =
1

2α

(
−β ±

√
β2 − 4αγ

)
(2.16)

The ambiguous target position ~x1/2 is then finally calculated by inserting both values of λ1/2

into (2.13). As the solution received by the algorithm is mostly ambiguous, one of the two
solutions is wrong and has to be identified in a later step (see next chapter). An example
for an ambiguous solution can be seen in Figure 2.4: The true solution is the intersection of
three hyperbolas marked with the circle, the wrong one is formed by the intersection at the
point (25.65, −53.92).

2.2.2 Solution Ambiguity Resolution

As discussed in the previous chapters, closed solutions are mostly ambiguous because the
problem is of second order. Fortunately, in many cases the wrong solution can be eliminated
by applying some reasonable rules. Thus, it is possible to resolve the ambiguity without
considering additional measurements, if at least one of the following conditions holds:

1. It is impossible that the signal’s TOE lies after one measured TOA. So, if re > ri for
at least one station i, the solution is wrong.

2. The chronological order of signal arrival for the determined position must be the same
as the order in the measurements. In other words: The nearest station to the calculated
solution must have received the signal first and so on.
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3. Solutions in unreasonable locations can be neglected e.g. positions outside the area of
interest, or, in case of three dimensions, height values below ground level.

These criteria mainly cover the so called “Indicators” listed in [15] and hold for two- and three-
dimensional results. The first two conditions just have mathematical background and can be
applied without making assumptions about the target’s location. They result of the fact that
one branch of each hyperbola can always be neglected, as, due to the problem’s geometry,
the signal must arrive first at the station which is nearer to the target position. This can be
seen in Figure 2.3 on page 8, where d1 is smaller than d2, thus just the left branch of the
hyperbola can form the true solution. If now both solutions are built by different hyperbola
branches, as shown in Figure 2.4 on page 9, the correct solution can be identified by the rules
1 and 2 listed above.

However, there are also cases where both solutions are built by the same hyperbola
branches. Such a case is shown in Figure 2.5 where the wrong solution at (90.7, −30.8)
results of the intersection of the same hyperbolas as the correct solution in the circle does.
Such cases appear mainly in areas referred to as “unfavourable regions” in [15], where Remote
Units lie approximately on one line with the mobile, but the mobile is not located within the
remote units (see Figure 2.6). In such areas conditions 1 and 2 will fail.

Figure 2.5: Same branches solution for mobile at (60, −15) and wrong ambiguous solution at
(90.7, −30.8)

Condition 3 needs a preliminary assumption where the target is allowed to be located.
This is normally the area of interest of the MLAT system, as targets outside this area are
neglected anyway. In case of three-dimensional calculations also a minimum altitude level
can be specified, as no target can be located below ground level.
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Figure 2.6: Unfavourable areas as stated in [15]

In general criteria 1 and 2 perform well in two dimensional scenarios, as there the most
solutions are built by different hyperbola branches (see [15]). In the three-dimensional case
ambiguous solutions often just differ in the height value, so the third condition is essential
by specifying a lowest allowed height value. However, it has to be taken into account that
the height value of the solution is mostly affected by big error scatter: Just strictly defining
ground level as minimum height is dangerous, as, due to measurement inaccuracies, correct
solutions can also necessarily lie some metres below ground level. The same also applies when
specifying a tight area of interest. For further information about geometry dependence of the
conditions, please refer to [15].

In some cases, solution ambiguity cannot be resolved by the conditions listed above , so
the information of an additional measurement is needed. A method to handle this is shown
in chapter 3.4.3 “Solution Quality”.

2.3 Iterative Solution

The previous section presented closed, mathematically exact solutions for the basic equation
system (2.5). Exact solutions, however, have the disadvantage of always taking exactly as
many input arguments as unknowns determined in the calculation. In our case this is three
input arguments in the two dimensional case and four arguments if the calculation is done in
three dimensions. Mostly, however, hyperbolic positioning systems are designed in a way that
targets are “seen” by more than the minimum amount of base stations in the area of interest.
This leads then to additional measurements and these can obviously be used to improve the
solution accuracy. This section copes with the problem of involving these measurements into
the calculation, i.e. to increase solution accuracy by taking advantage of the equation system’s
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overdetermination.
A first trivial attempt is to calculate one closed solution for all possible combinations of

base stations and to average the results afterwards in some way. This attempt is however not
effective because of two reasons: Firstly, the number of calculations grow heavily with the
number of base stations. This is due to the fact that there are n choose k(1) possible input
combinations, where n is the number of base-stations and k the number of unknowns. So if
e.g. five measurements are available in a two dimensional scenario, already

(
5
3

)
= 10 closed

solutions have to be calculated. Secondly, simulation results have shown that closed results
from different input combinations are often affected by excessive scatter and averaging these
does not lead to good results.

Consequently, the next chapter presents a calculation method which is known under the
terminology “Adjustment by Parameters” and which is normally used in geodesy and Global
Navigation Satellite System (GNSS) to improve calculation accuracy (see [17] and [3]). Fur-
thermore, Chapter 2.3.2 presents how this calculation method can be used to perform outlier
detection. All the theory in the following chapters is firstly presented in general and finally
applied to the MLAT equations in Chapter 2.3.3.

2.3.1 Adjustment Theory

The theory presented in this chapter is one possibility to solve overdetermined systems of
linear equations and is also known under the terminology “Least Squares Adjustment by
Parameters”. As in most applications the system equations are not linear, also the possibility
to operate with linearised system equations is shown. The content of this chapter was taken
mainly from [12] and [3] and was fused with the theory in [17].

We start with the system equations in matrix notation:

~m = A~x (2.17)

~m =


m1

m2

...
mn

 ~x =


x1

x2

...
xd


Vector ~m describes the n uncorrelated measurements which will be used to calculate the d
unknown parameters ~x. The n x d matrix A is the so-called system matrix, which describes
the linear dependence of ~m on ~x. Since we have more measurements than unknowns (n > d),
the matrix A is not square and the problem cannot be solved over a simple matrix inversion.

In case all measurements were totally accurate, the optimum solution could already be
determined by just solving the problem with a subset of d out of n available measurements,
thus neglecting unnecessary measurements and working with a square system matrix. It
would also not matter which measurements were taken to derive the solution. In real life,
however, measurements are always afflicted by the measurement errors ~ε which make the

(1)Binomial coefficient
`

n
k

´
= n!

k!(n−k)!
from [16]

15



system inconsistent. So we can define the vector of correct measurements ~̂m and the correct
solution ~̂x as follows:

~̂m = ~m− ~ε = A ~̂x (2.18)

However, in reality the measurement errors are unknown, as well as the correct solution.
Therefore, we define the following equation as the base of our calculation:

~m+ ~v = A ~x (2.19)

Here ~v is called vector of residuals and ~x is the solution of the calculation. Our goal is now
to get the term ~m + ~v close to the correct measurements ~̂m, as we want to minimise the
measurement error. This goal is fulfilled if residuals are found which are close to ~v = −~ε.

In the following we assume the measurement error being uncorrelated and zero mean
Gaussian distributed, so also the residuals should fit this distribution, as we want them to
be close to −~ε. Hence we can write down the residuals’ Probability Density Function (PDF)
f(~v) as a multivariate Gaussian distribution like follows:

f(~v) =
1√

(2π)n
∏n
i=1 σi

e−
1
2

Pn
i=1 v

2
i /σ

2
i =

1√
(2π)n det(Σ(~v))

e−
1
2
~vT Σ(~v)−1~v (2.20)

The values for σ2
i describe the variance of the i-th measurement error and since the measure-

ment errors are uncorrelated, they form the diagonal elements of the covariance matrix

Σ(~v) =


σ2

1 0 0

0
. . . 0

0 0 σ2
n

 (2.21)

As mentioned before, the residuals should best fit this distribution and so we try to find an
optimisation criterion for equation (2.19) which fulfils this. A good choice in this case is to
maximise the residuals’ likelihood function L(~v) which is equivalent to getting the exponent
of the PDF in (2.20) close to zero. So we can write down:

L(~v) =
n∏
i=0

f(vi)→Max |~v ⇔ 1
2

n∑
i=1

v2
i

σ2
i

=
1
2
~vTΣ(~v)−1~v →Min |~v (2.22)

The measurements ~m do not necessarily have the same accuracy and so the variance of the
measurement errors may differ from each other. That is why it makes sense to prioritise
measurements with small measurement error and give bad measurements a lower priority in
the calculation. To do so we define the priority matrix P as

P =


σ2

m

σ2
1

0 0

0
. . . 0

0 0 σ2
m
σ2

n

 = σ2
m Σ(~v)−1 (2.23)

where each diagonal element pi denotes the priority of the i-th measurement. σ2
m is the mean
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of the measurement errors σ2
i and is used to keep the priority values around unity. In case

all measurements have the same accuracy, all σ2
i have the same value and the priorities will

become one. By combining equations (2.22) and (2.23) we can finally define our optimisation
criterion as

~vTP~v =
n∑
i=1

pi v
2
i →Min |~v (2.24)

This criterion basically describes the minimisation of the sum of squared residuals, prioritised
by P. Such an optimisation is often called Least Square Error Optimisation. If this criterion
is applied to equation (2.19) we come to the following (see Appendix A.2):

ATPA ~x−ATP ~m = 0 (2.25)

By using the same naming conventions as in [12], we substitute the normal equation matrix
N = ATPA and call its inverse Q. Finally, by combining (2.19) and (2.25), we get the
following set of equations for the solution:

~x = Q AT P ~m (2.26a)

~v = A ~x− ~m (2.26b)

Q = N−1 = (AT P A)−1 (2.26c)

The above listed formulae work with linear systems which are expressed by the system matrix
A. In order to be able to calculate an adjustment by parameters also on non-linear systems,
the non-linear system equations mi(~x) have to be linearised. We do so by calculating a Taylor
expansion, neglecting all terms after the linear one (see [12] and [16]).

mi(~x) = mi(~xa) +
∂mi

∂~x
(~xa) · (~x− ~xa) (2.27)

The linearisation is based in the point ~xa which is given by an initial approximate solution.
The expansion’s constant part mi(~xa) is derived from ~xa over the non-linear system equation.
∂mi
∂~x (~xa) denotes the total derivation of the system equation with respect to ~x at the point
~xa. In order to simplify the subsequent calculations, we arrange the constant parts of the
linearisation into the vector ~m(~xa) and define:

d~x = ~x− ~xa
d~m = ~m− ~m(~xa)

(2.28)
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and we come to the following linearised analogy of (2.17):

d~m = A d~x (2.29)

A =


∂m1
∂x1

(~xa) ∂m1
∂x2

(~xa) . . .

∂m2
∂x1

(~xa)
. . .

...


The equations (2.26) finally become:

d~x = Q AT P d~m (2.30a)
~v = A d~x− d~m (2.30b)
~x = ~xa + d~x (2.30c)

This linearised system, however, is just a first approximation of the real system, thus the
determined solution is not an optimum solution. In order to increase the accuracy of the
outcome, linearisation and adjustment can be repeated iteratively: First, the system matrix
is built up by using the initial ~xa. Then equations (2.30) are solved and the new calculated
vector of unknowns ~x is taken as new approximate solution ~xa for the next iteration step. It
is also important that the initial approximate solution ~xa is already quite close to the final
solution, because otherwise the optimisation might get stuck in a local extremum.

It is interesting to know that the normal equation matrix N is symmetric: This is because
the multiplication of a matrix with its transposed analogy results in a symmetric matrix.
[17, p.17]. This enables N being inverted computationally more efficient, as e.g. a Cholesky
decomposition can be performed (see [18, p. 60]).

2.3.2 Robust Adjustment

Least Square adjustment, as discussed in the previous chapter, gives an optimum solution
if the measurement error follows a Gaussian distribution (see [17]). In fact, we can assume
the measurement error to consist mainly of a Gaussian part, but also outliers, often also
referred to as gross errors, may appear. These outliers may have different roots: no Line of
Sight (LOS) propagation, synchronisation problems, inclusion of measurements which do not
belong to the actual signal emission, etc. If measurements with such gross errors are Least
Square adjusted, as shown in the previous chapter, the error in the result will be substantial,
as outliers have the same influence on the outcome as every other measurement. Therefore,
outliers need to be detected in order to exclude them from the calculation, or at least to
give them less influence onto the result. This can be achieved by calculating a so-called
robust adjustment as discussed in [17] and [19]. The book [17] provides a good and complete
elaboration of this topic and the subsequent explanations were mainly taken from it; however,
they were adapted to fit into the nomenclature used herein.

An effective possibility to make an adjustment robust against outliers is to use a Maximum

18



Likelihood estimator, also called M-Estimator. Such an estimator tries to choose the residuals
~v in a way that they best fit a given probability distribution by maximising a likelihood
function. For a multivariate zero mean Gaussian distribution this was already done in the
equations (2.22), found in the previous chapter.

In order to generalise M-Estimators we define the so called loss-function σ(vi) which
describes the content of the sum which is intended to be minimised in the estimation. For
the least square error case in the last chapter, and when neglecting the weighting of the
measurements, this function becomes (compare to (2.22)):

σ(vi) =
1
2
v2
i (2.31)

If the the loss-function is changed, obviously also the probability distribution, for which the
likelihood is maximised in the estimation, will vary. In our case we will model the measurement
error as Gaussian distributed with possible outliers. This means that the Probability Density
Function (PDF) has to follow mainly a normal distribution, but a few values far outside this
distribution should also be allowed. A common M-estimator which fulfils these requirements
is the Huber-k-Estimator with the loss-function σH(vi) and its derivative ΨH(vi) [17, p. 107]

σH(vi) =

{
1
2 v

2
i if |vi| < k

k · |v| − 1
2k

2 if |vi| ≥ k
(2.32)

ΨH(vi) =
∂σH(vi)
∂vi

=

{
vi if |vi| < k

k · vi
|vi| if |vi| ≥ k

(2.33)

For values of v in the interval (−k, k) the Huber-k estimator behaves like an estimator
for a Gaussian PDF with the square loss-function like in (2.31). Outside the interval but the
loss-function is linear (see Figure 2.7). The value for k is normally chosen between 1.5σm
and 2σm, where σm is the expected a-priori measurement error standard deviation without
outliers [19].

According to [17], a robust M-estimator adjustment can be calculated like a Least Square
adjustment where the weight matrix, now called W, is adapted iteratively in every adjustment
step according to the formula (2.34c). At the beginning of every adjustment iteration all
weights are initialised to unity. So the formulae for the robust adjustment become:

d~x = (AT W A)−1 AT W d~m (2.34a)
~v = A d~x− d~m (2.34b)

W = diag(wi) wi =
Ψ(vi)
vi

(2.34c)

If a robust adjustment is used for non-linear problems, there will appear two iteration loops
in the adjustment: The outer loop is needed for the linearisation, where the linearisation’s
new working point ~xa is determined and A and d~m are adapted as explained on page 18.
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Figure 2.7: Left: σ(v), right: Ψ(v) of a M-Estimator for a Gaussian PDF N(0, 1) and for the
Huber-k estimator with N(0, 1) and k=2σ0

The nested loop calculates the weight adoption for every linearisation by iterating over the
equations (2.34).

2.3.3 Applied Adjustment Theory in Multilateration

In Multilateration the basic equations are built by the well known equation system (2.5)
shown in Chapter 2.2. These equations can be transformed into the following form and, for
the sake of simplicity, we newly replace the time variables by the so-called pseudo ranges
ri = c ti:

c ti =
√

(xi − x)2 + (yi − y)2 + c te (2.35)

mi = ri =
√

(xi − x)2 + (yi − y)2 + re (2.36)

In the initial chapters the measured pseudo ranges were denoted by ri. Since they correspond
to the measurements at the i-th station, they will be called mi in this chapter, in analogy to
the chapters about adjustment theory. The variables x, y and te are the unknowns and we
can build a linearised equation system like described in equation (2.29). Therefore, we have
to calculate the following derivatives to perform the tailor expansion:

∂mi

∂x
=
x− xi
di

∂mi

∂y
=
y − yi
di

∂mi

∂re
= 1

(2.37)

di =
√

(xi − x)2 + (yi − y)2
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where di is the distance between the i-th base station and the target. The linearisation of
equation (2.36) then looks like this:

dmi =
∂mi

∂x
dx+

∂mi

∂y
dy +

∂mi

∂re
dre (2.38)

By setting up the system of equations and writing it down in matrix notation like in equa-
tion (2.17) we get

d~m = A d~x (2.39)

where

A =


∂m1
∂x (~xa) ∂m1

∂y (~xa) ∂m1
∂re

(~xa)
∂m2
∂x (~xa) ∂m2

∂y (~xa) ∂m2
∂re

(~xa)
...

...
...

∂mn
∂x (~xa) ∂mn

∂y (~xa) ∂mn
∂re

(~xa)

 (2.40)

d~m = ~m− ~m(~xa) d~x = ~x− ~xa (2.41)

With this linear system, we are now able to calculate adjustments like described in the previous
chapters. The linearisation is performed in the point ~xa, an approximate solution, which has
to be known before the adjustment is calculated. ~xa is normally obtained by a closed formula
e.g. Bancroft’s Algorithm (see Chap. 2.2.1). In practise, the adjustment is calculated in the
following steps:

1. Putting up the system matrix A in the point ~xa. This is done by calculating the matrix
elements via the formulae for the derivatives (2.37). Therefore, the elements of the
approximate solution ~xa need to be filled in for x and y in these equations.

2. Calculating d~m by subtracting the real measurements ~m by the measurements derived
from the approximate solution ~m(~xa). The derived measurements are calculated of ~xa
via the basic equation (2.36):

~m(~xa) =


ma1

...
man

 mai =
√

(xi − xa)2 + (yi − ya)2 + rea

3. Calculating the adjusted solution ~x via the equations (2.30).

4. Replacing ~xa by the new calculated ~x and start the next iteration at step 1.

2.4 Equations for Three Dimensions

If the calculations are performed in three dimensions, one more unknown value, here denoted
by z, is added to the basic equation system (2.5). Due to an additional unknown, also an
additional equation is needed, in order to be able to solve the system. The system equations
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in three dimensions are then given by:

r1 − re =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

r2 − re =
√

(x2 − x)2 + (y2 − y)2 + (z2 − z)2

r3 − re =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2

r4 − re =
√

(x4 − x)2 + (y4 − y)2 + (z4 − z)2

(2.42)

As these equations form the base for Bancroft’s algorithm and the applied adjustment equa-
tions, both are adapted in the following two chapters.

2.4.1 Bancroft’s Algorithm in 3D

When calculating in three dimensions the measurement and solution vectors change to

~si =


xi

yi

zi

ri

 ~x =


x

y

z

re

 (2.43)

The Lorentzian inner product for four variables is given by

〈
~u,~v
〉

= u1v1 + u2v2 + u3v3 − u4v4 for ~u =
[
u1
u2
u3
u4

]
, ~v =

[
v1
v2
v3
v4

]
(2.44)

While the initial equation (2.10) does not change, the matrix A and the vectors have to be
enlarged as follows:

A =


x1 y1 z1 −r1
x2 y2 z2 −r2
x3 y3 z3 −r3
x4 y4 z4 −r4

 (2.45a)

λ =
〈
~x, ~x

〉
= x2 + y2 + z2 − r2e (2.45b)

~1 = [1 1 1 1]T (2.45c)

~b =


〈
~s1, ~s1

〉〈
~s2, ~s2

〉〈
~s3, ~s3

〉〈
~s4, ~s4

〉

 (2.45d)

All other vectors change implicitly, and the calculation can be performed as described in
Chapter 2.2.1 already.
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2.4.2 Applied Adjustment Theory in 3D

As vector size in adjustment theory is not fixed, it is easy to adapt it for the three dimensional
case. Also here the base station and solution vectors are enlarged by the z variable, like
already shown in equation (2.43). The linearisation (2.37) is also extended by an additional
derivation:

∂mi

∂x
=
x− xi
di

∂mi

∂y
=
y − yi
di

∂mi

∂z
=
z − zi
di

∂mi

∂re
= 1

(2.46)

di =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 (2.47)

The matrix A then turns into

A =


∂m1
∂x (~xa) ∂m1

∂y (~xa) ∂m1
∂z (~xa) ∂m1

∂re
(~xa)

∂m2
∂x (~xa) ∂m2

∂y (~xa) ∂m2
∂z (~xa) ∂m2

∂re
(~xa)

...
...

...
...

∂mn
∂x (~xa) ∂mn

∂y (~xa) ∂mn
∂z (~xa) ∂mn

∂re
(~xa)

 (2.48)

All other symbols in the adjustment equations change implicitly.

2.5 Error Estimation

For every measurement, regardless of its area of application, the knowledge about its accuracy
is essential in order to be able to work with it. The same applies to the solutions determined
by a hyperbolic positioning system, especially in aviation.

This chapter presents a methodology to estimate two accuracy values: Section 2.5.1 dis-
cusses the estimation of the input data accuracy and Section 2.5.2 shows how this estimation
can be used in order to calculate the accuracy of the solution. The methodology bases on the
principles of adjustment theory, as they were explained in Chapter 2.3. Whereas the most
important output of an adjustment is of course the Least Square optimised solution ~x, there
are much more variables available which carry useful information:

• The residuals ~v give the error for each measurement, in order to come to the solution
~x.

• The inverse of the normal equation matrix, called Q, contains information about the
system’s geometry and can be used to calculate an error propagation.

• The measurement weight matrix P describes how the input measurements ~m were
weighted in the calculation
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From these parameters, it is possible to determine two major error indicators: the error σ0

of the input measurements ~m and the error σx of the solution ~x. It is also important to
distinguish between two types of error measures: A-priori errors are derived from an initial
assumption about the measurement error and provide information how great the error will be
in general. A-posteriori errors are determined from the measurements used in the calculation
and provide information about the error in exactly this set of measurements.

2.5.1 Input Measurement Error

Statistical information about the measurement error εi is often known a-priori, in form of
the expected measurement error σi and the mean measurement error σm. However, for each
n-element sample of measurements ~m, also the a-posteriori error σ0 can be calculated by
consulting the residuals ~v. The formulae explained in this chapter are stated in [17] and [12],
however, no detailed explanation is given in these books. This chapter tries to explain the
principles of input error estimation in a reasonable and easy way, the mathematical deviations
can be found in [18].

The vector of true errors ~ε = ~m − ~̂m contains the necessary values to be added to the
measurements ~m in order to come to ~̂x over the well-known formula ~m−~ε = A ~̂x (see (2.18)).
Here ~̂x denotes the correct solution, which describes the real position of signal emission and
~̂m are the error-free measurements. With this knowledge, we can calculate the a-posteriori
variance of the measurement errors, denoted by σ2

0, via the formula:

σ2
0 =

1
n

n∑
i=1

pi · (mi − m̂i)2 =
1
n

n∑
i=1

pi ε
2
i =

~εTP~ε
n

(2.49)

However, as already discussed in Chapter 2.3.1, the real position of signal emission is
unknown, and with it also the real error ~ε. The error-free measurements m̂i in the formula
above can be calculated of the real point of signal emission ~̂x over ~̂m = A~̂x. Since ~̂x is
unknown, we replace it by its best approximation, which is the Least Square adjusted result
~x. Instead of ~̂m in the previous formula then A ~x will appear. This then causes the error ~ε
being replaced by the residuals ~v in formula (2.50), as we have defined the residuals to be
~v = ~m−A ~x (see equation (2.19)).

Because ~x was determined over the error-affected measurements ~m it is afflicted by a
certain error, which in return influences the calculation of the measurement error variance in
(2.49). As there are at least d measurements necessary to calculate ~x, the best approximation
of this influence can be defined as d · σ2

0, where σ2
0 is the measurement error variance itself.

So we come to the following formula, for the mathematical derivation please refer to [18].

s20 =
1

n− d

n∑
i=1

pi v
2
i =

~vTP~v
n− d

(2.50)

Here the variance is denoted by s20 as it is determined from the finite vector ~v, which is
calculated of a sample of n measurements. Hence s20 is just an approximation of the real
measurement variance σ2

0, it is better to call it the a-posteriori sample variance.
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We see in equation (2.50) that the denominator is given by n − d, which describes the
overdetermination of the system, i.e. the number of redundant measurements. In fact, redun-
dancy makes it possible in the first place to calculate a sample variance: By having just d
measurements, it would indeed be feasible to calculate the result ~x, but then the residuals
~v = ~m − A~x would all be zero. If more measurements are available, the additional infor-
mation is used to improve the solution and the measurements are corrected by ~v in order
to find a compromise, which leads to an optimum solution ~x. In this case ~v contains the
information how well the measurements fit together, which is expressed statistically in the
error variance. That is the reason why a sample variance can only be calculated if the system
is overdetermined.

2.5.2 Error of the Solution

In the previous chapter the measurement error was determined, but normally it is more
important to know the error of the calculated solution ~x. The simplest way to do this is to
calculate a Gaussian error propagation via a Pythagorean sum as shown in [16, p. 562]:

x = f(~m) (2.51)

σx =

√∑(
∂f(~m)
∂mi

)2

· σ2
i (2.52)

f(~m) denotes a general system where the solution x is determined out of the vector of mea-
surements ~m. ∂f(~m)

∂mi
is the first derivation of f(~m) with respect to the i-th measurement mi,

σi is the error of the i-th measurement and σx the resulting error for x. In case f(~m) is a
linear system of equations we can write it down as a matrix multiplication:

~x = F ~m =


a1 a2 . . .

b1 b2
...

. . .

 ·

m1

m2

...

 (2.53)

As the system is linear, the differentiations are trivial and the error propagation (2.52) for
x1, the first element of the solution ~x, becomes

σx1 =
√
a2

1σ
2
1 + a2

2σ
2
2 + · · · =

√∑
a2
iσ

2
i (2.54)
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However, as ~x is multidimensional, it makes more sense to calculate a covariance propagation
as proposed in [17]:

Σ(~x) = F Σ(~m) FT (2.55)

Σ(~x) = F


σ2

1 0 · · ·
0 σ2

2 · · ·
...

. . .

FT (2.56)

Σ(~x) =


∑
a2
iσ

2
i

∑
aibiσ

2
i . . .∑

biaiσ
2
i

∑
b2iσ

2
i

...
. . .

 =


σ2
x1

σx12 · · ·
σx21 σ2

x2
· · ·

...
. . .

 (2.57)

We see that the diagonal elements of the covariance matrix Σ(~x) contain the propagated errors
σ2
xi

for each element xi in ~x. The other errors, denoted by σxij , result from the correlation
between xi with xj and form the covariances. In the deviation it was assumed that the
measurements are uncorrelated, which leads to a diagonal measurement covariance matrix
Σ(~m).

Now we apply this covariance propagation to the adjustment equations (2.26) and keep
in mind that Σ(~m) = P−1 σ2

m (see formula (2.23)). The result will look like this; the entire
deviation is shown in Appendix A.3.

~x = F ~m = Q ATP ~m (2.58)

Σ(~x) = F Σ(~m) FT = F P−1σ2
m FT (2.59)

... (see Appendix A.3)

Σ(~x) = (ATPA)−1 σ2
m = Qσ2

m (2.60)

As we see, the inverse of the normal equation matrix, called Q, can be used to determine
the error of the result ~x. The big advantage is that Q is already available at the end of the
adjustment calculation, so the result’s error propagation is received together with the result
quasi “for free”. Furthermore, depending on the value which is inserted for σ2

m, the a-priori
or the a-posteriori error for ~x can be calculated:

The a-priori error is received when σ2
m is set to the mean of the a-priori measurement

variances σ2
i , as it was previously used to calculate the weight matrix P in formula (2.23).

This will lead Σ(~m) = P−1 σ2
m to become a diagonal matrix with the measurement errors

σ2
i in its diagonal (see definition of P in equation (2.23)). If this a-priori measurement error

is propagated, the result of the propagation Σ(~x) will describe the a-priori solution error.
Alternatively, if the a-posteriori measurement error value s20, like calculated in equation (2.50),
is inserted as σ2

m into formula (2.60), the resulting covariance matrix Σ(~x) will contain the
a-posteriori error.

Figure 2.8 shows the result of an a-priori error propagation as discussed before. In the
figure each ellipse illustrates the 1σ error ellipse (see Appendix A.4) for the solution located
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Figure 2.8: 2D error ellipses for a grid with mesh-width of 20m and a measurement error of
σi = 3 · 10−9s. Coordinates are given in metres.

in its centre. The propagation was calculated in two dimensions with a measurement error
of σi = 3ns and it was assumed to be additive white Gaussian noise (AWGN). In the area
between the Remote Units S1 to S3 we see that the ellipses are quite small, hence also the
solution error is small there. Generally, we can say that the further we get from the centre
the more substantial the error becomes. The worst solution accuracy is received “behind”
the RUs which mostly coincides with the “unfavourable regions” shown in Figure 2.6.

It is noticeable that the error ellipses are oriented towards to the centre. The reason
for that lies in the hyperbola intersections which become glancing with the distance from the
centre. This becomes clearer in Figure 2.9 which shows the cuts between dispersed hyperbolas
for the mobile position (40, 110) in the same scenario. Each hyperbola is illustrated by two
lines, describing the 1σ dispersion caused by a measurement inaccuracy of again 3ns. The
ideal hyperbola would be located in the middle of the two lines.

As the left figure shows, the dispersion is smallest on the connection line between the
Remote Units, which are used to put up the hyperbola. The dispersion grows then with the
distance from the RUs, how fast the dispersion grows depends on the geometry (see difference
between combination S1-S3 and S2-S3). The right figure contains a more detailed view of the
hyperbola cuts at the mobile’s position. The bright grey areas symbolise cuts between two
hyperbolas, the dark grey area between three hyperbolas.
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(a) All hyperbolas

(b) Cutout around the mobile position

Figure 2.9: 1σ dispersion of the hyperbolas leading to the mobile position (40, 110) in the
scenario of Figure 2.8. Measurement errors are σi = 3 · 10−9s, distances are given
in metres.
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2.5.3 Dilution of Precision (DoP)

Another error indicator which is often provided is the so called Dilution of Precision (DoP).
The DoP describes the influence of the systems geometry onto the solution accuracy. Ac-
cording to [3, p. 250] it can be calculated from the co-factor matrix (here given in three
dimensions).

Q = (ATPA)−1 =


q2x qxy qxz qxr

qxy q2y qyz qyr

qxz qyz q2z qzr

qxr qyr qzr q2r

 (2.61)

The following DoP measures are commonly used:

GDOP =
√
q2x + q2y + q2z + q2r geometrical DoP (2.62a)

HDOP =
√
q2x + q2y horizontal DoP (2.62b)

V DOP =
√
q2z vertical DoP (2.62c)

TDOP =
√
q2r time (range) DoP (2.62d)

If the calculation was performed in two dimensions the factor q2z is not available. So it is
missing in the GDOP calculation and no V DOP information can be given obviously. At
this place, it is important to mention that the DoP gives a solution error measure, which is
independent from the input data accuracy. Figure 2.10 shows a contour plot of the HDOP
for the same scenario as in the error propagation explanations in the last chapters and where
to all measurements equal weights were assigned.

Figure 2.10: HDOP contour plot. Units are given in metres.
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2.6 Secondary Surveillance Radar Modes

Secondary Surveillance Radar (SSR) technology uses transponders in order to localise vehicles
and aircraft and also to provide information about the latter. The technology is used for
military and civil purposes and is standardised by ICAO mainly in [20]. The basic principle
works like follows:

A SSR radar site sends a pulse sequence, modulated onto a 1030MHz carrier, in order to
interrogate the transponders of aircraft and vehicles in its reach. Depending on this sequence,
transponders will answer with a reply pulse sequence on a frequency of 1090MHz. The
information content of the reply depends on the mode which was requested by the Radar
in the interrogation. The commonly used SSR modes in civil aviation are called Mode-A,
C and S. These three modes are the only few treated in this chapter, as the other modes
are either used for military purposes or not operationally used at all [4]. The explanations
in the subsequent chapters are limited to the encoding and content of the SSR replies, as
mainly this is interesting for Multilateration systems. For more detailed information about
SSR please refer to [4], which gives a well and clearly structured tutorial about SSR modes
and the working principle. The information in the following chapters was merged from [4],
[1] and [7].

2.6.1 Mode-A and Mode-C Reply

SSR Mode-A/C is widely used in civil aviation but it is quite an old standard which became
operational in the mid 1960s [1, p.13]. The Replies of both modes have the following pulse
framing:

Figure 2.11: SSR Mode-A/C reply taken from [5]

The pulses F1 and F2 are called the framing pair and are always available. The twelve
pulses denoted by A to D contain the payload information. The Special Purpose Identification
(SPI) pulse can be enabled on request and is activated by the pilot if an air traffic controller re-
quests a so called “squawk ident” which is needed if an aircraft needs to be specially identified
[4].

Depending on the interrogation mode, the replies’ pulse triples A to D have two different
meanings: In Mode-A replies these pulses encode the so-called Mode-A identity or squawk
code which is simply a number assigned to an aircraft in order to identify it. As all in all
there exist only 4096 different squawk codes, these codes are dynamically assigned to aircraft
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by air controllers [1, p. 149]. If the reply is of Mode-C, eleven of the twelve bits contain
the Gillham encoded barometric height of the aircraft, with a resolution of 100ft (see [20]).
Normally Mode-A and Mode-C are interrogated in the sequence “ACACAC...” [7, p.123] and
so both reply types are received constantly. From the reply itself there is no trivial way to
identify whether the reply is of Mode-A, or Mode-C. [4] states to this fact:

“Note that the reply information itself does not contain any information to indicate
which mode it is a reply to. The interrogator will assume that the replies received are
in answer to it[s] latest mode of interrogation.”

If SSR is used in the conventional way, where just the interrogating site evaluates the replies,
this does not lead to severe problems. If, however, a third-party system, e.g. a passive
Multilateration system, works with the replies, statistical ways and/or a transponder position
history have to be used in order to distinguish between Mode-A and Mode-C replies.

2.6.2 Mode-S Reply

Mode-S is a newer, more flexible SSR standard which enables the report of more detailed and
diverse information. A Mode-S reply has the following format:

Figure 2.12: SSR Mode S reply taken from [5]

The preamble consists of four 0.5µs long pulses. The data block is pulse position modu-
lated (PPM) and can be 56 or 112 bits long, depending on the transmitted data format. Each
reply contains a 24-bit long Mode-S address which is uniquely assigned to every aircraft by
ICAO, and also a parity information (see [20, p. 3-86]).

According to [4], Mode-S has some big advantages in comparison to Mode-A/C: Firstly,
it is possible to interrogate single transponders over their Mode-S address and to poll specific
information this way. Secondly, the altitude reports are provided in a more accurate 25ft
altitude coding. Finally, Mode-S also provides check-sums in its replies in order to achieve
higher data integrity via parity checking.

The standard supports different data formats and builds the transport layer for several
services like ADS-B, ACAS, etc. Over these services, useful information can be exchanged
between aircraft themselves and between aircraft and ground stations. Some services also
support so-called broadcasts, which means that the transponder sends replies also without
being interrogated. So a Mode-S transponder can, for instance, emit an Extended Squitter
reply once per second which contains the aircraft’s address, GPS position and other useful
information. For further reading about Mode-S and ADS-B please refer to [20], [21] and [22].
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3 Design

This chapter discusses design issues of a Multilateration system’s calculation unit, often also
called Target Processor (TP). The unit should be a prototype which is able to investigate
different scenarios and algorithms with the aim to elaborate the necessary know-how to imple-
ment a fully functional Multilateration system for civil aviation. The European Organization
for Civil Aviation Equipment (EUROCAE) has standardised requirements for Multilateration
systems in [23, p. 24]. The document states:

“The system shall calculate the horizontal positions of targets detected on the runways,
taxiways and centerlines of the apron areas to within 7.5 m with a confidence level of
95% and to within 12 m with a confidence level of 99%.”

The intention of the MLAT system in development is to fulfil these accuracy constraints and,
as the TP is the central point of such a system, it is best to perform the accuracy investigation
there. Therefore, the Target Processor, presented in this chapter and was implemented by
the author in the course of this work, is designed to be modular, highly configurable and
extensible.

Sub-chapter 3.4 “Calculation” deals with the application of Multilateration theory, and
combines the calculation methods presented in Chapter 2 “Theoretical Background”. How-
ever in order to work with data from real measurements, more problems need to be solved:
measurements have to be collected and correlated, Remote Units have to be synchronised, etc.
Solutions for these and other problems are provided in the following sub-chapters in order to
give a complete design structure of a MLAT Target Processor. The main tasks which have
to be solved by the TP can be defined as follows:

1. Data collection: Data of all Remote Units needs to be received, decoded and brought
together.

2. Synchronisation: As every remote unit measures time on its own, a common time
base is needed in order to use the measurements. This is done in the synchronisation
step, when synchronisation messages are evaluated in order to determine parameters
which are then used to synchronise TOA measurements.

3. Measurement correlation: Measurements received at different units, but belonging
to one and the same signal emission, have to be identified and be tagged as a tuple.

4. Calculation: Here for each measurement tuple the actual calculation of the target
position is performed. Furthermore, also parameters like Dilution of Precision (DoP),
measurement or solution error are determined.

5. Result emission: Information about the detected target needs to be emitted in several
data formats depending on the actual process configuration.

It makes sense to partition the Target Processor implementation into modular blocks,
according to this logical task separation. Figure 3.1 shows such a block diagram with data
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Figure 3.1: Block diagram of the Target Processor unit

flow. The tasks of these blocks are well separable and so each block can be implemented more
or less independently. Furthermore communication between these blocks is quite simple to
implement, as the data flow is linear. Design details to each of the blocks are discussed in the
following sub-chapters.

An important feature of the Target Processor is its modularity: Different input formats,
synchronisation methods and output formats have to be supported, as well as calculation
in two or three dimensions. That is why for each block different implementations will be
necessary, which must be easily replaceable over configuration parameters.

3.1 Remote Unit

This chapter gives a very short overview of the design of the Remote Units which is used in
the developed distributed time Multilateration system prototype. In fact, this topic could fill
a whole book, however, as this work focuses on the Target Processor, at this point just some
basic but relevant features of the Remote Unit are discussed.

The task of a Remote Unit for such a system is to collect measurement data and to deliver
it timestamped to the TP. It basically consists of an antenna, a receiver unit, data processing
facilities and a communication interface to communicate with the TP. In general, all radio
signals and frequencies can be used for Multilateration. As the developed Multilateration
system prototype is meant to be used in civil aviation, the RU works with SSR reply signals.
Figure 3.2 shows the hardware layout of the Remote Unit.
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Figure 3.2: Block diagram of the Remote Unit used in the MLAT system prototype

After a signal was received over the omnidirectional SSR antenna (Xerxes CX-91050V-
1090), the signal is mixed, digitalised with an analog to digital converter and demodulated in
the Xilinx Spartan3e FPGA. Then the most important task is performed: the timestamping,
where the TOA timestamps are being determined. After that, the ARM STR912FA micro-
processor decodes the signal’s message content because it contains useful information about
the aircraft or vehicle, which is among other things needed for measurement correlation (see
Chap. 3.3). The message content, accompanied by the receiving timestamp and information
like signal power, is then sent over Ethernet to the TP. In the following the two most im-
portant features of the Remote Unit are explained: the timestamping and the generation of
GPS synchronisation messages.

Timestamping: The time base at each unit is given by a highly precise Oven-Controlled
Crystal Oscillator (OCXO) of type 2920136 and produced by Piezo Crystal Company. The
oscillator has a frequency of 10MHz which is up-sampled to 80MHz by the Phase-locked
loop (PLL) ADF4360-8, located on a separate board. A digital counter on the FPGA is
incremented in every cycle of this clock. This counter builds the base value from which
the timestamps are derived afterwards. Due to the clock frequency of 80MHz the time
measurement resolution is 12.5ns which corresponds to a range resolution of 3.75m. However,
as discussed in [24], for Multilateration systems a range measurement accuracy of around 1m
should be aspired, hence also the resolution should be in this scale. That is why the Remote
Unit uses the same clock four times 90◦ shifted, in order to provide also fractional information
to the timestamps. This technique increases the measurement resolution to 0.94m.

For the timestamping, a point in the received SSR reply signals has to be defined, at
which the counter value is taken as TOA timestamp. The current implementation of the RU
provides timestamps for the rising edges of all pluses in SSR Mode-A/C replies and for the
preamble pulses in Mode-S replies. The timestamps are taken at 50% of the pulse’s mean
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peak power, measured relative to the noise level.
In order to achieve a good measurement accuracy, the oscillators stability is essential:

Oscillator frequencies are sensitive to external influences, primarily to temperature changes
which cause their frequencies to drift. That is why the RU is equipped with an oven heated
oscillator, that keeps the temperature of the crystal constant via an electronic oven. According
to the datasheet [25] the installed oscillators have a short time stability of σ1s < 1 · 10−10

(Allan deviation with τ = 1s). The accuracy of the PLL is assumed to be negligible at this
point, since it follows the oscillator frequency with high accuracy as soon as it is locked.

GPS synchronisation messages: Every Remote Unit has its own oscillator to measure
time by incrementing the FPGA counter. Therefore, the Target Processor needs to create a
common time base for all RUs in the synchronisation step (see Chap. 3.2). For this purpose
the RU is equipped with the GPS timing module u-blox Lea4T which receives the satellite
signals over a Tecsys RV-76 antenna. This module provides one time pulse per second (PPS)
with a maximal achievable accuracy of σ = 15ns to UTC [26]. This pulse is registered at
the FPGA and timestamped the same way the SSR replies are. The timestamp and the
corresponding UTC time which is fetched from the GPS module, are then sent together to
the TP in a synchronisation message.

3.2 Synchronisation

As all Remote Units measure time on their own via their local oscillators, it is necessary
to find a common time base which is valid for all RUs. Just with this common time it
is possible to calculate the time of signal arrival differences (TDOA) which are essential
in the localisation calculation. The subsequent chapter gives a general approach for the
synchronisation calculation, and explains the thereby necessary parameters. Chapter 3.2.2
finally shows how these synchronisation parameters can be determined from Global Navigation
Satellite System (GNSS) timing data.

3.2.1 Synchronisation Model

The time of signal arrival (TOA) measurements are determined by a counter on each RU,
which is incremented constantly by a precise oscillator. This counter value then forms the
measurement timestamps. If these timestamps are multiplied by the Remote Unit’s oscillator
frequency, the outcome builds the time which has passed by since the counter was zero. In
order to determine a time which is valid for all RUs, the calculation from the timestamp z to
the synchronised receiving time ts can be modelled by the formula

ts = ť+ (z − ž) · T (3.1)

where we call ť the synchronisation base time and ž synchronisation base counter. T (= 1
f )

is the cycle duration of the oscillator. These synchronisation parameters have to be derived
from synchronisation events which are received at all RUs.
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The oven-controlled crystal oscillators in the RUs have an adequate short term stability
(σ = 1 · 10−10 Allan deviation with τ = 1s [25]) but can drift more over longer time intervals.
The synchronisation situation is even worse if, like in our case, more oscillators are used which
possibly drift into different directions. So it is advantageous to synchronise the oscillators in
intervals of one to ten seconds in order to keep the influence of long time drift small. Because
of this, the synchronisation base time at the i-th synchronisation event is denoted by ťi and the
corresponding base counter by ži. As the oscillator frequency may vary over time as well, the
cycle duration at the i-th synchronisation event is denoted by Ti. Finally the synchronisation
formula becomes

ts,i = ťi + (z − ži) · Ti (3.2)

where ts,i denotes the synchronised time, synchronised to the i-th synchronisation event.
This model is basically a linear extrapolation, but it is expected to be precise enough: The
oscillator frequency can be assumed to be constant in the period between two subsequent
synchronisation events. The quality of the synchronisation depends on the way the parameters
are determined.

According to [11] there are two practical ways to produce synchronisation events: One
possibility is to use a time reference from another accurate time source like a Global Naviga-
tion Satellite System (GNSS). Special receiver modules for such systems offer the possibility
to get an accurate time pulse each second (see Chap. 3.2.2). The second synchronisation pos-
sibility is to use reference transponders with accurately known positions. If such transponders
constantly emit a signal which is received at all RUs, the synchronisation can be calculated
over the signal’s TOA at each unit. When this thesis was being created, the MLAT system
prototype was supporting only GNSS synchronisation. Also this chapter concerns just this
way of synchronisation.

3.2.2 Synchronisation over GNSS

Global Navigation Satellite Systems (GNSSs) measure time with atomic clocks in their satel-
lites and broadcast accurate timestamps in order to enable receiver modules to determine
their own position (see [12]). Receivers which are specially designed for timing purposes, are
able to use the broadcasted timestamps to provide accurate time pulses. For this purpose,
however, they need to know their actual position in 3D which can either be set manually or
be determined by the module itself [26]. The provided pulses have a 1σ accuracy to UTC of
approximately 50 nanoseconds, but it is possible to increase the accuracy to 15ns, by fetch-
ing a quantisation error information from the receiver [26][27]. Additionally, such modules
provide the possibility to poll the accurate Coordinated Universal Time (UTC) the pulse was
triggered.

As already discussed in Chapter 3.1, the RUs used in the prototype are equipped with such
a GPS module which provides one pulse per second (PPS). The synchronisation messages,
the RU sends to the Target Processor after the pulse was detected, contain the pulse’s (RU–
clock) timestamp and its UTC-time. With this information it is possible to synchronise every
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unit to one common time source: the time given by GPS.
In a first attempt the provided UTC time can build the synchronisation base time ťi, the

corresponding synchronisation base counter ži would be given by the timestamp. The only
missing information in the synchronisation formula is the oscillators cycle duration Ti. This
value can be determined by subtracting two subsequent base counters, or by the averaging
some of these base counter increments.

However, the GPS time-pulse is affected by an error of σ = 15ns [26] in the best case which
corresponds to a distance of 4.5m. If the timestamp–UTC-time pair would simply be used
as base counter and base time, this error would have direct influence onto the synchronised
time ts,i (see equation (3.2)). Since a measurement accuracy of 1m to 3m is intended, a
better method, taking more synchronisation events into account, has to be developed. This
means that a compromise of more synchronisation events has to be found for synchronisation
parameter determination, e.g. by calculating an average of more events.

After several attempts to average frequency and counter–time pairs separately, it has
turned out that calculating a linear regression (see Appendix A.5) over the pairs is a good
attempt to overcome the problem: A linear regression basically fits a line trough the counter–
time pairs by reducing the resulting squared error. Also the synchronisation equation (3.2)
describes a line: Ti is the slope, ťi the y-intercept and ži is an offset on the x-axis. Conse-
quently the line parameters, provided by the outcome of the regression, can be used directly
as synchronisation parameters.

In order to apply linear regression to the GNSS synchronisation problem, the counter val-
ues form the x-axis and the UTC time values the y-axis. The resulting regression parameters
can then be used as follows: The y-intercept (a0) builds the synchronisation base time ťi, and
the slope (a1) the cycle duration Ti.

Figure 3.3: GNSS synchronisation over linear regression

37



Figure 3.3 shows a diagrammatic illustration of this regression: The crosses illustrate
six measured counter–time pairs, the line is the the regression line which results out of the
calculated regression parameters. The dashed lines illustrate a synchronisation: the syn-
chronisation time ts is determined from a received counter value z0 over the synchronisation
parameters which were determined in the regression. In this case the synchronisation was
calculated with a history length of six elements, which means that the six lastly received
synchronisation messages are used in the synchronisation calculation.

The synchronisation base counter ži would be zero if the counter values were used directly
in the regression like explained before. However, in order to avoid precision problems, it
makes sense to subtract an offset, e.g. the smallest counter value in the respected history,
from each counter when the regression is calculated. This offset then forms the parameter ži
in equation (3.2).

3.3 Measurement Correlation

Multilateration systems are designed in a way that one and the same signal is received at
multiple base stations. So for every signal there is a couple of time of signal arrival (TOA)
measurements available, which belong to the same signal emission. As these measurements
belong together, they have to be identified in the measurement correlation step and be marked
as a measurement tuple. In a later step the positioning calculation is performed for each
tuple. There are two main features over which the correlation can be performed: the signal
content and the TOA. The following two chapters describe possibilities and problems of
these two strategies. An algorithm which solves the correlation problem is finally given in the
implementation chapter in Section 4.5.

3.3.1 Correlation over Signal Content

The correlation task over signal content can be solved quite trivially by matching the message
content data bit by bit. However, there may appear matching ambiguities, i.e. matches of
measurements that do not belong to the same signal emission.

These ambiguities are caused by wrong match of replies emitted by either the same
transponder, or by different transponders. The first case appears if one target emits the
same message more than one time. However, in SSR the minimum time between two such
emissions is restricted to 60µs to 125µs [1, p.27], and so a correlation over TOA timestamps
may solve this problem. The second case appears if two targets emit the same message. It is
much harder to resolve such an ambiguity, as targets behave independently.

The system prototype developed during the creation of this work can cope with SSR radar
signals for civil aviation and so the three SSR modes A, C and S (see Chap. 2.6) are used. As
Mode-S and Mode-A/C differ in terms of message length and content, there appear different
correlation problems in both standards. The rest of this chapter discusses these difficulties.

Mode-S content correlation: Mode-S replies have a data block containing a payload of
56 or 112 data bits as explained in Chapter 2.6.2. In each reply, 24 of these bits contain
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the sender’s Mode-S address, be it encoded directly in plain-text or xor-ed by the message’s
parity information (see [20]). Mode-S addresses are assigned globally by ICAO, and so it is
improbable that two different transponders send the same reply at the same time. Still, wrong
correlation of replies coming from the same transponder may appear, as the transponder can
send out the same message more than one time. In this case the correlation ambiguity has to
be solved over TOA correlation like explained in the next chapter.

Mode-A/C content correlation: Content correlation is much more difficult when work-
ing with SSR Mode-A/C replies. The first problem is that there is no non-statistical way to
identify whether the reply is a Mode-A squitter or a Mode-C altitude reply. Normally, air-
craft are alternately interrogated for Mode-A and Mode-C. Hence, replies for both modes are
received all the time (see Chap. 2.6.1). This leads to correlation collisions of e.g. one aircraft’s
Mode-A message and another target’s Mode-C altitude reply. Furthermore, Mode-A codes
are dynamically assigned to aircraft and multiple targets may emit the same Mode-A code
within the area of interest. So also collisions between two target’s Mode-A codes are possible.

These two problems form matching ambiguities of measurements belonging to different
targets. However, in Mode-A/C also correlation ambiguities of replies, coming from the same
transponder, appear: It has also been observed in measurements, performed in the aerospace
of Graz, that one and the same transponder may emit up to ten equal Mode-A/C replies
within one millisecond. As normally all these replies have the same content, they will be
falsely mapped together.

3.3.2 Correlation over Time of Signal Arrival

As TOA information is essential for the Multilateration calculation it is measured with high
resolution (see Chap. 3.1). Therefore, it is possible to define small time windows in which
two or more measurements of a tuple must or must not lie.

Firstly, one time interval is limited by the systems geometry: The system’s base stations
are located at known distances from each other. We can say that the maximum receiving
time difference between two Remote Units, is equal to the time the signal needs to travel from
one unit to the other. We call this timeout the detection timeout ∆tdet which tells us that
measurements received at different Remote Units, but not within this interval, cannot belong
to the same signal emission. This time interval increases approximately by one microsecond
for each 300m base station separation, as electromagnetic waves propagate at speed of light.
However, reflections and multipath effects can cause signals to arrive later.

Secondly, SSR transponders are not able to answer to more than one interrogation at
the same time and they also need a recovery time after each reply sent. In Mode-A/C this
dead time lies within 60µs and 125µs [1, p.27]. In Mode-S the time is even longer, as, due
the Mode-S replies bit-length, each message has already a duration of 64µs or 120µs (see
Chap. 2.6.2). With this knowledge we can define the reflection timeout ∆trefl which tells
us that, if two replies from the same emitter are received within this interval on the same
receiver unit, the one that has secondly arrived will be most probable a reflected copy of the
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signal.
With these two timeouts it is possible to develop an algorithm which solves the correlation

problem. The algorithm that fuses content and TOA correlation is presented in Section 4.5,
in the implementation chapter of this work.

3.4 Calculation

The core element of a Multilateration TP is the calculation unit. This unit uses tuples of
synchronised TOA measurements which belong to the same signal emission, and calculates
the position where the signal was sent out from. This chapter describes how such a calculation
unit can be set up by applying the theoretical principles explained in Chapter 2. The clue
lies in the way the theory is combined at the end, thus the calculation unit has to complete
the following tasks:

1. Calculation of closed solutions: Closed solutions form the base for the later cal-
culation steps. As their solution accuracy strongly depends on the geometry, the mea-
surement sets, from which they are calculated, need to be well selected.

2. Solving solution ambiguities: Closed solutions are mostly ambiguous, so the correct
solution has to be identified.

3. Increase of solution accuracy by adjustment: In order to increase solution ac-
curacy, more measurements can be taken into account to calculate a Least Squares
adjustment.

4. Estimation of the calculation error: It is important to provide the accuracy of a
calculated target position and so an a-priori and an a-posteriori solution error estimation
need to be determined.

5. Outlier detection: Measurements can be affected by outliers or gross errors, coming
from different sources. These errors need to be detected and handled accordingly.

Figure 3.4: Simplified flowchart of the Multilateration calculation
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A simplified flowchart of a Multilateration calculation is given in Figure 3.4. The following
sub-chapters elaborate the different blocks, shown in the figure. The final combination of
the calculation tasks and the implementation of the calculation unit are finally found in
Chapter 4.6, in the implementation section of this work.

3.4.1 Calculation of Closed Solutions

Closed solutions form the first step in the calculation chain and give an initial solution for
the positioning calculation. Basically they are the mathematical exact solution of a system
of equations which consists of as many equations as unknowns are to be determined. This is
three equations for a two dimensional solution and four for a 3D solution. As every equation
takes exactly one measurement as argument (see equation (2.2)), also just this number of input
measurements can be considered. The theoretical basics for closed solution determination are
found in Chapter 2.2.

As already discussed in Chapter 2.2.2, closed solutions may be affected by non-trivially
resolvable ambiguities. Such cases mainly appear in so called “unfavourable areas” [15] which
can generally be mostly avoided by a good positioning of the Remote Units. If ambiguities
still appear, both solutions, the correct and the wrong one, need to be passed on to the next
calculation steps. The ambiguity resolution has then to be performed in a later step, by
taking additional measurements into account (see Chap. 3.4.3). It is, however, important to
mark ambiguous solutions, as later calculation steps need to be aware of that fact.

Figure 3.5: Error contour plot of the maximum 1σ error (error ellipse’s semi-major axis).
Grid mesh-width is 5m, measurement error σi = 1 · 10−8s. Units are metres.
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Whereas it is trivial to calculate a closed solution, it is more important to carefully choose
the measurements which are used as input for the calculation. Figure 3.5 shows the geometri-
cal dependence of the closed solution accuracy, which was determined by calculating an error
propagation as explained in Chapter 2.5.2. The contours form the boarder of the maximum
solution error σmax, which is the 1σ error in the direction of the error ellipse’s main diagonal.
Outside the contours the error is bigger than 15 metres.

In between the three remote units the accuracy is quite good, which means that a closed
solution, calculated for such a location, is not affected by big scatter. Outside the triangle,
built up by the three units, the solution error grows rapidly with the distance. This is due to
the glancing intersections between the hyperbolas, which form the solution (see Chap. 2.5.2).
The worst accuracy appears in outer areas where solution and Remote Units lie more or
less on one line. These areas are newly the “unfavourable areas” in [15]. Simulations have
shown that also in the three dimensional case the best solutions are determined in the area
in between the remote units.

In Multilateration systems normally a signal is not just measured at the minimum amount
of Remote Units, and so there are n choose k possibilities to group the RUs in order to calculate
closed solutions. n here denotes the number of available measurements and k the number
of measurements which are necessary to calculate a closed solution (k = 3 in 2D, k = 4 in
3D). As each input data combination builds up a different geometrical scenario, there are
combinations which lead to better measurement accuracies than others for a given location.
So it is important to guess the input data combinations which lead to good results, to only
calculate closed solutions for this subset afterwards.

In order to choose good combinations we can define two main criteria: Figures 2.8 and 3.5
show that it is preferable to have the target surrounded by the base stations, as the error of
the result is smallest in this area. Additionally, the probability of multipath propagation and
reflections is smaller if measurements are used which come from base stations that lie close
to the point of signal emission. Accordingly, our goal is to find input station combinations
where the mobile is most probably surrounded by Remote Units which in addition are close
to it.

The only problem is that before the actual calculation the target position is not known in
most cases. Often, however, some vague a-priori knowledge of the target position is available
that can be used instead. Depending on the availability of this knowledge, two major cases
have to be taken into account when guessing good measurement combinations:

• The target position is approximately known from an auxiliary source, as e.g. Mode-S
position information or tracking of previous calculations.

• The target position is completely unknown.

Approximately known mobile position: In this case the problem is trivial: The best
combinations are those where Remote Units surround the approximate mobile position and
are close to it. If the potential mobile position is not surrounded by any combination of base
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stations, a combination can be chosen where the mobile does not lie on one line with two base
stations, i.e. is not situated “behind” any Remote Unit (see Figure 2.8).

Totally unknown mobile position: In case of completely unknown target position, the
best combination guessing can be performed in the following steps: First, closed solutions for
the station combinations which enclose the biggest area are calculated in order to increase
the probability to surround the mobile by these stations. In a second step these solutions
can be used to guess other combinations until a good combination is found. If non-trivially
solvable ambiguities appear, other combinations can be tried out until a resolvable ambiguity
is received. This makes sense as non-trivially resolvable ambiguities mainly appear in areas
where solution accuracy is quite low anyway (see Chap. 2.2.2). If this also fails, some random
ambiguous solutions have to be taken and the ambiguities need to be resolved in a later step
as explained in Chapter 3.4.3.

It also makes sense to calculate more than one closed solution from different good mea-
surement combinations and to perform the subsequent calculation steps in parallel for each of
these. The reason for that is again the solution error: In closed solution calculation, each mea-
surement error has direct influence onto the result, which then may be affected by substantial
error and scatter to one direction. By using other input data combinations the solution error
will turn out differently and maybe scatter to other directions. The subsequent calculation
steps are basically just refining this primary solutions and use closed solutions as starting
points for their optimisations. Depending on this starting point, the refinement might get
stuck in a local minimum or maximum. So, the risk of wrong convergence is reduced, if the
following steps are performed for more closed solutions and if, finally, the best result of these
is picked (see Chap. 3.4.3).

3.4.2 Adjustment

The adjustment which follows the closed solution calculation is needed to improve solution
accuracy. This is done by taking redundant measurements into account and calculating a
Least Square (LS) optimisation which starts with a closed solution. If no redundant mea-
surements are available, however, it makes no sense to calculate an adjustment, since the
optimum solution is already provided by the closed solution in this case.

Adjustment theory itself was already well explained in Chapter 2.3 and the adjustment
step is basically just an application of the equations presented in these sections. As the
adjustment is calculated in iterations, it is important to define good abort conditions, in
order to keep the calculation time small. Experiments have shown that it is a good choice
to stop the adjustment iterations if the change of the solution position from one step to the
next is below a certain value. This forms e.g. the abortion condition |d~x| < 1m. Additionally
it is advantageous to also limit the maximum number of iterations: This is needed in cases
with bad measurements or if a bad closed solution is being refined, since in such cases the
adjustment may not converge soon, or not converge at all. Ten iterations should be a good
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choice for this value.
Adjustment theory also provides the possibility to assign weights to each measurement in

order to give measurements with high accuracy also a bigger influence and vice versa. So it
is useful to know an a-priori measurement accuracy of each Remote Unit and to calculate the
measurement weight matrix like explained in formula (2.23). The a-priori measurement error
has to be determined in advance for each Remote Unit and depends on the RU’s hard- and
software, the location of its antenna, wiring etc.

As explained in Chapter 2.3.2, also an outlier detection is possible by calculating a robust
adjustment. The principle of a robust adjustment can be seen as follows: All measurements
are allowed to be affected by a certain, random measurement error with a known a-priori
variance σi. If measurements are affected by gross errors, however, their influence is scaled
by reducing their weights. The error, according to which the outlier decision is performed, is
received by checking how well the measurements fit together in order to lead to the solution.
If there are much more non-outlier measurements than outliers available, the probability to
find the outlier is much higher, as the non-outlier measurements kind of outvote the outlier.
So it makes sense to use outlier detection only if overdetermination is high.

After the convergence of a robust or non-robust adjustment, besides the refined position,
additional data about the system and the solution is received. This data can be used to
classify the quality of the solution and also to calculate an error propagation. The next two
chapters explain how this can be performed.

3.4.3 Solution Quality

As discussed in the previous chapters, it is sometimes helpful to determine more than one
closed solution from a measurement tuple, because closed solutions may be affected by exces-
sive scatter. In this case all these solutions are also adjusted and afterwards the best solution
has to be determined. This chapter presents a methodology to identify this best solution,
which can also be used to resolve non-trivially resolvable closed solution ambiguities.

First we need to figure out what a good solution refers to. Obviously the best measure
to identify the quality of a solution ~x is its deviation from the point of signal emission ~̂x,
calculated like ~εx = ~x − ~̂x. As the input measurements ~m are associated with the solution
over ~m = A~x, the measurement error ~ε = ~m − ~̂m contains the same quality information as
the solution error ~εx does. So we can say that a good solution is a solution which was derived
from measurements with a small measurement error ~ε. Since the real measurement error ~ε is
normally unknown, we have to use its best approximation which is the vector of residuals ~v
(see Chap. 2.5).

In order to be able to classify the quality over one parameter per solution, it makes sense
to use the sum of squared measurement errors, calculated like ~εTP~ε or ~vTP~v respectively.
However in this case the quality is just comparable if the solutions were determined by the
same amount of measurements. To overcome this problem, the squared error can be divided by
the factor of overdetermination which finally leads to the a-posteriori measurement variance
s0 = ~vT P~v

n−d , like already shown in equation (2.50). Therefore, after all solutions were refined,
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the solution with the smallest a-posteriori measurement variance s0 can be chosen as best
solution for the measurement tuple.

It has been observed that in most cases, however, the refinement of different closed solu-
tions converges to the same adjusted solution, i.e. to the absolute extremum. Of course in this
case also the s0 values are the same, but it does not matter which solution is picked finally.
s0 just differs significantly if the Least Square optimisation converged into a local extremum,
though, just in this case a decision over the solution quality is necessary.

Non-trivially resolvable closed solution ambiguities can also be solved via s0: If both
ambiguous solutions are refined, in the best case the refinements converge to the same solution.
If this happens there is no need to identify the wrong solution anymore. Often, however, the
wrong closed solution lies far away from the point of signal emission and can cause the LS
optimisation to get stuck in a local extremum. Also here s0 can be taken to identify the
wrong solution and to resolve the ambiguity. However, as discussed already in Chapter 2.5.1,
s0 is just defined if the system is overdetermined, i.e. if more than the minimum amount of
measurements is available. This means that non-trivially resolvable ambiguities can just be
resolved if overdetermination is given.

3.4.4 Solution Accuracy

Especially in aviation it is important to know the accuracy of a determined position. This
accuracy can be determined over the error estimation as it was explained in Chapter 2.5
already. It makes sense to provide the following parameters with each solution:

• a-posteriori measurement error (see Chap. 2.5.1)

• a-priori and a-posteriori solution error (see Chap. 2.5.2)

• Dilution of Precision, especially HDOP (see Chap. 2.5.3)

The a-posteriori measurement error s0 was already needed in the calculation, so it is
available with every adjusted solution anyway. The solution error measures are calculated
over the error propagation explained in Chapter 2.5.2. Depending on whether the a-priori or
a-posteriori measurement error are used in the propagation, also the a-priori or a-posteriori so-
lution accuracy is received. Both solution errors and the Dilution of Precision are determined
from the cofactor matrix Q which was determined in the adjustment already.

All three values can be used to classify the solution quality. This is important as solutions
with bad accuracy have to be recognised and eventually be dropped in order to satisfy the
accuracy requirements of the system. The accuracy values can be interpreted as follows:

A-posteriori measurement error s0: This error describes the mean error of the mea-
surements. A small error s0 is a sign for a good result, as the measurements fit together well
for the given solution.
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A-priori solution error and DoP: These values depend just on the systems geometry and
the position of the solution. Because of this, they can also be determined for closed solutions
and form the only available accuracy information for them. A maximum a-priori solution error
constraint is useful to avoid the adjustment of closed solutions, where the solution does not
lie in a good area for the given Remote Unit constellation (see Figure 3.5). Furthermore they
can be used to specify the system’s area of interest. The DoP and the a-priori solution error
describe basically the same: By comparing equation (2.60) and equation (2.61) it becomes
clear that the a-priori solution error can be seen as a DoP value, scaled by the a-priori
measurement error.

A-posteriori solution error: This error depends on the geometry and the measurement
quality. Because of this it fuses the information of the two error measures explained before;
However, it is just available for overdetermined measurement constellations. A maximum a-
posteriori solution error constraint can be used to restrict the solution scatter of the emitted
calculation results.
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4 Implementation

This chapter explains some implementation details of the MLAT Target Processor prototype,
which was developed along with this work. Some of the algorithms, especially the calculations,
error propagation etc. were firstly implemented in GNU Octave(1) scripts in order to get in
touch with them and to test them. The implementation of the prototype itself was written in
C++, using the Trolltech Qt 3.3(2) framework and the AviBit proprietary AVCommon library.
Matrix and vector calculations, mainly needed in the calculator unit, were implemented with
the use of the Eigen 2.0(3) library. This library performs well, supports various compilers, is
easy to include into a project and elegant to use (see [28]).

The implementation details in the following sub-chapters are completed by calculation
results which were derived from measurements recorded in a real field test. The chapters are
divided like follows: Chapter 4.1 shows the overall process structure and data flow. The field
test setup and the single measurement scenarios are explained in Chapter 4.2 “Measurements”.
Finally Chapters 4.3 to 4.6 explain the implementation of the single process modules, starting
from measurement input and heading to the calculation of the sender’s position.

At this place it has to be mentioned that the system presented here is a Target Processor
without tracking facility. This means that there is no target history kept which can be used
to facilitate the calculation in e.g. ambiguity resolution or closed solution determination.
However, this makes sense in the prototype state, as the characteristics and problems of the
MLAT calculation can be explored anyway. Furthermore, also an operational system has to
be able to work without history information: in the track initiation phase it is essential to
determine good position fixes also without auxiliary information about the target position.

4.1 General Process Structure

The MLAT calculation problem is dividable into five main tasks as discussed in Chapter 3
already. It was found reasonable to implement each of these tasks in different threads in
order to separate them totally and make the process scalable on multiprocessor or multicore
architectures. The Qt 3.3 Toolkit was used for this purpose, as it provides good possibilities
to implement threading and concurrent programming over the QThread and QMutex classes.

Figure 4.1: Threads and data flow in the TP prototype

(1)http://www.gnu.org/software/octave/
(2)http://doc.trolltech.com/3.3/index.html
(3)http://eigen.tuxfamily.org
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Figure 4.1 shows the thread and data flow structure of the process. Input data has to
be collected from every Remote Unit (RU) and the process needs to be flexible for different
measurement setups. For this reason the amount of input threads, where each serves one RU,
is freely configurable over configuration files. Synchroniser, Mapper and Calculator have just
single instances in the process. The data output needs to be provided in different formats
and so also multiple output threads can be configured. Each output thread gets the result
data from the Calculator and emits output data in a different data format e.g. plain-text file
or Eurocontrol Asterix.

Data flow between the single threads is regulated over FIFO buffers which are basically
derivations of the QPtrQueue class, supplemented by locking facilities, using QMutexes. So e.g.
there is an input FIFO which is filled by all input threads and is read out by the Synchroniser.
The Synchroniser itself fills the synchronised data into the synchronised data FIFO which is
read out by the subsequent mapper and so on (see Figure 4.1). These connections are realised
directly from worker-thread to worker-thread and so the main thread is not bonded with data
distribution. The only exception is build by the output FIFOs: As more output threads are
possible and each of these needs the whole amount of result data, the main thread dispatches
and copies the calculation results, in order to provide it for each thread.

Due to the task separation into different threads and the FIFO buffer interface it is
possible to make the process highly configurable and to replace different modules by other
implementations. So e.g. input threads can be switched between file input and live data
(TCP/IP) input, Calculators between 2D and 3D calculations etc. Additionally each such
module/thread has its own configuration file; Hence, the possibility to tune calculation and
data flow parameters is provided.

4.2 Measurements

The most recent measurements and system tests, when this thesis was being created, were
performed in the ORF Park in Graz, Austria. For this purpose five Remote Units were posi-
tioned around the park as shown in Figure 4.2. Each unit was powered by a car battery and
the collected data was recorded on a laptop computer directly at each unit. Data evaluation,
combined with prototype improvement and tuning, was performed in a later step on the basis
of this recording files.

The vehicle locator Sensis VeeLo (see [29]) was used in the measurements as SSR trans-
mitter to be localised. Such transmitters are intended to be mounted on vehicles at airports,
in order to localise them over SSR Mode-S and ADS-B. For this purpose they broadcast
SSR replies constantly, without being interrogated. Their transmitting power is restricted to
20W , as they are built for low range detection purposes. The vehicle locator, which was used
in the measurements, is equipped with a GPS module and, depending on whether it is in
movement or not, it broadcasts its GPS position each 0.5 or 5 seconds in SSR Mode-S data
format DF 18(4) [29].

Figure 4.2 shows the measurement setup: The Remote Unit positions are labelled with the

(4)for explanation of SSR Mode-S DF 18 see [20] and [22]
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Figure 4.2: Measurement setup in ORF Park, Graz Austria. Background image taken and
modified from [30]

Figure 4.3: Explanation of the calculation result representation for mobile at M3 and inactive
Remote Unit Ru5
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prefix “Ru” followed by the RU-number. The positions at which the transmitter was located
during the measurements have the prefix “M”. The transmitter was situated for around
15 minutes at each measurement point, in order to let it emit approx 1000 replies. The
coordinates of measurement points and RU positions were determined by the GPS modules
on the Remote Units. For this purpose the GPS position fixes were averaged for around
30 minutes directly on the receiver module, which was set into survey-in mode. Finally the
measurement errors lay between σ = 0.1m and σ = 0.16m. Table 1 contains all relevant
coordinates of the field test in WGS84 format.

Point Latitude [◦] Longitude [◦] Geod. Height [m] σ [m]
Ru1 47.0540656 15.4635945 408.02 0.146
Ru2 47.0527487 15.4644880 409.77 0.166
Ru3 47.0546605 15.4646018 407.29 0.118
Ru4 47.0532679 15.4655837 408.29 0.118
Ru5 47.0533871 15.4640163 406.58 0.137
M1 47.0540173 15.4650109 408.13 0.146
M2 47.0538246 15.4648577 403.21 0.148
M3 47.0534922 15.4645686 408.02 0.174
M4 47.0531646 15.4648857 407.37 0.111

Table 1: RU and measurement point positions in the ORF Park test in WGS84 coordinates

The obtained recording data builds the input for the measurement evaluation by the
MLAT Target Processor prototype. In this scenario there is almost no height difference
between the Remote Units, so the calculation is limited to two dimensions. This is due a lack
of height information in the calculation’s equation system, causes a determined height value
being affected by excessive error. Furthermore it is mostly impossible to calculate a three
dimensional solution in this scenario as, because of the limited numeric precision, matrices
often become singular in the calculation.

In order to visualise the calculation outcome, the results were firstly written to a plain-text
file by the TP process and then read in by a GNU Octave script. This script performs some
data post-processing, like data selection and coordinate transformation, and finally plots the
results. Figure 4.3 shows an example plot for measurement point M3 with results determined
from data recorded on Ru1 to Ru4. In such plots the active Remote Units are displayed as
black crosses and are interconnected by solid lines in order to display the triangles they span.
Inactive RUs and their spanned triangles are displayed also in order facilitate keeping track of
the geometry. They are plotted in grey and as dashed lines, though. The result scatter itself is
plotted as dark grey crosses, sometimes overlaid by an error ellipse (see Appendix A.4) which
shows the 1σ and 3σ bounds of the scatter. The transmitter’s GPS position is displayed as
black circle.

The measurements in the park were facing a big problem, however: The obstacles, like
small hills, trees or fences were influencing the signal propagation, mostly by shadowing. It
was also observed that GPS accuracy suffered from this fact since, depending on the location,
certain satellites were not visible.
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4.3 Data Collection

As already mentioned in Chapter 4.1 “General Process Structure” the TP’s input interface
has to be configurable in order to adopt to different measurement scenarios. For this purpose
the communication with the RUs is handled by one input thread per unit, and the amount of
threads is configurable. These threads are able to receive data in two modes: live data over
TCP/IP or data from recording files. The recordings basically contain the messages created
by a Remote Unit in binary format, extended by recording timestamps.

The recording file input mode additionally supports the possibility of time scaling i.e. to
read out the file faster than the recording time stamps pretend. This is useful during process
development and tuning, as many calculations can be performed within short time and result
evaluation times become shorter as well. In the subsequent processing steps, however, one has
to be aware of the time scaling possibility: Timeouts, as used in measurement correlation and
synchronisation, have to be independent of the current machine time and need to be adopted
according to the time scaling factor.

As the process design intends to support different input message formats, the input threads
translate the received messages into a process internal measurement format which is then used
by the subsequent modules. This data is then fed into the input FIFO for later synchronisa-
tion, as shown in Figure 4.1.

4.4 Synchronisation

In the current MLAT system prototype each Remote Unit is synchronised to UTC time,
provided by the GPS satellites. Therefore, each RU is equipped with a GPS module and gen-
erates synchronisation messages every second, as described in Chapter 3.1. These messages,
which contain timestamp–UTC-time pairs, are then evaluated by the Target Processor, that
determines the synchronisation parameters for each RU by calculating a linear regression (see
Chapter 3.2.2 “Synchronisation over GNSS”).

For this purpose a synchronisation message history is kept per Remote Unit, because the
regression is calculated from previously received and the current synchronisation information.
The synchronisation parameters are calculated by a factory class which takes the synchronisa-
tion event history and the current synchronisation message as input data. Of this information
it calculates the synchronisation parameters via the regression formula (A.19). Finally, the
currently valid synchronisation parameters for each RU are stored in a hash table in order to
provide quick look-up for measurement synchronisation.

During the implementation it has been observed that the regression was suffering from
numerical problems. The reason for that lies in the dimension difference of counter and time
values: The time value is incremented by one each second, the counter value by approximately
80 millions, as the oscillators with operate at 80MHz. The problem was solved by scaling
the input data before the regression is calculated: First, in order to avoid large numbers, the
time and counter values are subtracted by their corresponding values taken from the oldest
history event. In a second step the counter value is divided by the rated oscillator frequency
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to bring time and counter into the same scale, i.e. unity. Of course, this scaling must also be
respected if the synchronisation parameters are later on used to synchronise measurements.

Figure 4.4 shows a typical developing of the measured oscillator frequency for over almost
two hours, recorded on Ru2 during the ORF park test. The frequency was determined by
subsequent synchronisation events: The counter values were subtracted and divided by the
time increment between the events, giving a counter increment per second ∆z1s. The plot
contains the relative error of the measured frequency related to the rated oscillator frequency
of frat = 80MHz. This error was calculated for each ∆z1s like follows:

ferr =
∆z1s − frat

frat
(4.1)

Figure 4.4: Developing of the frequency error relative to 80Mhz at Ru2 in the ORF Park test

The frequency error in the figure drifts approximately between −9.9·10−7 and −10.1·10−7

which gives a relative drift during this two hour period of 2 · 10−8. This equals a time drift
of 20ns. The stability of the OCXO is given as σ < 1 · 10−10 (one second Allan deviation)
and the daily aging as 5 · 10−10 in the datasheet [25]. These values correspond to 0.1ns and
0.5ns respectively and are factor 100 smaller than the frequency drift. Consequently the
observed frequency drift seems to mostly belong to GPS timing inaccuracies. Unfortunately,
at the time this work was created, there were no better possibilities available to analyse the
oscillator, PLL and GPS errors. Because of this, it was tried out in the synchronisation to at
least get rid of the noise in Figure 4.4 that causes the graph to be bold.

Depending on the amount of history synchronisation events which are respected in the
regression, the influence of the GPS error can be partly reduced. The plots in Figure 4.5
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(a) History of 10 elements (b) History of 50 elements

Figure 4.5: Influence of synchronisation on the frequency

(a) History of 10 elements: mean=−0.027ns σ1s = 1.23ns

(b) History of 50 elements: mean=0.47ns σ1s = 3.98ns

Figure 4.6: Influence of synchronisation on the one second regression error. Note the different
scaling of the axis of ordinate!
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show the relative frequency error after the synchronisation. This frequency error was newly
calculated via equation (4.1), the value ∆z1s was determined differently, though: Instead of
using the UTC time which is provided by the RU together with the corresponding counter,
the synchronised time values ts,i were used to calculate ∆z1s. To determine this synchronised
time, first the synchronisation parameters were determined by calculating the regression over
10 or 50 history events, including the current event. These parameters were then used in order
to calculate the synchronised receive time ts,i for the current counter value, via equation (3.2).

It was also found useful to investigate the resulting error if the synchronisation parameters
are used to extrapolate over one second. For this purpose the regression was calculated as
explained before, but the synchronised time ts,i was calculated for the synchronisation event
coming after the current, i.e. the synchronisation parameters were used to extrapolate over one
second. This synchronised time was then subtracted by the UTC time of the corresponding
event, provided by the RU, in order to determine the error which is shown in Figure 4.6.

Figure 4.5 makes clear that with increasing history size the noise on the synchronised
frequency shrinks. This is because more history elements cause the curve being flattened.
The 1s error in Figure 4.6 however increases if the history is chosen too large: A history
of 10 leads to a 1s-error standard deviation of σ1s = 1.23ns. With 50 history points the
error increases to σ1s = 3.98ns; Also if outliers outside ±15ns are removed the deviation is
still σ1s = 3.15ns in this case. The reason for this lies in the jumps the measured frequency
performs and the longer the history is chosen, the slower a the synchronisation reacts on them.
Evaluations of different history sizes have shown that a history value of 10 is a good trade-off
between frequency noise and extrapolation error in the current system configuration. Thus,
a synchronisation history of 10 events was used for all calculations presented in this work.

4.5 Measurement Correlation

Experiments with live data have shown that the best way to map all measurements of a signal
together is a combination of the two strategies explained in Chapter 3.3. It is advantageous
to firstly do a correlation over message content in order to minimise the probability that
different transponders disturb each other. A good choice for this purpose is to use two hash
tables, one for Mode-A/C and one for Mode-S replies, in order to store replies depending on
their content. As SSR replies are quite short, the hash value can be calculated directly from
the message content i.e. the 12 bit Mode-A/C data or the 56 or 112 bit Mode-S data block.
All messages with the same message content are then stored in a list, in order to be further
processed.

The communication between Remote Units and Target Processor is afflicted by a com-
munication delay which depends on the communication interface. For data integrity it is
important that every measurement, belonging to one signal emission, was received and stored
on the content correlation list before the subsequent time correlation is performed. So at
least the estimated RU–TP communication delay has to be waited after the first message
for a certain content mapping was received. The TOA correlation can then be performed by
defining the two timeouts as proposed in Chapter 3.3.2 and by applying them as follows, one
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after another:

1. Detection timeout ∆tdet: Replies received at different Remote Units and within ∆tdet
belong to one signal emission.

2. Reflection timeout ∆trefl: Replies received at the same Remote Unit and within
∆trefl, are a reflected copy of the first received reply.

Figure 4.7: Example of signal receiving times and correlation timeouts

Figure 4.7 shows an example of seven measurements (a to h) which have the same message
content and were received at the base stations S1 to S5. The measurements a to g lie
within the detection timeout ∆tdet and are added to the set of measurements which might
belong to the same signal emission. Measurements d and g but are a second occurrence of
measurements at stations S2 and S3 and since rule 1 says that the replies have to be received
at different units, they cannot belong to the same signal emission. Furthermore measurement
d was received within the reflection detection timeout ∆trefl regarding measurement c - so
according to point 2 it is denoted to be a reflection and is dropped totally. Measurement g is
not a reflection, but may belong to a subsequent signal emission. So it is put back into the
measurement list and will be retaken into account in the next detection phase.

4.6 Calculation

This chapter presents the implementation of the calculation module, completed with a sample
of intermediate and final calculation results in order to explain the single calculation steps.
The implementation details are explained in the order the calculation steps are performed;
these steps were already shown in a simplified manner in Figure 3.4.

The implementation of the calculator was split up into two main modules: The control
logic and the TPCoreAlgorithms module. The algorithm module contains implementations
of the MLAT algorithms in Chapter 2 and is implemented as a class template which takes
the dimensionality, i.e. 2D or 3D, as template argument. This was found advantageous as
the dimensionality mostly just influences vector and matrix sizes, and large parts of the
algorithm code are the same for both dimensions. All Matrix calculations in this module
were implemented utilising the Eigen 2.0 library which itself is solely implemented as C++
templates, thus it facilitates the dimensionality switching over template parameter.
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Figure 4.8: Complete flowchart of the Multilateration calculation
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Whereas the algorithms were explained already quite well in the previous parts of this
work, this chapter puts more focus onto the control logic. This logic defines how and in
which sequence the algorithms are applied, which results are accepted finally, the number of
calculated iterations etc. As there are many possibilities to implement this logic, during the
work on the prototype different attempts were started to implement it. The presented control
logic emerged out of the pool of approaches and gives plenty of freedom for configuration and
tuning. The flow-chart in Figure 4.8 illustrates the logic.

The degree of overdetermination splits the chart in Figure 4.8 into two branches: A branch
for overdetermined measurement tuple constellations, and one where no overdetermination is
given. This division was also taken in order to separate the subsequent two chapters.

4.6.1 Calculation Without Overdetermined Input Data

If no overdetermination is given, calculation is easy: It is possible to calculate only one
closed solution since just the minimum amount of measurements is available. Furthermore,
adjustment has no sense, as there is no accuracy improvement possible without additional
measurements. However, not overdetermined results have to be treated with precaution as
they may be affected by excessive scatter, as the end of this section will show. The single
steps in the flow chart are explained here.

Ambiguity resolution: According the right branch of Figure 4.8, firstly a closed solution
is determined via Bancroft’s algorithm (see Chapter 2.2.1). This solution is ambiguous and
so the ambiguity is tried to be removed by applying the rules presented in Chapter 2.2.2
“Solution Ambiguity Resolution”. Therefore it is advantageous to firstly apply the simpler
rules 1 (TOE check) and 3 (area of interest), as they basically just imply the comparison of
the result with pre-configured values. Criterion 2 (TOA order) is more complicated to be
applied: The current implementation first calculates the distances between closed solution
and Remote Units and sorts these values in a list. Afterwards also the measurements are
sorted by their TOA and the order of both sorted lists is compared of being equal.

Figure 4.9 shows a scenario with trivially resolvable solution ambiguities for measurement
point M2, where the results were determined from measurements of Ru2, Ru3 and Ru4: The
solution accumulation on the right side forms the correct solutions, on the left side we have
the wrong solutions. By applying the ambiguity resolution rule 1 (TOE check), in this case
all wrong solutions are eliminated.

As discussed in Chapters 2.2.2 and 3.4.3 already, the ambiguity is mostly resolvable by
this trivial rules, but unfortunately there are also cases where they fail. Since there are no
additional measurements available, a resolution can just be performed over an approximate
knowledge of the target’s position. This information could be provided e.g. over tracking or
Mode-S position decoding, however, the TP prototype does not support such checks currently.
So a solution with irresolvable ambiguity can just be tagged in order to warn subsequent steps
about this fact.

After the ambiguity resolution, the a-priori solution error is determined for the location
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Figure 4.9: Solution with trivially resolvable ambiguity at M2

the closed solution points to. This is done over formula (2.60) on page 25. The matrix Q

which is needed hereby, can easily be determined over adjustment equation (2.26c) on page
17.

Solution error: Closed solutions are quite problematic as they might be affected by strong
scatter. The scatter results out of the fact that every measurement has direct influence onto
the result. Furthermore, as already discussed in Chapter 3.4.1, the error strongly depends
on the problems geometry: Figure 4.10 shows closed solutions for point M2, calculated of
different Remote Unit combinations. It is well noticeable in Figure 4.10c that the solution
error increases with its distance from the Remote Units. Unsurprisingly, the best results are
achieved in Figure 4.10d, where the transmitter is surrounded by the Remote Units.

To prevent the emission of solutions which may be affected by strong error, the a-priori
error can be used as drop criterion: The result shall just be emitted if its a-priori error lies
below a certain threshold. This check is performed in the last calculation step where accuracy
constraints are being verified.

4.6.2 Calculation With Given Overdetermination

Although overdetermination in general brings the advantage of more accurate calculation
outcomes, it also makes the calculation more complicated than in the non-overdetermined
case. The central branch in Figure 4.8 shows the flow chart which illustrates how such a
calculation is performed in the Target Processor prototype. The single steps are explained
here.
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(a) RU combination (1, 2, 3) (b) RU combination (1, 2, 4)

(c) RU combination (1, 3, 5) (d) RU combination (2, 3, 4)

Figure 4.10: Closed solutions for measurement point M2
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Determination of good input data combinations: Also an overdetermined calculation
starts with closed solutions. As discussed in the design chapter already, there are n choose k
(n = number of measurements, k = 3 in 2D, 4 in 3D) possible Remote Unit combinations
which can be used in order to come to closed solutions. Depending on the geometry, formed by
RUs and mobile, the solution quality of these solutions varies. Chapter 3.4.1 was explaining
that it is advantageous to prioritise combinations with bigger ground area and so for each
combination the enclosing ground area is calculated. Consequently a list of advantageous RU
combinations is created by sorting the combinations according their ground area size.

Closed solution determination: At this point the iteration through the list of advan-
tageous RU combinations starts. Therefore, the best found combination is taken from the
list and its closed solution is determined. The subsequent trivial ambiguity resolution is
performed as described in the previous chapter. If the resolution fails, however, this is no
problem: Due to the overdetermination the ambiguity can be resolved in a later step.

Adjustment: In this step the closed solution is adjusted, or in other words refined. If
the ambiguity was irresolvable before, an adjustment is calculated for both closed solutions.
At this point it is important to mention that the refinement respects all measurements of
the tuple, including the ones already used to determine the closed solution. The adjustment
iteratively adapts the solution, in order to fit best to all measurements, starting with the
closed solution. Figure 4.11 shows an example of the solution quality improvement, achieved
by an adjustment: The light grey crosses describe the closed solutions which were determined
from different RU combinations. The dark grey targets are the solutions after the adjustment,
in which measurements from all five RUs were taken into account.

Depending on the configuration, a conventional or a robust adjustment is calculated in
this step. Experiments have shown that a robust adjustment makes just sense if an over-
determination factor of at least two is given. Otherwise it can happen that a wrong measure-
ment is being denoted to be an outlier and the overall calculation outcome becomes worse
than without outlier detection.

Non-trivial solution ambiguity resolution: With the parameters determined in the
adjustment, the a-priori and a-posteriori errors are determined as shown in Chapter 2.5.2.
If the solution ambiguity was not resolvable before, the resolution can be performed now:
Chapter 3.4.3 “Solution Quality” has shown that the resolution can be performed over the
a-posteriori measurement variance s0, by dropping the solution with bigger s0. An example
for this is shown in Figure 4.12: The light grey targets in both plots are the ambiguous closed
solutions, obtained from the RU combination (1, 2, 5). On these results all three ambiguity
resolution rules from Chapter 2.2.2 fail. The dark grey crosses are the solutions after the
adjustment which in addition was respecting also Ru3. The left figure shows the solutions
that were found wrong in the s0 check, as they converged into a local extremum. The right
figure is a plot of the solutions, which were converging correctly and were found correct also
in the s0 check.
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Figure 4.11: Effect of an adjustment with tuples of 5 measurements at measurement point
M3. σmax = 2.74

(a) Solutions found wrong (b) Solutions found correct (σmax = 4.42)

Figure 4.12: Non-trivial ambiguities of closed solutions at M3. Closed solutions from combi-
nation (1, 2, 5). Resolution was performed by respecting Ru3
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It is noticeable that a few solutions in the left figure seem to be correct too, and some
closed solutions in the right figure are obviously wrong, even if they were found correct. These
are the cases where both, correct and wrong, ambiguous closed solutions converge correctly
and point to the same position. Since the refinement is calculated for a restricted amount of
iterations, it can happen that the refined, previously wrong solution gets a slightly smaller s0
value than the refined, previously correct solution. The non-trivial ambiguity resolution over
s0 picks then the previously wrong solution. Anyway, this does not matter, as both solutions
are equivalent in this case and, as seen in the right figure, no wrong convergence is noticeable
in the outcome.

Best solution determination: At this point of the calculation, we have a refined unam-
biguous solution. However, in cases where closed solutions are affected by big scatter, the
refinement may converge to a local extremum (see Chapters 2.3.1 and 3.4.2). Therefore, if
the closed solution was an outlier, its adjusted equivalent might, but must not necessarily be
wrong. Therefore, in order to assure a correct final result, the current result is stored on a
list and the whole calculation is repeated for the next Remote Unit combinations on the list
of good combinations. This step is repeated until a preset number of results, coming from
different combinations, are available. In the flow chart in Figure 4.8 this corresponds to the
path where “immediate acceptance” is always no.

After the desired number of solutions was determined, the best of these has to be iden-
tified. This is newly done over the a-posteriori measurement variance s0, like described in
Chapter 3.4.3 “Solution Quality”. Finally the picked result is checked against accuracy con-
straints like a-priori error and a-posteriori error, in order to avoid the emission of solutions
with to low accuracy. If these constraints are not met, the result is dropped, otherwise it is
passed on to the output threads.

Immediate Acceptance: It has been observed that most times all adjustment results,
derived from different closed solutions, were pointing to the same position. This is no surprise
since the adjustment step takes the same measurement data in each calculation, the only
parameter that differs is the point the optimisation starts with. That is why the immediate
acceptance feature was implemented and checks the solution’s a-posteriori measurement error
s0 immediately after it was determined. If this measurement error is very small, the solution
is accepted immediately. In order to avoid bad results being accepted this way, the value for
the maximum error for immediate acceptance should be chosen within some metres.

Another immediate acceptance criterion could be the following: Results of preceding
calculations which were derived from other closed solutions, are compared to the current
result. If two or more results point to the same position, most probably both solutions are
correct. However, this check was not implemented and tested yet at the time this work was
created.
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5 Measurement Evaluation and Error Investigation

This chapter presents and discusses the results of the field test, described in Chapter 4.2.
Therefore, the best achievable results for each measurement point M1 to M4 are presented
and analysed. Sub-chapter 5.5 finally investigates different errors and gives advises for future
improvements. At this point it has to be mentioned that the outcome of the calculations was
surprisingly good, as it was the first useful test that was conducted with Remote Units in the
configuration presented in Chapter 3.1. However, as the next chapters will show, the results
are affected by systematic errors. Unfortunately it was not possible to correct them in the
calculation performed by the Target Processor prototype. The source of error is assumed to
lie in the measurements and the test setup itself; Chapter 5.5 discusses this topic.

The maximum standard deviation σmax of the solution scatter is mostly stated for error
description in the following sections. This measure has to be understood as the standard
deviation of the solution scatter in the direction of the error ellipses main diagonal (see
Chapter A.4). Also the solution accuracy constraints according to which solutions were
accepted or dropped, are always related to this standard deviation. In order to determine the
a-priori solution accuracy estimations, a measurement accuracy of σi = 10ns was assumed.
This is admittedly a really optimistic assumption, however, the value is easy to handle, as it
corresponds to approximately 3m. A measured value for the measurement accuracy σi was
not available yet when this thesis was being created.

5.1 Measurement at M1

Measurement point M1 was chosen to lie slightly outside the base lines between the RUs (see
Figure 4.2). The best results for this point were received for tuples where five measurements
could be mapped together. In this case no accuracy constraints were needed to be defined, as
all 725 tuples gave good results, leading to a final distribution with σmax = 3.65m. Figure 5.1
shows the outcome.

In the calculations where 4- and 5-tuples were respected some constraints were necessary
to be defined: Unsurprisingly, the RU combination (1, 2, 4, 5) led to bad results (see light
grey targets in Figure 5.2) as its RUs are quite distant from the mobile position. These results
were possible to be removed by setting the worst a-priori solution accuracy constraint to 5m,
so no solution from this combination was accepted anymore. This had the effect, however,
that, all in all, just 67% of the 1132 tuple matches were leading to an accepted result. A final
maximum measurement deviation of σmax = 4.02m was achievable.

However, the systematic measurement error is quite big: the distance between the mobiles
GPS position and the mean of the result scatter is 16.2m in the 5-tuple case and 15.9m in
the case where also 4-tuples were accepted.

5.2 Measurement at M2

The results of the 5-tuple mapping at point M2 are just affected by little scatter (σmax = 3.5m)
as the results in Figure 5.3 show. Accuracy constraints were almost unnecessary: Just two
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Figure 5.1: Solutions for 725 5-tuple mappings at M1 (σmax = 3.65m)

Figure 5.2: Dark grey: Good solutions for 758 4-tuple mappings at M1 (σmax = 4.02m).
Light grey: Solutions for combination (1, 2, 4, 5) which were suppressed by the
constraint setting.
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of the 504 input data tuples were leading to small outliers and had to be dropped with an
a-posteriori error constraint of 15m. Newly a quite big systematic error of 11.7m is noticeable.

Figure 5.3: Solutions for 502 5-tuple mappings at M2 (σmax = 3.5m)

The 4-tuple mappings were leading to similar problems as discussed in the previous chap-
ter. Hence, newly an a-priori error constraint of 5.5m had to be defined in order to suppress
results from combination (1, 2, 3, 5). Finally, 702 out of 843 solutions were fulfilling the
accuracy constraints and their scatter had a maximum standard deviation of σmax = 3.8m.
The systematic error in this measurement was 12m.

5.3 Measurement at M3

Measurement M3 is the only one which led to a small systematic error. Figure 5.4 shows the
calculation outcome of the 5-tuple mappings for this measurement point.

RU Rcvd. Replies RU-Transmitter Dist. Mean Residuals v [m] σv[m]
Ru1 1040 97.7m 5.3 2.3
Ru2 1383 82.9m -3.3 2.0
Ru3 1370 129.9m -5.9 1.6
Ru4 1236 81.1m 4.0 1.5
Ru5 665 43.6m -0.1 2.5

Table 2: Number of replies received per RU, RU-transmitter distances and mean residuals in
the 5-tuple calculation at M3

It is noticeable that in this measurement there were significantly more 4-tuple than 5-tuple
matches; i.e. 704 4-tuples and 355 5-tuples. The reason for this was Ru5 which had received
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Figure 5.4: Solutions for 355 5-tuple mappings at M3 (σmax = 2.7m, systematic error is
4.18m)

far less replies than the other Remote Units (see Table 2). The small distance between Ru3
and the transmitter is assumed to be the reason for this problem; The RU’s receiver unit went
most probably into saturation due to the high receiving power. However, the mean residuals
of Ru5 are not extraordinary, so the measurement quality of the few received replies seems to
be alright.

The 4- and 5-tuple calculation did not lead to interesting results: due to the central
position of the measurement point the solution scatter was just increased to σmax = 3.45m
and the accuracy constraints did not have to be set restrictively.

5.4 Measurement at M4

Measurement M4 has turned out to be a special case: The measurement point was quite
distant from Ru3 and a metal fence which had to be crossed twice by the signal, was located
in the direct way of propagation between transmitter and Ru3.

The 5-tuple results for this measurement point are shown in Figure 5.5. The left figure
contains the results, which were determined in the conventional way, without outlier detection.
There the solution scatter is very small (σmax = 2.5m), however, the systematic error is quite
big with 10.6m. For this measurement point, the outlier detection feature has turned out to
be quite effective: by enabling it, not just the solution scatter became smaller (σmax = 1.9m),
but also the systematic error decreased to 6.3m (see Figure 5.5b). The Huber-k estimator
with k = 2 · 10−8s(≈ 6m) was mostly reducing the weights of measurements coming from
Ru3: Table 3 contains the mean weights and residuals which were received at each RU after
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all 478 outlier detection calculations. Ru3 is the only Remote Unit with a low weight mean,
which means that its measurements were constantly detected to be outliers. Also its mean
residuals are big and affected by big scatter; This is also a sign that Ru3 was producing bad
measurements.

(a) No outlier detection σmax = 2.5m (b) Outlier detection activated (σmax = 1.9m)

Figure 5.5: Solutions for 478 5-tuple mappings at M4

RU Mean Residuals v [m] σv[m] Mean Weights p σp

Ru1 3.6 1.7 0.990 0.062
Ru2 -2.3 0.4 1.000 0.000
Ru3 -20.4 7.0 0.333 0.137
Ru4 2.5 0.2 1.000 0.000
Ru5 2.4 1.5 0.998 0.019

Table 3: Mean residuals and weights for 5-tuple calculation with outlier detection at M4

In a last calculation Ru3 was totally deactivated and this measure led to the best results
at this measurement point: newly a standard deviation of σmax = 1.9m was achieved and the
systematic error shrunk to 3.5m.

5.5 Error Investigation

The scatter of the calculation outcome was mostly satisfying in the test results presented
in the previous chapters. Especially the 5-tuple matches led to low scatter variances. The
systematic errors, however which cause the results to scatter around a wrong point, still

67



Figure 5.6: Solutions for 496 4-tuple mappings at M4 with Ru3 deactivated (σmax = 1.9m)

build a severe problem. Three reasons have been figured out which may be responsible for
these errors: bad GPS positioning performance, inaccuracies in the timestamping step and
problems during synchronisation. The following chapters shortly explain these issues and
discuss possibilities to overcome them.

5.5.1 GPS Positioning Inaccuracy

Wide influence to the systematic error of the calculation outcome is caused most probably by
the way the Remote Unit and transmitter positions were determined: The u-blox Lea4T GPS
timing module, installed at the Remote Units, was used to determine the positions. According
to the modules data-sheet [26] its positioning accuracy is 2.5m CEP if good satellite visibility
is given. This means that 50% of the position fixes lie within a circle with radius 2.5m
around the correct position. Additionally, all RUs had different satellite view, as the park
is surrounded by trees and houses; This even decreases the positioning accuracy. Therefore,
despite the position coordinates were determined by averaging the GPS position for around
30 minutes, they still may be affected by errors due to satellite shading, multipath etc.

Remote Units build the focal points of the hyperbolas which are intersected in the cal-
culation. The error which results out of the GPS inaccuracy, causes the focal point being
shifted and along with it the hyperbolas. The solution, which is determined by the intersec-
tion of more hyperbolas is in follow also moved to another place. Since the intersections are
different for each position, also the systematic error can vary between different locations and
for different RU combinations.
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In order to avoid such errors, the positions of RUs and measurement points, or at least
their relative positions, have to be determined with higher accuracy e.g. by using better
measurement equipment.

5.5.2 Timestamping Inaccuracies

The timestamping at the Remote Unit in its current configuration is performed like explained
in Chapter 3.1: The counter is read out at the point where the rising edge of a pulse crosses
50% of the pulses mean peak power, measured relative to the noise level (see Figure 5.7a).
However, if timestamping is performed like this, the height of the noise level and also signal
power can influence the location of the sampling point: A higher noise level e.g. shifts the
sampling point up, higher signal power shifts it down. Depending on the slope of the edge
this causes the timestamp being read out later or earlier.

(a) Edge sampling (b) Impulse middle sampling

Figure 5.7: Timestamping modes

It is important for the positioning calculation to timestamp a reply at the same point,
at each RU. However, replies are attenuated during their propagation and RUs may have
different noise levels. As a consequence, additional measurement noise may be introduced to
the time of signal arrival differences and in succession also to the calculation result. However,
the extend of this noise had not been analysed yet when this thesis was being created. At
this place it is important to keep in mind the dimensions we talk about: A Mode-S preamble
pulse has a duration of 0.5µs. Therefore, it will be sampled around 40 times at 80MHz, 160
times if also the oversampling is respected. Since electromagnetic waves propagate at speed
of light, the pulse has a width of approximately 150m during its propagation.

A better way to perform timestamping would be to take the pulses mid-point as TOA
timestamp: If the timestamps of rising and falling edge are determined at a certain power
level, the mean of these timestamps describes the impulse middle. In this case the slope
would not influence the timestamping that much, assuming that rising and falling edges are
affected by more or less the same flattening. The right image in Figure 5.7 shows an example
for impulse mid-point sampling.

The Remote Unit provides timestamps for all SSR pulses and therefore it was tried to
use different pulses for the TOA measurements and also to average the timestamps of several
pulses. However, there were no significant differences noticeable in the calculation outcome.
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5.5.3 Synchronisation Problems

The GPS timing module has a maximum achievable timing accuracy of 15ns RMS to UTC
time, according to the datasheet [26]. This corresponds to approximately 4.5m, expressed
as a pseudo range. If all RUs were affected by the same error, this would not represent a
problem, as the calculation just uses time of arrival differences. However, in the measurement
scenario every RU was synchronised to UTC separately, and so the synchronisation is totally
dependent on the GPS module: Every GPS module synchronises itself to the satellite clocks it
receives and emits the pulse per second. Depending on the satellite view or possible multipath
propagation this time pulses may be affected by different errors on different Remote Units.
The situation is even worse, as GPS modules need to know their 3D position for timing
[26] which is basically the position of the RU. However, as discussed in Section 5.5.1, also
this position may be affected by a certain error, which consequently influences the timing
performance.

Furthermore such a synchronisation has one overhead: All units are synchronised to one,
globally valid time, even though there is no need for that. It would be enough if all RUs were
synchronised with high accuracy within each other, the offset to UTC time is insignificant.
UTC time information is just needed at the point the target is reported by the TP, as every
target needs a detection timestamp. The accuracy requirement on this timestamp, however,
is much looser and so this time can be provided e.g. by NTP synchronisation of the Target
Processor.

A solution for this problem would be to use a common view GPS scenario, where all
RUs use the same satellite(s) for synchronisation. In such scenario timing accuracies of 1ns
to 10ns [31] between the RUs should be realisable. Unfortunately, the currently used GPS
module cannot be configured to use certain satellites only.

Another possibility would be a reference transponder synchronisation, where the synchro-
nisation is calculated over replies, emitted by a transponder and received at every unit [24].
This replies form common events at all Remote Units and, if the distances between transpon-
der and RUs are known, a synchronisation can be performed over them. Furthermore, the
synchronisation events would take the same way trough the Remote Unit’s electronics, as
normal measurements do. According to [24], synchronisation accuracies up to 1ns should be
achievable in a reference transponder synchronisation. In the future work on the prototype
this synchronisation method will be evaluated.
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6 Conclusion and Outlook

The last chapter of this thesis contains a short summary of the work and research which were
performed in the course of its creation. AviBit’s Multilateration project will be continued
during the next years; Therefore, the final sub-chapter gives an outlook on the planned
improvements and modifications on the Target Processor.

6.1 Conclusion

This work and especially the field test results have shown that it is possible to solve the
hyperbolic positioning problem with the theory and methods elaborated herein. The outcome
of the research was this thesis, some GNU Octave scripts for algorithm evaluation and data
representation and the C++ implementation of the Target Processor process.

The development of the TP was the most extensive task, however, also the most profit
was obtained out of it: During its implementation and testing, the characteristics and main
difficulties of the Hyperbolic Navigation calculation were explored and mainly solved. The en-
countered problems sometimes forced the development of single process parts being restarted
from the scratch, with new approaches and plenty of patience. Finally, however, a fully
functional and real-time capable Target Processor was created which exceeds the primarily
intended requirements: Besides basic features like calculation in two and three dimensions,
synchronisation and measurement mapping, the developed process is capable to perform out-
lier detection and solution error estimation. Furthermore, it is highly configurable over con-
figuration files, which makes the prototype applicable for further system development and
test data evaluation. The modular process structure makes the TP easily extensible and so
it can build the base for subsequent research.

Since a big part of the testing was performed with measurement data, obtained in field
tests, tools to manage and manipulate recording files and were developed. These instruments
were put together and form now an useful toolkit, applicable for work in this field.

6.2 Outlook

The development of the AviBit MLAT system will be continued, with the aim to install a
system prototype on an airport, which is capable to monitor the whole airport area within
the EUROCAE accuracy constraints defined in [23]. This implies that some revision work
has to be performed at the Remote Unit and also the Target Processor development will be
continued. In order to fulfil the requirements of an operational MLAT system, the TP needs
to be extended by some fundamental features.

Firstly the Remote Unit synchronisation has to be improved and be extended by the
possibility to use reference transponder synchronisation. This implies that oscillator and RU
characteristics must be analysed better in order to be able to reduce the synchronisation error.
The need for reference transponder synchronisation has two reasons: Firstly, AviBit expects
some synchronisation improvement with this way of synchronisation, as the same signals are
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used for synchronisation and for TOA measurements. Secondly, the system shall be able to
operate independently from third-party systems in order improve reliability and availability.

The TP also needs to be extended by a target tracking feature: Target tracking will facili-
tate the calculation itself as it offers approximate target positions and so solution ambiguities
and wrong convergence can be avoided more easily. Furthermore, a smoothed target output
could be provided, completed by data about target movement and statistics.

In a last step the prototype could be extended by an interrogator unit in order to build
an active Multilateration system. This would enable the system to detect all transponder
equipped objects within in its area of interest, independent of the availability of Mode-S
broadcasts and interrogations from other systems. Additionally, when knowing the accurate
time of target interrogation, an auxiliary information is available for the calculation.
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A Mathematical derivations

This appendix contains some mathematical derivations and explanations to complete the
theory explained in the Chapters 2, 3 and 4. Therefore, the illustrations mostly start with
equations which were already stated earlier in this work and explain the derivations step by
step, subsequently.

A.1 Tricky Part in Bancroft’s Algorithm

Equation (2.14) states that

〈
~x, ~x

〉
= λ2

〈
~d, ~d
〉

+ 2λ
〈
~d,~e
〉

+
〈
~e,~e
〉

where
~x = λ~d+ ~e

This result is simply received by applying the Lorentzian inner product (2.9) and doing some
derivations. To show this, the vectors ~x, ~d and ~e are chosen to be three dimensional.

λ =
〈
~x, ~x

〉
=
〈
λ~d+ ~e, λ~d+ ~e

〉
(A.1)

λ = (λd1 + e1)2 + (λd2 + e2)2 − (λd3 + e3)2 (A.2)

= λ2d2
1 + 2λd1e1 + e21 + λ2d2

2 + 2λd2e2 + e22 − λ2d2
3 − 2λd3e3 − e23 (A.3)

= λ2(d2
1 + d2

2 − d2
3) + 2λ(d1e1 + d2e2 − d3e3) + e21 + e22 − e23 (A.4)

= λ2
〈
~d, ~d
〉

+ 2λ
〈
~d,~e
〉

+
〈
~e,~e
〉

(A.5)

As seen in the last derivation step, the dimensionality does not matter and so equation (2.14)
holds for all dimensions.

A.2 Applying the Least Square Principle

As described in detail in [18], and stated in [12] and [3], starting from equation (2.19)

~m+ ~v = A ~x

we want to apply the least square principle (2.24)

S = ~vTP~v = Min |~v

on it. We do so by differentiating S with respect to ~v and setting it zero:

dS

d~v
= ~vTP = 0 (A.6)

By writing (2.19) in its differential form, we come to the following expression:

d~v = A d~x (A.7)
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Inserting (A.7) into (A.6) leads to the following:

dS

d~x
= ~vTP A = 0 (A.8)

Transponation of the previous formula and the fact that PT = P, as P is diagonal, leads to:

ATPT~v = ATP~v = 0 (A.9)

Finally we rearrange (2.19) to get the expression ~v = A ~x − ~m. Then we insert it into the
previous formula and we get to the result which is also stated in (2.25):

ATP A ~x−ATP ~m = 0

A.3 Error Propagation for the Adjustment Equations

We start with the formulae (2.58) and (2.59):

~x = F ~m = Q ATP ~m = (ATPA)−1ATP ~m

Σ(~x) = F P−1σ2
m FT

The first equation gives us the expression F = (ATPA)−1ATP which is now inserted into
the second formula and leads to:

Σ(~x) = (ATPA)−1ATP P−1σ2
m PTA((ATPA)−1)T (A.10)

as P is diagonal and (ATPA)−1 is symmetric, the transponation of these matrices has no
effect. So we get to the result:

Σ(~x) = (ATPA)−1ATP P−1PA(ATPA)−1σ2
m (A.11)

Σ(~x) = (ATPA)−1σ2
m (A.12)

A.4 Error Ellipse

A one dimensional zero mean Gaussian distribution is defined by its variance σ2. A multi-
variate Gaussian distribution is described by its covariance matrix Σ as shown in equation
(2.20). In the two dimensional case this covariance matrix looks like follows:

Σ =

[
σ2
x σxy

σxy σ2
y

]
= σ2

0

[
q2x qxy

qxy q2y

]
(A.13)

In some cases it is useful to plot the distribution, e.g. for solution scatter visualisation. This
can be done with the error ellipses which can be seen as contours of the distribution. According
to [17, p. 78] the error ellipse can be calculated as follows(1):

(1) The square on qx and qy is missing in [17, p. 78]. Simulations have shown that it is necessary, therefore
it was added here.
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a = σ0

√
1
2

(q2x + q2y + k) (A.14)

b = σ0

√
1
2

(q2x + q2y − k) (A.15)

k =
√

(q2x − q2y)2 + 4q2xy (A.16)

φ =
1
2
arctan

(
2qxy
q2x − q2y

)
(A.17)

Here a is the length of the big semi-major axis, b the length of the small semi-major axis.
φ describes the angular orientation of the ellipse. Figure A.1 shows an error ellipse for
Σ =

(
1 0.3

0.3 1

)
and centre in (0, 0).

Figure A.1: Error ellipse for Σ =
(

1 0.3
0.3 1

)
and centre in (0, 0)

A.5 Linear Regression

A linear regression between the variables x and y tries to fit a line with the following formula
through a cloud of measurements:

y = a1 · x+ a0 (A.18)

The parameters a0 and a1 are derived from a set of set of measurement pairs (x, y) in
order to minimise the squared error of the outcome. [16, pp.565] shows how these parameters
can be calculated by solving a system of linear equations. The formula was, however, modified
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a bit, in order to keep it simpler:

A~a = ~b (A.19)

A =

[
n

∑
x∑

x
∑
x2

]
~b =

[ ∑
y∑
xy

]
~a =

[
a0

a1

]

Here for x and y the corresponding values of the measurement pairs are inserted. n is
the number of measurements. As A is a diagonal 2x2 matrix it can be easily inverted to
determine ~a.
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List of Acronyms

ACAS Airborne Collision Avoidance System

ADS-B Automatic Dependent Surveillance Broadcast

ASR Airport Surveillance Radar

AWGN additive white Gaussian noise

DoP Dilution of Precision

EUROCAE European Organization for Civil Aviation Equipment

FIFO First In Fist Out (Buffer)

FPGA Field Programmable Gate Array

GNSS Global Navigation Satellite System

GPS Global Positioning System

IBK Institute for Broadband Communication

ICAO International Civil Aviation Organization

IFF Identification Friend or Foe

LOS Line of Sight

LS Least Square

MLAT Multilateration

NTP Network Time Protocol

OCXO Oven-Controlled Crystal Oscillator

PDF Probability Density Function

PLL Phase-locked loop

PPM Pulse Position Modulation

PPS pulse per second

PSR Primary Surveillance Radar

RADAR Radio Detection and Ranging

RU Remote Unit

SPI Special Purpose Identification

SSR Secondary Surveillance Radar

TDOA time difference of signal arrival

TOA time of signal arrival

TOE time of signal emission

TP Target Processor

UTC Coordinated Universal Time

WGS84 World Geodetic System 1984
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