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Multi-Point 3D Velocity Vector Encoding of Blood Flow 
 
Magnetic Resonance Imaging offers the possibility to non-invasively assess blood flow. Different 
diseases in the cardiovascular system are closely linked to pathological flow and information about 
the flow can be employed to diagnose and investigate such diseases. 

There exist well-established methods to measure the mean velocity of blood flow, and recently a 
technique to assess turbulence intensity was proposed. All these approaches suffer from high 
sensitivity to chosen scan parameters and noise. In this work a new method is presented which 
combines highly accelerated measurements with a Bayesian approach. Phase-Contrast Magnetic 
Resonance Imaging is employed using different encoding velocities. Coherent motion leads to a 
velocity depending phase, and velocity fluctuations caused by turbulence lead to a decrease in signal 
magnitude. These effects in combination with statistical methods result in a posterior probability of 
the mean velocity and turbulence intensity. This probability is then maximized to obtain an estimate 
of these parameters. 

The technique proposed has shown promising results regarding the accuracy compared to 
conventional methods, especially in the low SNR regime. The practicability was demonstrated using 
in vitro as well as in vivo measurements, including pathological flow situations. Further investigation 
is required to improve speed and to validate the results of turbulence intensities. 

 
Keywords: Magnetic Resonance Imaging, phase-contrast velocity mapping, turbulence intensity, 
Bayesian approach, accelerated imaging 

 
 

Mehrpunkt 3D Geschwindigkeitsvektor-Kodierung des Blutflusses  
 

Die Magnetresonanztomographie (MRT) ermöglicht die nicht-invasive Messung des Blutflusses. 
Verschiedene Erkrankungen des Herz-Kreislauf-Systems stehen in Relation zu Veränderungen des 
Flusses und entsprechend bieten Messmethoden zur Bestimmung von Blutflussgeschwindigkeiten 
und -vektorfeldern wichtige Information zur Diagnose und Untersuchung solcher Krankheiten. 

MRT-Methoden zur Messung der mittleren Geschwindigkeit des Blutflusses sind mittlerweile gut 
etabliert. Darüber hinaus hat die Entwicklung von Verfahren zur Bestimmung der 
Turbulenzintenstität großes Interesse hervorgerufen, da damit signifikante Veränderungen der 
Hämodynamik detektiert werden könnten. Die Genauigkeit derzeitiger Implementationen ist jedoch 
stark von der Wahl verschiedener Messparameter und vom Messrauschen abhängig.  

In dieser Arbeit wird eine neue Methode vorgestellt, welche stark beschleunigte Messverfahren 
mit einem Bayes‘schen Ansatz kombiniert. Hierzu kommen Phasenkontrast MRT-Messungen mit 
verschiedenen Kodiergeschwindigkeiten zur Anwendung. Auf Grundlage derer können 
Turbulenzintensitäten und Geschwindigkeiten berechnet werden. Kohärenter Blutfluss resultiert in 
einer Signalphase, die linear von der Geschwindigkeit abhängt. Im Gegensatz dazu führt Turbulenz 
oder Geschwindigkeitsfluktuation zu einer Abnahme der Signalmagnitude. In Verbindung mit 
statistischen Methoden ergeben diese Effekte eine a-posteriori Wahrscheinlichkeit der mittleren 
Geschwindigkeit und der Turbulenzintensität. Durch Maximierung dieser Wahrscheinlichkeit können 
Schätzungen dieser Parameter bestimmt werden.  

Das in dieser Arbeit implementierte Verfahren zeigt vielversprechende Ergebnisse bezüglich 
Genauigkeit im Vergleich zu konventionellen Methoden, insbesondere im Bereich kleiner Signal-zu-
Rausch Werte. Die Anwendbarkeit der entwickelten Technik wurde in-vitro als auch in-vivo in 
Patienten mit Klappenprothesen überprüft. Zukünftige Untersuchungen folgen, um die klinischen 
Nutzen unter Beweis zu stellen. 

 
Schlagwörter: Magnetresonanztomographie, Phasenkontrast-Geschwindigkeitsmessung,  
Turbulenzintensität, Bayes‘sche Statistik, beschleunigte Bildgebung  
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1 Introduction 
 

Cardiovascular diseases (CVD) are the leading cause of death in Western countries, 

responsible for more than 40% of all fatalities in Europe [1]. Many pathologies of the 

circulatory system are accompanied by altered blood flow. Therefore knowledge about the 

flow conditions inside the human body can lead to a better understanding and more 

accurate prediction and diagnosis of CVD. 

In today’s clinical routine, the assessment of blood flow velocities is usually performed 

using Doppler sonography [2]. It is a quick, non-invasive method, although its application is 

limited to regions with adequate acoustic windows, and three dimensional velocity 

measurements are very limited. Invasive methods include hot-film anemometry [3] and 

Doppler sonography using invasive ultrasound transceivers. Because of the higher risks and 

discomfort of invasive methods compared to the actual diagnostic benefits, their use is 

mainly limited to research and not feasible in clinical practice. 

Another non-invasive imaging modality for flow measurements is Magnetic Resonance 

Imaging (MRI). The idea behind Phase-Contrast (PC) velocity measurements was introduced 

in the 1950s [4]. In-vivo application started more than 20 years later [5]. Because of long 

scan times and the required post-processing, its use in cardiac imaging had been limited. 

Improvements in hardware in combination with new and faster acquisition techniques have 

led to an increased interest in using PC measurements for cardiovascular studies, resulting in 

a number of proposed applications for this technique [6]. 

Detailed quantification of blood flow can be used to assess cardiac output, diastolic 

function and the severity of valvular diseases. Dysfunctional heart valves can lead to 

abnormal flow patterns like regurgitation or jet-like behavior, and quantification of these 

abnormalities is essential in deciding about interventional measures. Other applications of 

velocity measurements include evaluation of congenital shunt lesions [6], where 

pathological flow between pulmonary and systemic circulation is evaluated, or diagnosis of 

aortic dissection, where flow patterns can be used to distinguish false and true lumen [7]. 

It has been suggested that disturbed flow and accompanying abnormal wall shear 

stresses are involved in the pathogenesis of atherosclerosis [8], giving an explanation for the 
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increased occurrence at specific locations like bifurcations or sharp bends. A tool which 

could provide detailed information about flow patterns would help to more accurately 

determine the risk resulting from atherosclerotic lesions for each patient individually. 

To assess the forces on the vessel walls, not only the velocity vector field of the flow can 

be considered, but high turbulence intensities in the vicinity of vessel walls can also be an 

indicator for pathological flow patterns. Increased turbulence not only results in altered wall 

shear stresses but also in higher stresses on platelets and erythrocytes, leading to a release 

of enzymes which play a key role in thrombus formation [9]. In physiological flow conditions 

turbulence rarely occurs, but valvular stenosis or artificial heart valves can change the flow 

severely [10]. Therefore turbulence assessment can be useful in optimizing the design of 

valve prosthetics. 

The number of methods to quantify turbulence in vivo is quite limited, including 

mentioned hot-film anemometry (invasive) and ultrasound (non-invasive). Another 

technique is Particle Image Velocimetry (PIV), but its use is restricted to in-vitro 

measurements [11]. A general description of the effects of turbulence on the MRI signal has 

been stated 20 years ago [12], but only recently an applicable method of in-vivo 

measurements has been proposed and implemented by Dyverfeldt et al [13]. 

The acquisition of velocity vector fields and turbulence maps (more specifically: Turbulent 

Kinetic Energy (TKE) maps) at the same time can be realized using the technique Dyverfeldt 

et al. proposed. However, in order to achieve maximum sensitivity of turbulence 

measurements, an encoding or aliasing velocity (VENC) inversely proportional to the 

expected turbulence intensity has to be used. Accordingly, the method requires an estimate 

of the amount of turbulence to expect, and its accuracy varies with the actual TKE values. 

Also a VENC not high enough can lead to ambiguous velocity measurements because of 

phase aliasing. 

For more accurate acquisition of the velocity vector field several improvements have 

been proposed, such as a variable encoding velocity over the heart cycle [14] and 

unwrapping of measurements with low VENC using scans with higher VENC as a reference 

[15] to achieve a higher Velocity-to-Noise Ratio (VNR). 

Xing et al [16] demonstrated the use of a Bayesian statistical method in combination with 

multiple encoding velocities for flow and diffusion NMR measurements, which enables a 

more accurate determination of velocities than using conventional Phase-Contrast (PC) 
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imaging. In this work this principle is developed further, and a framework for simultaneous 

acquisition of TKE and velocity information is presented. It will be shown that this approach 

can lead to more accurate information about both velocities and turbulence per unit scan 

time when compared to conventional methods. The technique will be demonstrated using 

simulated and in-vitro data as well as in-vivo results, examining the flow patterns in the 

heart and aorta of healthy volunteers as well as pathological cases. Two artificial aortic 

valves will be compared in-vitro, and in-vivo data from one patient with such a valve will be 

presented. 
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2 Methods and Fundamental Concepts 
 

This chapter gives a short introduction into the principles of Magnetic Resonance Imaging 

and should provide an overview of flow and turbulence measurements. Also the method of 

accelerated imaging used in this work is described, and the adapted Bayesian analysis for 

parameter estimation is illustrated in detail. 

2.1 Principles of MRI 

Magnetic Resonance Imaging (MRI) uses the inherent magnetic properties of atomic nuclei 

to extract functional and anatomical information and convert them into images. Several 

nuclei possess an angular momentum called spin. These nuclei interact with external 

magnetic fields, other nuclei and the electrons surrounding them. This chapter only offers a 

brief introduction to signal generation and image formation, a more detailed description can 

be found in i.e. [17] . 

2.1.1 Microscopic Mechanisms 

If nuclei with spin ½ are brought into a static external magnetic field B0, their z-component 

aligns either parallel or antiparallel with this field. Because the parallel state is energetically 

more favorable, transitions between the anti-parallel and parallel states are only possible via 

emission or absorption of some form of energy. Such transitions can be induced via a 

radiofrequency (RF) magnetic field at the specific resonance frequency (Larmor frequency 

ω0) of the nuclei. This frequency is linked to the angular momentum J and the resulting 

magnetic moment µ via the gyromagnetic ratio γ:  

       
 

 
   (eq. 1) 

In clinical use, mostly relevant are 1H-protons with a gyromagnetic ratio γ/2π of 42.58 

MHz/T, but for special applications nuclei like 19F or 31P can also be used. 

If macroscopic packets of spins are considered, classical laws of physics can be applied. 

The summed magnetic moment vectors of the nuclei in a voxel result in a net magnetization 

vector M. The torque acting on a magnetic moment µ in a magnetic field B is given by the 
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vector product µ x B, and consideration of the interactions of spins with their surrounding 

results in the Bloch equation (eq. 2): 

  

  
  (   )  

  

  
   

  

  
   

     

  
   (eq. 2) 

The tissue dependent terms T1 and T2 describe the longitudinal and transversal relaxation 

times, respectively. These result from spin-spin interactions (T2) or spin-lattice interactions 

(T1), and are the basis for different contrast mechanisms of various pulse sequences.  

The transversal component Mxy precessing around the z-axis induces a signal proportional 

to the magnitude of Mxy in the receiver coil, which is then recorded and processed. 

2.1.2 Spatial Encoding 

It is desirable to be able to exactly determine the spatial origin of the signal which is induced 

in a coil. This is possible using different magnetic fields added to the main magnetic field B0, 

called gradient fields or for short gradients. These gradient fields have the same direction as 

the B0 field and the magnetic flux varies linearly along the spatial axes (Fig. 2.1a). 

 

a        b  

Fig. 2.1: a) 2D Fourier Pulse Sequence used for spatial encoding, b) corresponding k-space. 

 

The first spatial dimension z is encoded using a “slice selection gradient” GS. This gradient 

linearly varies over the z-axis and is applied during the excitation of the nuclei via an RF 
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pulse. Because of the resulting different Larmor frequencies along that axis, a pulse with a 

certain bandwidth only excites a limited slab or slice. 

The second dimension, here y, is then resolved using a phase-encoding gradient GP. By 

applying this gradient after the excitation for the duration Ty, the spins precess with different 

frequencies and therefore accumulate a phase depending on their position y: 

 (    )    ∫   ( )
  

 

          (eq. 3) 

The gradient GM for the third dimension x is switched on during registration of the signal, 

causing a spatially varying frequency shift ω1 in one direction: 

  (    )       (eq. 4) 

 

The signal s at time t can then be expressed as a combination of frequency and phase: 

 ( )  ∬ (     )  (  (    )   (    ))     (eq. 5) 

with ρ being the proton density at position (x, y, z). 

Introducing two new variables,     ∫   ( )  
 

 
 and     ∫   ( )

  

 
  , eq. 5 becomes 

 (       )  ∬ (     )  (       )     (eq. 6) 

It can be seen, that the signals for a slice correspond to the 2D Fourier transform of the 

proton density. 

Using the two new variables, a new formalism called k-space can be introduced. The 

discretized signals acquired for every kx/ky step are recorded and stored in a matrix for all 

the slices (Fig. 2.1b), on which an inverse 2D DFT can be applied to recover the image (Fig. 

2.2). 

It can be seen that during every repetition of the pulse sequence, one line in k-space is 

acquired. Therefore the acquisition time mainly depends on repetition time TR and the 

number of ky steps, as well as on the number of slices. So any method targeting faster 

imaging will mainly target the phase- and slice-encoding directions, as will be discussed in 

section 2.4. 
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a                   b  

Fig. 2.2: a) Example of an acquired k-space (magnitude, logarithm taken) and b) corresponding 

magnitude image. 

2.1.3 Noise considerations 

A limiting factor in MRI is noise. Apart from artifacts originating from body motion, field 

inhomogenities or external RF fields, the most prominent source of noise is the measured 

object itself. Thermal agitation of charges in the object induce a noise voltage in the receiver 

coil. Accordingly the object may be represented by a resistance. The standard deviation of 

noise voltage induced in the receiver coil can be shown to be proportional to the square root 

of the equivalent object resistance, receiver bandwidth and temperature [18, 19]. This 

thermal noise with a Gaussian distribution adds to the signal in both real and imaginary 

channel. 

The principal measure of noise in MRI is the signal-to-noise-ratio SNR: 

    
 

 
 (eq. 7) 

where A is the amplitude of the signal, and ς is the standard deviation of the noise. Usually 

those two values are measured using the magnitude image, where the definition of SNR has 

to change slightly because the noise follows a Rayleigh-distribution with a variance ς²m in 

areas with only background signal [20]: 

    
 

√   
 

      

 
(eq. 8) 

If a Gaussian distribution is assumed, the calculation of standard deviation using just the 

square root of the variance will lead to an underestimation of noise power by up to 35%. 

2D-FFT 
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2.2 Flow Encoding 

 

With MRI, not only anatomical information can be acquired, but also functional imaging is 

possible. One example is the measurement of flow, where the movement of spins during 

acquisition can be quantified. The most prominent techniques utilize a spatially dependent 

gradient to induce a phase shift relative to the change in position.  

2.2.1 Phase Contrast Velocity Encoding 

As mentioned before, a spin in a spatially dependent gradient G accumulates a phase 

according to eq. 3: 

 ( )   ∫   ( ) ( )
 

 

   (eq. 9) 

Here the 1-dimensional case is considered, but it can easily be expanded to 3D using 

measurements for each direction. A Taylor series expansion of x(τ) results in [21] 

 ( )      ∑
 ( )

  

 

   

∫ ( )    

 

 

 (eq. 10) 

with x(n) being the n-th derivative of x with respect to time τ. Terminating the series after n=2 

and using the fact that x(1) equals the velocity v, as well as x(2) equals acceleration a, eq. 10 

yields 

 ( )       ∫ ( )  

 

 

   ∫ ( )   

 

 

  
 

 
∫ ( )    

 

 

 (eq. 11) 

The term ∫  ( )    
 

 
 is called the n-th gradient moment mn. It can be seen that for a flow 

encoding gradient G the optimal gradient area (= m0) is 0, because then stationary spins do 

not acquire any additional phase. An example would be a bipolar gradient with two lobes 

with equal area (see used pulse sequence in Fig. 2.3). 
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Fig. 2.3: Used Pulse Sequence for flow encoding with different kv steps. The different flow 

encoding gradients for three directions are displayed in color, with lines marking the different kv 

steps.  

 

Eq. 11 also shows that every imaging gradient results in a phase effect due to motion, 

leading to unwanted artifacts or signal misregistration. For this purpose, special flow 

compensating gradients have been developed [22]. For flow measurements, the phase 

induced by motion is desired. Every velocity measurement is also influenced by acceleration 

and other higher terms of motion, but their effect on the phase is small compared to that of 

linear motion. 

The term Φ0 is an arbitrary background phase, originating from field inhomogeneities. It is 

independent of the gradient and can be compensated by acquiring two measurements with 

different first gradient moment m1 and following phase subtraction. Such a reference image, 

for example with m1=0 can be acquired once and then used for all 3 directions. 

The resulting equation for the signal, with acceleration ignored, is given by 

 ( )     
 (       )     

 (      )  (eq. 12) 

Here a new formalism similar to k-space is introduced – kv=γm1, which will be used later on. 

An important parameter in phase contrast flow measurements is the aliasing velocity 

VENC, depending on the difference in first gradient moments |Δm1|: 
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 |   |
 

 

       
 (eq. 13) 

 A velocity of ±VENC results in a phase shift of ±π, making it the maximum resolvable 

velocity. The aliasing velocity has a large impact on the accuracy of the measurements, 

because the phase errors originating from Gaussian noise will always have a standard 

deviation ςph which is largely independent from the gradient strength. These phase errors 

will then be mapped to different velocities according to 

        (    )  
       

 
 (eq. 14) 

So higher VENCs will lead to higher standard deviations of the measured velocity, but VENCs 

which are set too low will result in phase wraps. 

To objectively compare the quality of velocity measurements, the velocity to noise ratio 

VNR is introduced: 

    
 

        
 (eq. 15) 

where V is the average velocity in an area of the image. 

 

2.2.2 kv-space and acquisition schemes 

For determination of the mean velocity in a voxel, a minimum of two measurements with 

different first gradient moments m1 is necessary. In kv-space notation, two points in the kv-

space have to be acquired. From this point on, this will be called 2-point phase contrast (PC). 

If the reference segment is not flow encoded (kv=0), it can be used for all three direction in 

the 3D case. Then only 4 steps result in a 3-dimensional velocity vector field. Again, the 

VENCs have to be chosen higher than every occurring velocity. Such a scan can be done in a 

relatively short time, but the resulting VNR very much depends on the chosen VENC, and 

varies throughout the heart cycle. 

If acquisition time is considered, Fourier Velocity Encoding (FVE) involving many kv 

encoding steps is clearly limited. Here a full kv-space is acquired, and Fourier transform not 

only gives us the mean velocity in a voxel, but also the velocity distribution. The velocity 

resolution is inversely proportional to the number of encoding steps N. With current 
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technology, a high number of kv steps would result in a prohibitively long scan time, 

especially in when encoding is performed in three dimensions. Consequently in-vivo 

measurements are not feasible, even when acceleration techniques are employed. 

A compromise between accuracy and scan time is a 3-point PC measurement, as 

suggested by Lee et al. [15]. Here three steps in kv-space are acquired, one reference 

segment, one with a relatively high kv (=VENClow) which results in an aliased image, and a 

third segment (high VENC) without phase wraps, which is consequently used to unwrap the 

aliased image according to 

                    (
          

        
* (eq. 16) 

where N.I. is the nearest integer-function, and Vlow and Vhigh are the measured velocities with 

a low VENC and a high VENC, respectively. The VNR of this method is determined by the 

lower aliasing velocity only, and should therefore be much higher than a normal, unaliased 

scan. Also VENChigh can be chosen quite high, making the parameter settings less prone to 

wrongly estimated velocities. 

Another method to increase the VNR of in-vivo flow measurements was proposed by 

Ringgaard [14]. Here a fast scan with low resolution determines the maximum velocity in 

every heart phase, and the VENC is adapted throughout the cardiac cycle. This method 

should be less time consuming than the 3-point PC measurement because only two points 

are acquired. However, a region of interest has to be defined manually in the prescan, 

requiring more user interaction. All the mentioned methods will be compared later on in 

Chapter 3. 

 

 

 

 

 

 

 

 



2 Methods and Fundamental Concepts 

 - 12 - 

2.3 Turbulence Quantification 

While laminar flow is quite well understood and described by analytical expressions, 

turbulence exhibits random behavior and so statistical methods are required to model non-

laminar flow. In the following the assumption is made that turbulence is an ergodic process 

which can be described by either averaging over space, time or an ensemble.  

2.3.1 Reynolds decomposition and stress tensor 

 Turbulent flow vi in an arbitrary direction i can be decomposed into a mean velocity Vi and 

velocity fluctuations vi
’. [23] 

          (eq. 17) 

 

The mean of the fluctuations is zero, but a standard deviation ςF can be defined: 

     √  
  ̅̅ ̅̅  (eq. 18) 

This standard deviation is a measure for turbulence intensity in one direction. To achieve a 

more general description, using the fluid density ρ the Reynolds stress tensor R can be 

defined as [23]: 

     
   

 ̅̅ ̅̅ ̅̅    (

  
  ̅̅ ̅̅   

   
 ̅̅ ̅̅ ̅̅   

   
 ̅̅ ̅̅ ̅̅

  
   

 ̅̅ ̅̅ ̅̅   
  ̅̅ ̅̅   

   
 ̅̅ ̅̅ ̅̅

  
   

 ̅̅ ̅̅ ̅̅   
   

 ̅̅ ̅̅ ̅̅   
  ̅̅ ̅̅

) (eq. 19) 

This tensor describes the average momentum flux and its first invariant is directly 

proportional to the turbulent kinetic energy TKE: 

    
 

 
 ∑  

  ̅̅ ̅̅
 

   

 (eq. 20) 

The unit of turbulent kinetic energy is J/m³. It is a direction-independent measure for the 

average kinetic energy in a volume due to velocity fluctuations. 
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2.3.2 Effects of turbulence on the signal 

In eq. 12 a homogenous velocity distribution throughout a voxel is assumed. Clearly, in case 

of turbulent flow or other effects like shear this assumption is not valid any more. If a flow 

encoding gradient is switched on, dephasing will occur, leading to signal attenuation. 

Gao and Gore derived an analytical expression for this decrease in signal magnitude, 

assuming a Gaussian velocity distribution inside a voxel [12]: 

     
         

   *
 
 
       

    
 (                 )+ (eq. 21) 

where τ is the duration of a gradient lobe, and T0 the characteristic time scale for turbulence, 

or in other words the time during which a fluid element changes its velocity. Gao and Gore 

also found solutions for two special cases, one being τ<<T0 and the other T0<<τ: 

for τ<<T0:           
            

   
  (eq. 22) 

for τ>>T0:           
            

     
 (eq. 23) 

The latter case is an expression similar to the signal attenuation originating from diffusion, 

using a square bipolar diffusion gradient: 

     
           

    
    (eq. 24) 

Gao and Gore state that T0 in the ascending human aorta is about 250 ms, and therefore the 

assumption τ<<T0 would be valid. This might be true for steady state flow in a pipe 

resembling the aorta, but given the oscillatory nature of human blood flow and the fact that 

flow is not fully developed in that anatomic region, this hypothesis has still to be verified. 

Given the fact that even with a T0 of 25 ms (ten times smaller than the estimated value by 

Gao and Gore) the assumption is still valid, it will be applied in this work. 

The different velocities occurring in a voxel can be described using the mean velocity V 

and the standard deviation of the velocity fluctuations ςF, which is also called Intravoxel 

(Spin) Velocity Standard Deviation or IVSD. The main focus in all further turbulence 

considerations lies on this value. Accordingly it will be referred to as ς instead of ςF 

hereafter. 
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Combining eqs. 12 and 22 then gives the final model for a signal depending on kv: 

 (  )     
 (   )       (      ) (eq. 25) 

 

2.4 Accelerated Imaging  

Undersampling of k-space in most cases leads to a degradation of SNR and to aliasing 

artifacts, depending on the type of undersampling. The main goal of a reduced acquisition of 

k-space is to shorten acquisition time. In Cartesian sampling the frequency encoding 

direction is fully sampled, whereas only parts of the phase encodes are acquired. 

Many methods have been developed to sample below the Nyquist rate and to repopulate 

the missing information in the image reconstruction step. For example, information can be 

gathered from multiple coils to unfold aliased data , either in k-space (e.g. GRAPPA [24]) or 

in image space (SENSE [25]).  

Another undersampling algorithm is k-t-BLAST (Broad-use Linear Acquisition Speed-up 

Technique) or k-t-SENSE [26]. In most cases when a time series of images is acquired, only 

limited parts of the field-of-view change and the images exhibit significant correlations in 

space and time. So it can be said that information is sparse in a suitable linear transform 

domain and therefore compressible. A recently proposed extension of k-t-BLAST is k-t-PCA, 

where the training data is subjected to Principal Component Analysis (PCA) to get temporal 

basis functions to constrain the reconstruction [27]. 

 

2.4.1 k-t PCA – Principles 

In more detail, the data is undersampled in ky and t direction (and kz in the 3D-case), to form 

a sheared grid. The center of the k-space is sampled fully to obtain a low-resolution training 

dataset (Fig. 2.4). The larger the training dataset, the smaller the net acceleration factor 

becomes.  
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Fig. 2.4: The k-t sampling pattern consist of a training-dataset a) and an undersampled dataset b). 

Those two sets can be acquired simultaneously (c) [27]. 

 

The undersampling leads to an aliasing pattern in x-f space, where every point is a linear 

combination of the corresponding points of the true object in x-f-space. Instead of trying to 

reconstruct these points directly, k-t PCA constrains the reconstruction by introducing basis 

functions (derived from the training images), where every temporal frequency is a linear 

combination of those basis functions [27] (Fig. 2.5). 

        

Fig. 2.5: A sheared sampling pattern (a) with an acceleration factor of four leading to a sheared 

point spread function in x-f space b). Images c) and d) show the true and the aliased object, as well as 

the composition of a point in the aliased image d). Also shown is an example for the principal 

components e), of which a linear combination forms a frequency profile of the true object [27]. 



2 Methods and Fundamental Concepts 

 - 16 - 

2.4.2 k-t PCA – Mathematical Formulation 

The training data in x-f space is rearranged in a nxny × nf matrix Ptrain, where nx and ny are the 

number of pixels in frequency and phase-encoding direction, respectively, and nf is the 

number of time frames. This matrix can be decomposed using PCA: 

               (eq. 26) 

The npc rows of B contain the spatially invariant basis functions, and Wtrain contains the 

weighting coefficients for the training dataset. 

For the true x-f data P, a similar combination is assumed: 

     (eq. 27) 

where the principal components B are taken from the training dataset, and W has to be 

found. The aliased data Palias for a given location x and frequency fm is given by [27] 

      (    )        (eq. 28) 

where for a 4-fold undersampled dataset 1 = [1 1 1 1],  

   [
  (    )   

   
    (    )

] (eq. 29) 

and 

   

[
 
 
 
 
  (  )

  (  )

  (  )

  (  )]
 
 
 
 

 (eq. 30) 

b(fm,i) denotes the fm,i-th column of B with fm,i being the temporal frequency of the i-th 

aliasing pixel, and w(xi) the row of W corresponding to the spatial location of the i-th aliasing 

pixel.  

For every spatial location x the resulting aliased image can be expressed by a combination 

of all frequencies, giving the signal equation for k-t PCA: 
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]       (eq. 31) 

This equation can now be solved to obtain wx, for example using a regularized least squares 

method. The details of this as well as the calculation of the regularization parameter can be 

found in [27]. 

If information about the coil sensitivities is available, it can easily be included in the 

calculations by replacing the vector 1 in above equations by the sensitivity matrix S. This 

matrix is the same as used for SENSE [25]. 

 

As recently suggested [28], reconstruction can be improved by defining spatial 

compartments in the data, and calculating compartment-specific temporal basis functions. 

All pixels in such a compartment should show similar dynamic behavior, e.g. in the aorta, 

and by “tailoring” the basis function to this behavior the reconstruction can be constrained 

to achieve more accurate results.  

 

2.5 Bayesian Analysis 

 

Conventional phase-contrast methods use two points to encode a single velocity vector 

component. Using Bayes’ theorem, it is possible to incorporate multiple measurements of 

velocity vector components, and hence it becomes possible to assign a certain probability to 

each parameter (in this case mean velocity V and the IVSD ς).  

2.5.1 Bayesian Parameter Estimation 

The basis for the following was taken from a paper by Bretthorst [29], which focused on 

the Bayes’ method for NMR spectroscopy. By maximizing the probabilities for the 

parameters θ one can determine the most probable solution given the measured data M 

and the model I (eq. 32): 

 ( |   )  
 ( | ) ( |   )

 ( | )
 (eq. 32) 
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The term P(θ|I) is the probability of the parameters without any measurements taken, 

only given the model I. The next term P(M|θ,I) is the probability that a particular set of data 

was measured, while the parameters and the model are given. This is also called the direct 

probability of the data [29]. The denominator-term P(M|I) is the marginal probability of the 

data, given only the model. Because there is no dependence on the parameters, this is just a 

normalization term and can be left out in the computation. 

Following eq. 25, the signal model is defined as 

 (  )     
 (   )       (      ) (eq. 33) 

This notation can be split up in a real and an imaginary part sR and sI, and assuming additive 

noise e(kv) our measured data can be expressed as 

  (  )    (  )   (  )   (eq. 34) 

and 

  (  )    (  )   (  )  

 

(eq. 35) 

Note that the noise being a function of kv here only implies that with every measurement a 

new realization of noise is acquired. Also for simplification only the velocity and ISVD in the 

direction of the gradient are examined, so this problem becomes 1D. To obtain a full 3D-

dataset three orthonormal directions are acquired. 

 

The additional arbitrary phase ϕ can also be expressed as amplitudes A1 and A2, resulting in: 

  (  )  [     (   )        (   )] 
 (   )      (eq. 36) 

and 

  (  )  [     (   )        (   )] 
 (   )      

 

(eq. 37) 

Those amplitudes now also have to be expressed using the posterior probability formulation 

of eq. 32: 

 (   |   )  
 (   | ) ( |     )

 ( | )
 (eq. 38) 
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Because the amplitudes A are not exactly known, they can be eliminated by integrating over 

the probabilities of all possible amplitudes: 

 ( |   )  ∫ (   | ) ( |     )   (eq. 39) 

But first, the two probability terms have to be evaluated. The direct probability P(M|θ,A,I) 

reflects the probability of noise. In this term everything that is known about the noise can be 

incorporated by choosing a prior. For example, noise carries finite total power. The simplest 

prior that accommodates this fact is a Gaussian prior: 

 ( |    )  (    
 ) (

 
 
) 

 ∑
 (    )

 

   
 

 
   

 
(eq. 40) 

where N is the number of (noise) samples e. A Gaussian prior does not implicate that the 

noise is Gaussian as well. However, as long as no additional information regarding the noise 

is given, it complies with the maximum entropy criterion [29]. The variance of the noise ςn
2 is 

assumed to be known for now and will later be eliminated. 

 

Now using eqs. 34 and 35 a direct probability can be assigned to the data M: 

 ( |          )  (    
 )   

 ∑
[  (    )   (    )]

 
 [  (    )   (    )]

 

   
 

 
   

 
(eq. 41) 

The number of samples N here is the number of acquired steps in kv-space. An assumption 

made here is that the noise in the real and imaginary part is independent, and 

therefore   ( |          )   (  |       ) (  |       ) . Eq. 41 then can be 

reformulated to be expressed using A and θ: 

 ( |        )  (    
 )   

 
 

   
 
 (eq. 42) 

The expression for Q is rather lengthy, but simply substitutes sR and sI in eq. 41 by the 

expressions in eqs. 36 and 37.  

 

The second term P(θ,A|I) is independent of any measurements and incorporates given  

knowledge about the parameters. The chosen prior should not be too rigid and only imposes 

known bounds such as          or      , where X is some defined threshold for 
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the maximum intra-voxel standard deviation to be expected (i.e. 2 m/s or VENCmax). Within 

these bounds, a uniform prior is assigned, and eq. 38 can be stated as: 

 (   |   )  {
(    

 )   
 

 

   
 
                             

 
                                                                   

 (eq. 43) 

In further descriptions, this explicit distinction will not be made and for obvious reasons only 

the first case will be discussed. 

 

The next step is the elimination of amplitudes A through integration according to eq. 39. This 

can be done analytically through a change of variables. For further information, the 

interested reader is referred to [29]. 

The resulting expression reads 

 ( |      )    
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 (eq. 44) 

with 

   ∑        
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(eq. 45) 

The term   ̅̅ ̅ is the mean square projection of the data onto the model [29], and defined as 

  ̅̅ ̅  
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 ) (eq. 46) 

with 

   √
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(eq. 47) 
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As can be seen, in eq. 44 the noise variance ςn is still assumed to be known, which in most 

cases is not true. An estimate of the noise variance can be obtained by acquiring noise 

samples. To eliminate ςn via integration again a prior is assigned. An uninformative prior for 

the standard deviation of a Gaussian distribution is the Jeffreys’ prior 1/ς [30]. 

Multiplying eq. 44 with 1/ςn and integrating gives the final result 

 ( |   )  
 

√    

[  
   ̅̅ ̅

∑ *  (    )
 
   (    )

 
+ 

   

]

   

 (eq. 48) 

This 2D-posterior probability can now be maximized to find the best estimates for the 

velocity and ISVD. An example is shown in Fig. 2.6. 

 

Fig. 2.6: Example of a 2D-posterior probability plot of a noisy data sample (TKE = 6.7 J/m³), with a 

maximum at V=22 cm/s and ς=6.32 cm/s. Note that a scaling factor for the probabilities is missing, so 

it is only a relative scale and P>1 becomes possible. 
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2.5.2 Estimation accuracy 

Using Bayes’ method, not only the most likely parameters can be found, but also the 

accuracy of the estimation can be assessed, and a standard deviation given.  

Bretthorst derived an expression for the standard deviation for an arbitrary model [29], 

and adapted to the signal model at hand, the variances of the parameters ςθ1² and ςθ2² are 

given by 

    〈  
 〉 (

   
 

  
 

   
 

  
) (eq. 49) 

with ujk being the k-th component of the j-th eigenvector of the matrix bjk, and dj being its 

corresponding eigenvalue. bjk is defined as 

     
    ̅̅ ̅

      
|
 ̂

 (eq. 50) 

with  ̂ being the estimation for the parameters. This matrix cannot be evaluated analytically, 

so numerical methods have to be applied. 

The term 〈  
 〉 in eq. 49 denotes the estimated noise variance, and is simply all measured 

data which cannot be explained by the model: 

〈  
 〉  

∑ *  (    )
 
   (    )

 
+ 

       ̅̅ ̅

    
 (eq. 51) 

The inclusion of the estimated noise variance in the calculation of the parameter’s standard 

deviation implies that poor data will lead to less accurate measurements as expected. 

 

2.5.3 Including information about the noise 

If a noise sample Mn is acquired, this information can also be included in the calculations. 

The starting point is P(θ|ςn,M,I) of eq. 44, where the amplitudes have been eliminated and a 

prior for the noise has to be chosen. If some information about the noise is available, this 

can be incorporated as well [31]: 

 ( |      )  
 

√    

∫ (  | ) (  |    ) ( |      )     (eq. 52) 
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Here for P(ςn|I), the prior probability of the standard deviation of the noise is again Jeffreys’ 

prior 1/ς. The second term is the direct probability of the noise sample and it was already 

given in eq. 40. This time it will only be adapted for the measured noise sample  

Mn={mnoise,1, …, mnoise,Nn}: 

 (  |    )  (    
 ) (

  
 

) 
 ∑

|        |
 

   
 

  
    

(eq. 53) 

Evaluating eq. 52 gives [31] 
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 (eq. 54) 

Accordingly, the noise samples do not change the probabilities of certain values for the 

parameters θ, but offer a scale against which small effects in the data can be compared to. 

Also the problem of the term in square brackets (Student-t distribution) becoming singular 

can be avoided. Apart from the problems of acquiring a meaningful noise sample, the little 

advantage of such a sample for the given problem of finding the most probable parameters 

resulted in implementing only eq. 48. 

 

2.6 Measurements and Computation 

 

All scans were acquired on a 3T Philips Achieva System (Philips Healthcare, Best, The 

Netherlands) with a 6 channel cardiac coil array. The voxel sizes used are mentioned with 

the corresponding results in chapter 3.  

In vivo measurements were performed using ECG-triggering and navigator-based gating 

with 8-fold acceleration using k-t PCA, leading to scan times of approx. 7-12 minutes 

(excluding navigator efficiency), depending on the heart rate of the volunteer. Arrhythmia 

rejection was enabled for all measurements. The maximum VENC was set to 200 cm/s for 

the volunteers, and 400 cm/s for the patients. Written informed consent was obtained from 

all volunteers and patients. 

All computations and visualization were performed using Matlab (The Mathworks Inc., 

Natick MA, USA) and GTFlow (GyroTools Ltd, Switzerland). 
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3 Results 
 

In this chapter the results are presented, at first those based on simulated data, then the in-

vitro data using a flow phantom and two models of artificial heart valves and finally in-vivo 

measurements of both physiological and pathological cases. There is no strict distinction 

made between results and discussion. 

 

3.1 In-silica 

The first part of this work consists of simulated results using a Computational Fluid Dynamics 

(CFD) dataset of a stenotic U-bend (Fig. 3.1) which provided the 3-dimensional velocity 

vector field as well as values for the turbulent kinetic energy (TKE). 

a      b  

Fig. 3.1: CFD data of a stenotic U-bend, middle slice, a) velocities in y-direction (m/s), b) TKE-

values in J/m³. 

 

3.1.1 Velocity encoding 

The higher the number of kv steps used (number of segments), the more information is 

available for the Bayesian parameter estimation, and the VNR increases. But with every 

additional segment the scan time increases as well and accordingly the maximum number is 
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limited due to practical considerations. A reasonable number of velocity encodings proved to 

be three steps in every direction. Consequently a total of 10 segments (3*3 + 1 reference 

segment) are acquired with a scan time of around 8 min excluding navigator efficiency. 

There is one condition for the choice of kv values: one of the segments in each direction 

has to have a low kv value, meaning that the corresponding VENC is higher than any 

occurring velocity to avoid phase wraps. If this condition is met, the other encoding 

strengths can be chosen in a way that the VENC is lower than Vmax – which is 

recommendable to achieve a high VNR – and the resulting phase wraps will be resolved by 

the algorithm. 

To test how to choose the remaining kv steps, the CFD data was run using different 

combinations of segments. The results can be found in Table 3.1. 

 

 TKE |Vxyz| 

Gradient  
First Moment 

RMSE (cm/s) 
Median Error  

in % 
RMSE (cm/s) 

Median Error  
in % 

SNR 15 

1, 2 22,51 91,25 3,19 7,52 

1, 6 3,93 13,20 1,29 2,89 

1, 8 15,36 11,33 1,37 2,18 

1, 3, 5 4,08 16,64 1,51 3,56 

1, 3, 7 3,30 11,31 1,19 2,60 

1, 4, 8 3,01 9,92 1,04 2,25 

1, 7, 8 7,00 8,35 1,01 1,90 

1, 3, 5, 8 2,65 9,24 1,02 2,26 

1, 2, 4, 6, 8 2,34 8,18 0,99 2,17 

1-8  1,89 6,84 0,93 2,04 

SNR 10 

1, 3, 5 6,11 24,26 2,25 5,32 

1, 4, 8 4,67 15,06 1,59 3,41 

1, 7, 8 14,62 13,22 1,91 2,85 

SNR 5 

1, 6 47,68 41,61 19,27 10,06 

1, 3, 5 19,85 50,46 4,59 10,54 

1, 4, 8 27,59 33,10 11,35 6,97 

Table 3.1: Comparison of calculation accuracy using a selection of different gradient first 

moments at different noise levels. A gradient strength of i equals VENC = 200/i cm/s, RMSTKE was 

24.3 J/m³, RMSVall = 31.96 cm/s. The best values for each combination of 3 segments are written in 

bold. 
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One error metric used was the root mean square error RMSE, which is defined as  

     √∑ (              )
  

   

 
 (eq. 1) 

where n is the number of pixel, and xcalc and xact are calculated and true values, respectively. 

The values alone are not very meaningful except for relative comparison, although they can 

be set in relation to the RMS value of the considered area to get an RMSE in percent. 

The other metric used was the median percentage error, which is computed by 

expressing the error as a percentage for every pixel, and then taking the median. The 

median was used, because in pixels with very low values the error in percent is very large 

and would distort the result. For the TKE calculations, only the post-stenotic part of the  

U-bend was considered. 

 

3.1.2 Accuracy at different noise levels 

Another point to consider is the behavior of the algorithm at different noise levels. Here a 

combination of three encoding segments per direction was used, with VENCs of 200, 50 and 

25 cm/s (so gradient first moments of 1, 4 and 8 using the notation of Table 3.1). 

 

Fig. 3.2: Root Mean Square Error (RMSE) of different techniques to compute the velocity 

amplitude |Vxyz|. 
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Fig. 3.3: Median error in % of different techniques to compute the velocity amplitude |Vxyz|. 

 

An SNR regime of 1 to 50 was considered, and the results can be found in Fig. 3.2 and Fig. 

3.3. The results from the Bayesian technique were also compared to standard 2-point phase 

contrast measurements as well as to the 3-point technique described by Lee et al [15]. To 

compensate for the different scan times, the 2-point results were divided by √  and the 3-

point data by √   , assuming that N averages result in a √  reduction of noise. 

 

Fig. 3.4: Comparison of velocities Vy (in m/s) using a) conventional 2-point PC measurement, b) 3-

point PC, and c) Bayesian Analysis. SNR 5, voxel size 1 mm isotropic. The 2- and 3-point 

measurements are taken without any averages, so they would have a shorter scan time than the 4-

point Bayes calculation (factors 2 and 1.5, respectively). 
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3.1.3 Pulsatile Flow 

The performance of the algorithm proposed cannot be fully analyzed using static flow. 

During a heartbeat, a wide range of velocities occur and the method should provide accurate 

results in any flow condition. To simulate pulsatile flow, a waveform similar to the actual 

conditions in the ascending aorta was applied to the CFD data. 

The Bayesian approach was again compared to the 3-point PC measurement, and also to a 

technique proposed by Ringgaard [14] (see chapter 2), which is a conventional 2-point PC 

measurement with varying VENC throughout the heart cycle. In Fig. 3.5 a comparison of the 

methods can be seen, where an average of the velocities within a ROI was taken. The SNR 

was set to 10, and shorter scans like the 2-point PC were averaged to achieve comparable 

scan times. 

 

Fig. 3.5: Comparison of the averaged velocities throughout a heart cycle, measured using different 

techniques. 

 

All the methods showed a good correlation with the original CFD data, except for the 3-point 

PC which underestimated the velocities to some extent. 

To get a better picture of the accuracy of the different techniques, the VNR was calculated 

for every time point and the results can be found in Fig. 3.6. Again, the Bayes approach 

performed best, but the 2-point PC method with variable VENC showed higher VNR than the 

3-point method. 
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Fig. 3.6: VNR of different velocity reconstruction techniques during the heart cycle. 

 

3.1.4 Discussion of the in-silica results 

As can be seen in Table 3.1, the accuracy of the calculation does not depend much on the 

individual gradient first moments as long as kv space is covered uniformly. If all steps are 

clustered, the error increases. If only two segments per direction are used it is advisable to 

set the first to a non-aliasing VENC, and the other one to a VENC about 1/4 to 1/6 of the 

higher encoding velocity, depending on the expected SNR. 

In general it can be said that very high first moments do not contribute to a higher 

accuracy, especially if turbulence is present. This is related to signal loss due to dephasing at 

high first moments. Simulations with low SNR show that this effect becomes more 

prominent with a higher noise level. The median error will be reduced, but the mean 

squared error is increased. Consequently, there will be a few pixels where the computed 

velocity deviates significantly from the CFD data. 

The SNR regime of 5-15 corresponds to values expected for typical in-vivo measurements 

depending on the acceleration factor used. As can be seen in chapter 3.1.2, this corresponds 

to noise levels where the probabilistic approach starts to outperform the 3-point PC 

approach. At higher SNR the fact that only the highest first moment is considered proves to 

be a slight advantage, so the median error (Fig. 3.3) is lower with 3-point PC. In terms of 
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RMSE (Fig. 3.2) the Bayesian analysis performs better at all SNRs. The conventional 2-point 

PC measurement cannot compete with the other two methods at any reasonable SNR, but it 

has a lower error at a very low signal-to-noise ratio of 3. This is also the breakpoint for the 

multi-point methods. The large difference between median and mean values can be 

explained by looking at the computed velocities more closely. If the noise is too high, correct 

unwrapping is no longer possible in some pixels, which leads to large deviations in these 

points. This manifests in salt-and-pepper noise (Fig. 3.4). 

It should also be pointed out that the kv values were chosen to perform well with all SNRs. 

If the SNR is approximately known beforehand, a smaller error can be achieved. For 

example, using VENCs 200, 28.5 and 25 (1, 7, 8) in combination with an SNR of 30 or better, 

also the median error is lower than using 3-point PC measurements. 

The erroneous results at an SNR of 3 can be addressed by increasing the number of kv 

steps. This is comparable to an increase in SNR by averaging, although different kv points 

should provide additional information leading to more accurate results. Using 5 kv steps at 

SNR 3 results in an RMSE of 14.5 cm/s, and a median error of 11.5%.  

 

The results of the pulsatile waveform differ slightly from the static approach. Fig. 3.5 

shows a very good agreement between all the results despite the low SNR. But this is 

misleading – assuming Gaussian noise, the errors would cancel out. The underestimation of 

the 3-point approach can be explained by the salt-and-pepper noise described earlier. The 

same noise also strongly influences the standard deviation of the velocity error, leading to a 

very poor VNR throughout the heart cycle. This also shows that simple averaging of two 3-

point PC scans would not lead to a drastic improvement, because of the spike-like 

appearance of falsely resolved phase wraps. 

Fig. 3.5 is also a good example for the difficulties, which can arise from using VNR as a 

quality measure. To compare individual methods, data with similar mean velocities have to 

be used, and as the mean velocity approaches zero like at time point 11, VNR differences 

become too small to be resolved accurately.  
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3.2 In-vitro 

 

This chapter shows the feasibility of the presented technique to assess different flow 

scenarios. Two different artificial heart valves are investigated and results regarding image 

degradation using accelerated imaging are presented. 

3.2.1 Artificial Heart Valves 

The two devices investigated were a Saint Jude Medical (SJM) mechanical aortic valve (Saint 

Jude Medical, Saint Paul, MN), and an Edwards Sapien transcatheter heart valve (Edwards 

Lifesciences Corporation, Irvine, CA) which is a ballon-expandable, trifleaflet bovine valve 

(Fig. 3.7). It is implanted using a catheter to access the stenotic aortic valve through one of 

the larger arteries, a procedure termed “Transcatheter Aortic Valve Implantation” (TAVI). 

Both devices were placed in the same custom build flow phantom providing pulsatile flow. 

 

                      

Fig. 3.7: Images of a) the Saint Jude Medical aortic valve and b) the Edwards Sapien transcatheter 

heart valve (images courtesy of www.sjm.com and www.edwards.com). 

 

An overview of the flow conditions during peak flow can be seen in Fig. 3.8, and a more 

detailed map of turbulence and velocities in slices in the direction of flow can be found in 

Fig. 3.9 and Fig. 3.10 for the Edwards valve and the SJM mechanical valve, respectively. Fig. 

3.11 shows the middle slice along the phantom during peak flow.  

The data was acquired without undersampling and eight steps in kv space were used in 

each direction to achieve maximum accuracy. 

a        b 

http://www.sjm.com/
http://www.edwards.com/
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Fig. 3.8: Isosurface rendering of TKE and streamlines in the Edwards valve (a) and the SJM valve 

(b). The values of the isosurfaces were set to 50 J/m³ (red), 100 J/m³ (orange) and 125 J/m³ (yellow). 

 

 

Fig. 3.9: Turbulence in J/m³ (a) and velocities in m/s (b) for the Edwards valve during peak flow. 

The valve is located approximately at position x = 80, and flow is directed in negative x-direction. 
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Fig. 3.10: Turbulence in J/m³ (a) and velocities in m/s (b) for the SJM mechanical valve during peak 

flow. The valve is located approximately at position x = 55, and flow is directed in negative x-

direction. 
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Fig. 3.11: Velocity and turbulence profile along the flow axis of the SJM bileaflet valve (a, c) and 

the Edwards trileaflet valve (b, d). Units are m/s and J/m³. Please note the different scaling of images 

a, c vs. b and d. 

 

3.2.2 k-t PCA 

To assess the effects of undersampling on measurement accuracy, different acceleration 

factors were employed and the results compared. The flow conditions using the SJM 

mechanical valve were fully sampled as a reference, using eight kv steps in every direction. 

For the reconstruction of the different acceleration factors three steps were used. In 

addition, for the 16-fold undersampled measurement (termed kt16 from now on) a 

reconstruction employing 5 segments was performed.  

In Fig. 3.12 the velocities throughout the simulated heart cycle in a single voxel can be 

seen. It was located 1.5 cm upstream of the center of the valve. There is retrograde flow 

starting at time point 20, leading to a closure of the valves at time point 22. The sharp peak 

at the end results from the formation of a jet, when the fluid is pressed through the gap 

between the leaflets. If the mean of that area were taken, the correspondence between the 

curves would have been even better. 

It was previously reported (i.e. [32]) that k-t BLAST and k-t SENSE lead to an 

underestimation of peak velocities because of temporal low-pass effects. These findings 

could not be replicated using k-t PCA. 
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Fig. 3.12: Time course of the velocity in one voxel, located 1.5 cm upstream of the valve center. 

Jet formation during retrograde flow can be seen at time point 24. 

 

The VNR throughout the heart cycle (Fig. 3.13) in a region with mostly laminar flow is 

comparable between undersampling factor of 8 (kt8), using three points in kv-space and 16 

(kt16) with five points. There is a decrease in VNR using the same amount of kv steps and for 

higher acceleration factors, as expected. 

 

Fig. 3.13: VNR in a ROI in front of the valve, where flow is mostly laminar. Different acceleration 

factors are compared for every time step. 
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For the turbulent flow downstream of the valve the VNR is diminished by a factor of 

approximately 4. In Fig. 3.14 the root mean square error (RMSE) in that volume is displayed. 

The relative error is the largest when high turbulence is present (time points 9-10), partly 

resulting from decrease in signal magnitude and therefore higher phase errors at high kv 

values. 

The relative error for the TKE is about two times the RMSE for the velocities. 

 

 

Fig. 3.14: Root Mean Square Error of the measured velocities for different acceleration factors in a 

volume downstream of the valve. The reference RMS value for the volume is also displayed (dotted 

line). 

3.2.3 Discussion of the in-vitro results 

The comparison of the two artificial aortic valves clearly shows differences in the flow 

patterns downstream of the valve. In the isosurface renderings (Fig. 3.8) only the Edwards 

Sapiens valve shows TKE values above 100 J/m³, and also in the subsequent images higher 

peak velocities and turbulence values are observed. 

Turbulence mostly occurs where the jet breaks down. Accordingly, the more abrupt the 

transition between areas of high and low velocities the higher the TKE. Given that the 

trileaflet valve emits only one jet with small diameter, whereas the bileaflet mechanical 

valve forms two broader jets, the results seem plausible. Also Kvitting et al [33] found similar 

relations of mechanical and xenographic valves. Because of the changes in flow direction 
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downstream of the mechanical valve – the flow is directed towards the vessel walls – the 

behavior in-vivo can be different. It is possible that the curvature of the aorta can lead to 

one jet being directed towards the vessel wall, leading to abnormal wall shear stresses. 

Another point in the assessment of artificial heart valves is the amount of regurgitation. 

Because of insufficient closing, blood is able to leak from the aorta into the heart, leading to 

a decreased efficiency of every heartbeat. Both valves showed some degree of regurgitation, 

but because of signal loss the exact amount was not quantifiable. However, higher amounts 

of turbulence during retrograde flow of the SJM mechanical valve could be observed, most 

probably resulting from small gaps between the leaflets.  

 

For laminar flow, the accelerated acquisition barely affects the accuracy of the 

measurements. Also no underestimation of peak flow velocity was detected using k-t PCA. 

The deviations at time point 1 in Fig. 3.12 are possibly a result of the reconstruction of the 

undersampled images, because the framework pads the image dimensions during 

processing, which can lead to errors at the first and last time point.  

The time course of the flow also illustrates one major drawback of prospective triggering 

– the last part of the cardiac cycle is not imaged, making it impossible to determine how long 

the diastolic retrograde flow actually lasts. In this case, most of the cycle should have been 

imaged, because of the fixed heart rate of the phantom the percentage measured could be 

maximized. 

Fig. 3.13 and Fig. 3.14 indicate that image quality decrease at higher acceleration factors 

is still acceptable, and that the lower SNR can be compensated by acquiring additional points 

in kv-space. The ideal choice depends on the main focus of the measurement. If more points 

are acquired at a higher acceleration factor, the accuracy of the TKE results increases, but 

the salt-and-pepper noise in velocity measurements increases as well.  The factors stated 

here are nominal values, the effective values depend on the amount of training data 

acquired. Nominal 8-fold undersampling (kt8) leads to an effective acceleration of 6.6, and 

kt16 results in 11.3-fold acceleration. In vivo these values would be higher, because of the 

form of the phantom the number of points acquired in phase encoding direction is lower 

than in typical in-vivo scans. In terms of total scan time, the 16-fold undersampled 

measurements with 5 points in kv-space could be acquired quicker than using 8-fold 

undersampling, but would still lead to more accurate results. 
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3.3 In-vivo 

 

For the in-vivo data six healthy volunteers and two patients were scanned. Patient 1 had a 

severe aortic valve stenosis, patient 2 had a TAVI valve implanted two years before the scan. 

Two scans were performed, including the left ventricular outflow tract (LVOT) and the aortic 

arch. 

 

3.3.1 Physiological cases 

In the healthy volunteers flow was generally laminar with only little turbulence measured. 

The peak TKE values during the heart cycle were around 80-250 J/m³ depending on the 

volunteer. Example images of the left ventricular outflow tract (LVOT) during the ejection 

phase and the filling phase can be seen in Fig. 3.15. The vertical view of the LVOT of another 

volunteer can be found in Fig. 3.16, but only for the ejection phase as this view does not 

depict the filling of the left ventricle. Note that the underlying magnitude images result from 

the same scan making it possible to estimate SNR. 

 

 

    

Fig. 3.15: Velocities and TKE in the LVOT of a healthy volunteer during the ejection phase (a, b) 

and during the filling phase (c, d) of the heart. Units are in m/s for the velocities and J/m³ for TKE. 

 

 

a  b  c  d 
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Fig. 3.16: The vertical LVOT of another healthy volunteer during systole, again depicting velocities 

(a) and turbulence (b). Possible shear at the vessel walls is interpreted as turbulence by the 

algorithm. 

 

3.3.2 Pathological cases 

Two pathological cases were studied in this work, patient 1 suffered from severe stenosis of 

the aortic valve, and patient 2 had a TAVI valve implanted two years prior to the scan. The 

valve used was not the Edwards Sapien valve tested in-vitro, but a similar trileaflet xenovalve 

(Medtronic CoreValve, Medtronic Inc., Minneapolis, MN). 

In Fig. 3.17 the left ventricular outflow tract (LVOT) of patient 1 is shown during the ejection 

phase, and the TKE and velocities are plotted. Fig. 3.18 shows a similar view for patient 2 

(slightly different angle) where the position of the valve is being clearly visible because of 

signal loss. 

 

a   b  



3 Results 

 - 40 - 

a              b   

Fig. 3.17: Velocities (a) and TKE (b) in a patient with a stenotic aortic valve. Only a small part of the 

aorta lies in the imaged plane. The jet is directed towards the vessel wall.  

 

 

a                 b  

Fig. 3.18: LVOT of a patient with TAVI valve. The valve is clearly visible because of signal loss, and 

the results from that area were masked. The jet visible does not end abruptly but exits the plane. 
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To get a better picture of the flow patterns in the aorta, isosurface renderings of the aortic 

arch were prepared and can be found in Fig. 3.19 for patient 1, Fig. 3.20 for patient 2 with 

the TAVI valve and for a healthy volunteer in Fig. 3.21. Isovalues were set at 262.5, 500 and 

1000 J/m³. The streamlines also show helical flow in both patients. 

 

 

 

 

Fig. 3.19: Isosurface rendering of the aortic arch of a patient with stenotic aortic valve. 

 

 

m/s      J/m³ 
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Fig. 3.20: Isosurface rendering of the aortic arch of a patient with artificial aortic valve. 

 

 

Fig. 3.21: Isosurface rendering of the aortic arch of a healthy volunteer. TKE values are smaller 

than 250 J/m³. 

m/s      J/m³ 

m/s      J/m³ 
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3.3.3 Particle Tracking 

With in-vivo data, validation and comparison are more difficult than in-vitro as the true 

velocities are not known. No other imaging modality than MRI is able to provide a 3D 

velocity vector field. Using Doppler sonography, only special features like maximum velocity, 

or amount of flow can be compared. 

A possibility to compare different datasets is particle tracking. Two regions of interest are 

selected, for example mitral and aortic valve, and pathlines are created. The percentage of 

particles reaching the second ROI (in terms of originating particles from the first) is noted 

and can be used as a relative measure of accuracy. Depending on the structure, different 

percentages can be expected – for a closed pipe or vessel it would be around 100%, for the 

heart 50-70% according to the physiological ejection fraction. 

An example can be seen in Fig. 3.22, where the blue circle is the border of the mitral 

valve, and the red circle corresponds to the aortic valve. 

a      b  

Fig. 3.22: Particle Tracking from a) the mitral valve during filling to b) the aortic valve at the end of 

systole. Note that the two ROIs were selected at different time points. The spatial relation not only 

results from the anatomy but also from the movement of the heart. 
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The results of two volunteers can be found in Table 3.2. These two were deliberately 

chosen to show the strongly varying absolute results between subjects, whereas the relative 

values of the individual techniques stay the same.  

 2-point PC 3-point PC Bayes 

Volunteer 1 42.3 % 59.7 % 62.9 % 

Volunteer 2 16.7 % 41.9 % 45.3 % 

Table 3.2: Particle tracking results of two volunteers, comparing different velocity reconstruction 

techniques. 

 

3.3.4 Discussion of the in-vivo results 

The first challenge when trying to image flow up- and downstream of aortic valves arises 

from the lack of a standardized 2D view which depicts the ventricle as well as larger parts of 

the aorta. For the LVOT view used in this thesis, the aorta will be cut angulated downstream 

of the aortic valve. That is an issue especially when assessing post-valve turbulence, because 

the shear at the vessel wall will lead to an increase of the TKE values, and depending on the 

angle between plane and vessel wall the exact borders of the aorta cannot be detected. 

Distinction between turbulence and shear at the vessel walls is not possible with the 

current algorithm. The detected “turbulence” at the vessel walls in Fig. 3.15 and Fig. 3.16 

most probably results from shear effects leading to a high number of occurring velocities in a 

voxel. The relation of the thickness δ of the boundary layer to the diameter L and the 

Womersley number NW is given by the equation δ = L/NW. Reported Womersley numbers for 

the ascending aorta range from 10 to 15 [34] leading to a boundary layer thickness of 2-3 

mm. This corresponds to 1-1.5 voxels in our measurements. In 2D images the location of the 

vessel wall outside the imaging plane has to be known to distinguish between turbulence 

and shear. If additional points in kv space are acquired, conclusions about the distribution of 

velocities in a voxel could be made. This approach is based on the model for a signal 

proposed by Dyverfeldt et al. [13], and will be subject to further investigations. 

The comparison of the two patient cases clearly shows the benefits and drawbacks of 

artificial aortic valves. If conditions like cardiac output and geometry in patient 1 would be 

comparable to those in patient 2, a valve prosthesis would result in a significant reduction of 
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TKE and peak velocity. But still, an artificial valve cannot restore physiological flow 

conditions and the isosurface renderings show the large differences in flow pattern between 

patients and healthy volunteers. 

The challenges in the measurements of pathological flow originate from either artifacts 

induced by the valve itself, or the high signal loss in very turbulent flows. Patient 1 also had a 

very distinctly curved aorta, making it hard to plan the imaging plane. Also the inter-subject 

variance of signal and SNR is quite large and hence a universally valid statement about the 

accuracy of the measurements is not possible. Another factor is the voxel size of 2 mm 

isotropic, which only allows a general assessment of the level of turbulence. If more 

information about the forces at the vessel walls is needed, the resolution has to improve as 

well. 

 

Like the in-vitro results, particle tracking showed a higher performance of the Bayesian 

analysis than conventional methods in all volunteers. As can be seen in Table 3.2, 3-point PC 

encoding performed almost as well as the Bayesian method, and conventional 2-point PC is 

far behind. The scan times of the Bayesian approach and the 3-point PC are the same, as 

only 2 segments were used for this calculation. The 2-point PC scan would be about 40% 

faster though.  

As a measure of quality, particle tracking has to be used with care, because of the high 

inter-operator variability. Especially in the heart it is difficult to determine the exact location 

of the valves, and parameters like the starting time point can severely affect the result. 

Therefore the method can be only used to compare different methods using the exact same 

data, where the parameters do not need adjustment. Another point to consider is the use of 

prospective triggering, where inevitable the late diastolic part of cardiac cycle is not imaged.  

Despite these drawbacks, the results in the healthy volunteers were considered reliable. 

Up to 60% of the particles were exiting the left ventricle during the next heartbeat, which is 

in the range of the normal left ventricular ejection fraction of 50-70%. 
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4 Discussion and Outlook 
 

In this work a method to determine flow velocity and turbulence intensity using phase-

contrast (PC) MRI has been presented. Using Bayes’ theorem, multiple measurements of 

velocity vector components are incorporated and hence information about velocity 

distributions becomes available. It is demonstrated that such a scheme permits 

measurements of mean velocity and turbulence intensity. It is also shown that many-point 

velocity-encoding offers improved precision compared to conventional 2-point approaches.  

In simulations it has been shown that this technique benefits the most from additional 

measurements when having to deal with low SNR, a situation where averaging would lead to 

larger errors. By constraining the data to follow a given probability function, noise leads to a 

lower weighting of values which deviate strongly from other measured points. Therefore 

these quasi-outliers do not affect the result as severely as they would do when using 

conventional averaging. Assuming Gaussian noise, this principle also sets the number of 

required measurements in kv-space in relation to the SNR. If the variance of the noise is high, 

a small number of measurements cannot compensate possible quasi-outliers. In chapter 3.1 

it was demonstrated that the critical SNR value for a 3-point measurement is about three.  

Comparisons between different methods may be biased by the choice of the error metric. 

The more outliers contribute to the result, the better the conventional 2-point PC 

measurement performs in comparison to the 3-point PC approach [14]. Irrespective these 

insights, the Bayes’ method was found to outperform both the 2- and 3-point encoding 

schemes. The only exception was found in the high SNR regime, where the 3-point PC 

approach was found to perform slightly better than the Bayes’ scheme when using an error 

metric insensitive to outliers. 

The fact that the presented technique performs well at low SNR is advantageous 

especially for accelerated imaging application. This potentially enables higher acceleration 

factors and, accordingly, shorter scan times. The variable number of kv steps also offers a 

finer trade-off between accuracy and speed as compared to conventional velocity encoding 

approaches. 
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In terms of user interaction, the Bayes’ approach should also be more fault-tolerant than 

the 2-point PC measurement. In general, the maximum encoding velocity has to be higher 

than the maximum velocity occurring. However, because of the additional kv steps, the exact 

choice will not affect the result as much as it would do in a 2-point measurement. This 

enables an implementation where a default and reasonable maximum encoding velocity 

would lead to acceptable results in a wide range of flow conditions. This fact also holds true 

for turbulence quantification and hence the method offers improved robustness relative to 

the previous method proposed for mapping turbulent kinetic energy [13]. 

In the analysis of artificial heart valves significantly higher TKE for found for the TAVI 

relative to the SJM design as a result of a single large flow jet. This jet was also noticeable in 

the in-vivo TAVI data. These results are, however, only of limited value to judge which valve 

to favor at the moment. The implantation of the SJM mechanical valve requires open heart 

surgery, which is not always feasible in older or weaker patients. Nevertheless, the higher 

durability of the mechanical valve makes it a preferred choice in younger patients. 

Although a comparison between those two valves is difficult, the proposed method could 

help in improving the design of heart valves. To draw conclusions about the effects of 

different valve designs on flow characteristics, a study with several patients is necessary to 

eliminate the inter-patient variance. Such a study is planned together with clinical partners 

for the near future and will include a comparison of the Medtronics CoreValve and the 

Edwards Transcatheter Heart Valve. 

A limiting factor for clinical use is the current processing time required by the Bayes’ 

algorithm. Processing of a 3D scan of the left ventricular outflow tract (resolution 

100x50x30) with 24 heart phases takes about 10 hours using standard computer hardware. 

There are several areas where the performance can be improved. All computations were 

performed in Matlab. The use of a more efficient programming language such as C as well as 

a customized optimization algorithm could allow a significant speed gain. Also the 

parameters used in the optimization algorithm (like the number of iterations or 

computational tolerance) can be adjusted to achieve an acceptable trade-off between speed 

and accuracy. It is also conceivable that a manual pre-selection of time points is performed 

and, for instance, only the ejection and the filling phases are reconstructed. 

The method proposed in this work is not limited to the heart and aorta. It also lends itself 

well to examining different larger vessels of the circulatory system. Of particular interest are 
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flow patterns at branching points such as found in the carotid bifurcation, a site prone to the 

development of atherosclerosis. The application of the technique in smaller vessels may also 

be possible. Such an application would, however, demand improved spatial resolution of the 

measurement and hence prolonged scan times. 

Another interesting application area concerns computation of relative pressures using the 

Navier-Stokes equation. By incorporating information about energy dissipation caused by 

turbulence, the accuracy of the results is expected to be further improved. 

As the model of the effects of turbulence on the signal magnitude is based on an 

assumption about the characteristic time scales of turbulence, further validation of this 

method is required. To this end, a comparison of MRI and Particle Imaging Velocimetry (PIV) 

in a heart phantom is planned. Also further acceleration of the imaging process using radial 

sampling of k-space is currently being investigated. A low resolution and hence rapid 

approach using back projection may be devised, which would enable investigators to obtain 

a first overview of the maximum amount of turbulence occurring in patients. 

 

In conclusion, this work has presented a novel approach to measure velocities and 

turbulence intensities in-vitro and in-vivo. Promising results regarding the accuracy 

compared to conventional methods have been presented with particular relevance in low 

SNR regimes. Accordingly, the method is expected to have considerable impact for image 

acceleration techniques which inherently compromise SNR for increased scanning speeds. 

Feasibility of the method was demonstrated using in-vitro as well as in-vivo 

measurements, including pathological flow situations. In future work further investigation is 

needed to  validate the results of turbulence intensities against a proven reference method. 
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