
 I

Practices of agile development methods in

development and improvement of an open-

source community website project

A comparison of methods and strategies using agile software-development practices for the

continuous development and improvement of the Catrobat community website.

Master’s Thesis

Institute of Software Technology

Graz University of Technology

Alexander Gütler

alexander.guetler@tugraz.at

Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

 II

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

 IV

 V

Abstract

Catrobat is a visual programming language using graphical elements for building programs,

games or animations. It is based on the idea of Scratch – a graphical programming language

using a Lego®-brick metaphor – that makes it easy for kids to build their own programs without

prior knowledge of any programming language. The Catrobat community website provides a

platform for kids and teenagers to share their work with others all over the world by the use of

their smartphones and tablets.

The Catrobat community website has been developed and improved since 2010, using agile

software development methods like test-driven development, pair programming, self-organised

teams, welcoming changing requirements and many more. Depending on the structure of the

teams and the software to be developed, finding the best combination of methods is obviously

not an easy process and will need adaptation over time, as not all of the agile principles

published in the Agile Manifesto can be used in everyday software development projects.

This master’s thesis is about development and improvement of the Catrobat community

website, and highlights the use of agile methods in an open-source software-development

project with the challenge of frequently changing teams and the continuous introduction of new

team members. It also describes a new Git branching model for the use in a large open source

software development project consisting of various sub-teams and many different features to

be merged together in one release. Experiences over about three years of development and

improvement of the Catrobat community website are reported. Currently still missing features

for a successful online community are described.

 VI

 VII

Kurzfassung

Catrobat ist eine grafische Programmiersprache die es aus grafischen Elementen ermöglicht,

Programme, Spiele oder Animationen zu erstellen. Basierend auf der Idee von Scratch – einer

grafischen Programmiersprache, angelehnt an die Verwendung von Lego®-Steinen – die es

Kindern einfach macht, Programme ohne Programmierkenntnisse zu erstellen. Die Catrobat

Homepage ermöglicht Kindern und Jugendlichen ihre auf Smartphones oder Tablets erstellten

Projekte weltweit mit anderen interessierten zu teilen.

Die Entwicklung der Catrobat Homepage begann 2010 und wurde seit damals stetig erweitert.

Dabei wurden zahlreiche agile Entwicklungsmethoden wie Testgetriebene-Entwicklung, Paar-

Programmierung, selbst organisierte Teams, die Bereitschaft auf Änderungen positiv zu

reagieren und viele mehr angewandt. Unter Berücksichtigung der Team-Strukturen und der zu

entwickelnden Software sind die Kombination sowie die Auswahl der besten Methoden nicht

immer einfach. Diese müssen im Laufe der Entwicklung an die auftretenden Bedürfnisse

angepasst werden, da nicht immer alle im „Agilen Manifest“ genannten Prinzipien in der

alltäglichen Softwareentwicklung angewandt werden können.

Diese Masterarbeit beschäftigt sich mit der Entwicklung und Verbesserung der Catrobat

Homepage und beschreibt die Verwendung von agilen Methoden in der Entwicklung eines

großen Open-Source Softwareentwicklungs-Projekts. Einige der größten Herausforderungen

sind die häufig wechselnden Teams und stets neue hinzukommende Entwickler. Des Weiteren

wird ein neues „Git Branching Modell“ zur Verwendung in großen Open-Source

Softwareprojekten bestehend aus zahlreichen unterschiedlichen Teams und unzähligen neuen

Funktionen und Möglichkeiten vorgestellt, um diese in einem gemeinsamen Paket (Release) zu

veröffentlichen. Erfahrungen aus über drei Jahren in der Entwicklung und Verbesserung der

Catrobat Homepage werden vorgestellt und fehlende Funktionen und Möglichkeiten für eine

erfolgreiche Online-Plattform werden beschrieben.

 VIII

 IX

Contents

1. Introduction and Motivation for Research ... 12

1.1. About Catroid and the Catrobat Project ... 12

1.1.1. History of Catroid-Project ... 14

1.1.2. About Catrobat Mobile Application Development ... 15

1.1.3. Catrobat-Subprojects ... 15

1.1.4. Current Website Development .. 17

1.2. About Scratch ... 18

1.3. Motivation for Improving the Pocket Code community website ... 19

1.4. Agile-Development Methods ... 20

1.5. Online Communities .. 21

1.6. Thesis Overview .. 21

2. Related Work... 23

2.1. Kodu ... 24

2.2. GameMaker .. 25

2.3. Flipnote Hatena and HatenaBlog ... 26

2.4. Wario Ware D.I.Y. ... 26

2.5. Little Big Planet ... 27

2.6. Lego ® Mindstorm ... 27

2.7. Some other Online Communities ... 28

2.8. Scratch .. 28

3. Theoretical Background ... 32

3.1. The Agile Manifesto .. 32

3.2. The Agile Principles ... 33

3.3. Agile Software Development Methods .. 35

3.4. Extreme Programming ... 36

3.4.1. Values of XP ... 36

3.4.2. Principles of XP .. 36

3.4.3. Practices of XP .. 37

3.5. Test-Driven-Development .. 38

3.5.1. Methods and Principles used in Test-Driven Development .. 39

3.5.2. Quality of Tests ... 39

3.6. Testing Methods ... 40

3.7. Planning ... 40

3.8. Kanban ... 42

3.9. TDD tools ... 44

 X

3.9.1. PHPUnit .. 44

3.9.2. Selenium .. 46

3.9.3. Watir .. 46

3.10. Source code management .. 47

3.11. Continuous Integration .. 47

4. Current Research and Studies on Test-Driven Development 49

4.1. Understanding test-driven development... 50

4.2. Software- and Design-Quality in test-driven development .. 52

4.3. Test-driven Development in professional software development .. 53

4.4. Effectiveness of TDD ... 55

4.5. TDD of web-based applications and relational databases .. 59

4.6. Debugging strategies .. 60

4.7. Common mistakes in TDD practices ... 61

4.8. Conclusions on current research topics .. 62

5. Agile Website Development.. 64

5.1. Planning Games for Releases – agile estimation and planning .. 64

5.2. User-Stories .. 65

5.2.1. Story-cards .. 65

5.3. Using Kanban ... 65

5.4. Pair-Programming .. 66

5.4.1. Collective Code Ownership .. 67

5.4.2. Code Reviews .. 67

5.5. Testing .. 68

5.5.1. Unit Tests with PHPUnit ... 69

5.5.2. Database-Testing ... 71

5.5.1. GUI-Testing with Selenium .. 72

5.5.2. Test-Data-Generation .. 72

5.5.3. Programming for Testability ... 73

5.6. Daily Standup-Meetings... 73

5.7. Development-Environment .. 73

5.8. Test-Automation and Deployment Process .. 74

5.9. Continuous Integration ... 75

5.10. Usability Issues and Screen Design ... 75

5.11. Version control .. 76

6. Git Branching Model .. 77

6.1. Git and GitHub ... 77

6.2. Some best practice Git branching models .. 77

 XI

6.3. A successful Git branching model ... 79

6.4. Another Git branching model ... 82

6.5. A new Git branching model ... 84

6.6. Results and Conclusion .. 85

6.6.1. Feature development ... 86

6.6.2. Bug fixes in release branch ... 87

7. Website Improvements and newly added Features ... 88

7.1. Uploading and browsing .. 89

7.1.1. Automatic registration process on project upload ... 90

7.1.2. Automatic bad-words filter check on project upload .. 91

7.1.2.1. Black-word lists ... 91

7.1.2.2. White-words list ... 91

7.1.3. Lost username or password ... 92

7.1.4. Editing a Project’s Title and Description .. 92

7.1.5. Browsing projects on website by category .. 93

7.1.6. Remixing projects ... 93

7.2. Project details ... 94

7.2.1. Adding tags to projects .. 94

7.2.2. Recommendation of similar projects ... 95

7.3. HTML-5 player for projects ... 95

7.4. Internationalization .. 95

7.5. Website design changes ... 96

7.6. Community tools .. 97

7.6.1. Report projects as inappropriate .. 97

7.6.2. Discussion board ... 99

7.6.3. Help-pages and Tutorials .. 99

7.7. Backend functionality .. 100

7.7.1. Managing users ... 100

7.7.1. Blocking users ... 100

7.7.2. Managing projects ... 101

7.7.3. Check reported projects ... 101

7.7.4. Bad-words filter and contents ... 101

7.8. Work in progress .. 102

8. Results and Conclusions ... 103

8.1. Selenium Tests ... 103

8.2. Kanban Board and Stories .. 103

8.3. Development environment ... 104

 XII

8.4. Pair programming .. 104

8.5. New team-members ... 105

8.6. Test-Driven Development .. 105

8.7. Standup-Meetings .. 106

9. Future work ... 107

9.1. Joint venture with scratch ... 107

9.2. Registration .. 107

9.3. Online tutorials and videos ... 108

9.4. Responsive web-design .. 108

9.5. Project management and feature-lists .. 108

9.6. Improvement of the community-parts of the website .. 109

9.6.1. Discussion board (forum) .. 109

9.6.2. Remixing of projects ... 109

9.6.3. Commenting on projects and automatic bad-words filter ... 110

9.6.4. Reviewing projects and user control ... 110

9.6.5. Organizational issues... 111

9.7. Implement short development-cycles for continuous release of features 111

9.8. Help-pages: getting started, exploring, guides ... 111

9.9. Test-driven-development exercises .. 112

10. List of Figures .. 114

11. References .. 115

 12

1. Introduction and Motivation for Research

Playing computer games is a good entertainment and a great experience for kids of all ages and

genders. Within the last years, more and more games were being developed for mobile and

handheld devices instead of traditional platforms like Desktops, Laptops or Gaming-Consoles

(e.g. Sony Playstation31, Microsoft Xbox 3602, Nintendo Wii3). Many popular games are now

available for the Google-Android and the Apple iOS platforms like Google Nexus 4 phone,

Google Nexus 7 tablet, Samsung Galaxy 4 phone, Apple iPhone or Apple iPad tablet, just to

mention some of them.

This thesis is about a community website as a place for young “programmers” to share their

projects, ideas, techniques and interests about programming on a handheld device. It will

provide a very deep insight of development and improvement of the Catroid-community-

Website over 18 months, the challenges of constantly changing team-members, using test-

driven-development methods, automated unit- and GUI-testing using PHPUnit and Selenium,

the usage of a Kanban board for coordination of development, the change in the projects name

and a complete redesign of the website itself. It will also resolve some issues about website-

and integration testing (done mostly with PHPUnit and Selenium), finding the right branching

model for Git version control and using Jenkins for daily builds as explained in more detail in

”Introduction of a Continuous Integration Process in an Open Source Project” [Bur12].

1.1. About Catroid and the Catrobat Project

“Catrobat is a purely mobile visual programming system. IDEs and interpreters for Android,

iOS, Windows Phone, and HTML5 browsers are developed by a large FOSS4 team.” [Krn13].

In 2010, when development of Catroid started, there were only three small development groups,

working on an “on-device graphical programming language that runs on Android devices and

that is intended for children” [Gri11]. Based on the idea of Scratch5, developed at the MIT in

1 Sony PlayStation: http://www.playstation.com
2 Microsoft Xbox 360: http://www.xbox.com/en-US/xbox-360
3 Nintendo Wii: http://www.nintendo.com/wiiu
4 FOSS - Free and Open Source Software
5 Scratch Programming Website: http://scratch.mit.edu

 13

Boston, Catroid programs are written in a graphical LEGO-style, that intuitively shows the kids

(from an age of 8) which bricks will fit together, like shown in figure 1:

Figure 1: Bricks used for graphical programming and how they can be put together [Cat13]

With the use of the same colours as in Scratch, everyone that knows how to work with Scratch

can immediately start using Pocket Code. We are currently working on moving these two

programming platforms for kids closer together. There have already been some changes in

Pocket Code’s semantics, to better fit within the world of Scratch; as before, new objects have

been invisible by default, but in Scratch, new objects (called sprites) are visible. To make it

easier for Scratch users creating programs with Pocket Code, these semantic changes have been

applied in August 2013.

Catroid now is a part of the Catrobat-Project, consisting of more than 22 subprojects to support

integration of other platforms (iOS, Windows-Phone), supporting the LEGO MindStorm

Bricks, controlling Parrot’s AR.Drone 2.0, a HTML5-Player of the uploaded programs and

many more. The App was renamed to “Pocket Code” in summer 2013. As we changed the

name from Catroid to Pocket Code, the community’s website domain changed from

catrobat.org to pocketcode.org. This change was initiated by a new design of our project’s logo

 14

and some usability research done together with FH Joanneum Graz. Paintroid, another

application developed by our teams is an easy to use paint-editor for Android devices,

supporting easy-to-use transparency operations on images. Paintroid was renamed to “Pocket

Paint”, to promote the “pocket”-allegory we already used for “Pocket Code”.

Figure 2: New Pocket Code (left), new Pocket Paint logo (middle) and old version (right)

We are still using the working titles for these two apps, "Catroid" for the Pocket Code version

and "Paintroid" for the Pocket Paint version. This is historical, while in the beginning of the

Catroid-Project, the only supported mobile platform was Android – that is also why all our first

project names ended with “roid”, out of respect for Google’s Android6.

1.1.1. History of Catroid-Project

As mentioned in the previous section, the Catroid-Project has started with only three

subprojects in 2010 – the Catroid-IDE, Paintroid and the Catroid-Website. When programming

mobile devices got more and more interesting for students at our University, the team of the

Catroid-Project grew rapidly to more than 100 students during one semester. Handling that

many team-members was quite a challenge, especially when these students only attended the

project for about 5-10 hours a week, for the duration of 12 weeks in total. Then we decided to

start with the development of the Catroid-IDE on other platforms.

To get the new team-members ready for developing and testing, there was a need of some

tutorials, the introduction of a so called “buddy-system” 7 and the preparation of Virtual-

Machines8 for development, that helped us to skip the cumbersome process of setting up the

development-environment on different hardware (from Windows XP to Windows 7, Mac OS

6 http://www.android.com
7 A new team-member was mentored for the first two to three weeks by a senior developer, introducing coding-

standards, test-driven-development our kanban-system, to give them a better start in our team.
8 Oracle’s VirtualBox was used to provide the development-environment for the Catroid-Website; see

http://www.virtualbox.org

 15

and all kind of Linux distributions). The problems and benefits of these Virtual-Machine-

Images will be discussed later in more detail.

After the projects’ first year and in participation of Google Summer of Code9, 2011 the project

was renamed Catrobat-Project10, an umbrella organisation for all the subprojects, including

Catroid-IDE, Paintroid, Catroid-Website and many more.

In 2012 the design was renewed and the Catroid-Application was renamed to Pocket Code as

well as the Paintroid Application (for drawing on mobile phones) was renamed to Pocket Paint.

Pocket Paint is available in Google Play since June 2013.

1.1.2. About Catrobat Mobile Application Development

At the beginning of the Catrobat Project in 2010 - the name of the project was initially called

Catroid, a name to show the connection with the Android-operating-system - the applications

being developed were mainly the two Apps for Android Smartphones – Catroid Interpreter (a

Scratch like visual programming environment for kids) and Paintroid, a simple but powerful

and easy to use Painting App with some really good features e.g. handling transparency. For

version control we were first using Mercurial hosted on Google-Code, until mid-2012 and then

switching to GitHub for several reasons described later in detail in chapter 3. With the project

becoming larger every year and supporting even iOS and Windows-Phone applications, the

whole project was renamed to Catrobat, an umbrella organization, now supporting around 28

different subprojects, most of them still in an alpha development phase. The two apps from the

very beginning of our project were renamed to Pocket Code, which is currently available as a

public-beta release at Google Play-Store and Pocket Paint, which is already available at the

Google Play-Store. We are also hosting a community website (pocketcode.org) as a platform

for sharing, downloading and remixing programs created with Pocket Code.

1.1.3. Catrobat-Subprojects

The following subprojects are a part of the Catrobat Project:

 Pocket Code for Android (“Catroid”)

9 Google Summer of Code is a global program that offers post-secondary student developers ages 18 and older

stipends to write code for various open source software projects, http://www.google-melange.com
10 http://developer.catrobat.org

 16

 Pocket Paint for Android (“Paintroid”)

 Pocket Code community website

 Pocket Code for iOS (“Catty”)

Currently under development but still in alpha or beta stage is:

 Tutorial game

 HTML5/JavaScript edition

 iOS edition (beta)

 Windows Phone edition

 Android stand-alone apk builder

 Android live wallpaper builder

 Arduino I/O via Bluetooth for Catroid

 Parrot AR.Drone via Wi-Fi for Catroid, with OpenCV support

 Computer vision (similar to Scratch 2.0)

 Translators support system (pootle)

 Lego Mindstorms sensor support for Catroid

 Physics engine for Catroid based on Box2D

 Sony Xperia Play (PlayStation certified) key support

 YouTube recording of stage for Catroid

 Musicdroid that allows to enter musical notation by singing

 Catroid as a Wireless Human Interface Device (gamepad, mouse, keyboard) for PCs

and Xbox, Wii, PlayStation etc.

 Transcode Scratch programs into Catrobat programs

 Tablet Integration

 Drag & Drop in Pre-Stage

 URL shortening service for Catrobat

 Young kids version (ages 3 to 7): story-telling only version

 A website dedicated to educators using Catrobat

 Near Field Communication (NFC) for multiplayer coordination

 Multilingual wiki and forum for Catroid users for small screens

 Support for the Albert Robot of SK Telecom

 Textual language version of Catrobat

 3D version

 17

1.1.4. Current Website Development

As proposed in [Gri11], we added some more features to assist the community building process

of the website. Those features are:

 Remixing of projects

 Adding tags to projects11

 Adding a recommender system

 Commenting on projects

 Adding “like it” or “love it” button

The main design has completely changed since the beginning of the project, because there was

no display of our numerous projects on the main page of our community website as well as no

“featured projects” section. What’s more, the reduced screen size, challenges the navigating

through a great number of projects. In our first version of the Pocket Code website, the projects

were moved up and down by a button at top and bottom of the page, making it impossible to

navigate through a few hundred projects. We have changed the welcome page of the website to

show three groups of projects: most downloaded, most viewed and newest projects. Still to be

implemented is a content-management system to support the creation of a featured projects

section.

Some parts of the Pocket Code website had to be changed after running a number of usability

tests with kids, aged 9 to 11 in June 2012 [Kna12].

“To help Catrobat become more popular and to foster the collaboration of kids when making

games or animations with Pocket Code, the website still needs some improvement regarding

community issues”, [Gri11, p.61]. At the current state of development, there are still some

relevant features missing:

 adding comments to one’s own project

 tagging not only one’s own but also someone else’s project

 comment with “like” or “love it” on someone’s project [Res09]

 navigation (browsing) through projects [Res09]

 newest uploaded projects localized [Gri11, p.52f]

11 The projects’ tags and recommender system is part of our Google Summer of Code participation in 2013.

 18

 featured projects (e.g. what the community is loving, what is remixed, etc.) [Res09]

1.2. About Scratch

„Scratch is a programming language and online community where you can create your own

interactive stories, games, and animations“ and “Scratch is a project of the Lifelong

Kindergarten Group at the MIT Media Lab. It is provided free of charge“ [Mit14]

Its programming language consists of colourful graphical Lego-style objects, that fit together

only in some ways, making it easier to find the correct combinations for one’s program.

Scratch is developed by Mitchel Resnick and his team at the Boston Massachusetts Institute of

Technology (MIT). Until version 1.4 of the Scratch software, they had relied on Java-Applet

Technology, but starting from version 2, they are using Adobe’s Flash Shockwave player

technology. A major change in Scratch was, that from version 2.0 on, there was no need to

install the software locally, instead it could be used right from within a flash-player12 enabled

web-browser. Since August 2013, an offline editor for Scratch exists for downloading and

installing on Mac or Windows computers. The fact that Scratch uses Adobe’s flash-technology

to run the projects in a web-browser, limits its use to desktop and laptop computers (including

netbooks or e.g. Google’s Chromebook). It cannot be used with Apple iOS devices or current

tablet computers. There is a really fantastic and well supported community website available

with lots of materials for children and teachers, information for parents and thousands of

projects to download, remix and learn from. While writing this thesis, more than 5.085.321

projects became available from their website, with a total number of 2.980.490 users and a total

of 24.928.608 comments13.

12 Adobe Flash Player: http://get.adobe.com/flashplayer/
13 Scratch website statistics: http://scratch.mit.edu/statistics/ [Lif13]

 19

Figure 3: Scratch – new project [Mit13]

1.3. Motivation for Improving the Pocket Code community website

There are still some improvements to be made for the many users of our community website.

Users shall be able to upload their own picture or select an avatar for their personal profile page

on the website. Adding some information about e.g. one’s country, one’s interests and ideas

should also be possible. Another idea of scratch – to have groups of users creating projects

together in studios – would be nice to implement into the Pocket Code-website. Giving credits

to users in their own words when remixing one’s projects is crucial for the success of the

website and should be possible when uploading a remixed version of a project. Remixing of

projects and attribution has been evaluated by the Scratch-team in [Mon11] and [Hil10].

 20

On our Pocket Code-website 14 there are still some missing features like commenting on

someone else’s projects, presentation of work and ideas of individual users, a more detailed

description of the projects and tags to get a quick overview, what the uploaded project is about.

Currently there are only four sections on the website to present projects like featured, most

downloaded, most viewed and newest. Adding e.g. a “like this” or similar button to help users

find good projects is also essential for the success of our project. A good example of presenting

projects in different groups can be found at the Scratch-website15, e.g. “what the community is

remixing”, “what the community is loving” and featuring projects by individual contributors.

Since the number of projects and users from all over the world is growing daily, there is a need

of improvements in localization of projects. Newest projects can be shown by region (like the

user’s country) or by the user’s language.

Another aspect of improvement was changing the currently used self-developed PHP-

framework for running our community website. Developing this website has been done using

test-driven-development and the framework was supporting all features needed in the

beginning; but with more features to add, such as presenting individual projects with

screenshots and more text, the currently used PHP-framework will have to be adapted or

replaced by a more powerful one.

1.4. Agile-Development Methods

Thanks to our University, we got a large project room (with about 16-20 seats) where most of

the programming, planning, testing and stand-up-meetings have been taken place. Many agile-

methods and practices have been used throughout all our teams. “Planning game” meetings

have been held to create new features for the next release/program version. Large whiteboards

with story-cards have been used as Kanban-boards. Pair programming was done most of the

time and this particularly was a very good way to get new members of the team to build up

know-how and understand all test- and program-code. By writing tests first and having a nearly

complete unit-test coverage, there was no need for comments in our source-code. Comments in

tests were allowed when absolutely needed. Daily stand-up-meetings were held, so everyone in

the project room could get a quick overview of the other team’s work and ideas.

14 https://pocketcode.org
15 http://scratch.mit.edu

 21

One of the differences of agile software development in our open-source project compared to

commercial projects was that we neither had a customer nor a hard deadline. The customer’s

role was “played” by our professor, Wolfgang Slany. Features and releases were planned,

sometimes with only little coordination between sub-teams (e.g. Catroid and Web-team). This

led to a long delay of the final 1.0 version of Pocket Code and the need of a new Git branching

model presented in Chapter 6. Collective code ownership made it easy for us to proceed with

many team member changes on a high frequency basis.

1.5. Online Communities

Compared to other online communities, the Catrobat website should become a platform for

young people (from the age of 8) to be creative, express their ideas with the ease of a LEGO-

style visual programming language based on the idea of Scratch. Creating, sharing, remixing

and communicating one’s work with other young innovators and friends should be easy and

intuitive and become possible without the need of a Desktop- or Laptop-Computer.

Regarding parental concerns, bad or inappropriate content can be reported to the Catrobat team

with a link from the Project’s website. Reporting inappropriate content needs an explanation,

and regarding to the concerns, the project will be checked and – if necessary – removed from

the Pocket Code website. We have additionally implemented a bad-words-filter to check the

username, the project’s title and description when uploading a project. If any bad words are

found within these fields, the project will not be visible on the website and the user will receive

some information why the project will not be published. Unknown words to the bad-words-

filter are stored in a database and the Catrobat team will be informed of these new words for

approval or rejection.

As we learned from the Scratch Community website, to keep our young users motivated, there

will be no “dislike” button available, and to avoid derogatory comments on projects, a user shall

be able to deactivate the comments feature for it.

1.6. Thesis Overview

In Chapter 2, I will provide a short overview of other programming tools for kids and teenagers

and their community projects. In Chapter 3 the theoretical background of agile software

 22

development methods and the ideas behind test-driven development (TDD) will be presented.

Chapter 4 gives an overview of the current research on test-driven development and will

highlight some issues like code- and test-quality, TDD in professional software development

and the effectiveness of TDD on web-application- and relational-database-development.

The agile development methods used for development and improvement of the Pocket Code

community website will be discussed in Chapter 5, the new Git branching model used in our

project is introduced in Chapter 6, whereas in Chapter 7 the new features and improvements of

the Pocket Code-website are presented. Results and conclusions are given in Chapter 8, future

work will be discussed in Chapter 9.

 23

2. Related Work

Catrobat is based on the idea of Scratch, bringing programming to everyone on a handheld

device, without the need to learn a programming language.

The Scratch-team has developed a new version of their programming environment and released

it in June 2013 with the name “Scratch 2.0” after several years of prototyping, starting in 2010

with an early version of the new, browser embedded, development environment.

Mitchel Resnick describes one of the main changes of this new platform as followed: "Scratch

2.0 joins the programming environment with the online community so it’s much easier to create

and share".16

By integrating both, the programming environment and the website, it is more easy for kids to

use Scratch, as no installation or special hardware is needed. They just have to register for an

account and can start designing, programming, remixing and sharing. New projects are

automatically uploaded to the cloud-storage, so one’s work can be continued on a different PC

or Laptop with some internet-connection.

There are still some other programming environments with a community website oriented

towards children like Microsoft’s Kodu, YoYo Games’ GameMaker, Nintendo’s Wario Ware

D.I.Y. and Hatena Flipnote, which was closed on May 30, 2013 [Gri11] [Nin13]. With many

games developed for mobile devices like Apple’s iPad, Game consoles like Sony PlayStation

3 and Microsoft Xbox 360, there are some communities arising within the manufacturers stores,

to create and share modified levels or characters of their games, like Sony’s “Little Big Planet

2”, “Minecraft” (available for all platforms) – but all these products are commercial.

Hatena Flipnote was closed and is now continued with Hatenblog coming with a free and a paid

blog plan, with its main focus lying on users from Japan. Compared to Google’s blogger.com,

it nearly has the same features.

16 http://citilab.eu/en/resnick/scb/interview

 24

2.1. Kodu

With Kodu17, developed by Microsoft Research FuseLabs18, kids can create games on a PC and

Xbox with a simple and easy to use visual programming language suitable for everyone from

the age of 8. It can be used for teaching creativity, problem solving, storytelling as well as

programming. It can be taught by every teacher, because no previous programming knowledge

or experience is needed. Kodu is available for free to be used with a PC. The Xbox version is

commercial and only available in the USA. The Kodu community website has a discussion

board, a “worlds” section to share games with others users and many tutorial videos on how to

use Kodu. There is also a classroom kit available, supporting educators using the software in

their classrooms.

Figure 4: Microsoft Kodu GameLab community website: project overview [Kod13]

17 http://www.kodugamelab.com
18 http://fuse.microsoft.com

 25

Figure 5: Microsoft Kodu GameLab community website: project details page [Kod13]

People share approximately 350 new projects every week (08/2013), and the community

website presents the worlds in three categories: “Newest”, “Highest Ratings” and “Most

Popular”. Some of the most popular worlds have more than 2500 downloads. Projects are

shown with a thumbnail representation, the project title, the author’s name and the date of

creation. On the details page a short description is shown. Adding a “star” to one’s project,

writing and reading comments and reporting content as inappropriate can only be done when

logged in, using login-data from either Windows Live ID, Facebook or twitter [Mic13].

2.2. GameMaker

GameMaker by YoYo Games is a professional gaming studio software, e.g. “GameMaker:

Studio Family” for building applications and mostly games for nearly all platforms including

(Windows PC, Windows 8, Mac OS X, Android, HTML5, iOS, Ubuntu and Windows Phone

8). Users can share their games in a “sandbox”, review games and write comments.

Developing games with the use of rapid prototyping is really fast as the GameMaker-Studio has

everything needed to create a game inside its IDE and also use the build-in scripting language.

Compared to Scratch and Kodu, GameMaker focuses more on users with programming or game

design experience. Besides a free version of the GameMaker-Studio software, many more

commercial products starting from $49 up to $499 exist. Official tutorials, games in progress,

beta games, a wiki and various resources are available from their community website 19 .

19 http://sandbox.yoyogames.com/make/tutorials

 26

Resources include backgrounds, sprites, sounds, music, scripts and other useful utilities for

game-development. Shared projects are presented in the following categories: featured, top

rated, most played and most recent, with a total of 421.132 members, 144.112 games created

and 47.630 of them reviewed by other members of the community (08/2013). To use most of

the community website features one must be logged in. There is no “report as inappropriate”

feature and for the registration process, a name, an e-mail address and the date of birth is needed.

Some users use a real-life picture of themselves [YoY13].

2.3. Flipnote Hatena and HatenaBlog

Decreasing popularity and usage of the Nintendo DSi, which was used for creating flipbook-

like animations by the Flipnote Studio, a pre-installed software on Nintendo’s DSi handheld

gaming device, the Flipnote Hatena website and Flipnote Hatena for DSi were closed by end

of May 2013. A community service is continued in a different way by HatenaBlog, “a modern

blog service for people who love to write.”. 20 Nintendo is currently working on a new

Application for the Nintendo 3DS device and will launch the new software Flipnote Studio 3D

in summer 2013 [Nin13]. Flipnote Studio 3D includes two community services, Flipnote

Gallery: Friends as a free service and Flipnote Gallery: World, as a paid service ($0.99 per

month). Within the first service-plan, projects can only be shared with friends, within the second

service-plan projects can be shared with users from all over the world.

To foster sharing of projects and activities of users in Flipnote Gallery: World, Nintendo

provides a bonus system to get free access to the Flipnote Gallery: World, so called Coin-Points

and Collector-Points [Nin13a].

2.4. Wario Ware D.I.Y.

As Nintendo’s game Wario Ware D.I.Y. is not available for the new Nintendo 3DS device, the

micro game-development is no longer available.

Created games could be played on Nintendo Wii as well as shared online [Gri11].

20 http://blog.hatena.ne.jp/

 27

2.5. Little Big Planet

Sony has shipped their Playstation3 gaming console with the famous puzzle platform game

Little Big Planet (short LBP)21, focusing on user-generated content and the principles play,

create and share.

The experience of it is best described by:

“If you were to stand on LittleBigPlanet and try to imagine a more astounding, fantastic

and creative place, full of enthralling adventure, uncanny characters, and brilliant

things to do... you couldn’t. All imagination is here, and what you do with it all is entirely

up to you.” and “The possibilities are endless with LittleBigPlanet. So, what do you

say? Let’s get out there and play!“ [Son13].

Currently there are more than 8.000.000 games (=levels) available on the community website,

easy to use for children with tags categorizing each game. The levels can be starred, liked, put

together on lists and downloaded to play. The community website as well as the tags are

available in many different languages.

2.6. Lego ® Mindstorm

With the new programming environment in Lego® Mindstorm EV322, it gets really easy for

kids starting to program their own functioning robot. At first, an app can be downloaded on an

iOS or Android device to have an instantly available remote-control for the Lego® robot out of

the box. After some first experiments with controlling one’s robot (that is really easy to build

within about 15-30 minutes by kids aged 12 or older), a graphical programming development

environment, powered by LabVIEW 23 can be downloaded to either a Windows or Mac

computer. Installation is really simple and the programming environment comes with some

video-tutorials (from one up to five minutes), showing the basic principles of programming

(variables, conditions and loops). The sensor-blocks of the system are also demonstrated – and

again –programming can be done within only a few minutes. After uploading the new program

to the robot via USB, Bluetooth or WLAN, kids can present their work to their parents. The

system also provides the possibility to create own program blocks with more complex

functionality inside. Building-blocks are organized in colors, where each group has different

functions like loops, variables, sensors, arithmetic and others.

21 http://lbp.me
22 http://www.lego.com/en-gb/mindstorms/?domainredir=mindstorms.lego.com
23 LabVIEW: http://www.ni.com/labview/

 28

Figure 6: Lego Mindstorm Programming environment [Leg13]

2.7. Some other Online Communities

Today, there exists a great number of community-websites for interaction. One can find these

systems useful or useless, depending on the benefits of these systems. In Facebook e.g., there

are a lot of games, chat-possibilities, sharing tools and other nice things to have inside a digital

community.

2.8. Scratch

Scratch was created and developed by the Lifelong Kindergarten Group at MIT by Mitchel

Resnick and his team. As programming was taught in schools by using hard to learn

programming languages - and because at the time (2002), there were no easy ways to learn

programming languages available for kids – they started to develop a new, visual programming

language to support the way kids where thinking and make programming easier and more

intuitive. “Scratch uses a building-block metaphor where blocks only fit together in syntactical

correct ways, so the users will not have to care about syntax-errors, that are one of the biggest

issues when teaching kids how to program." [Res02]

 29

Figure 7: Scratch 1.4 programming editor window [Res09]

Scratch has developed these blocks to easily fitting together in a way like Lego blocks do - so

users can choose any blocks needed for the next steps of their program. Blocks can be dragged

into the scripts area and even lay there unused, until they are needed. This way of programming

fosters young users to play around with the bricks and try out or run small parts of their program

instead of first building a complete version of it.

Figure 8: Scratch programming blocks [Res07]

 30

The three core design principles of Scratch are: “make it more tinkerable, more meaningful,

and more social than other programming languages” [Res09].

Users can create a various number of different programs with Scratch, like stories, games,

animations and simulations. Programs can be personalized by adding own pictures, recorded

voices and graphics.

Since Scratch was launched in May 2007, the Scratch website became an online community

with mostly young people sharing and remixing projects. The biggest invention of Scratch was

the combination of the programming environment with an online community. In that

community kids could “show” their work to friends and download programs from other users

to see how they did implement special features in their programs (that were mostly games,

stories and presentations). Users can also add comments to other users work and rate it by

“loving” it. To keep kids motivated and prevent them from “bashing” each other’s work, only

positive ratings could be given. A “don’t love” button is not available. Users can also give credit

when remixing another user’s project. By giving credit to another user’s work, kids can use the

ideas of others like graphics and sounds within their own projects and by doing so, they learn

to respect others work by naming the authors and giving credit [Res09][Res02].

To help other “Scratchers” with their questions and to make sharing of one’s programs easier,

a community website was brought up together with the Scratch programming language. Users

can upload their projects, comment on projects of other users and find support and help.

Registration is very easy and no personal data, except statistical information about year of birth,

country, gender, nickname and e-mail address is stored. As by 2009, about 15% of uploaded

projects were remixes. As a future goal of Scratch, “the primary focus lies on lowering the floor

and widening the wall, but not raising the ceiling” [Res09].

MIT has launched a new Version of Scratch (2.0) in summer 2013 with many new features and

some technological changes. The program editor can now be loaded directly within the browser

window, projects can be stored in the “cloud” and even variables can be made available to other

projects via cloud-storage technology. While the 1.4 version of Scratch was using a Java-applet

player, the new 2.0 version uses shockwave/flash for their player. This limits the use of scratch

on mobile devices, as both, Google on Android- and Apple on iOS-platforms do not support

Flash.

 31

Programming with Scratch 2.0 can easily be done by just visiting the Scratch website24 and

clicking on “create”. There is no need to register first when wanting to just try it out. Scratch is

available in many different languages, has a large online community and supports teachers and

parents with online tutorials and teaching materials like tutorial cards. Projects can be

downloaded from the Scratch website, remixed and shared again by giving credits to their

creators.

24 http://scratch.mit.edu

 32

3. Theoretical Background

Since the publication of the “Agile Manifesto” in February 2001 by seventeen people in a Ski

resort in Utah, USA, the style of programming has changed persistently. Introduction of the

agile methods for software development, also known as Extreme Programming (XP) has

changed the daily work for many software developers [Agi01], [Bec05].

Agile Development can now be found in all commercial software projects from small to large

companies as well as in open-source development and university-studies.

In the next subsections I will give a theoretical background of the XP-methods and in Chapter

5 a detailed overview what practices were used for development and improvement of the

Catrobat community website (pocketcode.org) as well as the benefits and disadvantages we

have faced with agile development methods and practices. I will outline, what methods worked

best for us, where and why we needed to customize them to fit our team structure and

development process, and which of the methods didn’t work at all. As social issues are a major

success factor in building teams in a large FOSS development project this work will examine

their influence in the context of extreme programming.

3.1. The Agile Manifesto

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

1 - Individuals and interactions over processes and tools

2 - Working software over comprehensive documentation

3 - Customer collaboration over contract negotiation

4 - Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

[Agm01]

“Individuals and interactions over processes and tools” - It is more important to have a good,

motivated team with time to talk about your product and features, instead of sticking to a strict

 33

process and tools when developing software. Sometimes it can still be useful to have a strict

process-guide – but most of the time, it is not!

“Working software over comprehensive documentation” - Shipping software that works is

more important than spending large amounts of time writing documentation. Tests are, when

easy to read and execute, a good and sufficient documentation. Documentation of how the

system works and how it can be configured can of course be provided, and sometimes must be

provided for the users of the system, but the details of its implementation shouldn’t need extra

documentation when there are tests for each feature.

“Customer collaboration over contract negotiation” - Communication and collaboration with

the customer should always be preferred over arguing about contract-details. In fact, a written

contract is important to list the responsibilities for both parties. It also provides a good

understanding of what is being developed and will be delivered.

“Responding to change over following a plan” - Having a plan in the beginning is a good point

where to start. But as plans will change over time (they will!), it should be possible to make

changes to it, whenever needed. Of course these changes have to be confirmed and committed

by both parties. The concepts of these four statements on the right side should be valued, but

the ideas on the left hand side should be valued even more [Agm01] [Amb13].

But what does agility mean? Andy Hunt gives a good explanation in [Hun09, p.4], within only

one sentence: “Agile development uses feedback to make constant adjustments in a highly

collaborative environment.”

3.2. The Agile Principles

The twelve principles of agile software development where given by the authors of the agile

manifesto to give a better understanding of their philosophy [Agm01], [Abm13], [Bec03]:

1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

 34

5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity - the art of maximizing the amount of work not done - is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behaviour accordingly.

There exist several methods that will help to achieve the benefits of the agile software

development principles mentioned above, which are discussed in the next sections. These

methods are no “silver bullet” or the “one-and-only solution to build great software”, but by

following these principles of agile software development both developers and customers will

be more satisfied with the results they get – high quality software and a reliable product.

 35

Figure 9: Projects being released in today’s software development25 [Ssw13]

3.3. Agile Software Development Methods

Within agile software development, many methods have evolved and new combinations of

existing ones can be found, some of the most popular of them are: Extreme Programming (XP),

Kanban, Test-Driven Development (TDD) and Continuous Integration (CI). There also exist

some derivations of test-driven development like feature-driven development (FDD) and

behaviour-driven development (BDD). The word “agility” was defined by Andy Hunt in

[Hun09, p.1] as follows: “being able to quickly adapt to an unfolding situation”. The agile

approach to software development “emphasizes people, collaboration, responsiveness and

working software” [Hun09, p.1].

25 http://rules.ssw.com.au/Management/RulesToBetterScrumUsingTFS/Pages/default.aspx

 36

3.4. Extreme Programming

Extreme Programming (XP) “is about writing great code that is really good for business”,

[Bec05]. As with every new style of programming, the XP practices result in controversial

reactions. With the introduction of XP programming practices by Kent Beck et. al, a new way

of software development came up. What exactly is XP? “XP is a style of software development

focusing on excellent application programming techniques, clear communication, and

teamwork which allows us to accomplish things we previously could not even imagine”

[Bec05].

There is no right way to do extreme programming. As XP consists of many practices and

methods, they can be combined as they fit best in a development team. The values, principles

and practices of XP are presented in the next subsections.

3.4.1. Values of XP

There exist five values of XP: communication, simplicity, feedback, courage and respect.

Communication is very important in software development. For many problems there already

exists a solution - some team-member will know. Simplicity is defined by Kent Beck in [Bec05,

p. 7]: “what is the simplest thing, that could possibly work?”. Feedback is essential when there

is some need of change. The sooner the team gets some feedback, the easier it is to implement

the changes for the next release. Courage is to face a problem and do something about it,

because sometimes it takes some time for the problem to evolve and to become clear. The last

of the five values of XP is respect. The team should care about the project and care about the

team members, so everyone in the team should be respected [Bec05], [Hun09].

3.4.2. Principles of XP

Some of the basic principles that guide XP are: humanity, economics, mutual benefit,

improvement, diversity, reflexion and quality. There should be a good balance between

programming and other human needs, like recreation, socialization or some exercises. Highest

priority tasks should be completed first, to maximize the business value for the customer and

make the software more valuable. Mutual benefit can best be described with not writing internal

documentation. When there are tests for all parts of the code, refactored regularly and following

a good and meaningful naming convention, there is no need for documentation.

 37

The saved time can be spent for implementing new tests and new features, again. Improvement

is best described by Kent Beck in [Bec05, p.28]:“Put improvement to work by not waiting for

perfection. Find a starting place, get started, and improve from there”. Diversity is an

opportunity and not a problem. Having more than one solution for a problem can make the best

out of it. Reflection should come after action, to think about how and why the team is working.

Quality should not be used as a variable for control, developers should be proud of the system

they are developing.

3.4.3. Practices of XP

Some of the XP practices stated by Kent Beck [Bec05] are given below:

 Sit together: it is important to find a suitable workspace for the team that fosters direct

communication

 Whole team: means all the skills you need should be in the team

 Informative workspace: put story cards on a wall, e.g.

 Energized work: don’t burn yourself – “it’s easy to remove value from a software

project; but when you’re tired, it’s hard to recognize that you’re removing value.”

[Bec05, p. 41]

 Pair programming: program in pairs, by using only one monitor, keyboard and mouse

and regularly change the typing-role; change pairs regularly; it can be compared to

driving a car: one is the navigator, the other stays on the road.

 Stories: write story cards defining the task with an estimation of time

 Weekly cycles: work should be planned weekly

 Ten-minute-build: the process for building the whole system and running all the tests

should be done within ten minutes

 Continuous integration: changes should be integrated and tested every few hours to get

immediate feedback on time

 Test-first programming: work in small cycles - write a test, write the code, refactor the

code – so it is always clear what has to be done next: fix the broken test or add a new

one

 Incremental design: implement only things that are needed today, do not think of future

features

 Onsite customer: it is good, to have one of the customers sit next to team, if not possible,

the team should have regular meetings and keep the customer well informed

 38

[Bec05], [Sho08]

3.5. Test-Driven-Development

The idea of test-driven development (TDD) with only one sentence was best described by

Koskela [Kos08, p.4]: “Only ever write code to fix a failing test”. As this is quite hard to

believe, it keeps us on track to only build features we will need, because there was a test written

before. Following these small steps by writing a test, adding some code, and so on, we will get

a clean, lean design, a (nearly) full test-coverage – as there are some tests that cannot be written

or shouldn’t – and as a result, code that just works.

Software changes over time, new features have to be added, existing ones need to be removed.

Without having tests for all the modules and classes that need to be extended or changed, the

risk of breaking existing functionality is high. But it’s not only the isolated unit-test, that gives

us confidence of not breaking existing features, there are much more tests around the system

like integration and acceptance tests. By running all the tests we can be sure that no side effects

are going to sneak into the existing codebase.

One cannot expect a quality boost from a post-development testing phase after the code is

complete. Testers in traditional software development processes wait for features to be finished

and spent their time reading requirement documents and creating test plans based on these

documents [Cri09].

The five main steps of TDD are manifested as [Bec03]:

 write a small test

 run all the tests and see the newly added test fail

 make the simplest possible change in your code to make the test pass

 run all the tests and see them all pass

 refactor your code to remove duplication

These five steps shall be iterated until all tests needed for the production code are in the system.

To achieve a high quality of tests, the focus should not be on writing a large number of tests,

when only a few will suffice. One must always keep in mind that tests will also need refactoring

over time when new features are added – and as Whittaker writes in [Whi10], sometimes it is

better to trash old tests if the underlying logic changes too much and old tests would need to be

entirely rewritten. Test-driven development is also about writing and designing code to be

testable.

 39

3.5.1. Methods and Principles used in Test-Driven Development

The principle of writing small (unit) tests, testing the right things and keeping source-code and

tests clean by refactoring after each change (when needed) and removing duplication should

always be kept in mind during development. Tests should aim for quality rather than quantity

and should maximize speed. With mock- or stub- objects, database or file-system access can be

simulated, to test for speed variables. Granting everyone in the team access to the whole code

gives all members the opportunity to correct failing tests caused by broken code. This collective

code ownership spreads the knowledge around the team and should minimize the so-called

“truck-factor”26.

The following principles and methods are used with TDD:

 Always write the tests first

 Write tests and code, not documentation

 Keep refactoring and remove duplicate code

 Make the tests run automatically, e.g. after every commit to the master-branch.

 Often integrate and run integration and acceptance tests

 Keep collaborating and communicating – use pair programming and regular stand-up

meetings to exchange solutions of problems and discuss current state of development

and testing

[Bec03], [Bec05], [Kos08]

3.5.2. Quality of Tests

The quality of tests can be measured with statement coverage or defect insertion. Statement

coverage, it should be 100 percent, is not the best metric for measuring test quality, but it is

quite useful to gain a quick overview. Besides there are a number of tools available27. The other

method is defect insertion: by changing only one line of code the tests should fail. Here it

depends on the line that has been changed, while a different return value of a constant might

not break the tests at all [Bec05].

26 Truck-factor or bus-factor: „is a measurement of the concentration of information in individual team members“

(http://en.wikipedia.org/wiki/Bus_factor)

27 Code coverage tools: http://c2.com/cgi/wiki?CodeCoverageTools

 40

3.6. Testing Methods

There are many different methods for testing, depending on the purpose of the tests, the context

and the knowledge of the system. The first question asked is: what shall be tested - the behavior

of the system, response time of a module or the correct return value to some given input? Based

on these questions, the following testing-methods are frequently used:

 White Box Test: the behavior of the system and all classes and interfaces are known,

the tests focus on detailed system knowledge

 Black Box Test: only public interfaces of the classes are known, the tests focus only on

the return values

 Grey Box Test: only some behavior and interfaces and classes of the system are known

 Unit Test: smallest part of a test – each test is used to test only one part of the system; a

group of unit tests can be combined in a test-suite.

 Integration Test: by adding new features to a running system the integration is verified

by running all tests and some extra tests with their only focus on the integration of the

new features

 System Test

 Acceptance Test: tests of all user stories

 Regression Test: adding new features or changes in configuration can lead to some side

effects that can be discovered by regression tests

 Usability Test: tests based on usability issues, normally only on graphical interfaces

(GUIs)

 Mutation Test: by changing or removing small parts of classes or functions, some tests

should fail; if they don’t, this will show that some tests are still missing.

 Performance Test

 Security Test

Depending on the purpose of the software system, these tests shall be combined to reduce the

number of defects prior to the release of the system.

3.7. Planning

For a project, we have four variables that directly affect its outcome: cost, quality, time and

scope. As we normally cannot influence cost and time (these are fixed by the customer), the

only two remaining factors for a project are quality and scope. By delivering poor quality we

 41

will dissatisfy our customer, so now the only remaining factor is scope. By asking the customer

to prioritize all required features, we will get most of the information we need for planning

[Bec01], [Bec05].

Planning is essential for all kind of software projects and should be refined, whenever facing

changes in the customer’s requirements or the project itself. “Sticking to yesterday’s plan

despite a change in circumstances is a recipe for disaster” [Hun09, p.43].

Figure 10: sticking to a plan [Ras10, p. 5]

And, “Plans are not predictions of the future. At best, they express everything you know today

about what might happen tomorrow” [Bec05, p.92], gives a good argument, why we should

plan now and maybe change the plan tomorrow, based on our experiences we had last week. A

good way to get a common feeling of the project’s scope and the requirements and priorities of

our customers is to have a “planning-game” meeting.

In the “planning game”, a common understanding of all stories, their effort and their priority

should become evident to all project members, developers, customers and project-managers.

Stories are written on index cards and put on a table or a wall. These stories will be discussed,

estimated and prioritized.

The planning game consists of the following four steps:

1. Create a new story or select an unplanned story – the story should contain a short

description and the creator of the story, to answer questions during implementation

2. Estimate the story – this can be done either by the programmers, who will later go to

implement the story, or by the team. Discussions on different efforts are welcome. In

some variations, it is suggested to remove the highest and lowest estimation, others

repeat the estimation until most of the estimations are equal. The possible values of

 42

these estimations should be limited to some specific numbers, e.g. 1,5,10,25,50 and 100.

These numbers shouldn’t stand for development hours, they should reflect the

complexity of the story.

3. Customers prioritize the story – this can and should later change when new stories come

up. Stories depending on each other should be marked.

4. Repeat steps 1 to 3 until all stories are estimated.

Communication is essential when estimating and prioritizing stories. While customers won’t

understand, why a feature is so expensive in development and vice versa, programmers won’t

know what is really important to their customers, so this will lead to features not valuable to

them. Discussion of stories should lead to a common understanding.

[Sho08], [Bec01], [Bec05], [Coh10]

In the Catrobat-Project we have used coins from a poker game for estimating the effort of each

story. The only available numbers are: 1, 5, 10, 20, 50, 100 and 200. These “costs” stand only

for the complexity and effort guessed, when discussing the story within the planning-game for

a new release. We didn’t track the stories development effort (in time), so no conclusion to the

planning accuracy could be made.

3.8. Kanban

The Japanese word “kanban” can be translated to “signal card”, first used in the Toyota factory

environment, to show the factory workers, that there is upcoming work to do. Unless the

workers aren’t shown a Kanban-card, they have to wait for the next steps of the work process

[And10]. Kanban is also used in software development, to visualize current workload, backlog

and things that are ready for release. “The Kanban-System is a pull system, because new work

is pulled into the system when there is capacity to handle it, rather than being pushed into the

system based on demand” [And10]. In software development, the Kanban-cards represent user-

stories or simple tasks. A Kanban-Systems helps track the work in progress and gets a fast

overview of what is currently being developed, which stories are waiting to be done next or are

already finished. The cards used on the Kanban-board are small A5-sized sheets of paper with

the following contents: priority of story, creator of the card (to be asked, when there is a

questions regarding the story), the story (=task) itself and the complexity of the story as well as

references of stories, depending on other story cards.

 43

Figure 11: Kanban-story board of Catrobat’s web-team

The Kanban-board is also a good place where the daily standup-meetings about the current

development and upcoming features can happen. The only disadvantage of Kanban for

distributed teams is, that the board has to be synchronized daily either by an electronic version

of the Kanban-board (e.g. Atlassian’s Jira28) or a simple and shared spreadsheet, updated

regularly.

Figure 12: Virtual Kanban-story board of Catrobat’s web-team using Atlassian’s Jira

At the beginning of the website development for the Catrobat-project we took weekly pictures

of the Kanban-board and put them on our projects’ internal Wiki-website to have it available

28 https://www.atlassian.com/software/jira

 44

for all members of our team. The Kanban-System can help agile development teams to keep

track of all important features that need to be implemented and gives a quick overview of a

team’s workload and development velocity. [And10]

3.9. TDD tools

There are a number of frameworks that support test-driven development, writing of tests and

running them within integrated test-suites or built-in directly to the programming IDE, e.g. the

JUnit plugin for Eclipse or the Selenium-IDE as a simple to use add-on for the Firefox web

browser.

Important features of these TDD-tools are some test-setup and test-teardown functions, making

it easy to run all tests with the same pre-conditions and do a full cleanup, after the tests are

finished. These Frameworks also provide some kind of mocking tools, to keep the tests running

isolated and fast. This is of great importance when running tests depending on databases and

their related data or using data over network connections, that will not be fast enough to run all

tests within a short time [Sho08] [Sel13].

In the next two subsections I will provide a short overview of PHPUnit and Selenium, relevant

for test-driven website development in the Catrobat-Project as well as some limitations of these

frameworks.

3.9.1. PHPUnit

PHPUnit is a framework to support writing and execution of unit tests for the PHP-

programming language based on the original JUnit idea. The framework provides most of the

needed assertions like assertEquals(), assertNotEquals(), assertTrue(), assertFalse(),

assertNull() and so on. All assertions should be used “as they are” and should not be inverted

for a better readability and understanding. For this reason one should prefer to use

assertNotEquals() instead of not assertEquals().

PHPUnit will only report failing tests. Running a successful test and feedback on tests still

running is visualized by a dot on the console, while an error will produce an “E” output on the

console. The execution of a running test-block will stop immediately after a single test fails.

Some details of the failing test will be printed out on the console (see figure 14).

catroweb@webbox:~/Workspace/Catroweb$ make run-phpunit-catroid-tests

 45

Run PHPUnit Catroid Tests...

PHPUnit 3.6.12 by Sebastian Bergmann.

..............E................

Time: 1 second, Memory: 9.25Mb

There was 1 error:

detailsTest::testGetTags Missing argument 1 for detailsTest::testGetTags()

/home/catroweb/Workspace/Catroweb/tests/phpunit/catroid/detailsTest.php:139

/usr/bin/phpunit:46

FAILURES!

Tests: 31, Assertions: 47, Errors: 1.

Generating code coverage report in HTML format ... done

make: *** [run-phpunit-catroid-tests] Error 255

catroweb@webbox:~/Workspace/Catroweb$

Figure 13: PHPUnit test-results

Automation of PHPUnit tests can easily be done by using Ant- or Python-scripts e.g. Using the

setup- and teardown-functions after each test-block, the test-framework provides an equal

environment (e.g. individual test-data records) for running all the tests with the same user

defined pre-conditions. For each failing test, a detailed test-report will be generated by the test-

framework, listing the test-class, the line-number where an assertion failed, as well as the

expected and actual values of the assertion. Christian Johansen [Joh11, p.36] describes it as

following:

“It’s a lot easier to spot what a test is targeting if it compares two values with

assertEqual(expected, actual) rather than with assert(expected == actual). Although

assert is all we really need to get the job done, more specific assertions make test code

easier to read, easier to maintain and easier to debug.”

PHPUnit has also some code coverage features to calculate the actual test-code coverage while

recording which functions where called during the test-runs. It can explicitly list the missing

functions to achieve higher or complete code coverage. PHPUnit has built-in Selenium 2.x

server support, and provides tools for test-doubles like mock-ups and stubs. Moreover, the

framework can generate some automated documentation from a tests’ class name like

“testBalwanceIsInitiallyZero()” and will be listed in the report as "Balance is initially zero"

[Php13].

 46

3.9.2. Selenium

Selenium is an open-source web browser test and automation framework. There are currently

four active Selenium projects. I will give a short overview of the basic principles of each of

these versions: Selenium IDE, Selenium Remote Control (RC, 1.x), Selenium WebDriver (2.0)

and Selenium Grid.

First, Selenium IDE is an easy to use Firefox add-on that can record user actions and playback

tests in a web browser session. It can also be used for generating code to run tests with Selenium

Remote Control. Selenium Remote Control can be used to control web browsers on the local

computer as well as on other remote computers. Tests can be written in any programming

language to control the Selenium Remote Control Server. With Selenium WebDriver, some

limitations of Selenium Remote Control could be solved. It provides a compact, object-oriented

API written in Java and can handle file up- and download, pop-ups and modal webpage dialogs.

Selenium Grid distributes running tests on many servers at the same time, so it can be used to

test multiple operating systems or browsers and reduces execution time by parallel test

execution. For the use of each of the versions, the web browser needs to have JavaScript

enabled. The framework’s test-suite can process web pages based on their document-object-

model (DOM). Assertions like if an element with a given ID exists or if a button with a specific

name is visible and clickable on the website can be defined for example [Sel13].

3.9.3. Watir

Like Selenium, Watir is an open-source test and automation framework that has a large library

of Ruby scripts to automate and test web browsers. The Watir-WebDriver supports all current

browsers, like Chrome, Firefox, Safari, Internet Explorer and Opera. It also has built-in support

for HTMLUnit [Wat13] and runs on Windows, Mac OS X and Linux. “Watir is pronounced

water, and it stands for Web Application Testing in Ruby.” [Zel12, p.1]

As Watir is written in Ruby, all of the Ruby features can be used for browser test-automation,

like database access, file-system operations, XML processing and many more. Nearly all user

interactions within a browser can be controlled using Watir: clicking a link, checking if some

link with given ID is available or visible, and if some element on the webpage exists. But

browser plugins like Adobe Flash, Java applets or Microsoft Silverlight cannot be controlled

using Watir. [Zel12]

 47

3.10. Source code management

Source code management (SCM), version control systems (VCS), source control or revision

control systems (RCS) are all similar mechanisms to keep track of all files in a software

development project. These files can be program-code, images, configuration-files, libraries,

style-sheets and any other type used in the project. With SCM every version of each file can be

stored and retrieved. Tags help development teams to logical mark special versions of their

files, and branches can be used to separate development of features, that can later be merged

back into the master (sometimes also called master branch, main-branch or mainline). It also

helps to track development speed, the number of commits, the number of resolved issues and

newly added features, as well as the programmer who is responsible for the changes committed.

Changes should be regularly checked in to be available immediately for everyone in the team.

SCM-systems also provide an automatically created overview of the latest commits with its

changes. Each commit should have a short and characteristic commit-message that makes it

easy for other team-members to classify them, e.g. saying that a new feature was added

[Hum11] [Bur12] [Cha09].

Version control in the beginning was mostly done by RCS, CVS or Subversion. In today’s

software development departments, most of the teams use Git (e.g. on github.com) or Mercurial

(e.g. code.google.com) for source code management.

In the Catrobat-Project we used Mercurial29 as our first source code management. Starting out,

we hosted the version control system on our own servers. Later in 2011 we moved our project

– this was also our first year of participating in Google’s Summer of Code – to

code.google.com30, and switched to GitHub31 in late 2012 because GitHub provides powerful

integration features that work well together with Atlassians’s Jira32, which we started to use for

our project- and issue-tracking.

3.11. Continuous Integration

In traditional software development the integration part of the development process started

when development was finished. Continuous Integration (CI) is practiced from the beginning

29 http://mercurial.selenic.com/
30 https://code.google.com/p/catroid/
31 https://github.com/
32 https://www.atlassian.com/software/jira

 48

of a software development project, running e.g. nightly builds for the whole system developed

so far and creating a build from the current state and executing all tests after a commit to the

projects’ mainline. Commits should be done more often and the whole CI-system should run

automatically. Very important for a successful CI is the commitment of the development teams.

Builds should be finished within a short time and all tests should run through fast. Without

these requirements, programmers will not be able to get their feedback in time. When a build

fails, programmers should take responsibility for fixing it, even if the error occurs in a different

part of the source-code committed [Hum11].

As described in [Bur12, p.11], “Since the traditional integration process often leads to project

delays, continuous integration (CI) deals with this problem in a completely different way.“

continuous integration helps to build the whole project and run all the tests, to see if the latest

changes committed to the mainline of the project still keep the build green and the program

works. All this is done automatically without the need of the programmer’s interaction. Within

the Catrobat-Project, continuous integration was used for the core development teams of the

programming IDE named Catroid and the drawing tools for mobile devices named Paintroid.

These subprojects used Jenkins33 for test-automation (integration testing and automated builds).

The Catrobat-Website project was integrated in February 2013 to run automated builds after

each commit to the master-branch.

33 http://jenkins-ci.org/

 49

4. Current Research and Studies on Test-Driven Development

Many studies, reports, experiments and papers focus on test-driven development and test-first-

design. Until today there are only a few papers available that address the effectiveness of test-

driven development (TDD) and list some negative aspects about this concept. Most of the

experiments have been held in a small-scale programming environment or in computer science

classes of university lectures.

While Kollanus is questioning, whether TDD is still a promising approach in [Kol10], Kollanus

is further investigating critical issues on TDD in [Kol11] and presents two experiments of

understanding TDD in an academic experiment [Kol08].

Others focus on the quality of testing in TDD [Cau12], finding bugs [Wir09] and the resulting

code-, software- and design-quality [Jan08] when applying TDD in commercial software

development [Ren08].

TDD is also compared in professional software development [Mar07] and the handling of

refactoring an existing application with lots of legacy code [Ber12]. A short comparison of how

some of the currently biggest IT companies - Microsoft and Google - test their software is given

[Whi12] [Pag09], and some best-practice examples from the Google Testing Blog 34 are

presented.

Further research is focused on the effectiveness of TDD [Tur10] [Erd05] and unit test

automation [Wil09]. In [Abr11], Abrantes gives an overview of common agile practices in

software processes, whereas Goldman presents a new model of pair programming in [Gol10].

Some methods of testing web-based applications are presented in [Luc06], strategies for

debugging in [Mur08] and test-driven development of relational databases (TDDD) in

[Amb07].

At last some common mistakes in TDD practices are shown from Aniche and Gerosa in

[Ani10].

34 http://googletesting.blogspot.com

 50

4.1. Understanding test-driven development

In [Kol08] the difficulties of students using test-driven development (TDD) and some aspects

of teaching TDD have been analysed. TDD causes “high cognitive load, even for advanced

students”, and for this, requires teaching its fundamental basics in more detail.

Kollanus let his students do the bowling game kata35 example to get the basic principles of TDD

by self-learning.

Bowling is quite familiar for students in the United States. In central Europe the rules of

bowling are not obvious to everyone, so a different kata with better-known problems should be

used, e.g. the prime-factors kata36 or the string-calculation kata37. Doing a programming-kata

before starting your daily work will improve your skills. “Kata” is a Japanese word and means

“form”. As in martial-arts, where a kata is repeated for many times, it lets you learn and

remember the movements. The same can be done in software development to enhance your

skills and remember the patterns used [Pro12].

Another way of training TDD in teams is a coding-dojo, where a small group of programmers

come together to work on a coding challenge to improve their skills and to have fun [Cod12].

Kollanus’ experiment in [Kol08] consisted of students having to do some assignments using

TDD in winter term 2006. After the assignments, students have been asked several questions

on their experience using TDD, with most of them not having any experience in TDD. Students

had to rate, how hard the use of TDD was for them, whether they will be going to use TDD as

well after the assignments and the aspects, which they found the most difficult in the

assignment.

Some didn’t know exactly what kind of tests they should write, others had problems using the

given tools like JUnit. Kollanus concluded that teaching TDD is essential, as most students

weren’t familiar in how to write a test, how it should look like and how to use JUnit assertions.

Students also didn’t understand why trivial functions also needed to be tested. In a second

experiment the results reported by students were “better trust in the code”, motivation and

TDD was kind of a design-method. Like in the first experiments, the need for teaching TDD

first in more detail and showing how to write tests is essential for the understanding of it.

35 http://www.butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
36 http://www.butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata
37 http://osherove.com/tdd-kata-1/

 51

The critical aspects and viewpoints of TDD have been researched by Kollanus in [Kol11]. He

focused on quality factors like internal code quality, external quality and productivity. Kollanus

found different results when comparing controlled experiments with case studies and

questioned the quality improvements. As quality gets higher with unit-testing, it may not be

obviously related to TDD, as unit-testing can be done anytime while programming. One of the

main difficulties in measuring and comparing results of studies and experiments is the use of

different metrics (e.g. number of tests, number of lines in tests). Some results showed as well

that code created using TDD-methods seemed harder to maintain. Productivity measurement

factors reported are: “development effort, lines of code per hour or number of implemented user

stories”, and as a result, their effort on problem solving did increase when using TDD.

Other critical aspects of TDD are a lack of design in the beginning. With minimal or no design

done at the start, a higher effort is needed, when developing test-driven with focus on databases

e.g. large code size of tests make it impossible to always run all of the tests after the

implementation of a small change. Another aspect is maintenance of tests, because tests need

refactoring as well when requirements are changing. One of the biggest problems reported was

the difficulty of writing good and meaningful test-cases [Kol11].

TDD has been used as plain development method, part of the agile methods, and not a testing

method. Kollanus [Kol10] asked the research question “Is there empirical evidence on the

suggested benefits of TDD?” - After performing literature research on the keywords “TDD”

and “test-driven development”, he found the following three main aspects on effectiveness of

TDD: external quality, internal code quality and productivity. The results of literature research

were quite diverging. Some found that TDD lead to an improvement of external quality and

productivity, others concluded more quality but also an increasing development time, and in

some papers even no changes were reported. Limited by the size of the assignment in an

experiment it seems impossible to be compared to real world implementations.

Kollanus [Kol10] concludes, “TDD may improve external quality, but in the same time

increases development effort.” and “this increased development effort is often regarded as a

good investment that finally saves the total costs”.

[Kol08], [Kol10], [Kol11]

 52

4.2. Software- and Design-Quality in test-driven development

“Using TDD in real world re-implementing a mobile web portal for T-Mobile38 with high load

running 24 hours a day helped to reach the desired goal, in time” [Ren08]. The so-called

Web’n’walk-3 homepage could be personalized by users using widgets, showing the latest news

or personal e-mails. Rendell listed the most common mistakes when TDD was used by new

programmers that where not familiar with writing tests. They made one or more of the following

mistakes when using TDD:

 Spent too much time writing tests

 Refactoring was taking longer than expected, tests had also to be refactored

 Commented out test-code that didn’t work

 Stopped writing tests or reduced amount of tests

Additional functionality was more often implemented when writing infrastructure libraries,

possibly needed for future features or modules. By using TDD the YAGNI-principle became

more obvious to the programmers when only user goals were to be met. Tests of the system

have been done manually by using a state-machine written in UML on many devices [Ren08].

Causevic, Punnekkat and Sundmark [Cau12] found no differences when comparing traditional

test-last with test-first programming. The average quality of both techniques was the same.

Seven limiting factors of TDD were identified, whereas the most prominent one was the ability

or inability of a programmer to write efficient and automated test cases. Using two internal

quality factors, code coverage and mutation score, they found external quality depends on all

source code, no matter whether developed using test-first or test-last methods.

Positive and negative test cases were measured, while positive test cases were the ones found

in requirements and negative test cases were an interpretation of program execution. In their

results a total amount of 65% of overall testing was done with negative test cases.

They concluded: “Test-driven development is a development methodology and not a test design

technique. That is why test cases are driving a developer towards implementing required

functionality in a constructive rather than destructive way” [Cal12].

Software must be designed for test – by using e.g. a non-deterministic hash-function for unit-

tests, it will always fail. Creating these hashed values must be simulated while in a testing

environment and later on changed, when used in production. Repeated behaviour is essential

38 http://www.t-mobile.com

 53

for running tests. Like in compilers, the code generated by them should be identical for same

source-files, not just equivalent. A good balance between test and production code is essential

[Wir09].

Janzen studied the effects of TDD on software quality, and discovered interesting

misconceptions when asked for the benefits of TDD: TDD is interpreted as writing automated

tests only by programmers, some writing all tests first instead of using the short iteration cycles

as proposed rhythm of test-driven development by Kent Beck [Bec03]:

1. Quickly add a test.

2. Run all tests and see the new one fail.

3. Make a little change.

4. Run all tests and see them all succeed.

5. Refactor to remove duplication.

One of the most important things when using TDD is design, as TDD is also said to be “test-

driven design” – improving it with every small single step. To have a test-suite that can be run

instantly within a few seconds is a great thing as well, but the overall benefit of TDD is creating

a solution with a good design that just works.

In their studies, Janzen and Saiedian [Jan08] found that there was an impact on code-size as

“test-first programmers wrote smaller modules than their test-last counterparts”. There was

an impact as well on complexity, as the test-first groups wrote classes with a lower number of

branches, fewer methods and as a result of this, had a reduced complexity inside these

classes/modules. So TDD supports a high test-coverage, improves cohesion and lower

coupling, produces smaller modules and improves design changes throughout the development

process [Jan08].

4.3. Test-driven Development in professional software development

Agile development methods easily help to implement new functionality as requirements

change. But what about the code and features that are no longer needed? Bergman researched

this topic and called it “the big book of dead code” [Ber12]. By asking the questions “What

happens to things we no longer need?” and “Do we know dead code when we see it?” he tried

to determine why and when useless features are left in the code. In his case study, a software

development team was reducing code size, made tests run faster and speed up application

runtime by eliminating “dead code”. As the current application was buggy, slow and expensive

 54

to support, they decided to re-write the whole application from scratch: putting only features in

the backlog, that where needed by all customers, resulting in one single codebase. While

development took place over a long period with late user feedback, many things had to be

rewritten again and should have been thrown away, but instead, all code was kept. After a

management change the teams switched to agile development – beginning to remove dead code

or abandoned features, that didn’t make it into production. One of the biggest problems had

been multiple implementations of common objects like “Group, GroupNew, Groups, Group2”,

with only one of them being used at the end.

Deleting code was easy for the teams, as most of the former developers were gone, so no “code-

owners” had to be asked before removing or rewriting old and unused code. Talking about

simple design and YAGNI, developers started to write “good, clean code”. And by putting all

the effort of programming into the book of dead code, before deletion, this became a good

visualization of the efforts put in development, even if it was removed in a later release [Ber12].

“Professional software developers should produce clean, flexible code that works and ship it

on time. Many of them don’t – and instead ship late, buggy, messy and bloated code.”, said

Robert C. Martin, one of the “creators” of the Agile Manifesto39, in [Mar07], and “TDD is an

attitude as well as a discipline”. There is no silver bullet that can transform a programmer to

be a rockstar professional software developer, but TDD plays a central role on the way to

professionalism. Defining three laws for TDD to use with software development doesn’t always

make sense40:

 You may not write production code unless you’ve first written a failing unit test.

 You may not write more of a unit test than is sufficient to fail.

 You may not write more production code than is sufficient to make the failing unit test

pass.

Strictly following the law is not always the best solution: sometimes it takes more time than

two minutes to write a test or to refactor, another time more production code has to be written

at once. The goal is to alternately keep writing test- and production-code. One of the biggest

benefits of TDD is that tests will cover almost all of the production code, making it easy for

developers to clean up code without being afraid of breaking it, even if the code they are

cleaning-up has not been written by themselves.

39 http://agilemanifesto.org
40 http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

 55

“Tests should be kept in one place and should be easy to run. Executing them shouldn’t take

more than a few minutes.” [Mar07]. These points where incorporated when developing an

application called FitNesse41. With about 45.000 lines of Java code, 20.000 of them being unit

tests that will execute within 30 seconds, these benefits exceed simple software verification in

many ways. Most important with test code is to keep it at the same quality level as production

code since tests are the best documentation of code itself. Another benefit of TDD is the time

saved when debugging. By running all tests after a change was made, a newly introduced bug

will be easy to find, as it was just added with the latest change done only seconds ago [Mar07].

[Mar07], [Pag09], [Whi12], [Ber12]

4.4. Effectiveness of TDD

In [Erd05] the test-first approach of test-driven development has been investigated and resulted

in a formal investigation of the strengths and weaknesses of TDD. Two groups of undergraduate

students were used - one using TDD, the other traditional software development writing tests

afterwards. Both groups were adding features on a one-by-one basis, preceded respectively

followed by the tests. Erdogmus et. al [Erd05] mentioned, that practitioners still consider test-

first as an overhead in programming and tests should only be written and executed by a separate

quality-assurance team.

These ideas can also be found in bigger companies like Google or Microsoft ([Whi12], [Par09])

as mentioned in the previous section, and even in a software development project42 at Graz

University of Technology43 (where I am working since seven years), these traditional ideas of

test-last and separating testing from development by a Q&A department can still be found in

all development teams.

As Erdogmus et al. [Erd05] compared some previous studies, they got several results: TDD is

subjectively said to be the best technique of an extreme programming course by students, but

in an academic research there was no conclusion of leading to better programs nor higher

quality. Only enhanced program understanding was reported. In an industrial case study there

was a higher code quality (by 40-50 percent) and “no significant impact on productivity”. In

an experiment with professional programmers the produced code had fewer defects (45%), a

higher product-quality (18%) but a lower productivity (14%). They also mentioned, that giving

41 http://www.fitnesse.org
42 http://www.campusonline.at
43 http://www.tugraz.at

 56

the groups in a test-first vs. test-last experiment a very tight skeleton for their work

(assignments) decreased the flexibility for problem solving and lead to nearly no differences

between the test-first and the test-last groups. In their experiments they have solved this

limitations by giving the groups user-stories (high-level requirements). Another experiment

was mentioned, in which a group using the waterfall-development method, tests were omitted

at the end of the assignment. “Testing and programming are tightly integrated activities”, so

the best environment for TDD is an incremental development process, building a prototype,

asking the customer, getting feedback and changing current or implementing new features as a

follow up of the customer’s feedback [Erd05].

Conclusions on the productivity, quality and a possibly lower defect rate can be made on mid-

to long-term assignments, as with short-term assignments, the overhead of writing tests first (in

an isolated domain) will lead to an overhead with no benefits for having a high test-coverage.

Some results Erdogmus et. al. [Erd05] concluded are that test-first development improves the

understanding of code, leads to a higher level of productivity and reduces debugging and rework

after completion of a task.

Another aspect on effectiveness of testing was investigated by Williams, Kudrjavets and

Nagappan [Wil09], presenting an overview on test-automation of unit-tests at Microsoft. At

first, tests were written at the end of functionality coding, every few days. As TDD required

more development time it lead to more accurate and specific tests. As a result, it could improve

code quality. Unit tests were still written at the end of programming tasks, by the same

programmers. Developers at Microsoft being asked about unit-testing thought more positively

about reading legacy code with the help of automated unit-tests to verify code-changes or

during debugging when trying to find a bug. In their studies, the TDD teams wrote more lines

of test-code compared to production-code resulting in a higher test-coverage by incremental

development. Some aspects in commercial software development when moving from

traditional waterfall to test-driven development found by the study at Microsoft are [Wil09]:

 Management must support and be committed to unit-testing

 Same tools for testing should be used in all teams

 Writing unit tests takes more time and must be considered in release planning

 Unit-tests should be part of production code

 The system must be designed for testability

 Test-coverage should be measured

 Anyone should be allowed to add/write tests

 57

 Tests should be easy to execute and run fast (time to run tests at Microsoft was less than

ten minutes, for about 1.000 KLOC44)

These ten minutes is quite a long time for running unit tests that should be run after every small

change is made in the code. As reported by Robert C. Martin [Mar07], his framework FitNesse45

has about 45.000 lines of code (LOC), with about 20.000 LOC for unit-tests with more than

1.100 test cases, all running in less than 30 seconds. This was only possible with the use of

mock-objects for database and network resources to save execution time.

The effectiveness of pair programming in test-driven development was investigated by

Goldman [Gol10a] [Gol10b]. Pair programming relies on the driver and navigator metaphor.

One person typing code - the other watching him and keeping the focus on the strategic target.

Goldman takes the focus on parallelizing pair programming with one programmer writing the

code while the other one is writing tests. Swapping roles is also allowed in this settlement, so

the main activities become a passing of unit-tests to each other.

Merging pair-programming and side-by-side programming to a parallelized method of test-

driven development showed to be effective and supporting continuous code synchronisation

between developers.

Common agile practices in software processes were investigated by Abrantes and Travassos in

[Abr11], like test-driven development, continuous integration, pair programming, planning

game and many more. Their focus was “what are the software practices that can be considered

agile into the context of approaches to develop software?”. Some of their results are given

below (with respect to the test-driven development process).

 Refactoring as rewriting and optimizing existing code, especially the removal of code

duplication

 Planning game, to always focus on the most important stories

 Small releases, to get fast feedback from customer and to create useful software

 Simple design, to reduce complexity and removal of extra – not currently needed – code

 Collective code ownership, anyone should be allowed to change anything at any time

without asking a single person (code owner)

44 kilo lines of code (1.000 KLOC = 1.000.000 lines of code)
45 http://www.fitnesse.org

 58

 On-site customer, should be available for answering arising questions and fast decision

making46

 Sustainable pace, with no need for working overtime

 Open-workspace, having developers sit together, with enough space for pair

programming (e.g. size of desks, number of chairs, wireless keyboard and mouse)

 Coding standard, so everyone should be able to read everyone’s code, without

refactoring, renaming or reformatting

 Stand-up meetings, max. 15 minutes, used for daily task organisation and discussion of

project status and eventual problems

Their conclusion [Abr11] on the performance of agile development methods is, that it is

strongly depending on the environment, the team and the applied intensity.

[Erd05], [Wil09], [Abr11], [Gol10], [Tur10]

My experience in software development at Graz University of Technology results in the same

factors as mentioned above by Abrantes, where the most success factors are environment and

work context. With no clear working schedule for fixed meetings, programming hours and

constantly being interrupted by messages from the support system, focus on programming

cannot be kept.

Here is an example from the day-to-day work in software development:

All of the core development teams in our department still implement features by test-last

waterfall methods. Sticking to quite long release-cycles of three months, the lack of continuous

integration and an isolated Q&A department trying to test (this is done test-last) all new features

by running integration and acceptance tests on two test databases lead to a development delay

of about two weeks after a soft “code-freeze” by the pre-release-date. After the code-freeze, all

new features will be installed on one of the two test database machines and tested by the feature

description (documentation) of the programming teams. At this time, documentation normally

is still missing due to bad project planning and debugging until the very last moment. By

figuring out the new features, Q&A department is running tests for the next two weeks. While

waiting for feedback, programmers start implementing new features and will have to move back

to their old code, when a bug is found.

46 This method in agile software development is one of the hardest to fulfill; normally there is not enough space

and programmers will still get nervous when having customers around their desk day-by-day.

 59

4.5. TDD of web-based applications and relational databases

The main differences between testing traditional and web-based applications was presented by

[Luc06]. Web-applications have to be tested for “reliability, usability, inter-operability and

security”. Tests should cover all functional as well as all non-functional requirements of the

application. Strategies for non-functional testing of web-applications are listed in Table 1

Testing Activity Description

Performance Testing Verify system performance like response time and service-

ability by simultaneous access of hundreds of users

Load Testing Evaluation of system performance under a predefined load with

lots of simultaneous users from low to high activity

Stress Testing Evaluation of system components when used over the specified

limit of resources if the system crashes or will be able to recover

Compatibility Testing Verify system functionality with different web-browsers or

operating systems

Usability Testing Continuous testing of user interfaces and workflows to meet the

target audience of the web application

Accessibility Testing Verify system behaviour based on guidelines to be perceivable,

operable, understandable and robust (e.g. text alternatives for

non-text content, support use of keyboard shortcuts, readable and

understandable text, maximization of compatibility)47

Security Testing Verify system functionality for user access control, checking

system vulnerabilities and used software components (e.g. PHP-

versions48, system patches and missing updates)

Table 1, [Luc06]

Web-application testing typically consists of the following three different testing processes:

Unit-, integration- and system-testing. Unit-testing frameworks are available for many of the

programming languages like Java, C#, PHP, Python and JavaScript just to mention some of

47 http://www.w3.org/WAI/WCAG20/glance/
48 http://php.net

 60

them. Integration tests can either be automatized by GUI-testing frameworks (e.g. Selenium49)

or by the use of scripting languages like Python. At this level, some extra code and functionality

in the system may be needed, e.g. to support the preparation of test-data within the testing

process. Like user-registration or user interactions, based on previous entered or uploaded data.

System testing as the last level of tests verifies the overall system behavior and performance.

These tests can either be done using black box, white box or gray box (also known as hybrid)

testing strategies, depending on the system knowledge and given requirements. Discovering

failures in functionality or services of web applications is essential because nowadays,

everybody wants a fast and meaningful response from a website, as instantly as clicked or

activated the service on any device [Luc06].

Test-driven development techniques can also be applied to development of relational databases,

called test-driven database development (TDDD) in [Amb07]. One crucial point of TDDD is

the verification of the database supporting all business rules. In TDDD there are both aspects

that have to be considered: verification of database functionality (views, stored procedures,

saving data) as well as the data stored in the database. One of the five recurring carried out steps

in classical TDD is refactoring, whereas functionality and behaviour is never removed or added.

When refactoring a database (e.g. like adding or removing a column, adding new tables,

relations or intersections) informational semantics and behavioural semantics shall not be

removed [Amb07].

Database refactoring can also lead to massive refactoring of source-code, e.g. when a column

is dropped or table structures are changed. Manipulation of data in more than one single

function may come from a bad architectural design or inconsequent application of refactoring

steps due to missing or incomplete tests. As a result, many “same-looking but in facets different

behaving” functions will find their way in the source-code. This will lead to a big overhead in

code maintenance. Encapsulation of functionality is essential when working with databases,

especially in web applications, as the requirements tend to change quite frequently. [Luc06],

[Amb07], [Mur08]

4.6. Debugging strategies

In [Mur08] different strategies of debugging were analysed and compared between novice

(student) and professional developers. Debugging of applications is often done by tracing,

49 http://www.selenium.org

 61

commenting out some code, using print statements at different parts of the code and put inside

condition branches or loops. While debugging strategies differ between students and

professionals. Students tend to browse code having more problems when reading other’s code

and use output statements with debugging information. As professionals take advantage of

debugging tools and also use output statements, but much less than students do. Good

debugging strategies analysed found were: Tracing (using debug statements, print variable’s

values), testing, understanding of code and problem isolation. Bad strategies were: Tracing (by

putting useless debug statements in the code like “hello”), not understanding the code, working

around some problems and tinkering. Some teaching examples are given to help students

improve debugging techniques like tracing the problem on paper when it is more complicated

(e.g. more than two variables, loops, conditions), adding well placed and meaningful print

statements or use some debugging tools for tracing the code [Mur08].

4.7. Common mistakes in TDD practices

Results from an online survey with developers [Ani10] showed that many times the required

steps for practicing TDD are omitted when using this development-method. As the effects on

software and design-quality of TDD where studied by [Cau12], [Wir09], [Jan08], [Ren08] and

have been discussed in chapter 4.2, the investigation of Aniche et. al [Ani10] was on finding

the most common mistakes made in TDD.

Following the five main steps of TDD is easy, but “programmers need to be very disciplined”

on this. Omitting some of these steps might lead away from the clear goals that TDD manifests.

The developers asked to participate in the online survey had the following qualifications and

work-experience: 75% were experienced with TDD, 20% used TDD in academic, 50% in open

source projects and about 90% in industry.

 About 15% of programmers frequently forgot to watch the test fail. When not watching

the test fail, one cannot write the – needed in TDD - small piece of code that will make

the test pass. After writing the next test without seeing it fail, unwanted behaviour can

become part of the code, which might lead to bugs that are later hard to trace.

 Almost 30% of programmers regularly forgot the refactoring step, mentioning that the

newly written code seemed good enough for them and so it would not need to be

 62

refactored.50 Sometimes other parts of the code are refactored in this step (e.g. legacy

code). Refactoring shall only be done when all tests pass, otherwise it will be hard to

find bugs introduced within this refactoring step.

 Usage of bad test names was also kind of a problem reported to happen by about 25%

of the programmers regularly. Understandable test names make the code easier to

read, to understand and fulfil the demand for source code documentation.

 Not starting with the simplest test was reported by beginners to happen by about 25%

of them. The more experienced with TDD the programmers are, the less they reported

to not starting with the simplest test first.

 20% of programmers regularly ran only the current failing tests instead of all the tests

of the test suite. By not running all the tests after changes in the code, it will be hard to

find the correct line in the code that breaks the test. If this is just done once at the end

of day it may even be harder to isolate the change that makes the test fail.

Some other points of this survey are complex test scenarios. This can happen, when there is

too much logic in some function or class and will lead to split up the functionality first instead

of writing too complex test cases. Refactoring test code is also a must, and most important

and already mentioned above, only “the simplest thing that makes the test pass” should be

implemented to avoid “unnecessary complex code and as a consequence, decreasing code

quality”. They suggest keeping test code clean, with easy to understand names for tests to

support the documentation idea of TDD [Ani10].

When practicing TDD in the way as e.g. Kent Beck suggests, you are always one step away

from a passing test, e.g. like R. Martin wrote in [Mar07]: “… you’ll detect almost any bug that

creeps into the system within minutes. You don’t need a debugger to find the bug. You don’t

really need to do much debugging at all. You know where the bug is because you just added

it!”

4.8. Conclusions on current research topics

Many of the presented results in this chapter illustrated the need for a more detailed and

practical way of teaching TDD in computer-science classes and more effort in training the TDD

50 This is where TDD is often used in a wrong and sometimes misleading way when not applying the smallest

possible change in the code, that will make the test pass. Adding too much logic in one step breaks the „rhythm of

TDD“ [Bec03].

 63

programming style. Introduction of TDD is mostly done with very simple examples that are

hard to use in real-world software development environments.

A good and simple way to improve the TDD programming style can be provided by a daily

exercise like a small coding-kata51 or a coding-dojo52. These should be limited to half an hour

per day to improve the programming skills when using TDD as part of a software development

process. Many of the available coding-kata examples are based on typical American games like

bowling or baseball, which are not all too well known by many European students in details.

There is a need to find more localized examples for these kata or dojo programming exercises

to effectively teach TDD and give students a better understanding of how to apply this technique

fluently in ubiquitous (day-to-day) programming(-exercises).

Some results also showed that finding the right test-cases can be a big issue. Students tend to

focus more on quantity than on the quality of tests. A very good and detailed overview on how

to find all of the tests needed for a simple application was given by James Whittaker in [Whi12,

pages 130-132] while interviewing test-engineers (TEs): “Better is the candidate who asks

clarifying questions”. After the expected behaviour of the application is discussed, tests are

much easier to write. The likelihood of misinterpreting functionality through not asking

questions has been greatly reduced.

51 http://www.butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata
52 http://www.butunclebob.com/ArticleS.UncleBob.TheProgrammingDojo

 64

5. Agile Website Development

Since its conception in 2010, an extensive use of agile development methods has been the most

crucial aspect in accomplishing the Catrobat project. Numerous students joined our project and

contributed thousands of lines of code. Maintenance of this large code-base which contains

over 25 subprojects and daily new features can be rather tasking. At the beginning, source-code

revision control was done with mercurial. To achieve better integration of agile development

tools, the subprojects started moving it’s codebase to github.com in 2012 (e.g. Atlassian’s Jira).

Since adding many features at the same time in many different branches became a necessity in

the development process we decided to use a modified Git branching model that will be

explained in chapter 6.

Because of the Catrobat’s project structure as a large open source community project, hosted at

Graz University of Technology, the main focus was put on agile software development methods

like pair programming, collective code ownership, test-driven development, code reviews, agile

estimation and planning, user stories, daily standup-meetings, KISS (keep it small and simple),

kanban, test automation, continuous integration and continuous delivery.

With a focus on test-driven-development, it could always be arranged to complete writing the

necessary tests before the implementation of a new feature. Every feature had a valid test code

to be validated against. Everyone could rely on a valid codebase when checking out the latest

version from GitHub.

In the next sections I will provide a detailed overview of all agile methods used during

development and improvement of the Pocket Code website.

5.1. Planning Games for Releases – agile estimation and planning

In the planning game, every member of the core team, as well as every member of any sub-

team could develop their own user stories (see section 5.2) to be considered for the next release.

To limit the scope of the release, we first defined some limitations for any new features. Because

of the many different subprojects and teams, developing their applications in parallel, some

general release planning had to happen first. After the ideas for the upcoming releases were

decided upon for implementation, each team went on to their individual release planning game.

 65

5.2. User-Stories

A user story “is a chunk of functionality (some use the word feature)” and shall fulfil the

following criteria:

 understandable to customer and developer

 testable

 valuable to the customer

 small enough to build within a few hours or a few days

[Bec01]

User-stories come from our personas point of view. Like mentioned in [Gri11], we have defined

three target users for our system: a young girl aged 10 (Silvia), a teenage boy aged 15 (Tobias)

and a working mother of three kids aged 44 (Angelika). New user-stories were discussed in the

planning game and were written on story cards. Those story cards could only contain one or

two sentences and had to fulfil the above-mentioned criteria.

5.2.1. Story-cards

We have used white and yellow A5 sized paper sheets. White ones were used for features,

yellow ones for bugs reported by users or developers. A story card contained the following

information:

 User story (1 to 2 sentences)

 Name of customer (or creator) – in case if questions come up during development.

In the planning game, the story cards were presented and discussed. So every member of the

team has the same understanding of the story. Then the “costs” for implementation and the

priority of the story were discussed and added to the story card. After this, each story card was

put on the Backlog-area of the Kanban-board, according to its priority.

5.3. Using Kanban

During the development process we found that putting some more relevant information on a

story card pinned to our Kanban board was essential for the stories’ content. For user-interface

issues we used an underlined red uppercase U, for design issues a blue dot was used. With this

extra information, the acceptance process of user stories was changed as well. While normal

stories could have been accepted by anyone in our development team, not involved in

 66

programming that task, so called user-experience or design-stories, had to be accepted by the

Usability and Design team as well.

5.4. Pair-Programming

The onsite pair-programming environment in the project room has been quite exceptional.

There were four tables with one large monitor, a standard keyboard and a mouse. With two

chairs in front of each table, there was enough space for two programmers to accomplish

efficient pair programming. As every team used different development tools, each pair had to

bring their own laptop to the project room. Only the chairs have not been very comfortable, as

they were made of wood, without any possibility to adjust seat height and lean angle. Additional

amenities like air-conditioning, a daily restocked refrigerator, a microwave oven, a water heater

for cooking tea, a coffee machine to brew fresh cappuccinos and lots of cookies, chocolate and

sweets made programming really comfortable and fun.

Figure 14: Pair programming setup in our project room

Programming pairs did not change all too often, resulting mostly in teams of students who took

the same lectures during the term. In case there were questions, or a team got stuck on a

problem, pairs have changed to solve the issue at hand upon accomplishing an acceptable

solution, and then returned to their initial team constellations. In the beginning, we tried to pair

 67

new developers with each other and let them develop short and simple stories of their own.

Unfortunately this approach lead to poor results and our new developers soon got frustrated. So

we changed the programming pairs: every new team-member had to do pair programming with

one of our senior developers. This helped them to get into test-driven development much more

effectively than before. Writing tests first was one of the hardest things to learn for many of us.

Approaching a small new feature, which was easy to implement and could normally be

accomplished within a couple of hours had to be restructured to be done in a TDD way. Writing

tests first changed the way of problem solving tremendously. After each and every pair-

programming session, we had a working program. Without this approach, it could have taken

hours of trial-and-error programming and debugging. Sometimes problems were solved by

simply explaining to others’ what exactly the problem was all about.

5.4.1. Collective Code Ownership

Nobody at the Catrobat-projects owns any of the code. Every new developer is encouraged to

modify existing and add new code by adding tests first. Collective code ownership helped us to

keep our source-code clean and readable for everyone. Coding standards are a must and

commits to our head-branch are only done after a code review. Reviews were done by a team-

member who was not involved in development of the story to be accepted in the first place.

5.4.2. Code Reviews

Whenever a story is finished, the review process starts. Before running all the tests, new code

has to be reviewed by the review partner. After review, all unit-tests were run on the local

machine with all new features merged locally with the head-branch. Afterwards all selenium-

tests had to pass as well, and finally – if needed – manual testing completed the first part of the

code review. The next part is detailed code-review of all newly added or already existing

features, as well as removed ones. A code will be passed as “reviewed”, when coding standards

are fulfilled and software-development patterns have been used where possible.

If the implemented story does also add usability and/or interface changes, one of our usability

and design-team-members had to attend the review meeting, too. This led to the following

advantages and disadvantages:

 68

Advantages:

 No graphical or interface changes were committed by the developers to the head-branch

or went into production without being noticed by the design-team and the UI-team.

 No usability changes went into production without being approved by the UI-team.

 Nearly every developer within the team knew about implemented features before going

into production.

 Developers had more social contact across different teams

 New developers could soon contribute to our project

 Everyone got to know all code-changes (this became ideal collective code ownership)

Disadvantages:

 Arrangement of review-meetings was quite lengthy, by finding a suitable date for all

persons involved

 Commits to head branch were slowed, and so the number of releasable features

decreased

 The vast amount of meetings slowed down our development speed

5.5. Testing

The effects of TDD in academic or educational tasks has been described by S. Edwards in

[Edw04] as: “TDD is attractive for use in an educational setting for many reasons. It is easier

for students to understand and relate to than more traditional testing approaches. It promotes

incremental development, promotes the concept of always having a “running version” of the

program at hand, and promotes early detection of errors introduced by coding changes.”

By using TDD, programs are developed in small iterations and achieving a running version of

the code after every cycle. The first iteration producing only a few features. Errors are detected

as soon as they make their way into the source-code during the next test-run. TDD even

encourages junior developers to changing central-parts of the software or old legacy code (with

full test-coverage) when necessary, without the fear of braking existing functionality. This is

accomplished through “continuous regression testing”.

Testing is also a quite social activity. No developer is willing to write many pages of

documentation, if all things need to been known are already written down as source-code and

corresponding tests. Programmers would rather spend their time writing tests for new features

 69

in pairs, instead of documenting functionality. So testing is a more effective way of source-

code documentation than any other form of document can provide. A test can be called “ideal”

if any programmer can build the required program-under-test with only the knowledge of the

test and its use-cases.

Some very important aspects of writing tests presented on the Google testing blog53 are:

 Test behaviour, not implementation54

 Test behaviours, not methods55

 What makes a good test?56

When testing behaviours instead of methods, a test will fail if new behaviour is added to the

code, but won’t fail, if just the method itself is tested. Tests that are independent of

implementation details are easier to maintain and easier to understand. Good tests have the

following properties:

 correct – a test shall verify that the code is correct

 clarity – a test will be the only documentation of the source-code

 complete – a test provides all the information to understand it

 concise – a test shall contain no distracting information

[Gtb14].

5.5.1. Unit Tests with PHPUnit

One of the first things every new programmer in our web-development team had to do was

setting up his local development environment. This was quite cumbersome in the beginning of

our project since everyone had to make some tricky installation adjustments with help from

senior-developers. In the beginning the installation of necessary tools took a few hours to

complete, therefore we were looking for an easier way and provided an Oracle VirtualBox

Ubuntu 12.04 image file, with all things setup right out of the box. Therefore developing tests

first with unit tests could start right in the beginning after downloading and running the new

development environment.

Writing unit-tests with PHPUnit is as easy as using any other unit-test framework. A classical

unit test looks like this:

53 http://googletesting.blogspot.com
54 http://googletesting.blogspot.co.at/2013/08/testing-on-toilet-test-behavior-not.html
55 http://googletesting.blogspot.co.at/2014/04/testing-on-toilet-test-behaviors-not.html
56 http://googletesting.blogspot.co.at/2014/03/testing-on-toilet-what-makes-good-test.html

 70

 a setup part:

o loading all required libraries

o set up objects needed for test execution

o load test-data into the database

o prepare database contents

 a test part

 a teardown part (optional where necessary)

o restore original database

o remove all created test-data

o remove temporary objects

o rollback transactions

Figure 15: Catroid API LoginTest.php

The tests are run in a console and generate the following output for a successful run:

 71

catroweb@webbox:~/Workspace/catroweb/tests/phpunit$ phpunit api/loginTest.php

PHPUnit 3.6.12 by Sebastian Bergmann.

.....

Time: 0 seconds, Memory: 9.25Mb

OK (5 tests, 14 assertions)

In case of a failing test, the following output is generated with detailed information about the

error that occurred, is generated:

catroweb@webbox:~/Workspace/catroweb/tests/phpunit$ phpunit api/loginTest.php

PHPUnit 3.6.12 by Sebastian Bergmann.

F....

Time: 0 seconds, Memory: 9.25Mb

There was 1 failure:

1) loginTest::testCatroidLogin with data set #0 (array('catroweb',

'catroidweb', 'login'))

EXCEPTION RAISED: The password or username was incorrect.

/home/catroweb/Workspace/catroweb/tests/phpunit/api/loginTest.php:38

FAILURES!

Tests: 5, Assertions: 8, Failures: 1.

All PHPUnit-tests are executed during a run, even when the first test fails all other tests are still

carried out. This could sometimes be a problem, when running very large tests or starting the

whole PHPUnit-test suite. Within all our source-code, comments are only allowed where

needed by the framework or wherever they are essential for understanding of the code or

programming pattern.

5.5.2. Database-Testing

Testing databases can help finding bugs in database structures or relations and prevents the

system from corrupting or deleting data when put into production. Sometimes a miss-spelled

SQL-query can lead to the loss of massive amounts of data without specific tests. Database

operations can be divided into two groups – selecting data and manipulating data.

 Selecting data can lead to errors if the expected results are part for some data

manipulation. In general, bad or corrupted SELECT-statements normally will lead to

no output on a website like an HTML “404 – page not found” error. In even worse cases,

such a failure can show data or structural information to unauthorized users.

 Manipulating data can lead to errors, data-loss or data-corruption on execution of a

faulty INSERT- or UPDATE-statement. This is one of the main reasons that database

testing is essential for delivery of reliable applications and software.

 72

One of the advantages of testing systems with transactional databases is their data-transaction-

logic. After running a test the original data can be easily restored by running the built-in

database rollback() function. Without the use of transactional logic, all data created and

manipulated by the tests should be restored to their state before test execution or deletion from

the database tables. Testing databases does also lead to programming for testability and the use

of mocking and stubbing objects, depending on the code complexity and system performance.

Further aspects of programming for testability will be discussed in section 5.5.3.

5.5.1. GUI-Testing with Selenium

Browser tests are a good way to reduce monkey testing in a team. Those kind of tests are easy

to write: one can either use the Selenium built-in screen recorder to record actions for every

particular use-case to be tested, or write own browser tests using Selenium’s Java-API. As we

wanted the tests to both be repeatable as much as possible and also be programmed in a test-

first way, the Java-API was used.

We came across some problems while writing browser tests, when Ajax callback statements

raised a timing issue and caused delays in page rendering. So, without making source-code

changes, some of the tests became flaky from time to time. We tried to overcome these problems

by setting up a Selenium Grid-server and no longer ran browser-tests on the developer’s local

machine. These changes decreased the number of flaky tests and helped our team save precious

development time spent for debugging.

There will always still be the need for some manual integration testing, but the effort will be

greatly reduced by the use of automated Selenium browser tests.

5.5.2. Test-Data-Generation

Controlling the data and measuring the results are only possible if we know exactly, when data

is created, changed or deleted. By generating test-data-sets in our code-base, it simplified the

implementation and execution of tests for every developer. Developers no longer had to recreate

the test data needed for a specific test from scratch, just to verify their changes to the codebase.

Test-data-sets were created from user stories and their corresponding use-cases.

 73

5.5.3. Programming for Testability

When testing time-dependent objects or database operations, function blocks must be

programmed to be testable. This means every variable of the program-under-test can be

overloaded by the test-procedures. By overloading a variable like sysdate() (that returns

current date and time), developers can change the expected behaviour of the program.

Sometimes changes and dependencies can also be controlled by some configuration-

management. In our experience, both control-mechanisms are required to write a good test.

Various test-suites provide mock- and stub-objects helping to reduce a test’s complexity and

increase its performance.

5.6. Daily Standup-Meetings

As written by Johanna Rothmann in [Rot07, p.129]: “Short iterations remove the need for

weekly sit-down group serial status meetings (which you should never have anyway). With daily

standup meetings, people can’t hide their real status.” – daily standup-meetings are a must for

every XP team.

In the beginning, we found the daily standup meetings sometimes a little bit boring – especially,

when another team, not directly connected to our work, was having one and we simply wanted

to continue with our work. After a while we found that pausing and listening, or taking part at

another team’s standup meeting gave us a better overview of current development throughout

the whole project. And this was the same experience for the other teams as well. Standup

meetings helped our team to socialize even more, drink some coffee together and discuss

current problems on writing code, adding functionality or writing tests.

5.7. Development-Environment

As already mentioned before in chapters 3.9 and 3.10, our development environment changed

over the last two years. In the beginning, everyone had to set up his own local development

tools. The set up process was even more complicated, when our Professor started to bring

students to our project room for eight hours a week, during their 12 week lecture period. Space

was limited and so pair programming changed from pairs of two, to up to 5 people in front of

one keyboard and monitor.

Our development environment from 2010 to 2012 consisted of:

 74

Eclipse with PHP extension

 PHPUnit

 XAMPP (Apache webserver, PHP, Perl and MySQL database)

 PostgreSQL database

 Mercurial version control

 Selenium browser automation

 Ant automation tools

The development environment could be installed on current Windows-, Linux- and Mac-

operating-systems. Some of them had limitations like Windows (as there is no Unix shell

available), others were quite easy to setup like Linux, and on the OS 10.x we used Oracle’s

VirtualBox to setup Linux (Ubuntu 10.04 and later 12.04).

Later we discovered, that the necessary setup for new developers to start programming could

be accomplished much faster and far more efficiently. One of our senior developers (thanks to

Christian Hofer at TU-Graz) setup a VirtualBox image with all development tools pre-installed

on a Ubuntu 12.04 system, ready to download from our test-server at the institute.

5.8. Test-Automation and Deployment Process

Deploying changes of database structures and database setup for automated tests was done

based on the ideas, the Scratch developers used for their website57. Each deployment script has

to check first if all changes have been applied to the database and, if no changes could be found,

had do update the structures.

While automating database-deployment is essential for continuous database integration, this

gives each developer the possibility to work with his own copy of the database [Amb07]. When

the changes are done and accepted by another developer, the deployment scripts will be

extended with the new changes in database structures. The setup-scripts are divided into two

parts, one for initialisation of the database, which includes the creation of the main tables, roles,

sequences and the pre-installation data, and the other one for the changes in database contents,

when needed during website development and improvement. SQL-Files are numbered for an

easy overview of the updates already installed.

57 https://github.com/LLK/Scratch_1.4

 75

We wrote numerous ant-scripts to help with the semi-automated start of test-suites on our test-

servers, running selenium-tests on a selenium-grid server system and make deployment of

changes easy to put into production, as well as backing-up the whole system or deploying the

current development branch to our test-servers.

5.9. Continuous Integration

At the beginning of the project there was no continuous integration for website development.

Every deployment on the test-servers happened manually (supported by ant-scripts) after a

commit to the head branch. After deployment, developers had to connect to the webserver via

SSH terminal session and start all tests. Numerous ant scripts were written to make deployment

and starting all or single tests as easy and comfortable as possible. After passing all unit- and

all selenium tests on our test server, the newly added feature was ready to go into production.

Deployment on our production server happened after a release was finished. In case a severe

bug was found and had been fixed, this bug fix was deployed immediately. We were planning

to automate the build and test process by using our project’s Jenkins server. As this thesis is

being written, the implementation of continuous integration is still work in progress and not yet

completed.

5.10. Usability Issues and Screen Design

The most often changed part of the website was the login and registration screen including the

underlying process. Registration is now done automatically when uploading a PocketCode-

project to the community website. Taking the user’s registered Gmail-address from his Android

smartphone or tablet. During the upload process only a username must be chosen, no other data

input from the user is required. At the beginning of our project’s community website, we had a

much longer and more complicated registration process for users; later we realized, that

registration should only be initiated when a user is uploading a project to our community

website. So there was no more need to have a button called “register” on our website any more.

Once a program is uploaded to pocketcode.org, there is currently no straightforward option for

the user to remove or rename the program.

Screen design and page layout as well as page rendering have also changed many times since

the launch of “Catroid” respectively after it has been renamed to “Catrobat” and “Pocket

 76

Code”. The first website was hosted under the domain-name catroid.org – and had many

different style sheets for mobile devices. We also had over 900 unit tests to check the right

browser version. After the launch of the new website, the layout was changed to a floating grid,

so no browser specific CSS style-sheets were no longer needed and the browser tests have been

eliminated.

Our system’s backend website to manage newly uploaded projects, check for projects that have

been reported by the community, manage registered users and block users on behalf of their IP-

address or username had a very poor usability. For example: when looking for a particular

project, the whole project overview page had to be rendered; there was no search function for

a user or a projects’ name.

5.11. Version control

After some years of using mercurial as the version control system of the Pocket Code-Project

with Google Code58, the migration of our codebase to GitHub59,60 was completed by June 2012.

GitHub has been chosen for several reasons, one of them was our intention to use Atlassian’s

Jira61 for project and issue tracking as the Catrobat-Project was growing rapidly over the last

months.

The more subprojects we started, the more problems we had when integrating the results of the

subprojects (like AR-Drone and Lego Bricks). The main codebase of Catroid IDE (Pocket

Code) had changed since the start of many of the subprojects and the subprojects’ teams

neglected to constantly integrate the latest changes of the master-branch to their branches, the

development branches diverged completely. There were some good ideas, code-snippets and

algorithms available in some branches, but unfortunately they were useless at the moment

because main parts of the Catroid-IDE had changed and integration became too complex. To

overcome those problems we decided to use a customized Git branching model that will be

presented in the next chapter.

58 https://code.google.com/p/catroid/
59 https://github.com/
60 https://github.com/organizations/Catrobat
61 https://www.atlassian.com/software/jira

 77

6. Git Branching Model

6.1. Git and GitHub

Git is a distributed version control system (DVCS): “In a DVCS (such as Git, Mercurial,

Bazaar or Darcs), clients don’t just check out the latest snapshot of the files: they fully mirror

the repository“, and following, “every checkout is really a full backup of all the data“ [Cac09,

p.3].

Catrobat currently has 22 public repositories hosted on GitHub62, with most of them in an active

development state. Some older development features like the control of a Quadrocopter AR-

Drone from Parrot63 or the Lego® Mindstorm64 are no more in an active development state and

therefore the code originally written, cannot be integrated into the newer versions of Pocket

Code as many semantic changes have been made.

For future releases of our project we will introduce some rules for a Software-Development-

Process that include [San13]:

 Create a private branch off a public branch.

 Regularly commit your work to this private branch.

 Once your code is perfect, clean up its history.

 Merge the cleaned-up branch back into the public branch

In our Project, the merge back into the public branch (master, releasable) can only be done via

pull requests to assure a good code quality and walk through the necessary review process.

6.2. Some best practice Git branching models

Andrew Berry writes in his Blog-entry “Git Best Practices: Workflow Guidelines”

[Ber12]: “Use small, logical commits, … this keeps the history of code-development, … write

meaningful commit messages, … that has the advantage of finding a culprit commit is easy with

git bisect, … use one commit for each bug fix. Use git rebase with caution but to keep history

straight free of merge commits.”

62 https://github.com/catrobat
63 http://ardrone2.parrot.com
64 http://mindstorms.lego.com/en-us/default.aspx

 78

In “Understanding the Git Workflow” they suggest [San13]:

“Always use “-no-ff” to force a new commit, … Revision control exists for two reasons – first

to help sync changes with teammates and regularly backup your work, second, for

configuration management, e.g. working on the next major version/release while applying bug

fixes to the existing version in production. And configuration management can be used to figure

out, when exactly something has changed.

Use Public and private branches: public include master and release branches, private is just

for yourself – like scratch paper. So nobody in the team should base work on a private branch

of someone else’s.

 For short lived work: Use squash merge

 For larger work: use rebase to squash old commits, reorder them or split them up.”

As suggested in [Sus08]: “Merge early, merge often. If the work on your branch takes long

enough, you might want to perform a merge several times. As other people push to

origin/master, you can pull those changes and integrate them into your branch incrementally,

rather than waiting until the end when you're done. “

And in [Dym12]: “Features should be as atomic as possible and small. Keep integrating –

features should be integrated into an integration branch almost with every commit. This will

give you immediate feedback. A feature should pass QA only if it has been integrated with all

the other features that are completed. Integrate often from feature to integration branch (git

rerere can be used for support) – and taking features out is more powerful than putting them

in – so make a build and omit problem features.”

When the use of shared libraries can cause problems with features, e.g. when they depend on

different versions, a configuration management can help deploy the correct version of the used

libraries and to keep track of the toggles needed for development and the build of different

versions.

Another simple way of using Git is described in [Hen09]:

For feature development:

 Pull to update local master

 Check out a feature branch

 Do your work, commit often

 79

 Rebase frequently to incorporate upstream changes

 Interactive rebase (squash) your commits

 Merge the changes with master

 Push changes to upstream

Run all the tests after a pull, merge or rebase, and before you commit

Rebase against the upstream frequently to prevent your branch from diverging significantly.

“Do the same with bug fixes: squash all commits in the bugfix branch together in one single

commit and use a commit message like “BUGFIX: ….” [Hen09]

Regarding the style of commit messages the imperative [Pop08] should be used: "Fix bug"

and not "Fixed bug" or "Fixes bug."

6.3. A successful Git branching model

Based on [Dri10] there are two main branches in the central repository: “master” and

“develop” (see Figure 16). The main branch always holds a production-ready state. The

“develop” branch, which can also be seen as the “integration branch”, where nightly-builds

come from, holds the current development state. Completed features are always merged back

into master, and are by definition a new production release. For parallel development “feature

branches” are used. These branches only exist as long as the feature is in development and are

then merged back into “develop” branch. Feature branches exist only in developers’

repositories. When using pull-requests or collaborating with other developers, remote

repositories can also be used to distribute community changes. In the need of a quick bug fix,

these branches always branch off from “master” and must merge back into “master” and (!)

“develop”.

 80

Figure 16: Git branches “develop” and “master” [Pe12]

The complete branching model is shown in Figure 17.

 81

Figure 17: A successful Git branching model [Pe12]

 82

6.4. Another Git branching model

Since the “Successful Git branching model” described in chapter 6.3 has some limitations,

Aurélien Pelletier did define another Git branching model [Dri10], based on [Pe12] but with a

different way a new feature branch is started.

With this model you can easily pick and choose what to merge. “Because a feature branch is

started from development, it is bound by its parents commits to other features not yet in

production” [Pe12]. Figure 18 shows the workflow to resolve these issues.

In contrast to the previous model [Pe12], there are three main branches in use which all have

an infinite lifetime:

 Master (as in Git flow, master always reflects a production-ready state)

 Staging (holds features ready for release)

 Develop (for continuous integration)

“Develop is there for continuous integration, this is where we constantly merge all the changes

to detect bugs and conflicts as soon as possible. The source code in the develop branch never

reach a stable point where it is ready to be released. Instead only some feature branches reach

a stable point. Those stable feature branches are merge into the staging branch. Since feature

branches were created from master and not from develop we can pick individually which one

will be merged to staging. In fact this is the main point of this workflow: We can easily choose

which features will go into production next.“ [Pe12]

For production release staging is merged into master.

As all the development is done in feature branches they can be merged into:

 master, for a quick bug fix (of released versions)

 staging, for normal bug fix

 develop, constantly for continuous integration

 83

Figure 18: Another Git branching model [Dri10]

 84

6.5. A new Git branching model

Another good branching model that can work within the Catrobat-Project is shown in [Hof11].

At first they had a straightforward branching consisting only of the following three stages:

Master  Beta  Develop

Recent features were done in “develop” branch, which was merged to beta once in a week.

After shipping to the tester the features were merged into master. “So far so good, but this

system left us with one problem: if we’re, say, 5 weeks after a new release, chances are the

“develop” branch (and “beta”, as well) has a hodgepodge of new stuff. Bug fixes. New

features. Partially done new features. Maybe even features we don’t want to talk about until

the next major release.” [Hof11].

They changed the branching model to a little more complex one as shown in Figure 19.

Figure 19: RemObjects Blogs, [Hof11]

 85

The stable branches are used for changes that can ship at any time, including critical fixes or

high priority bugs. All major development is done in “develop” branch and its sub-branches.

Stable has to be merged into development frequently. One of the main differences to other

branching models is, that here only a team-leader is allowed to merge from develop to beta and

respectively from stable to gamma. Merging from beta to gamma and gamma to master may

only be done by the chief-architect.

For a better understanding of the purpose of each branch and easier use in the Catrobat Project,

it is suggested to rename the branches from:

 Latest  ContinuousIntegration

 Develop-x  Feature-X

 Develop-y  Feature-Y

 Beta  Integration

 Stable  Releasable (with Tags X.Y)

 Gamma  MarketRelease (e.g. the current available Version in the Google play-Store)

6.6. Results and Conclusion

As the Catrobat Project is a large FOSS project with many subprojects and a lot of features of

which some may never go into production there is a need ”to easily choose which features will

go into production next”, [Dri10].

So the “new Git branching model” presented in chapter 6.3 [Pel12] will not suffice for our

needs in the project. The best branching model from the current state of development and

release planning is a combination of “A new Git branching model” [Dri10] and “Our New Git

Branching Model” [Hof11]. The decisions, which features will be in the next release should

only be done by team- or project-leaders as proposed in [Hof11].

 86

Figure 20: New Catrobat Git branching model

Our new branching model is based on two master branches:

There is a development master branch, available for all users and contributors to our project, as

well as a second parallel master branch, available for only a small number of project owners.

Everyone can checkout source-code from any of these two branches, as we only limit commits

to master (market release) to a few developers.

6.6.1. Feature development

Features are only being developed in feature branches from development master. Each team

creates its own team’s master development branch where again, all features are branched from

the team’s master branch. During release planning meetings, all desired features for the next

release are chosen and merged into the development release branch. After integration testing is

complete and all features are finished, a release version will be created in master (market

 87

release) branch. Development can be continued without interference of the current release

branch.

This separation of feature development and feature release branches helps us keep features from

going into production too soon. Sometimes even some features won’t make it into production

at all, or only by a far to come release version in the future. This decoupling helps us to keep

our release branch up to date with bug-fixes without creating too much overhead by fixing them

in all of our feature development branches.

6.6.2. Bug fixes in release branch

Bugs from current releases can be fixed immediately within the bugfix branch. This branch's

sole purpose is to support fixing those bugs that made it into production. Depending on the

bug’s priority, fixes will be done immediately and merged back into production. Minor priority

bugs will be fixed either by the next release version or together with a higher priority bug that

was reported later in time. Every time the fixed bugs are merged back into production (market

release branch). Depending on the timeline (see figure 20) they will also have to be merged

back to our feature development and release branch as well.

This new modified Git branching model based on the three existing models presented by V,

Driessen [Dri10], A. Pelletier [Pe12] and M. Hoffman [Hof11] can help us control all features

that will not make it into production in a current release. As there are currently about 25

subprojects with more or less active development teams, this is essential for our project. Like

before, some feature development took too long to be finished before a given release date, and

without separation of development and release branch, these new and unfinished features were

hard to remove from the code to be released.

 88

7. Website Improvements and newly added Features

One of the main differences between the real agile way in theory and the execution in our

project was the absence of a real customer with real user stories. In our planning games we

decided by ourselves, what stories had to be done, made an estimation of effort together as a

group and did our own prioritization in the team. Later in the development cycles we started to

have a usability team helping us out with the definition of user stories – but, the lack of the

missing “real” customer has always been quite a limitation of practising “real” extreme

programming.

Working software could have been delivered almost any day, if we had really shipped it. As

this thesis is being written, we are finally planning to have our first Google Play release by the

end of 2013. We envisioned a 1.0 release version of our software already more than two years

ago, when I first joined the Catrobat-Project in October 2010, thinking of shipping by the end

of June 2011.

Requirements where changing rapidly, the team started to grow in a weekly rhythm, evolving

at some time to over 30 subprojects with coordinators, weekly meetings, biweekly coordination

meetings and so on. This overhead created by meetings and the necessary coordination for such

a large group of involved individuals slowed down the teams’ development speed.

Participating for the first time in the Google Summer of Code (GSoC)65 in 2011 we changed

our release-planning and were thinking of a final release date by the end of 2011, for a

successfully integration of all newly implemented features during our first year with GSoC. But

as it got even worse with frequently changing teams as well as struggling to get new developers

adding value to our project, as we spent most of our time by introducing our way of coding to

our new teammates and giving them a hand with installing all the required tools for

development (this was sometimes really hard, because some of our students hadn’t been able

to set up a running webserver, database and PHP development environment on their own). We

started to have tutorial lessons in smaller groups, did pair-programming with new students in

our team and taught them the way TDD works within our project.

65 http://www.google-melange.com/

 89

In the website-development team where I have been participating for the last two years, we

were glad to have a virtual machine with a kind of automatic-installer and automatic-update

scripts, to always have the right version of the code, the tests and the software needed available,

no matter what kind of hardware and operating systems our students used. The previous

development environment could only be run without problems on Ubuntu Linux and Windows

XP or Windows 7. As many of our students started to use Apple Notebooks the idea of a

VirtualBox OS image that could be used by everyone was born. With this easy to use Virtual-

Box image people could get started programming within a few minutes.

The second required step for introducing them to the way we liked to test and program, we

introduced a so called “buddy-system”. Every new member was introduced by a senior member

of our team into the development process. For the first few weeks of participation, doing pair-

programming sessions together were done. Without this kind of “care taking”, many new

students got frustrated by our agile principles at the beginning.

The following features of the Catrobat-website have been implemented:

7.1. Uploading and browsing

Project upload can be done right within the Pocket Code-App. A Pocket Code project consists

of a program file (XML), images, sounds and a screenshot. All data of the project is compressed

before upload and put in a single zip-file (with .catrobat ending, so the file can be associated to

Pocket Code app after download). After the project upload was finished, all project data is

extracted by the webserver and stored in the file-system with public access to it. Additional data

is extracted from the xml-file as well, for example:

 Catrobat project language version

 Remixing information (original author, original project)

 Project title and description

 Thumbnail/screenshot

This data is used for project visualization and is also stored in the database.

Tests for the project upload checked for the following information, provided by our generated

testdata-sets and verified the returning status-codes and messages for the Pocket Code-app:

 Correct extraction of program-version from xml-file

 Correct extraction of thumbnails from project screenshot

 90

 Correct extraction of all image- and sound-files

 Insert or database updates

Errors that have been found by these tests were:

 No creation of project directory because of insufficient rights

 Bad or corrupt image data within the project

 Bad or corrupt URL within the Pocket Code-app for project upload

Errors not covered by our tests were timeout-issues when uploading very large project files.

7.1.1. Automatic registration process on project upload

The first version of registration was quite complicated when being used on a smartphone,

because many fields had to be filled out. We did also ask for far too many personal details,

keeping all functionality close to the ones at the Scratch-website.

The next versions of registration were much simpler to use. There was no need for registration

until uploading a newly created or remixed project to our community website. A user has to

just choose his desired nickname and a password. The nicknames will we checked for bad-

words before finishing the registration process. Currently these blacklists support only German

and English and will not work with other languages (see future work).

All other relevant information like e-mail address and country were automatically taken from

the smartphone/tablet. If a user starts using Pocket Code on another device (with the same e-

mail address), he can immediately start uploading projects by just entering his username

(nickname) and password. In previous versions the user login did happen automatically without

the need of a password. Later we discovered this had some drawbacks in practice, as our target

group (kids aged 10 to 14) usually share their smartphones/tablets and also let their friends

create some programs with Pocket Code. Without the need of a password, any user could upload

projects to the account connected with the smartphone or tablet. The consequences of uploading

a project without the need for entering a password may be embarrassing for the owner of the

device depending on the specific content of the upload. There is also a known limitation on user

projects: once uploaded to the website, there is no button to remove the project by the user

itself. A possible workaround is to “report the project as inappropriate”.

 91

7.1.2. Automatic bad-words filter check on project upload

 After uploading a project, a bad-words filter check is run on title and description entered by

the user. There is no immediate feedback to the user, that his project contains bad-words. We

did implement two different strategies:

7.1.2.1. Black-word lists

Initially a table containing bad words was setup for every supported language first. This strategy

was not very effective. When checking for bad words in a German project, there can also be

lots of bad English words – and these wouldn’t have been found by our checks. So we decided

to have one single table of bad-words to check against. By adding more languages (e.g.

Malayan) to the Pocket Code-project and website, the bad-words-filters needed to be

maintained by the community.

This bad-words filter is still in use when checking for a bad username in registration process

and serves as a first of two stage checks in uploading of projects.

7.1.2.2. White-words list

The white-words list contains all words from title, description and nicknames ever uploaded to

our website. Words were added to the list - if they didn’t already exist - by the bad-words-

checker and neither marked as “good” nor “bad” in the beginning.

Figure 21: Catrobat Administration tools (catrobat.org) - list of unapproved words

By default, all projects are visible after upload. When there is at least one unapproved word

found in the title or description, the project will not be shown on our website and an automated

e-mail is sent to Pocket Code-admins. Approving bad words – or even finding them – is quite

cumbersome and will need attention with future releases, especially when the number of users

 92

is growing. There are some other relevant features like blocking users on an IP-address or

username basis to prevent uploading bad or humiliating projects to the website or posting

comments to the discussion board. Handling these issues will be discussed in a later section of

this chapter.

7.1.3. Lost username or password

A lost username or password can be easily recovered by entering one’s e-mail address. If the e-

mail address entered was registered on Pocket Code website, the user will get an e-mail with

his username and a one-time token to set a new password. Updating password information was

quite complicated in the beginning, because we also did have to synchronize passwords with

the help-system (MediaWiki) and our discussion-board (PHPboard). Later in the project we

removed the MediaWiki and the PHPboard from our scope using google-groups instead. This

solution was not ideal, but we are currently thinking of a better integration of a discussion-

board like Scratch did (see chapter 9 – future work).

Testing the lost password methods was done in two steps:

 An e-mail message was created by our mail-API and sent to a predefined Gmail address.

After sending the mail message and some delay necessary to have it delivered, we did

check the e-mail account for the new message our test just sent. This test ensured and

verified that our mail-API was capable of sending mails.

 Our program generated all information on how to reset a password. The underlying test

then checked the token stored in the database associated to the user and extracted the

token from the e-mail message that will be sent. This test helped us verify that the sent

token will be stored with the users’ context in the database.

We did also add a Selenium browser test for password recovery, running through all steps

necessary to reset the password (with a predefined token), so we did not have to implement

checking e-mails with Selenium, which would have been quite difficult.

7.1.4. Editing a Project’s Title and Description

When uploading a project, the user can provide a title and description. This information can be

simply updated by uploading the project once again, with changes made to its description;

changing the title results in another project created on the website. Currently it is not possible

to change any of this information at the website, neither as authenticated user or anonymous

guest.

 93

Testing was done by verifying the information stored in database, compared to post-values

provided by the upload-API. Errors that have been found by these tests were:

 a too long title-string

 bad mark-up or bad content in description

7.1.5. Browsing projects on website by category

On our first versions of the website, browsing projects was only possible by newest ones first.

After uploading a few projects all previously projects seemed to have disappeared, because only

a few (max. 10) projects where visible when navigating to the old version of the website

catroid.org. More projects were loaded one by one, after clicking on the more button at the

bottom of the page. This behaviour has to be changed before the go-live of the website can be

announced. Otherwise our young users will get frustrated, when creating and uploading a

project to the website and remaining there only for a very short time at the front page. Kids

want to share their work and are proud of it, showing it to their friends and parents. A possible

workaround for projects to last longer on the front-page is to show new projects group by

country or region – this problem is addressed in chapter 9 – future work.

With the new version of the website, projects are grouped by the following categories:

 Featured (only shown when manually activated)

 Most downloaded

 Most viewed

 Newest

By clicking on a nickname, the user’s profile and uploaded projects will be shown. Later a

tagging and recommender system was implemented. More details will follow in the next

sections.

Tests for viewing projects have been done in both, unit-tests and selenium tests. In the unit-

tests, project view- and download-count were changed within the test and then the sorted data

was verified by the database queries. Selenium tests were just done by checking if the newly

uploaded projects were visible in the “newest projects” section.

7.1.6. Remixing projects

Every new project created with Pocket Code is marked as parent project for remixing. When a

parent project is downloaded to the Pocket Code-app and uploaded again - no matter if there

 94

were any changes made to the original project – it will be marked as a remix of the original

project by our system. Information about a remixed program and the parent project’s ID is

stored within the program’s xml-code.

Currently there cannot be given any credit to the creators of the original program. Even

information about a remixed version is so far not visible on the website.

7.2. Project details

A lot more details for projects have been added for a successful launch of the Pocket Code-

website. Some of them are: adding tags, adding comments, adding a list of similar projects and

recommendations what other users did download or remix. Adding some social aspects like

“loving a project” or giving it a “star” should also be available on our website. The following

features for projects have already been developed and tested during our Google Summer of

Code participation in 2012 and 201366:

7.2.1. Adding tags to projects

Adding tags to one’s project is currently only allowed for the user who did upload the project.

Tags are visible as shown in Figure 23 with the new website design:

Figure 22: catrobat.org - project with tags added by the user

66 https://www.google-melange.com/gsoc/homepage/google/gsoc2013

 95

When logged in, every user can add tags to their own already existing projects or add tags when

uploading a new project. Tags are stored in a relational way, so it will be easy to find all projects

with a tag named e.g. “airplane”. Grouping all projects with similar tags is still in development

– see future work for more details. Editing of tags has been optimized when using a smartphone

or tablet.

7.2.2. Recommendation of similar projects

A recommendation system was implemented using Myrrix recommender system on a java

basis. By the end of July 2013, Myrrix was no longer supported and became a part of

Cloudera.67 As the recommendation system did not work out as we expected, we choose to put

the user-stories on our backlog again. By today, there is no need for reactivating the

implementation as there are many important features still missing on the Pocket Code website.

We also think that a recommendation system for a very large diversity of projects seems nearly

impossible to implement.

7.3. HTML-5 player for projects

Based on the Google Web Toolkit (GWT) there was a HTML-5 implementation to play projects

directly in the browser. The biggest limitation of the player was the lack of simulation of the

phone’s sensors used in a Pocket Code program. Presentations, short movies or animations were

the target programs for use with the HTML-5 player.

7.4. Internationalization

Internationalization of the Catroid-website was first done by different xml-files, one for each

supported language. Tests for this implementation were quite trivial, as for each text-block

inside a HTML-template, there had to be an xml-translation-file. As new languages were added

and the website was redesigned and renamed to first catrobat.org (in 2011) and then to

pocketcode.org (by September 2013), a more professional implementation of

internationalization was needed. The best available open source project was “pootle – a

community localization server”68. Implementation was done during our first participation with

67 http://www.cloudera.com
68 http://pootle.translatehouse.org/

 96

Google Summer of Code in 2011. Integration of pootle to our website was done without any

automated tests.

7.5. Website design changes

Our website design changed from “catroid.org” – a derivation of cat & android. That is why

our logo was a transformed android robot with a cat-head – to “catrobat.org”. Prior to the public

launch of our visual programming language app and after many Google-Hangout-meetings with

the MIT (Scratch) and the Google Education team, our programming app was renamed to

Pocket Code, and as well, our new website was launched in September 2013 under the new

name “pocketcode.org”.

Figure 23: Old (left) and new (right) website design [Cat13]

Most of the tests for the old website could be used for the new one as well. Only some

modifications had to be applied and some tests had to be removed. We did greatly benefit from

the MVC-pattern used throughout website development. Even Selenium tests did run with only

some small parts needing to be rewritten.

By bringing up a new design for the website, we also took the chance to remove all static content

and setup a content-management-system for all relevant information like help-pages and

 97

tutorials69, introduction for new developers70 and some general information about Pocket Code

and the Catrobat umbrella organisation 71 . A community part of the website is still in

development; we currently use Google Groups72 73 as a platform for our users and interested

developers to discuss any relevant subjects connected to the project. Like Scratch (with Version

1.4), we first had a version of customized phpBB discussion board software with its own user

management, but never put it into production. At the MIT, they did change their software to

DjangoBB74 with the release of Scratch 2.0. We had some discussion about integrating Pocket

Code with Scratch as a mobile version of the MIT’s visual programming language, sharing

user-management, tutorial-materials, discussion forums and moderation, during the release of

Google Play for Education75 by November 2013.

7.6. Community tools

By listing a large number of projects in many different languages on the Pocket Code website,

community tools are essential to give our young users and their parents a good feeling about

security and safety. When bad content starts to spread on a website, the reputation is soon gone,

and so will be most of the users. In our project, we want to foster young children to not just

consume but start creating interactive content on their smartphones and tablets. To provide a

safe and creative environment, we did implement some community tools for the Pocket Code

website.

7.6.1. Report projects as inappropriate

As registration and contribution to our community is free with easy online registration,

everybody can be part of the Pocket Code community. Bad content, e.g. humiliating pictures

of someone else can be uploaded to our website and become visible to the whole world. We

don’t want bad things to happen – so there is a “report as inappropriate” button on every

project’s details page. Reporting something as inappropriate can be done by each member of

the community. Since some foreign languages cannot be understood by our team of developers,

the active participation of the community is a helpful way to accomplish a safe site in a wide

69 https://pocketcode.org/tutorial
70 http://developer.catrobat.org/
71 http://www.catrobat.org/
72 https://groups.google.com/forum/#!forum/catrobat
73 https://groups.google.com/forum/#!forum/pocketcode
74 http://djangobb.org/
75 http://developer.android.com/distribute/googleplay/edu/about.html

 98

variety of languages. Currently one has to be registered and logged in to the Pocket Code

website to report something as inappropriate. We are still not sure if we should open this button

to everyone without the need to register first. In our beta-version of our homepage (catroid.org),

we provided this functionality to all users without registration, but we did ask for the user’s e-

mail address, when reporting a project as inappropriate.

In my opinion, this functionality should always be available for every visitor of our website.

Regardless of any reported projects, our development- and support-teams will constantly have

to monitor the website for new content, possibly not suitable for younger children. This can

become a problem when a project’s title and description cannot be understood because of its

language. In our administration-tools, we have some tools to get a quick overview of new or

updated projects, by their title, description and containing images (see figure 27, chapter 7.7.2).

This functionality has been tested using PHPUnit and Selenium tests. We did write selenium

tests after integration of all required functionality to verify its implementation and act as some

sort of integration test. Unit tests were developed in a test-first-development style following

these steps:

 Write a test testFlagProject() to mark a project as inappropriate that fails in the

beginning (obviously)

 Write the function body flagProject()::boolean, that is empty at first

 Make the test run by adding return true; to flagProject().

 Add a parameter projectID to flagProject().

 The test fails again

 Make the test run by adding the projectID parameter to testFlagProject()

 Add the database operation to flagProject with projectID

 Check for the right status codes to return

 Write a test testIsProjectInapproriate() to check if a project is flagged

 Add a new function isProjectInapproriate()::Boolean, that is just empty at first

 Make the test run by adding return true; to isProjectInapproriate().

 Add a parameter projectID to isProjectInapproriate().

 The test fails again

 Make the test run by adding projectID to testIsProjectInapproriate().

 Add the database operation to isProjectInapproriate() with projectID.

 …

 99

7.6.2. Discussion board

Development of our discussion board was cumbersome all of the time. We did not use single

sign on by then, and so we had to register every user automatically to our phpBB-board,

resulting in creating a user record with username, password and his e-mail in the phpBB-board

database (running locally on our servers). Tests have been done using PHPUnit and Selenium

as well, covering registration, login and logout process of the discussion board. Due to graphical

limitations and the lack of a mobile version of phpBB-board, we decided to remove it from our

project, using Google-Groups instead (until we’d find some better software for our project’s

purpose).

Figure 24: catrobat.org - phpBB discussion board integration

7.6.3. Help-pages and Tutorials

Additional materials have been created and provided on our website for parents, children and

teachers. These tutorials include short introduction videos, step-by-step guides and

programming hints with screenshots.

 100

7.7. Backend functionality

Support for a large online community requires supervision and monitoring of content added by

users, especially for our young target group. We want parents to feel safe when their children

start using our software and community tools. To achieve a high quality level and keep our

platform safe for all our users, some technical tools and organizational processes had to be

implemented.

Our backend tools are simple HTML-pages with lots of functionality, all tested with PHPUnit

and Selenium. Most of the functionality was implemented using test-first development and pair

programming:

Figure 25: catrobat.org - Administration tools backend

7.7.1. Managing users

User management page gives an overview of all registered users by username, e-mail, country

and gender. Access to the website (and uploading projects from Pocket Code-app) can be

restricted for individual users.

7.7.1. Blocking users

Blocking users when uploading unsuitable projects or misusing the “report as inappropriate”

button can be done with this tool. Additional blocking of IP-addresses is possible, if the user

has registered more than one username.

 101

Figure 26: catrobat.org - administration tools for blocking users and IP-addresses

7.7.2. Managing projects

The project overview shows all projects sorted by newest one first, with information about the

number of downloads, number of flags (as inappropriate) and the current status – visible or

invisible. Admins can toggle a projects visibility after checking when reported as inappropriate

and even delete projects that are not suitable to be listed on our website.

Figure 27: catrobat.org - uploaded projects

7.7.3. Check reported projects

For every project reported as inappropriate, an e-mail message is sent to our internal Google

group. Admins can easily resolve a project’s status, if the report was unjustified. We asked the

Scratch team, how they handle bad projects: they contact the project’s creator first, and ask him

to remove or update his project accordingly. If there’s no feedback, the project will be made

invisible by the administrators.

7.7.4. Bad-words filter and contents

Approval or rejection of bad-word in a project’s title and description can be done using this

tool. By default, every unknown word gets “no” meaning. We will need to redo this tool for a

better usability. As with all our programs, we have all functionality covered with tests, any

refactoring can be done without the risk of breaking existing and working parts of our software.

 102

Figure 28: catrobat.org - list of unapproved words

7.8. Work in progress

Our development was driven always writing tests first, if possible. This led to a very small

feature set, as we did never think too much ahead – we always tried to make the smallest

possible thing work, adding new features at later times, when absolutely needed. Following this

way of development kept us focused on the current problems, implementing tiny functions with

a very high test-coverage.

As with every community, many automatic checks can help to keep a high quality and reduce

misuse to a minimum. But there will always be the need to “review” a project’s content “by

hand”, no matter how good automatic recognition tools will work.

All our tools will of course need a better usability, search functionality and some more features,

to be able to manage large amounts of projects and users as during and after our public beta

release period.

 103

8. Results and Conclusions

Using all of the agile methods in our multi-year FOSS project where possible, we were facing

some problems and limitations of these methods as listed in the next subsections.

8.1. Selenium Tests

Writing Selenium tests for all user interactions and input on the website was quite a lot of work.

After changing the design and some user-interface parts of the homepage, many tests had to be

rewritten, dropped or changed.

While selenium tests need quite a long time when started (currently about 15 minutes on an

Intel core i5 2.5 GHz CPU with 8 GB RAM in a VirtualBox Ubuntu 12.04 environment) they

could only be executed for integration tests.

Usability changes lead to some major design changes, and because of this, the test-first-design

was not always possible (and even not useful) here. Switching to “test-last” was therefore

sometimes unavoidable.

After Selenium has released its new version (Selenium WebDriver, or Selenium Version 2), we

could run Selenium on our powerful test-server hardware in combination with Selenium Grid,

supporting to run several tests in parallel mode. One of the best new features of Selenium 2 was

the possibility of taking screenshots automatically for failing tests, while with Selenium 1, we

often had to slow down the test-execution speed to watch the system fail; this mostly happened

for incomplete or still running callback-requests from the website.

Running all of the projects’ Selenium-tests was done using ant. In February 2013 we changed

for automation of test-scripts from ant to Python.

8.2. Kanban Board and Stories

Using a Kanban-Board with story cards helped us to get a quick overview of what features were

currently in development. As many of our team-members have not regularly attended our

project room, the need for an electronic version of the Kanban-Board became evident. After

some research on available Kanban-software we decided to just use a shared google

spreadsheet, with edit-rights for every member of the team. As by July 2013 we stared to use

 104

Atlassian’s Jira76 for project- and issue-tracking, and the monitoring of our Google Summer of

Code 2013 projects77.

8.3. Development environment

After two semester of providing tutorial sessions for new team-developers during courses they

took in their computer science lectures and setting up the development environment on several

different machines and hardware, our team decided to provide an automated script for

installation of all needed components and required setup procedures to develop and run the

Catrobat-website on their local machine using Ubuntu Linux78. It was quite an effort to setup

all needed software and tools, when not running Ubuntu Linux, especially in case of running

Mac OS X or Windows 7. Because of those different development environments two of our

senior team members79 provided a ready-to-use VirtualBox80-Image based on Ubuntu Linux as

a “development IDE” and a perfect system for running the website on a local machine, including

all the tests on all platforms like Windows 7, Apple OS X and even on Ubuntu itself.

8.4. Pair programming

By changing the arrangement of tables, monitors and keyboards in our project room, centered

with free access to the different projects’ Kanban-Boards, pair-programming was easier as

before, when the tables were all in rows, like in traditional classrooms. Grouping around tables

helped us discuss new features, sometimes with even more than one pair of programmers

around one screen. Discussion of new features affecting more subprojects became also more

evident after the changes.

Additional things like free coffee (with milk), free drinks (water, orange juice, apple juice), free

cookies, a refrigerator, a microwave oven (with pizza function!) and access for team-members

24 hours a day, 7 days a week, made the project room a nice and comfortable working place for

everyone.

76 https://www.atlassian.com/software/jira
77 http://www.google-melange.com/gsoc/org/google/gsoc2013/catroid_project
78 http://www.ubuntu.com
79 Christian Hofer, Roman Mauhart
80 Oracle's VirtualBox is freely available as Open Source Software under the terms of the GNU General Public

License (GPL) version 2, http://www.virtualbox.org

 105

Figure 29: Catrobat project room at Institute of Software Technology, TU-Graz

8.5. New team-members

To help new members of the team to get fast into testing and programming, we introduced a

so-called “buddy-system”. Each senior-developer takes care of a new member of the team for

the first few days or weeks, to help with the installation of the programming environment and

testing framework, introduction to the test-server environment, introduction to test-first-design,

pair programming and to complete the first smaller stories of our Kanban-board. In the

beginning, we didn’t support new colleagues adequately, arranging no appointments in our

project room and offering no assistance when it came to finding a programming-partner. That

often leaded to frustration and error-prone commits to the project. For new members in the team

it is essential to get a good lead and to have a senior developer on their side to help with the

first steps of test-driven-development. As in our computer science classes, test-driven-

development is educated, but not often used during programming assignments.

8.6. Test-Driven Development

As of today every programmer knows about test-driven development, test-first design and the

importance of having tests to successfully change production code without introduction of new

bugs or omitting built-in features. In our project we were facing the problem, that everyone

knew exactly what test-driven development is all about and has read some books from Kent

Beck, like “Extreme Programming Explained – Embrace Change”, or “Test-Driven

Development By Example”. But the practical skills for writing tests first and start writing code

next is not trained or even needed in the programming assignments at university courses.

Students who have already working experience in IT-companies have been confronted with

test-driven development or at least the need for writing tests. So it was easier for them writing

meaningful tests. Finding what tests to write and keeping the small cycle of test-driven

 106

development evident – write a test – see it fail – make it green – refactor the code – was one of

the biggest challenges in our project. To overcome these challenges, some training for test-

driven-development shall be introduced like a Coding Dojo [Sat08] or a TDD Kata [Pro13].

When designing and implementing new interface features, the test-driven development or test-

driven design was leading us to writing many tests we then had to delete again. For future

usability development and modifications of the website we will focus more on mockup-design

first, starting implementation only when the main functions and features are approved by our

usability-team. Good tools for supporting the creation of mockups are the commercial

Balsamiq81 or the free available Invision-App82.

8.7. Standup-Meetings

We used to have standup-meeting for several months, but the effectiveness was decreasing, as

there were too many different project members around in our project room to get a good and

fast overview of the features and issues currently in development. In the beginning of the

project, with only three main teams (Paintroid – later Pocket Paint, Catroid IDE – later Pocket

Code and Catroid-Website – later pocketcode.org) the daily standup-meetings were used to

coordinate features influencing other teams’ functionality.

Basically, standup-meetings are a good way to share knowledge and discuss current issues of

development. By our experience, those should be held only within one development team.

Overall, the diverse methods of agile software development helped us achieve the following

goals: pair programming, test-driven development, large test-coverage, continuous integration,

no source-code documentation, collective code ownership and to building a great team spirit.

81 http://www.balsamiq.com
82 http://www.invisionapp.com

 107

9. Future work

9.1. Joint venture with scratch

With Google’s EDU-play-store release at the beginning of November 2013, many meetings

with the Scratch team from the MIT and Google have taken place. At first, the idea was to make

the Catroid-App (at this time called: Pocket-Code) a mobile Version of Scratch, by integrating

of some of our infrastructure like the website e.g., and renaming our app to Pocket Scratch

whilst creating a new logo (as at this time, we already had a nice logo, developed by the FH-

Joanneum83 Usability and Design Team) and also changing some of our programming bricks,

in both, their look and their functionality to better fit with MIT’s Scratch 2.0.

A discussion about a brick called “transparency” within Scratch and “ghost-effect” within

Pocket-Code, reviewed retrospectively, has been one of the main differences and possibly the

main cause for the delay of our joint-venture for Scratch and Pocket-Code. The idea is still to

bring our two projects closer together, but in quite a different way as first imagined: e.g. using

one common platform for support (a forum), reusing teacher-materials (like tutorial cards) and

tutorial-videos.

Our Pocket-code project was featured in the first weeks of the Google EDU-Play-Store release.

To promote the project, a movie about how to use Pocket-code in a real-world educational

environment was created by Google in G.I.B.S. International School 84 in Graz, Austria,

supervised by Professor Wolfgang Slany. Since then, the school has been using the Nexus 7

Tablets provided by Google for educational purposes in their informatics-classes.

9.2. Registration

Before uploading a program created with Pocket-Code, some short and easy registration-

process has to be passed. As our target age group will be kids ranging from the age of ten to

fourteen, as few personal information as possible should be required (only nickname, e-mail,

gender and country). Additionally there should be no need to enter a password. The e-mail

address is also needed for registration, but this should be extracted automatically from the

smartphone, in combination with its IMEI-number.

83 http://www.fh-joanneum.at/
84 http://www.gibs.at

 108

Further on, the selection and use of a personal avatar should become possible. A personal avatar

could be created within the Pocket-Paint App, also available from the Catrobat-Project.

9.3. Online tutorials and videos

For a successful use of our “Pocket Code” programming app, online material with tutorials and

videos have to be produced explaining how the bricks can be used, how some animation or

programming can be done or how to use external resources like images and music or sounds.

Tutorials and sample projects should also be provided for school-teachers, so they find it easier

to use our app to introduce and teach to their classes and have a better start with it. Some

materials for parents are also needed, to give them some background-information of things that

their children can learn when using Pocket Code.

9.4. Responsive web-design

Our first design of the website was quite simple (see figure 24, left) and only supported small

screens on smartphones and tablets. There was no real desktop version of the website, except

some change in the CSS-files showing larger images instead. Since the current devices like

Google’s Nexus 7 or Samsung’s Galaxy Tabs support full HD resolution, the website will need

a redesign regarding usability and the viewing of content. The website should also support many

more different screen-sizes and react in a real responsive way, by showing more or less items,

depending on the device used to view the pages.

9.5. Project management and feature-lists

The Catrobat project has grown from about five students in the beginning to – depending on

the academic year – more than one hundred students in several project teams now. Of course,

not all of them are productive and regularly work in our project room. Most teams are sized

from 3 to 10 members with a so called “team coordinator”, responsible for feature

implementation and communication with all other involved teams. Weekly coordination

meetings to discuss feature integration, release planning and open issues will also have to be

held.

For the overall communication and coordination, a full-time project management needs to be

introduced to our project. Since Catrobat has been part of Google’s Summer of Code 2011,

 109

2012 and 2013, and will probably be in 2014, there is quite a large amount of overhead that

needs to be done. Integration of new features implemented by students during our Google

Summer of Code participation needs a lot of attention and supervision.

Feature lists will be put into Atlassian’s Jira (as user stories), for a better support of students,

working from home or from some other parts of the world. This will help keep better track of

implementation “costs” for new features and all occurring bug-issues. In the past, this could

only be done by sorting out old story cards from previous releases from our Kanban-board

archive.

9.6. Improvement of the community-parts of the website

The community part needs attention to make the project more popular. Currently the discussion

forum85 can be found at the help-pages of the Pocket-code website. By the time writing this

thesis, there is no real discussion on projects and topics like there is at the Scratch community-

website. There, children (and other users) can discuss how some projects were made, how

special kinds of animations could be done, how counting high scores can be programmed and

many more things kids are interested in, when creating or remixing projects.

9.6.1. Discussion board (forum)

A discussion forum like there currently is at the Scratch community website will be important

to support users with questions on different kinds of topics. Fast response time – either by

moderators or by the community itself – will be a major success factor in the long run. The

forum should also be easy to use and have several predefined topics. Moderation of the forum’s

posts is very important and should be planned thoroughly. Posting to the forum should only be

allowed for registered users or people providing an e-mail address, so the person is somehow

“identified”. A read only view for all postings should be possible for everyone.

9.6.2. Remixing of projects

Remixing projects by adding own ideas have been a success factor for Scratch [Mon11]. But it is

also very important, to give credit to the creators of a project, this can be done automatically by the

Pocket-Code app and website, when uploading a remixed version of a project. The remixing history

85 Google Group at https://groups.google.com/forum/m/?fromgroups#!forum/Pocket Code

 110

should be saved in our project database of the community website. So, it will be easy to extract the

dependent projects from which a remix is derived. In the context of remixing is the next proposed

feature – commenting on projects, to make the website more attractive to share one’s ideas.

9.6.3. Commenting on projects and automatic bad-words filter

Users like to voice their opinions of projects others have made. Sometimes they will also dislike

things, and that is one point, where a community-website for kids and teenagers needs to keep an

eye on. We already have a bad-words-filter on the website, used to check the username, title and

description of a project, currently only in the two languages English and German. As our project

has been translated by the community to many other languages, like Chinese (traditional and

mandarin), Russian, Malayan and Romanian, filters also need some attention. For German and

English we put the most common good and bad words in filters, to have something to start from. If

someone uploads a project, the content is checked by our filters and marked accordingly. If

unknown words are found the moderators get an e-mail message and will find new unapproved

words on their dashboard to confirm or reject these contents. If content has to be rejected, then the

user needs to be informed about this. If he or she continues to write unfriendly or bad things, they

will have to be blocked for some time.

As available at the Scratch community website, adding comments should only be possible for

registered users. As an additional feature it should be possible to report content of comments as

inappropriate, similar to the way this is already available for a project’s title, description and

contents.

Another possibility to automate recognition of bad words in other languages than German or

English is to use e.g. Google’s translate API, to first, translate the words to English and afterwards

run the bad-words-filter on the translated content. For alternative translation tools, further research

on available open-source solutions needs to be done.

9.6.4. Reviewing projects and user control

Our community website will need a process for reviewing projects, especially when comments on

projects will be implemented. As users will find it strange if their comments are not shown

immediately, it is best, to just publish the contents and have a moderator overview things regularly

[Mon09]. As the Catrobat-project is an open-source project at our University, with currently only

two full-time employed academics, mostly handling coordination and management issues,

moderators will be students working on programming projects or on their bachelor- or master-

thesis. A dashboard for project review process and user control must be available for all of them, to

 111

get a quick overview, if some things need attention as well as the information that someone is

already working on resolving an issue. Moderators should also have a tool, to write internal

comments on users, projects and users’ comments. User control should also be possible from within

these tools. A good way as learned from the Scratch-team is, to talk (write) to the user first and

explain the rules as a first step. Only if the user doesn’t stop their inappropriate behavior, some

action should be taken, like blocking the user for e.g. one hour. If there is still no change in his

behavior, the blocking can continue up to one day, one week or result in a permanent blocking of

the user.

Blocking of IP-addresses should also be possible, because if blocked users will keep on with

inappropriate actions by registering new IDs, instead of using their currently blocked user-account,

all access from this single IP-address or an IP-range should be denied.

9.6.5. Organizational issues

As the main target groups of our project and out community website are children from ten to

fourteen, we have to assure that all content provided either in projects or in comments, is suitable

for them. To accomplish this we need to apply some organizational changes, those are:

 Having a sort of 24x7 support for the community website

 Reviewing projects and its descriptions frequently

 Removing inappropriate contents

 Checking project’s comments frequently

 Replying to posts to our website’s discussion-board

Compared to the MIT’s Scratch project, where almost all of the team-members are employees of the

institute, our project has only limited financial resources (used for the purchase of new hardware)

and currently no possibility for long-term employment of students in our project.

9.7. Implement short development-cycles for continuous release of features

Like mentioned in chapter 6 about our new Git branching model for Catrobat, there is still some

work to implement this new model in our development process.

9.8. Help-pages: getting started, exploring, guides

Some background-information on how to get started for kids and parents is needed. To give

some easy entry points to programming, some hints, on what topics to start first and some

 112

simple exercise for different target age-groups are important for the further success of the

Catrobat-project. We will also need some material to supply to teachers, as shown on the

Scratch website86, to increase their interest in our project and to use it for their classes at school.

All those materials should be easy to find on our website, easy to access and without the need

for a login or registration to use them.

Some guides for programming bricks are also a must. There should be several parts of guides

and explanations for all different kind of bricks like loops, variables, conditions and motions.

A good example for those kind of guides suitable for kids can be found at Lego’s EVO3

Mindstorms Series Website87.

9.9. Test-driven-development exercises

Learning TDD in a university course or at school is one thing, using these techniques in daily

programming work is another one. As sport professionals need to train their moves, their

strength and skills every day, so does a (sooner to be professional) programmer.

Training TDD can be done in various ways. Some really excellent exercises mentioned in

“Practices of an agile developer”, “The art of agile development”, “The pragmatic programmer”

and “97 things every programmer should know” are to either have coding-dojos88 from time to

time or programming katas89 every day for a short amount of time, not more than 15 to 30

minutes, by solving small exercises from scratch, using TDD-techniques [Hen10], [Hun09],

[Ras10], [Hun11].

When students start working on our project, they often know how to write tests, but not exactly

what to test. Writing good tests is essential for readability and maintainability. Many of the tests

written in the beginning have been refactored and maintained over the time, and some of them

became obsolete after changing some main functionality on our community-website. Since the

structure of the test code was sometimes complicated and hard to read and because of this, even

harder to understand, we came to the conclusion that tests should be written as simple as

possible, with only one thing to test in each function. Learning to write good quality test code

should be the one thing to be taught in our project, by having regular coding dojos on a team-

basis in small groups. Website development needs many different aspects of testing, like unit-

86 http://scratched.media.mit.edu
87 http://www.lego.com/en-gb/mindstorms/?domainredir=mindstorms.lego.com
88 http://www.butunclebob.com/ArticleS.UncleBob.TheProgrammingDojo
89 http://www.butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata

 113

tests of core modules used in the content-management-system, selenium-tests of website usage

by simulation of user stories and tasks, and last, database testing, that can be done within the

unit-tests.

Training these parts of testing should be integrated into our daily project work, and should be

done regularly, especially when new members will start to support our teams.

 114

10. List of Figures

Figure 1: Bricks used for graphical programming and how they can be put together [Cat13]

 .. 13

Figure 2: New Pocket Code (left), new Pocket Paint logo (middle) and old version (right) .. 14

Figure 3: Scratch – new project [Mit13] ... 19

Figure 4: Microsoft Kodu GameLab community website: project overview [Kod13] 24

Figure 5: Microsoft Kodu GameLab community website: project details page [Kod13] 25

Figure 6: Lego Mindstorm Programming environment [Leg13] ... 28

Figure 7: Scratch 1.4 programming editor window [Res09] ... 29

Figure 8: Scratch programming blocks [Res07] ... 29

Figure 9: Projects sometimes being delivered in today’s software development [Ssw13] 35

Figure 10: sticking to a plan [Ras10, p. 5] .. 41

Figure 11: Kanban-story board of Catrobat’s web-team .. 43

Figure 12: Virtual Kanban-story board of Catrobat’s web-team using Atlassian’s Jira 43

Figure 13: PHPunit test-results ... 45

Figure 14: Pair programming setup in our project room .. 66

Figure 15: Catroid API LoginTest.php .. 70

Figure 16: Git branches “develop” and “master” [Pe12] ... 80

Figure 17: A successful git branching model [Pe12] .. 81

Figure 18: Another Git branching model [Dri10] ... 83

Figure 19: RemObjects Blogs, [Hof11] ... 84

Figure 20: New Catrobat Git branching model ... 86

Figure 21: Catrobat Administration tools (catrobat.org) - list of unapproved words 91

Figure 22: catrobat.org - project with tags added by the user .. 94

Figure 23: Old (left) and new (right) website design [Cat13] ... 96

Figure 24: catrobat.org - phpBB discussion board integration .. 99

Figure 25: catrobat.org - Administration tools backend ... 100

Figure 26: catrobat.org - administration tools for blocking users and IP-addresses 101

Figure 27: catrobat.org - uploaded projects ... 101

Figure 28: catrobat.org - list of unapproved words .. 102

Figure 29: Catrobat project room at Institute of Software Technology, TU-Graz 105

 115

11. References

[Mic13] Microsoft Fuse Labs, http://fuse.microsoft.com/projects/kodu, August 2013.

[Kod13] Microsoft Kodu GameLab community website, http://www.kodugamelab.com,

August 2013.

[Lif13] Lifelong Kindergarten Group at the MIT Media Lab. Scratch Stats.

http://stats.scratch.mit.edu/community/, August 2013.

[Mit14] About Scratch, http://scratch.mit.edu/about/, January 2014

[YoY13] YoYo Games and GameMaker: Studio, http://www.yoyogames.com/, August 2013

[Nin13] Nintendo Flipnote Studio Website, http://flipnotestudio.nintendo.com/notice/,

August 2013

[Nin13a] Nintendo Flipnote Studio 3D Website, http://flipnotestudio3d.nintendo.com/,

August 2013

[Son13] Sony PlayStation, The Little Big Planet Website,

http://www.littlebigplanet.com/about, August 2013

[Sat08] Sato, D.T.; Corbucci, H.; Bravo, M.V., "Coding Dojo: An Environment for

Learning and Sharing Agile Practices", Agile 2008. AGILE '08. Conference,

pp.459,464

[Pro13] Peter Provost’s Geek Noise, http://www.peterprovost.org/blog/2012/05/02/kata-the-only-

way-to-learn-tdd, August 2013

[Kol08] Kollanus, S.; Isomöttönen, V., “Understanding TDD in academic environment:

experiences from two experiments.”, In Proceedings of the 8th International

Conference on Computing Education Research (Koli '08). ACM, New York, NY,

USA, 25-31, 2008

[Kol11] Kollanus, S., “Critical issues on test-driven development.”, In Proceedings of the

12th international conference on Product-focused software process

improvement (PROFES'11), Danilo Caivano, Markku Oivo, Maria Teresa

 116

Baldassarre, and Giuseppe Visaggio (Eds.). Springer-Verlag, Berlin, Heidelberg,

322-336, 2011.

[Kol10] Kollanus, S., "Test-Driven Development - Still a Promising Approach?," Quality of

Information and Communications Technology (QUATIC), 2010 Seventh

International Conference on the , vol., no., pp.403,408, Sept. 29 2010-Oct. 2 2010

[Bec01] Beck, K.; Fowler, M.; “Planning Extreme Programming”, The XP Series, Addison-

Wesley, 2001

[Bec05] Beck, K.; Andres, C.; “Extreme Programming Explained – Embrace Change”,

Second Edition; Addison-Wesley, 2005

[And10] Anderson, D. J.; “Kanban – Successful Evolutionary Change for Your Technology

Business”, Blue Hole Press, Sequim, 2010

[Whi12] Whittaker, J.; Arbon, J.; Carollo J.; “How Google Tests Software”, Addison

Wesely, 2012

[Pag09] Page, A; Johnston, K.; Rollison Bj; “How We Test Software at Microsoft”,

Microsoft Press, 2009

[Tur10] Turhan, B.; Layman, L.; Diep, M.; Erdogmus, H.; Shull, F.; “How Effective Is

Test-Driven Development?”, from “Making Sofware, What really works, and why

we believe it”, O’Reilly, 2011

[Wil09] Williams, L.; Kudrjavets, G.; Nagappan, N.; “On the Effectiveness of Unit Test

Automation at Microsoft”, 20th International Symposium on Software Reliability

Engineering, IEEE, 2009

[Mar07] Martin, R.C., "Professionalism and Test-Driven Development", Software, IEEE ,

vol.24, no.3, pp.32,36, May-June 2007

[Gol10a] Goldman, M., "Test-driven roles for pair programming", Software Engineering,

2010 ACM/IEEE 32nd International Conference on , vol.2, no., pp.515,516, 2-8

May 2010

 117

[Gol10b] Goldman, M.; Miller,R.C.; “Test-driven roles for pair programming“, Proceedings

of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE '10); ACM, New York, NY, USA, p13-20., 2010

[Abr11] Abrantes, J.F.; Travassos, G.H., "Common Agile Practices in Software

Processes", Empirical Software Engineering and Measurement (ESEM), 2011

International Symposium on, pp.355,358, 22-23 Sept. 2011

[Ber12] Bergman, R., "Embracing Nihilism as a Software Development Philosophy and the

Birth of the Big Book of Dead Code.", Agile Conference (AGILE), 2012 , vol., no.,

pp.86,91, 13-17 Aug. 2012

[Pro12] Provost, P.; “Kata - the Only Way to Learn TDD”,

http://www.peterprovost.org/blog/2012/05/02/kata-the-only-way-to-learn-tdd, last

visited: September 13, 2013.

[Cod12] Codingdojo, “What is Coding-Dojo?”, http://codingdojo.org/, last visited:

September 13, 2013.

[Ren08] Rendell, A., "Effective and Pragmatic Test Driven Development", Agile, 2008.

AGILE '08. Conference , vol., no., pp.298,303, 4-8 Aug. 2008

[Cau12] Cauevic, A.; Punnekkat, S.; Sundmark, D., "Quality of Testing in Test Driven

Development," Quality of Information and Communications Technology

(QUATIC), 2012 Eighth International Conference on the, pp.266,271, 3-6 Sept.

2012

[Wir09] Rebecca J. Wirfs-Brock, "Design for Test", IEEE Software, vol. 26, no. 5, pp. 92-

93, Sept.-Oct. 2009

[Jan08] Janzen, D.S.; Saiedian, H., "Does Test-Driven Development Really Improve

Software Design Quality?", Software, IEEE , vol.25, no.2, pp.77,84, March-April

2008

[Bec03] Beck, K., “Test-Driven Development By Example”, Addison Wesley, 2003

 118

[Kos08] Koskela, L.; “Test Driven, Practical TDD and Acceptance TDD for Java

Developers”, Manning Publications, 2008

[Cri09] Crispin, L.; Gregory, J., “Agile Testing, A Practical Guide for Testers and Agile

Teams”, Addison-Wesley, 2009

[Agm01] Beck, K. et. al, “Manifesto for Agile Software Development”,

http://agilemanifesto.org, last visited: September 23, 2013.

[Amb13] Ambler, S. W., “Examining the Agile Manifesto”, Ambysoft Website,

http://www.ambysoft.com/essays/agileManifesto.html, last visited: September 23,

2013.

[Hun09] Hunt, A., “Practices of an Agile Developer”, The Pragmatic Bookshelf, 2009.

[Hum11] Humble, J.; Farley, D., “Continuous Delivery, Reliable Software Releases trough

Build, Test, and Development Automation”, Addison-Wesley, 2011

[Cha09] Chacon, S., “Pro Git”, e-book, 2009, http://git-scm.com/book

[Sho08] Shore, J.; Warden, S., “The Art of Agile Development”, O’Reilly, 2008

[Sel13] SeleniumHQ Browser Automation, http://docs.seleniumhq.org, last visited:

September 30, 2013

[Joh11] Johansen, Ch., “Test-Driven JavaScript Development”, Developer’s Library,

Addison-Wesley, 2011

[Php13] PHPUnit Website, http://phpunit.de/manual/current/en/, last visited: September 30,

2013

[Zel12] Filipin, Ž., “Homebrewer’s Guide to Watir”, Leanpub books, 2012

PDF version: http://leanpub.com/watirbook

[Bur12] Burtscher, D., “Master’s Thesis: Introduction of a Continuous Integration Process

in an Open Source Project”, 2012

 119

[Sel13] Selenium HQ Browser Automation Website, http://docs.seleniumhq.org/projects/,

last visited: October 2, 2013

[Ras10] Rasmusson, J., “The Agile Samurai – How Agile Masters Deliver Great Software”,

The Pragmatic Programmer, Pragmatic Bookshelf, 2010

[Coh10] Cohn, M., “Agile Estimation And Planning”, Pearson Education, Prentice Hall,

2010

[Cat13] Pocket Code on Google Play,

https://play.google.com/store/apps/details?id=org.catrobat.catroid, last visited:

October 7, 2013

[Res02] Resnick, M. et al., “Scratch: A Sneak Preview”, 2002

[Res09] Resnick, M. et al., “Scratch: Programming for All”, Communications of the ACM,

November 2009, Vol. 52, No. 11

[Mon11] Monroy-Hernández, A. et. al., “Computers can’t give credit: How automatic

attribution falls short in an online remixing community”, CHI 2011, May 7-12,

2001,Vancouver, BC, Canada

[Hil10] Hill, M.B. et al., “Responses to remixing on a social media sharing website”,

Association for the Advancement of Artificial Intelligence, 2010

[Gri11] Gritschacher, T., “Master’s Thesis: A Community Website for Interactive Mobile

Content Created by Children and Teenagers”, 2011

[Rot07] Rothman, J., "Manage It! Your Guide to Modern, Pragmatic Project Management,

The Pragmatic Bookshelf, Raleigh, 2007

[Edw04] Edwards, S.H., “Using Software Testing to Move Students from Trial-and-Error to

Reflection-in-Action”, ACM, SIGCSE’04, March 3-7 2004

[Gtb14] Google Testing Blog, http://googletesting.blogspot.com

 120

[Mon09] Monroy-Hernández, A., "Designing a website for creative learning.", Proceedings

of the Web Science 09: Society On-Line, 18-20 March 2009, Athens, Greece.

[Ssw13] SSW-Website, Rules to better Scrum using TFS

http://rules.ssw.com.au/Management/RulesToBetterScrumUsingTFS/Pages

last visited September 06, 2013

[Ber12] Berry, Andrew, “Git Best Practices: Workflow Guidelines”,

http://www.lullabot.com/blog/article/git-best-practices-workflow-guidelines

last visited September 06, 2013

[San13] Sandofsky, Ben, “Understanding the Git Workflow”,

https://sandofsky.com/blog/git-workflow.html

last visited: September 06, 2013

[Dri10] Driessen, Vincent, “A successful Git branching model”,

http://nvie.com/posts/a-successful-git-branching-model/

last visited: September 6th, 2013

[Pel12] Pelletier, Aurélien, “Another Git branching model”,

http://blogpro.toutantic.net/2012/01/02/another-git-branching-model/

last visited: September 6, 2013

[Dym12] Dymitruk, Adam, “Branch-per-Feature”,

http://dymitruk.com/blog/2012/02/05/branch-per-feature/

last visited: September 6, 2013

[Cac09] Chacon, Scott., “Pro Git”, 2009, retrieved from http://git-scm.com/book

last visited: September 6, 2013

[Sus08] Susser, Josh, “Agile git and the story branch pattern”,

http://blog.hasmanythrough.com/2008/12/18/agile-git-and-the-story-branch-pattern

last visited: September 6, 2013

http://blog.hasmanythrough.com/2008/12/18/agile-git-and-the-story-branch-pattern

 121

[Hen09] Henrichs, Rein, “A Git Workflow for Agile Teams”,

http://reinh.com/blog/2009/03/02/a-git-workflow-for-agile-teams.html

last visited: September 6, 2013

[Pop08] Pope, Tim, “A Note About Git Commit Messages, April 2008”,

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

last visited: September 6, 2013

[Hof11] Hoffman, Marc, “Our New Git Branching Model”,

http://blogs.remobjects.com/blogs/mh/2011/08/25/p2940

 last visited: September 6, 2013

[Hen10] Henney, Kevlin, “97 Things Every Programmer Should Know”, O’Reilly Media

Inc, 2010

[Hun11] Hunt, Andrew; Thomas, David, “The Pragmatic Programmer – from journeyman to

master”, Addison-Wesley, 2011

	masterThesisAlexanderGuetler_v2.6.final-print-version
	Eidesstatt_Erklaerung_dt_engl
	masterThesisAlexanderGuetler_v2.6.final-print-version

