
Christian Hofer

Behaviour Driven Web Development

Master’s Thesis

Graz University of Technology

Institute for Software Technology

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, September 2014

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the used
sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den
benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

ii

Abstract

This thesis deals with the development of web applications employing agile
software development methodologies. In particular the challenges for employing
functional tests are investigated.

The growing popularity of mobile devices entails new requirements for web
applications. Especially, the reduction of screen real estate and the support
of different view modes are challenging. Therefore it is important to design
flexible layouts, which adapt to the available screen space. Additionally, the
limited transmission speed of the mobile web is a considerable constraint. In
order to improve the response time, the contents should be separated from the
representation data and transferred asynchronously in the background. These
requirements complicate testing.

Subsequently agile software methodologies are discussed. Among them are
development methodologies, such as Extreme Programming (XP), and Test
Driven Development (TDD), as well as project management methodologies,
such as Scrum, and Kanban. Moreover, test tools are examined, which are
designed for web applications and are suitable for agile software development,
in particular whether they fulfil the aforementioned requirements.

Finally, Behaviour Driven Development (BDD) is introduced and compared
to the previously discussed agile software development methodologies. The
advantages are pointed out including improved communication between de-
velopers and customers, always up-to-date documentation, and the supporting
development process.

In the last chapter an implementation is illustrated, which employs the widely
used BDD tool Cucumber to execute functional web tests. The used functional
web testing framework is Selenium and the features are written in Gherkin, a
domain specific language introduced by Cucumber. Afterwards the advantages
and disadvantages of applying BDD and TDD are discussed.

iii

Kurzfassung

Diese Masterarbeit beschäftigt sich mit der Entwicklung von Webanwendungen
unter der Verwendung von agilen Softwareentwicklungsmethoden. Insbeson-
dere werden die Herausforderungen für Funktionstests untersucht.

Durch die steigende Popularität von mobilen Geräten gibt es neue Anforde-
rungen für Webanwendungen. Besonders die Reduktion der Bildschirmgröße
und die Unterstützung von verschiedenen Ansichtsmodi sind problematisch.
Deshalb ist es wichtig flexible Layouts zu entwerfen, die sich an den verfügbaren
Bildschirmplatz anpassen. Zusätzlich ist die eingeschränkte Übertragungs-
geschwindigkeit des mobilen Internets eine beträchtliche Einschränkung. Um
die Antwortzeiten zu verbessern, sollte der Inhalt von den Darstellungsdaten
getrennt und asynchron im Hintergrund übertragen werden. Diese Anforde-
rungen erschweren das Testen.

Anschließend werden agile Softwaremethoden besprochen. Unter ihnen sind
Entwicklungsmethodologien, wie Extreme Programming (XP) und Test Driven
Development (TDD), sowie Projektmanagementmethodologien, wie Scrum und
Kanban. Außerdem werden Testwerkzeuge untersucht, die für Webanwen-
dungen bestimmt sind und für agile Softwareentwicklung eingesetzt werden
können, insbesondere ob sie die zuvor erwähnten Anforderungen erfüllen.

Schließlich wird Behaviour Driven Development (BDD) eingeführt und mit
den vorher besprochenen agilen Softwareentwicklungsmethodologien vergli-
chen. Auf Vorteile wird hingewiesen, darunter verbesserte Kommunikation
zwischen Entwicklern und Kunden, immer aktuelle Dokumentation und der
unterstützende Entwicklungsprozess.

Im letzten Kapitel wird eine Implementierung veranschaulicht, die das weitver-
breitete BDD Tool Cucumber einsetzt, um Funktionstests durchzuführen. Das
verwendete Funktionstest Framework ist Selenium und die Features werden
in Gherkin geschrieben, eine domänenspezifische Sprache, die mit Cucumber
eingeführt wurde. Danach werden Vorteile und Nachteile bei der Verwendung
von BDD und TDD besprochen.

iv

Contents

1 Introduction 1
1.1 Agile Software Development . 1

1.2 Catrobat Project . 1

1.3 Community Website . 3

1.4 Motivation . 3

2 Web Applications 5
2.1 Divide and Conquer . 6

2.2 Native Applications for Websites 7

2.3 Mobile First with Responsive Webdesign 9

3 Agile Software Development 11
3.1 Extreme Programming (XP) . 12

3.2 Scrum . 13

3.3 Kanban . 14

3.4 Test Driven Development (TDD) 15

3.5 Continuous Integration (CI) . 16

4 Test Tools 17
4.1 Unit Tests . 18

4.1.1 Architecture . 19

4.1.2 The Basics . 22

4.1.3 Advanced Techniques . 24

4.2 Functional and Integration Tests 26

4.2.1 Architecture . 27

4.2.2 The Basics . 31

4.2.3 Advanced Techniques . 33

5 Behaviour Driven Development 36
5.1 The Basics . 37

5.1.1 Express Requirements . 37

v

Contents

5.1.2 Gherkin Syntax . 38

5.1.3 Workflow Cycle . 39

5.2 Benefits . 40

5.2.1 Ubiquitous Language . 40

5.2.2 Automated Acceptance Tests 41

5.2.3 Living Documentation . 42

5.2.4 Software Quality . 43

5.3 Related Tools . 44

6 Guided Procedure 47
6.1 Create Features . 47

6.2 Create Step Definitions . 50

6.2.1 Transformations . 50

6.2.2 Implementation . 50

6.2.3 Global State . 52

6.3 Create Production Code . 54

7 Behaviour Driven Functional Testing of Web Applications 58
7.1 Introduce Behaviour Driven Development 58

7.1.1 Preconditions . 59

7.1.2 Cucumber-JVM Meets Selenium Grid 59

7.2 Findings . 68

7.2.1 Comparison . 68

7.2.2 Disadvantages . 71

7.3 Related Tools . 71

7.3.1 Mink . 71

7.3.2 Capybara . 72

8 Conclusion 73

Bibliography 76

vi

List of Figures

1.1 Pocket Code programs are able to control robots and quadcopters 2

1.2 The community website shown in different form factors 3

2.1 Trend of global mobile internet traffic 6

3.1 The first two columns of the community website’s Kanban board 15

4.1 The structure of a Selenium Grid setup 31

5.1 BDD workflow illustrated in a cycle 40

5.2 Living documentation of Tic-Tac-Toe on Relish 43

7.1 Selenium Grid console with connected nodes 60

7.2 Selenium screenshot taken after the last step of the search func-
tionality scenario . 67

vii

List of Listings

1 Example output of PHPUnit test runner 19

2 PHPUnit usage information . 20

3 A doc comment with group and data provider annotations . . . 21

4 Selenium wait for an expected condition evaluated by JavaScript 34

5 Selenium open page with defined viewport size 35

6 Example of a story template . 38

7 Example of the add products to a shopping cart feature 48

8 Cucumber output with missing step definitions 49

9 Cucumber output with pending step definitions 51

10 Example of transformations used for step definitions 52

11 Example of implemented step definitions 53

12 Example of a world extension . 53

13 Cucumber output with failing step definitions 55

14 Example of the shopping cart implementation 56

15 Support code to make the implementation accessible 56

16 Cucumber successfully executes all scenarios 57

17 The output of Cucumber when executed in an empty folder . . . 57

18 Selenium test that checks the website’s search functionality . . . 62

19 Selenium tests that verify a certain text on the start page and
address the website’s language switch functionality 63

20 Selenium test that investigates the download count functionality 64

21 The aforementioned Selenium tests converted to Cucumber sce-
narios . 65

viii

List of Tables

5.1 Test tools capable of performing StoryBDD 45

5.2 Implementations of Cucumber’s wire protocol 46

5.3 Test tools capable of performing SpecBDD 46

7.1 Advantages and disadvantages of BDD performing functional
web tests . 70

7.2 Advantages and disadvantages of TDD performing functional
web tests . 70

ix

1 Introduction

1.1 Agile Software Development

The process of software creation is composed of the determination of customer
requirements and the development of a design that fits those requirements.
In traditional software development this challenge is solved by creating a
comprehensive design upfront with as complete specifications as possible. This
approach was inherited from engineering fields building concrete objects, where
late changes are always very expensive [Che+10].

However, it turned out that this practice is not best suited for software
architecture. Furthermore, it contributes to factors which cause the delivery
of software that is late, is over budget, has wrong functionality, is unstable in
production, or is costly to maintain. Additionally, the fear of expensive change
causes big design efforts, which are the main reason for expensive changes
late in the development process. Therefore this practice can be described as
self-fulfilling prophecy, since it provokes undesirable effects [Che+10].

When it was increasingly recognised as a major problem, new methods were
explored to escape the described cycle. The obtained solutions were summarised
under the terms of agile software development and agile project management.
All involved methods focus on an effective creation of software, which prefers
an iterative development in small steps and provides value to the customer at
every iteration [Bee+01b].

1.2 Catrobat Project

The Catrobat project employs many aspects of first generation agile software
development and agile project management. The aim of the project is to support
children to gain programming experience in an enjoyable way. In order to

1

1 Introduction

keep the target audience of children motivated, an attractive presentation of
the programming environment is important. Therefore a visual programming
language is employed that is called Catrobat and is strongly inspired by the
Scratch programming language1 [Sla12]. In contrast to Scratch, Catrobat focuses
on mobile platforms operated by Android, iOS, or Windows Phone.

The creation of games, animations, simulations, and other programs is achieved
by combining blocks, which have different properties and functionalities, repre-
senting commands. For example, there are particular blocks capable of con-
trolling a Lego Mindstorms robot2, as shown in Figure 1.1, or a Parrot’s
AR.Drone quadcopter3 [Sla12].

(a) A Lego Mindstorms ro-
bot

(b) A Pocket Code pro-
gram that controls a
Mindstorms robot

(c) A Parrot’s AR.Drone
quadcopter

Figure 1.1: Pocket Code programs are able to control robots and quadcopters

1http://scratch.mit.edu/about/
2http://www.lego.com/en-us/mindstorms/
3http://www.parrot.com/

2

http://scratch.mit.edu/about/
http://www.lego.com/en-us/mindstorms/
http://www.parrot.com/

1 Introduction

1.3 Community Website

The community website4 is an integral component of the Catrobat project
for sharing and distributing user created programs. Therefore, it is important
that the website offers a pleasant user experience on the supported platforms
including technical aspects like response times. The user created programs are
licensed under a free software license, so that the community benefits from
every program that is added. Additionally, this allows on the one hand to learn
from existing programs and on the other hand to modify and re-share existing
programs without limitations, which is called “remixing” [Sla12].

Moreover, it offers instructions to assist with first steps, and attempts to increase
children’s motivation. The community website accomplishes two tasks to boost
motivation for producing impressive and unique programs: it is a place to share
and present the results of hard work, and it provides a collection of programs
to compete with and to get inspiration from.

Figure 1.2: The community website shown in different form factors

1.4 Motivation

With regards to a growing software project, it is often necessary to increase
the resources by adding additional employees in order to remain competitive.

4https://pocketcode.org/

3

https://pocketcode.org/

1 Introduction

Although a higher number of employees does not automatically guarantee
the generation of more value, as it increases the number of communication
channels, and therefore slows down the overall development speed [Dav09].
Accordingly, effective communication between team members is an important
factor that affects productivity in large projects.

The Catrobat project is divided into several sub-teams, which concentrate on
individual tasks. For instance, every supported mobile platform is managed by
its own sub-team that makes use of the platform’s native tools for development.
Consequently, a variety of tools and programming languages are applied to
create tests, which are fundamental to agile software development. It is apparent
that project members, who are not involved in a particular sub-team, have to
invest additional effort to identify the system’s functionality.

Therefore, the project aims to create consistent tests written in plain text
following Gherkin syntax (see Section 5.1.2), which are readable and compre-
hensible without special knowledge. The desired gain is on the one side a
better overview of the overall system functionality and on the other side an
improvement in the communication between sub-teams.

This thesis discusses properties and benefits of various agile software develop-
ment and management methodologies. In addition it covers the introduction of
a second-generation agile software development methodology to the community
website, and discusses the encountered difficulties in regard to web develop-
ment. The employed practice is called Behaviour Driven Development and its main
objective is to encourage more effective communication between customers and
developers, which is also applicable to the communication among sub-teams.

4

2 Web Applications

“The simple guideline is whatever you are doing—do mobile first,”
recommends Google Chairman Eric Schmidt [Sch11].

When intending to create valuable software that offers a positive user experience
it is important to be aware of the target audience and their constraints. In the
latest Internet Trends report [MW13] a rise in mobile web usage is noticeable,
as shown in Figure 2.1. It indicates a general growing popularity in mobile
devices, and according to a study from 2012 [Süd12] approximately 90% of 12

to 13 year olds have a personal mobile device. Therefore 15% of global Internet
traffic was attributed to mobile devices in May 2013. In a few countries, this is
even more apparent, such as in India in 2012 and in China in 2013, the number
of users accessing the web using mobile devices surpassed the number of users
using desktop PCs.

Additionally, the growth of mobile web usage still has potential for im-
provement and is expected to continue over the next few years. This becomes
apparent from the distribution of mobile phones, which indicates that there are
1.5 billion smart phone users and 5 billion mobile phone users [MW12] [MW13].
In Austria this trend is also visible, since at least 78% of the population own a
smart phone, and the vast majority of them use it to access the web [Mac].

Furthermore, the shift in usage implies that new constraints and requirements
for web applications arise, which affects the way in which they are built. The
most influential and noticeable change concerns the large reduction in screen
real estate. Therefore the employment of common development strategies, like
the creation of a fixed width layout, are no longer applicable [Wro11].

In addition, this new class of devices introduces further unique hardware
characteristics, which need to be addressed individually. The displays of modern
mobile devices are equipped with very high resolutions and pixel densities.
Therefore, it is important to take varying pixel densities into account, as images
appear to be blurry on screens with high pixel densities. A way to address this
problem is to deliver images in higher resolutions, generally twice the size as

5

2 Web Applications

Figure 2.1: Trend of global mobile web traffic, taken from [MW13]

they are displayed.
Another unique property of mobile devices is the ability to alter the screen

orientation between two possible view modes. The view modes are called
landscape mode and portrait mode and have considerably varying screen
proportions. To challenge this situation, an option is to create multiple versions
adjusted to predefined screen dimensions, or to make use of fluid layouts also
referred to as responsive web design.

2.1 Divide and Conquer

This is the most naı̈ve approach, it suggests to create a separate web application,
which is optimised for mobile usage. With the first access of the visitor the
application determines the used device and loads the best fitting version. When
applying this approach, it is good practice to prepare a subdomain for optimised
versions, additionally when accessing the primary domain with a mobile device,
the visitor should be automatically redirected [Mar10].

The main advantage of this approach is that no additional knowledge is neces-
sary, since known techniques can be applied, and that a working solution is

6

2 Web Applications

obtained in a relatively short time, as available code can be reused and adapted.
The downsides with this solution are on the one hand higher maintenance

costs resulting from an additional code base, and on the other hand, it is not
future-proof. For considerable future changes in regard to the available screen
size, the effort of building an optimised version has to be repeated. In addition,
every new version adds additional time for executing the test suite, which slows
down the development and increases the costs.

When examining current web usage statistics the weakness of this method
becomes apparent immediately. Based on the numbers of the Internet Trends
report [MW12], tablet shipments have surpassed desktop PCs and notebooks
in the last quarter of 2012 suggesting that tablets become increasingly popular.
This indicates that the range of screen sizes, which should be supported by web
applications, has expanded, ranging from very small (smart phones) to very
large (desktop PCs) and varying in-between sizes (tablets). It becomes difficult
to decide how many optimised versions should be created and which sizes
should be supported.

2.2 Native Applications for Websites

Another approach to improve the user experience for mobile users is to create a
native application and let the platform framework take care of the platform’s
constraints. Compared with web applications, they have the following advan-
tages. They can achieve better performance by omitting an additional abstraction
layer, which is attributed to the browser engine. This is especially important, if
performance is a concern, for example as it is the case for intense mathematical
calculations or complex 3-D animations. Additionally, the user interface tran-
sitions and interactions have a smoother appearance.

They also can reduce the network latency by lowering the required amount of
remote application data. This reduction of remote application data is achieved by
making use of the native user interface. In addition network related performance
issues can be overcome by caching previously received data. As a result, it leads
to time and resource savings yielding an overall improved execution time, which
is beneficial to the user experience [AGL10] [Wro11].

From the developer’s point of view comprehensive development tools and
well-described interface guidelines make a big difference. Conveniently, most
mobile platforms offer great development tools and human interface guidelines

7

2 Web Applications

to reduce development efforts and to ensure a consistent user experience. The
development tools usually consist of a software development kit (SDK), that
grants access to low-level application programming interfaces (API), and an
integrated development environment (IDE), which is tailored to the needs of the
corresponding platform. With these tools, it becomes a lot easier to create small
and medium sized mobile applications within a short time. As a downside
these tools are limited to a single platform, and therefore developers have to be
familiar with development tools of multiple platforms [Was10] [CL11].

By pursuing the native application approach, it becomes very expensive to reach
users on multiple platforms, as it is necessary to build a separate application in
each platform’s native language. To reduce the development and maintenance
costs, cross-platform development tools can be engaged to build applications
that behave nearly the same as native applications.

Among the most applied frameworks are: RhoMobile’s Rhodes1, MoSync2,
and PhoneGap3. These frameworks take advantage of the fact, that all major
mobile platforms offer a web browser and the capability to access the browser
engine programmatically. Therefore, web technologies such as HTML5 and
JavaScript are employed to render the application in a web view. However,
relying solely on the web technology stack is not sufficient for accessing native
device features, like the camera, compass, location information, local storage,
and others that can be a requirement for certain applications. To overcome this
restriction, these frameworks provide interfaces, which offer access to those
features.

In conclusion, cross-platform development can be very powerful and is
capable of utilising many advantages of native applications. However, there is
still an additional effort required for creating a user interface with the native
look and feel [Was10] [CL11].

Although native applications offer noticeable advantages, there are still certain
use cases for which web applications are better suited. For instance the seamless
delivery of updates and the ability to propagate them immediately to the user
by the means of a page refresh. Therefore, this behaviour can be utilised to
conduct A/B tests with little effort, which are used to evaluate different designs
[Wro11]. Another advantage of conventional web applications is a reduction

1http://www.motorolasolutions.com/US-EN/Business+Product+and+Services/

Software+and+Applications/RhoMobile+Suite/Rhodes
2http://www.mosync.com
3http://phonegap.com

8

http://www.motorolasolutions.com/US-EN/Business+Product+and+Services/Software+and+Applications/RhoMobile+Suite/Rhodes
http://www.motorolasolutions.com/US-EN/Business+Product+and+Services/Software+and+Applications/RhoMobile+Suite/Rhodes
http://www.mosync.com
http://phonegap.com

2 Web Applications

in maintenance costs, in particular when the project depends on a website
anyway.

2.3 Mobile First with Responsive Webdesign

This approach changes the development strategy by shifting the focus onto
mobile devices, and reduces the fragmentation of previous approaches by
employing modern web technologies. Focusing on mobile devices uncovers
unique possibilities, since these devices offer new technical capabilities, such as
location detection and touch input. That leads to an enhanced context awareness
and a more intuitive way of interacting with the application, which can improve
the user experience [Wro11] [Fra12].

For example when searching for local information, like the nearest restaurant,
the nearest cinema or the nearest subway station, knowledge of the current
location greatly increases the quality of search results. Additionally, the touch
input enables direct access to control elements and supports a set of standard
gestures mimicking real world interactions. Among them are pinch to zoom,
swipe left to go back and others providing fast access to basic functionality
[Wro11] [DD11].

However, the limited space enforces a greater concentration on the core
values of the application, which leads to a much cleaner and better-structured
layout. Additionally, a reduced version is well suited for progressively enhancing
the design and content, as adding new elements is much easier than removing
existing elements [Wro11].

Another important aspect of mobile devices is the data transmission speed of
the mobile web. In order to reduce the bandwidth consumption, a technique
called Asynchronous JavaScript and XML (Ajax) can be employed. The main
idea is to separate the presentation and the content of the web application, so
that succeeding requests update only elements that contain new information.
Therefore the page load time can be improved, when a partial page update is
sufficient. Additionally, it allows to continuously update elements without a
page refresh by the means of asynchronous polling requests, which is useful for
implementing a news ticker [UD07].

Nevertheless, previously unforeseen difficulties can arise due to the modified
request/response cycle. The browser history can appear to be broken, when
relying heavily on asynchronous communication, as asynchronous requests are

9

2 Web Applications

not handled by the browser and have to be addressed separately. In regard to
search engine optimisation there are concerns that useful information is hidden
from web crawlers, which affects the ranking of the website. Finally a developer-
facing concern relates to code complexity that is caused by the increased use of
callback functions and the corresponding error handling [UD07].

In conclusion this technique is highly beneficial for the user by providing
a more responsive application and by saving bandwidth. However, it is more
challenging for developers, as it leads to code that is more unpredictable and
harder to test.

In order to best utilise the available screen space, a technique called responsive
web design is employed. It applies the capabilities of the new HTML5

4 and
CSS3

5 technologies to create adaptive designs, including fluid grids, flexible
images, and media queries. As a consequence, layouts and images can be
adjusted to the screen size, and control elements, such as links or buttons can
be enlarged to increase the target area on small touch screens [Wro11] [Fra12].

The fundamental advantage of this approach is that the website adapts to all
possible screen sizes of current and future devices, whether it is a smart phone,
desktop PC, or tablet. However, this flexibility does not come without a cost, as
it results in a higher test and development effort [Fra12].

4http://www.w3.org/TR/html5/
5http://www.w3.org/TR/css-text-3/

10

http://www.w3.org/TR/html5/
http://www.w3.org/TR/css-text-3/

3 Agile Software Development

“Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software,” states the first principle of

the Agile Manifesto [Bee+01b].

Agile software development is not a software development methodology on
its own, but it is a philosophy defining principles, which should be included
in an agile software development process. It emerged from the desire for an
alternative to the waterfall model that is considered rigid and inflexible.

The inflexibility of the waterfall model results from the linear and sequential
development flow, which requires substantial design efforts in advance. There-
fore, changes to previous phases are very expensive and should be avoided.
However, some requirements don’t appear until the implementation phase.
That leads to an enormous overhead for subsequent alterations and makes it a
heavyweight development method. To address this, agile software development
is applied using more lightweight methods [Mik13].

The principles of agile software development state that the customer’s needs
should be satisfied by creating valuable software, software that works and is as
simple as possible, and delivering it consistently. Additionally the development
process should be sustainable and changes in requirements should always be
welcome. Another important aspect is that business people and developers
should work together and communicate in a direct manner. The development
team should be self-organised and built around motivated individuals, further-
more regular reviews to reflect on progress made and on how to improve the
development process are strongly recommended [Bee+01b].

A recent survey [Amb11] shows that agile software development increases
the success rate of software projects and the satisfaction of product owners.
The product owner is the person who makes decisions and has the final say
about the product. Agile software development is among the most successful
development paradigms and is, in addition, very effective. In comparison to

11

3 Agile Software Development

other paradigms it generates the best value for product owners and it provides
the best return on investment (ROI).

3.1 Extreme Programming (XP)

Extreme Programming is a widely used agile software development methodol-
ogy that combines best practices of software development, such as unit testing,
pair programming, and refactoring. The development process is divided into
multiple cycles and is therefore more flexible than non-agile methods. This
means, that it is not necessary to know all requirements up front and allows
the frequent release of new versions. Additionally, changing requirements are
not considered as an increased risk and are always welcome [Bec99].

In the beginning of every development cycle, requirements for the upcoming
release are defined in a planning session. They are discussed and planned by
the developers in collaboration with an on-site customer. They are then written
onto story cards with an estimate of the required implementation time and the
priority. If everyone is satisfied with the created tasks, the development phase
begins [Bec99] [Hus+08].

This type of development adheres very strongly to the main statement of
the Agile Manifesto, which states that software development should be done
by doing it. Additionally, it follows a test first programming methodology.
Therefore, it is an important aspect to express requirements as unit tests and to
automate the test procedure. On the one hand the unit tests serve as acceptance
tests, which indicate if a requirement is satisfied, and on the other hand they
act as documentation. That is particularly important, because otherwise no
specification documents are provided [Bec99] [Bee+01a].

A technique called pair programming is used in order to spread knowledge in
the team. Two programmers work in a pair and share one workstation. They
have different responsibilities, one writes code, referred to as the driver, and the
other reviews the code as it is typed, referred to as the observer. They should
regularly change positions. This leads to better code quality, because errors are
promptly fixed and solutions for difficult problems can be developed as a team
with their combined knowledge [Bec99] [Hus+08].

The primary objective of Extreme Programming is to write only as much code
as is necessary to pass the unit tests. Therefore, refactoring is essential for

12

3 Agile Software Development

improving the overall design. It can be applied very efficiently, because due
to collective code ownership every team member is responsible for the code
quality and is encouraged to make changes to any code file within the project.
Additionally changes can be done with confidence, as regressions are revealed
immediately by the unit tests [Bec99].

3.2 Scrum

Scrum is a project management methodology suitable for agile software de-
velopment and can be combined with software development methodologies,
such as Extreme Programming and Test Driven Development. The development
process becomes more visible and more transparent to the product owner and
offers more room for interactions [SS13].

A Scrum team consists of a product owner, who decides which features
should be included in the product, a development team, which develops the
product, and a Scrum master, who is responsible for detecting and eliminating
problems in the development process. All items that are required to produce
the product features are collected in a product backlog by the product owner.
The items are represented as user stories, which should be clearly expressed,
so that everyone on the team understands the purpose and is able to prioritise
its importance. These items are then processed in an iterative, incremental
approach in order to collect and integrate feedback in an early development
stage. An iteration is called sprint and takes between one week and one month,
at the end of each iteration a working product can be demonstrated to the
product owner [SS13].

In the beginning of every sprint, a planning meeting is held, in which the goals
of the forthcoming iteration are discussed and defined. Typically, items are
moved from the product backlog to the sprint backlog and are estimated by the
development team. This is useful for revealing valuable information, because in
order to estimate the expected time expenditure, additional information from
the product owner is often required. To get this information the developers have
to ask precise questions and have to listen carefully [Bjö09a].

During a sprint, no new requirements can be added, so that the developers
can concentrate on the current tasks. Additionally there are daily Scrum meet-
ings in which everyone briefly reports on yesterday’s progress, which problems
were encountered and what is planned for today. This helps the team to stay

13

3 Agile Software Development

up to date on the overall progress and enables team members to share valuable
advice [Sut04] [SS13].

When the sprint is done, a review is held in order to report back on achievements.
This is also a great opportunity to give feedback. After that, a sprint retrospective
is held to evaluate the team performance in regard to people, relationships,
process, and tools. In addition, potential improvements and things that went
well are discussed in order to improve team performance for the next sprint. At
this point either another sprint can be planned to further improve the product,
or the product owner decides that the product is completed [SS13].

3.3 Kanban

Kanban is the Japanese word for index card and refers to a second-generation
agile project management methodology originating from Toyota Production
System1 (TPS). At TPS the cards are used to regulate the flow of the assembly
line production [Sco10].

The number of cards is fixed for each part in the upstream process limiting
the amount of pre-produced parts. Every time a part is consumed by the
downstream process, the index card is returned to the upstream process and
the production of a new part is permitted. This method effectively prevents the
overproduction of parts, which cannot be consumed by the downstream process.
If the upstream process is not able to produce sufficient parts, the number of
cards for the concerned part can be increased to improve productivity [Hir08].

In software development, this method is used to limit the work in progress
(WIP) by limiting the number of active tasks. This reduces the pressure on the
team and leads to increased code quality, reduced waste, and higher productiv-
ity. One of the biggest differences to Scrum is that a continuous workflow is
sustained in contrast to the iterative approach. Furthermore, it is useful for
making all active work visible [Hir08] [Sha11].

A common practice is to write a story card for each task and put them on a
Kanban board. Usually story cards contain information about the task id, the
task name, a time estimate, and who is working on the task. The Kanban board
is divided into multiple columns representing the task state. If a column is filled
with story cards, it is not permitted to start a task from the previous column.

1http://www.strategosinc.com/toyota_production.htm

14

http://www.strategosinc.com/toyota_production.htm

3 Agile Software Development

This restriction helps to detect bottlenecks in the workflow. The number and
meaning of the columns can be chosen freely and can be different for each
project [Hir08] [Sha11].

When a product owner knows exactly which functionality should be in-
cluded in the product, the Kanban method can potentially be faster than the
Scrum method for finishing the product. This is due to the continuous work-
flow, and time savings made by not having sprint planning meetings. Kanban
meetings are only held if they add value to the customer or they are required
for making crucial decisions [Bjö09b].

Figure 3.1: The first two columns of the community website’s Kanban board

3.4 Test Driven Development (TDD)

The employment of Test Driven Development (TDD) generates a test suite with
a large amount of automated test cases. It follows a test-first development style
that imposes that a unit test is written before new code can be added. It is
highly recommended that a test-first technique is applied to all kinds of agile
software development, as the test suite strongly reduces regressions arising
from frequent changes or refactoring [Bec03]. For that reason TDD heavily
depends on unit tests. However, it is important that the unit tests provide rapid
test feedback to remain productive, which can be achieved by optimising the
execution time of the employed test utilities. In order to guarantee the value of
newly created test cases, it is important that they fail in the beginning. Hence, it

15

3 Agile Software Development

is then possible to verify that the newly added code is responsible for passing
the test and that the test is useful [Bec03].

Additionally, it is a good practice to write only as much code as is necessary
to fulfil the test case. To accomplish this it is suggested to take small steps and
frequently check if the written code is sufficient to pass the test. In addition this
procedure simplifies the process of detecting errors, as there are fewer lines of
code to search through for new errors [Bec03] [Amb].

After each completed task, the code should be refactored to eliminate code
of poor quality that is hard to maintain, such as duplicate code. With the
assistance of the test suite, code improvements can be achieved very effectively
and without fear of introducing regressions. A further strength of the test suite
is that it can act as a detailed executable specification and contains working
examples for using the code [Bec03] [Amb].

3.5 Continuous Integration (CI)

Continuous Integration (CI) is a great technique for reducing the risk of a
software project and is an enriching supplementation for agile development
practices. In traditional software development the integration process is an
expensive and unpredictable process with many risks. By integrating and
testing code after a few hours of work the integration process becomes a routine
and its execution becomes natural to the involved developers [Bec99] [Fow06].

The short integration/build/test cycle helps to find bugs and collisions with
other developers more quickly, because rapid feedback is provided. In addition,
communication between team members is encouraged when different opinions
about solving a certain problem emerges. Whenever a bug or collision arises the
most important task is to fix it in order to return to a stable version that serves
as a basis for further integrations. Besides, it enables developers to complete
their tasks at full speed, since they have not to consider changes from fellow
developers [Bec99] [Fow06].

The best results can be obtained by employing automated tests and by providing
a dedicated machine to regularly perform integrations. In addition the dedicated
machine serves as a reference platform for the development team and helps to
reveal problems arising from differences in local development environments
[Bec99].

16

4 Test Tools

“Software features that can’t be demonstrated by automated tests simply
don’t exist,” concludes Kent Beck [Bec99].

The previous chapter suggests using automated tests for improving productivity
when applying agile software development methodologies. Accordingly, this
chapter introduces tools, which are suitable for performing automated tests on
web applications. These tests can be divided into two groups: unit tests and
functional tests.

Unit tests are intended for use by developers following a white-box testing
approach that requires knowledge about the internal functionality of the system.
The internal functionality is tested in small pieces, in the size of a module, a
class, or a function, and is suitable as living documentation. This kind of testing
behaves similarly for different programming environments and therefore the
process for writing a unit test for Android applications, or web applications
have a lot in common.

Functional tests on the other hand are intended for customers applying a
black-box testing approach to verify that the system is capable of performing
the product requirements. Thus, these tests have to use the user interface for
interactions and evaluate the output to determine whether the system behaves as
expected. In Extreme Programming (XP) and other agile software development
methodologies these kinds of tests are also referred to as acceptance tests. It
is apparent that testing tools for different types of applications do not have
much in common, as they are dependent on the user interface of the application
under test. For that reason this chapter concentrates on tools that are suited for
web applications.

17

4 Test Tools

4.1 Unit Tests

This section focuses on unit testing tools intended for the PHP1 scripting lan-
guage, because it is very popular and widely used for building web applications
including the Catrobat project community website. Moreover, all unit testing
frameworks belonging to the xUnit family behave similarly and include almost
identical functionality. The foundation of the xUnit family originated from Kent
Beck’s SUnit that was implemented for the Smalltalk2 programming language
and was later ported to others. Today almost every programming language has
a testing framework belonging to the xUnit family [Fow].

A good unit test should satisfy the following properties, it should be automated
and repeatable, it should be easy to implement, it should remain for future use,
it should be able to be run by anyone, it should run at the push of a button, and
it should perform quickly. Additionally, it is recommended that each test case
is independent in order to identify occurring failures faster. If one or more of
the mentioned properties are not met, then the tests are probably integration
tests and not unit tests [Osh09].

A list with the most promising and most mature testing frameworks for the
PHP scripting language belonging to the xUnit family contains four tools.

1. PHPUnit3

2. Atoum4

3. Enhance PHP5

4. SimpleTest6

The most extensively used and best-supported testing framework is PHPUnit,
therefore the following examples and descriptions refer to it. Nevertheless, as
already mentioned, a lot can be applied to the other testing frameworks as well
[MDG11].

1http://php.net/
2http://smalltalk.org/
3http://phpunit.de
4https://github.com/atoum/atoum
5https://github.com/Enhance-PHP/Enhance-PHP
6http://simpletest.org/

18

http://php.net/
http://smalltalk.org/
http://phpunit.de
https://github.com/atoum/atoum
https://github.com/Enhance-PHP/Enhance-PHP
http://simpletest.org/

4 Test Tools

4.1.1 Architecture

Test Runner

The core of every unit testing framework is the test runner that is responsible
for running unit tests and reporting results. For that purpose, PHPUnit comes
with a command line tool, which offers many options for coping with all kinds
of use cases. An overview of all available options can be obtained by running
the command line tool with the help argument, which produces the output
illustraded in Listing 2.

In order to execute tests, the path to a file or a directory that contains unit
tests must be passed to the command line tool. A test case can have five possible
outcomes, and for each test case a symbol representing the result is displayed.
The five possible outcomes with the corresponding symbol in brackets are, it
succeeded (.), an assertion failed (F), an error occurred (E), it has been skipped
(S), or it is marked as incomplete (I). In Listing 1 an example output of a test
run that performs 21 tests and 40 assertions is shown [Ber].

catroweb@webbox:$ phpunit admin
PHPUnit 3.6.12 by Sebastian Bergman.

.....................

Time: 1 second, Memory: 11.50Mb

OK (21 tests, 40 assertions)

Listing 1: Example output of PHPUnit test runner

Organisation

For organising the tests either the file system or a XML7 configuration file can be
used. It is suggested that a naming convention is followed, which states that the
suffix of the filename should be Test.php, for example AdminTest.php. Thus,
the test runner is capable of detecting and executing tests without additional
information about the filename.

The file system approach can be utilised with little effort, as no further
configuration files are necessary. It is recommended that a folder is created

7http://www.w3.org/XML/

19

http://www.w3.org/XML/

4 Test Tools

catroweb@webbox:$ phpunit --help
PHPUnit 3.6.12 by Sebastian Bergman.

Usage: phpunit [switches] UnitTest [UnitTest.php]
phpunit [switches] <directory>

--log-junit <file> Log test execution in JUnit XML format to file.
--log-tap <file> Log test execution in TAP format to file.
--log-json <file> Log test execution in JSON format.

--coverage-clover <file> Generate code coverage report in Clover XML format.
--coverage-html <dir> Generate code coverage report in HTML format.
--coverage-php <file> Serialize PHP_CodeCoverage object to file.
--coverage-text=<file> Generate code coverage report in text format.

Default to writing to the standard output.

--testdox-html <file> Write agile documentation in HTML format to file.
--testdox-text <file> Write agile documentation in Text format to file.

--filter <pattern> Filter which tests to run.
--testsuite <pattern> Filter which testsuite to run.
--group ... Only runs tests from the specified group(s).
--exclude-group ... Exclude tests from the specified group(s).
--list-groups List available test groups.
--test-suffix ... Only search for test in files with specified

suffix(es). Default: Test.php,.phpt

--loader <loader> TestSuiteLoader implementation to use.
--printer <printer> TestSuiteListener implementation to use.
--repeat <times> Runs the test(s) repeatedly.

--tap Report test execution progress in TAP format.
--testdox Report test execution progress in TestDox format.

--colors Use colors in output.
--stderr Write to STDERR instead of STDOUT.
--stop-on-error Stop execution upon first error.
--stop-on-failure Stop execution upon first error or failure.
--stop-on-skipped Stop execution upon first skipped test.
--stop-on-incomplete Stop execution upon first incomplete test.
--strict Run tests in strict mode.
-v|--verbose Output more verbose information.
--debug Display debugging information during test execution.

--process-isolation Run each test in a separate PHP process.
--no-globals-backup Do not backup and restore $GLOBALS for each test.
--static-backup Backup and restore static attributes for each test.

--bootstrap <file> A "bootstrap" PHP file that is run before the tests.
-c|--configuration <file> Read configuration from XML file.
--no-configuration Ignore default configuration file (phpunit.xml).
--include-path <path(s)> Prepend PHP’s include_path with given path(s).
-d key[=value] Sets a php.ini value.

-h|--help Prints this usage information.
--version Prints the version and exits.

Listing 2: PHPUnit usage information

20

4 Test Tools

specifically for the test suite and to retain the structure of the system under test
(SUT). For reasons of convenience, it is important to adhere to the previously
mentioned filename convention. This guarantees that the test runner can execute
all tests within a directory at once by recursively traversing it.

When more control over the test suite is desired, the XML configuration file
approach is favourable. It allows the creation of a test suite with selected tests
and the ability to determine the execution order. Additionally, regularly used
command line options from Listing 2 can be predefined, which is especially
useful for filters and groups [Ber].

Annotations

In order to make use of groups and filters it is necessary to provide additional
information, which can be accomplished by the means of annotations. This
additional information, also called metadata, can be accessed at runtime and
has no direct effect on the execution of the code. Annotations can be applied to
classes, methods, and member variables and are used to supply information
about dependencies, group affiliation, expected exceptions, and data providers
[Ber].

However, there is no native support for annotations in PHP. For that reason
doc comments, which were introduced for PHPDoc, which are an adaptation of
Javadoc, are exploited to mimic annotations. As can be seen in Listing 3 they
are basically block comments, but with the convention that they have to begin
with ”/**” and that every line has to start with a ”*”.

1 /**
2 * @group projectDetails
3 * @dataProvider randomIds
4 */
5 public function testIncrementViewCounter($projectId) {
6 ...
7 }

Listing 3: A doc comment with group and data provider annotations

This distinction of comments is important, because the PHP lexer8 discards
comments, but stores doc comments as metadata that can be accessed at
runtime9.

8https://github.com/php/php-src/blob/master/Zend/zend_language_parser.y
9http://www.php.net/manual/en/reflectionclass.getdoccomment.php

21

https://github.com/php/php-src/blob/master/Zend/zend_language_parser.y
http://www.php.net/manual/en/reflectionclass.getdoccomment.php

4 Test Tools

Logger

As can be seen in Listing 1, the test results are displayed as raw text in the
console. Consequently, this output format of the results is not well suited for
further processing, such as supplying a continuous integration server.

Therefore, PHPUnit has an logger module included that is able to output
the test results in a machine-readable format. Among the supported formats are
XML, JSON10 and TAP11. The code coverage tool of PHPUnit that is described
later, also makes use of the logger module to format and output the coverage
report [Ber].

4.1.2 The Basics

Fixtures

The test fixture is defined as the process of preparing a known state before
running test cases, and restoring the original state when they are complete.
This is important, because meaningful results can only be obtained if the
original state is known. To generate a known state, actions like creating objects
with given parameters, loading the database with a specific state, or creating
temporary files and directories can be involved. A test class that extends a
PHPUnit test case has two predefined methods for setting up a known state and
three predefined methods for restoring the original state [Ber]. These methods
have different scopes and purposes:

setUpBeforeClass is run once before any test case of the test class is executed
and the preparations apply to all test cases in the class.

setUp is run before each test case and the preparations apply only to the
following test case.

tearDown is run after successfully completed test cases.
onNotSuccessfulTest is run after unsuccessfully completed test cases.
tearDownAfterClass is run after every test case in the test class is completed.

In addition the pre- and post-conditions can be examined by the means of
assertPreConditions and assertPostConditions to ensure that an expected

10http://www.json.com/
11https://metacpan.org/pod/release/PETDANCE/Test-Harness-2.64/lib/Test/

Harness/TAP.pod

22

http://www.json.com/
https://metacpan.org/pod/release/PETDANCE/Test-Harness-2.64/lib/Test/Harness/TAP.pod
https://metacpan.org/pod/release/PETDANCE/Test-Harness-2.64/lib/Test/Harness/TAP.pod

4 Test Tools

state has been reached.
It is obvious that it is possible to share fixtures across tests with the

setUpBeforeClass method, but that should be used rarely, because shared
fixtures reduce the value of test cases, since dependencies are added. However,
this is useful for keeping database connections open that can be used by all test
cases of the test class [Ber].

Assertions

Assertions are essential for every unit testing framework, they are used to verify
expectations and abort the execution in the event of a failure. The PHPUnit
testing framework offers 40 different assertions to verify a wide range of expec-
tations. Among them are the usual assertions, such as assertTrue, assertSame,
and assertGreaterThan, but there are also assertions for specific cases, such
as assertJsonStringEqualsJsonFile, assertContainsOnlyInstancesOf, and
assertStringStartsWith [Ber].

This large choice of assertions is relevant, because it allows the testing of
complicated assumptions with a single assertion. Additionally, it is good practice
to avoid multiple assertions in one test case, because unit tests should fail
for exactly one reason. If a test case has multiple assertions, then assertions
succeeding to a failing assertion are not executed, and therefore additional
information about the cause of the error is lost. Nevertheless, multiple assertions
are acceptable, when they are used as guard assertions, which guarantee a
certain original state [Osh09].

Dependencies and Data Providers

Dependencies between tests can be achieved with the use of the @depends

annotation. A test can have one or more dependencies and the return value of
a dependant test can be used as an argument in the actual test. If one of the
dependant tests fail, the actual test is not executed [Ber].

Data providers are useful for repeating the same test with multiple inputs,
they are assigned with the @dataProvider annotation. Any public method that
returns an array of arrays or an object, which is traversable by the means of
an iterator returning an array, can be referenced as a data provider. The values

23

4 Test Tools

of the array represent one test vector that is passed to the test function as
arguments [Ber].

Output and Exceptions

To test the standard output of a method, PHPUnit collects the outputs of all
encountered calls to echo and print by the means of the PHP output buffer12.
When the test case reaches the end, the buffered output is asserted to the
expectation stated by the string argument of the expectOutputString function
[Ber].

There are various ways to test exceptions in PHPUnit. Firstly, annotations can
be used to verify that an expected exception type, code, or message occurred.
Secondly, there is a setExpectedException function that works in the same way
as the previously explained method to test an expected output. It is also capable
of testing the exception type, code, and message. Finally, an expected exception
can be caught in order to successfully complete the test case and otherwise, if
the exception was not triggered, a failure can be emitted [Ber].

4.1.3 Advanced Techniques

Stubs and Mock Objects

In the same way as it is favourable to avoid multiple assertions, it is considered
to be more informative to reduce the sources of possible failures by isolating
the functionality under test. In order to isolate functionality, the dependencies
to other objects or external resources can be replaced by stubs or mock objects.
They can be imagined as a simulation of an object or a resource that returns
simulated values of complicated computations or resources that are difficult to
access. This improves on the one hand the run time and on the other hand the
robustness against changes of the unit test [MDG11].

The biggest difference between stubs and mock objects is that mock objects
perform additional verifications in regard to the communication of the simulated
object. Therefore, mock objects are able to fail tests but stubs cannot fail tests.
This leads to the conclusion that a test case should only use one mock object,

12http://www.php.net/manual/en/ref.outcontrol.php

24

http://www.php.net/manual/en/ref.outcontrol.php

4 Test Tools

because as pointed out before, unit tests should fail for exactly one reason. To
create a stub or a mock object PHPUnit has a getMock method to automatically
create the object. Typically this generates a stub, but when expectations are
added the object becomes a mock object [Osh09] [Ber].

Database Testing

Almost every web application relies on a database to store persistent data.
Therefore, it is viable to provide ways to efficiently test these interactions. It is
difficult to integrate database interactions in unit tests, because for each test
case, a known state needs to be prepared and these are complex to set up and
to maintain. In order to accomplish database interactions, the following issues
need to be addressed.

The database schema and tables must be known and it must be possible for
them to be automatically created. In the set up phase of the test case data rows
that are required by the test must be inserted into the database to produce a
known state. After the test run the produced database state needs to be verified.
Finally, the performed actions must be cleaned up, so that the subsequent test
case has a clean database state. Otherwise, it can lead to undesired side effects,
which negatively affect the result of the subsequent tests [Ber].

One option for performing database tests is to use the previously mentioned
stubs and mock objects by simulating the interactions. Another possibility is
to use the DbUnit extension of PHPUnit, which provides an abstraction layer
that simplifies the aforementioned issues. It is capable of keeping a database
connection open for a complete test run to reduce the runtime of the unit tests.
Then, methods are included to create expectation data sets and to validate
expected database states against expectations, which can be expressed as XML,
YAML13, CSV files14 or a PHP array. Additionally, the set up and tear down
process have convenience functions such as automatically inserting specified
data rows into the corresponding tables [Ber].

13http://yaml.org/
14https://tools.ietf.org/html/rfc4180

25

http://yaml.org/
https://tools.ietf.org/html/rfc4180

4 Test Tools

Code Coverage

Code coverage is a measure for indicating the lines of code that are executed
when running the test suite. It is suited to identifying code that is not tested and
can be used to visualise the progress of the project by the means of a continuous
integration (CI) server. The code coverage tool that is included in PHPUnit
employs the PHP Xdebug15 extension for the statement coverage functionality.
A coverage report can have different output formats as discussed earlier. When
the coverage report is outputted as HTML16, executed lines are highlighted
green, unexecuted lines are highlighted red and lines that can never be executed
are highlighted grey [Ber].

A 100% unit test code coverage is no guarantee that the finished product
works as expected. This is because unit tests are designed to test independent
units of code and not the interactions between them. In order to test that the
separate units work together as desired, functional or integration tests must be
applied. Nevertheless, a high code coverage is valuable for catching regressions
early in development [MDG11].

4.2 Functional and Integration Tests

Functional and integration tests have a lot in common, but they focus on
different aspects. Functional tests are used to test that the software meets
the customer requirements, which often corresponds to a user story in agile
software development. Integration tests are used to test that interactions between
different components of the system, such as the file system or the database,
work together as expected, which is often indicated by the presence of a data
flow. Both test methods perform tests on the software as a whole, which means
that no stubs and mock objects are allowed. Therefore it is possible to employ
the same tools to achieve integration, or functional tests [Raj].

Modern web applications make heavy use of client side JavaScript to add func-
tionality and to reduce the load on the web servers. Earlier, protocol driven test
tools that mimic a browser by simulating the HTTP protocol17 were sufficient
to test web applications, but they are not able to test JavaScript interactions

15http://www.xdebug.org/
16http://www.w3.org/HTML/
17http://www.w3.org/Protocols/rfc2616/rfc2616.html

26

http://www.xdebug.org/
http://www.w3.org/HTML/
http://www.w3.org/Protocols/rfc2616/rfc2616.html

4 Test Tools

[BGH07]. In addition, the content is often separated from the presentation and
is asynchronously retrieved to reduce the data traffic. Moreover, it becomes
increasingly important that the application is usable on different viewport sizes,
which arises from diverse form factors relating to mobile phones up to desktop
PCs. Beyond that, additional testing efforts are required due to different browser
engines, which can produce varying results in certain situations.

Testing frameworks, which are capable of performing functional tests on web
applications that support JavaScript and asynchronous requests to retrieve
and dynamically display content, are limited. Among them are the following
five testing frameworks, the first four are open source and the last one is
commercial.

1. Selenium18

2. Watir19

3. Windmill20

4. WebTest21

5. Sahi22

All these frameworks are web automation tools that perform predefined steps in
an actual web browser, except for WebTest, which uses HtmlUnit23, a headless
web browser implementation with basic JavaScript support. Overall, they work
similarly, but some of them have constraints in regard to applicable program-
ming languages and favourable working environments. The most general testing
framework is Selenium, therefore the following examples and descriptions refer
to it.

4.2.1 Architecture

Selenium Core

This is the original library also referred to as Selenium 1.0 created by Jason
R. Huggins that serves as a basis for the later described Selenium Integrated

18http://docs.seleniumhq.org/
19http://www.watir.com/
20http://www.getwindmill.com/
21http://webtest.canoo.com/
22http://sahipro.com/
23http://htmlunit.sourceforge.net/

27

http://docs.seleniumhq.org/
http://www.watir.com/
http://www.getwindmill.com/
http://webtest.canoo.com/
http://sahipro.com/
http://htmlunit.sourceforge.net/

4 Test Tools

Development Environment (IDE) and Selenium Remote Control (RC). It contains
a JavaScript driven test runner that is capable of driving interactions with
the web application and evaluating JavaScript in an automated manner. The
command set used is called Selenese and has a very simple syntax, it consists of
the command name and has a maximum of two parameters [BGH07].

In order to ensure compatibility with multiple browser platforms and
therefore increase the gain achieved by using automated tests, the Selenium
core relies on standard HTML to define and run tests. A test case is defined
by a sequence of commands, which are saved in a HTML table, where a
row corresponds to one command. Each row has three columns to store the
corresponding arguments of the Selenese command. The test suite also consists
of a HTML table, but with the difference that each row contains a hyperlink to
a test case in order to add the referenced test case to the test suite [BGH07].

To execute a test suite the included test runner consisting of static HTML and
JavaScript is employed. The use of a JavaScript powered test runner guarantees
that the tests work in almost every browser. However, it has limitations due
to the sandboxed JavaScript environment of modern browsers, such as the
same-origin policy to prevent cross-site scripting. To avoid failures, which
are attributed to this limitation it is necessary to place the tests in the same
location as the application under test. Thus, this can lead to complicated test
environments if the application is distributed over several locations. Another
limitation arises, when programming logic is required to perform more complex
testing tasks [Hun+10].

Selenium Integrated Development Environment (IDE)

The Selenium IDE offers the simplest way to create test cases, but it is unfor-
tunately only available as an extension to the Firefox web browser. It is able
to record the actions performed in the browser, such as clicking on a link,
entering text in an input field, and further interactions with the web application.
These actions are saved as a test case using the previously discussed Selenese
commands and can be repeated in an automated manner as often as required
[BGH07] [Bur12].

The recording of a test case does not include assertions. To add assertions,
the Selenium IDE offers the possibility of bringing up a context menu with
corresponding options when clicking on an element. Alternatively, assertions
can be manually added to the test case [Hun+10].

28

4 Test Tools

Another useful feature is the capability to export recorded test cases to other
programming languages including C#, Java, Python, and Ruby. This vastly
reduces the time needed to create test cases that do not rely on Selenese
commands, which applies to subsequently described test methods. However,
a disadvantage of the IDE is that complex testing tasks cannot be handled,
for example, when an iterator is required to test each element of a variable
list. In order to cope with these situations one of the mentioned programming
languages can be used to drive the tests with the Selenium Remote Control or
Selenium WebDriver [RF11] [Bur12].

Selenium Remote Control (RC)

Selenium RC is applied for more sophisticated test suites that rely on automated
execution and evaluation of tests, and is important for use with continuous
integration practices. Considering that the tests are driven by programming
languages and not Selenese commands, extensive test cases are possible, and
well known testing frameworks like JUnit or TestNG can be used. If the test
suite has one of the subsequent requirements it is recommended that Selenium
RC is employed, as they cannot be achieved with Selenium IDE: conditional
statements, iterations, logging and reporting of test results, error handling of
particularly unexpected errors, database testing, test case grouping, re-execution
of failed tests, test case dependencies, and capturing the current application
state by means of a screenshot in the event of an error [Hun+10].

It is designed as a client-server architecture that allows the tests to run on two
separate machines, but it is also possible to run the server and client on the
same machine. The server is responsible for starting web browser instances
in which the tests are run, receiving and executing Selenese commands, and
returning the results of the execution. The client acts as an interface between
the supported programming languages and the server, it is responsible for
sending the commands to the server and returning the received results back to
the program [Hun+10].

Another important task of the server is to make the test runner available
and to avoid the previously mentioned same origin policy to make it work. This
can be done by means of the proxy injection mode that uses a HTTP proxy to
mask the web application with an embedded Selenium core within a fictional
URL. A second possibility is to launch the browser in a special mode called

29

4 Test Tools

heightened privileges, that grants unusual rights to the web application, such
as cross site scripting, or accessing file upload inputs [Hun+10].

Selenium WebDriver

Selenium WebDriver also referred to as Selenium 2.0 is a new approach to
achieve browser automation that makes use of native interfaces to bypass the
limitations of JavaScript driven tests, which are employed by Selenium core. The
use of Selenium WebDriver is recommended, when support for page navigation,
drag-and-drop, AJAX-based user interface elements, handling multiple frames,
multiple browser windows, popup windows, or alert boxes are a main concern
for the test suite [Hun+10].

The WebDriver API uses the accessibility API of the browser to run the
tests and provides a more concise and object oriented interface for writing
tests. It offers the ability to run the tests locally or remotely and provides an
interface for Selenium RC that guarantees backwards compatibility to reduce
porting efforts. Recently the World Wide Web Consortium (W3C) that is the
most recognised organisation for defining web standards has started to work
on the standardisation of the WebDriver API24. As a result, the responsibility of
the implementation of a working WebDriver API is transferred to the browser
developers, which can lead to a more stable and better-supported interface
[Bur12].

Selenium Grid

Selenium Grid should be used for two possible reasons, either to speed up a
slow-running test suite or to test various browser platform combinations in a
reasonable way. It is possible to run test cases that are written for Selenium RC
or Selenium WebDriver in a grid setup, as illustrated in Figure 4.1. The core of
the grid setup is the hub that is responsible for managing client requests and
incoming nodes. Grid nodes are instances, which offer their service to execute
tests on specific browsers and platforms. In order to run tests, the client sends
a request with the required browser capabilities to the hub, and if there is an
instance available that satisfies them, it is assigned to the client to perform the
tests [Hun+10] [Bur12].

24http://www.w3.org/TR/webdriver/

30

http://www.w3.org/TR/webdriver/

4 Test Tools

The biggest time savings stem from parallel test execution, since an arbitrary
number of machines providing test instances can be connected to the hub.
However, it is necessary to define the level at which the tests are able to run in
parallel to make sure that there are no mutual interferences. The two possible
options are to align the tests at class or method level [Bur12].

Selenium
Grid Hub

Firefox Nodes

Safari Nodes

Internet Explorer Nodes

Chrome Nodes

Android Nodes Test Runner / Client

Figure 4.1: The structure of a Selenium Grid setup

4.2.2 The Basics

The HTML test suite is not suitable for satisfying more advanced requirements,
as it has limitations. Therefore, it is recommended that Selenium RC or Selenium
WebDriver are used in combination with a unit testing framework like JUnit
or TestNG. Thus, earlier discussed capabilities such as fixtures, dependencies,
data providers and error logging are available and they behave similarly to the
PHPUnit equivalents.

In contrast to the Selenese commands there are no built-in assertions in
Selenium RC and Selenium WebDriver. Therefore it is necessary to employ the
assertions from the selected unit testing framework [Hun+10].

Accessing Elements

In order to perform actions, the most important task is to find and access
elements of the web application. Generally, elements can be located by means

31

4 Test Tools

of an identifier, name, CSS class, or XPath expression. It is recommended that
elements are accessed using a unique identifier although the name and CSS class
attribute also work. However, these two attributes can have multiple occurrences,
which results in the necessity of further selections [Hun+10] [Bur12].

If these methods are not sufficient for accessing the required element, another
method that makes use of the XML Path (XPath25) language can be employed
to access elements. It is a query language that is able to locate elements from
the Document Object Model (DOM26) of the browser. Nevertheless, it should
only be used when there is no other possibility, because it is an extremely costly
operation compared to the previous methods [Bur12].

Verifications and Assertions

It is in the nature of web applications that they are served by web servers.
Therefore, it is necessary to consider a delay for retrieving the contents. In order
to wait for certain conditions Selenium offers several commands to perform
explicit waits, which are able to await page loads, frame loads, and states like
the presence or absence of alert messages, elements, and texts. These commands
have a default timeout of 30 seconds, which can be adapted to specific needs.
Whenever a condition cannot be completed and the event is within the timeout
time, then the execution of the command is repeated and no log or error message
is emitted [Bur12].

With regard to gathering information about unexpected behaviour, assumed
conditions are either verified or asserted. The difference between verifications
and assertions is that if an assertion fails, the execution is aborted and no further
steps are taken. In contrast, if a verification fails, the failure is logged and the
execution of the test continues. This can be useful for getting a better insight into
what is causing a problem, because checks after a failure are performed since
the test is not aborted. Therefore more information about the overall system is
available [Hun+10].

Thus, a general Selenium test has to go through the following steps. Firstly, open
a page and wait until it is loaded, secondly locate the required element, and
finally perform an action on the element, or check expectations by the means
of verification or assertion. The following capabilities are prepared to examine
expectations, which are able to check if: an element is present, an element is not

25http://www.w3.org/TR/xpath20/
26http://www.w3.org/DOM/

32

http://www.w3.org/TR/xpath20/
http://www.w3.org/DOM/

4 Test Tools

present, a text is available, an attribute is correctly set, a checkbox is checked,
an alert occurred, or the website title is correctly set [Hun+10] [Bur12].

4.2.3 Advanced Techniques

Asynchronous JavaScript and XML (AJAX)

In order to provide a reasonable user experience in modern web applications it
is inevitable that Ajax is used to asynchronously load content and dynamically
create elements. The key problem is that elements of the web application
are modified without a page refresh and consequently most Selenium wait
commands have no effect. Therefore, many invalid test failures are generated,
which are caused by components that have not yet been created. However, there
are commands, like waitForElementPresent or waitForVisible, to prevent
these kinds of failures by waiting until a certain element is present or visible
[Hun+10] [Bur12].

Unfortunately, these commands are no longer available in Selenium WebDriver,
thus another solution for this problem is needed. The most obvious solution for
solving timing issues is to pause the execution with a sleep command. However,
this is not recommended, because it breaks an important rule that states that
automated tests should run as quickly as possible. A more elegant solution is
to apply an implicit wait, which ensures that whenever an unexpected failure
occurs an assigned timeout is completed before the test execution continues.
Thus, failures due to elements that have not yet been created can be prevented
without using explicit waits, but if the test contains many consecutive failing
commands, the test run is stretched [BGH07] [Bur12].

Finally, an expected condition can be defined and awaited. For example
Listing 4 shows that the expected condition is evaluated by JavaScript, which is
capable of directly interacting with the web application. In this case jQuery27

is used to perform Ajax requests, therefore a member variable active can be
accessed to determine the number of pending requests. If this variable equals
zero, it means that all asynchronous activities are finished [BGH07].

27http://jquery.com/

33

http://jquery.com/

4 Test Tools

1 void ajaxWait() {
2 Wait<WebDriver> wait = new WebDriverWait(driver(), Config.TIMEOUT_WAIT);
3 wait.until(jQueryReady());
4 }
5

6 ExpectedCondition<Boolean> jQueryReady() {
7 return new ExpectedCondition<Boolean>() {
8 public Boolean apply(WebDriver driver) {
9 return ((Boolean) ((JavascriptExecutor) driver).executeScript(

10 "return (window.jQuery.active == 0);"));
11 }
12 };
13 }

Listing 4: Selenium wait for an expected condition evaluated by JavaScript

Mobile Devices

The WebDriver API is also able to perform tests on mobile devices running
Android or iOS. However, it is sufficient to target Android devices to evaluate
mobile user experience, because it has more browser engines available and they
are responsible for the biggest differences in rendering. Among them is the
WebKit browser engine, which is the only option for iOS devices, therefore
the additional efforts to make the tests applicable on iOS is not particularly
beneficial.

For testing purposes, either an emulator or a real device can be used.
Previously, it was recommended to run the tests on a real device. The reason
was that the Android emulator was very slow, since the available versions were
only compatible with ARM-based architectures. However, that has changed with
the release of new versions, which are compatible to x86-based architectures. In
order to run tests, it is necessary to prepare the emulator or the physical device
by installing the Selenium Server for Android28 [Bur12].

Alternatively, a more straightforward approach with little set up effort can
be applied, which controls the viewport size for imitating mobile devices. A
single line of code can achieve this, as shown in Listing 5. This is sufficient for
checking basic functionalities of web applications when applying responsive
web design.

28http://selendroid.io/

34

http://selendroid.io/

4 Test Tools

1 void openMobileLocation(String location) {
2 driver().get(this.webSite + location);
3 driver().manage().window().setSize(new Dimension(320, 480));
4 }

Listing 5: Selenium open page with defined viewport size

Headless Testing and Screen Captures

Because the tests are running in an actual web browser, the machine becomes
unusable while they are executed. That is caused by surfacing browser windows,
which steal the focus of the currently selected window, since every test is
performed in its individual browser instance. On machines operated by Linux,
this behaviour can be suppressed by using a headless display server like the
X11 Virtual Frame Buffer (XVFB29), which allows applications to run in the
background. This approach is also very useful for servers, which usually do not
have a physical display hardware available [Bur12].

Occasionally, the cause of failing tests is not immediately obvious. Therefore, it
is convenient to save the state of the failing web application by the means of a
screenshot to examine the error later. Considering headless, parallel running, or
distributed tests this can reveal substantial information, which is otherwise lost.
An easy way of taking screenshots in the event of an error is to catch exceptions
that were thrown by failing assertions. Selenium offers an interface that uses
browser libraries for capturing screenshots, which returns either a file, or a
base64 encoded string that can be transferred over the network [Bur12].

29http://www.xfree86.org/4.0.1/Xvfb.1.html

35

http://www.xfree86.org/4.0.1/Xvfb.1.html

5 Behaviour Driven Development

“‘Behaviour’ is a more useful word than ‘test’,” stresses
Dan North [Nor06].

Behaviour Driven Development (BDD) is an evolution of previously mentioned
agile software development practises that aim to solve recurring misconcep-
tions and uncertainties. It is influenced by Extreme Programming (XP) and
especially by Test Driven Development (TDD), Continuous Integration (CI),
and Acceptance Test–Driven Planning (ATDP). In traditional projects the main
reason for failure is miscommunication. Therefore, a primary concern of BDD
is to improve communication between all participants of the project including
customers, analysts, designers, testers, and developers. An effective measure is
to create a ubiquitous language to shape a shared vocabulary. As well as the
ability to specify requirements in “plain English” to make them accessible to all
team members [Nor06] [Che+10].

In regard to method names, it suggests the use of descriptive sentences for
test method names in order to reveal their purpose. These names should exactly
describe a single behaviour of the system and the corresponding test should
only test as much functionality as expressed in the method name. This approach
instructs developers to choose useful names, which generates an additional
gain for future development in terms of readable documentation and fast error
detection. Another essential point is to create valuable software, therefore the
development of new features is prioritised after business value and features
without business value are omitted [Nor06].

Furthermore, it adheres to an important principle, which all agile software
development methodologies have in common. That is to write simple and clean
code, which is limited to satisfy the test or fulfil the expected behaviour. In
addition, as the plain text requirements can be executed automatically, these
can be used as acceptance tests, and subsequently as regression tests [Nor06].

The most significant benefits of this second-generation agile development meth-
odology are the development of a ubiquitous language, automated acceptance

36

5 Behaviour Driven Development

tests, responsive documentation, also referred to as living documentation, and
an improved software quality. Besides, it is easy to adopt for teams with experi-
ence of other agile software methodologies.

5.1 The Basics

5.1.1 Express Requirements

As mentioned, TDD had a great impact on BDD, however a substantial dif-
ference concerns the usage of the word “test”. The use of this word makes
developers suppose that data types and internal structures should be covered
by unit tests, which leads to tightly coupled tests and not required dependen-
cies. Furthermore, these tests fix the implementation instead of the behaviour,
which increasingly leads to less resilient tests. In regard to reporting errors,
although the behaviour of tested objects has not changed, a considerable slow
down in the development progress is apparent. Therefore, the word “test” was
completely removed from the development process to reduce the described
effect [Nor06] [Che+10].

There are two distinguishable ways of applying BDD: SpecBDD and StoryBDD.
SpecBDD is comparable to TDD with the main difference being that when ex-
pressing specifications the word “test” is dismissed and replaced with “should”.
In contrast, StoryBDD is suited for functional tests by executing scenarios, which
are expressed as user stories.

An important criterion for producing valuable software, is to meet vital cus-
tomer requirements and adhere to them throughout the entire project. As
customer requirements usually contain behaviour, they can be captured as a
user story. It is crucial that the user stories are consistent in order to be suitable
for subsequent automatic processing. Therefore, it is suggested that a story
template is used that provides the basic structure. An example of a simple story
template is shown in Listing 6. It uses a semi-formal format, which is often
embedded in a domain specific language (DSL), and allows the specification
of requirements in plain text. This has the advantage, that requirements are
easier to understand and comprehend for non-technical team members [Nor]
[WH12]. Furthermore, due to the special structure of the user stories, they can
be automatically executed by tools designed for that purpose (see Section 5.3)
in order to obtain an executable specification.

37

5 Behaviour Driven Development

In BDD a user story is referred to as a feature and should meet the follow-
ing properties: cover only a single behaviour, have a concise and precise title
describing the story, contain background information, and define one or more
acceptance criteria [Nor]. The background information serves to illustrate the
business value of the feature by describing the expected benefit and identifying
the recipient. For instance, the narrative section presented in Listing 6 offers a
great template for providing the essential information. The scenarios are con-
crete examples, which represent the acceptance criteria of the associated feature.
As can be seen in Listing 6, they have a title and follow a given-when-then
structure to describe the scenario [Nor] [Che+10].

Title (one line describing the story)

Narrative:
As a [role]
I want [feature]
So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title
Given [context]

And [some more context]...
When [event]
Then [outcome]
And [another outcome]...

Scenario 2: ...

Listing 6: Example of a story template (taken from [Nor])

5.1.2 Gherkin Syntax

Gherkin is a widely used domain specific language (DSL) to express features
for BDD that is adopted by a variety of related tools. The most important
property is that it maintains human readability, as it mainly consists of plain
text descriptions, which subsequently are utilised as documentation. Its syntax is
composed of a set of keywords, which shape the basic structure that is required
to automatically execute user stories. The essential keywords to create an
automatically executable feature are Feature, Scenario, Given, When, and Then.
Additional optional keywords are Background, Scenario Outline, Examples, *,
And, and But [WH12].

38

5 Behaviour Driven Development

Feature holds the title of the feature and is followed by a narrative description,
as shown in the example of a story template in Listing 6.

Scenario holds the title of the scenario and is followed by an acceptance criteria
in the given-when-then structure.

Background holds steps, which are executed for all scenarios in a feature.
Scenario Outline is used in combination with Examples for repeating scenarios

with different input or output values.

The remaining keywords are applied to specify the acceptance criteria of the
feature. Each line starting with one of these keywords represents a step defini-
tion, which are processed consecutively to evaluate the acceptance criteria. Step
definitions map the plain text description of the steps to programming code that
is responsible for performing the described action. A significant characteristic
of step definitions is that they are not scoped, which means that every specified
step definition is globally available [Che+10] [WH12].

Considering that BDD is a tool to encourage team communication, a crucial
aspect is the ability to write features in native language. Therefore, the Gherkin
syntax is designed to support internationalisation and the mentioned keywords
are available in multiple languages [WH12].

5.1.3 Workflow Cycle

The workflow of BDD reveals that the emphasis lies on the design practice and
not on the test practice. It follows an outside-in process and strongly supports
best practices of existing agile software development methods. In the following
section the workflow cycle is described, which is illustrated in Figure 5.1.

The outer cycle corresponds to functional testing (StoryBDD) and the inner
cycle corresponds to unit testing (SpecBDD). Every iteration starts in the outer
cycle with the assessment of the acceptance criteria by creating a failing scenario
(red) [Che+10].

Then the process moves to the inner cycle that follows traditional TDD.
This consists of three steps, namely: write a failing test to demonstrate missing
functionality (red), make the test pass by satisfying the expectation (green), and
refactor the generated code to clean up duplications and to improve readability
(dotted) [Osh09].

When the inner cycle is complete, the process continues in the outer cycle
with the evaluation of the acceptance criteria, which verifies that the code is

39

5 Behaviour Driven Development

working as intended (green). On success, it is followed by refactoring (dotted)
and the process can be repeated until the feature is complete [Che+10].

Unit Test
SpecBDD

Acceptance Test
StoryBDD

Start

red

red

green

green
refactor

refactor

Figure 5.1: BDD workflow illustrated in a cycle (adapted from [Che+10])

5.2 Benefits

5.2.1 Ubiquitous Language

In Agile Testing: A Practical Guide for Testers and Agile Teams [CG08] the col-
laboration with customers is described as a key success factor. Furthermore,
it recommends encouraging direct communication between developers and
customers as often as possible to reduce the risk of missing requirements and
misunderstandings. To overcome the language barrier it suggests employing
testers, since they have knowledge of both: the domain language, and technical
language.

That aside, a more effective method is to adopt a consistent vocabulary in the
project that is used by all participants. Usually, in larger projects a business

40

5 Behaviour Driven Development

analyst is involved. The person with the business analyst role has the responsi-
bility of promoting a shared vocabulary and to ensure that it is used in the user
stories. A shared vocabulary (also called ubiquitous language) has to develop
independently for each project, as it has to be adapted to the needs of different
domains and the participating team members. Additionally, all team members
have to agree on the use of certain vocabularies, in order to strengthen the
commitment for employing the shared vocabulary [AM07] [Che+10].

Once a ubiquitous language has been established successfully, the bene-
fits are fewer mistakes resulting from misunderstandings and a more moti-
vated team. The motivation stems from more effective communication between
business-facing and technology-facing parties when discussing new features or
upcoming difficulties. Subsequently, it is important to evolve the language by
keeping it consistent and up to date by incorporating frequent activities of the
target audience [Adz11] [WH12].

5.2.2 Automated Acceptance Tests

In contrast to software development, it is relatively easy to determine when the
construction of a building or the preparation of food is completed. In order to
visualise the progress in a software project, automated acceptance tests, as they
are applied in BDD, can be used. The acceptance tests are not only user-centric,
but also customer-centric and can reveal whether the customer’s intentions
are satisfied. Whereas other agile development methods such as extreme pro-
gramming (XP) do not promote automated acceptance tests, nonetheless they
can be integrated in the development process. Certainly, the use of automated
acceptance tests is highly recommended, as they are regarded as best practice
[CG08] [Che+10].

In BDD the acceptance criteria is included in the concrete examples of the
user stories and is therefore available from the beginning without additional
effort. As a result, the automated acceptance tests emerge from the automated
execution of the user stories, which usually consist of several concrete examples,
each having an acceptance criterion for evaluation [WH12].

41

5 Behaviour Driven Development

5.2.3 Living Documentation

In order to transfer knowledge or to determine system functionalities, the
documentation of a project is an excellent source of information. In many
projects the creation of documentation has a low priority, and is therefore
often written all in one go at certain development stages. Subsequently it loses
synchronisation to the actual code and becomes more and more ineffective
as information source. A reason for this is costly maintenance resulting from
frequent refactoring and short development cycles, but also pending tasks
with higher priority cause update delays. Accordingly, relying on outdated
documentation can have a counterproductive effect and the only remaining
option for getting accurate information is to examine the system’s source code.
Evidently, this situation is not ideal for teams, which have members with little
or no programming knowledge [Adz11].

In BDD the previously explained plain text features are used as documentation.
This leads to the term living documentation, since, whenever a feature is updated,
the documentation is updated too. The advantages are that it is an accurate
representation of the real state of the application, it is as reliable as the source
code of the system, and it is easy for all team participants to access and
understand. In addition the documentation adapts with the business model
over time, as the features are tightly coupled with the software and make use of
ubiquitous language [Adz11] [WH12].

An example of living documentation covering the well-known logic game Tic-
Tac-Toe, can be seen in Figure 5.2. The employed web service is called Relish1

and offers a platform for publishing and sharing living documentation. It aims
to present it in the same way as traditional specification documents [WH12].

However, Relish is going to be replaced by Cucumber Pro2, a new service
that offers the same features with the incorporation of many improvements.
The most noticeable improvement concerns editing and reporting capabilities
which are accessible from a web interface. Therefore it is a great addition to the
development environment and especially well suited for business-facing team
members [HBW].

1https://www.relishapp.com/
2https://cucumber.pro/

42

https://www.relishapp.com/
https://cucumber.pro/

5 Behaviour Driven Development

Figure 5.2: Living documentation of Tic-Tac-Toe on Relish [Sam]

5.2.4 Software Quality

An aspect of software quality is to build software that is useful to the customer.
This is achieved by specifying multiple acceptance criteria for software features,
which helps to focus on customer expectations [Che+10].

As shown in Figure 5.1, the workflow follows an outside-in process that is
particularly suited to improve and evolve the software design in small steps.
Furthermore, since testability is incorporated from the beginning, the produced
code is not as tightly coupled as in traditional projects and dependencies are
reduced. Additionally, the workflow encourages the creation of small and

43

5 Behaviour Driven Development

simple methods, which simplifies the maintenance as a further consequence.
The refactor-step, an integral part of the workflow, promotes the reduction of
unnecessary code [Tat] [Che+10].

5.3 Related Tools

The original tool that implemented the idea of BDD is JBehave, it is based on
JUnit and replaced all vocabulary referring to a test with words promoting
behaviour. Another tool that had a strong influence on BDD is Cucumber that
introduced the widely used Gherkin syntax [Nor06].

In Table 5.1 are tools listed, which are capable of performing StoryBDD. Ad-
ditional information is given about the employed programming language and
whether Gherkin syntax is supported. As can be seen, this table contains more
than one tool, whose name contains Cucumber. A reason for this is the avail-
able Cucumber Technology Compatibility Kit3, which simplifies the creation of
compatible implementations.

In addition Cucumber includes a wire protocol that allows the implementa-
tion of the core component, which is responsible for the execution of the steps
of a scenario, in different programming languages. Table 5.2 lists available
implementations of the wire protocol with the corresponding programming
languages. Finally, Table 5.3 lists tools to practise SpecBDD and provides in-
formation about the associated programming language.

3https://github.com/cucumber/cucumber-tck

44

https://github.com/cucumber/cucumber-tck

5 Behaviour Driven Development

Tool Platform Gherkin Further Information

Behat PHP Yes http://behat.org/

Behave Python Yes https://pythonhosted.org/

behave/

Cucumber Ruby Yes http://cukes.info/

Cucumber.js JavaScript Yes https://github.com/

cucumber/cucumber-js/

Cucumber-JVM Java Yes https://github.com/

cucumber/cucumber-jvm/

Concordion Java No http://www.concordion.org/

Coulda Ruby No http://coulda.tiggerpalace.

com/

Freshen Python Yes https://github.com/

rlisagor/freshen/

JBehave Java No http://jbehave.org/

Lettuce Python Yes http://lettuce.it/

NBehave .NET Yes http://nbehave.org/

PHPUnit PHP No http://phpunit.de/

RBehave Ruby No http://dannorth.net/2007/

06/17/introducing-rbehave/

SpecFlow .NET Yes http://www.specflow.org/

StoryQ .NET No http://storyq.codeplex.com/

Vows JavaScript No http://vowsjs.org/

Table 5.1: Test tools capable of performing StoryBDD

45

http://behat.org/
https://pythonhosted.org/behave/
https://pythonhosted.org/behave/
http://cukes.info/
https://github.com/cucumber/cucumber-js/
https://github.com/cucumber/cucumber-js/
https://github.com/cucumber/cucumber-jvm/
https://github.com/cucumber/cucumber-jvm/
http://www.concordion.org/
http://coulda.tiggerpalace.com/
http://coulda.tiggerpalace.com/
https://github.com/rlisagor/freshen/
https://github.com/rlisagor/freshen/
http://jbehave.org/
http://lettuce.it/
http://nbehave.org/
http://phpunit.de/
http://dannorth.net/2007/06/17/introducing-rbehave/
http://dannorth.net/2007/06/17/introducing-rbehave/
http://www.specflow.org/
http://storyq.codeplex.com/
http://vowsjs.org/

5 Behaviour Driven Development

Tool Platform Further Information

Clucumber Common Lisp https://github.com/antifuchs/

clucumber

Cucumber-CPP C++ https://github.com/cucumber/

cucumber-cpp

Cucumber-Lua Lua https://github.com/cucumber/

cucumber-lua

Cuke4AS3 ActionScript https://github.com/

flashquartermaster/Cuke4AS3/

Cuke4Nuke .NET https://github.com/

richardlawrence/Cuke4Nuke/

Cuke4PHP PHP https://github.com/olbrich/

cuke4php/

Frank Objective-C http://www.testingwithfrank.com/

nStep .NET https://github.com/

clearwavebuild/nStep

Table 5.2: Implementations of Cucumber’s wire protocol

Tool Platform Further Information

Buster.JS JavaScript http://docs.busterjs.org/en/latest/

JDave Java http://jdave.org/

JsSpec JavaScript http://code.google.com/p/js-spec/

MSpec .NET https://github.com/machine/machine.

specifications/

NSpec .NET http://nspec.org/

PHPSpec PHP http://www.phpspec.net/

RSpec Ruby http://rspec.info/

Spec Python https://github.com/bitprophet/spec/

Table 5.3: Test tools capable of performing SpecBDD

46

https://github.com/antifuchs/clucumber
https://github.com/antifuchs/clucumber
https://github.com/cucumber/cucumber-cpp
https://github.com/cucumber/cucumber-cpp
https://github.com/cucumber/cucumber-lua
https://github.com/cucumber/cucumber-lua
https://github.com/flashquartermaster/Cuke4AS3/
https://github.com/flashquartermaster/Cuke4AS3/
https://github.com/richardlawrence/Cuke4Nuke/
https://github.com/richardlawrence/Cuke4Nuke/
https://github.com/olbrich/cuke4php/
https://github.com/olbrich/cuke4php/
http://www.testingwithfrank.com/
https://github.com/clearwavebuild/nStep
https://github.com/clearwavebuild/nStep
http://docs.busterjs.org/en/latest/
http://jdave.org/
http://code.google.com/p/js-spec/
https://github.com/machine/machine.specifications/
https://github.com/machine/machine.specifications/
http://nspec.org/
http://www.phpspec.net/
http://rspec.info/
https://github.com/bitprophet/spec/

6 Guided Procedure

“The hardest single part of building a software system is deciding precisely
what to build,” assures Frederick Brooks [Jr95].

This chapter demonstrates the guidance in the development process with be-
haviour driven development (BDD) by the means of a simple example. The
example discusses the creation of a shopping cart with basic functionality, sim-
ilar to the shopping carts used on several online shops. Cucumber is employed
to drive the development in this example. It is chosen because of the great
influence on BDD and the support of the widely used Gherkin syntax.

The first step in the development process is the creation of an empty folder
that is intended for project related files. Running the Cucumber command line
tool in that empty folder yields the suggestion to create a folder named features,
which is the default location for storing feature files. With the folder in place,
rerunning Cucumber results in the output that zero scenarios with zero steps
were executed. The corresponding output is shown in Listing 17. That means
everything is prepared to start following the BDD cycle shown in Figure 5.1.

6.1 Create Features

The red part of the outer circle gives the instruction to create a failing acceptance
test. Therefore, the most valuable behaviour, which is missing from the system,
is determined and written down as a new feature. In this example, the most
important functionality is the ability to add products to the shopping cart.
Therefore, a file named add products.feature containing the description of the
feature is put in the previously created features folder. The description follows
the Gherkin syntax based on the story template from Listing 6.

This example covers four scenarios including the following activities: add
a product to the shopping cart, get the name and price of a product in the
shopping cart, calculate the total sum of all products in the shopping cart, and

47

6 Guided Procedure

remove accidentally added products from the shopping cart. When writing
scenarios, it is important to take into account that no shared states exist. There-
fore, scenarios must be executable independently. In Listing 7 an exemplary
feature with the described scenarios is shown.

Feature: Add product to shopping cart

As a customer
I want to add selected products to my shopping cart
So that they are collected and listed for a purchase

Scenario: Add a product to my shopping cart
Given the shopping cart is empty
When I add a product to the shopping cart
Then the shopping cart should contain 1 item

Scenario Outline: Display the name and price of an added product
Given the shopping cart is empty
When I add a product called "<name>" that costs <price> to the shopping cart
Then the shopping cart should contain a product "<name>" that costs <price>

Examples:
name	price
Cucumber	1.29e
Gherkin	0.89e
Lettuce	2.39e

Scenario: Calculate the total sum of all products in the shopping cart
Given the shopping cart is empty
When I add a product called "Cucumber" that costs 1.29e to the shopping cart
And I add a product called "Gherkin" that costs 0.89e to the shopping cart
Then the shopping cart should contain 2 items
And the shopping carts total sum should be 2.18e

Scenario: Remove accidentally added products from the shopping cart
Given the shopping cart is empty
When I add a product called "Cucumber" that costs 1.29e to the shopping cart
And I add a product called "Gherkin" that costs 0.89e to the shopping cart
And I remove the product called "Cucumber" from the shopping cart
Then the shopping cart should contain 1 item
And the shopping cart should contain a product "Gherkin" that costs 0.89e

Listing 7: Example of the add products to a shopping cart feature

With the newly created feature in place, running Cucumber returns a consid-
erable amount of output that essentially advises the creation of missing step
definitions. Additionally, snippets covering the undefined steps are provided
for implementation, illustrated in Listing 8.

48

6 Guided Procedure

catroweb@webbox:$ cucumber
Feature: Add product to shopping cart

As a customer
I want to add selected products to my shopping cart
So that they are collected and listed for a purchase

Scenario: Add a product to my shopping cart
Given ...

Scenario Outline: Display the name and price of an added product
Given ...

Scenario: Calculate the total sum of all products in the shopping cart
Given ...

Scenario: Remove accidentally added products from the shopping cart
Given ...

6 scenarios (6 undefined)
23 steps (23 undefined)
0m0.018s

You can implement step definitions for undefined steps with these snippets:

Given(/ˆthe shopping cart is empty$/) do
pending # express the regexp above with the code you wish you had

end

When(/ˆI add a product to the shopping cart$/) do
pending # express the regexp above with the code you wish you had

end

Then(/ˆthe shopping cart should contain (\d+) item$/) do |arg1|
pending # express the regexp above with the code you wish you had

end

When(/ˆI add a product called "(.*?)" that costs (\d+)\.(\d+)e to the shopping cart$
/) do |arg1, arg2, arg3|

pending # express the regexp above with the code you wish you had
end

Then(/ˆthe shopping cart should contain a product "(.*?)" that costs (\d+)\.(\d+)e$
/) do |arg1, arg2, arg3|

pending # express the regexp above with the code you wish you had
end

Then(/ˆthe shopping cart should contain (\d+) items$/) do |arg1|
pending # express the regexp above with the code you wish you had

end

Then(/ˆthe shopping carts total sum should be (\d+)\.(\d+)e$/) do |arg1, arg2|
pending # express the regexp above with the code you wish you had

end

When(/ˆI remove the product called "(.*?)" from the shopping cart$/) do |arg1|
pending # express the regexp above with the code you wish you had

end

Listing 8: Cucumber output with missing step definitions

49

6 Guided Procedure

6.2 Create Step Definitions

When copying the proposed snippets to a file named steps.rb and running Cu-
cumber, the output informs the user about pending step definitions, which are
required to perform the tests. Step definitions are also referred to as glue code,
as they are the link between plain text steps and the executable implementation.
The produced output can be seen in Listing 9.

With regard to the implementation of the step definitions by the means
of unit tests, the next step in the workflow cycle is reached, in particular the
red part of the inner circle. However, Cucumber has no unit testing framework
included and therefore a standalone tool that provides support for assertions
is needed. Any tool that is able to perform unit tests is suitable, although it is
recommended to use tools that are capable of performing SpecBDD. A small
incomplete collection is prepared in Table 5.3. This example employs RSpec as
a unit testing framework, because it was the first tool that made BDD available
for Ruby, and Cucumber originated from it.

6.2.1 Transformations

As can be seen in Listing 7, some values are highlighted in the feature file. Fur-
thermore, in the previously generated snippets of undefined steps, these values
are replaced by regular expressions. All matches of these regular expressions are
captured and are used as parameters for the step definition. Considering that
these parameters are extracted from a text input, it occurs that a transformation
or type cast is necessary for specific data types. It is suggested to extract and
collect recurring transformations in a particular file. This example uses two
transformations shown in Listing 10: the first captures simple numbers, and the
second is used to capture Euro values.

6.2.2 Implementation

A complete example of the implemented step definitions using RSpec assertions
can be seen in Listing 11. This resulting implementation has developed in very
small steps, as is typical in an agile development process.

The presented example reveals interesting aspects. Firstly, it is sufficient to im-
plement 7 step definitions to cover 17 steps, which were used in the acceptance

50

6 Guided Procedure

catroweb@webbox:$ cucumber
Feature: Add product to shopping cart

As a customer
I want to add selected products to my shopping cart
So that they are collected and listed for a purchase

Scenario: Add a product to my shopping cart
Given the shopping cart is empty

TODO (Cucumber::Pending)
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:8:in ‘Given the shopping cart is empty’

When I add a product to the shopping cart
Then the shopping cart should contain 1 item

Scenario Outline: Display the name and price of an added product
Given the shopping cart is empty
When I add a product called "<name>" that costs <price> to the shopping cart
Then the shopping cart should contain a product "<name>" that costs <price>

Examples:
| name | price |
| Cucumber | 1.29e |
TODO (Cucumber::Pending)
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:13:in ‘Given the shopping cart is empty’
| Gherkin | 0.89e |
TODO (Cucumber::Pending)
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:13:in ‘Given the shopping cart is empty’
| Lettuce | 2.39e |
TODO (Cucumber::Pending)
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:13:in ‘Given the shopping cart is empty’

Scenario: Calculate the total sum of all products in the shopping cart
Given the shopping cart is empty

TODO (Cucumber::Pending)
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:24:in ‘Given the shopping cart is empty’

When I add a product called "Cucumber" that costs 1.29e to the shopping cart
And I add a product called "Gherkin" that costs 0.89e to the shopping cart
Then the shopping cart should contain 2 items
And the shopping carts total sum should be 2.18e

Scenario: Remove accidentally added products from the shopping cart
Given the shopping cart is empty

TODO (Cucumber::Pending)
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:31:in ‘Given the shopping cart is empty’

When I add a product called "Cucumber" that costs 1.29e to the shopping cart
And I add a product called "Gherkin" that costs 0.89e to the shopping cart
And I remove the product called "Cucumber" from the shopping cart
Then the shopping cart should contain 1 item
And the shopping cart should contain a product "Gherkin" that costs 0.89e

6 scenarios (6 pending)
23 steps (17 skipped, 6 pending)
0m0.010s

Listing 9: Cucumber output with pending step definitions

51

6 Guided Procedure

1 # shopping-cart/features/support/transforms.rb
2

3 CAPTURE_NUMBER = Transform /ˆ\d+$/ do |number|
4 number.to_i
5 end
6

7 CAPTURE_CASH_AMOUNT = Transform /ˆ(\d+\.\d+)e$/ do |digits|
8 digits.to_f
9 end

Listing 10: Example of transformations used for step definitions

criteria of the feature. Secondly, the reuse and combination of implemented
step definitions allows the creation of new scenarios with little or no additional
effort. Finally, slightly different formulations or varying grammatical numbers
of certain words with equivalent meaning can be aggregated in a single step
definition. This is accomplished by the use of groups or optional letters in the
regular expression matching the plain text steps. For example the Then step
in Listing 11, which is responsible for checking the amount of items in the
shopping cart, accepts the singular and plural form of the word “item”.

Considering the employment of assertions in step definitions, the Given and
When steps are not obligated to include assertions, although it is recommended
in order to find emerging regressions more easily. In contrast the Then steps are
used to evaluate the produced outcome of the previously executed steps, and
therefore an assertion is highly recommended.

6.2.3 Global State

The step definitions as they are implemented in Listing 11 do not work as
expected. Considering that the shopping cart variable is a local variable, its
state is lost every time the scope of a step definition is left. In order to establish
the expected behaviour, it is necessary to add the variable to a global state, which
is called world. All resources in the world are persistent during the runtime of
the scenario and are accessible from all step definitions. In Listing 12 it is shown
how to make the shopping cart variable available for all step definitions.

52

6 Guided Procedure

1 # shopping-cart/features/step_definitions/steps.rb
2

3 Given(/ˆthe shopping cart is empty$/) do
4 shopping_cart.items.should eq(0), "Expected zero items " \
5 "but it had #{shopping_cart.items}"
6 end
7

8 When(/ˆI add a product to the shopping cart$/) do
9 product = Product.new("", 0.0)

10 shopping_cart.add(product)
11 end
12

13 When(/ˆI add a product called "(.*?)" that costs (#{
14 CAPTURE_CASH_AMOUNT}) to the shopping cart$/) do |name, price|
15 product = Product.new(name, price)
16 shopping_cart.add(product)
17 end
18

19 When(/ˆI remove the product called "(.*?)" from the shopping cart$/) do |name|
20 shopping_cart.delete(name)
21 end
22

23 Then(/ˆthe shopping cart should contain (#{CAPTURE_NUMBER}) items?$/) do |items|
24 shopping_cart.items.should eq(items), "Expected #{items} item " \
25 "but it had #{shopping_cart.items}"
26 end
27

28 Then(/ˆthe shopping cart should contain a product "(.*?)" that costs (#{
29 CAPTURE_CASH_AMOUNT})$/) do |name, price|
30 products = shopping_cart.get_products
31 products[0].name.should eq(name), "Expected #{name} " \
32 "but it was #{products[0].name}"
33 products[0].price.should eq(price), "Expected #{price} " \
34 "but it was #{products[0].price}"
35 end
36

37 Then(/ˆthe shopping carts total sum should be (#{
38 CAPTURE_CASH_AMOUNT})$/) do |amount|
39 total = shopping_cart.total_sum
40 total.should eq(amount), "Expected #{amount} but it was #{total}"
41 end

Listing 11: Example of implemented step definitions

1 # shopping-cart/features/support/world_extensions.rb
2

3 module KnowsMyShoppingCart
4 def shopping_cart
5 @shopping_cart ||= ShoppingCart.new
6 end
7 end
8 World(KnowsMyShoppingCart)

Listing 12: Example of a world extension

53

6 Guided Procedure

6.3 Create Production Code

Since the implementation of the step definitions is complete, running Cucumber
produces new output that is illustrated in Listing 13. The output informs the
user about failing step definitions, which are caused by an uninitialized constant
“KnowsMyShoppingCart::ShoppingCart”. That is a reasonable error message,
as the required class is not implemented yet.

Therefore, the development of the production code can start following the
inner circle of the BDD cycle. Iterating over the inner circle until all errors are
resolved produces a working solution, which contains the expected behaviour.
An example of the produced code is shown in Listing 14. However, the example
is not complete yet, as the step definitions are not aware of the implementations
location and thus are not able to access the implementation. A solution to fix
this issue is to add support code pointing to the production code that is listed
in Listing 15.

Now that there is everything set up, running Cucumber reports that all scenarios
and steps were executed successfully, as shown in Listing 16. Therefore the
inner cycle of the workflow cycle is complete and the green part of the outer
circle is also complete. Considering that the acceptance criteria are met, the
next step is to refactor the added feature. When examining the scenarios of
the example feature, it becomes apparent that the Given step is used by all
scenarios. Therefore the Given steps can be extracted to a Background step to
improve the readability.

A subsequent verification of the refactored feature concludes the work on
the first feature for the shopping cart. After that, either a new feature can be
added or if the available behaviour satisfies all requirements, then the project
can be finished.

54

6 Guided Procedure

catroweb@webbox:$ cucumber
Feature: Add product to shopping cart

As a customer
I want to add selected products to my shopping cart
So that they are collected and listed for a purchase

Scenario: Add a product to my shopping cart
Given the shopping cart is empty

uninitialized constant KnowsMyShoppingCart::ShoppingCart (NameError)
./features/support/world_extensions.rb:3:in ‘shopping_cart’
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:8:in ‘Given the shopping cart is empty’

When ...

Scenario Outline: Display the name and price of an added product
Given the shopping cart is empty
When I add a product called "<name>" that costs <price> to the shopping cart
Then the shopping cart should contain a product "<name>" that costs <price>

Examples:
| name | price |
| Cucumber | 1.29e |
uninitialized constant KnowsMyShoppingCart::ShoppingCart (NameError)
./features/support/world_extensions.rb:3:in ‘shopping_cart’
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:13:in ‘Given the shopping cart is empty’
| Gherkin | 0.89e |
uninitialized constant KnowsMyShoppingCart::ShoppingCart (NameError)
./features/support/world_extensions.rb:3:in ‘shopping_cart’
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:13:in ‘Given the shopping cart is empty’
| Lettuce | 2.39e |
uninitialized constant KnowsMyShoppingCart::ShoppingCart (NameError)
./features/support/world_extensions.rb:3:in ‘shopping_cart’
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:13:in ‘Given the shopping cart is empty’

Scenario: Calculate the total sum of all products in the shopping cart
Given the shopping cart is empty

uninitialized constant KnowsMyShoppingCart::ShoppingCart (NameError)
./features/support/world_extensions.rb:3:in ‘shopping_cart’
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:24:in ‘Given the shopping cart is empty’

When ...

Scenario: Remove accidentally added products from the shopping cart
Given the shopping cart is empty

uninitialized constant KnowsMyShoppingCart::ShoppingCart (NameError)
./features/support/world_extensions.rb:3:in ‘shopping_cart’
./features/step_definitions/steps.rb:3:in ‘/ˆthe shopping cart is empty$/’
features/add_products.feature:31:in ‘Given the shopping cart is empty’

When ...

Failing Scenarios:
cucumber features/add_products.feature:7 # Scenario: Add a product to my shopping...
cucumber features/add_products.feature:12 # Scenario: Display the name and price...
cucumber features/add_products.feature:12 # Scenario: Display the name and price...
cucumber features/add_products.feature:12 # Scenario: Display the name and price...
cucumber features/add_products.feature:23 # Scenario: Calculate the total sum of...
cucumber features/add_products.feature:30 # Scenario: Remove accidentally added...

6 scenarios (6 failed)
23 steps (6 failed, 17 skipped)
0m0.013s

Listing 13: Cucumber output with failing step definitions

55

6 Guided Procedure

1 # shopping-cart/lib/shopping_cart.rb
2

3 class ShoppingCart
4 def initialize
5 @products = Array.new
6 end
7

8 def add(product)
9 @products.push product

10 end
11

12 def delete(name)
13 @products.each_with_index {
14 |product, index| @products.delete_at(index) if product.name === name
15 }
16 end
17

18 def items
19 @products.size
20 end
21

22 def total_sum
23 sum = 0
24 @products.each {|x| sum += x.price}
25 sum
26 end
27

28 def get_products
29 @products
30 end
31 end
32

33 class Product
34 def initialize(name, price)
35 @name = name
36 @price = price
37 end
38

39 def name
40 @name
41 end
42

43 def price
44 @price
45 end
46 end

Listing 14: Example of the shopping cart implementation

1 # shopping-cart/features/support/env.rb
2

3 require File.join(File.dirname(__FILE__), ’..’, ’..’, ’lib’, ’shopping_cart’)

Listing 15: Support code to make the implementation accessible

56

6 Guided Procedure

catroweb@webbox:$ cucumber
Feature: Add product to shopping cart

As a customer
I want to add selected products to my shopping cart
So that they are collected and listed for a purchase

Scenario: Add a product to my shopping cart
Given the shopping cart is empty
When I add a product to the shopping cart
Then the shopping cart should contain 1 item

Scenario Outline: Display the name and price of an added product
Given the shopping cart is empty
When I add a product called "<name>" that costs <price> to the shopping cart
Then the shopping cart should contain a product "<name>" that costs <price>

Examples:
name	price
Cucumber	1.29e
Gherkin	0.89e
Lettuce	2.39e

Scenario: Calculate the total sum of all products in the shopping cart
Given the shopping cart is empty
When I add a product called "Cucumber" that costs 1.29e to the shopping cart
And I add a product called "Gherkin" that costs 0.89e to the shopping cart
Then the shopping cart should contain 2 items
And the shopping carts total sum should be 2.18e

Scenario: Remove accidentally added products from the shopping cart
Given the shopping cart is empty
When I add a product called "Cucumber" that costs 1.29e to the shopping cart
And I add a product called "Gherkin" that costs 0.89e to the shopping cart
And I remove the product called "Cucumber" from the shopping cart
Then the shopping cart should contain 1 item
And the shopping cart should contain a product "Gherkin" that costs 0.89e

6 scenarios (6 passed)
23 steps (23 passed)
0m0.009s

Listing 16: Cucumber successfully executes all scenarios

catroweb@webbox:$ cucumber
No such file or directory - features. Please create a features directory to get
started. (Errno::ENOENT)
catroweb@webbox:$ mkdir features
catroweb@webbox:$ cucumber
0 scenarios
0 steps
0m0.000s

Listing 17: The output of Cucumber when executed in an empty folder

57

7 Behaviour Driven Functional
Testing of Web Applications

“Automation in general is important for larger teams because it ensures
that we have an impartial, objective measurement of when we’re finished,”

indicates Gojko Adzic [Adz11].

In large teams, different opinions are often encountered, which also applies
to the judgement of whether a software feature needs improvements or is
complete. Therefore automated acceptance tests, as they are provided by BDD,
are well suited for introducing an objective measurement to unify the team
understanding [Adz11].

Nevertheless, the identification of the right tool is challenging since no single
best solution is known, which is capable of satisfying all possible requirements.
It mostly depends on existing preconditions and objectives as well as the current
state of the project. For established projects, the preferable practice is to make
use of existing code and tools to reduce adaptation efforts, which unfortunately
decreases the number of potential options.

However, as shown in the previous chapter, tools supporting BDD use step
definitions in order to map plain text instructions to an executable implement-
ation. This design provides great flexibility and simplifies the employment of
available functional test tools for web applications, which were discussed in
Section 4.2.

7.1 Introduce Behaviour Driven Development

This section introduces BDD to an established project, namely the Catrobat
project’s community website1. As discussed earlier, the project heavily relies on

1https://github.com/Catrobat/Catroweb

58

https://github.com/Catrobat/Catroweb

7 Behaviour Driven Functional Testing of Web Applications

agile development methodologies. Therefore, a test infrastructure with existing
functional tests is available, which serves as a basis and is adapted in the next
steps.

7.1.1 Preconditions

The functional tests make use of the Selenium Grid framework as described
in Section 4.2.1 and are implemented in the Java programming language. A
base class contains the most frequently used functionalities such as recurring
assertions or the creation of test sessions for a variety of browsers and screen
dimensions. In addition, helper functions are included, such as capture the
current screen or an explicit wait for Ajax requests. Besides, scripts are provided
to automate essential tasks required to set up the infrastructure for running
the web application under test, which consists of a web server and a database
server.

Thus, a BDD tool is suggested that is well suited for a Java development
environment and is able to execute features written in Gherkin syntax, as
an additional requirement, which was mentioned in the introduction. With
these constraints, consulting the previously composed table of BDD tools (see
Table 5.1) yields only one option that satisfies all requirements. That is Cucumber-
JVM a Java implementation of Cucumber, as it is the only Java based tool that
can interpret Gherkin syntax.

7.1.2 Cucumber-JVM Meets Selenium Grid

Preparations

Maven2 and Ant3 are two well-known project management tools that automate
the build process and perform recurring tasks in Java projects. Both tools work
well with Cucumber-JVM and Selenium Grid. Therefore, the choice of which
one of these tools is mostly a matter of personal preference. This small project
is managed by Ant to perform tasks, such as downloading required libraries,
launching a Selenium Grid hub, launching several WebDriver nodes, compiling

2https://maven.apache.org/
3https://ant.apache.org/

59

https://maven.apache.org/
https://ant.apache.org/

7 Behaviour Driven Functional Testing of Web Applications

and executing functional tests, and cleaning the test environment by removing
artefacts, compiled Java classes and generated test reports.

The source code of the implementation is available at GitHub4 including
the necessary build.xml file, in order to accomplish these Ant tasks. It contains
existing functionalities of the original project to control Selenium Grid compo-
nents and extends them to comfortably prepare a test environment with a large
range of nodes. Following the practical example described on GitHub, results in
a test environment consisting of a hub, a Firefox node, a Chrome node, a Safari
node, an Internet Explorer node, and an Android node. An illustration of the
status page of the hub with connected nodes can be seen in Figure 7.1.

Figure 7.1: Selenium Grid console with connected nodes

Additionally the headless browser implementation PhantomJS5 can be con-
nected to the hub and used to perform tests. It is based on the WebKit browser
engine and it supports various web standards. The main advantage is that it
significantly improves the test runtime, since system resources and the overhead
caused by the browser startup are saved.

4https://github.com/chrisss404/cucumber-selenium-grid
5http://phantomjs.org/

60

https://github.com/chrisss404/cucumber-selenium-grid
http://phantomjs.org/

7 Behaviour Driven Functional Testing of Web Applications

Encountered Difficulties

These preparations are sufficient to perform Selenium tests in a distributed
test setting. The introduction of Cucumber follows the same process as de-
scribed in the previous chapter and incorporates minor adaptations to meet
Java characteristics. One of the most significant differences is the absence of the
global state, also referred to as “world”, that makes shared data accessible to all
step definitions. In order to deal with this situation Aslak Hellesøy offers two
approaches [Hel], either to put all step definitions into a single class or to make
use of a dependency injection module6 to connect step definitions from multiple
classes. This implementation uses a single class to store step definitions, since it
has a limited scope and is not intended for productive use.

The main reason for employing highly scalable Selenium Grid tests is the
desire for a reduction of the test execution time, which becomes more apparent
with a growing test suite. With regard to obtaining an improved runtime
it is necessary to execute tests in parallel, however there are limitations. In
contrast to the existing implementation, which was able to run tests alongside
on a method level and to define a number of worker threads, this has to be
addressed manually with this implementation. For instance, this behaviour can
be achieved by creating groups using tags and by running each group in its
own Cucumber instance. On the one hand, this approach allows more control
over which methods run parallel to each other on the other hand it can be
cumbersome to create balanced groups. Additionally, each instance generates
its own test report, which can be confusing when searching for a particular
test result. The described implementation makes use of two groups, which are
divided into slow and fast tests.

Implementation Details

In order to identify the differences between traditional and Cucumber driven
Selenium tests, four existing tests were selected and transformed to Gherkin
features. The following functional web tests were selected from the community
website’s test suite.

6http://cukes.info/install-cucumber-jvm.html#dependency_injection_modules_

for_cucumberjava

61

http://cukes.info/install-cucumber-jvm.html#dependency_injection_modules_for_cucumberjava
http://cukes.info/install-cucumber-jvm.html#dependency_injection_modules_for_cucumberjava

7 Behaviour Driven Functional Testing of Web Applications

• The first scenario checks the behaviour of the website’s search functionality
by uploading a new project with unique title and searching for it, as can
be seen in Listing 18.

• The second scenario navigates to the start page and verifies a certain text,
in this case the title of the newest projects section, shown in Listing 19.

• The third scenario that is available in Listing 19 addresses the language
switch functionality of the website.

• The fourth scenario displayed in Listing 20 concerns the behaviour of the
project download counter.

1 // catroid/SearchTests.java
2 @Test(dataProvider = "randomProjects", groups = { "functionality", "upload" },
3 description = "search for random title and description")
4 public void titleAndDescription(HashMap<String, String> dataset)
5 throws Throwable {
6 try {
7 projectUploader.upload(dataset);
8

9 String projectTitle = dataset.get("projectTitle");
10 String projectDescription = dataset.get("projectDescription");
11

12 openLocation("search/?q=" + projectTitle + "&p=1");
13 ajaxWait();
14

15 assertTrue(isTextPresent(
16 CommonStrings.SEARCH_PROJECTS_PAGE_TITLE.toUpperCase()));
17 assertTrue(isElementPresent(By.xpath("//a[@title=\"" + projectTitle + "\"]")));
18

19 // test description
20 driver().findElement(By.xpath("//*[@id=’largeMenu’]/div[4]/input")).clear();
21 driver().findElement(By.xpath("//*[@id=’largeMenu’]/div[4]/input")
22).sendKeys(projectDescription);
23 driver().findElement(By.id("largeSearchButton")).click();
24 ajaxWait();
25 assertTrue(isTextPresent(
26 CommonStrings.SEARCH_PROJECTS_PAGE_TITLE.toUpperCase()));
27 assertTrue(isElementPresent(By.xpath("//a[@title=\"" + projectTitle + "\"]")));
28 } catch(AssertionError e) {
29 captureScreen("SearchTests.titleAndDescription." + dataset.get("projectTitle"));
30 log(dataset.get("projectTitle"));
31 log(dataset.get("projectDescription"));
32 throw e;
33 } catch(Exception e) {
34 captureScreen("SearchTests.titleAndDescription." + dataset.get("projectTitle"));
35 throw e;
36 }
37 }

Listing 18: Selenium test that checks the website’s search functionality

62

7 Behaviour Driven Functional Testing of Web Applications

1 // catroid/IndexTests.java
2 @Test(groups = { "visibility", "popupwindows" },
3 description = "click download,header,details -links ")
4 public void index() throws Throwable {
5 try {
6 openLocation();
7 ajaxWait();
8 // test page title and header title
9 assertTrue(driver().getTitle().matches("ˆPocket Code Website.*"));

10 assertTrue(isTextPresent(
11 CommonStrings.NEWEST_PROJECTS_PAGE_TITLE.toUpperCase()));
12

13 clickLastVisibleProject();
14 ajaxWait();
15 assertRegExp(".*/details/[0-9]+", driver().getCurrentUrl());
16 driver().navigate().back();
17 ajaxWait();
18 assertTrue(isTextPresent(
19 CommonStrings.NEWEST_PROJECTS_PAGE_TITLE.toUpperCase()));
20

21 // test home link
22 driver().findElement(By.xpath("//*[@id=’largeMenu’]/div[2]/a")).click();
23 } catch(AssertionError e) {
24 captureScreen("IndexTests.index");
25 throw e;
26 } catch(Exception e) {
27 captureScreen("IndexTests.index");
28 throw e;
29 }
30 }
31

32 @Test(groups = { "functionality", "upload" },
33 description = "language select tests")
34 public void languageSelect() throws Throwable {
35 try {
36 openLocation("termsOfUse");
37 assertTrue(isTextPresent("Terms of Use".toUpperCase()));
38 assertTrue(isElementPresent(By.xpath("//html[@lang=’" +
39 Config.SITE_DEFAULT_LANGUAGE + "’]")));
40 openLocation("termsOfUse", false);
41 assertTrue(isElementPresent(By.id("switchLanguage")));
42 (new Select(driver().findElement(By.id("switchLanguage")))).selectByValue("de");
43 ajaxWait();
44 assertTrue(isTextPresent("Nutzungsbedingungen".toUpperCase()));
45 assertTrue(isElementPresent(By.id("switchLanguage")));
46 assertTrue(isElementPresent(By.xpath("//html[@lang=’de’]")));
47 (new Select(driver().findElement(By.id("switchLanguage")))).selectByValue("en");
48 ajaxWait();
49 assertTrue(isTextPresent("Terms of Use".toUpperCase()));
50 assertTrue(isElementPresent(By.xpath("//html[@lang=’en’]")));
51 } catch(AssertionError e) {
52 captureScreen("IndexTests.languageSelect");
53 throw e;
54 } catch(Exception e) {
55 captureScreen("IndexTests.languageSelect");
56 throw e;
57 }
58 }

Listing 19: Selenium tests that verify a certain text on the start page and address the website’s
language switch functionality

63

7 Behaviour Driven Functional Testing of Web Applications

These tests were adopted without modifications, except the detailsPageCounter-
Link test from Listing 20 was reduced to the essentials. An example of these
functionalities converted to Gherkin syntax can be seen in Listing 21. It shows
that the newly written scenarios are much shorter and easier to comprehend
compared to the former version. When running Cucumber with this feature file
in place, unimplemented step definitions are reported, as discussed in the previ-
ous chapter. The implementation of these step definitions makes use of Selenium
to control the web application for performing the indicated behaviour.

1 // catroid/DetailsTests.java
2 @Test(dataProvider = "detailsProject", groups = { "functionality", "upload" },
3 description = "view + download counter test")
4 public void detailsPageCounterLink(HashMap<String, String> dataset)
5 throws Throwable {
6 try {
7 String response = projectUploader.upload(dataset);
8 String id = CommonFunctions.getValueFromJSONobject(response, "projectId");
9 String title = dataset.get("projectTitle");

10 int numOfDownloads = -1;
11 int numOfDownloadsAfter = -1;
12

13 By downloadsElement = By.xpath(
14 "//*[@id=’projectDetailsContainer’]/div[6]/ul/li[4]/div[2]/span");
15 By downloadsButton = By.xpath(
16 "//*[@id=’projectDetailsContainer’]/div[3]/div/a[1]/div/span");
17

18 openLocation("details/" + id);
19 ajaxWait();
20 assertTrue(containsElementText(By.id("projectDetailsProjectTitle"),
21 title.toUpperCase()));
22

23 numOfDownloads = Integer.parseInt(
24 driver().findElement(downloadsElement).getText().split(" ")[0]);
25 driver().findElement(downloadsButton).click();
26

27 driver().navigate().refresh();
28 ajaxWait();
29 numOfDownloadsAfter = Integer.parseInt(
30 driver().findElement(downloadsElement).getText().split(" ")[0]);
31 assertEquals(numOfDownloads + 1, numOfDownloadsAfter);
32 } catch(AssertionError e) {
33 captureScreen("DetailsTests.detailsPageCounterLink." +
34 dataset.get("projectTitle"));
35 throw e;
36 } catch(Exception e) {
37 captureScreen("DetailsTests.detailsPageCounterLink." +
38 dataset.get("projectTitle"));
39 throw e;
40 }
41 }

Listing 20: Selenium test that investigates the download count functionality

64

7 Behaviour Driven Functional Testing of Web Applications

Moreover, the step definitions are the right place to add assertions for evaluating
the application’s behaviour. However, the Cucumber-JVM implementation does
not include assertions. Therefore, JUnit assertions are employed for this task in
this example.

Feature: Provide key functionalities to Catrobat’s community website
@fast
Scenario: Open the startpage and check for a certain text
Given I am on the startpage
When I change the language to "English"
Then the title of the featured section should be "FEATURED"

@fast
Scenario Outline: Use the language switch to change the website’s language
Given I am on the startpage
When I change the language to "<language>"
Then the title of the newest section should be "<title>"

Examples:
language	title
Deutsch	NEUESTE
English	NEWEST

@slow
Scenario: Use the search function to find a project
Given I use Android browser
And I am on the startpage
And the website’s language is "English"
When I use the top search box to search for a project called "Tic-Tac-Toe"
Then I should see "Search Results"
And the number of search results should be 1

@fast
Scenario: Increase the download count when a project is downloaded
Given I am on the details page of the project 1478
And the website’s language is "English"
When I press the download button
Then the download count should be increased by one

Listing 21: The aforementioned Selenium tests converted to Cucumber scenarios

The implemented step definitions corresponding to the aforementioned scenari-
os are available at GitHub7. In the same way as in the original JUnit framework,
methods can be annotated with tags to assign particular tasks, for example to
run a method before or after a test is executed. This example uses a method
tagged with @Before to retrieve environment variables and to make Cucumber’s
scenario object available to all step definitions. The scenario object is respon-

7https://github.com/chrisss404/cucumber-selenium-grid/blob/master/src/at/

tugraz/ist/cucumber/SeleniumStepdefs.java

65

https://github.com/chrisss404/cucumber-selenium-grid/blob/master/src/at/tugraz/ist/cucumber/SeleniumStepdefs.java
https://github.com/chrisss404/cucumber-selenium-grid/blob/master/src/at/tugraz/ist/cucumber/SeleniumStepdefs.java

7 Behaviour Driven Functional Testing of Web Applications

sible for the test report contents, and it is necessary to access it to add messages
or images to the report.

Generally, the method tagged with @Before would be preferred to initial-
ise the Selenium WebDriver driver object, which is required for performing
browser interactions. Although a different approach is employed to provide
more flexibility that allows to run each scenario with an individual driver object.
It is inspired by the well-known singleton pattern that creates a new instance
of an object on the first access. Therefore a method is prepared to access the
driver object, which is responsible for the initialisation by either using the
default capabilities or the capabilities given by the step definition. This enables
step definitions to create driver objects with varying capabilities including the
definition of a certain browser for approaching test.

In contrast to the @Before method the method tagged with @After satisfies the
expectations, as it is responsible for closing and cleaning previously initialised
driver objects. Additionally, it can determine if the test was successful or whether
an error was encountered. In the event of an error it is useful to record the
current state of the website, therefore a screenshot is taken and added to the
test report.

Considering the distributed test environment it is important that the clients
forward the captured screen to the test runner, thus it can be integrated in the
test report. This can be done by creating a base64 encoded string or a byte
array representation of the image that is suitable for network transmissions. In
Figure 7.2 a screenshot is shown that was taken after the last step of the search
functionality scenario of Listing 21.

To deal with timing issues caused by asynchronous JavaScript requests, the
JavascriptExecutor of the WebDriver object is used to examine the current
state in a similar way as it is shown in Listing 4. Certainly, this solution is only
applicable when jQuery is employed to perform Ajax requests, however that is
the case for this project.

Additionally, this implementation applies implicit waits in order to approach
general timing issues caused by less powerful test systems, like Android devices.
Thus spurious errors are strongly reduced, as failures are only reported after
the defined timeout has expired.

66

7 Behaviour Driven Functional Testing of Web Applications

Further Enhancements

For the development process, it is convenient to assign a unique tag to the
scenario under development to reduce the test response time. Additionally,
this leads to a more compact test report, which improves the identification of
occurring errors. However a drawback is that newly introduced errors in the
remaining scenarios are not recognised immediately.

As previously mentioned it is necessary to create test groups in order
to execute the scenarios in parallel. The feature shown in Listing 21 divides
the scenarios into a slow and a fast group with similar runtimes. Thus, if the
groups are well balanced, the overall runtime is reduced by half. Furthermore,
a maximum runtime can be specified and whenever this limit is exceeded, a
new group, which is run by a new instance, can be introduced. Given that the
used Grid hub has sufficient resources, a fixed runtime is achievable.

Figure 7.2: Selenium screenshot taken after the last step of the search functionality scenario

67

7 Behaviour Driven Functional Testing of Web Applications

7.2 Findings

7.2.1 Comparison

This section compares the existing implementation, which follows a TDD ap-
proach, with the introduced implementation, which follows the discussed BDD
approach. Both implementations make use of Selenium for interactions with the
application under test to guarantee equal premises and to ensure a meaningful
comparison between the development strategies. The subsequent aspects are
examined for the identification of advantages and disadvantages performing
functional web application tests, and are summarised in Table 7.1 concerning
BDD and Table 7.2 regarding TDD.

Test Creation

The creation of new scenarios is easier in BDD, because of the ability to write
scenarios in natural language following Gherkin syntax, and knowledge about
the employed programming language is not required. Therefore team mem-
bers working on design or usability tasks are able to create new scenarios
independently, which is barely achievable when adhering to a TDD approach.
However, the convenience in the test creation comes with a disadvantage that
is the additional effort to make the Gherkin features executable. As previously
discussed, it is indispensable to implement the corresponding step definitions,
which is an additional step compared to TDD.

Complexity

The BDD test infrastructure introduces an additional layer due to Cucumber,
which leads to an increase of the overall complexity. Consequently, it is impor-
tant to master the supplementary tool in order to prevent potential impacts and
issues. A typical issue due to the added complexity is that multiple scenarios
start to misbehave after the implementation of a step definition has been mod-
ified. Another issue arises when scenarios are designed to depend on a state
that is produced by a previous scenario, which is prone to failure and should
be avoided. On the other hand this additional layer increases the readability
and comprehensibility of scenarios compared to the test cases in TDD.

68

7 Behaviour Driven Functional Testing of Web Applications

Execution Speed

In regard to test execution speed no significant difference emerged. This is
not surprising, as the impact of Cucumber is restricted to the test runner and
the performance bottleneck of Selenium tests is caused by WebDriver nodes.
The reason for the high resource consumption of WebDriver nodes is based on
the fact that each test is run in its own browser instance. Therefore, executing
multiple instances of web browsers can be very demanding for average systems,
in particular the memory usage can become an issue.

Comprehensibility

It is simple to identify available functionalities in BDD, as the scenarios are
written in plain text and make use of ubiquitous language. Additionally it is
not necessary to read and understand the source code of the test cases due
to outdated documentation, because the Cucumber features are an accurate
representation of the code. Therefore, in regard to comprehensibility Cucumber
driven tests yield an improvement over the previous method employing TDD.
Specifically large projects consisting of several teams profit highly from the
reduced effort to understand the work of fellow teams.

Maintainability

The behaviour driven development process enforces to write modular code,
which improves the maintainability and reusability, as each step definition is
implemented as its own method. However, that is not a unique characteristic,
since modular code can be created by other means as well. Nevertheless, addi-
tional value is added to the development process by providing a convenient way
to combine methods in terms of writing Cucumber features. Considering, that
reusability is a main concern, it is crucial that the method accurately follows its
description, otherwise unexpected behaviour can be provoked.

For example the feature shown in Listing 21 involves 16 total step definitions
versus 12 unique step definitions resulting in a reuse rate of 25% in this small
demonstration. Another benefit is the flexibility to combine and rearrange step
definitions, for example to run all scenarios of a feature in a specific browser, it is
sufficient to add a single Given step to the Background section, which prepares
the desired web browser capabilities.

69

7 Behaviour Driven Functional Testing of Web Applications

Advantages Disadvantages

Test creation requires only knowl-
edge about Gherkin syntax

Scenario execution is only achievable
after implementing the correspond-
ing step definitions

Test comprehensibility is improved,
since scenarios are written in nat-
ural language

Test complexity is higher, because of
the additional layer introduced by
Cucumber

Test maintainability is enhanced, as
a result of enforcing modular code

Test failures can be caused by an ad-
ditional error source

Project documentation is always up
to date

Table 7.1: Advantages and disadvantages of BDD performing functional web tests

Advantages Disadvantages

Scenario execution is achievable
without additional effort

Test creation requires programming
skills

Test complexity is not increased and
depends on the used functional
web testing framework

Test comprehensibility is worse, since
scenarios are written in a program-
ming language

Test failures are reduced, as a result
of the decreased error source

Test maintainability depends on the
carried out precautions

Project documentation is not auto-
matically updated

Table 7.2: Advantages and disadvantages of TDD performing functional web tests

70

7 Behaviour Driven Functional Testing of Web Applications

7.2.2 Disadvantages

The freedom of defining scenarios can result in duplication, since it is easy
to unintentionally use a different wording to describe the same distinct be-
haviour. Therefore, it is recommended to employ a modern IDE that offers an
autocomplete feature, which in turn weakens the advantage of the simplified
test creation. Besides, there is an increased effort to prepare the development
environment, since there is an additional tool to maintain, integrate, and master.
Furthermore, the necessity to apply regular expressions to determine corre-
sponding step definitions reduces the execution speed in certain circumstances.

Finally, creating a test setting that is able to run multiple test instances is very
cumbersome. On the one hand multiple web server instances are required to
avoid interferences, which however is necessary for both development strategies.
On the other hand it was not possible to create a single test report containing
all results, which can be confusing when aiming for a specific test result.

7.3 Related Tools

There are numerous possibilities for obtaining a similar implementation, as it is
demonstrated in Section 7.1.2. Basically, all functional web testing frameworks
mentioned in Section 4.2 can be combined with any tool suitable for StoryBDD
from Table 5.1. That is attributed to the flexible architecture, which is enforced
by the behaviour driven development process, since there are no restrictions
when implementing step definitions. However, both have to use the same
programming language, except for Cucumber that offers a wire protocol, which
supports several languages for this use case, as shown in Table 5.2. That aside,
there are two popular frameworks providing the described functionality: Mink,
and Capybara.

7.3.1 Mink

Mink8 is an extension for Behat, one of the tools listed in Table 5.1 that sup-
port StoryBDD, to run behaviour driven functional web application tests in a
PHP environment. According to the online documentation [Lab] there are five

8https://github.com/Behat/en-mink.behat.org/blob/master/index.rst

71

https://github.com/Behat/en-mink.behat.org/blob/master/index.rst

7 Behaviour Driven Functional Testing of Web Applications

drivers included which are capable of controlling web browsers in order to run
functional tests. Among them are two headless drivers, which emulate a web
browser to obtain fast test response times: GoutteDriver, and ZombieDriver. As
well as three drivers, which are able to control real web browsers to perform
tests: SeleniumDriver, WebDriver, and SahiDriver.

Since test execution time is a decisive factor of the development speed, the
GoutteDriver is selected by default, as it is the fastest of the supported drivers.
Unfortunately, the speed advantage is achieved by not supporting JavaScript.
However this can be resolved by defining an alternative driver with JavaScript
support and tagging scenarios requiring JavaScript with the @javascript tag.
Therefore, all tagged scenarios are carried out by the alternative driver and the
remaining scenarios make use of the default driver. Thus, two important aspects
of automated tests are covered: fast test execution speed and lots of available
functionality.

Additionally, the previously described Selenium Grid test environment can
be employed by applying the WebDriver driver. Finally, a great advantage is
that it includes a range of predefined step definitions of common actions ready
for use. This allows to perform general test scenarios with little or no coding
effort.

7.3.2 Capybara

As explained in the Cucumber book [WH12], Capybara9 is a framework used
to perform behaviour driven functional web application tests in Ruby. It is
designed for the employment in Cucumber tests as they are shown in Chapter 6.
Since it is an improved version of Webrat and Webrat was strongly inspired by
Watir, these tools have much in common and it suffices to discuss Capybara’s
properties.

Similarly to Mink, Capybara wraps several browser drivers including Seleni-
um WebDriver behind a common interface. It includes a headless driver called
RackTest that is comparable to Minks GoutteDriver, which however only works
for Ruby/Rack applications. Another similarity with Mink is that scenarios
requiring JavaScript can be tagged with @javascript in order to run them with
an appropriate driver. Otherwise the functionality is comparable to Mink’s
capabilities.

9https://jnicklas.github.io/capybara/

72

https://jnicklas.github.io/capybara/

8 Conclusion

It has been shown that a behaviour driven development strategy is capable of
performing functional web tests and that it adds additional value to projects,
which already employ agile software development methodologies. However,
the development process becomes more complex due to an additional layer. The
migration process from TDD to BDD encountered no serious issues and the re-
use of numerous aspects of the original implementation was feasible. Therefore
it is suggested that potential migration efforts should not be a decisive aspect
for judging about the employment of BDD.

One of the most noticeable advantages is the attainment of documentation
that is responsive, grows with the system, and provides an accurate representa-
tion of the system’s functionality. That is particularly an advantage, if a project
consists of several sub-teams or involves non-technical team members. Addi-
tionally, the barrier to share knowledge about the system is greatly reduced.
Moreover, requirements written in natural language promote the development
of a ubiquitous language, which leads to shared vocabulary and improved team
communication.

Another essential point of BDD is that developers are guided through the
development process encouraging best practices, as described in Chapter 6.
Therefore this approach appears to be more natural for employing test-first
development, compared to former agile development processes, such as Ex-
treme Programming (XP), or Test Driven Development (TDD). Furthermore,
the promotion of a modular code structure improves the maintainability and
reusability of the code, which yields a long-term benefit.

In regard to web applications, the most noticeable observation concerns the
growing popularity of mobile devices. This increase of mobile web usage
adds new constraints with a strong influence on the development process of
web applications. The limited screen real estate of mobile devices is the most
considerable aspect that needs to be addressed. Fortunately, techniques, like
responsive web design and asynchronous requests, can improve the situation
in favour of the user and are frequently used in modern web applications. The

73

8 Conclusion

demonstrated functional test environment employing Selenium WebDriver is
capable of carrying out tests on web applications using these technologies.

In the beginning of functional web test frameworks, the automated control
of different web browsers was inconsistent and unstable, as there was no
common interface for that purpose available. However, the recently elaborated
specification for a WebDriver API has greatly improved the situation, since the
browser vendors are responsible for implementing an interface to control their
web browser. Although it is still a working draft, the interface is implemented
by the most widely used browsers and is already employed by functional web
testing frameworks mentioned in Section 4.2. Therefore the ability to perform
functional tests on sophisticated web applications has greatly improved.

The discussed solutions, which combine both approaches, are comparable in
functionality, since they all offer access to the discussed WebDriver API for
browser interactions. Therefore, the procedure to create a functional test is very
similar with a considerable difference in regard to the employed programming
language and development environment. Among them are the two frameworks
Mink (employing PHP) and Capybara (engaging Ruby), as well as the example
presented in Chapter 7 written in Java. The presented example can be used as a
starting point, however, for productive use it needs improvements in regard to
code organisation.

In conclusion, an agile development approach is well-suited for web applica-
tions, and the required functional test tools have strongly improved. However,
the best fitting tool of the three aforementioned test frameworks is hard to
determine, since it mostly depends on the project’s constraints. It is suggested
to experiment with the available frameworks in order to determine the best
fitting tool. Furthermore, if the project already makes use of an agile develop-
ment approach, it is highly recommended to examine BDD’s capabilities and to
identify its potential benefits.

74

Appendix

75

Bibliography

[Adz11] Gojko Adzic. Specification by Example. Manning Publications, June
2011. isbn: 9781617290084.

[AGL10] Sarah Allen, Vidal Graupera and Lee Lundrigan. Pro Smartphone
Cross-Platform Development. Apress, 2010. isbn: 9781430228684.

[AM07] Abel Avram and Floyd Marinescu. Domain-Driven Design Quickly.
Lulu.com, Dec. 2007. isbn: 9781411609259. url: http://www.infoq.
com/minibooks/domain-driven-design-quickly.

[Amb] Scott Ambler. Introduction to Test Driven Development (TDD). url:
http://www.agiledata.org/essays/tdd.html (visited on 8th Jan.
2014).

[Amb11] Scott W. Ambler. IT Project Success Rates Survey. Nov. 2011. url:
http://www.ambysoft.com/surveys/success2011.html#Results

(visited on 10th Dec. 2013).

[Bec03] Kent Beck. Test-driven Development: By Example. Addison-Wesley
Professional, Nov. 2003. isbn: 9780321146533.

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, Oct. 1999. isbn: 9780201616415.

[Bee+01a] Mike Beedle et al. The Agile Manifesto. Feb. 2001. url: http://
agilemanifesto.org/ (visited on 10th Dec. 2013).

[Bee+01b] Mike Beedle et al. The Agile Manifesto Principles. Feb. 2001. url: http:
//agilemanifesto.org/principles.html (visited on 10th Dec.
2013).

[Ber] Sebastian Bergmann. PHPUnit Manual. url: http://phpunit.de/
manual/current/en/phpunit-book.pdf (visited on 16th Jan. 2014).

[BGH07] C. Titus Brown, Grig Gheorghiu and Jason R. Huggins. An Intro-
duction to Testing Web Applications with twill and Selenium. O’Reilly
Media, June 2007. isbn: 9780596527808.

76

http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.agiledata.org/essays/tdd.html
http://www.ambysoft.com/surveys/success2011.html#Results
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://phpunit.de/manual/current/en/phpunit-book.pdf
http://phpunit.de/manual/current/en/phpunit-book.pdf

Bibliography

[Bjö09a] Tomas Björkholm. What is Best, Scrum or Kanban? June 2009. url:
http://www.agileconnection.com/article/what-best-scrum-

or-kanban?page=0,1 (visited on 19th Dec. 2013).

[Bjö09b] Tomas Björkholm. What is Best, Scrum or Kanban? June 2009. url:
http://www.agileconnection.com/article/what-best-scrum-

or-kanban?page=0,2 (visited on 19th Dec. 2013).

[Bur12] David Burns. Selenium 2 Testing Tools Beginner’s Guide. Packt Pub-
lishing, Oct. 2012. isbn: 9781849518307.

[CG08] Lisa Crispin and Janet Gregory. Agile Testing: A Practical Guide for
Testers and Agile Teams. Addison-Wesley Professional, Dec. 2008.
isbn: 9780321534460.

[Che+10] David Chelimsky et al. The RSpec Book: Behaviour Driven Development
with Rspec, Cucumber, and Friends. Pragmatic Bookshelf, Dec. 2010.
isbn: 9781934356371.

[CL11] Andre Charland and Brian Leroux. ‘Mobile Application Develop-
ment: Web vs. Native’. In: Communications of the ACM 54.5 (2011),
pp. 49–53.

[Dav09] Barbee Davis. 97 Things Every Project Manager Should Know: Col-
lective Wisdom from the Experts. O’Reilly Media, Aug. 2009. isbn:
9780596804169.

[DD11] Josh Dehlinger and Jeremy Dixon. ‘Mobile Application Software
Engineering: Challenges and Research Directions’. In: Workshop on
Mobile Software Engineering (2011).

[Fow] Martin Fowler. Xunit. url: http://www.martinfowler.com/bliki/
Xunit.html (visited on 10th Jan. 2014).

[Fow06] Martin Fowler. Continuous Integration. May 2006. url: http://
www.martinfowler.com/articles/continuousIntegration.html

(visited on 9th Jan. 2014).

[Fra12] Ben Frain. Responsive Web Design with HTML5 and CSS3. Community
experience distilled. Packt Publishing, 2012. isbn: 9781849693196.

[HBW] Aslak Hellesøy, Julien Biezemans and Matt Wynne. Cucumber Pro
Documentation. url: https://cucumber.pro/documentation.html
(visited on 5th Mar. 2014).

77

http://www.agileconnection.com/article/what-best-scrum-or-kanban?page=0,1
http://www.agileconnection.com/article/what-best-scrum-or-kanban?page=0,1
http://www.agileconnection.com/article/what-best-scrum-or-kanban?page=0,2
http://www.agileconnection.com/article/what-best-scrum-or-kanban?page=0,2
http://www.martinfowler.com/bliki/Xunit.html
http://www.martinfowler.com/bliki/Xunit.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://cucumber.pro/documentation.html

Bibliography

[Hel] Aslak Hellesøy. Cucumber-JVM State of the ”World”. url: http://
permalink.gmane.org/gmane.comp.programming.tools.cucumber/

14010 (visited on 8th Apr. 2014).

[Hir08] Kenji Hiranabe. Kanban Applied to Software Development: from Agile to
Lean. Jan. 2008. url: http://www.infoq.com/articles/hiranabe-
lean-agile-kanban (visited on 19th Dec. 2013).

[Hun+10] Dave Hunt et al. Selenium Documentation. Feb. 2010. url: http:
//oss.infoscience.co.jp/seleniumhq/docs/book/Selenium_

Documentation.pdf (visited on 31st Jan. 2014).

[Hus+08] Zahid Hussain et al. ‘Optimizing Extreme Programming’. In: Com-
puter and Communication Engineering, ICCCE. IEEE. May 2008, pp. 1052–
1056.

[Jr95] Frederick P. Brooks Jr. The Mythical Man-Month, Anniversary Edition:
Essays on Software Engineering. Pearson Education, 1995.

[Lab] KNP Labs. Web Acceptance Testing - Mink Documentation. url: http:
//mink.behat.org/ (visited on 16th Apr. 2014).

[Mac] Beate Macura. Tablet, Smartphone, Datenbrille. url: http://orf.at/
stories/2206899/2206900/ (visited on 8th Jan. 2014).

[Mar10] Ethan Marcotte. Responsive Web Design. May 2010. url: http://
alistapart.com/article/responsive- web- design (visited on
28th Oct. 2013).

[MDG11] Peter MacIntyre, Brian Danchilla and Mladen Gogala. Pro PHP
Programming. Apress, 2011. isbn: 9781430235606.

[Mik13] Kasia Mikoluk. Agile Vs. Waterfall: Evaluating The Pros And Cons.
Sept. 2013. url: https : / / www . udemy . com / blog / agile - vs -

waterfall/ (visited on 10th Dec. 2013).

[MW12] Mary Meeker and Liang Wu. Internet Trends. Dec. 2012. url: http://
www.kpcb.com/insights/2012-internet-trends-update (visited
on 18th Nov. 2013).

[MW13] Mary Meeker and Liang Wu. Internet Trends. May 2013. url: http:
//www.kpcb.com/insights/2013-internet-trends (visited on
18th Nov. 2013).

[Nor] Dan North. What’s in a Story. url: http://dannorth.net/whats-
in-a-story/ (visited on 27th Feb. 2014).

78

http://permalink.gmane.org/gmane.comp.programming.tools.cucumber/14010
http://permalink.gmane.org/gmane.comp.programming.tools.cucumber/14010
http://permalink.gmane.org/gmane.comp.programming.tools.cucumber/14010
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://oss.infoscience.co.jp/seleniumhq/docs/book/Selenium_Documentation.pdf
http://oss.infoscience.co.jp/seleniumhq/docs/book/Selenium_Documentation.pdf
http://oss.infoscience.co.jp/seleniumhq/docs/book/Selenium_Documentation.pdf
http://mink.behat.org/
http://mink.behat.org/
http://orf.at/stories/2206899/2206900/
http://orf.at/stories/2206899/2206900/
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
https://www.udemy.com/blog/agile-vs-waterfall/
https://www.udemy.com/blog/agile-vs-waterfall/
http://www.kpcb.com/insights/2012-internet-trends-update
http://www.kpcb.com/insights/2012-internet-trends-update
http://www.kpcb.com/insights/2013-internet-trends
http://www.kpcb.com/insights/2013-internet-trends
http://dannorth.net/whats-in-a-story/
http://dannorth.net/whats-in-a-story/

Bibliography

[Nor06] Dan North. ‘Introducing BDD’. In: Better Software (Mar. 2006). url:
http://dannorth.net/introducing-bdd/.

[Osh09] Roy Osherove. The Art of Unit Testing: With Examples in .Net. Man-
ning Publications, July 2009. isbn: 9781933988276.

[Raj] Arun Raj. Difference Between Functional Testing and Integration Testing.
url: http://arunrajvdm.blogspot.co.at/2013/10/difference-
between-functional-testing.html (visited on 28th Jan. 2014).

[RF11] Rosnisa Abdull Razak and Fairul Rizal Fahrurazi. ‘Agile Testing
with Selenium’. In: Software Engineering (MySEC), 2011 5th Malaysian
Conference in. IEEE. 2011, pp. 217–219.

[Sam] Emmanuel Sambo. Relish: Tic Tac Toe. url: https://www.relishapp.
com/esambo/tic-tac-toe/docs (visited on 5th Mar. 2014).

[Sch11] Eric Schmidt. Digital-Life-Design (DLD) Conference. Jan. 2011. url:
http://www.youtube.com/watch?v=-ThfcvKBsug&t=8m20s (visited
on 26th Nov. 2013).

[Sco10] Karl Scotland. ‘Aspects of Kanban’. In: Methods and Tools 19.1 (Sum-
mer 2010), pp. 3–14. url: http://www.methodsandtools.com/
archive/archive.php?id=104.

[Sha11] Alan Shalloway. ‘Demystifying Kanban’. In: Cutter IT Journal 24.3
(Mar. 2011), pp. 12–17. url: http://www.netobjectives.com/
files/resources/articles/Demystifying-Kanban.pdf.

[Sla12] Wolfgang Slany. ‘Catroid: A Mobile Visual Programming System
for Children’. In: Proceedings of the 11th International Conference on
Interaction Design and Children. ACM. 2012, pp. 300–303.

[SS13] Ken Schwaber and Jeff Sutherland. The Scrum Guide. July 2013. url:
https://www.scrum.org/Scrum-Guide.

[Süd12] Medienpädagogischer Forschungsverbund Südwest. KIM-Studie.
2012. url: http://www.mpfs.de/fileadmin/KIM-pdf12/KIM_2012.
pdf (visited on 26th Mar. 2014).

[Sut04] Jeff Sutherland. ‘Agile Development: Lessons Learned from the
First Scrum’. In: Cutter Agile Project Management Advisory Service:
Executive Update 5.20 (Oct. 2004), pp. 1–4.

[Tat] Bruce Tate. Behavior-driven testing with RSpec. url: http://www.
ibm.com/developerworks/web/library/wa- rspec/ (visited on
10th Mar. 2014).

79

http://dannorth.net/introducing-bdd/
http://arunrajvdm.blogspot.co.at/2013/10/difference-between-functional-testing.html
http://arunrajvdm.blogspot.co.at/2013/10/difference-between-functional-testing.html
https://www.relishapp.com/esambo/tic-tac-toe/docs
https://www.relishapp.com/esambo/tic-tac-toe/docs
http://www.youtube.com/watch?v=-ThfcvKBsug&t=8m20s
http://www.methodsandtools.com/archive/archive.php?id=104
http://www.methodsandtools.com/archive/archive.php?id=104
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
https://www.scrum.org/Scrum-Guide
http://www.mpfs.de/fileadmin/KIM-pdf12/KIM_2012.pdf
http://www.mpfs.de/fileadmin/KIM-pdf12/KIM_2012.pdf
http://www.ibm.com/developerworks/web/library/wa-rspec/
http://www.ibm.com/developerworks/web/library/wa-rspec/

Bibliography

[UD07] Chris Ullman and Lucinda Dykes. Beginning Ajax. Wiley.com, July
2007. isbn: 9780470106754.

[Was10] Tony Wasserman. ‘Software Engineering Issues for Mobile Applica-
tion Development’. In: FoSER (2010). url: http://works.bepress.
com/tony_wasserman/4.

[WH12] Matt Wynne and Aslak Hellesøy. The Cucumber Book: Behaviour-
Driven Development for Testers and Developers. Pragmatic Bookshelf,
Jan. 2012. isbn: 9781934356807.

[Wro11] Luke Wroblewski. Mobile First. Jeffrey Zeldman, 2011. isbn: 9781937557027.

80

http://works.bepress.com/tony_wasserman/4
http://works.bepress.com/tony_wasserman/4

