
Graz University of Technology

Institute for Computer Graphics and Vision

Master’s Thesis

Fast Object Tracker on a Smart

Camera

Gernot Loibner
Graz, Austria, Sep 2014

Thesis supervisor

Univ.-Prof. DI Dr. Horst Bischof

Instructor

DI Dr. Peter Roth

Abstract

This diploma thesis addresses the problem of tracking various objects in real time on

a smart camera. As starting point an existing tracking by detection based algorithm

is used which uses histogram of oriented gradient (HOG) features for object detection

and Lukas Kanade Tomasi (KLT) point tracking for motion estimation to combine

those detections into trajectories. As the current implementation does not include

distinct object information it likely mixes up objects passing nearby when tracking,

leading to wrong object trajectories. To overcome this drawback the idea of including

an additional verification step into the tracking process came up where object identity

information can be included. With respect to real time capability, feature descriptors

are reviewed and evaluated on two datasets. The most promising approaches in terms

of quality (i.e., DCT, LBP, BRIEF) are included into the current algorithm. The

extended tracking algorithm is evaluated using the CLEAR MOT metric against the

baseline method. In addition, we compare to results available in the literature on two

datasets with different image quality. The results show a significant drop of object

identity switches whereas the overall performance of the algorithm doesn’t improve in

a satisfying manner.

Keywords. Multi-object tracking, detection, motion, segmentation, smart camera,

feature descriptor, clear mot

Kurzfassung

Diese Diplomarbeit behandelt das Problem des Tracking von mehreren Objekten

innerhalb eines Videostreams auf einer intelligenten Kamera in Echtzeit. Dazu

wird ein bestehender Algorithmus, der auf dem Prinzip Tracking durch Detektion

basiert, analysiert. Dieser Algorithmus bedient sich zur Detektion dem Prinzip der

Histogramme von orientierten Gradienten (HOG) und kombiniert Detektionen zu

Bewegungsbahnen mit Hilfe von Bewegungsabschätzung auf Basis der Arbeit von

Lukas, Kanade und Tomasi (KLT). Da die aktuelle Implementation auf individuelle

Informationen der Objekte verzichtet, treten häufig Verwechslungen bei der Zuordnung

von Objekten zu Bewegungsbahnen auf, vor allem wenn Objekte sich nah aneinander

vorbei bewegen. Um dieses Problem zu lösen, wird ein zusätzlicher Verifikationsschritt

in den Algorithmus integriert. Dazu werden einige Eigenschaftsbeschreibungen für

Objekte, mit Hinblick auf ihre Echtzeitfähigkeit, analysiert und mit Hilfe zweier

Datensätzen miteinander verglichen. Die qualitativ besten - DCT, LBP, BRIEF -

werden implementiert und in den bestehende Algorithmus integriert. Die Evaluierung

des Algorithmus geschieht dann unter Zuhilfenahme der CLEAR MOT Metrik. Die

Ergebnisse des zugrundeliegenden Algorithmus, der drei erweiterten Algorithmen

und Ergebnisse aus der Literatur werden miteinander verglichen. Augenscheinlich

ist der signifikante Abfall an Zuordnungsfehlern bei der Kombination von Objekten

zu Bewegungsbahnen aber kaum Verbesserung in der allgemeinen Qualität des

Algorithmus.

Schlüsselwörter. Multi-Objektverfolgung, Detektion, Bewegung, Segmentierung,

Intelligente Kamera, Eigenschaftsbeschreibung, clear mot

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Contents

List of Figures . v

List of Tables . vi

1 INTRODUCTION 1

2 TRACKING 5

2.1 TRACKING BY DETECTION . 6

2.1.1 LEARNING BASED TRACKERS 8

2.1.1.1 ADAPTIVE APPEARANCE MODEL 9

2.1.1.2 UPDATE STRATEGIES 10

2.1.1.3 ALGORITHMS . 10

2.1.2 TRACKING USING RANDOM FORESTS 12

2.1.2.1 RANDOM FOREST 13

2.1.2.2 ON-LINE RANDOM FOREST 17

2.1.2.3 HOUGH FOREST . 18

2.1.2.4 ON-LINE HOUGH FOREST 20

2.2 MOTION-BASED TRACKING . 21

2.2.1 KLT . 22

2.2.2 MOTION EXTRACTION . 23

2.2.3 TRACKING . 24

2.3 SEGMENTATION-BASED TRACKING 25

2.3.1 ”SUPERPIXEL” EXTRACTION 26

i

ii CONTENTS

2.3.2 FIGURE/GROUND SEGMENTATION 27

2.3.3 TRACKING . 28

2.4 SLR TRACKER . 29

2.4.1 BACKGROUND MODEL . 30

2.4.2 DETECTOR . 31

2.4.3 TRACKER . 34

2.5 DISCUSSION . 36

3 TRACKING VERIFICATION USING FEATURE MATCHING 38

3.1 KEYPOINT FEATURES . 39

3.1.1 BRIEF . 39

3.1.2 ORB . 41

3.1.3 BRISK . 43

3.1.4 FREAK . 44

3.2 NON-KEYPOINT FEATURES . 46

3.2.1 DCT . 46

3.2.2 LBP . 47

3.2.3 COLOR HISTOGRAM . 49

3.3 Discussion . 51

4 EVALUATION 52

4.1 DATASETS . 53

4.1.1 SLR PEDESTRIAN . 54

4.1.2 TOWNCENTRE . 55

4.2 FEATURE DESCRIPTOR EVALUATION 56

4.2.1 DISTANCE EVALUATION . 57

4.2.2 KEYPOINT MATCHING . 61

4.2.3 DISCUSSION . 66

4.3 TRACKER IMPROVEMENTS . 67

CONTENTS iii

4.4 TRACKER EVALUATION . 68

4.4.1 MATCHING OBJECTS WITH TRACKER HYPOTHESIS . . . 70

4.4.2 METRICS . 73

4.4.2.1 TRACKING PRECISION 73

4.4.2.2 TRACKING ACCURACY 73

4.4.3 IMPLEMENTATION . 74

4.4.4 PROTOCOL . 74

5 CONCLUSION 77

Bibliography 79

List of Figures

1.1 Trajectory data example visualization. 2

1.2 Schematic overview of an identity switch. 4

2.1 Schematic overview of the Tracking by Detection approach. 6

2.2 Possible difficulties arising when detecting people in real world scenarios. 7

2.3 Different person views. 8

2.4 Adaptive appearance model example extraction strategies. 9

2.5 Pruning and growing of the object appearance model. 12

2.6 Binary decision tree example. 13

2.7 Binary decision tree example object path. 14

2.8 Detecting a person using a Hough Forest. 19

2.9 Upward motion extraction. 24

2.10 ”Superpixel” creation. 27

2.11 SLR tracking example. 30

2.12 Background model samples. 31

2.13 Default HOG detector configuration. 33

2.14 SLR tracking process. 35

2.15 Single SLR tracking output. 35

3.1 BRIEF Gaussian sampling pattern. 40

3.2 ORB sampling pattern. 42

3.3 BRISK sampling pattern. 44

v

vi LIST OF FIGURES

3.4 Freak sampling pattern. 45

3.5 DCT zigzag pattern. 47

3.6 LBP configurations. 48

3.7 3D color histogram. 49

4.1 Dataset example frames. 53

4.2 SLR Pedestrian samples . 54

4.3 Towncentre samples . 55

4.4 Histogram intersect example. 56

4.5 Color Histogram feature matching results. 58

4.6 DCT feature matching results. 59

4.7 LBP feature matching results. 60

4.8 BRIEF feature matching results. 62

4.9 ORB feature matching results. 63

4.10 BRISK feature matching results. 64

4.11 FREAK feature matching results. 65

4.12 Matching tracker hypothesis to object trajectories. 70

4.13 Identity switch example. 71

4.14 Multiple mapping choices. 72

List of Tables

2.1 HOG configurations for SVM stages. 34

4.1 Histogram intersection results. 66

4.2 Towncentre CLEAR MOT metric evaluation results. 75

4.3 SLR Pedestrian CLEAR MOT metric evaluation results. 76

vii

Chapter 1

INTRODUCTION

Automatic tracking of objects like people or cars in video streams has increasingly

gained more interest in past years due to the growing number of traffic cameras and

surveillance cameras. The huge amount of data produced daily from such cameras

makes it nearly impossible (or at least economically infeasible) to extract motion infor-

mation by hand. The information gained through a complete analysis, e.g., from people

walking in a specific direction, can give very useful information when planning layouts

of airport terminals, arranging shops or for predicting possible dangerous situations

on entries and exits of public spaces due to overcrowding. The difficulties of tracking

objects in real world scenarios one has to deal with are different appearances of the

objects (different car types, different clothing of humans) and changing background

and illumination in the scenes.

The main goal of automatic tracking is to convert visual information automatically

into trajectory information which then can be processed. Trajectory information can

be given in different ways, e.g., by a list of bounding boxes of persons (each person is

identified by an ID) per video frame [6]. Figure 1.1 shows example trajectory entries for

a single frame containing 14 persons and its corresponding frame with overlay drawing

of the body positions. Table 1.1a contains following columns from left to right: person

ID, frame number, body upper left x coordinate, body upper left y coordinate, body

lower right x coordinate and body lower right y coordinate.

1

2 Chapter 1. INTRODUCTION

0 0 235.925 770.142 371.546 1101.029
1 0 285.748 291.418 370.556 493.414
2 0 286.849 230.501 365.794 416.410
3 0 719.708 220.830 786.893 408.145
4 0 793.722 235.410 861.430 427.627
5 0 876.425 392.142 956.344 628.416
6 0 656.185 994.592 791.581 1387.335
7 0 1607.143 601.733 1717.096 892.799
8 0 1615.588 890.117 1748.101 1277.631
9 0 1790.455 174.285 1877.452 359.453
10 0 1645.396 113.399 1713.707 277.873
11 0 1459.905 28.546 1511.704 167.011
12 0 1361.498 10.463 1408.828 142.648
13 0 890.294 73.968 942.941 220.703

(a) Sample trajectory entries for person IDs 0 to 13 on frame 0 with head and body
bounding box coordinates.

(b) Visualization of the body bounding box coordinates and
the corresponding person ID.

Figure 1.1: Example of a trajectory data visualization. (Data and image taken from
Benfold et al. [6].)

This data can be processed later on, for instance, to count people walking in a

specific direction on a specific daytime. If the data would be processed in real time it

can be used, e.g., to estimate the number of people walking in an airport towards a

check in counter and to open an additional one on time.

As there exist various approaches for object tracking Chapter 2 will give an overview

and the main motivations behind three chosen tracking approaches:

3

• Tracking by detection based approaches [3] [6] [9] [18] [19] [20] [33] [36] [37] [39]

• Motion based approaches [14] [38]

• Segmentation based approaches [25] [31] [45].

The main motivation of this thesis is to implement a tracking algorithm suitable for

running in real time on a smart camera. The intention of using a smart camera system

for object tracking is to have a compact sensor which retrieves trajectory information

of objects directly rather than acquiring an image stream from a camera and then to

process it on a PC. In environments where tracking information from multiple cameras

needs to be extracted those cameras could be replaced by tracking sensors. The main

advantage of such a system is that it is easier scalable because the computational

effort is distributed among the smart cameras and the network traffic is limited to

trajectory information only. Also privacy related concerns can be minimized because

only anonymous trajectory data is transferred from the sensors. A disadvantage is the

lack of computational power on a smart camera system which makes it difficult to run

complex algorithm in real time.

Throughout the analysis of different algorithms the tracking by detection based

algorithm presented in Chapter 2.4 (SLR Track) was selected for further investigation

and implementation as it’s detection algorithm is highly optimized to work in real

time on a low computational power device. Although the detector is very fast, the

algorithm’s main problem lies in the combination of those detections to trajectories

especially in situations with objects crossing each others way. As the current algorithm

does not use object identity information, it likely mixes up objects passing each others

way as presented schematic in Figure 1.2.

To overcome the identity switch problem the idea of including fast to calculate and

fast to match object identity information into the tracking process came up. For this

per tracked object a description must be calculated and verified on each extension of the

trajectory. Therefore, Chapter 3 will investigate feature matching approaches which

allow the tracker to verify if it is still tracking the correct object or if an identity switch

has occurred. The investigated work covers keypoint feature approaches [1] [10] [22] [35]

where interest points of objects are described separately giving several descriptors per

object. Also feature descriptors describing the whole object at once [27] [40] [41] giving

only a single descriptor per object are reviewed.

4 Chapter 1. INTRODUCTION

o1

o2

frame 0 1 2 3 4 5 6

t1

t2

Figure 1.2: Schematic presentation of an identity switch which is likely to occur with
the current tracker implementation. The circles (blue and orange) represent objects
on their paths through an image sequence (frames 0 to 6). The tracker identifies those
objects and tracks them (green and red line). On frame 4 the tracking algorithm mixes
up the objects and follows the wrong one. (Adapted from [7].)

Chapter 4 compares different feature matching approaches using publicly available

as well as self annotated datasets. The feature matching approaches are tested on their

ability to determine between samples belonging to a single object and samples from

distinct objects. After that the influence of the verification step, using different feature

matching approaches, to the trackers overall quality is reviewed.

Chapter 2

TRACKING

Contents

2.1 TRACKING BY DETECTION 6

2.2 MOTION-BASED TRACKING 21

2.3 SEGMENTATION-BASED TRACKING 25

2.4 SLR TRACKER . 29

2.5 DISCUSSION . 36

Tracking of objects in a visual system deals with the problem of identifying and as-

sociating objects in subsequent video frames. There are various applications for object

tracking like, e.g., tracking of multiple persons inside a shopping center for customer

frequency analysis, car and person tracking on a crossroad for statistical analysis etc.

Typical difficulties tracking algorithm have to handle are reflections, changing back-

ground, varying lightning conditions, moving cameras, deformable objects and full or

partly occlusions.

As there are a huge variety of tracking algorithms and describing all in detail would

go beyond the scope of this thesis, three most interesting approaches have been selected

for detailed investigation:

• Tracking by Detection

• Motion-based Tracking

• Segmentation-based Tracking.

5

6 Chapter 2. TRACKING

The following sections present different algorithms from the literature to solve the

tracking problem. First Tracking by Detection approaches, which rely on combin-

ing single object detections into trajectories, are presented followed by motion-based

approaches relying on moving pixels between frames and finally segmentation-based ap-

proaches working with foreground-background segmentation in consecutive frames for

tracking moving objects are reviewed. In the end the current SLR Tracker is described

which uses different ideas from the beforehand presented approaches.

2.1 TRACKING BY DETECTION

A broad field of research is provided by Tracking by Detection approaches. Figure 2.1

shows the basic steps done by the algorithms discussed in this section. A frame is

analyzed by a detector which yields positions of found objects. Existing trajectories

are then combined with the new detections giving at the end a path of the object

through the field of view.

assignmentdetection

existing

trajectory
object path

proceed with next frame

Figure 2.1: Schematic presentation of the Tracking by Detection approach showing one
image frame where an object is first detected and afterwards the newly found detection
is assigned to an existing trajectory which is the objects path through the image.

The main advantage of such systems is that they are modular which means that the

detector or association part can be easily exchanged. A disadvantage is its dependency

on the detector output. Whenever the detector yields a false positive or oversees an

object in the image, the tracker is miss leaded and erroneous trajectories are generated.

2.1. TRACKING BY DETECTION 7

Nevertheless, due to progress in object detection, (e.g., by Dollar et al. [15]) the ap-

proach of combining detections into trajectories has gotten more and more interesting.

As mentioned before Tracking by Detection uses the output of an object detection al-

gorithm which usually describes position, size, scale and sometimes also provides a con-

fidence of the detected object. A challenging part of Tracking by Detection algorithms

is to combine those single detections of an object into an object path (trajectory).

This tracking step is named the association problem and is solved by estimating

the future state of an object based on the information currently available and then

match the newly found detections to the prediction. The problem can be addressed in

different ways using only parts of the detector information (like the position and size)

or introducing additional information like the direction an object is moving and it’s

velocity or the objects appearance. Moreover the quality of a Tracking by Detection

algorithm is heavily influenced by it’s occlusion and false detection handling. When

dealing with scenes from, e.g., a crowded town center trying to track people [6] objects

are likely to occlude each other (see Figure 2.2a) or disappear behind static foreground

objects like trees or something like it which in addition may produce false detections

(see Figure 2.2b).

(a) Partly occlusion of two persons.
(b) False positive detection due to
background clutter.

Figure 2.2: Possible difficulties arising when detecting people in real world scenarios.

The next sections will give an overview over some ideas to solve the Tracking by De-

tection problem including learning based approaches, algorithms using Random Forests

and finally presenting the current SLR algorithm.

8 Chapter 2. TRACKING

2.1.1 LEARNING BASED TRACKERS

As Ross et al. [33] state there are many tracking algorithms performing well in a con-

trolled environment, but often failing when the objects’ appearance or the illumination

changes significantly. For a really long-term tracking it seems reasonable to not hy-

pothesize a static model describing an object but instead learn such a model over time.

Learning based tracking approaches make use of this idea and this chapter is intended

to give an insight into this type of algorithms and their main functioning.

The longer an object has to be tracked the more it’s appearance may change over

time due to varying lightning conditions, transformation of the object itself or varia-

tions in the background. This makes it hard for tracking algorithms, which rely on

static appearance models, to follow such objects. The approach learning based trackers

follow, is to adapt a given model over time to increase the accuracy of the objects

representation. The adapted model is then able to find the object in subsequent frames

more robustly than a model defined only once before the tracking process (like, e.g.,

modelling the overall shape of persons) started. Figure 2.3 shows an example of the

difficulties when trying to define a static model.

Figure 2.3: This figure shows the difficulty of tracking persons over a long time. As
can be seen the shape changes significantly when the person turns.

2.1. TRACKING BY DETECTION 9

2.1.1.1 ADAPTIVE APPEARANCE MODEL

According to Babenko et al. [3] to design an adaptive appearance model some decisions

have to be made. One of them is whether to include the background into the model

or just to model the object itself. The idea stems from the fact that some object

detection algorithms have shown to perform better when the background is included

in their training process. Another decision is how to choose positive and negative

examples for updating the model. It is very common to take the trackers location of

the object as location for extraction of positive examples and the surrounding of the

yielded location to extract negative examples. If, for some reason, the tracker produces

a suboptimal object location the model will be updated with inaccurate data decreasing

the overall performance. Figure 2.4 shows some example extraction strategies Babenko

et al. investigated.

(a) Extraction of examples using only
a single positive example from the lo-
cation reported by the tracker.

(b) Extraction of multiple examples
around the location reported by the
tracker.

Figure 2.4: Two different example extraction strategies to use for updating an adaptive
appearance model. (Images taken from [3].)

Additionally Ross et al. [33] state that a robust tracking algorithm has to model

following two appearance variabilities of an object:

• Intrinsic: Intrinsic appearance variability of an object includes pose variations and

shape deformations which are intrinsic because they are object self influenced.

10 Chapter 2. TRACKING

• Extrinsic: Extrinsic appearance variabilities of an object include non object in-

fluenced appearance changes. These are illumination changes, camera motion,

camera viewpoint and occlusions which change the appearance of an object sig-

nificantly.

2.1.1.2 UPDATE STRATEGIES

After defining the information included in the adaptive appearance model, one has to

cope with the problem of updating such a model.

Kalal et al. [20] roughly divide the learning based tracking approaches into two

groups based upon their model update strategy:

• ”Every-frame-update”

• ”Selective-update”

For adaptive trackers they state that the ”every-frame-update” is most common.

This strategy makes the assumption that the tracker always performs correct and uses

every observation to update the objects model with. On the one hand this is an

advantage because the learned model adapts very quickly to changes of the objects

appearance. On the other hand the assumption of always correct tracking results make

the tracker fail more quickly because erroneous results are also included in the objects

model update.

The other group defined by Kalal et al. , the ”selective-update” approaches, assume

that the tracker is not always correct. This leads to a more complex update strategy of

the model where for instance a semi-supervised framework may be used or the update

is only done if the tracker is not too far away from the current model.

2.1.1.3 ALGORITHMS

After defining the basic idea behind the learning based tracking approaches now follow

the descriptions of the algorithms capable of performing learning based tracking.

2.1. TRACKING BY DETECTION 11

The algorithm from Ross et al. models the object to track by using a low dimen-

sional adaptive subspace representation of the target object which leads to a compact

representation of the ”thing” to be tracked. This compact representation is further on

used for object recognition and facilitates it compared to, e.g., models using a set of

independent pixels.

The appearance model of choice is an eigenbasis representation which is normally

learned off-line from a set of training images. To update the eigenbasis representation

of a tracked object the simplest way is to retrain it using newly acquired images of

the object. When tracking an object over a long time, this approach will lead to huge

memory consumption because all the images of the object have to be stored for re-train.

As solution to this problem they make use of an incremental PCA (principal component

analysis) algorithm which updates the eigenbasis correctly using one or more additional

training data.

To reduce the influence of previously made updates, respectively the current eigen-

basis, they introduce a forgetting factor to weight the influence of previously made

updates. A forgetting factor is important for learning algorithms because in tracking,

recent information are more indicative to the appearance of an object than older ones.

When time progresses the history of an object can be very large and without using a

method to forget outdated information, the recent (and mostly more accurate informa-

tion) gets lost in the volume and will finally lead to an inaccurate representation of the

current state of the object.

For modeling the location of the object they use particle filters to model their six

parameters of an affine transformation (x and y translation, rotation angle, scale, aspect

ration and skew direction). A Markov model is then used to predict the most likely

object position according to the learned model and the learned object appearance.

In comparison to the algorithm of Ross et al. , Kalal et al. present their Tracking-

Modeling-Detection (TMD) framework which works as follows.

An object is selected in the first frame and a feature vector is extracted from the

object. The object has now a representation in image space (the bounding box) and

in feature space (the feature vector). The feature space representation serves also as

appearance model for the object.Using a short term tracking algorithm the object is

12 Chapter 2. TRACKING

tracked for a few frames giving new image space representations (bounding boxes) of

the object. The set of consecutive bounding boxes represents the trajectory of the

object in image space. Out of the image space trajectory a trajectory in feature space

can be calculated. This feature space trajectory is then analyzed to update to the

appearance model using growing events for bounding boxes which are likely to contain

the object and pruning events for bounding boxes considered as wrong. This leads to an

appearance model of an object as a subspace of the feature space. When considering all

possible object representations as a subspace of the feature space, the aim of the TMD

tracking system is to converge the current objects feature subspace to the (unknown)

subspace of all possible object representations. Figure 2.5 shows the algorithms growing

and pruning of the appearance model subspace.

feature space

unknown
possible object
represenations

objects
appearance

model

growing
pruning

Figure 2.5: The current objects appearance (in feature space) is adapted to meet
the subspace of all unknown possible object representations. Therefore growing and
pruning events are performed to include correct regions and exclude wrong regions from
the current objects appearance (Adapted from [20]).

2.1.2 TRACKING USING RANDOM FORESTS

Random Forests are a widely used learning technique due to their high performance

during training and evaluation and are nowadays more often under research in tracking

algorithms. This section is intended to give a short introduction on Random Forests

2.1. TRACKING BY DETECTION 13

in general and additionally discusses an on-line learning approach for Random Forests,

which is very useful when data arrives sequentially (like in tracking applications). Next,

the Hough forest approach is explained leading finally to an on-line Hough Forest

approach which allows robust tracking of highly deforming objects.

2.1.2.1 RANDOM FOREST

To understand the concept of Random Forests one has to be familiar with the main

concept of trees and decision trees which are explained in the following paragraph.

Decision Tree A tree is a specialized graph with no loops and containing hierarchi-

cally structured nodes which are connected through edges [12]. A specialized form is

a decision tree which defines three types of nodes: Root node, internal or split node

and terminal or leaf node. The data a decision tree holds is stored in it’s leaf nodes

which have no further child nodes. For a given value the internal or split nodes decide

which path from the the top (root node) the value takes to arrive at a terminal or leaf

node. When using decision trees, normally binary decision trees are used where every

node, except the terminal or leaf nodes, has exactly two sub-nodes. Figure 2.6 shows a

general binary decision tree where the internal nodes split the data using binary tests.

root node

internal

(split) node

terminal

(leaf) node

Figure 2.6: An example binary decision tree. The root node is the entry point for each
value. The value is then passed through the tree according to the decisions made by
the internal or split nodes ending up at a terminal or leaf node.

14 Chapter 2. TRACKING

When using decision trees in computer vision applications the input data normally

consists of d -dimensional feature vectors. Given a single data point v as input to a

decision tree, at each split node a splitting test is executed and the input v is passed

to the left or right child node. Finally, the input v reaches a leaf node where, e.g., in

case of a classifier, a class label is associated to v. Figure 2.7 illustrates the path of an

input v through the tree ending up in a leaf node.

v

v è ‚label’

Figure 2.7: A binary decision tree showing a classification example where to an input
value v a label label is assigned. The input v is passed through the nodes using binary
tests ending up at a terminal or leaf node. The terminal or leaf node assigns the label
label to v.

In order to split data in a reasonable way decision trees have to learn which are

the best tests at each split node. This training of a tree happens off-line using existing

training data and its ground truth. The training phase optimizes the parameters used

by the split functions and grows the tree. A criterion to optimize could be for instance

the information gain.

Definition 1 The information gain measures the quality of a split by comparing the

entropy (amount of random information) before splitting the data and after performing

the split. The lower the entropy in the resulting two subsets, the higher the information

gain [12].

2.1. TRACKING BY DETECTION 15

The training of a single tree and using it as a classifier, as shown before, will

produce good results under some constraints. To improve the robustness of decision

trees, multiple trees (a forest) can be used to vote separately for an output. When they

are trained randomly the whole system improves further. This thoughts lead to the

idea of Random Forests.

Random Forest A Random Forest consists of randomly trained decision trees [12]

and is defined by following components:

• Weak learners (family of split functions)

• Training objective function

• Leaf predictor

• Randomness model.

The following paragraphs give a short overview over the components of Random

Forests.

Weak learners As every split node has to decide whether to pass arriving data

to the left or right child node, for each split node a binary split function

h(v, θj) ∈ {0, 1} (2.1)

is defined, where j indicates the split node, v indicates an input and θ indicates the

parameters. θ consists of the three parameters φ (a filter function to select some features

from the input v), ψ (a geometric primitive to separate the data) and τ (the thresholds

which are used in the binary testing function). Depending on the output of the split

function h, the input v is sent, as described before, to the left or right child-node.

For a linear data separation an example weak learner, where τ1 is the upper and τ2

the lower threshold, would be defined as

h(v, θj) = [τ1 > φ(v) · ψ > τ2]. (2.2)

For further details on weak learners take a look at [12].

16 Chapter 2. TRACKING

Training objective function The definition of the parameters of a split func-

tion is not feasible. Therefore, a training process is needed to automatically determine

(learn) the optimal parameters. This can, e.g., be achieved by maximizing the infor-

mation gain (see Def. 1) for the split.

The optimal parameters θ∗j of the split node with index j are defined as follows:

θ∗j = arg max
θj

Ij , (2.3)

where I is the information gain function defining the information gain of the jth split

node as

Ij = I(Sj , S
L
j , S

R
j , θj). (2.4)

The maximization operation can be achieved by simply performing an exhaustive search

operation.

Leaf predictor To understand the functionality of a leaf predictor an example

for a classification tree is given where a leaf stores the empirical distribution over the

classes associated to the subset of training data that has reached that leaf [12]. This

leads to following formula for the predictor probability model of the tth tree:

pt(c|v), (2.5)

where c is the label of the class assigned to the input v. So the predictor probability

pt tells us the likelihood the tth tree has assigning the class c to input v.

Randomness Model The randomness of forests is achieved during the training

phase by either randomly sampling the training data or randomly optimizing the split

nodes. Therefore the single trees of a random forest are randomly different from each

other which leads to de-correlation of the individual tree predictions. Furthermore

having randomly different predictions from individual trees help to improve the gener-

alization, lead to higher robustness and make the Random Forest less sensitive to noisy

data.

Other Properties of Random Forests

2.1. TRACKING BY DETECTION 17

• Ensemble model: For testing a sample it is traversed down all of the trees of a

forest until a leaf is reached. To obtain an overall forest prediction for instance

a simple averaging over all predictions can be done. Another possible ensemble

model would be to multiply the outputs of each tree together. Both methods

can be used, but the advantage of averaging is that the possible noise of the tree

outputs can be reduced.

• Stopping criteria: defines when to stop the tree growing in the training phase.

Common criteria would be to stop when reaching a given depth, when a node

contains less than a certain number of training points or by imposing a minimum

information gain (see Def. 1).

2.1.2.2 ON-LINE RANDOM FOREST

Because Random Forests have shown remarkable results in the field of computer vi-

sion [8], the idea of an on-line Random Forest approach came up. Saffari et al. [36]

denote on-line as a learning method with no additional memory consumption because

after learning the sample is discarded unlike in incremental learning where the samples

would be stored. In contrast to the usual usage of a random forest which is trained

off-line needing a huge amount of previously known training data, the on-line approach

does not need any data in advance.

To lead over from an off-line to an on-line approach Saffari et al. define two main

problems. The first is how to do bagging in on-line mode and the second is how to

grow the trees on-the-fly.

For bagging they stick to the approach of Oza et al. [28] where each tree is updated

for every sequentially arriving sample k times where k is estimated according to a

Poisson distribution.

For on-line tree growing several methods exist like ETrees [29] or Hoeffding trees [16].

The solution discussed here will present the method of Saffari et al. in more detail

because they state that their method fits better to the inherent nature of decision trees.

This is achieved by adding for instance a continuous measuring of the information gain

for a potential split node. Their algorithm works as follows:

1. The tree growing starts with only one root node holding a set of randomly selected

tests.

18 Chapter 2. TRACKING

2. A node only splits if

• the minimum number of samples ended up in the node is reached or

• the minimum information gain a split has to achieve is reached.

3. If a node is splitted, the collected statistics of the split node are propagated to

the leafs, so the leaf nodes can perform classification right away without the need

of observing new samples.

2.1.2.3 HOUGH FOREST

Gall et al. [18] combine the idea of local appearance codebooks and Hough transform

for object detection. The approach can be used for Object Detection, Tracking and

Action Recognition. In this section the focus lies on the usage of Hough Forests in

object detection and tracking.

The Hough part of Hough Forests refers to the ”Hough transform” used in this ap-

proach which is simply a detection process relying on additive aggregation of evidences,

so called ”Hough votes”. These ”Hough votes” are created from local elements of the

image. The aggregation is calculated in a parametric space called ”Hough space” where

each point corresponds to an instance in a particular configuration.

Hough Forests combine ”Hough votes” of local image elements with Random Forests

where the local image elements arriving at a leaf, make a probabilistic vote in the Hough

space (see Figure 2.8a and Figure 2.8b).

The training of Hough Forests can be summarized as follows:

1. For each class a set of training samples (positive and negative ones) must be

available.

2. For positive training samples a bounding box must be provided to determine

center and size of the patch.

3. All trees are constructed by randomly picking image patches (normally using the

size of 16× 16) from each sample. The trees’ training is performed by extracting

features from the image patches. The tests in the split nodes are then optimized

to propagate the samples to either the left or the right child according to the split

nodes criteria to optimize.

2.1. TRACKING BY DETECTION 19

4. The leaf nodes finally store the probability of the trained image patches belonging

to a specific class and a displacement vector of the patch to the objects center.

5. The training is stopped if one of the stopping criteria is met. The criteria are a

maximum depth of a tree which must not be exceeded and a minimum number

of image patches which have to end up in a node to split it.

The detection process passes image patches through each tree of the learned Hough

forest. The image patches arrive at leaves which are then used to vote to the Hough

space. The votes coming from the different leaves produce local maxima in the Hough

space. These local maxima are used for object position determination. Figure 2.8 shows

this process by an example.

(a) Three input patches to analyze us-
ing a Hough forest.

(b) A pedestrian Hough forest votes a
position for each patch.

(c) The single votes are aggregated
into a single result.

(d) Finally the position of a pedestrian
can be extracted.

Figure 2.8: This figure shows the process of detecting a person using Hough Votes(taken
from [18]).

20 Chapter 2. TRACKING

2.1.2.4 ON-LINE HOUGH FOREST

The idea from Schulter et al. [37] of using Hough Forests in combination on-line forest

update leaded to On-line Hough Forests. Therefore, an on-line learning approach sim-

ilar to the one explained in Sec. 2.1.2.2 is combined with a local appearance codebook

Hough voting based Random Forest as explained in Sec. 2.1.2.3.

On-line growing The on-line ability of the approach is achieved by growing the tree

as the image data arrives which forces the bagging and the tree growing to work on-

line. As mentioned in Sec. 2.1.2.2 the bagging is also done by updating all trees k times

where k is estimated using a Poisson distribution. The growing starts with a single root

node. The samples arriving from the subsequent frames are then propagated through

the trees leaf nodes. The leaf nodes update their statistics if less than n samples have

arrived. If n is exceeded the node produces a set of random splitting functions and the

split function which optimizes either the information gain (for classification nodes) or

the variance of the object center vector (for regression nodes) is chosen turning this leaf

node into a split node. The samples collected in this node are propagated to the left

and right child node according to the found split function. The tree growing is stopped

if a maximum depth is reached.

Tracking application For their tracking approach Schulter et al. perform a so called

”one-shot” learning where they rely on the tracked object to be labelled by hand in

the first frame of a sequence. This initial image is then virtually warped five times to

generate in total 100 positive and 500 negative patches to update the On-line Hough

Forest model. For the subsequent frame a search area twice the size of the bounding box

of the labelled object from the first frame is used to find a location l with a confidence

c for the object.

To cover the scale change of objects Schulter et al. simply calculate additional

Hough images using scales relative to the scale of the object in the current frame.

According to the confidence c the bounding box center of the object and its scale is

updated, the Hough forest model is updated, both are updated or neither the model

nor the position and scale are updated.

2.2. MOTION-BASED TRACKING 21

To solve an additional problem when tracking non-rigid, previously unknown ob-

jects, where a bounding box representation might not represent the objects shape ac-

curately and therefore will lead to tracking problems, Godec et al. [19] introduce the

HoughTrack approach. The disadvantage of the information current approaches use

is that the background is included in the learning process and the detector is more

likely to drift. A solution to this problem is to make a rough foreground-background

segmentation of the object using GrabCut leading to an accurate description of the

objects shape.

2.2 MOTION-BASED TRACKING

In addition to tracking approaches relying on an object detector yielding positions of

objects in a frame, motion-based approaches rely only on movements in the image se-

quence. Analyzing motion for object tracking has many applications including video

surveillance (especially for tracking of deformable objects), motion analysis and extrac-

tion for computer animation, human computer interface (HCI) and object-based video

compression [38].

A simple way to track objects using motion is to track regions of differences in

consecutive frames using adaptive background generation and subtraction which is

efficient when tracking in low-noise environments. Having noisy background or even

moving cameras this method often fails due to the erroneous background generation

and subtraction.

Another approach from Shin et al. [38] is a blob tracking algorithm. Blob tracking

uses simple geometric models like ellipses or rectangles to track the centroid of an object

again assuming a stationary background for this kind of approach. Additionally, to get

more robust results, they mention shape-based tracking algorithms. These algorithms

use a priori shape information gained from, e.g., an active shape model or an active

contour model and project them onto the closest shape in a given frame. The shape-

based approaches are able to deal with partial occlusion but their disadvantages are

first the a priori training of a shape model and second the iterative modelling procedure

for convergence. The first problem often leads to difficulties when tracking highly

deformable objects and the second leads to high challenges when implementing a real-

time tracker because of the computational complexity.

22 Chapter 2. TRACKING

A very basic and widely known motion tracking algorithm is the Kanade-Lucas-

Tomasi (KLT) [42] point tracking algorithm. The next section will describe it in more

detail.

2.2.1 KLT

The algorithm of Kanade-Lucas-Tomasi (KLT) [42] relies on a point tracking method

presented in detail by Tomasi et al. They state that images taken at near time in-

stants are strongly related to each other. This correlation is expressed through moving

patterns in an image stream.

This correlation is expressed by Tomasi et al. for two subsequent images I from an

image stream the following way:

I(x, y, t+ τ) = I(x− ξ, y − η, t), (2.6)

where x and y are coordinates of a point inside the image, t is the image time, τ is

the time difference between the subsequent images and ξ and η define the amount of

motion or displacement. The displacement d of a point is therefore defined as follows:

d = (ξ, η). (2.7)

In words, an image taken at t+ τ can be expressed by moving every point of an image

taken at time t by the amount of the displacement d.

The problem to solve is to find the displacement d of a point for two subsequent

frames. For a single pixel this would only be possible if its brightness is very distinc-

tive compared to its surrounding pixels. As one can imagine in natural scenes with

occlusions, changing lightning conditions, objects entering and leaving the field of view

it is very hard to find a single pixel in subsequent frames. To be independent from

single pixels, the tracking is performed using windows of pixels with sufficient texture.

Windows are tracked from frame to frame only if their appearance has not changed too

much to be sure to track the correct window. A problem arising from window tracking

is the displacement inaccuracy of pixel displacements inside a window when considering

the windows’ displacement. To overcome this problem instead of a displacement a more

complex window transformation is used, e.g., an affine map. Using this, different pixels

of the window can be assigned to different velocities. The drawback of this approach is

2.2. MOTION-BASED TRACKING 23

that complex transformation representations tend to over-parametrize the system and

require larger windows to track. Therefore Tomasi et al. use only two parameters for

their window transformation model, the displacement vector d (formed by the two pa-

rameters delatax and deltay) for small windows. The formal redefinition is as follows:

J(x) = I(x, y, t+ τ), I(x− d) = I(x− ξ, y − η, t), J(x) = I(x− d) + n(x), (2.8)

where x is the point and n is the noise. Tomasi et al. dropped the time variable for

brevity as can be seen.

To then choose the displacement vector d the residue error ε in the window W is

minimized:

ε =

∫
W
|I(x− d)− J(x)|2ωdx, (2.9)

where ω is a weighting function which, in the simplest case, could be set to 1. Using a

Gaussian-like weighting function for instance would emphasize the central area of the

window.

2.2.2 MOTION EXTRACTION

As discussed before motion based tracking approaches deal with moving objects in an

image stream. Therefore, the motion information has to be extracted which can be done

in several ways. Two of this approaches are presented in the following paragraphs.

For motion extraction out of subsequent frames Shin et al. rely on the Lucas-Kanade

optical flow algorithm especially - to achieve real-time performance - the Lucas-Kanade

method based on block motion model. The resulting motion regions are then clustered

into four directions - up, down, left, right. Because motion information is very noisy

Shin et al. use morphological operations to overcome this problem and are then able

to extract an object as shown in Figure 2.9.

24 Chapter 2. TRACKING

Figure 2.9: Extracted motion in upward direction (green) after morphological process-
ing (Extracted from [38]).

Denman et al. [14] use a different technique to extract motion from the frames.

They rely on an algorithm proposed by Butler et al. which is an adaptive background

subtraction method. The algorithm clusters the pixels according to their luminance

and chrominance giving a multi-modal distribution for each pixel. The distributions

are stored in a background model and matched to a given frame. Applying a threshold

on the matching result then gives the information of a change (= motion). The clusters

are updated over time to adapt to changes in the background through varying lightning

conditions or new background objects. When a pixel yields a motion the optical flow

for that pixel is extracted by examining the surrounding. The size of the analyzed area

is given by the maximum allowed acceleration – in pixels for x and y direction – the

user selects. The analysis is done from the center pixel to the outside in rings giving

the flow in integer precision.

2.2.3 TRACKING

After having extracted the foreground objects using motion information, the objects

have to be tracked over various frames. For this two approaches have been investigated

in more detail.

2.3. SEGMENTATION-BASED TRACKING 25

The approach Shin et al. follow in their paper is a feature-based approach. They

make use of the non-prior training active feature model (NPT-AFM). Their algorithm

extracts moving objects using the motion between subsequent frames. Out of these

objects feature points are extracted which are then predicted using a spatio-temporal

prediction algorithm. Additionally a feature correction process restores missing or failed

tracking processes. In advantage to shape-based methods the feature-based method is

capable of tracking objects without any constraints of camera position, object motion

or complicated background because the feature points are assigned inside the object

and not at the near boundary.

Denman et al. present a person detector and tracker in their paper which uses

motion detection or optical flow to detect people. For detecting people using optical

flow the velocity has to bee predicted which is only possible for persons tracked for

sufficient time. Therefore, the initial detection and the tracking of a person in the first

frames is performed using motion detection. Later on the detection is performed using

optical flow where a person is segmented out of a frame using its expected horizontal

and vertical movement. To do this reliably a persons position and average flow has to

be observed over a minimum number of frames. The detection process is included in

an existing tracking system which is presented by Denmanet al. in [11].

2.3 SEGMENTATION-BASED TRACKING

Because tracking is very challenging due to variation of the objects shape, appearance

and scale, several approaches for tracking objects using foreground/background seg-

mentation techniques were developed. As motivation for segmentation-based tracking

approaches, Ren et al. [31] point out the inaccurate representation of detected ob-

jects a lot of tracking algorithms have. They often rely on rectangular or elliptical

bounding boxes, which may be sufficient for the shape of faces or cars but lack when

representing the shape of a moving person, especially in sport scenes where non-rigid

transformations are likely to occur.

26 Chapter 2. TRACKING

Tracking algorithms have to maintain an appearance model to identify which ob-

ject is tracked and a spatial model to describe where the object is located. This

algorithms often maintain additional information like the scale of an object or a back-

ground model. According to Ren et al. if a trackers spatial model holds an accurate

support mask, describing the shape of the tracked object in detail, it will be able to

predict future positions of the object more reliably. An appearance model will also im-

prove its behavior in representing the object using an accurate support mask because

the background clutter rectangular representations may include is greatly reduced.

To give a short introduction into the field of segmentation-based tracking the al-

gorithms of Ren et al. [31] and Lu et al. [25] are investigated in more detail in the

following paragraphs.

2.3.1 ”SUPERPIXEL” EXTRACTION

For their segmentation based tracking approach Ren et al. and Lu et al. both start

with a preprocessing step on the frames by dividing them into ”superpixels”. This step

is executed to reduce computational complexity and to increase robustness due to the

consistency enforced inside a ”superpixel”.

Firstly, the approach Ren et al. use will be described. They use a three stage

approach doing the following: First they compute a soft boundary map using local

brightness, color and texture contrast. Then they apply a fast image partitioning tech-

nique to build an approximation of the boundary map. Finally, the CDT (constrained

Delaunay triangulation) is calculated which produces triangle shaped ”superpixels”.

An example of such ”superpixels” is shown in Figure 2.10 where triangular shaped

”superpixels” are extracted.

2.3. SEGMENTATION-BASED TRACKING 27

Figure 2.10: Triangular shaped ”superpixel” creation (Extracted from [31]).

The approach of Lu et al. to generate their ”superpixels” on the other hand relies

on the graph-based method from [17].

2.3.2 FIGURE/GROUND SEGMENTATION

After preprocessing the image Ren et al. and Lu et al. do a figure/ground segmentation

where each ”superpixel” is either labeled to belong to the background or to the object

(the figure).

The approach of Ren et al. is based on Conditional Random Fields (CRF) which is

also used by Yin et al. in their work [45]. The following paragraph will shortly explain

how the figure/ground segmentation using a CRF works:

With Ii denoting sets of image ”superpixels” and si the corresponding labels where

si = 1 if Ii belongs to the foreground and si = −1 otherwise. Giving a graph A,B

where A denotes pixel node labels s and B including all links between neighboring

nodes. When conditioning on the observation I the joint distribution over label s is

P (s|I) =
1

Z
exp

∑
i∈A

∑
k

λkΦk(si, I) +
∑

(i,j)∈B

Ψ(si, sj , I)

 ∝ 1

Z
exp{−E}, (2.10)

28 Chapter 2. TRACKING

where Z is a normalization factor and E denotes the energy function to be minimized.

Φk denote data association potentials generated by different segmentation cues which

are linearly combined using the weights λk. Finally Ψ represents the pairwise interac-

tion potential between neighboring nodes.

2.3.3 TRACKING

After successfully segmenting background and foreground the next step is to track the

foreground object throughout a sequence of frames.

Ren et al. maintain during their tracking approach three models of temporal co-

herence: scale, appearance and spatial support, which are updated after every frame

and represent the internal state of the tracker. The three models consist of following

parameters:

1. Scale: size of the object in pixels, median horizontal distance to the object center

and median vertical distance to the object center.

2. Appearance: brightness or color distribution as histograms in the RGB space for

the object (= foreground) and the background.

3. Spatial model: correspondence between superpixels from the current frame and

the previous frame leading to a linear transportation problem which has to be

solved.

On the other hand Lu et al. follow a different approach by defining two tracking

algorithms namely ”Location Tracking” and ”Segmentation Tracking”. Both rely on

first classifying image patches and second updating models using the newly classified

patches. The approach described here is the ”Segmentation Tracking”.

Starting with one or more annotated frames at the beginning of the sequence where

the foreground and the background is labeled, a model is created. The subsequent

frames are then sampled into segments (”superpixels”) and the obtained segments are

then classified using the model obtained from the labeled data.

2.4. SLR TRACKER 29

2.4 SLR TRACKER

The SLR tracking algorithm is based on a Histogram of Oriented Gradients (HOG)

detector (see Sec. 2.4.2) which continuously yields detections (bounding box positions)

to ensure that all objects in the field of view are recognized.

To combine the bounding box object positions yielded by the detector in every frame

into trajectories, the Kanade Lucas Tomasi (KLT) point tracking (see Sec. 2.2.1) is used

for estimating the objects movement direction and speed. For existing bounding boxes

in combination with the KLT information, a prediction bounding box is calculated,

giving the estimation of the objects location in the next frame.

Detections in the next frame are then matched against the calculated predictions

using an overlap criterion of the bounding boxes. To speed up the detection process

and to achieve the desired real-time capability up to a resolution of 1024x768 pixels,

Sidla et al. implement a simple background model (see Sec. 2.4.1) which masks all

uninteresting regions of the current frame. The detector is then only executed on the

foreground regions yielding bounding boxes of the objects in the current frame.

For better understanding of the main part of the tracking process, Figure 2.11 shows

an example of the SLR tracking algorithm where an existing trajectory is successfully

matched against a newly yielded detection.

(a) (b)

30 Chapter 2. TRACKING

(c) (d)

Figure 2.11: Tracking process using the SLR Tracker: First from the input frame (a)
the HOG detections are extracted (b). For existing trajectories the predicted bounding
box is shown in (c). Figure (d) shows the matching of a new HOG detection with a
prediction. (Images taken from [23].)

If for an existing trajectory the prediction is not matched against a detection, the

tracker is able to continue regarding the object for some frames but the object is

marked as tentative. When a new HOG detection is successfully assigned to a tentative

trajectory, the state is reverted to tracked. This mechanism lets the tracker fill gaps

between HOG detections of an object which may occur due to occlusions, changing

lightning conditions, etc.

The tracker counts for every trajectory the number of interpolated positions (posi-

tions with no matched HOG detections) and the number of the HOG detector positions.

From that a quality measurement for each trajectory can be calculated, which is de-

fined as the ratio of interpolated positions relative to the actual HOG detections. If

this measurement falls beneath a certain value, the trajectory is regarded as not robust

enough and therefore closed.

Next follows the detailed description of all parts of the SLR tracker starting with

the background model, continuing with the detector and finishing with the tracker.

2.4.1 BACKGROUND MODEL

As mentioned before, the SLR Tracking approach is real-time capable. To achieve this,

the HOG detector is only applied on image parts with current movement defined by an

adaptive background model. Sidla et al. review two typical background modelling op-

tions which are standard for surveillance systems (which are the main field of operation

2.4. SLR TRACKER 31

for the SLR Tracking approach). In opposite to the computational expensive Gaussian

Mixture Models (and variations of them), they decided to implement image blending

operations which update the background BG slowly with content from a frame F . The

background model is defined as follows:

BGT = (1− α) ∗BGT−1 + α ∗ FT , (2.11)

where BGT−1 is the current background model, FT is the current frame, α is a weighting

constant defining the update rate and BGT is the new updated background model. The

obtained background model BGT is then used to generate a binary mask which speeds

up the detection process by masking static background regions. Figure 2.12 shows some

example frames and their binary masks. The white image regions are the foreground

where the HOG detector is applied on whereas the black masked regions are ignored

by the detector.

Figure 2.12: Example background models for a crowded scene. The leftmost column
shows the initial frame and its corresponding background model. The columns two to
four visualize the update process of the model over time.

2.4.2 DETECTOR

The applied detector builds on the pedestrian detection framework of Dalal and Triggs

[13], where HOG features are extracted in a dense grid using a sliding window from

an image and classified into person and non-person windows using a support vector

machine (SVM). The next paragraphs describe their detection framework in detail.

32 Chapter 2. TRACKING

Histogram of Oriented Gradients To describe objects, Dalal and Triggs make

use of gradient orientations inside a rectangular bounding box. In their approach they

divide an image window into cells where for each cell a 1-D histogram of gradient

directions or edge orientations is built. These histograms are then combined to form

the representation of the object.

The main idea is that the shape of an object can be characterized by the distribution

of local intensity gradients or edge directions even without knowing the exact location

of the gradient or edge. To extract a feature vector for a detection window, a dense

overlapping grid of HOG descriptors are combined forming the feature descriptor. For

performance improvements in case of changing illumination environments, Dalal and

Triggs recommend to contrast-normalize every block (a larger spatial region formed by

a number of cells). These contrast-normalized blocks are referred to as Histogram of

Oriented Gradient (HOG) descriptors.

Detection process For detection Dalal and Triggs move the detection window (slid-

ing window) over the input frame and classify each window position as object or non-

object position. The detector’s result is the positions of every object classified sliding

window position.

For classification of the detection windows a linear Support Vector Machine (SVM)

is applied. The SVM requires a number of object and non-object (background) samples

for training. The trained SVM is then used in the detection process to classify the

detection windows into object or non-object window.

They have also defined a default detector using the RGB color space, a gradient

filter [−1, 0, 1] without smoothing, histogram of gradients using angles from 0◦ − 180◦

divided into 9 bins (giving 20◦ per bin), 8×8 pixels cell size, 4 cells per block, overlap-

ping of blocks by 1 cell giving 105 blocks forming an image window of 64× 128 pixels.

Figure 2.13 illustrates this default detector configuration. The default detectors ex-

tracted feature descriptor has a length of 9 bins× 4 cells× 105 blocks = 3780, which is

classified using a linear SVM into person or non-person as mentioned earlier.

2.4. SLR TRACKER 33

Cell (8 x 8 pixels)

HOG descriptor

(Block Consiting of 4 cells)

Feature descriptor

(5 x 17 overlapping blocks)

…..

…
…
…
…
…
…
…

.

Image
HOG descriptor 0

HOG descriptor 1

HOG descriptor n

.

.

.

F
e

a
tu

re
 d

e
s
c
rip

to
r

Figure 2.13: Default HOG detector dividing an image into windows of the size of
64× 128 pixels using 105 blocks, 4 cells per block and 64 pixels per cell.

Multi-Scale and Multi-Stage HOG Using the default detector on a given video

stream, for instance from a surveillance camera, detecting persons with only one scale,

e.g., a 64 × 128 window, will not lead to satisfying results. Therefore, the image has

to be analyzed in different scales which is usually achieved by constructing an image

pyramid and applying the detection algorithm on every stage of the pyramid separately.

This approach leads to a high increase of computational costs (Zhu et al. [47]). To

overcome this drawback, we can apply a cascade of classifiers with different block sizes,

which is inspired by the work of Viola et al. [43].

This cascaded classifier approach is adapted from Sidla [39]. The detector is split

up into 8 stages using different number of blocks giving different numbers of features

to classify in a SVM. Early stages use less blocks (and features) and a linear SVM

to eliminate background samples as fast as possible. The last stage, using a slow and

accurate polynomial SVM, is left with only a few samples. Table 2.1 shows the used

HOG configuration for every SVM stage.

34 Chapter 2. TRACKING

Stage # Blocks # Features Classifier

1 1 36 linear SVM

2 2 72 linear SVM

3 6 216 linear SVM

4 4 144 linear SVM

5 15 540 linear SVM

6 26 936 linear SVM

7 15 540 linear SVM

8 17 612 polynomial SVM

Table 2.1: HOG configuration used for every stage of the SVM classifier which classifies
image windows into person and non-person windows (taken from [39]).

2.4.3 TRACKER

On the first frame the HOG detector is applied and new trajectories are initialized

using this newly found detections. To extend the trajectories in subsequent frames, the

Kanade Lucas Tomasi (KLT) point tracking (see Sec. 2.2.1) is applied to get a motion

estimation (speed and direction) of every trajectory (see Figure 2.15). For estimating

the position of the trajectory in the next frame using KLT only points lying in the

middle of the trajectory bounding box are selected. With the selected KLT points a

new position of the trajectory is predicted. In the subsequent frame the HOG detector

then yields new detections and the positions of the newly found detections are matched

to the predicted ones using a position overlap measure. Figure 2.14 shows this process

for a single object.

Additionally to the matching of positions for extending trajectories shown above,

DCT features are computed for existing trajectories and close enough detections to

verify the position match. If the position match is valid, the trajectory is extended.

Figure 2.15 shows an example trajectory and KLT output produced by the SLR tracking

algorithm.

2.4. SLR TRACKER 35

create new

trajectory
detection

object path

frame 0 frame 0 frame 0

frame 1

KLT vectors predicted

position

detection

frame 1 frame 1

extend

trajectory

proceed with frame 1

proceed with frame 2 ...

Figure 2.14: The first row shows the process of the SLR Tracker when a new object
appears. With this new detection a new trajectory is initialized. In the second row, the
prediction and association step of the SLR Tracker is shown. First the KLT vectors are
calculated giving a predicted position of the object in the current frame. A detection
obtained by the HOG detector is then matched to the prediction. When an overlap of
the predicted bounding box and the detection bounding box is above a given threshold,
the trajectory is extended by the new detection.

Figure 2.15: Sample SLR-Tracker output showing the KLT trajectories in blue used
for bounding box position prediction and a HOG detector confidence drawn below the
bounding box.

To handle missing detections and false positives a quality measurement for trajec-

tories is introduced. This quality measurement combines the length of a trajectory and

the number of missing detections for trajectory positions to determine if a trajectory

36 Chapter 2. TRACKING

is valid or not. The quality of a trajectory is defined as follows:

q = ninter/ltraj , (2.12)

where ninter is the number of positions of the trajectory where no valid detection is

present and ltraj is the total length of the trajectory.

If the detector fails the tracker uses only the predicted position (which increase the

interpolation counter ninter) to update the trajectory which decreases the quality. If

the quality drops below a defined threshold the trajectory is marked unreliable and is

finally removed.

2.5 DISCUSSION

The discussed algorithms in this section give an overview over the different approaches

to solve the tracking problem. While some approaches focus on first finding the objects

and then combining those single findings with additional information into trajectories,

others rely on motion information or separating objects from it’s background. As the

aim of this thesis is to track multiple objects in real time on a low computational

device (smart camera), with the focus on creating a object tracking sensor, some of the

algorithms discussed will not fit these needs.

First the algorithms where the objects of interest have to be defined by hand in the

first frames are not suitable. Although these algorithms seem very interesting because

of their capability of adapting dynamically to the objects appearance like presented in

Chapter 2.1.1.3 and Chapter 2.1.2.4 they will not fit to be implemented as the smart

cameras should work independently from user input.

Another problem arising when selecting a suitable algorithm for a smart camera

is the beforehand mentioned low computational power. The selected algorithm is the

SLR Track (see Chapter 2.4) because it’s multi-scale and multi-stage HOG detector in

combination with their simple background model implementation and their association

part based upon KLT vectors runs on a 3Ghz Intel Core 2 pc with 30 frames per second

at 640x480 pixels [39].

2.5. DISCUSSION 37

The high processing speed of the SLR Track has one drawback, it’s association part.

It works good in simple situations where objects do not occlude each others but fails in

more difficult situations with inter-object occlusions. This is because it relies on motion

estimation using the KLT algorithm only, which fails on occluded objects. To overcome

this drawback, the idea of including additional information into the association part

came up to describe single objects and to be able to do a occlusion detection and a

tracking verification. As there exist a lot of feature descriptor algorithms for identifying

objects, the next chapter presents the methods which were analysed for their ability to

improve the association part.

Chapter 3

TRACKING VERIFICATION

USING FEATURE MATCHING

Contents

3.1 KEYPOINT FEATURES . 39

3.2 NON-KEYPOINT FEATURES 46

3.3 Discussion . 51

As the output of a tracker might not yield correct results due to false detections etc.,

this chapter focuses on approaches for verifying the output of tracking algorithms. For

this, a feature matching approach would be a valid choice to determine if the tracker

still sticks on the same object as in the previous frames. Taking into account that the

tracker should be able to run in real time, the following approaches will be discussed

because the investigated papers for the presented approaches showed a good relation

between quality and computational complexity. The following approaches for feature

extraction are discussed in detail:

• Binary Robust Independent Elementary Features (BRIEF [10])

• Oriented FAST and Rotated BRIEF (ORB [35])

• Binary Robust Invariant Scalable Keypoints (BRISK [22])

• Fast Retina Keypoints (FREAK [1])

38

3.1. KEYPOINT FEATURES 39

• Discrete Cosine Transform (DCT [41])

• Local Binary Patterns (LBP [26])

• Color Histogram (CHist [40])

3.1 KEYPOINT FEATURES

Keypoint features, as the name implies, rely on descriptions of regions around distinct

points of an image. There exist several fast ways to extract those points like, e.g., the

famous FAST keypoint detector [34]. The keypoint feature descriptors then extract a

feature descriptor around every keypoint.

3.1.1 BRIEF

The Binary Robust Independent Elementary Features (BRIEF) as presented by Calon-

der et al. [10] are described as highly discriminative also when using a short feature

vector for description. Due to the compactness of this feature descriptor it is very fast

to build and to match.

The approach of Calonder et al. relies on a small number of pairwise intensity tests

on an image patch after smoothing it. The feature vector of an image patch is defined

as the result of testing a uniquely set of nd(x, y)-location pairs where nd is the number

of pairs. This leads to following definition for the feature vector fnd
:

fnd
(p) :=

∑
1≤i≤nd

2i−1τ(p;xi, yi), (3.1)

where nd is the number of binary tests and τ(p;xi, yi) is the intensity test function

which evaluates a test on the image patch p using the locations xi and yi.

To decrease the noise on the intensity tests a Gaussian smoothing operation is

applied as a preprocessing step. Calonder et al. showed experimentally that a Gaussian

kernel with a size of 9 × 9 pixels and a variance of 2 yields the best results.

40 Chapter 3. TRACKING VERIFICATION USING FEATURE MATCHING

As there are many possible intensity test locations inside an image patch p, Calonder

et al. examined various methods for determining the most promising way of selecting

them. Five approaches were evaluated including uniform distribution, Gaussian distri-

butions, randomly chosen locations and locations on a polar grid. Their experiments

show that an isotropic Gaussian distribution (Gaussian(0, 1
25S

2) leads to the highest

recognition rate shown in Figure 3.1.

Figure 3.1: Gaussian sampling pattern of the BRIEF descriptor. The area shown is
the patch where the intensity tests are extracted. The solid lines denote the pixel pairs
which are tested against each other (taken from [10]).

In fact, BRIEF is very efficient and thus really suitable for the limited computation

power of a SLR Smart Camera. Calonder et al. showed that on a 2.66 GHz PC the

descriptor computation for 512 keypoints using 256 intensity tests (nd = 256) takes

only 8.87 milliseconds. The matching using the Hamming distance can be computed

in 4.35 milliseconds.

3.1. KEYPOINT FEATURES 41

3.1.2 ORB

The main drawback of BRIEF is its sensitivity to in-plane rotation. To deal with

this drawback, Rublee et al. [35] introduce the Oriented FAST and Rotated Brief

descriptor. They use the FAST [34] feature detector for detecting keypoints because

of its high performance. In contrast to SIFT (introduced by Lowe in [24]) and SURF

(introduced by Bay et al. in [5]), FAST does not provide a rotation operator. Therefore,

Rublee et al. introduce their own orientation calculation for FAST keypoints using

following approach:

As FAST does not produce a measure of cornerness, a Harris corner measure is

introduced. To get a number of N keypoints, Rublee et al. use the FAST detector to

produce even more than N keypoints, order them according to their Harris measure

and pick the top N keypoints.

For corner orientation Rublee et al. use the intensity centroid approach from

Rosin [32]. According to Rosin the moment of a patch is defined as

mpq =
∑
x,y

xpyqI(x, y), (3.2)

where m is the moment matrix, p and q are the moment matrix indices, x and y are

the pixel coordinates and I(x, y) is the intensity at the pixel coordinate.

Using these moments, Rublee et al. calculate the orientation of a patch θ by using

the quadrant-aware version of the arctan function

θ = atan2(m01,m10), (3.3)

where m01 and m10 are entries from the patch moment defined before.

Rublee et al. compared their orientation approach to two gradient-based methods

(BIN and MAX). They state that the intensity centroid approach outperforms the other

two approaches by testing the methods on artificially rotated patches with noise added.

Based on the orientation Rublee et al. developed a steered variant of BRIEF. Taking

a set of binary tests defined via

S =

(
x1 . . . xn

y1 . . . yn

)
, (3.4)

42 Chapter 3. TRACKING VERIFICATION USING FEATURE MATCHING

a ”steered” version of this test location is constructed using the rotation matrix Rθ for

the orientation θ:

Sθ = RθS. (3.5)

This leads to the steered BRIEF operator where fn is the BRIEF operator:

gn(p, θ) := fn(p)|(xi, yi) ∈ Sθ (3.6)

To speed up the descriptor calculation, Rublee et al. created a discretized lookup table

(in 12 degrees steps) of precomputed BRIEF patterns.

The drawback of the steered BRIEF descriptor is that binary tests are more uniform

when applied to oriented corner keypoints. To cope with this problem, Rublee et al.

introduce an approach for learning ”Good Binary Features”. They show that their

approach significantly reduces the correlation between learned tests. The resulting

descriptor is named rBRIEF and an example sampling pattern is shown in Figure 3.2.

Figure 3.2: Example sampling pattern of the ORB descriptor. The lines denote the
intensity tests used for descriptor creation. These test positions have to be learned
(taken from [35]).

The evaluation of Rublee et al. showed very good results compared to SIFT, SURF

and BRIEF when testing matches on synthetic in plane rotated images with a Gaussian

noise added. They also compared their matching behavior against SIFT with different

noise levels and came to the conclusion that rBRIEF is, in contrast to SIFT, relatively

unaffected by the noise.

3.1. KEYPOINT FEATURES 43

3.1.3 BRISK

Leutenegger et al. present a fast method for keypoint detection, description and match-

ing named BRISK (Binary Robust Invariant Scalable Keypoints) [22]. They point out

that their approach is modular which allows the BRISK detector to be combined with

other descriptors and vice versa.

Keypoint Detection For their keypoint detection Leutenegger et al. rely on the

FAST detector. Their aim is to produce high-quality keypoints which are invariant to

scale. To achieve this, the BRISK framework uses scale-space pyramid layers consisting

of n octaves ci and n intra-octaves di for i = 0, 1, . . . , n− 1 where typically n = 4. The

pyramid layers are obtained by down sampling the original image c0 the following way,

where t is the layers’ scale:

t(ci) = 2i (3.7)

t(di) = 2i · 1.5. (3.8)

As first step, the FAST detector is applied on all octaves (ci) and intra-octaves (di)

to produce regions of interest. Next, a non-maximum suppression is applied to the 8

neighboring FAST scores in the same layer and the corresponding square sized patches

in the layer above and below. Finally, the position of the keypoint is interpolated over

these consecutive scales to receive more salient keypoints.

Keypoint Description Leutenegger et al. use a concentric circle sampling pattern

for their keypoint description. To obtain a keypoint orientation, sampling point pairings

with a distance greater than a threshold δmin are used (denoted as L). Estimating the

local gradients using the Gaussian smoothed intensity values g at the desired points in

L leads to a global gradient determination for this keypoint.

Similar as BRIEF (see Sec. 3.1.1), BRISK relies on simple brightness comparison

tests. Defining S as the intensities of short distance point pairings in the sampling

pattern a bit b for a point pairing pi and pj is defined as follows:

b =

1, I(pαj , σj) > I(pαi , σi)

0, otherwise
∀(pαi , pαj) ∈ S, (3.9)

44 Chapter 3. TRACKING VERIFICATION USING FEATURE MATCHING

where α = arctan2(gy, gx) and I is the intensity at the given point (with Gaussian

smoothing using a standard derivation σ).

The smoothing with a Gaussian kernel is necessary to remove noise. The standard

derivation of the Gaussian kernel for a point is dependent on the distance to the cen-

ter. The closer to the center, the smaller becomes σ. The sampling pattern used for

extracting the feature descriptor is shown in Figure 3.3.

Figure 3.3: Sampling pattern of the BRISK descriptor with the varying Gaussian stan-
dard derivation as dotted red circles for smoothing. The solid blue circles denote the
pixels taken for intensity tests (taken from [22]).

3.1.4 FREAK

The Fast Retina Keypoint (FREAK) from Alahi et al. [1] is a alternative to SIFT,

SURF or BRISK. The intention is to compute a cascade of binary strings, extracted

from intensity tests using a retinal sampling pattern. This approach was inspired by the

human visual system. They show in their paper that FREAKs are faster to compute,

consuming lower memory and are also more robust when compared to existing keypoint

approaches.

3.1. KEYPOINT FEATURES 45

The main question Alahi et al. are addressing, is how to select the ideal pairs

of pixels in an image patch for intensity tests. This problem is also discussed in the

sections BRIEF (see Sec. 3.1.1), ORB (see Sec. 3.1.2) and BRISK (see Sec. 3.1.1).

Taking research from neuroscience into account, Alahi et al. develop a retinal sampling

grid. Their approach is quite similar to the approach of BRISK (see Sec. 3.1.3), where

concentric circles are used, with the difference that the density of points increases

exponential when getting closer to the center

Alahi et al. also use a Gaussian kernel for smoothing their pixels before intensity

testing to reduce noise. Here they also stick close to the approach in BRISK, using

a varying standard derivation dependent on the distance to the center The FREAK

approach sticks to this idea but expanding it by coupling the standard derivation of

the Gaussian kernel to the log-polar retinal pattern [2]. The sampling pattern of the

FREAK descriptor with overlapping Gaussian standard derivations is shown in Fig-

ure 3.4.

Figure 3.4: Sampling pattern of the FREAK descriptor showing the retinal pattern with
overlapping Gaussian standard derivations for smoothing the pixels used for intensity
tests. The closer to the center the higher is the density of pixels used for intensity
testing and the smaller are the standard derivations. The labels ”Fovea”, ”Para” and
”Peri” denote different areas of the ganglion cells of the human eye. (Taken from [1])

46 Chapter 3. TRACKING VERIFICATION USING FEATURE MATCHING

This leads to the FREAK descriptor F , which is a binary string formed the following

way:

F =
∑

0≤a≤N
2aT (Pa), (3.10)

where N is the descriptor size and Pa is a pair of receptive fields and T (Pa) is defined

as follows:

T (Pa) =

1 if(I(P r1a)− I(P r2a)) > 0

0 otherwise
, (3.11)

with I(P r1a) defined as the intensity of the first pixel of the pair Pa smoothed, using a

Gaussian kernel.

Alahi et al. found that their selected pairs are not discriminant. To solve this,

they use a learning approach similar to the one from Rublee et al. use for their ORB

descriptor (see Sec. 3.1.2) to get more discriminant pairs.

The keypoint orientation estimation of Alahi et al. is very similar to BRISK (see

Sec. 3.1.3). But where BRISK uses pairs with long distances, FREAK relies on a

symmetric selection of pairs. In contrast to BRISK, where several hundreds of pairs

are used, Alahi et al. use only 45 pairs which reduces the memory load significantly.

For their tests the AGAST detector (see Sec. 3.1.3 (BRISK)) is used. Alahi et al.

propose FREAK to be the most robust descriptor on both of their testing environments.

In their evaluation they show that FREAK is much faster than SIFT and SURF and

also faster than BRISK for description of keypoints and matching the descriptors.

3.2 NON-KEYPOINT FEATURES

In opposite to the already examined keypoint features which rely on noticeable points

in an image, there exist some completely different methods capable of representing

regions of an image in bulk. Three of the most common methods are examined in more

detail in this section.

3.2.1 DCT

As Tjahyadi et al. [41] state the Discrete Cosine Transform is a popular image com-

pression technique which is used, e.g., for JPEG encoding and decoding. The DCT

3.2. NON-KEYPOINT FEATURES 47

therefore transforms images from their spatial representation into a frequency repre-

sentation. For DCT calculation each image is divided into blocks of the size 8x8 and

each block is then independently transformed using the 2D-DCT basis function:

F (u, v) =
2

N
C(u)C(v)

7∑
x=0

7∑
y=0

f(x, y) cos
(2x+ 1)uπ

2N
cos

(2y + 1)vπ

2N
, (3.12)

having x and y as coordinates in the image block, u and v as coordinates in the DCT

coefficients block and C defined as

C(x) =


1√
2

for x = 0,

1 otherwise.
(3.13)

This leads to an image representation of 8x8 blocks where each block is aligned in

a zigzag pattern having the high energy DC coefficient in the upper left corner defined

as

F (0, 0) =
1

8

7∑
x=0

7∑
y=0

f(x, y), (3.14)

because of the cosine of zero is one. The other 63 are referred to as AC coefficients.

Figure 3.5 shows the zigzag pattern of a block.

Figure 3.5: A 8x8 DCT block with the zigzag pattern.

3.2.2 LBP

The Local Binary Pattern descriptor is based upon textures inside a local neighborhood

around a center pixel. Ojala et al. [27] derive the LBP as follows.

48 Chapter 3. TRACKING VERIFICATION USING FEATURE MATCHING

First they define a texture in a local neighborhood of a grayscale image where the

texture is defined as

T = t(gc, g0, ..., gP−1), (3.15)

where t(x) is a distribution of values, gc is the center pixels gray value in a local

neighborhood and gp(p = 0, ..., P − 1) are the gray values of equally spaced pixels

located on a circle around the center using a given radius R and a given number of

circle pixels P . The gray values are extracted at the positions calculated using the

center and the radius. If a position does not match the pixel grid, it’s gray value is

interpolated. Figure 3.6 shows some example LBP configurations.

Figure 3.6: Examples of LBP configurations using a specified number of circle pixels
P on a given radius R. The gray dot denotes the center pixel and the black dots the
circle pixels where gray values are extracted. If the circle positions do not match the
pixel grid exactly their value is interpolated.

Leading from a texture representation to a binary representation (as the name LBP

tells us) requires additional work. Because the local texture can be represented without

losing information by subtracting the value of the center pixel from the neighbors values

T looks as follows:

T = t(gc, g0 − gc, ..., gP−1 − gc). (3.16)

By assuming that the differences are independent from gc and t(gc) describing the

overall image luminance the texture representation becomes

T ≈ t(g0 − gc, ..., gP−1 − gc). (3.17)

To achieve invariance to scaling, only the signs are considered using the sign function

3.2. NON-KEYPOINT FEATURES 49

s(x) =

1 x ≥ 0

0 x < 0
(3.18)

the texture becomes

T ≈ t(s(g0 − gc), ..., s(gP−1 − gc)). (3.19)

To transform this into a unique LBP code a binomial weight 2p is assigned the

following way:

LBPP,R(xc, yc) =

P−1∑
p=0

s(gp − gc)2p, (3.20)

where P is the number of circle positions, R is the radius and xc and yc are the center

pixels coordinates. When reviewing the equation above it is obvious that the LBP in

practice is interpreted as P -bit binary number.

3.2.3 COLOR HISTOGRAM

Swain et al. [40] denote that a color histogram is defined by a number of color axes

(e.g., red, green, blue for RGB color space) for an image in a discrete color space. To

obtain a color histogram for an image its colors have to be discretized and each discrete

color has to be counted. This leads then to a 3D histogram for a color image shown in

Figure 3.7.

Figure 3.7: Example 3D histogram of a person. The 3D histogram was constructed
using the 3D Color Inspector/Color Histogram plug-in for ImageJ (http://rsb.info.
nih.gov/ij/).

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/

50 Chapter 3. TRACKING VERIFICATION USING FEATURE MATCHING

The disadvantage of histograms for recognition is that the equivalence function they

define is that two colors are the same when they fall in the same bin. This is not ideal

because two colors lying close together but falling in different bins are not considered

the same although they might have a distance smaller than a bin size. This leaded to

ideas for defining a region around a color with respect to changing lightning conditions

or sensor noise to get better results for matching colors.

Despite those problem color histograms do work because of the nature of objects

surfaces. A surface of an object tends to span over a region of color and because of

shading and camera noise these regions fall into more than one bin in a histogram.

When matching a model histogram, obtained, e.g., from a database, to an image with

the same object, the obtained value will be high although a point-by-point match would

fail.

Another idea to obtain color histograms which are robust to changing lightning

conditions are cumulative histograms C which are defined as follows having H as the

non-cumulative histogram:

C(x, y, z) =
x∑
i=1

y∑
j=1

z∑
k=1

H(x, y, z). (3.21)

To match two color histograms the so called Histogram Intersection can be used.

This matching method is robust to varying background of the object, changing view-

points, occlusions and different image resolutions concerning the database (model) and

the image to be matched. For a pair of histograms where each of the histograms

contains n bins the Histogram Intersection is defined as

n∑
j=1

min(Ij ,Mj). (3.22)

The obtained result is the number of pixels from the model having the same color as

pixels from the image. The following equation shows a way to normalize the obtained

discrete number to a fractional result:

H(I,M) =

n∑
j=1

min(Ij ,Mj)

n∑
j=1

Mj

. (3.23)

3.3. Discussion 51

When using histograms of equivalent size, which is possible when verifying, e.g., a

person detection match, the histogram intersection problem can be reduced to the sum

of absolute differences (city-block metric). Assuming that the number of pixels of both

histograms is identical:
n∑
i=1

Mi =
n∑
i=1

Ii = T, (3.24)

gives the following intersection equation:

1−H(I,M) =
1

2T

n∑
i=1

|Ii −Mi|. (3.25)

3.3 Discussion

The discussed feature descriptor approaches in this section give an overview over fea-

ture descriptors usable for the verification step which will be integrated into the SLR

Tracking algorithm. The interesting part about the keypoint based feature descriptors

is their fast matching possibility which is important to retain the real-time capability of

the SLR Tracking algorithm. The disadvantage of, e.g., ORB and FREAK is their need

of a learning step which can not be done in a real-time tracking application. Another

advantage is that the keypoints used for feature descriptor extraction do not need to

be calculated in the SLR Tracking algorithm as for the KLT motion estimation part of

the tracker keypoints are already calculated (see Section 2.4.3).

For the non-keypoint features it will be interesting if the tracking algorithm retains

it’s real-time capability when calculating and matching DCT, LBP or color histogram

feature vectors. Especially for the color histogram approach it is doubtful if it is able

to describe distinct persons as the color variability of clothes is low.

Chapter 4

EVALUATION

Contents

4.1 DATASETS . 53

4.2 FEATURE DESCRIPTOR EVALUATION 56

4.3 TRACKER IMPROVEMENTS 67

4.4 TRACKER EVALUATION 68

This chapter will first present the evaluation results of the most promising feature

description approaches in terms of quality. Therefore object sample databases have

been build and the feature vectors have been extracted from each sample. The matching

distance of all samples (where samples belong to same and distinct objects) is then used

to analyse the ability of the feature description approach to separate samples belonging

to a single object from samples belonging to distinct objects. The most promising

approaches have been implemented into the SLR Track algorithm.

To be able to compare to the state of the art, the SLR Track output was analysed

using a common metric described in Chapter 4.4. For these evaluations two datasets

were used from which one is publicly available and one is an SLR own dataset. Finally

the tracking quality is compared to results available in other publications to compare

to the state of the art and to the implementation without the newly introduced feature

verification step.

52

4.1. DATASETS 53

4.1 DATASETS

The following figures show example frames from the two datasets used in this evaluation

chapter. Two typically scenarios where the SLR Track algorithm will be used have been

selected. Both provide a surveillance camera view with different quality and background

objects. One is an SLR own dataset described in Chapter 4.1.1 named SLR Pedestrian

and one is the towncentre dataset (see Chapter 4.1.2).

(a) Example frames of the SLR Pedestrian sequence.

(b) Example frames of the towncentre dataset.

Figure 4.1: Example frames of the two used datasets in the evaluation.

54 Chapter 4. EVALUATION

4.1.1 SLR PEDESTRIAN

The SLR pedestrian sequence shows a town center viewed from a typical surveillance

camera angle. The left part of the scene includes a building with an awning leading to

variations of pedestrian appearance when walking from the shaded into the unshaded

part of the street. The sequence consists of 3000 annotated frames with a resolution of

640× 480. Figure 4.1a shows a frame of the dataset and Figure 4.2 shows sequences of

some pedestrians extracted from the dataset.

Figure 4.2: Four person sample sequences extracted from the SLR Pedestrian dataset
with a difference of five frames between each image.

The samples above show four distinct persons (objects) which should be tracked by

the algorithm. The difficulties shown here are occlusion of the person by background

objects, occlusion of objects by other objects (possibly leading to identity switching)

and high background variability. What also can be seen is that the clothes the persons

wear are dark which adds additional complexity for the verification step.

4.1. DATASETS 55

4.1.2 TOWNCENTRE

The towncentre dataset presented by Benfold et al. in [6] includes a total number

of 71500 hand labeled head locations from a high definition (1920x1080/25fps) video

showing a busy towncentre. The groundtruth file also includes full body regions which

are estimated using the head position and the camera calibration with approximate

human dimensions. An example image of the dataset is shown in Figure 4.1b. Figure 4.3

shows four short sequences of pedestrians walking through the towncentre with partly

occlusions, backpack, bag and a bicycle.

Figure 4.3: Four person sample sequences extracted from the towncentre dataset with
a difference of five frames between each image.

As in the slr pedestrian sequence the clothing of the persons is also quite dark. The

additional accessories of some of the persons like a bag, bagpack or bicycle may add

additional information for the feature matching but may also confuse the HOG person

detector.

56 Chapter 4. EVALUATION

4.2 FEATURE DESCRIPTOR EVALUATION

For descriptor evaluation the above defined datasets are used. Out of the datasets,

person samples like in Figure 4.2 and in Figure 4.3 are extracted.

For all n extracted samples feature descriptors are calculated and stored. Then

an n × n matrix is created where every cell holds the matching distance between two

sample feature descriptors. As for every sample an object ID and a frame number is

known, out of the matrix a distribution over the distances between samples with the

same object ID (intra object) and a distribution over the distances between samples

with distinct object ID (inter object) can be computed.

Those distributions are presented as two histograms in a single coordinate system,

where the intra object distribution is presented in green and inter object distribution

is presented in red (see Figure 4.4).

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Figure 4.4: Feature descriptor distance evaluation histograms where the distribution of
distance of samples of the same objects are presented in green and distances of samples
from distinct objects are presented in red. The histogram overlap is colored in blue.
The better a feature descriptor, the smaller the histogram overlap.

4.2. FEATURE DESCRIPTOR EVALUATION 57

The feature descriptor matrix for the different investigated descriptors were cal-

culated using a self developed Qt/C++ tool which takes a video sequence and an

annotation file as input. In opposite to the towncentre dataset where the existing an-

notation file was used, for the SLR pedestrian sequence an annotation had to be created

upfront by hand. The n× n distance matrix is stored as csv file for later use. For the

further analysis of the distance matrix a python tool was written which produces the

distribution diagrams and calculates the histogram intersection values.

To measure the quality of a feature descriptor the histogram intersect (as shown in

Figure 4.4) is investigated. The histogram intersect of the histograms a and b I(a, b) is

defined as follows:

I(a, b) =
k∑
i=0

min(ai, bi), (4.1)

where k is the number of bins. Inter object distances should be low and intra object

distances should be high. Using this definition the distribution histograms of a good

feature descriptor should hardly overlap and lead to a low I(a, b) value.

4.2.1 DISTANCE EVALUATION

The above described evaluation is performed on all features described in Chapter 2

using the presented datasets from Section 4.1 giving two distribution images for every

feature. First the three non-keypoint feature descriptor approaches are investigated.

Each of those descriptors yields only one feature vector per object sample and those

can be directly matched to each other without the need of further processing to obtain

a distance measure. In opposite to the keypoint feature descriptors which yield mul-

tiple feature vectors per object sample requiring further processing to obtain a match

between two samples (see Sec. 4.2.2).

58 Chapter 4. EVALUATION

Color Histogram The color histogram feature descriptor as described in Sec. 3.2.3 is

not able to separate inter and intra object samples in a satisfying manner as can be seen

in Figure 4.5a and in Figure 4.5b. The figures show a medium overlap of the distance

distributions having mostly intra object sample matches with low distances but also

a lot of inter object sample matches with low distances leading to the conclusion that

the color histogram descriptor is not optimal for separating samples of the same object

and distinct objects samples.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a) Color histogram towncentre distance results.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0

(b) Color Histogram SLR Pedestrian distance results.

Figure 4.5: Distance distribution of the Color Histogram descriptor for samples of the
same object (green) and for distinct object samples (red).

4.2. FEATURE DESCRIPTOR EVALUATION 59

DCT The DCT feature descriptor described in Sec. 3.2.1 is able to distinguish better

between inter and intra object samples. In the high quality towncentre dataset (see

Figure 4.6a) the result is even better than in the low quality SLR Pedestrian dataset

(see Figure 4.6b), which can be determined because for inter object samples most of

the matching distances are high and form a clear peak whereas, especially in the high

quality data, the intra object sample distances are low.

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(a) DCT towncentre distance results.

0 5 10 15 20 25 30 35
0.00

0.02

0.04

0.06

0.08

0.10

0.12

(b) DCT SLR Pedestrian distance results.

Figure 4.6: Distance distribution of the DCT descriptor for samples of the same object
(green) and for distinct object samples (red).

60 Chapter 4. EVALUATION

LBP The LBP descriptor defined in Sec. 3.2.2 is also able to separate inter and intra

object samples quite well. Where a higher image quality like in the towncentre dataset

(see Figure 4.7a) leads to better results than a lower quality like in the SLR Pedestrian

dataset (see Figure 4.7b). Especially the clear peak for inter object sample matching

distances helps to distinguish if two samples belong to the same object or not.

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

(a) LBP towncentre distance results.

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) LBP SLR Pedestrian distance results.

Figure 4.7: Distance distribution of the LBP descriptor for samples of the same object
(green) and for distinct object samples (red).

4.2. FEATURE DESCRIPTOR EVALUATION 61

4.2.2 KEYPOINT MATCHING

The description of an object using keypoint descriptors is slightly more complex. First

the interesting points of the object have to be found. For all of those interesting points

a descriptor is calculated. The matching process of two objects with several keypoint

descriptors works as follows:

All keypoints descriptors of object A are matched to all descriptors of object B,

giving for every keypoint kAi of object A a set of matches. Those matches are sorted

ascending concerning the distance. To determine if a match for a keypoint is valid,

the distances of the best and second best match are investigated. If the distance of

the best match is significantly smaller than the distance of the second best match, the

best match is marked as reliable. The distance between two objects is calculated as the

average of all reliable matching distances.

As distance measure for the BRIEF, ORB and FREAK descriptor, which provide

a binary string as feature vector, the Hamming distance suites best.

Definition 2 The Hamming distance of two binary strings is a bit wise XOR operation

followed by a bit count [1] and is very fast to compute on modern processors.

Giving, e.g., a sample A with a set of keypoints {k} and a sample B with a set of

keypoints {g}. For every keypoint ki the distances to every keypoint gj are calculated

giving a set of Hamming distances {h}. For all keypoints in {k} the distances hij are

sorted ascending. If

hmini j < hmin2i k ∗ τ, (4.2)

where hmini j is the best match of keypoint i of sample A to the keypoint j of sample B,

hmin2i k is the second best match of keypoint i of sample A to the keypoint j of sample

B and τ is a weighting factor, equals true, the match is considered to be valid and is

assigned the distance hmini j.

After iterating over all keypoints in {k} and matching them to all keypoints in {g}
all valid matching distances are averaged giving the final distance for the samples A

and B.

62 Chapter 4. EVALUATION

BRIEF The BRIEF feature descriptor (see Sec. 3.1.1) results in Figure 4.8a and

Figure 4.8b show especially in the higher quality data of the towncentre dataset good

peaks for inter and intra object distances making this descriptor a good choice for

separating samples of same objects and distinct objects. In the lower quality SLR

pedestrian sequence the peak for intra object distances is quite significant but the

distances for inter object matches are often very high making it hard to split between

objects using this descriptor in the low quality sequence.

0 10 20 30 40 50 60 70
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) BRIEF towncentre distance results.

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

(b) BRIEF SLR Pedestrian distance results.

Figure 4.8: Distance distribution of the BRIEF descriptor for samples of the same
object (green) and for distinct object samples (red).

4.2. FEATURE DESCRIPTOR EVALUATION 63

ORB The ORB (see Sec. 3.1.2) results in Figure 4.9a and in Figure 4.9b show nearly

similar results to the BRIEF descriptor but having the peaks lying closer together

making it harder to determine between inter and intra objects than as it is with the

BRIEF descriptor. Also for the low quality dataset the results are similar to the one

presented for the BRIEF descriptor. Inter object matches with high distances make it

hard to split the samples.

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) ORB towncentre distance results.

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) ORB SLR Pedestrian distance results.

Figure 4.9: Distance distribution of the ORB descriptor for samples of the same object
(green) and for distinct object samples (red).

64 Chapter 4. EVALUATION

BRISK The BRISK descriptor (see Sec. 3.1.3) tests as reported in Figure 4.10a

and Figure 4.10b show peaks for inter and intra object sample matching. Given that

the peaks lying close together leads to a bad performance when trying to distinguish

between same object samples and distinct object samples although the results for the

higher quality dataset are slightly better.

0 20 40 60 80 100 120 140 160 180
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(a) BRISK towncentre distance results.

0 50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

0.025

(b) BRISK SLR Pedestrian distance results.

Figure 4.10: Distance distribution of the BRISK descriptor for samples of the same
object (green) and for distinct object samples (red).

4.2. FEATURE DESCRIPTOR EVALUATION 65

FREAK The FREAK descriptor (see Sec. 3.1.4) tests as reported in Figure 4.11a and

Figure 4.11b shows poor results for the data separation. Although, for the high quality

dataset, the inter object sample matching distances form a peak at a high distance,

the intra object samples do not form a peak at a low distance to be able to separate

the samples correctly. The peaks in the low quality dataset are very close together and

make it very hard to distinguish between inter and intra object samples.

0 20 40 60 80 100 120 140 160
0.00

0.01

0.02

0.03

0.04

0.05

(a) Freak towncentre distance results.

0 50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

0.025

0.030

(b) Freak SLR Pedestrian distance results.

Figure 4.11: Distance distribution of the FREAK descriptor for samples of the same
object (green) and for distinct object samples (red).

66 Chapter 4. EVALUATION

4.2.3 DISCUSSION

The performed inter- and intra-object distance evaluation showed that, out of the

keypoint feature descriptors only the BRIEF descriptor was able to yield good results

especially if the image resolution is high (as it is in the towncentre dataset). For low

resolution data the LBP approach seems to be the best choice for determining between

samples of same object and distinct object samples.

Table 4.1 additionally shows the histogram intersection values for the different de-

scriptors and datasets. Presenting good results for DCT, BRIEF and LBP in the

towncentre dataset and good results for the LBP descriptor in the SLR Pedestrian

dataset.

Descriptor Towncentre SLR Pedestrian

BRIEF 0.3116 0.4359

DCT 0.3373 0.4638

ORB 0.3914 0.4167

LBP 0.3412 0.3269

Color Histogram 0.4620 0.4942

BRISK 0.5234 0.6711

FREAK 0.7506 0.7273

Table 4.1: Histogram intersection results.

The bad results of the Color Histogram descriptor lead to the conclusion, that color

distribution on it’s own is not feasible to identify distinct objects. This is obvious when

tacking a look at the samples in Section 4.1.1 and in Section 4.1.2 where most of the

people wear dark coats.

An explanation of the bad results the FREAK descriptor yielded is that there

was no learning step performed to identify the mos discriminant pairs like described

in Section 3.1.4. This step was skipped because the tracking process should work

completely unsupervised on the smart camera.

Also the results of the BRISK descriptor imply that a concentric pattern around

keypoints for feature descriptor extraction is not feasible because the BRIEF descriptor

uses the same principle but uses a Gaussian pattern for extraction and yields much

better results.

4.3. TRACKER IMPROVEMENTS 67

Out the found descriptor matching results, the most promising have been selected

to serve as tracking verfication step in the SLR tracking algorithm as the next chapters

will describe.

4.3 TRACKER IMPROVEMENTS

Using the obtained results of the evaluation section (see 4.2) the current SLR tracking

algorithm is improved by implementing different verification feature descriptors and

some other optimizations which are presented in the following paragraphs.

According to the results found in feature descriptor evaluation (see 4.2) the following

feature descriptors were implemented for tracking verification:

• BRIEF (see Sec. 3.1.1)

• LBP (see Sec. 3.2.2)

• DCT (see Sec. 3.2.1)

To integrate the feature verification into the existing tracking algorithm following

extensions have been made:

1. For all newly initialized trajectories calculate the feature vector and store it.

2. Predict trajectories according to their KLT displacements to the next frame.

3. Mark newly found detections in the next frame as candidates if the bounding box

overlap between the prediction and the new detection exceeds a threshold.

4. For all trajectories where candidates have been found do the following:

(a) Calculate the feature vector for all candidates and match the candidates’

feature vector to the trajectory feature vector.

(b) If the feature vector distance is smaller than a given threshold the trajectory

is extended.

(c) The current trajectory feature vector is replaced if the age of the feature

vector exceeds a defined number of frames or HOG detector confidence of

the new detection is higher than a given threshold.

68 Chapter 4. EVALUATION

5. For all trajectories where no candidate detections have been found the prediction

bounding box is taken as pseudo detection. For this pseudo detection a feature

vector is calculated and the feature vector is matched to the trajectories existing

feature vector. If the distance of the feature vectors lies below a defined threshold

the trajectory is extended. The trajectories feature vector is not replaced by the

new one.

4.4 TRACKER EVALUATION

Evaluation of single object tracker is quite straightforward. The groundtruth positions

of the object in the given frames only have to be matched against the trackers’ output

positions. If the distance between the trackers’ output and the groundtruth lies below

a given threshold the frame is identified as true positive.

Multi-target object tracking evaluation is more complex. The tracker data and

groundtruth consist of multiple trajectories where every trajectory is identified by

an ID. To evaluate multiple trajectories it is not feasible to match single trajectory

positions to the groundtruth because of nearby trajectories, intersecting trajectories,

identity switches, etc.

Bernardin et al. [7] present a bundle of performance metrics for multiple object

tracking, where they define two main design criteria:

1. A metric should be able to judge the precision of the tracker by determining exact

object locations.

2. A metric has to reflect the trackers ability to track an object over time producing

exactly one trajectory per object.

Additional criteria are:

1. Simplicity: Have as few free parameters as possible to keep the evaluation process

straightforward and make the output comparable.

2. Understandability: The metrics should be clear and easily understandable and

behave according to human intuition.

4.4. TRACKER EVALUATION 69

3. Generality: The metrics should allow comparison of different types of trackers

(2D tracker, 3D tracker, object centroid tracker, etc.).

4. Expressiveness: The metrics output should consist of few numbers but stay ex-

pressive so that they may be used for comparison of many different systems in

large evaluations.

Taking into account the criteria Bernardin et al. formulate an evaluation procedure

where for every time frame t a set of multiple tracker outputs (hypotheses) h1, ..., hm

and a set of visible objects (groundtruth) o1, ..., on is needed. For every time frame t

the following steps are performed:

1. Find the best possible correspondence for hypotheses hj and objects oi.

2. Compute the position error for all found correspondences.

3. Sum all correspondence errors:

(a) Count objects without hypothesis as misses.

(b) Count hypotheses where no objects exist as false positives.

(c) Count as mismatch error if for an object the tracking hypothesis changes

over time. This happens if, e.g., the tracker reinitializes a former lost object

track or an identity switch occurred between objects passing close to each

other.

To clarify the steps of the evaluation procedure, Figure 4.12 shows examples of

object and hypothesis matches for simple cases. The big circles denote object positions,

the solid lines denote object tracks, the small circles denote hypothesis positions and

the dotted lines denote hypothesis tracks.

70 Chapter 4. EVALUATION

Figure 4.12: Matching tracker hypotheses to object trajectories over 4 frames. The
objects o1 and o2 are matched against hypothesis h1 and h2 successfully. The object o8
is identified as a miss because not corresponding hypotheses exists and the hypothesis
h5 is identified as false positive because no corresponding object exists (taken from [7]).

Performing the above mentioned steps a tracker’s performance can be intuitively

expressed by two numbers:

• ”Tracking precision”, which expresses the accuracy of position estimations.

• ”Tracking accuracy” expressing the mistakes of the tracker in terms of misses,

false positives, mismatches and failures to recover tracks etc.

4.4.1 MATCHING OBJECTS WITH TRACKER HYPOTHESIS

Before defining the two above mentioned numbers it is important to take a more detailed

look at the algorithm used in Bernardin et al. for establishing correspondences between

objects and tracker hypotheses.

4.4. TRACKER EVALUATION 71

The first step is to define whether a correspondence between an object oi and a

hypothesis hj is given. To do so, a distance disti,j between oi and hj is calculated

and if a certain threshold T is exceeded no correspondence between the object and

the hypothesis is established. For example a useful distance for bounding box trackers

would be to consider the overlap between the object and the hypothesis or, e.g., for

trackers reporting only object centroids on could use the Euclidean distance.

Next the consistency of a tracker – its ability to assign a label consistently to an

object – has to be analyzed. The main difficulty here, is the identity switching. For

example the best mapping for an object and a hypothesis would be (oi, hj). When

now an identity switch occurs assign to it’s hypothesis hj another object ok giving a

new mapping (ok, hj). All those correspondences (ok, hj) would be counted as errors

because the initial mapping was (oi, hj). In fact the tracker only made one error, the

identity switch. Figure 4.13 shows an example where a hypothesis is mapped to two

different objects.

o1

o2

h1

h2

t t+1 t+2 t+3 t+4 t+5 t+6

Figure 4.13: Initially the object o1 (big light blue circle) is mapped to the hypotheses
h1 (small dark blue circle) and o2 (big light orange circle) is mapped to h2 (small dark
orange circle). At time stamp t + 4 the identity switch occurs where the hypotheses
are mapped to the wrong objects (adapted from [7]).

72 Chapter 4. EVALUATION

To avoid the above described multiple error counting, Bernardin et al. construct

a set of object-hypotheses mappings, where Mt = {(oi, hj)} is a set of mappings at

time t and M0 = {·}. If at time t + 1 a new mapping, e.g., (oi, hk) is created, the

current mapping Mt is checked if for the object oi a mapping exists and if the mapped

hypothesis is still the same. If not a mismatch error is counted and the mapping (oi, hj)

is replaced in Mt+1 with the new mapping (oi, hk). The construction of a mapping set

cannot only help to avoid multiple error counting but can also help to identify optimal

hypothesis – object correspondences if multiple valid choices exist. Figure 4.14 shows

an example where for a given object two valid hypotheses exist. The mapping from

previous frames can now help to decide which on is the optimal mapping by giving

priority to the existing mappings.

o1

h1

h2

t t+1 t+2 t+3 t+4

Disth1,o1 < T

Disth2,o1 < T

Figure 4.14: The object o1 is mapped to the hypothesis h1. At time t + 4 a second
hypothesis h2 is created by the tracking algorithm nearby the object. Using the existing
mapping from t+ 3 the mapping at t+ 4 is still (o1, h1) (adapted from [7]).

4.4. TRACKER EVALUATION 73

4.4.2 METRICS

Having defined the basic idea and strategy behind the metrics of Bernardin et al., the

metrics mentioned earlier can now be discussed in detail which follows in the next two

sections.

4.4.2.1 TRACKING PRECISION

The multiple object tracking precision (MOTP) is defined as follows:

MOTP =

∑
i,t d

i
t∑

t ct
, (4.3)

where t is the time stamp, dit is the distance of the object oi and its corresponding

hypothesis at time t and ct is the number of matches found at time t.

Thus, the MOTP metric provides a measurement over the trackers ability to esti-

mate object positions. Further more the MOTP is independent of the trackers skill of

keeping consistent trajectories, detecting identity switches etc.

4.4.2.2 TRACKING ACCURACY

The multiple object tracking accuracy (MOTA) is defined as follows:

MOTA = 1−
∑

t(mt + fpt + net)∑
t gt

, (4.4)

where t again denotes the time stamp, mt is the number of misses, fpt is the number of

false positives, net is the number of mismatches and gt is the number of objects present

at time t.

Interpreting the above definition, MOTA is a sum over different error ratios (ratio

of misses, ratio of false positives, ratio of mismatches) leading to an overall tracking

accuracy.

74 Chapter 4. EVALUATION

4.4.3 IMPLEMENTATION

The CLEAR MOT metric evaluation script is written in python adapted from the exist-

ing code of Bagdanov et al. [4]. For the existing groundtruth data several parser classes

have been written in python to deal with the different file formats. The groundtruth

and the result data files are loaded into internal data structures and the metrics defined

above are calculated as described in Chapter 4.4.2.

4.4.4 PROTOCOL

As mentioned before out of the results found in Section 4.2 the three most promising

descriptors (DCT, LBP and BRIEF) have been implemented to perform a verifica-

tion step when tracking to avoid identity switching. The implemented trackers and

the tracker without the verification step were executed on both datasets presented in

Section 4.1. The annotated groundtruth of the datasets and the output of the various

tracking algorithms are then analyzed using the implemented python tool to calculate

the CLEAR MOT metric.

Additionally to the defined CLEAR MOT metrics, the identity switches, precision

and recall are calculated. Precision and recall are defined as follows:

precision =
tp

tp+ fp
, (4.5)

recall =
tp

tp+ fn
, (4.6)

where tp are the true positives, fp are the false positives and fn are the false negatives.

For evaluating trackers these terms mean in detail:

• True positive: A true positive is a position of the hypothesis which matches the

position of the corresponding object. In our case this means that the overlap area

of the hypothesis and the objects bounding boxes is greater than 50%.

4.4. TRACKER EVALUATION 75

• False positive: A false positive is a position of the hypothesis which does not

match the position of the corresponding object. This can occour if, e.g., the

tracker drifts to the background so the hypothesis and the object position differ

too much or an identity switch has occured so the hypothesis and the object are

not corresponding anymore.

• False negative: A false negative is a object position for which no hypothesis

position exists. It is also called a ’miss’ because the objects position was missed

by the tracker.

The following tables will show the results found on the two datasets for the above

defined metrics. Table 4.2 shows the results on the towncentre dataset presented in

Chapter 4.1.2. The SLR Track without verification step is compared to the improved

SLR Track with DCT, LBP and BRIEF verification. Additionally results from the

literature are also included.

Method MOTP MOTA ID switches Precision Recall

SLR Track without Ver-
ification

66.6 34.9 566 72.2 57.7

SLR Track with DCT 66.4 38.0 263 78.0 53.2

SLR Track with BRIEF 68.9 32.2 465 71.1 55.1

SLR Track with LBP 67.5 24.6 322 65.3 53.1

Benfold et al. [6] 80.3 61.3 - 82.0 79.0

Zhang et al. [46] 71.5 65.7 - 71.5 66.1

Pellegrini et al. [30] 70.7 63.4 - 70.8 64.1

Yamaguchi et al. [44] 70.9 63.3 - 71.1 64.0

Leal-Taixe et al. [21] 71.5 67.3 - 71.6 67.6

Table 4.2: Comparison of the results of the towncentre dataset with the literature.

The results on the SLR Pedestrian dataset are presented in tab. 4.3. The non

verification SLR Track algorithm is again compared to the improved using DCT, LBP

and BRIEF verification steps.

76 Chapter 4. EVALUATION

Method MOTP MOTA ID switches Precision Recall

SLR Track without Ver-
ification

75.3 50.4 341 86.0 61.4

SLR Track with DCT 74.6 58.7 88 90.6 65.8

SLR Track with BRIEF 78.6 50.8 251 86.4 61.1

SLR Track with LBP 79.2 35.9 116 87.8 42.1

Table 4.3: Comparison of the different SLR tracking implementations on the SLR
Pedestrian dataset.

The results in the tables show that the SLR Track algorithms quality in terms of

identity switches improves a lot when using a verification step. Especially the DCT

verification step approach yields good results. Comparing the results of the towncentre

dataset using the SLR Track without verification and the DCT improved SLR Track, the

recall value has decreased. As the recall represents the ratio of correct object positions

to correct and missed object positions, this is a hint that the DCT verification step

drops correct object positions. This can also be seen for the BRIEF and LBP improved

SLR Track on both of the datasets. Only on the SLR Pedestrian dataset the recall

value improves using the DCT improved SLR Track algorithm.

Taking a look at the MOTP and MOTA values, the verification step implementation

does not improve the trackers quality dramatically. But taking into account the decrease

of identity switches the quality improvement of the DCT implementation is obvious.

For MOTA and MOTP calculation identity switches are only counted as one mismatch

error although all further frames of this object are wrong positions. This is why the

SLR Track implementation without verification steps MOTP and MOTA values are

nearly the same when compared to the DCT improved version.

Comparing the results to the state of the art presents a gap especially for the

MOTA metric and the recall value which state that the, although fast, SLR Track

algorithm needs further improvements in it’s detection and association part. What is

also noticeable is that the SLR Track algorithm was also tested on a real smart camera

from the SLR company. The CPU is a 1.6GHz Intel Atom single core processor with

hyperthreading where the algorithm runs with eight frames per second at a resolution

of 640x480.

Chapter 5

CONCLUSION

Tracking multiple objects in video sequences is a broad field of research and the prob-

lems arising from different viewpoints, lightning conditions and occlusion of objects are

very challenging. In this thesis some of the most interesting approaches and algorithms

for solving the tracking problem have been reviewed keeping an eye on their ability to

be implemented on a smart camera or if their findings can contribute to develop such

an algorithm. Having a low computational device like a smart camera, the solution to

the tracking problem becomes even more challenging. That is why a proven to be fast

SLR Track algorithm was taken as starting point for the implementation.

The SLR Track combines a state of the art detection part with fast motion estima-

tion for it’s association part but lacks on object identity information. This information

was then generated using different, again fast, algorithms which were compared on their

ability to match person samples and to make assumptions about two samples belonging

to the same object. Out of the results the most suitable algorithms were chosen to be

implemented for an overall tracking analysis.

A common metric was then used for comparing the overall tracking quality of the

SLR Track and its improvements to state of the art tracking algorithms from the

literature on a widely used publicly available dataset. Although the improvements

implemented show promising results when comparing the SLR Track to it’s improved

versions, the comparison to the state of the art reveals a quality gap.

77

78 Chapter 5. CONCLUSION

The fact that the verification step improved algorithm can be executed on a low

computational power device with eight frames per second at 640x480 pixels resolution

can be seen as success. Especially when taking into account the decreasing of identity

switches by 53% on the towncentre and 74% on the slr pedestrian dataset using the

DCT improved algorithm.

Future work on the algorithm will mainly address the detector part of the algorithm.

The used detector will be revised and a new training with more annotated pedestrian

and car data will be made. This can help to reach higher MOTA and MOTP scores

due to less false positive detections and a lower missing rate. In further works the DCT

verification step will be a fixed part of the tracking algorithm but it’s association part

based solely on KLT position predictions will be investigated for improvements.

In conclusion it can be said that the thesis aim of implementing an object tracker

on a smart camera running in real time was achieved. There is still a gap in the

quality to present a tracking sensor but the identity switching errors were reduced

by half due to the implementation of object identity information. Also a tool chain

was built including a Qt/C++ tool to extract matching distances for different feature

descriptor approaches from object samples which are graphical represented with a tool

written in python and a python clear mot metric implementation for overall tracking

performance comparisons. This tool chain will help to integrate further improvements

into the tracker by providing an easy and standardized way of illustrating the quality

of the implemented changes.

BIBLIOGRAPHY 79

Bibliography

[1] Alahi, A., Ortic, R., and Vandergheynst, P. (2012). Freak: Fast retina keypoint. In

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 510–517.

[2] Araujo, H. and Dias, J. (1996). An introduction to the log-polar mapping. In Proc.

Workshop on Cybernetic Vision, pages 139–144.

[3] Babenko, B., Yang, M.-H., and Belongie, S. (2011). Robust object tracking with

online multiple instance learning. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 33:1619–1632.

[4] Bagdanov, A. D., Del Bimbo, A., Dini, F., Lisanti, G., and Masi, I. (2012). Com-

pact and efficient posterity logging of face imagery for video surveillance. IEEE

Multimedia, pages 48–59.

[5] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features.

Proc. European Conf. on Computer Vision, pages 404–417.

[6] Benfold, B. and Reid, I. (2011). Stable multi-target tracking in real-time surveillance

video. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages

3457–3464.

[7] Bernardin, K. and Stiefelhagen, R. (2008). Evaluating multiple object tracking

performance: the clear mot metrics. Int. Journal on Image and Video Processing,

2008:1:1–1:10.

[8] Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

[9] Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., and Van Gool, L.

(2011). Online multiperson tracking-by-detection from a single, uncalibrated camera.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 33(9):1820–1833.

[10] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: Binary robust

independent elementary features. In Proc. European Conf. on Computer Vision,

volume 6314, pages 778–792.

[11] Chandran, S. D. V. and Sridharan, S. (2005). Tracking people in 3d using position,

size and shape. In Proc. Int. Symposium on Signal Processing and its Applications,

pages 611–614.

80

[12] Criminisi, A. and Shotton, J. (2013). Decision Forests for Computer Vision and

Medical Image Analysis. Springer Publishing Company, Incorporated.

[13] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detec-

tion. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, volume 2,

pages 886–893.

[14] Denman, S., Chandran, V., and Sridharan, S. (2007). An adaptive optical flow

technique for person tracking systems. Pattern Recognition Letters, 28(10):1232–

1239.

[15] Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedestrian detection:

An evaluation of the state of the art. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 34(4):743–761.

[16] Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In Proc.

SIGKDD Int. Conf. on Knowledge discovery and data mining, pages 71–80.

[17] Felzenszwalb, P. and Huttenlocher, D. (2004). Efficient graph-based image seg-

mentation. Int. Journal of Computer Vision, 59(2):167–181.

[18] Gall, J., Yao, A., Razavi, N., Van Gool, L., and Lempitsky, V. (2011). Hough

forests for object detection, tracking, and action recognition. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 33:2188–2202.

[19] Godec, M., Roth, P. M., and Bischof, H. (2011). Hough-based tracking of non-rigid

objects. In Proc. IEEE Int. Conf. on Computer Vision, pages 81–88.

[20] Jiri, Z. K., Matas, and Mikolajczyk, K. (2009). Online learning of robust object

detectors during unstable tracking. In Proc. IEEE Int. Conf. on Computer Vision,

pages 1417–1424.

[21] Leal-Taixé, L., Pons-Moll, G., and Rosenhahn, B. (2011). Everybody needs some-

body: Modeling social and grouping behavior on a linear programming multiple

people tracker. In Proc. IEEE Int. Conf. on Computer Vision, pages 120–127.

[22] Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk: Binary robust

invariant scalable keypoints. In Proc. IEEE Int. Conf. on Computer Vision, pages

2548–2555.

BIBLIOGRAPHY 81

[23] Loibner, G. and Sidla, O. (2013). Feature descriptors for object matching in

real-time tracking applications. In Proc. SPIE Conf. on Electronic Imaging, pages

86630B–86630B.

[24] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int.

Journal of Computer Vision, 60(2):91–110.

[25] Lu, L. and Hager, G. (2007). A nonparametric treatment for location/segmenta-

tion based visual tracking. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 1–8.

[26] Mäenpää, T. (2003). The Local Binary Pattern Approach to Texture Analysis:

Extenxions and Applications.

[27] Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns. IEEE Trans.

on Pattern Analysis and Machine Intelligence, 24(7):971–987.

[28] Oza, N. C. (2005). Online bagging and boosting. In Proc. IEEE Int. Conf. on Man

and Cybernetics, volume 3, pages 2340 – 2345.

[29] Pakkanen, J., Iivarinen, J., and Oja, E. (2004). The evolving tree—a novel self-

organizing network for data analysis. Neural Processing Letters, 20:199–211.

[30] Pellegrini, S., Ess, A., and Van Gool, L. (2010). Improving data association by

joint modeling of pedestrian trajectories and groupings. In Proc. European Conf. on

Computer Vision, pages 452–465.

[31] Ren, X. and Malik, J. (2007). Tracking as repeated figure/ground segmentation.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 1–8.

[32] Rosin, P. L. (1999). Measuring corner properties. Computer Vision and Image

Understanding, 73(2):291–307.

[33] Ross, D. A., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). Incremental learning for

robust visual tracking. Int. Journal of Computer Vision, 77(1–3):125–141.

[34] Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner

detection. Proc. European Conf. on Computer Vision, pages 430–443.

82

[35] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An efficient

alternative to SIFT or SURF. In Proc. IEEE Int. Conf. on Computer Vision, pages

2564–2571.

[36] Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009). On-line

random forests. In Proc. IEEE Workshop on Online Learning, pages 1393–1400.

[37] Schulter, S., Leistner, C., Roth, P., Bischof, H., and Van Gool, L. (2011). On-line

hough forests. In Proc. British Machine Vision Conf., pages 128.1–128.11.

[38] Shin, J., Kim, S., Kang, S., Lee, S.-W., Paik, J., Abidi, B., and Abidi, M. (2005).

Optical flow-based real-time object tracking using non-prior training active feature

model. Real-Time Imaging, 11(3):204–218.

[39] Sidla, O. (2010). Object tracking by combining detection, motion estimation,

and verification. Proc. SPIE Conf. on Intelligent Robots and Computer Vision,

7539:753906–753906–11.

[40] Swain, M. and Ballard, D. (1991). Color indexing. Int. Journal of Computer

Vision, 7:11–32.

[41] Tjahyadi, R., Liu, W., and Venkatesh, S. (2004). Application of the dct energy his-

togram for face recognition. In Int. Conf. on Information Technology for Application,

pages 305–310.

[42] Tomasi, C. and Kanade, T. (1991). Detection and tracking of point features.

Technical Report CMU-CS-91-132, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA 15213.

[43] Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of

simple features. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,

volume 1, pages 511–518.

[44] Yamaguchi, K., Berg, A. C., Ortiz, L. E., and Berg, T. L. (2011). Who are you

with and where are you going? In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 1345–1352.

[45] Yin, Z. and Collins, R. (2009). Shape constrained figure-ground segmentation and

tracking. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages

731–738.

BIBLIOGRAPHY 83

[46] Zhang, L., Li, Y., and Nevatia, R. (2008). Global data association for multi-object

tracking using network flows. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 1–8.

[47] Zhu, Q., Avidan, S., Yeh, M.-C., and Cheng, K.-T. (2006). Fast human detection

using a cascade of histograms of oriented gradients. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, volume 2, pages 1491–1498.

	List of Figures
	List of Tables
	INTRODUCTION
	TRACKING
	TRACKING BY DETECTION
	LEARNING BASED TRACKERS
	ADAPTIVE APPEARANCE MODEL
	UPDATE STRATEGIES
	ALGORITHMS

	TRACKING USING RANDOM FORESTS
	RANDOM FOREST
	ON-LINE RANDOM FOREST
	HOUGH FOREST
	ON-LINE HOUGH FOREST

	MOTION-BASED TRACKING
	KLT
	MOTION EXTRACTION
	TRACKING

	SEGMENTATION-BASED TRACKING
	"SUPERPIXEL" EXTRACTION
	FIGURE/GROUND SEGMENTATION
	TRACKING

	SLR TRACKER
	BACKGROUND MODEL
	DETECTOR
	TRACKER

	DISCUSSION

	TRACKING VERIFICATION USING FEATURE MATCHING
	KEYPOINT FEATURES
	BRIEF
	ORB
	BRISK
	FREAK

	NON-KEYPOINT FEATURES
	DCT
	LBP
	COLOR HISTOGRAM

	Discussion

	EVALUATION
	DATASETS
	SLR PEDESTRIAN
	TOWNCENTRE

	FEATURE DESCRIPTOR EVALUATION
	DISTANCE EVALUATION
	KEYPOINT MATCHING
	DISCUSSION

	TRACKER IMPROVEMENTS
	TRACKER EVALUATION
	MATCHING OBJECTS WITH TRACKER HYPOTHESIS
	METRICS
	TRACKING PRECISION
	TRACKING ACCURACY

	IMPLEMENTATION
	PROTOCOL

	CONCLUSION
	Bibliography

