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Abstract

Quantum information theory and quantum computing has attracted a lot
of interest in the scientific world recently and one was searching for simple
models with whom one can on the one hand, describe the physics easily but
on the other hand can use to perform quantum computations.
Two systems that are very interesting in this regard are the Bose-Hubbard
model and the Jaynes-Cummings model. The Bose-Hubbard model consid-
ers bosons on a lattice of cavities, that can interact with each other and also
tunnel from one cavity to the other. The Jaynes-Cummings model takes this
thought further and adds to the cavities for the bosons a two-level atomic
system at every cavity site. The bosons can therefor not only interact with
each other, but also with the two-level atomic systems.
In this work we are going to treat these two systems with the Kato formal-
ism, that promises to be a great method to deal with such physical problems
as it uses a diagrammatic approach that can treat such lattice system with
extremely low computational efforts compared to other methods. First of all
we are going to introduce this new approach with a detailed derivation and
also explain how it can be transformed into numerical algorithms to calcu-
late the ground state energy corrections for both systems. Additionally we
will also discuss the limitations and possible problems of these algorithms.
Actual results obtained with our algorithms will be presented and compared
with results from the Variational Cluster Approach.
We are then going to explain how the Kato formalism can be implemented to
compute the Mott insulator-superfluid phase boundary for the Bose-Hubbard
and the Jaynes-Cummings model.
Additionally, we are also going to introduce a disordered Bose-Hubbard
model, for which we will calculate the ground state energy corrections and
the Mott insulator-superfluid phase boundary.
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Kurzfassung

Quantum Information Theory und Quantum Computing sind zwei Schlag-
wörter, die derzeit in der wissenschaftlichen Literatur sehr geläufig sind. Man
ist auf der Suche nach Quantensystemen, die sich einerseits leicht beschreiben
lassen, sich andererseits aber gut dazu eignen Quanteninformationstheorie
und Quantum Computing durchzuführen.
Zwei theoretische Modelle die sich dafür anbieten sind das Bose-Hubbard Mo-
dell und das Jaynes-Cummings Modell. Das Bose-Hubbard Modell beschreibt
bosonische Teilchen auf einem Gitter aus Bosonenfallen, wobei die Bosonen
miteinander wechselwirken und sogar von einer Falle zu einer benachbarten
tunneln können. Das Jaynes-Cummings Modell verfolgt diesen Gedanken
weiter und führt außerdem ein Zwei-Niveau Atomsystem in jeder Bosonen-
falle ein. Somit können die Bosonen nicht nur miteinander interagieren,
sondern darüber hinaus noch mit diesen Atomsystemen.
In dieser Arbeit wollen wir diese beiden Modelle mit dem Kato Formalismus
untersuchen, der eine hervorragende Methode darstellt, solche physikalische
Probleme zu behandeln, da er auf einem diagrammatischen Ansatz beruht
mit dem sich solche Gittersysteme mit sehr geringem Rechenaufwand behan-
deln lassen. Zuerst werden wir die Herleitung dieses Formalismus ausführlich
darstellen und außerdem besprechen, wie man ihn numerisch umsetzen kann
um die Energiekorrekturen zur Grundzustandsenergie für beide theoretischen
Modelle bestimmen zu können. Es werden schließlich Resultate präsentiert,
die wir mit unserer Umsetzung des Kato Formalismus erhalten haben und
mit Resultaten einer anderen Methode, des Variational Cluster Approaches
verglichen.
Als nächstes werden wir besprechen, wie man den Kato Formalismus adap-
tieren und umschreiben kann, um mit ihm die Phasengrenze zwischen Motti-
solator und Suprafluid des Bose-Hubbard und des Jaynes-Cummings Modell
zu bestimmen.
Außerdem werden wir Unordnung in das Bose-Hubbard System einführen
und wieder diskutieren, wie die Algorithmen adaptiert werden müssen, um
die Energiekorrekturen und Phasengrenzen wie zuvor bestimmen zu können.
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Chapter 1

The Kato Formalism

1.1 Introduction

Quantum many-body systems experienced much attention in recent years,
because they yield very interesting effects and properties and allow us to
improve our knowledge about the quantum mechanical world, which is so
different from the world we experience in everyday life. To this end, many
different methods have been invented to study such systems, especially at
the lower energy range of their spectrum.

Density Matrix Renormalization Group (DMRG)

The DMRG was first introduced by [1] in 1992 and is up to this date the
method of choice for 1-dimensional quantum systems. Suppose you have a
1-dimensional chain of quantum sites. The Hilbert space of such a system
grows exponentially with the size of the chain, it is therefor clear that for
large systems a straight forward analytical computation is not feasible. One
therefor splits the system in two pieces, which do not need to contain the
same amount of sites. Then a trial ground state for the whole system is
being suggested, which is then projected into each of the pieces of the chain
individually using density matrices. In the subspaces the ground states can
now be improved to explain the system better.
The next step is then to extend the first block on costs of the second block
and repeat the whole procedure of projecting the new ground state into the
two subspaces and so on.
Once the first block has grown to its maximal possible size, the growing
procedure is inverted so that the second chain grows on the expense of the
first one and so on. This is done until a defined precision has been reached.
The DMRG approach has also been extended to be able to treat the time
evolution of product matrix states, which are of great interest for quantum
computing [2].
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1.1. INTRODUCTION

Quantum Monte Carlo (QMC) computations

Another method to deal with the huge Hilbert space of many-body quantum
systems is QMC. It is based on the classical Monte Carlo method, that relies
on statistics to simulate a system [3]. First of all one needs to define the
’boundaries’ of the system, i.e. which variables are to be considered and in
what domains are they defined. Secondly, inputs are generated according to
a predefined probability distribution and a deterministic simulation of the
system is done with these inputs. This is done many times and after each
sweep the system is adjusted based on the previous computations until the
whole system converges.
QMC now uses the general Monte Carlo method to deal with the multidi-
mensional integrals of a quantum system. With this it is possible to simulate
the many-body effects that make the analytical computation of the system’s
wave function impossible [4].

Cluster Perturbation Theory (CPT)

The Cluster Perturbation approach is used to treat big quantum systems that
are too big for methods like exact diagonalization. The idea behind CPT now
is to divide the whole lattice into identical smaller clusters [5, 6]. Then the
Greens function is solved for each cluster independently by methods of exact
diagonalization, like the Lanczos method for example [7, 8, 9]. The formula
for the Greens function, which one gets from CPT, is the lowest order result
of a strong coupling perturbation theory. To improve the accuracy of this
method one has to consider larger clusters, it does not help to consider higher
orders of correction.

Variational Cluster Approach (VCA)

The Variational Cluster Approach is a further development of CPT. It is
a method stemming from the Self Energy Functional Approach (SFA) for
fermionic systems [10, 11] that has later been adopted for bosonic systems
[12]. This method divides the whole system into smaller clusters too and
calculates the Greens function at the stationary point of the grand potential
by choosing a variational parameter space [13].

Kato Formalism

The Kato formalism is quite a unique approach to quantum perturbation
theory. In contrast to the Schrödinger-Rayleigh perturbation theory, which
is an iterative approach, the Kato formalism provides us with a method to
specify specific orders of corrections explicitly, without having to compute
all the previous orders of correction [14].
Let’s consider a non degenerated system that is composed of an already
solved hamiltonian Ĥ0 with the eigenstates |ψ(0)

i 〉 and eigenvalues E
(0)
i and a

4



CHAPTER 1. THE KATO FORMALISM

perturbation part λV , where λ is a parameter taking on the values between
0 and 1 and thus determining the strength of the perturbation. With the
Schrödinger-Rayleigh approach one first needs to compute the first order
energy corrections, which is

E(1)
n = 〈ψ(0)

n |V |ψ(0)
n 〉 . (1.1)

In other words, the perturbation V causes the system, that is in the state
|ψ(0)
i 〉 to adopt a higher energy value. Additionally the states |ψ(0)

i 〉 are, while
still being valid quantum states, no longer eigenstates of the whole system
due to the perturbation. Therefor, one also has to compute the corrections
to the eigenstates, which can be written as

|ψ(1)
i 〉 =

∑
n6=m

〈ψ(0)
n |V |ψ(0)

m 〉
E

(0)
m − E(0)

n

|ψ(0)
n 〉 . (1.2)

With knowledge about the first correction of the eigenstate, we can now
calculate the second order energy correction, which looks as follows:

E(2)
n =

∑
n6=m

∣∣∣〈ψ(0)
n |V |ψ(0)

m 〉
∣∣∣2

E
(0)
m − E(0)

n

(1.3)

At this point we are able to compute the second order eigenstate correction
|ψ(2)
i 〉, with which we can then compute the third order energy correction

E(3)
n =

∑
n 6=m
l 6=m

〈ψ(0)
m |V |ψ(0)

n 〉〈ψ(0)
n |V |ψ(0)

l 〉〈ψ
(0)
l |V |ψ

(0)
m 〉(

E
(0)
m − E(0)

n

)(
E

(0)
m − E(0)

l

)

− 〈ψ(0)
n |V |ψ(0)

n 〉
∑
n6=m

∣∣∣〈ψ(0)
m |V |ψ(0)

n 〉
∣∣∣2(

E
(0)
m − E(0)

n

)2 , (1.4)

and so on. But equation (1.4) already shows, that getting to higher order cor-
rections with the Schrödinger-Rayleigh approach is a very tedious endeavor
as the work needed increases drastically. Another big disadvantage of this
method is, that at higher orders there is a mixing of processes.
Consider a system where bosonic particles ’live’ on a regular lattice. In the
unperturbed case the particles are confined to their lattice sites, but we can
turn on a perturbation that lets the particles hop from one site to another.
If you want to treat such a system according to the Schrödinger-Rayleigh
perturbation theory the higher orders of the perturbation corrections will
consist of processes where different numbers of hopping processes occur on
the lattice.
Let’s elaborate on this in more detail: Equation (1.1) contains one pertur-
bation term V , thus there is one hopping taking place, equation (1.3) has
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1.1. INTRODUCTION

two of these terms, therefor taking into account all perturbations with two
hoppings, and so on. But at higher orders it is no longer possible to seperate
the energy corrections in a way that we have only to consider perturbations
with n hoppings.

This is the point where the Kato formalism gains a huge leverage as it is
quite easy to write down any order of correction without having to compute
all the previous ones and moreover the nth order correction will consist only
of perturbation processes with n hoppings.
In the next few section we will derive the Kato formalism with the gen-
eral Greens function as a starting point to ensure maximal generality. This
derivation is based on [14, 15, 16, 17, 18, 19]. Anyone not directly interested
in how one arrives at the determining formulas of the Kato approach can skip
this chapter entirely and move on to chapter II, where this new approach is
actually being put to work.
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CHAPTER 1. THE KATO FORMALISM

1.2 The Greens Function

We start out with the Greens function in the complex plane

G(z) =
1

z − Ĥ
, (1.5)

which has poles only along the real axis. For simplicity, we assume a discrete
spectrum with eigenstates |ψi〉. We therefor have energies E0, E1, . . . and the
corresponding projection operators P̂i can be written in the following way

P̂i = |ψi〉〈ψi| . (1.6)

The projection operators are orthogonal to each other and the sum of all
projection operators has to be 1. In mathematical terms this can be written
the following ways

P̂iP̂j = δijP̂i (1.7)∑
i

P̂i = 1̂1 . (1.8)

Since |ψi〉 is an eigenvector of Ĥ and G(z) is a function only dependent on
Ĥ and z we can compute the effect of P̂i on G(z)

G(z)P̂i =
1

z − Ei
P̂i . (1.9)

We can therefor construct the function G(z) by summing over all projection
operators, as they span the whole space Ĥ is defined on.

G(z) =
∑
i

G(z)P̂i (1.10)

=
∑
i

P̂i
z − Ei

(1.11)

On the other hand we can describe P̂i as a function of G(z): Each eigenvalue
of Ĥ is a simple pole of G(z) and its residuum is the corresponding projection
operator, or rather

P̂i =
1

2πi

∮
Γi

G(z)dz , (1.12)

where Γi is a closed contour in the complex plane, that includes Ei and no
other eigenvalue of Ĥ. Generally speaking, if Γ is a closed contour that
contains a couple of eigenvalues but does not touch or ’cross’ one, then we

7



1.2. THE GREENS FUNCTION

can write it as a sum of the projection operators that belong to the energies
enclosed by Γ

P̂Γ =
1

2πi

∮
Γ

G(z)dz (1.13)

=
∑
i

Ei∈Γ

P̂i . (1.14)

In other words, P̂Γ is the projector into the subspace spanned by the eigen-
vectors corresponding to the eigenvalues included in Γ. Now we want to
calculate the effect of P̂Γ on Ĥ

ĤP̂Γ = Ĥ
1

2πi

∮
Γ

G(z)dz (1.15)

=
1

2πi
Ĥ

∮
Γ

G(z)dz (1.16)

=
1

2πi

∮
Γ

(
11 + ĤG(z)

)
dz . (1.17)

In the last step we used that
∮

Γ
dz = 0 . Now, according to the definition of

G(z), as specified in equation (1.5), we have

(z − Ĥ)G(z) = 11 , (1.18)

which can be rewritten to

11 + ĤG(z) = zG(Z) . (1.19)

And finally we can state a closed explicit expression for the effect of P̂Γ on
Ĥ in form of a closed contour integral

ĤP̂Γ =
1

2πi

∮
Γ

zG(z)dz . (1.20)

8



CHAPTER 1. THE KATO FORMALISM

1.3 Expansion Series Representations

1.3.1 Expansion Series Representation of G(z)

We consider a hamiltonian that can be split in two parts. A part Ĥ0, whose
eigenvalues can be calculated exactly and a part λV that represents a per-
turbation to Ĥ0.

Ĥ = Ĥ0 + λV , (1.21)

where λ is the usual smallness parameter in Schrödinger perturbation theory.
We can therefor write for the complete Greens function

G(z) =
1

z − Ĥ0 − λV
, (1.22)

but we can also define a Greens function G0(z), that is only a function of the
unperturbed hamiltonian

G0(z) =
1

z − Ĥ0

. (1.23)

Combining equation (1.22) with equation (1.23) leads to

G−1 =
(
G−1

0 − λV
)

(1.24)

G =
(
G−1

0 − λV
)−1

= G0

(
11− λV G0

)−1
. (1.25)

Hence we can write G as a series expansion in powers of V of the form

G =
∞∑
n=0

λn G0(V G0)n. (1.26)

1.3.2 Expansion Series Representation of P̂

Next we determine the power series of P̂a, which shall be the projector on an
exact eigenstate. According to (1.13) we have

P̂a =
1

2πi

∮
Γa

G(z)dz , (1.27)

where Γa is a closed contour containing only the energy Ea. Later on we have
given a more precise definition. Inserting the power series of G, as specified

9



1.3. EXPANSION SERIES REPRESENTATIONS

in equation (1.26) we obtain

P̂a =
1

2πi

∮
Γa

(
G0 +

∞∑
n=1

λnG0(V G0)n
)
dz (1.28)

=
1

2πi

∮
Γa

G0dz +
∞∑
n=1

1

2πi

∮
Γa

λnG0(V G0)ndz . (1.29)

If Γa also contains the unperturbed ground state energy E
(0)
a but no other

eigenvalues of Ĥ0, then the first contribution is equal to P̂0 and we can
simplify the expression (1.29)

P̂a = P̂0 +
∞∑
n=1

1

2πi

∮
Γa

λnG0(V G0)ndz . (1.30)

To make any progress at this point we first have to take a closer look at the
Greens function again. We expand G0(z) in a taylor series about z = E

(0)
a ,

the unperturbed ground state energy enclosed by the contour Γa:

G0(z) =
1

z − Ĥ0

=
1

z − Ĥ0

P̂0 +
1

z − Ĥ0

Q̂0

=
1

z − E(0)
a

P̂0 +
1

z − Ĥ0

Q̂0 , (1.31)

where we used the abbreviation Q̂0 = 1̂1 − P̂0. Now we write the factor
(z − Ĥ0)−1 as a series

1

z − Ĥ0

=
1

z − E(0)
a + E

(0)
a − Ĥ0

=
1

E
(0)
a − Ĥ0

· 1

1 + z−E(0)
a

E
(0)
a −Ĥ0

=
1

E
(0)
a − Ĥ0

∞∑
k=0

(−1)k
(
z − E(0)

a

E
(0)
a − Ĥ0

)k
=
∞∑
k=1

(−1)k−1 (z − E(0)
a )k−1

(E
(0)
a − Ĥ0)k

(1.32)

and insert this expression in equation (1.31)

G0(z) = (z − E(0)
a )−1P̂0 +

∞∑
k=1

(−1)k−1 (z − E(0)
a )k−1

(E
(0)
a − Ĥ0)k

Q̂0 . (1.33)

10



CHAPTER 1. THE KATO FORMALISM

Finally this can be squeezed into a more compact expression so that we have
a very compact series representation for the unperturbed Greens function:

G0(z) =
∞∑
k=0

(−1)k−1(z − E(0)
a )k−1Sk (1.34)

Sk :=

{
−P̂0 for k = 0

Q̂0

(E
(0)
a −Ĥ0)k

otherwise
(1.35)

After we have managed to write down a series expansion for G0(z) we want
to concern ourselves again with the projection operator P̂ . To this end we
rewrite equation (1.30)

P̂ =P̂0 +
∞∑
n=1

λnAn (1.36)

with the substitution

An :=
1

2πi

∮
Γa

G0(V G0)ndz . (1.37)

P̂0 is quite a trivial part in this equation, so in order to break equation (1.36)
down to a more readable form we are going to deal with An. In the first
step we are going to plug in the series expression for the Greens function G0,
which we already obtained in the previous section (equation (1.34)). As only

the factor (z − E(0)
a ) is a function of z, we can write everything else outside

the integral. As G0 is a sum from k = 0 to k =∞ and we have to multiply
G0(V G0)n we end up with a sum over all possible kn that result from the
multiplication of the two sums.

An =
∑

k1,k2,...,kn+1

(
(−1)

P
n kn−(n+1)Sk1V Sk2V . . . V Skn+1·

· 1

2πi

∮
Γa

(z − E(0)
a )

P
n kn−(n+1)dz

︸ ︷︷ ︸
δ(

P
n kn−n−1=−1)

)
(1.38)

The closed contour integral along the curve Γa has a very simple solution; it
takes the form of an delta distribution that has only non-vanishing contribu-
tions where

∑
n kn − n− 1 = −1, i.e.

∑
n kn = n holds true

An =−
∑

k1,k2,...,kn+1

Sk1V Sk2V · · ·V Skn+1δ(
∑
n

kn = n) . (1.39)
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1.3. EXPANSION SERIES REPRESENTATIONS

As the delta distribution singles out only those terms of the sum which have
non negative integers k1, . . . , kn+1 for whom

n+1∑
i=1

ki = n (1.40)

applies, we can write

An =−
(n)∑
{kn+1}

Sk1V Sk2V · · ·V Skn+1 , (1.41)

where
∑(n)
{kn+1} is a sum over all those combinations discussed before. With

this, we can go back to equation (1.36) and can finally write down our series
expression for the projection operator

P̂ =P̂0 −
∞∑
n=1

λn
(n)∑
{kn+1}

Sk1V Sk2V · · ·V Skn+1 . (1.42)

1.3.3 Expansion Series Representation of ĤP̂

Next we repeat these considerations for ĤP̂ , starting out from equation (1.20)

(Ĥ − E(0)
a )P̂a =

1

2πi

∮
Γa

zG(z)dz . (1.43)

Using equation (1.11) this can be written as

(Ĥ − E(0)
a )P̂a =

1

2πi

∮
Γa

(z − E(0)
a )G(z)dz . (1.44)

Now we plug in our series expansion for the Greens function, as stated in
formula (1.26)

(Ĥ − E(0)
a )P̂a =

1

2πi

∮
Γa

(z − E(0)
a )

∞∑
n=0

λnG0(V G0)ndz , (1.45)

and with a simple reorganization we end up with

(Ĥ − E(0)
a )P̂a =

∞∑
n=0

λn
1

2πi

∮
Γa

(z − E(0)
a )G0(V G0)ndz . (1.46)
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CHAPTER 1. THE KATO FORMALISM

This expression resembles the one for An in the previous section quite closely,
so we use the same argumentation as we used to get from equation (1.37) to
equation (1.41)

(Ĥ − E(0)
a )P̂a =

∞∑
n=0

λn
∑

k1,k2,...,kn+1

(
(−1)

P
i ki−n−1Sk1V Sk2 · · ·V Skn+1

· 1

2πi

∮
Γa

(z − E(0)
a )

P
i ki−n−1+1dz

︸ ︷︷ ︸
δ(

P
i ki−n=−1)

)

(Ĥ − E(0)
a )P̂a =

∞∑
n=0

λn
(n−1)∑
{kn+1}

Sk1V Sk2 · · ·V Skn+1 . (1.47)

For n = 0 the constraint
∑n

i=0 ki = n − 1 cannot be fulfilled and hence the

sum over n starts with n = 1 and by putting E
(0)
a P̂a at the other side of the

equation we finally have our series expression for ĤP̂a

ĤP̂a = E(0)
a P̂a +

∞∑
n=1

λn
(n−1)∑
{kn+1}

Sk1V Sk2 · · ·V Skn+1 . (1.48)

For the following discussion it is advantageous to use the following shorter
notation

ĤP̂a = E(0)
a P̂a +

∞∑
n=1

λnBn (1.49)

with

Bn =

(n−1)∑
{kn+1}

Sk1V Sk2 · · ·V Skn+1 . (1.50)

1.3.4 Expressions for the Energy Corrections

We are now almost at a point where we can write down a closed expression
for the energy corrections, but before that let’s go through the first two fac-
tors Bn to see how they look like and to get an impression of what we are
dealing with.

• The first order term B1 reads like

B1 =

(0)∑
k1,k2

Sk1V Sk2 . (1.51)
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1.3. EXPANSION SERIES REPRESENTATIONS

As the only two valid indices that fulfill constraint (1.40) are k1 = 0
and k2 = 0, we have

B1 = S0V S0 (1.52)

which, according to equation (1.35), is

B1 = P̂0V P̂0 . (1.53)

• The second order contribution reads

B2 =

(1)∑
k1,k2,k3

Sk1V Sk2V Sk3 . (1.54)

There are 3 choices now for {k1, k2, k3}, which are (0, 0, 1), (0, 1, 0), (1, 0, 0),
leading to

B2 = S0V S0V S1 + S0V S1V S0 + S1V S0V S0 (1.55)

= P̂0V P̂0V
Q̂0

z − Ĥ0

+ P̂0V
Q̂0

z − Ĥ0

V P̂0 +
Q̂0

z − Ĥ0

V P̂0V P̂0 . (1.56)

If the first order correction vanishes, which can easily be achieved by
a spectral shift, then P̂0V P̂0 = |ψa〉E(1)

a 〈ψa| = 0 and only the term in
the middle is retained.

For the case of a non degenerate eigenvalue we arrive at a very compact
formula for the energy correction of a system. The degenerate generalization
can be found in [17, page 202]. Starting out from the eigenvalue equation
ĤP̂a = EaP̂a and employing TrP̂a = TrP̂0 = 1 we end up with

Ea = Tr
(
ĤP̂

)
= E(0)

a +
∞∑
n=1

λnTr
(
Bn

)
. (1.57)

So the n-th order energy correction reads

∆E(n)
a = λn

∑(n−1)

{kn+1}

Tr

(
Sk1V Sk2 · · ·V Skn+1

)
. (1.58)

Each of the terms Bn contains at least once a term P̂0, i.e. Bn has the
structure Bn = MP̂0N , with some operators M and N . Due to the cyclic
invariance of the trace, we can get to a structure like

∆E(n)
a = 〈ψ0

a|NM |ψ0
a〉 . (1.59)
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CHAPTER 1. THE KATO FORMALISM

This is nothing else than the expectation value of the operators NM for the
unperturbed ground state |ψ0

a〉. Alternatively, there is Bloch’s expression for
the nth order energy correction and with this we finally arrive at our Kato
equation for the energy correction of the nth order.

∆E(n)
a =

∑∗

{kn−1}

〈ψa|V Sk1V Sk2 · · ·V Skn−1V |ψa〉 (1.60)

along with the constraints

s∑
k=1

αk ≥ s for s = 1, 2, . . . , (n− 2) (1.61)

n−1∑
k=1

αk = n− 1 . (1.62)

We will now use this approach to calculate the energy corrections for the
Bose-Hubbard model in 1, 2 and 3 dimensions and for the Jaynes-Cummings
model as well. Additionally we are going to show, how the Kato-Bloch for-
malism can be adjusted and altered to calculate other properties of these
system, as will be demonstrated for the Mott insulator-superfluid phase tran-
sition.
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Part II

The Bose-Hubbard Model
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Chapter 2

Introduction

The Bose-Hubbard model is used to describe bosonic particles in a lattice at
very low temperatures [20] and has been treated with many different meth-
ods, including the mean-field method [21], DMRG [22, 23, 24, 25], QMC
[26, 27, 28, 29] and strong-coupling methods [30, 31], therefor constituting a
perfect testing ground for our method. Additionally, the Kato formalism has
also been used by [18] to treat the Bose-Hubbard model. The hamiltonian
for this system can be written as:

Ĥ =
U

2

∑
i

n̂i(n̂i − 1)−
∑
i,j

ti,j â
†
i âj −

∑
i

µin̂i (2.1)

• In the first term, U stands for the interaction energy of several particles
at the same site and n̂i is the particle number operator of site i. Simply
put, as soon as there is more than one particle at site i this term yields
a positive contribution to the overall energy of the system.

• The second term describes the hopping processes that take place on the
lattice. The annihilation operator âj takes away one particle from site

j and the creation operator â†i increases the particle number of site i by
one, i.e. one particle hops from site j to site i. The hopping parameter
ti,j defines the ’strength’ of this process.

• The last term in our hamiltonian accounts for a confining potential of
the lattice given by the chemical potential µi at the site i.

For further analysis we choose a system in which hopping only occurs be-
tween nearest neighbors and in which the chemical potential is the same for
each site. These constraints lead to a simplified hamiltonian reading

Ĥ =
U

2

∑
i

n̂i(n̂i − 1)− t
∑
〈i,j〉

â†i âj − µN̂ . (2.2)
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Here 〈i, j〉 means that the sum only takes nearest neighbor sites i and j into
account and N̂ =

∑
i n̂i. Additionally we split our hamiltonian into a part

Ĥ0 for which the eigenvalue equation is already solved and a hopping part
Ĥt which has to be treated pertubatively.

Ĥ = Ĥ0 + Ĥhop

Ĥ0 =
1

2

∑
i

n̂i(n̂i − 1)− µ

U
N̂

Ĥhop = − t

U

∑
〈i,j〉

â†i âj (2.3)

For large potentials of the lattice the hopping parameter t/U vanishes, i.e.
no hopping between sites occurs. In this case, only Ĥ0 has to be considered.
The ground state of our Ĥ0, where each of the N sites in our lattice is occu-
pied with g bosons can be constructed with the well known Fock-states:

|g〉 =
N∏
i

(
â†i

)g
√
g!
|0〉 (2.4)

The smaller the lattice potential gets, the more likely hopping processes will
occur, thus the perturbation term Ĥhop will influence the behavior of our
system more and more.
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Chapter 3

Energy Corrections

3.1 Applying the Kato Formalism

In order to calculate the ground state energy of this perturbed system, we
make use of the Kato formalism. The big advantage of this approach, as has
already been said, lies in the fact that it yields closed expressions for every
order of correction, in contrast to the iterative approach of the Schrödinger-
Rayleigh perturbation theory. One constraint of this approach as we will use
it here is that the eigenstates must not be degenerated.
As the derivation in the previous chapter was quite lengthy and complicated,
the most important formulas will be rewritten here at the beginning to avoid
skipping back and forth through the chapters, allowing for a more fluent read.

The nth order energy correction for the Bose-Hubbard model ground state
energy can be written as:

∆E(n)
g =

∑
{kn−1}

〈g|V Sk1V Sk2 . . . V Skn−1V |g〉 (3.1)

The index {kn−1} means that the sum runs over all possible sequences of
kn−1 which satisfy the following requirements:

s∑
l=1

kl ≥ s for s = 1, 2, . . . , n− 2 (3.2)

n−1∑
l=1

kl = n− 1 (3.3)

The variables V and Sk stand for the following terms:
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3.2. GRAPHICAL REPRESENTATION

V = − t

U

∑
〈i,j〉

â†i âj (3.4)

Sk =


−|g〉〈g| for k = 0

∑
i 6=g

|i〉〈i|(
E

(0)
g − E(0)

i

)k otherwise
(3.5)

The energies E
(0)
i are the unperturbed energies, which can be computed by

evaluating Ĥ0 using the state |i〉

E
(0)
i = 〈i|H0|i〉

=
∑
k

nk

(
nk − 1

2
− µ

U

)
. (3.6)

Obviously the unperturbed ground state energy can be written as:

E(0)
g = Ng

(
g − 1

2
− µ

U

)
(3.7)

Another notation for the energy correction, which we will be using in chap-
ter 5 about the Mott insulator-superfluid phase transition is

∆Eg =
∞∑
n=1

E(2n)
g

=
∑
n

α(2n)(g)

(
t

U

)n
, (3.8)

whose derivation will be explained in section 3.3, as it will be more compre-
hensible at that time.

3.2 Graphical Representation

In order to understand exactly how the Kato formalism can be used to com-
pute the energy corrections for the Bose-Hubbard model we take a step back
and look closely at equation (3.1). Each of the single V -terms represents a
hopping process that can be pictured graphically as single paths on a lattice.
Let’s consider for example a small, two dimensional square lattice where we
number the sites consecutively for the ease of reference.
A hopping term â†5â4 could in this graphical representation be drawn as an
arrow starting at site 4 and ending at site 5 (red arrow in figure 3.1); â†6â3 as
an arrow pointing from site 3 to site 6 (blue arrow in figure 3.1). To calculate
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CHAPTER 3. ENERGY CORRECTIONS

Figure 3.1: Two possible hopping processes on a square lattice.

the nth energy correction of an infinitely big lattice one would need to con-
sider every possible configuration that can be constructed out of n hopping
processes. As we are dealing with an infinite lattice this would of course
not be a feasible approach, so we will reduce the number of configurations
that have to be considered drastically. For that we take a second look at
equation (3.1), more precisely we take a look at the combination of V SkV .
Sk for k 6= 0 is a linear combination of all states |i〉 that are not equal to the
ground state weighted with a function of the unperturbed energies (equa-
tion (3.5)). V stands for a specific hopping process, i.e. from site i to site j
(equation (3.4)). Thus, the combination becomes

V SkV =
∑
i 6=g

V |i〉〈i|V(
E

(0)
g − E(0)

i

)k for k 6= 0 . (3.9)

Going back to our graphical description this means that the Sk link the single
perturbation terms. As each of these ’chains’ starts with our ground state
〈g| and ends with the ground state |g〉 too, they actually have to be closed
paths in order to result in a non vanishing contribution to the energy.
This simplifies our situation a lot as we no longer have to take every possible
combination of hopping processes on our lattice into account, but only those
that result in closed paths. (It also means of course that there will be no
contributions of the energy with an odd number of hopping processes.)

To state these facts even clearer we will explicitly look at the energy contri-
butions in second and fourth order.
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3.3. EXPLICIT EXAMPLES

3.3 Explicit Examples

3.3.1 Energy Corrections in Second Order

There is only one sequence {kn} that meets the constraints of equation (3.2)
and (3.3), which results in the following energy correction:

∆E(2)
g = 〈g|V S1V |g〉

=
∑
i 6=g

〈g|V |i〉〈i|V |g〉
E

(0)
g − E(0)

i

(3.10)

which matches the expression of the second order energy correction of the
Schrödinger-Rayleigh perturbation theory. If we bear on a single site we can
draw every one of these paths in our two dimensional lattice from before
(figure 3.2).

Figure 3.2: All possible closed paths in second order with the same origin.

As the model we are investigating at the moment has a uniform chemical
potential and a hopping parameter that is the same for all sites, it is trans-
lationally invariant. Because of that it is sufficient to consider only topolog-
ically different paths whose contributions to the energy then get multiplied
by the number of their appearance, i.e. their multiplicity.
Another fact worth mentioning is that we are at this point not interested
in the chronological order in which the single hopping processes occur, thus
path a and c are actually the same, as path c is just the same as path a
shifted one site to the left. The same applies for paths b and d of course.

So in summary, there is only one topologically unique diagram that has to
be considered for the second order energy correction. This diagram has a
multiplicity of 2 (figure 3.3(a)), as all open paths do not contribute to the
energy (figure 3.3(b)).
As there is also just one sequence of Kato indices {kn}, namely (1), the ap-
propriation of which sequence applies for which diagram couldn’t be simpler.
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CHAPTER 3. ENERGY CORRECTIONS

(a) Closed path (b) Open path

Figure 3.3: All topologically unique paths for two hopping processes.

The only thing left to do in order to calculate the energy correction is to gen-
erate all possible permutations of the single hopping processes for this one
path and compute the energy. Luckily, the number of possible permutations
is also very limited in case of the second order, as can be seen in figure 3.4.

(a) First permutation (b) Second permuta-
tion

Figure 3.4: All possible permutations for the second order closed path.

Thus we can finally write for our two dimensional square lattice:
(As there are only changes in two of the sites we can set our ground state
vector |g〉 = |g, g〉 without loss of generality)

∆E(2)
g = 2

(
t

U

)2 〈g, g|â†1â2|g − 1, g + 1〉〈g − 1, g + 1|â†2â1|g, g〉

2
(
n(n−1)

2
− µ

U
n
)
−
(
n2 − n+ 1− 2 µ

U
n
)

+ 2

(
t

U

)2 〈g, g|â†2â1|g + 1, g − 1〉〈g + 1, g − 1|â†1â2|g, g〉

2
(
n(n−1)

2
− µ

U
n
)
−
(
n2 − n+ 1− 2 µ

U
n
)

∆E(2)
g =− 4n(n+ 1)

(
t

U

)2

(3.11)
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3.3.2 Energy Corrections in Fourth Order

Let’s take a look at the fourth order correction of the energy now. The cumu-
lative sequences, i.e. {k1, k1 +k2, k1 +k2 +k3}, that meet the constraints (3.2)
and (3.3) are now:

{k1, k1 + k2, k1 + k2 + k3} ={(1, 2, 3), (1, 3, 3), (2, 2, 3), (2, 3, 3), (3, 3, 3)}
(3.12)

Expressed in explicit sequences {k1, k2, k3}, they correspond to:

{k1, k2, k3} = {(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)} (3.13)

Section 4.4 contains a detailed description on how to calculate these two types
of Kato sequences. This results in an energy correction term that looks like:

∆E(4)
g = 〈g|V S1V S1V S1V |g〉 (3.14a)

+ 〈g|V S1V S2V S0V |g〉 (3.14b)

+ 〈g|V S2V S0V S1V |g〉 (3.14c)

+ 〈g|V S2V S1V S0V |g〉 (3.14d)

+ 〈g|V S3V S0V S0V |g〉 (3.14e)

But not all of these terms actually yield non-vanishing contribution to the
energy. If we evaluate just the effect of V on S0 and our ground state |g〉,
we find out that

S0V |g〉 = −|g〉〈g|V |g〉 (3.15)

= t|g〉〈g|â†i âj|g〉 . (3.16)

This means that the state |g〉 has to be present before and after one hopping
process, as already discussed. This cannot be achieved by the terms with
S0V |g〉 of course, thus all the terms (3.14b), (3.14d) and (3.14e) vanish,
leaving us only with:

∆E(4)
g = 〈g|V S1V S1V S1V |g〉 (3.17a)

+ 〈g|V S2V S0V S1V |g〉 (3.17b)

The next step now is to create all topologically unique closed paths with
four hopping terms as well as their multiplicities. For the fourth order this
is still quite a simple task as there are only three diagrams possible, which
are depicted in figure 3.5.

The question we face now is to find out which Kato sequence corresponds to
which path. Therefor we take a look at equation (3.17b). The term S0 in
the middle of the sequence means that our system is in the ground state |g〉
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(a) m = 6 (b) m = 2 (c) m = 2

Figure 3.5: All possible topologically unique closed paths in fourth order
with their multiplicities m.

again after two hopping processes. As the ground state is never reached but
at the very end of the process in path 3.5(c), the Kato sequence (3.17a) has
to be taken to calculate the energy for this path.
For the paths 3.5(a) and 3.5(b) the situation is not that simple as it depends
on the chronological order of the single hopping processes whether the ground
state will be recovered after the second hopping or not.

Figure 3.6 shows the same topological path but with two different successions
of hopping processes. In figure 3.6(a) the ground state is only reached after
all hoppings took place, meaning that equation (3.17a) has to be used to
calculate the energy correction.
The order in which the hoppings occur in figure 3.6(b) however results in the
ground state being present at the end but also after two hopping processes,
thus one has to choose equation (3.17b) to calculate the energy correctly.

(a) Permutation a (b) Permutation b

Figure 3.6: Two possible permutations of path 3.5(a).

We will now calculate the energy contributions of these two specific permu-
tations to show once again how the Kato approach has to be treated. To
make the equations more readable we reduce our ground state vector to the
concerned sites only, i.e. |g〉 = |g, g, g〉, and also spare writing the full energy
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denominators as they always yield E
(0)
g − E

(0)
i = −1, due to the fact that

maximally one particle-hole pair is present in this diagram.

Path 3.6(a):

∆E(4)
a =

(
t

U

)4

(−1)3〈g, g, g|â†1â2|g − 1, g + 1, g〉

· 〈g − 1, g + 1, g|â†2â3|g − 1, g, g + 1〉
· 〈g − 1, g, g + 1|â†3â2|g − 1, g + 1, g〉
· 〈g − 1, g + 1, g|â†2â1|g, g, g〉

∆E(4)
a =− g(g + 1)3

(
t

U

)4

(3.18)

Path 3.6(b):

∆E
(4)
b =

(
t

U

)4

(−1)4〈g, g, g|â†2â3|g, g − 1, g + 1〉

· 〈g, g − 1, g + 1|â†3â2|g, g, g〉
· 〈g, g, g|â†1â2|g − 1, g + 1, g〉
· 〈g − 1, g + 1, g|â†2â1|g, g, g〉

∆E
(4)
b =g2(g + 1)2

(
t

U

)4

(3.19)

As one can see, those two permutations of the same diagram yield quite dif-
ferent results, thus there is no avoiding the fact that for every diagram we
have to compute all possible permutations and evaluate their contribution to
the energy.

To squeeze these results in a more compact form one can write for the fourth
energy correction

∆E(4)
g = α(4)(g)

(
t

U

)4

, (3.20)

where the coefficient α(4)(g) is the sum of all paths’ factors stemming from
the scalar products and the energy denominators.
If one extends this thought to the case where the energy corrections have
been calculated up to order infinity, one could write for the energy correction

∆Eg =
∑
n

α(2n)(g)

(
t

U

)n
, (3.21)

which is a power series in respect to the hopping strength t/U .
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Chapter 4

Numerical Implementation

In the last chapter we introduced the Kato formalism to calculate the en-
ergy of the Bose-Hubbard model with a perturbative approach, but without
the need to use the iterative Schrödinger-Rayleigh theory. Instead we can
make use of a formalism that allows us to derive closed expressions for every
order of correction without having to compute the preceding orders. It was
also shown how these calculations would look like for the second and the
fourth order, but it also became obvious that for every order larger than four
doing these by hand is not feasible at all. Therefor we have to think about
a numerical transcription. Such a program has to perform the following steps:

1. The first stage of the program has to construct all possible paths for a
given order.

2. The second stage has to get rid of the translational redundancies.

3. Now the different paths have to be reduced until just topologically
unique diagrams are left. Additionally, the multiplicity for each dia-
gram has to be computed as well.

4. According to the given order all possible Kato sequences have to be
created.

5. For all diagrams every permutation of the single hopping processes has
to be computed and assigned to the appropriate Kato sequence. (One
specific diagram can also belong to more than one Kato sequence.)

6. Evaluating the energy of every single permutation. The overall energy
is then a result of summing over all permutations of a diagram, mul-
tiplying this energy with the multiplicity of the diagram and finally
summing over all diagrams.

We will now discuss each of these steps in depth to make the process more
transparent and easier to understand. First of all we have to think about
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what the ’stage’ of our Bose-Hubbard model is. In our case, everything takes
place on an infinitely large lattice that has either one, two or three dimen-
sions. In our further discussion we will focus on the two-dimensional case, as
the situation can be described easier and most of the considerations can be
upscaled to three dimensions as well as downscaled to one dimension without
spending any additional thoughts. Each time the one or three dimensional
implementation has to be treated differently from the two-dimensional case
it will be pointed out and further elaborated on.
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CHAPTER 4. NUMERICAL IMPLEMENTATION

4.1 Constructing the Paths

Of course there are many possibilities to construct closed paths on a lattice.
One for example would be to simply place single hopping processes on the
lattice one after another until the required number of processes has been
reached. After that one would check if a contiguous path has been created
and whether it is closed or not.
There are however two issues with this approach. First of all it would con-
sume much computational power. The second problem is that one would
end up with a huge number of paths all over the lattice which would then
need to be shifted to a common origin in order to get rid of translational
redundancies.

A much more sophisticated and computational power friendly approach is
to choose one site as the origin for all paths to come. As the paths have
to be closed in the end, each one has to have as many hopping processes
to the right as to the left and as many hoppings upwards as downwards,
i.e. N+x = N−x, N+y = N−y. (The left-right direction will from now on be
referred to as x-direction and the up-down direction as y-direction.) This
means that the actual number of hoppings that have to be decided on is only
half the expansion order.

The next detail to decide on is how many steps in each of the two directions
one takes. As the number of hoppings in x-direction is linked to the number
of hoppings in y-direction it suffices to specify the number of hoppings to the
right one wants to take.

N0 = N+x +N−x +N+y +N−y

= 2(N+x +N+y) (4.1)

N+y =
N0

2
−N+x (4.2)

Thus for fixed N0 and N+x the number of closed paths that return to the
origin after N0 steps is

N(N0, N+x) =
N0!

N+x!N−x!N+y!N−y!
(4.3)

=
N0!

(N+x!(
N0

2
−N+x)!)2

=
N0!

(N+x!(
N0

2
−N+x)!)2

=

(
N0
N0

2

)(
(N0

2
)!

N+x!(
N0

2
−N+x)!

)2

. (4.4)
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Hence, the total number of closed paths in two dimensions is

N(N0) =

N0
2∑

N+x=0

(
N0
N0

2

)(
(N0

2
)!

N+x!(
N0

2
−N+x)!

)2

(4.5)

=

(
N0
N0

2

) N0
2∑

N+x=0

(
(N0

2
)!

N+x!(
N0

2
−N+x)!

)2

=

(
N0
N0

2

)2

. (4.6)

While the argument that N+i = N−i for i ∈ (x, y, z) still applies for three
dimensions as well, the fact that a fixed number of steps in x-direction does
no longer conclusively determine the number of steps in y- and z-direction
means that (4.6) is no longer true for three dimensions. For one dimension

the number of closed path is simply N(N0) =
(N0

N0
2

)
.

If we assign numbers to the directions to take (+x =̂ 1, +y =̂ 2, −x =̂ 3
and −y =̂ 4) we can compute very conveniently every possible path from a
common origin by just computing every unique permutation of these num-
bers. For N0 = 2 this would lead to the four rows of table 4.1, each of them
representing a path that is drawn in figure 4.1.

Table 4.1: Representation of all two-
dimensional closed path in second or-
der.

1. 1 3

2. 2 4

3. 3 1

4. 4 2

1.

2.

3.

4.

Figure 4.1: All paths in second order
according to table 4.1.

To bring this section to a conclusion, table 4.2 shows the total number of
closed paths for a given order in one, two or three dimensions.
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Table 4.2: Number of paths for given order and dimension.

order 1-dim 2-dim 3-dim
2 2 4 6
4 6 36 90
6 20 400 1140
8 70 4900 14490

10 252 63504 189756

4.2 Translational Redundancies

According to our list at the very beginning of this chapter the next step is to
get rid of the translational redundancies. A very important point to consider
is that path 1 and path 3 in figure 4.1 are not only topologically identical,
but are actually the same. Thus only one of these duplicate paths has to be
counted, otherwise this would lead to a wrong multiplicity.

To make this situation clearer let us take a look at figure 4.2. Besides we
will change from the previous representation of a path, where we defined
the directions in which the hoppings take place to a representation of sites
connected with bonds. In figure 4.2 the sites have also been numbered in
order to have a reference point for the origin. (The discontinuity at the edge
of sites 3 and -3 has no influence in our discussion as the sites could always
be renumbered in another way.) The transition from direction to bond rep-
resentation for these three paths works as follows:

Path 1, figure 4.2(a): (1, 1, 3, 3) =⇒

0 1
1 2
2 1
1 0

(4.7)

Path 2, figure 4.2(b): (1, 2, 4, 3) =⇒

0 1
1 4
4 1
1 0

(4.8)

Path 3, figure 4.2(c): (3, 3, 1, 1) =⇒

0 −1
−1 −2
−2 −1
−1 0

(4.9)
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1 2

3 4 5

0-1-2

-3-4

(a) Path 1

1 2

3 4 5

0-1-2

-3-4

(b) Path 2

1 2

3 4 5

0-1-2

-3-4

(c) Path 3

Figure 4.2: Three possible paths with four hopping processes.

The next thing we do is shift each path along the x-direction so that the
leftmost visited site of this path is the site with number 0, i.e. that there
are no sites with negative indices integrated into the path. In analogy, one
would shift a path in y and z direction so that no negative site-indices occur.

Path 1 :

0 1
1 2
2 1
1 0

, Path 2 :

0 1
1 4
4 1
1 0

, Path 3 :

2 1
1 0
0 1
1 2

As we are at this point not at all interested in which order which site is
visited, we can rearrange the order of the bonds. We do that in a way that
the sum over the two columns should be ascending. Whenever there are two
rows with the same sum the row with the lower first element should be placed
first. Our three paths ordered accordingly to these rules look as follows:

Path 1 :

0 1
1 0
1 2
2 1

, Path 2 :

0 1
1 0
1 4
4 1

, Path 3 :

0 1
1 0
1 2
2 1
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It becomes obvious now that path 1 and path 3 are the same. Therefor one
of them has to be dropped without changing the multiplicity of the other.

Table 4.3 shows the number of paths after they have been examined accord-
ingly to the algorithm presented in this chapter. We no longer keep track of
a one-dimensional lattice as it would provide no additional information that
couldn’t be derived with a two- or three-dimensional lattice.

Table 4.3: Number of paths for given order and dimension after eliminating
the translational redundancies.

order 2-dim 3-dim
2 2 3
4 10 24
6 64 177
8 474 1383

The remaining paths we do have now do not contain any translational re-
dundancies anymore, therefor whenever we drop a path, because we found a
topologically identical path, we have to adjust the multiplicity of that dia-
gram accordingly so that the total number of paths stays the same.
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4.3 Reducing the Paths to Topologically Unique

Diagrams

After eliminating all multiple paths that differ from each other just by a
simple shift, we now want to reduce these paths to just a few topologically
unique diagrams that are representative for the whole set of paths. In order
to do so we have to remind ourselves what the starting situation is. We have
a regular lattice on which hopping processes take place. As the chemical
potential and the hopping parameter are both independent of the site, i.e. are
constant for any site, the only distinguishing parameters are the occupation
numbers of each site at a given moment or after a certain hopping.

(a) Path 1 (b) Path 2 (c) Path 3

Figure 4.3: Three topologically identical paths

Therefor, all three paths of figure 4.3 have the same topology and it is suf-
ficient to keep just one path of them, say the first one and remember how
many other paths of the same topology there are.
As we have to compute every permutation of hopping processes, reducing
the paths to just a few unique diagrams allows for huge savings of both pro-
cessing power and time. Just take the three paths of figure 4.3: To compute
the energy contribution of these one would need to evaluate 3 · 4! = 72 paths
due to the permutations, whereas computing the energy contribution of path
1 and multiplying the outcome with three would deliver the same value for
the energy, but in a third of the calculating time.

A very elegant way to find the topologically unique diagrams makes use of
adjacency matrices, which are often used in graph theory. These matrices tell
you which vertices of a network are connected with which. As our algorithms
make heavy use of adjacency matrices the concept shall be explained more
extensively here.

Let’s consider the following path of figure 4.4, whose bond representation is
shown in table 4.4

36



CHAPTER 4. NUMERICAL IMPLEMENTATION

Table 4.4: Bond representation of path
figure 4.4.

i j

1. 1 2

2. 2 3

3. 3 4

4. 4 1

Figure 4.4: 1→ 2→ 3→ 4→ 1

We start out with a zero matrix that has as many rows and columns as there
are unique sites in the path, in our case four. For every bond from site i
to site j we add 1 to the matrix element mij. For our specific case of path
figure 4.4 this means that we have to increase the values of m1,2, m2,3, m3,4

and m4,1 by one, resulting in an adjacency matrix that looks as follows:

M1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (4.10)

Let’s now apply the same procedure to another path, as shown in figure 4.5:

Table 4.5: Bond representation of path
figure 4.5

i j

1. 1 2

2. 2 3

3. 3 2

4. 2 1

Figure 4.5: 1→ 2→ 3→ 2→ 1

For this path the adjacency matrix has the form:

M2 =

 0 1 0
1 0 1
0 1 0

 (4.11)
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As a last example let us calculate the adjacency matrix of the last topologi-
cally unique diagram in fourth order (figure 3.5(b)).

Table 4.6: Bond representation of path
figure 4.6

i j

1. 1 2

2. 2 1

3. 1 2

4. 2 1

Figure 4.6: 1→ 2→ 1→ 2→ 1

Here the adjacency matrix looks like:

M3 =

(
0 2
2 0

)
(4.12)

As one can see, these three matrices differ clearly from each other, but every
closed path that can be generated out of four hopping processes will have
one of these three adjacency matrices, i.e. all paths in fourth order can be
reduced to these three diagrams.
The use of adjacency matrices can help us tremendously to reduce the num-
ber of paths, in fact most of the paths can be identified by the straightforward
implementation of the adjacency matrix.
For a small amount of paths however this basic approach does not suffice to
tell whether a path is topologically unique or not, as there are a few paths
whose differences are more subtle. Thus our approach has to be adapted.
We therefor take a look at the following two paths of figure 4.7 consisting of
four single hopping processes:

(a) Path 1: 1 → 2 → 3 →
2→ 1

(b) Path 2: 1 → 2 → 1 →
3→ 1

Figure 4.7: Two topologically identical paths.
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Their adjacency matrices look like:

M1 =

 0 1 0
1 0 1
0 1 0

 (4.13)

M2 =

 0 1 1
1 0 0
1 0 0

 (4.14)

As one can see, these two matrices are different but the topologies of the
paths are not. Both are made of two double bonds and the hopping occurs
between three sites. The only difference is that in path 1 (figure 4.7(a)) the
origin for numbering the sites is at the edge of the two double bonds whereas
the origin of path 2 (figure 4.7(b)) lies right in between the double bonds.
But as we already agreed, the chronological order in which the hopping pro-
cess occurs is of no interest at this point, so these paths have to be topolog-
ically identical. In order to make our algorithm sensitive for these kind of
issues we have to permute the path in question circularly (N − 1) times (N
shall be the number of hopping processes), i.e. shift the origin of the path
at the beginning of each single hopping term, and compute the adjacency
matrix of each permutation. Each of these matrices is then compared with
the adjacency matrices of the already identified unique diagrams. If no ma-
trices match each other the path is topologically different, otherwise it will
be discarded and the multiplicity of the previous diagram increased by one.
In our example of figure 4.7(b) the first permutation already has the same ad-
jacency matrix as path figure 4.7(a), thus it can not be topologically unique.
Another more complex example is shown in figure 4.8. There you can see two
paths with eight hopping processes that look quite similar, but their course
is different. The first four hopping processes have been depicted with red
arrows to illustrate this fact better.

(a) Path 1 (b) Path 2

Figure 4.8: Two topologically identical paths.

Their adjacency matrices also look different, but by computing the adjacency
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matrices of all permutations of the second path it is possible to find a matrix
identical to matrix (4.15)

M1 =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0


(4.15)

M2 =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0


(4.16)
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4.4 Computing the Kato Sequences

Creating all possible Kato sequences for a given order is a straightforward
approach. We start with computing all cumulative sequences that meet con-
straint (3.3) which says that the highest index of our sequence must be N−1
(N being the considered order).
As the value of the last index is fixed with N −1, we only have to care about
the previous N − 2 indices. Each of these indices ni can take any number
that is higher or equal that of the previous index but lower or equal than the
value of the next index (constraint (3.2)), i.e.

ni−1 ≤ ni ≤ ni+1 (4.17)

For the fourth order energy correction the cumulative sequences are listed in
table 4.7.

Table 4.7: All cumulative Kato sequences for the fourth order.

n1 n2 n3

1. 1 2 3
2. 1 3 3
3. 2 2 3
4. 2 3 3
5. 3 3 3

The next thing we have to do is to make the transition from the cumulative
indices ni to sequential indices ki. This again is a very simple task when we
consider that

ni =
i∑

j=1

kj (4.18)

= ni−1 + ki

ki = ni − ni−1 . (4.19)

Therefor, the corresponding sequential sequences to table 4.7, which are
shown in table 4.8, can be calculated very easily. We already mentioned in
chapter 3.3.2 that not all of these sequences describe a valid path. In general,
the sequence (k1, k2, k3) is just the short form of writing 〈g|V Sk1V Sk2V Sk3V |g〉.
This means, that if either the first or the last index k is equal to zero we would
have a configuration where a hopping term V is between two ground states,
i.e. 〈g|V |g〉. This cannot be fulfilled as there can’t be the ground state
present after any hopping from the ground state. Likewise, any sequence
where two or more indices, which are succeeding each other, are equal to
zero, cannot be a valid Kato sequence and thus has to be eliminated. This
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Table 4.8: All sequential Kato sequences for the fourth order.

k1 k2 k3

1. 1 1 1
2. 1 2 0
3. 2 0 1
4. 2 1 0
5. 3 0 0

leaves us with just two possible sequences for the fourth order energy correc-
tion, as shown in table 4.9.

Table 4.9: All valid Kato sequences for the fourth order.

k1 k2 k3

1. 1 1 1
2. 2 0 1

To conclude this section, table 4.10 shows all valid sequential Kato sequences
for the sixth order of the energy correction.

Table 4.10: All valid Kato sequences for the sixth order.

k1 k2 k3 k4 k5

1. 1 1 1 1 1
2. 2 0 1 1 1
3. 1 2 0 1 1
4. 2 1 0 1 1
5. 1 1 2 0 1
6. 1 2 1 0 1
7. 2 1 1 0 1
8. 2 0 2 0 1
9. 3 0 1 0 1
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4.5 Assigning the Appropriate Kato Sequences

to a Certain Path

In order to calculate the energy contribution of a specific path correctly one
has to know which Kato sequences belong to that path. To understand how
one can identify the right sequence let us again look at the sequences of ta-
ble 4.10 from the previous chapter. The first sequence (1,1,1,1,1) corresponds
to a Kato term

(1, 1, 1, 1, 1) =⇒ 〈g|V S1V S1V S1V S1V S1V |g〉. (4.20)

This term describes a path that never returns to the ground state until the
very end, i.e. the situation where every site is occupied with exactly g bosons
is only present before the first and after last hopping process.

The second sequence of table 4.10, which is (2,0,1,1,1) belongs to the Kato
term

(2, 0, 1, 1, 1) =⇒ 〈g|V S2V S0V S1V S1V S1V |g〉. (4.21)

As S0 = −|g〉〈g| (equation (3.5)) the sequence can be rewritten to

(2, 0, 1, 1, 1) =⇒ −〈g|V S2V |g〉〈g|V S1V S1V S1V |g〉 . (4.22)

The last equation tells us that the ground state is present not only before the
first and after the last hopping process, but also after four hopping processes.
Thus only paths that return to the ground state after four hoppings are being
described by this Kato sequence.
What one has to do now is to compute if and after how many hopping
processes a path returns to the ground state. Once this is known it is easy
to pick the appropriate Kato sequence. It has to be noted however that
one path could be described by several Kato sequences. The sequences 5 to
7 in table 4.10 for example describe paths that return to the ground state
once after the first two hopping processes. So all three sequences have to be
assigned to a path that recovers the ground state after two hoppings.
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4.6 Evaluating the Energy

We now have everything needed to calculate the energy correction for ev-
ery desired order assuming that we have enough computational power on our
hands. We reduced all the paths that can occur on our lattice to topologically
unique closed diagrams and we also computed all possible Kato sequences for
a given order. Thus all we have to do now is put the information we gained
together correctly to evaluate the energy correction.

1. Order of the hopping processes
Up until now we didn’t concern ourselves with the chronological or-
der in which the hopping processes occur. To finally calculate the
energy contribution of each diagram we have to abandon this restric-
tion. Therefor we have to take each diagram explicitly and permute
the single hopping processes the diagram consists of in every possible
way. In doing so we get a set of paths for every diagram.

2. Checking for intermediate ground states
In the second step we have to search each path for intermediate ground
states and assign the appropriate Kato sequences to the paths. We
cannot do this assignment for the whole set of a diagram at once,
because the intermediate states of the paths do differ in general. To
illustrate this let us take a look at figure 3.6 again.

(a) Permutation a (b) Permutation b

Figure 4.9: Two possible permutations of path 3.5(a).

As you can see, the first path (figure 4.9(a)) does not have the ground
state as an intermediate state, whereas the second path (figure 4.9(b))
does recover the ground state after the first two hopping processes, al-
though both do have the same topology.
Another fact that needs to be paid attention to is that a path can be
described by several Kato sequences as has been explained in chap-
ter 4.5, in which case all of these sequences have to be assigned to the
path.
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3. Evaluating the energy contribution of a path
Now we calculate the energy contribution of each path using the for-
mula

∆E
(n)
path = 〈g|V Sk1V Sk2V . . . V Skn−1V |g〉 (4.23)

If several Kato sequences have been assigned to a specific path we
evaluate equation (4.23) for each of these sequences and then take the
sum of these energies:

∆E
(n)
path =

∑
{kl}

〈g|V Sk1V Sk2V . . . V Skn−1V |g〉 . (4.24)

4. Energy of a diagram
At this point we have the energy contribution of every path of our set
of paths belonging to a single diagram, so we have to sum up all these
energy contributions. As one diagram represents several paths of the
same topology on our lattice we also have to multiply this energy value
with the multiplicity of the diagram. This leaves us with the energy
contribution of all paths with the same topology.

5. Energy correction for the system
All of the above steps have to be executed for every diagram. Once we
know the energy contributions of all the diagrams we can sum up all
these contributions and thus get the energy correction of the nth order
for our system.
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4.7 Results

In this section, a few results shall be presented that were achieved by using
the Kato formalism. It is quite interesting to note, that the expansion coeffi-
cients α(ν) we used in equation (3.21) to describe the energy do in fact grow
almost exponentially, which can be seen in figure 4.10.

Figure 4.10: Exponential growth of the coefficients α(ν).

The dots represent the actual values of the coefficients, while the solid lines
show a linear fit of those points. In this figure, blue stands for a system
with 2 dimensions and red for a system with 3 dimensions. The case with
a system of just 1 dimension is not shown here as the expansion coefficients
for such a system do not show this strict exponential behavior.
Figure 4.11 shows the energy corrections ∆E for systems with 1, 2 and 3 di-
mensions and unity filling factors as functions of the tunneling parameter t.
As expected, at t = 0 the energy correction is zero, as no tunneling of particles
occurs and the system is therefor described by the unperturbed hamiltonian
Ĥ0, whose energy E(0) can be calculated exactly.
The bigger the hopping strength t gets, the bigger |∆E| becomes. One can
also see, that while |∆E| for 1 dimension grows quite moderately, the curva-
ture increases significantly for higher and higher dimensions.

In figure 4.12 one can see the energy correction for 2 and 3 dimensions and
filling factors g = 1 and g = 2. Note that when the abscissa is scaled with
2d ·
√
g(g + 1), where d denotes the number of dimensions, the curves for the

same number of dimensions, but with different filling factors, coincide, as is
shown in figure 4.12
Another method to determine the correct energy of such a system is the Vari-
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Figure 4.11: Energy corrections (up to 8th order) for 1, 2 and 3 dimensions
and filling factor g = 1.

Figure 4.12: Energy correction up to 8th order for 2 and 3 dimensions with
filling factors g = 1 and g = 2.
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ational Cluster Approach (VCA). As the name suggests, the bosonic lattice
is divided in smaller clusters with this method. The determining equations
for these small clusters can then be solved, in contrast to the equations of
the whole systems, which are far too big for our recent computers. After
solving the situation in the small clusters one then puts them back together
to recover the complete system. The problem however is, that while hopping
is allowed in the clusters, the particles can not tunnel between two different
clusters, thus introducing an error to the computation. To keep this error
as low as possible, the hopping between clusters is considered perturbatively
after the cluster systems have been solved.
Figure 4.13 shows a comparison of results obtained with our Kato formalism
and of results from a VCA computation. As one can see, the results with
these two methods are in very good agreement with each other.

Figure 4.13: Computed energy corrections with the Kato approach (up to
8th order) for 1 dimension and filling factors g = 1 and g = 2 compared with
results obtained with VCA.

48



Chapter 5

The Mott Insulator-Superfluid
Phase Transition

5.1 Introduction

The behavior of a Bose-Hubbard system at zero temperature depends ex-
tremely on the ratio between hopping strength t and potential energy U . If
U is very large in comparison to t, no hopping will occur at all in our sites,
which is therefor in a Mott insulator state (MI). In such a state, all the par-
ticles are localized at the sites and there will be no particle ”current”.
On the other hand, when t is very large compared to U , the site potential will
not notably affect the particles, which are then able to move freely in the vol-
ume of the material. This state, where the particles’ wave function is spread
across the whole volume is called a superfluid state (SF) [32]. Figure 5.1
shows a sketch of these two phases in dependency of the hopping parameter
t and the chemical potential µ in relation to the on-site potential U .
It is now of great interest to study the properties of these very different
phases, in particular one is interested in the moment when a Mott insulator
becomes a superfluid or vice versa. Simply speaking, when we start with
t = 0 and increase t continuously, there will be a specific value tc for t where
our system undergoes a transition from the Mott insulator phase to the su-
perfluid one and it is this critical value we are interested in.

While many computational methods struggle a lot with the simultaneous
description of both phases, the Kato formalism is very well suited for this
task, as you will see in the subsequent pages. But before we can get to the
actual implementation, we first have to develop the theoretical frame to deal
with this problem, called the method of Effective Potential in the formulation
of [33, 34].
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µ/U

t/U

1

2

3

0

MI (n=1)

MI (n=2)

MI
(n=3)

SF

SF

SF

Figure 5.1: Schematic drawing of the Mott insulator and superfluid phases
of a Bose-Hubbard at zero temperature as function of the hopping strength
and the chemical potential.

5.2 Method of Effective Potential

Let us consider a hamiltonian that depends on a parameter λ and can be
written as follows:

Ĥ(λ) = Ĥ0 + λĤ1 (5.1)

The derivative of the partition function with respect to λ reads

∂

∂λ
Z(λ) =

∂

∂λ
Tr

(
e−β(Ĥ0+λĤ1)

)
(5.2)

and, written as a total derivative of λ,

∂

∂λ
Z(λ) =

1

dλ

Tr

(
e−β(Ĥ0+λĤ1+dλ)

)
− Tr

(
e−β(Ĥ0+λĤ1)

)
︸ ︷︷ ︸

Z(λ)

 . (5.3)

To deal with this expression further, we use the Trotter decomposition first,
since Ĥ0 and Ĥ1 do not commute, i.e. [Ĥ0, Ĥ1] 6= 0. Then we are going to

factorize the terms for (λ+ dλ) into e−∆τĤe−∆τdλĤ1 , i.e.:

Tr

(
e−β(Ĥ0+λĤ1+dλ)

)
= Tr

( m∏
τ=1

e−∆τĤe−∆τdλĤ1

)
(5.4)

Next we rewrite our formula as a Taylor expansion in dλ up to first order.
The leading order term is

Tr

( m∏
τ=1

e−∆τĤ · 1
)

= Z(λ) . (5.5)

50



CHAPTER 5. MI-SF PHASE TRANSITION

For the first order contribution we merely need a single one of the dλ terms,
so only one out of the m factors contributes, while the others are equal to
one, as the dλ term can originate from one of the m factors. Due to the cyclic
invariance of the trace, all m terms yield the same result. This means, that
in total we have a first order contribution of

−m∆τdλTr

( m∏
τ=1

e−∆τĤĤ1

)
= −βdλZ(λ)〈Ĥ1〉 . (5.6)

Higher order contributions vanish in the limit dλ → 0 and the final result
reads

∂

∂λ
Z(λ) =

Z(λ)− βdλZ(λ)〈Ĥ1〉 − Z(λ)

dλ
(5.7)

= −βZ〈Ĥ1〉 . (5.8)

We can therefor write for the expectation value of Ĥ1

〈Ĥ1〉 = − 1

β

∂

∂λ
Z(λ) (5.9)

=
∂

∂λ
F (λ) . (5.10)

The same reasoning also applies to a general parameter dependence, with
the linearization Ĥ(λ+ dλ) = Ĥ(λ) + dλ ∂

∂λ
Ĥ(λ).

This means that Ĥ1 = ∂
∂λ
Ĥ(λ) and we obtain the thermodynamic version of

the Hellmann-Feynman theorem

∂

∂λ
F (λ) =

〈
∂

∂λ
H(λ)

〉
. (5.11)

For our further calculations we stick to the linear case and consider the re-
sponse of the expectation value 〈Ĥ1〉 to changes of λ, which is a susceptibility

χ :=
∂

∂λ
〈Ĥ1〉 (5.12)

=
∂

∂λ
〈Ĥ1〉 . (5.13)

We also want to introduce the hamiltonian that governs our system in the
superfluid phase:

H̃(η, η∗) = Ĥ0 + Ĥhop +
∑
i

(
η∗âi + ηâ†i

)
, (5.14)

where Ĥ0 and Ĥhop are the already well known operators we introduced in
equation (2.3). The third term is the effective potential which takes into
account that our system may have sources and drains, i.e. âi annihilates a
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particle at site i with probability η∗ and â†i creates a particle at site i with
strength η.
Each system tries to minimize its energy, thus before anything else we have
to know, how the free energy of this new system described by equation (5.14)
looks like.

5.2.1 Power Series Representation of the Partition
Function Z and the Free Energy F

As the hamiltonian of equation (5.14) depends strongly on the drain and
source strength η∗ and η we will write the partition function Z as a power
series in η about η = 0, as η = 0 represents the case of the unperturbed
hamiltonian.

H̃ = Ĥ0 + Ĥhop︸ ︷︷ ︸eH0

+
∑
i

(
η∗âi + ηâ†i

)
︸ ︷︷ ︸eH1

We also want to combine the sum of operators into a single operator to make
the coming formulae easier to read

H̃1 = η
∑
i

â†i︸ ︷︷ ︸
=:Â†

+η∗
∑
i

âi︸ ︷︷ ︸
=:Â

(5.15)

= ηÂ† + η∗Â . (5.16)

The expectation value of an operator Ô for the unperturbed system can be
written as

〈Ô〉0 =
1

Z0

Tr
(
Ôe−β

eH0

)
(5.17)

with

Z0 = Tr
(
e−β

eH0

)
. (5.18)

Obviously, due particle number conservation in H̃0, following equation has
to hold

〈Â〉0 = 〈Â†〉0 = 0 . (5.19)

A term ηn(η∗)m in the power series implies n factors of Â and m factors of Â†

in a trace which otherwise contains Boltzmann factors e−τ
eH0 . Since H̃0 is the

bare Bose Hubbard hamiltonian, the particle number has to be conserved.
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This means, that m = n, as otherwise the number of particles in our system
would change. Hence, the power series is of the form

Z = Z0 +
∞∑
i=1

Z2i |η|2i . (5.20)

Since [H̃0, H̃1] 6= 0 we need the Trotter decomposition first before we can go
on with our calculations:

Z(η, η∗) = Tr

(
m∏
l=1

e−∆τ eH0e−∆τ(ηÂ†+η∗Â)

)
. (5.21)

We are merely interested in terms up to order |η|4, i.e. second order in η as
well as in η∗.
Let’s go trough this order by order:

• The leading order |η|0 is given by Z0 = Z(η = 0, η∗ = 0).

• The first order vanishes.

• There are m factors which can contribute parts or all of the Â† and Â
operators. So in second order we need to gather one factor Â and one
factor Â†. There are m sites for each one of them.
Hence, there are m2 terms contributing and each term is of the order
O(∆τ)2 = O((1/m)2) and therefore the result is of the order O(1).

The term where both operators stem from the same Trotter time is
of the order O(1/m), as there are m time slots and each term is of
the order O((1/m)2). We can therefore ignore this case in the limit
m→∞. That is, we consider the case, that the two operators belong
to different Trotter times, say l1 and l2 (l1 < l2), and we merely need
the first order term of the power series for the times under considera-
tion.
All other time slots contribute a factor of 1 from the powers series of
e−∆τ eH1 . The first Trotter time l1 can contribute Â or Â†, likewise the
second Trotter time l2. So we have the cases:

Â at l1 and Â† at l2

or Â† at l1 and Â at l2 .

Hence Â can occur at l1 or at l2 with Â† at the opposite position. So,
along with the definition Û = e−(l1−1)∆τ eH0 we have

Z2 = (∆τ)2
∑
l1,l2
l1 6=l2

Tr

Û · Û
position l1︷︸︸︷
Â† Û · Û

position l2︷︸︸︷
Â Û · Û

 . (5.22)
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By virtue of the cyclic invariance, we can get Â to the very right posi-
tion, making the summation independent of l2, while l1 runs from 1 to
m− 1

Z2 =m

(
β

m

)2

·
m−1∑
l=1

Tr

Û · Û
position l︷︸︸︷
Â† Û · ÛÂ

 . (5.23)

We do not include the case where l = m, as it has a vanishing contri-
bution, leaving us with

Z2 =β∆τ
m∑
l=1

Tr
(
Û l−1Â†Ûm−l+1Â

)
.

Substituting m− l + 1 with n gives us

Z2 =β∆τ
m∑
n=1

Tr
(
Ûm−nÂ†ÛnÂ

)
and after sliding in 11 = ÛnÛ−n

Z2 =β∆τ
m∑
n=1

Tr
(
Ûm−nÛnÛ−nÂ†ÛnÂ

)
.

Finally we use the cyclic invariance of the trace and in that way get to
the expression

Z2 =β
m∑
n=1

Tr
(
UmÛ−nÂ†ÛnÂ

)
∆τ

=βZ0

β∫
0

〈Â†(τ)Â〉dτ (5.24)

with

Â†(τ) :=eτ
eH0Â†e−τ

eH0 . (5.25)

If we incorporate any non-vanishing contribution up to second order we now
have

Z = Z0

1 + β |η|2
β∫

0

〈Â†(τ)Â〉dτ

 . (5.26)
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In the limit |t|/U → 0 the integral is easy to evaluate. With Â† =
∑

i â
†
i and

Â =
∑

j âi it reads

β∫
0

〈Â†(τ)Â〉dτ =
∑
ij

β∫
0

〈â†i (τ)âj〉︸ ︷︷ ︸
∝δij

dτ

=
∑
i

β∫
0

〈â†i (τ)âj〉dτ . (5.27)

From basic quantum mechanics we know that the time derivative of an oper-
ator, in our case â†i can be written as

d

dτ
â†i = eτ

eH0 [H̃0, â
†
i ]e
−τ eH0 , (5.28)

and to evaluate the above expression we first have to compute the commu-
tator of H̃0 and â†i

[H̃0, â
†
i ] = U [n̂i(n̂i − 1), â†i ]

= U
(
n̂i[(n̂i − 1), â†i ] + [n̂i, â

†
i ](n̂i − 1)

)
= U

(
n̂iâ
†
i + â†i (n̂i − 1)

)
= 2Uâ†i n̂i . (5.29)

Going back to equation (5.27) we now have

〈â†i (τ)âi〉 =
1

Z

∑
{nl}

e−β
P

l E(nl)
∏
l 6=i

〈nl||nl〉〈ni|â†i (τ)âi|ni〉 (5.30)

and with the definition of Z

〈â†i (τ)âi〉 =

∏
l 6=i

(∑
nl
e−βE(nl)

)∑
ni
e−βE(ni)〈ni|â†i (τ)âi|ni〉∏

l

(∑
nl
e−βE(nl)

)
=

∑∞
n=0 e

−βE(n)〈n|â†(τ)â|n〉∑
n e
−βE(n)

. (5.31)

To get equation (5.31) in a more compact form we take a closer look at the
scalar product 〈n|â†(τ)â|n〉 to simplify the expression

〈n|â†(τ)â|n〉 = 〈n|eτ eH0 â†e−τ
eH0 â|n〉

= eτE(n)e−τE(n−1)〈n|â†â|n〉
= n eτ(E(n)−E(n−1) . (5.32)
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The energy difference E(n)−E(n− 1), that appears in the exponent can be
cooked down to a more comprehensible form too, as these energies are the
already known eigenvalues of the unperturbed hamiltonian, i.e.

E(n)− E(n− 1) =
U

2
n(n− 1)− µn− U

2
(n− 1)(n− 2) + µ(n− 1)

=
U

2
(n2 − n− n2 + 3n− 2)− µ

= U(n− 1)− µ . (5.33)

So if we plug equation (5.33) into equation (5.32) for the scalar product
〈n|â†(τ)â|n〉, we end up with

〈n|â†(τ)â|n〉 = neτ(U(n−1)−µ) , (5.34)

which means, that the initial equation (5.31) for the expectation value 〈â†i (τ)âi〉
can finally be written as

〈â†i (τ)âi〉 =

∑∞
n=0 ne

τ(U(n−1)−µ) · e−βE(n)∑
n e
−βE(n)

(5.35)

• The fourth order term has 4 operators (twice Â and twice Â†) at Trotter
times l1, . . . , l4.
If 2 Trotter times are identical, then there are

(
m
3

)
< m3 possibilities,

while the prefactor is m−4. As in the second order case, there is only a
non vanishing contribution if the operators stem from different Trotter
times.

We have now finally arrived at a point where we can write down an expression
for our free energy F

F = − 1

β
lnZ (5.36)

= − 1

β
ln

[
Z0

(
1 + C2 |η|2 + C4 |η|4 +O(|η|6)

)]
. (5.37)

To simplify the notation we set ε := |η|2:

F = − 1

β
lnZ0︸ ︷︷ ︸

=F0

− 1

β
ln

[
1 + C2ε+ C4ε

2 +O(ε3)

]

= F0 −
1

β

[(
C2ε+ C4ε

2 +O(ε3)
)
− 1

2

(
C2ε+ C4ε

2 +O(ε3)
)2

+O(ε3)

]
= F0 −

1

β

[
C2ε+ C4ε

2 − 1

2
C2

2ε
2 +O(ε3)

]
= F0 −

1

β

[
C2ε+

(
C4 −

c2
2

2

)
ε2 +O(ε3)

]
(5.38)
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5.2.2 Developing a Phase Boundary Criterion

The considerations of the last section lead us to an expression for the free
energy per site of the form:

f(η, η∗) = f0 +
∞∑
n=1

c2n |η|2n (5.39)

and as we are only interested in terms up to fourth order we have

f(η, η∗) = f0 + c2 |η|2 + c4 |η|4 . (5.40)

The coefficients c2n that appear in equation (5.39) are defined by following
power series as functions of the hopping parameter t/U , similarly to the
power series expansion of the energy in chapter 3:

c2n =
∞∑
ν=0

α
(ν)
2n

(
t

U

)ν
(5.41)

Hence the order parameter ψ and ψ∗ can be defined as follows:

ψ := 〈âi〉η =
∂

∂η∗
f(η)

= c2η + 2c4 |η|2 η
= (c2 + 2c4 |η|2)η . (5.42)

Next we perform a legendre transform

Γ(ψ, ψ∗) := f(η, η∗)− ψη∗ − ψ∗η
= f0 + c2 |η|2 + c4 |η|4 − 2(c2 + 2c4 |η|2) |η|2

= f0 − c2 |η|2 − 3c4 |η|4 . (5.43)

No we use (5.42) in order to determine x := |η|2 in terms of y := |ψ|2

y = (c2 + 2c4x)2x

x =
1

(c2 + 2c4x)2
y

=
y

c2
2

1

(1 + 2c4
c2
x)2

=
y

c2
2

(
1− 4c4

c2

x+ 3x2

)
. (5.44)

We use the last equation as iteration scheme to generate x(y) up to order y2

x(n+1) =
y

c2
2

(
1− 4c4

c2

x(n) + 3(x(n))2

)
. (5.45)

57



5.2. METHOD OF EFFECTIVE POTENTIAL

Obviously, x = O(y). Therefore, the third term in the iteration scheme can
be dropped as it would produce in total a correction of order O(y3). In
summery the iteration reduces to

x(n+1) =
y

c2
2

(
1− 4c4

c2

x(n)

)
=

y

c2
2

− 4c4

c2

y

c2
2

x(n) . (5.46)

x(n) on the right hand side has only to be correct up to order O(y). Starting
with x(0) = 0, the first iteration yields x(1) = y

c2
. The next iteration leaves

us with

x(2) =
y

c2
2

− 4c4

c2

(
y

c2
2

)2

. (5.47)

Further iterations are not necessary, since x(1) was already correct in order
O(y). So we have

|η|2 = x

=
|ψ|2

c2
2

− 4c4

c5
2

|ψ|4 +O(|ψ|6) , (5.48)

and furthermore

|η|4 =
|ψ|4

c4
2

+O(|ψ|6) . (5.49)

If we now insert these expression in the Legendre transform (5.43), we get

Γ(ψ, ψ∗) = f0︸︷︷︸
:=Γ0

−c2

(
|ψ|2

c2
2

− 4c4

c5
2

|ψ|4
)
− 3c4

|ψ|4

c4
2

+O(|ψ|6)

= f0 −
|ψ|2

c2

+
4c4

c4
2

|ψ|4 − 3
c4

c4
2

|ψ|4 +O(|ψ|6)

= f0 −
|ψ|2

c2

+
c4

c4
2

|ψ|4 +O(|ψ|6) . (5.50)

For sufficiently small |ψ|, which is the case near the quantum phase transition,
we can ignore the terms O(|ψ|6), leaving us with

Γ(ψ, ψ∗) = Γ0 −
|ψ|2

c2

+
c4

c4
2

|ψ|4 . (5.51)

Figure 5.2 shows the Legendre transform Γ for two specific cases. The blue
line represents a case with c2 > 0, i.e. the superfluid regime and the red line
depicts the Mott insulator regime where c2 > 0.
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Figure 5.2: The Legendre transform Γ for positive c2 (blue line) and negative
c2 (red line).

Because η and ψ∗, as well as η∗ and ψ are Legendre pairs, one also has the
identities

∂Γ

∂ψ∗
= −η

∂Γ

∂ψ
= −η∗ .

The original system is recovered for η = η∗ = 0. Hence ∂Γ
∂ψ

= 0 as well as
∂Γ
∂ψ∗

= 0 has to hold true, i.e. Γ has to be stationary with respect to ψ. In
other words the original system adopts that value of ψ that leads to a con-
stant Γ. Γ has the meaning of an energy, hence the name ’effective potential’.
As long as µ/U in the Bose-Hubbard model is not an integer, one finds c2 < 0
for very small hopping strengths t, while c4 > 0 (see [18]).

So the potential is of the form

Γ = Γ0 + a |ψ|2 + b |ψ|4 (5.52)

with the coefficients a and b. The derivative dΓ/d |ψ| = 2a |ψ| + 4b |ψ|3 be-
comes zero for |ψ| = 0 and for the negative value |ψ|2 = −a/(2b), which is
therefor not allowed. Hence in this case the order parameter vanishes and
there is no superfluid solution, i.e. no long range phase coherence. The pa-
rameter c4 is always positive and so is b.
But for increasing hopping strength, c2 and likewise a become negative. In
that case, there exists a finite order parameter solution, which reduces the
effective potential and in turn free energy, so it is the physical solution.
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The order parameter then reads

|ψ|2 = − a

2b
. (5.53)

So obviously the phase transition occurs when a changes sign, or rather when
a vanishes which is the case when c2 = 1/a diverges.
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5.3 Consequences for the Kato Formalism

Now that we have developed all the theory needed, we can start thinking
about how to alter our current Kato formalism in order to calculate the
Mott insulator-superfluid phase boundary.
By taking a closer look at equation (5.39) which shall be rewritten here for
ease of reading,

f(η, η∗) = f0 +
∞∑
n=1

c2n |η|2n

one realizes, that η and η∗ only occur as powers of the square of the absolute
value. As η is the probability with which a particle is created and η∗ the
probability of annihilating a particle, this means that the system we have
to consider has the same amount of drains and sources. Therefor, after all
hopping, creation and annihilation processes have occurred, our system has
the same amount of particles as before.
But as we still have sequences that start with the ground state 〈g| and end
with the ground state |g〉, i.e. 〈g|V Sk1V Sk2 . . . V Skn−1V |g〉, the constraint,
that the ground state has to be present before and after all perturbation
processes has to be present, still has to hold. We are only interested in the
point, where c2 of equation (5.40) changes sign, thus we have a system where
only one source and one drain are present, according to equation (5.41).
Equation (5.41) can be seen as a power series in the form:

f(z) =
∞∑
ν=0

bνz
ν , (5.54)

whose convergence radius is given by d’Alembert’s law (see for example [35]):

R(f(z)) = lim
ν→∞

∣∣∣∣bν−1

bν

∣∣∣∣ (5.55)

The expansion coefficients bν here correspond to the α
(ν)
2 in the case of c2.

These α
(ν)
2 can be obtained by computing the energy of all paths with one

drain and one source and ν hopping processes that start and end with the
ground state (see figure 5.3).
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(a)

(b) (c)

(d) (e) (f) (g)

Figure 5.3: All paths up to third order with one source, depicted by a solid
circle, and one drain, marked with ×, that have a non-vanishing contribution.
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5.3.1 Changes in the Path Creation and Identification

The energy evaluation of our computation algorithm therefor stays the same,
we only have to adjust the path creation in a way that all paths with one
source and one drain are created that start with the ground state and end
with it too. Additionally the way of identifying topologically identical paths
has to be altered too.

For the creation of the paths we used a straight forward approach: First
one assigns numbers to the directions one can take in our n-dimensional lat-
tice. In case of a 2 dimensional lattice one could for example assign a hopping
to the right to the number 1, a hopping to the left to 2, hopping up to 3 and
down to 4, as we already did in chapter 4.1.
Now one just calculates every possible permutation of N0 sites that can all
take the values from 1 to 4. This results in N = (2d)N0 paths, where d de-
notes the number of dimensions. So in case of N0 = 2 and two dimensions,
one gets the 16 permutations shown in table 5.1

Table 5.1: All possible paths consisting of 2 hoppings on a 2 dimensional
lattice.

1. 1 1
2. 1 2
3. 1 3
4. 1 4
5. 2 1
6. 2 2
7. 2 3
8. 2 4

9. 3 1
10. 3 2
11. 3 3
12. 3 4
13. 4 1
14. 4 2
15. 4 3
16. 4 4

Now one has to deduce where the source and where the drain are. A very
easy way to do this is calculate the adjacency matrices of each path, as these
matrices tell us how many hoppings go to site i and how many off site i. If
more particles hop away from site i then to it, there has to be a source at
site i. On the other hand it is clear that if more particles hop to site i then
away from it there has to be a drain at i, otherwise the ground state cannot
be present at the end of the perturbation process (see figure 5.3(c)).
If there is a path, where at each site as many particles hop away as hop to
it, the drain and source have to be at the same site of course, but they can
be at each visited site. This is shown for example in figure 5.3(b). Here the
source and drain have to be at the same site, but they could either be on the
left or on the right site.
Without the information about the source and the drain, the graphs shown
in figures 5.3(f) and 5.3(g) would be topologically identical. But with the
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source and the drain added to the paths, they are in fact topologically unique
as there are configurations that can only be produced by path 5.3(f) and vice
versa. This means, that the algorithm we devised in chapter 4.3 would elim-
inate paths we need to calculate the coefficients correctly.
Luckily there is a very easy solution. What one does is add 1 to the i, i entry
of adjacency matrix for a source at site i and 2 to the position j, j for a drain
at size j. Let us go through this with some simple examples.

The bond representation we already used to deal with the diagrams for cal-
culating the energy in chapter 4.1 of the path depicted in figure 5.4 can be
written as follows:

Table 5.2: Bond representation of path
figure 5.4

i j

1. 1 2

2. 2 1

3. 1 3

Figure 5.4: One possible permutation
of path 5.3(f)

The adjacency matrix of this particular path Mold now looks as follows

Mold =

 0 1 1
1 0 0
0 0 0

 .

As we have said above, we have to add 1 to the entry of the source site and
2 for the drain. Hence, our new adjacency matrix Mnew is of the form

Mnew =

 1 1 1
1 0 0
0 0 2

 .

By adding information about the position of the drain and source it is now
impossible to alter this new adjacency matrix by pure renumbering of the
sites to look the same as the adjacency of the path depicted in figure 5.3(g).
This way we are again in a position where we have a very simple, yet powerful
method to distinguish between topologically unique paths.
As before with the energy computation we calculate every possible site-
permutation and compare the adjacency matrices of these paths with the
matrices of the diagrams we already identified as unique. If no permutation
can be found that has the same adjacency matrix as the previously obtained
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paths it is topologically unique and has to be added to our list of diagrams.
Let us apply the same procedure to two more paths to make this procedure
perfectly clear:

Table 5.3: Bond representation of path
figure 5.5.

i j

1. 1 2

2. 2 3

3. 3 4

Figure 5.5: One possible permutation
of path 5.3(e).

Mold =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =⇒ Mnew =


1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 2

 (5.56)

But what if the source and the drain are actually at the same site? In that
case we can still apply the same rules as above, and thus end up with adding
3 to the position of the source and drain in the adjacency matrix.

Table 5.4: Bond representation of path
figure 5.6.

i j

1. 1 2

2. 2 3

3. 3 4

Figure 5.6: One possible permutation
of path 5.3(c).

Mold =

(
0 1
1 0

)
=⇒Mnew =

(
3 1
1 0

)
(5.57)

If we now have a path that has the same hopping processes in the same
order as that of path in figure 5.6, but with source and drain on the right
site, as seen in figure 5.7, the adjacency matrix of that path would be that
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Figure 5.7: Path with the same hop-
ping processes but with source and
drain at the other site than in path 5.6

=⇒ Mnew =

(
0 1
1 3

)
(5.58)

of equation (5.58)
By simply renumbering the sites in a way that the left site is now number
2 and the right site 1 we get an adjacency matrix that looks the same as
the one in equation (5.57). This means, that the translational redundancy
of these two paths has been detected successfully and our algorithm works
as we intended it to do.

To conclude this section, table 5.5 shows the number of topologically unique
diagrams as a function of the order ν for systems with 1, 2 and 3 dimensions.
The 7th and 8th order for a 3-dimensional system could not be computed
because the memory of the computers used was too low and writing to the
hard drives would have taken too much time.

Table 5.5: Number of topologically unique diagrams for given order and
dimension

order 1-dim 2-dim 3-dim
1 1 1 1
2 2 2 2
3 4 4 4
4 8 10 10
5 14 22 22
6 25 58 58
7 45 140 -
8 79 390 -

66



CHAPTER 5. MI-SF PHASE TRANSITION

5.3.2 Determining tc/U

We have now adopted our algorithms for computing the new open paths
with one drain and one source and for identifying the topologically unique
diagrams. The next thing to do is to actually calculate the expansion coeffi-
cients α

(ν)
2 we used in equation (5.41) to get an expression for the free energy

coefficient c2. Luckily, the only thing that differentiates this calculation from
the actual energy calculation is the fact that we have two more perturbation
processes. As with the energy computation, ν stands for the number of hop-
ping processes for a specific path. But now we do have to add one particle
and also remove one particle during the whole permutation process.
Therefor, the Kato sequences we computed in chapter 4.4 are no longer valid
for the Mott insulator-superfluid calculations. But as adding a particle and
removing a particle are also permutation processes, we simply add two pro-
cesses to the Kato sequence, i.e. ν → ν + 2.
With this little adjustment we can use the same algorithms to calculate the
c2-coefficients α

(ν)
2 as we used when computing the energy-coefficients α(ν).

There is however one little detail one has to pay attention to: During the
energy calculations we always had to deal with hopping processes that are
actually a product of a creation and an annihilation operator that lead to a
factor

â†1â2|n1, n2〉 =
√
n2(n1 + 1)|n1 + 1, n2 − 1〉 .

With the addition of a source and a drain we no longer have only pairs of
creation and annihilation operators but also just a creation operator and
annihilation operator respectively. These do lead to factors

â†|n〉 =
√
n+ 1|n+ 1〉

â|n〉 =
√
n|n− 1〉 .

This means we have to make sure to remember, which perturbations are hop-
ping processes and which belong to the drain and source to correctly evaluate
the scalar products of the Kato formula.
With these little changes implemented we can reuse the energy-algorithm to
get the expansion coefficients of c2.

In order to get the critical value tc/U at which our system, that is at first in a
Mott insulator phase, becomes superfluid, we need to calculate all expansion
coefficients α

(0)
2 , α

(1)
2 , α

(2)
2 , . . . and evaluate the ratio |α(ν−1)

2 /α
(ν)
2 | in the limit

ν →∞ according to equation (5.55).
Reaching the limit ν = ∞ is of course impossible to do, so we have to help
ourselves with a little trick. By calculating the ratios |α(ν−1)

2 /α
(ν)
2 | as a func-

tion of 1/ν the limit becomes

ν →∞ =⇒ 1

ν
→ 0 .
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Therefor, we are plotting the ratios of the coefficients as a function of 1/ν and
extrapolate to 1/ν = 0. At this point, where the fit intersects the ordinate,
one can read off the critical value tc/U , as shown in figure 5.8

Figure 5.8: The ratios |α(ν−1)
2 /α

(ν)
2 | as a function of 1/ν and extrapolated

to ν → ∞ using a linear fit for a system with 2 dimensions and parameters
g = 1, µ/U = 0.3.

This value now represents a single point of the Mott insulator-superfluid
phase boundary. In order to get a grasp of how the whole Mott lobe from
µ/U = 0 to µ/U = 1 looks like, one would have to do the complete compu-
tation of c2 and extrapolation again with different values of µ.

Results

We have carried out several calculations with different sets of parameters,
whose results we are going to discuss. In figure 5.9 one can see the Mott
insulator-superfluid phase boundary for systems with filling factor g = 1 and
dimensions d = 2 and d = 3. The 2-dimensional system is depicted in blue
and the 3-dimensional one in red. For the calculations in 2-dimensional case
we considered all contributions up to 7th order, while in the 3-dimensional
case we stopped at the 6th. (This however does not result in more inexact

data, as the convergence of the |α(ν−1)
2 /α

(ν)
2 |-series improves rapidly with in-

creasing dimensionality.)
Comparisons of our results with calculations form other groups [18, 36] con-
firm the excellent agreement of our data.
An extension of figure 5.9 can be seen in figure 5.10. Here we computed the
phase boundary for the same two systems with 2 and 3 dimensions, but with
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Figure 5.9: The Mott insulator-superfluid phase boundary for systems with
two and three dimensions and unity filling factors g = 1.

Figure 5.10: The Mott insulator-superfluid phase boundary for systems with
two and three dimensions and with filling factors g = 1, g = 2 and g = 3.

different filling factors. The first Mott lobes that stretch from µ/U = 0 to
µ/U = 1 belong to the case with unity filling factor as in figure 5.9, but
the Mott lobes with µ/U ∈ (1, 2) do belong to a filling factor of g = 2 and
µ/U ∈ (2, 3) corresponds to a filling factor of g = 3. The blue dotted line
stands again for the 2-dimensional case and the red line to the 3-dimensional
system. One can clearly see the shrinking of the Mott insulating regions
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with growing filling factors, which is exactly what was expected. (See also
figure 5.1 at the beginning of this chapter.)
To show this g-dependent behavior better, figure 5.11 depicts only the two-
dimensional case, but again with the three different filling factors g = 1 in
blue, g = 2 in red and g = 3 in black. Additionally, the ordinate has a
different scaling than before. Instead of just plotting µ/U the y-coordinate
is scaled like (µ− g+ 1)/U , which results in all three phase boundaries being
projected in the y-interval (0, 1).

Figure 5.11: The Mott insulator-superfluid phase boundary for a two-
dimensional system with filling factors g = 1, g = 2 and g = 3.

With a scaling like this it is easy to notice that the bigger g gets, the more
symmetric the Mott lobe gets. While the peak of the ’g=1’-lobe is about
(µ− g + 1)/U ≈ 0.38 it moves up to (µ− g + 1)/U ≈ 0.43 for g = 2 and to
(µ− g + 1)/U ≈ 0.46 for g = 3. In the limit g →∞ the Mott lobe would be
perfectly symmetric with the maximum at (µ− g + 1)/U = 0.5.

The same reasoning also applies to systems with other dimensions, of course,
which is shown for the three-dimensional case in figure 5.12. It is also worth-
while to note, that the higher the number of the dimensions of a system is,
the more symmetric and parabula-shaped the Mott lobes are.
There is however one big limitation of this approach, which shall not be
swept under the table: The Mott insulator-superfluid phase transition of a
1-dimensional system can not be computed correctly with our current algo-
rithms due to two problems:

• First of all, the extrapolation depicted in figure 5.8 relies on the fact,
that there is a bijective relation between µ and tc. A Bose-Hubbard sys-
tem in one dimension however exhibits a reentrance phenomenon [22]:
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Figure 5.12: The Mott insulator-superfluid phase boundary for a three-
dimensional system with filling factors g = 1, g = 2 and g = 3.

If one starts in the Mott insulating phase at t = 0 and begins to in-
crease t, there will be one point at which the undergoes a phase tran-
sition and becomes superfluid, as we already explained before. For a
1-dimensional system it is now possible for certain values of µ to get
back into the Mott insulator phase when the hopping strength is in-
creased even further, as shown in figure 5.13.

Figure 5.13: The Mott insulator-superfluid phase boundary
for a one-dimensional system with filling factor g = 1.

This means, that in a specific interval of µ there is no bijective mapping
µ ⇔ tc . It is therefor not possible to determine all three tc values for
these specific values of µ; only the first one can be identified.

• Secondly, the determination of the phase boundary relies on the fact
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that in the Mott insulator regime the atom-atom correlation function
ξ(r) decays exponentially with the radius r, while in the superfluid
phase it adopts a non-vanishing value for r →∞. On the other hand,
the order parameter will vanish in the Mott insulator phase and take
on a non-vanishing value in the superfluid phase analogously.
For a 1-dimensional system this is no longer the case. While it still
holds true, that the correlation function in the superfluid phase has a
constant, non-vanishing value for large r, it does not follow an expo-
nential decay in the Mott insulator phase, but a power-law behavior
according to the Kosterlitz-Thouless phase transition [37, 22]

ξSF = r−
K
2 , (5.59)

with a coefficient K. For small tunneling strengths this is not a big
problem, as the particles can not hop far away, which results in small
values for r in the correlation function. But the bigger the tunneling
strength gets, the more severe the difference between the power-law
dependence and the exponential decay becomes, resulting in a complete
break down of the algorithm at large hopping strengths. This can be
seen in figure 5.14.
A way out of this dilemma while still using the Kato formalism could
be the calculation of the correlation function ξ(r) itself, as explained
in [18]. By knowing the value of the correlation function one could
determine the coefficients K in dependence of the hopping strength.
For a Kosterlitz-Thouless transition at g = 1 the coefficient K is known
to be Kc = 0.5. This means if one can fit the different values of K as
a function of t one can determine the point where K(t) equals 1/2.
At this point one could then read off the critical value tc at which the
phase transition takes place (see also [22]).

Figure 5.14 shows these two limitations very well. It considers a one-dimen-
sional system with unity filling factor and compares our results depicted
by the blue dots with results obtained with DMRG [38], which is the most
trusted method to deal with 1-dimensional quantum systems. When we take
a look at the section with low values of µ, we see that our results are in
good agreement with the DMRG-data. When the lower phase boundary
goes beyond it maximum however, our algorithms break down and we can
no longer determine the phase boundary correctly due to the non-bijective
relation between µ and tc.
At very high values of µ, i.e. µ ∈ [0.5, 1], our data again match the ones
from DMRG, because the critical hopping parameters in this area are small
enough to ensure convergence of the |α(ν−1)

2 /α
(ν)
2 |-series. Once the hopping

parameter becomes bigger than 0.14 the series of ratios diverges, thus no
longer allowing the correct determination of the phase boundary.
As said in the previous section, there might be a workaround to this problem
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Figure 5.14: Comparison of the results obtained with our Kato approach and
DMRG from [38] for a 1-dimensional system with filling factor g = 1.

by calculating the correlation function ξ(r) directly, which is a main point of
interest in our current work.
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5.3.3 Introducing Disorder to the System

Before we are going to discuss the results obtained with the Kato formal-
ism, we will go through another very interesting topic, namely introducing
a disorder to the system. Up until now the system considered has the same
chemical potential at every site, which is a very rough assumption. A system,
where the sites do have different chemical potentials is a far better model for
what is going on in a real lattice.
Therefor, we want to assign a different chemical potential to every site ac-
cording to the following scheme:

µi = µ0 + εi ·∆µ (5.60)

µ0 is the mean value of the chemical potential of our whole system and ∆µ is
the maximum difference that an onsite chemical potential can vary from the
mean value µ. εi is a parameter in the interval [−1, 1] and determines how
much of ∆µ is added or subtracted at a specific site. This εi has to be set
for every single site and therefor stands for the disorder that is introduced
to the system. Choosing εi can be done completely random, where a random
number generator determines unbiased values for εi. Another possibility of
choosing εi is according to a Beta-distribution, as shown in figure 5.15. Here,

Figure 5.15: The probability density function P (ε) as a function of ε.

the extreme values of εi have a big weight, while the intermediate values will
be chosen very seldom. For our purpose however it is sufficient to consider a
binary distribution for εi and ∆µ = 1, i.e.

µi = µ0 ± ε , (5.61)
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where the sign is chosen randomly. Such a distribution is extremely easy to
create and resembles the Beta-distribution of figure 5.15 well enough for our
needs.
In order to use the Kato formalism there is however one big drawback. The
big strength and beauty of this formalism relies on the fact that we have a
system with translational and rotational invariance. Only in the cases, where
our system is invariant under translation- and rotation-operations we can re-
duce all the possible paths on our lattice to only topologically unique ones.
With a constant chemical potential µ for the whole lattice these requirements
are well fulfilled, but if we start to assign a different chemical potential to
every site, our system will no longer be invariant under translations and ro-
tations.
The solution to this problem is to create many systems with different con-
figurations of the chemical potential. Additionally, the generation of the
chemical potential must be the same for every site, i.e. the εi have to be
chosen by the same scheme for every site. If these requirements are met, no
site is special by any means, and by averaging over many different configura-
tions one gains the translational and rotational invariances again, on which
our Kato algorithm relies on.
So what do we have to do to deal with a disordered system? The path cre-
ation can stay the same as can the identification of the topologically unique
diagrams and the generation of Kato sequences. Before the energy is calcu-
lated for a specific path however, the chemical potentials µi for every site i
involved in the current hopping process has to be chosen. One then calcu-
lates the energy of this special configuration. Then another configuration is
chosen for the same path and the energy of this new configuration is calcu-
lated. This is done until enough configurations have been computed. One
then averages over the energies of all these configurations and then moves on
to the next diagram where this whole procedure of generating and evaluating
different configurations starts again.
The question, how many different configurations are sufficient to assure that
the average values behave the same as values from a system with transla-
tional and rotational invariances would, is hard to answer. It is clear that
the more sites are involved in a hopping process the more configurations one
has to generate. But even when sampling 500, 1000 or more different config-
urations the time savings are huge compared to an approach where one takes
no advantage of translational and rotational invariances.

Results

Before we are going to discuss the results concerning the Mott insulator-
superfluid phase transition of a disordered system, some results for the en-
ergy of a disordered Bose-Hubbard model shall be subsequently added. It is
easy to understand that a system, where the chemical potentials of the sin-
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gle sites are not the same, will have energy corrections, whose absolute value
will be bigger than those from a system with a constant chemical potential
throughout the whole lattice.

Figure 5.16: Energies of a 1-dimensional system with disorder parameters
ε = 0 (black dashed line), ε = 0.1 (blue solid line), ε = 0.2 (red solid line),
ε = 0.3 (green solid line) and ε = 0.4 (black solid line).

This can be seen in figure 5.16, which shows the situation for a 1-dimensional
lattice. Energy corrections were included up to 7th order (8th order for the
ordered system). The black dotted line stands for a perfectly ordered sys-
tem, i.e. the disorder parameter ε = 0. The subsequent solid lines represent
systems with different disorder ’strength’; the blue line depicts the case for
epsilon = 0.1, the red line shows the energy correction for a system with
ε = 0.2, and the green and black line for a system with ε = 0.3 and ε = 0.4
respectively.
As one can see, the bigger the disorder parameter ε gets, the bigger the abso-
lute value of the energy correction gets, which was expected at the beginning.
We also took the opportunity and compared our results to those obtained
with the Variational Cluster approach, as is shown in figure 5.17. Again a
1-dimensional system was used with the same disorder parameters as used in
figure 5.16. The solid lines are our results calculated with the Kato algorithm
and the × mark the results from VCA.
As before, our results are in excellent agreement with those computed with
VCA, which can be seen especially well for the ε = 0.1 and ε = 0.2 cases.
Unfortunately we don’t have data from VCA for ε = 0.3 and ε = 0.4 at higher
hopping parameters, so the possibilities to compare these two methods for
these parameters are rather little, but the data at low hopping strength and
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Figure 5.17: Energies of a 1-dimensional system with disorder parameters
ε = 0.1 (blue solid line), ε = 0.2 (red solid line), ε = 0.3 (green solid line)
and ε = 0.4 (black solid line) compared to results obtained with VCA, which
are marked with ×.

the general information gathered up to this point suggest a good agreement
of Kato and VCA never the less.

Let’s move on now to see how different the Mott insulator-superfluid phase
transition behaves for a disordered system compared to an ordered one. We
therefor take a look at three different 2-dimensional systems, as shown in
figure 5.18.
The blue graph stands for an ordered system, i.e. ε = 0, the red one for a
system with disorder parameter ε = 0.1 and the black one depicts the case
with ε = 0.2. We went up to 7th order and while the circles stand for the
actual data received from our computations, the dashed lines come from a
polynomial fit of these data points. It is easy to see, that the bigger ε gets,
the smaller the Mott insulating region becomes.
This is due to the fact that the most extreme situations that can happen are
that either all of the sites have the chemical potential µi = µ0 + ε or all of
them have the chemical potential µi = µ0 − ε. Both of these cases actually
represent ordered system as the chemical potential is the same for all sites;
but the actual value is shifted by +ε and −ε.
Therefor one would expect the phase boundary of the disordered system to
be parallel to the phase boundary of the ordered system. This is fulfilled
quite nice for low critical hopping strengths tc, as can be seen in figure 5.18,
but with increasing tc the situation gets worse. The reason for this is, that
the higher the hopping strength is, the more important the higher orders of
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Figure 5.18: The Mott insulator - superfluid phase boundary for a two di-
mensional system with disorder parameters ε = 0, ε = 0.1 and ε = 0.2. The
circles represent the actual data and the dashed lines are the polynomial fits
generated from these data.

the Kato approach are. As we were limited to 7th by the computational re-
sources we had at hand, we unfortunately couldn’t investigate the situation
with higher order corrections to see if the phase boundaries of the disordered
systems would get aligned better along the one of the ordered system.
In figure 5.19 we plotted the width of the Mott insulator regions for the sys-
tems depicted in figure 5.18 as a function of the critical hopping strengths
tc. Again the blue solid line stands for the ordered system, the red one for
the system with ε = 0.1 and the black one for ε = 0.2. At tc = 0 the Mott
insulator phase stretches from µ1 = 0 to µ2 = 1 for the ordered system,
resulting in a µgap = µ2 − µ1 = 1. Because in the extreme situations the
chemical potentials would just get shifted as was explained above, the insu-
lating regions for the ε = 0.1 starts at µ = 0.1 and ends at µ = 0.9, leading
to µgap = 0.8 and µgap = 0.6 for the system with ε = 0.2.
The bigger tc now becomes, the smaller µgap, i.e. the Mott insulating phase
gets; additionally the slope of the curves for the two disordered system devi-
ates more and more the bigger tc is.
With these results we want to conclude the discussion about the Bose-
Hubbard model and apply our attention to the Jaynes-Cummings model,
another class of bosonic systems that can be treated with our Kato approach.
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Figure 5.19: The Mott insulator gap as a function of the critical hopping
strength for a 2-dimensional system with zero disorder, a system with ε = 0.1
and for a system with ε = 0.2.
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Chapter 6

Introduction

The Jaynes-Cummings model is an enhancement of the Rabi model [39].
While the semi-classical Rabi model considers a two-level atomic system that
is disturbed by an electromagnetic field, the Jaynes-Cummings model takes
this thoughts further and describes a two-level atomic system that interacts
with quantized modes of light. In other words, the classical electromagnetic
field of the Rabi model is translated into a quantized field.
The Jaynes-Cummings model is very important for quantum physics, as it
describes atoms coupled to cavity modes, therefor being a way to realize
quantum bits and computing (figure 6.1).

Figure 6.1: Sketch of a 1 dimensional Jaynes-Cummings lattice (from [13]).

(a) Bosonic part of the system (b) Atom part of the system

Figure 6.2: The two different parts of the Jaynes-Cummings model (from
[13]).

83



The following short explanation follows strongly the approach of [40, chap-
ter 3] and all quantities are expressed in units of h̄.
The hamiltonian of a Jaynes-Cummings system consists of three parts, an
atom part Ĥa = ε|↑〉〈↑| which assigns the energy ε to the excited atom states
(figure 6.2(b)), a cavity part Ĥc = ωcâ

†
i âi counting the bosons in the cavity

and appointing them the energy ωc (figure 6.2(a)) and a part that describes
the coupling between atom and cavity Ĥac, which can be written like

Ĥac = −1

h̄
d̂ · Êc . (6.1)

With the expression for the quantum mechanical dipole operator d̂ = d(eaσ−+
e∗aσ+) and the cavity field operator Êc = E0(ecâ + e∗câ

†) this becomes

Ĥac = −d
h̄

(eaσ− + e∗aσ+) · E0(ecâ+ e∗c â
†) . (6.2)

Here, â and â† are again the bosonic annihilation and creation operators for
the cavity modes, σ+ and σ− are the atomic raising and lowering operators
that raise a ground state atom to its excited state and vice versa. ea and ec
are vectors describing the field polarization in the atom or the cavity system
and E0 is a normalization factor. Usually there is also a factor f(r) present,
which describes the spatial configuration of the field mode, but for sake of
simplicity it is set to unity here.
If we get rid of the braces in equation (6.2), we are left with four terms. The
term with σ−â stands for the process where the excited atom relaxes to its
ground state while a photon is annihilated. The σ+â

† describes the opposite
effect, i.e. the atom is shifted to the higher state and a photon is created. In
our case, where the resonance frequencies of the atom and the cave are very
close together, these two effects do play a very minor role and are therefor
omitted from this point on.
The two much more important terms are those with σ−â

† and σ+â. The first
one explains the emission of a photon when the atom relaxes to its lower state
and the second one translates to an excitation of the atom when absorbing
a photon. Hence, our simplified hamiltonian Ĥac has the form

Ĥac = −Ω

2
(σ+â+ σ−â

†) (6.3)

with the Rabi frequency Ω

Ω = 2
dE0e

∗
aec
h̄

. (6.4)

This frequency is a measurement for the strength of the coupling of the two
systems. The eigenstates of the atom hamiltonian Ĥa are |↓〉, |↑〉, the first
denoting the ground state, the second the excited state. On the other hand,
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the cavity hamiltonian Ĥc has the eigenstates |g〉, the already known Fock-
states from chapter 2. Therefor the eigenstates of the uncoupled system will
be the tensor products |g, ↓〉 and |g, ↑〉.

If the detuning of the system ∆ = ωc − ε is zero or very small compared
to ωc, the states with the same particle number, i.e. |g, ↓〉 and |g − 1, ↑〉 are
degenerated or nearly degenerated respectively. The complete energy of a
system with g particles is therefor saved in a state with g photons and no
atom excitations |g, ↓〉 or a state with g − 1 photons and 1 atom excitation
|g − 1, ↑〉. (The exception being a system with no particles, which of course
can only be described by |0, ↓〉.) The coupling hamiltonian Ĥac only trans-
lates between those states with the same particle number.
We are therefor dealing with a two-level system, hence the operators σ+ and
σ− can be computed using the Pauli matrices

σ+ = σx + iσy

=̂

(
0 1
0 0

)
(6.5)

and

σ− = σx − iσy

=̂

(
0 0
1 0

)
. (6.6)

With this, we can write down a matrix equation for the dimensionless hamil-
tonian of the complete system with n particles [41]:

HJC =

(
(1 + ∆)â†â+ 1 + ∆

2
Ω
2
â

Ω
2
â† (1 + ∆)â†â+ ∆

2

)
(6.7)

As this equation resembles the governing equation for a spin in a magnetic
field very closely, it is therefor easy to prove that the eigenvalues of equa-
tion (6.7) can be written as

Eg,± = gωc −
∆

2
± q(g) (6.8)

with

q(g) =

√(
∆

2

)2

+ g

(
Ω

2

)2

. (6.9)

The±-sign refers to the sign of |g,−〉 and |g,+〉, introduced in equations (6.10)
and (6.11).
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It has been said previously, that if there are no particles in the system, we
have to treat it differently as there is just one state possible, which is |0, ↓〉.
Therefor, the energy eigenvalue for this case is Eg=0 = 0. The eigenstates
corresponding to the energies (6.8) are

|g,−〉 = cos Θg|g − 1, ↑〉 − sin Θg|g, ↓〉 (6.10)

|g,+〉 = sin Θg|g − 1, ↑〉+ cos Θg|g, ↓〉 , (6.11)

where we used the short notations

sin Θg =

√
q(g)− ∆

2

2q(g)
and cos Θg =

√
q(g) + ∆

2

2q(g)
. (6.12)

The states (6.10) and (6.11) are linear combinations of the two possible states
with the same total particle number. As |g,−〉 corresponds to the lower en-
ergy, it is the ’ground state’ of our system while |g,+〉 is the excited state
with the higher total energy. Be aware that we are talking here about the
atom-cavity system as a whole, so the ground state |g,−〉 should not be con-
fused with the atom ground state |↓〉.

Recapitalizing, the final Jaynes-Cummings hamiltonian for an atom-cavity
system looks as follows:

ĤJC = ωcâ
†â+ ε|↑〉〈↑|+ g(â|↑〉〈↓|+ â†|↓〉〈↑|)− µ(â†â+ |↑〉〈↑|) (6.13)

The first term counts all bosons in our cavity and allocates each of them the
energy ωc and the second term checks whether the atom is in the excited
state or not. If it is, the energy ε is added to the system’s energy. The third
therm takes into account, that an atom in the ground state can be lifted to
its excited state by the absorption of a photon (figure 6.3(a)).

(a) Absorption of a photon (b) Emission of a photon

Figure 6.3: The two different interactions between atom and cavity part
(from [13]).

The opposite effect, the emission of a photon when an atom relaxes from its
excited state to the ground state (figure 6.3(b)) is taken care of by the fourth
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term in equation (6.13). An atom-cavity site may also have an additional
energy that is dependend on the total particle number, due to a chemical
potential µ, which is considered with the last term in our Jaynes-Cummings
hamiltonian.
It has the eigenvalues given in equation (6.8) and the eigenstates stated by
equations (6.10) and (6.11), with the exception for zero particles, in which
case we have E = 0 and just one possible eigenstate |0, ↓〉.
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Chapter 7

Changes in the Algorithm

7.1 Energy Corrections

In chapter 6, we took a look at the hamiltonian of a single atom-cavity site.
Now we are going to construct a regular lattice by arranging a large array of
such sites and allow the bosons to tunnel to neighbouring sites with tunneling
strength t. The Jaynes-Cummings hamiltonian of a single site ĤJC,i is given
in equation (6.13) and the ’hopping’ hamiltonian is the same as for the Bose-
Hubbard model (see chapter 2), hence

ĤJCL =
∑
i

ĤJC,i + Ĥhop (7.1)

=
∑
i

(
ωcâ

†
i âi + ε|↑i〉〈↑i|+ g(âi|↑i〉〈↓i|+ â†i |↓i〉〈↑i|)

− µ(â†i âi + |↑i〉〈↑i|)
)
− t
∑
〈i,j〉

â†i âj . (7.2)

We now have to split the hamiltonian of the complete lattice ĤJCL in a per-
turbative and a non-perturbative part. The Jaynes-Cummings site hamil-
tonian ĤJC does not alter the particle number of the eigenstates, but the
hopping hamiltonian Ĥhop does. t · â†i âj takes away a particle from site j,
adds one at i and changes the weights of the components |g,−〉 and |g,+〉 of
which they were initially composed of.

â|g,−〉 =
√
g − 1 cos Θg |g − 2, ↑〉 − √

g sin Θg |g − 1, ↓〉
â†|g,−〉 =

√
g cos Θg |g, ↑〉 −

√
g + 1 sin Θg |g + 1, ↓〉 (7.3)

and analogous for |g,+〉. Because of the new factors, these states are no
longer eigenstates of ĤJC . It is therefor clear, that the hopping term is again
the perturbative part, as it was for the Bose Hubbard model.
The fact, that there are two eigenstates of the Jaynes-Cummings model now,
belonging to the particle number g, involves another disadvantage. As we
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know, the term Sk of our Kato formula projects the current state to the
according eigenstate of Ĥ0. In case of the Bose-Hubbard model, this was

Sk =


−|g〉〈g| for k = 0

∑
i 6=g

|i〉〈i|(
E

(0)
g − E(0)

i

)k otherwise
(7.4)

with |i〉 being the eigenstates of the unperturbed lattice hamiltonian. In
case of the Jaynes-Cummings model however, the current state will either
be projected onto |g,−〉 or |g,+〉. This means, that one has to add the
information, in which eigenstate we are projecting, i.e. Sk → Sk,σ with σ
telling whether we should take the eigenstate with − or with +.

Sk,± =


−|g,−〉〈g,−| for k = 0

∑
|i,±〉6=|g,−〉

|i,±〉〈i,±|(
E

(0)
g,− − E

(0)
i,±

)k otherwise
(7.5)

In order to calculate the energy correctly, we now also have to consider not
only every possible sequence {kn−1} but also every possible permutation of
the signs {σn−1}.
Our equation for the complete energy correction of nth order therefor reads
now

∆E(n)
g =

∑
{σn−1}

∆E(n)
g,σ (7.6)

=
∑
{σn−1}

∑
{kn−1}

〈g,−|V Sk1,σ1V Sk2,σ2 . . . V Skn−1,σn−1V |g,−〉 , (7.7)

with a sum over all allowed sequences {kn−1} that have to meet the con-
straints

s∑
l=1

kl ≥ s for s = 1, 2, . . . , n− 2 (7.8)

n−1∑
l=1

kl = n− 1 (7.9)

and a sum over all sequences of signs {σn−1}. The answer to the question,
which σ-sequences are valid and which are not is not a trivial one. In order
to deduce the right sequences we will take a look at a few different paths.
Let’s consider the most simple path there is, depicted in figure 7.1 appearing
at the second order energy correction:
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Figure 7.1: One
possible path in
second order.

Figure 7.2: Spanning tree of the path in
the left figure.

After the first hop from site 1 to site 2, we do have g − 1 particles at site 1.
But the state of this site could have either been projected to |g − 1,−〉 or
|g − 1,+〉. An exception would of course be, if there were g = 1 particles
at each site before the hopping, in which case only the |0, ↓〉 state would be
possible for site 1 after the first hopping. We will from now on omit men-
tioning this exception as it always results in the same state.
Site 2 contains g+1 particles after the first tunneling and it will be projected
in either the |g+1,−〉 or the |g+1,+〉 state. After the second hopping takes
place, both sites are again populated by g particles and in each site the
ground-state |g,−〉 has to be present in order to lead to a non-vanishing en-
ergy contribution. A graphical depiction of this can be seen in figure 7.2.
To calculate the energy contribution of this path correctly, we would now
have to calculate the energy of each of the 4 possible sequences and sum
them up.
We will now move on to the next simple path, shown in figure 7.3. It consists
of four hopping processes and the starting situation is not restored before the
last hopping: The first tunneling process from site 1 to site 2 leads to the
same situation as in the previous case of figure 7.1. Sites 3 and 4 do not
experience any perturbation, they therefor stay in the ground state. After
the second hopping from site 2 to site 3 the state of site 3 will be projected
to either |g+ 1,−〉 or |g+ 1,+〉. Site 2 however returns to the ground state.
This happens, because this site will not be involved in any hopping process.
Its state can therefor not be changed anymore and since all sites have to be
in the ground state at the end of the whole perturbation process it has to
adopt the ground state. Site 1 and 4 are not involved at this point and stay
in the state they were before the second hopping.
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Figure 7.3: One
possible path in
fourth order.

Figure 7.4: Spanning tree of the path in the
left figure.
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After the third hopping, site 3 is also already in the ground state, site 4 is
either in the state |g + 1,−〉 or |g + 1,+〉 and site 1 is still in the states
|g − 1,−〉 or |g − 1,+〉.
Finally, at the end of the whole perturbation, i.e. after the fourth hopping,
all sites have returned to the initial ground state (figure 7.8). The energy of
this path is a sum of the energy of the 24 = 16 possible sequences.

Let’s move on to the next path, sketched in figure 7.5:
Although it is a path belonging to the fourth order correction, only two sites
are involved. The first two hoppings transport particles from site 1 to site
2, therefor site 1 is in one of the states |g − 1,±〉 after the first tunneling
and in |g− 2,±〉 after the second tunneling. Site 2 is described by the states
|g + 1,±〉 and |g + 2,±〉 respectively.
After the first two hopping processes the last two move the particles back
from site 2 to site 1, resulting in the spanning tree shown in figure 7.6.
There are therefor 22·3 = 64 different sequences to consider. One might
therefor believe, that the number of sequences Nseq can be calculated like
Nseq = 22N0−NS , with N0 being the number of hopping processes and NS the
number of sites involved in the complete perturbation process.
But before drawing conclusions prematurely, we will take a look at the same
diagram, but with a different chronological order as the previous one, shown
in figure 7.7.
Here, a particle first hops from site 1 to site 2, but already jumps back in the
next step, which is indicated in the Kato formula by S0. This means, that
after the second hopping process the ground state |g,−〉 has to be restored
in all sites. This results in a constriction of the spanning tree depicted in
figure 7.8, as the projection to the ’−’ state is the only one allowed. Based on
this configuration, the third hopping transports a particle again from site 1
to site 2 and the fourth hopping restores the ground state at every site again.
We are therefor left with merely 24 = 16 possible sequences, which cannot
be explained with the formula for Nseq given before. In order to get the right
number of sequences, we have to include information about the number of
nodal points, i.e. how many times the ground state is restored before the
whole perturbation process is finished.

It should also be noted, that the number of different sequences has not to
be the same for all sites. To show this, we will turn to the paths shown in
figure 7.9 and figure 7.11. As you can see in the spanning tree of figure 7.10,
the path of figure 7.9 does not restore the ground state until the very end of
the complete perturbation process. But there are just two possible sequences
for site 1 and site 3, the second site however has 8 possible sequences. This is
because there is one tunneling from site 1 and one tunneling to site 1, while
particles hop away from and to site 2 twice. The easiest thing to do is to
count the arrows that point to a site and away from it. For site 1 we have
one arrow pointing to it and one pointing away, the same applies for site 3.
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Figure 7.5: One
possible path in
fourth order.

Figure 7.6: Spanning tree of the path in the
left figure.
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Figure 7.7: One
possible path in
fourth order.

Figure 7.8: Spanning tree of the path in the
left figure.

But there are two arrows pointing to site 2 and 2 arrows pointing away.
Figure 7.12 shows a similar situation. It is in fact the same diagram as
the previous one, but the chronological order of the hopping processes has
changed. In this case it results in the ground state being present after the
second hopping process. The numbers of arrows pointing to and away from
the sites hasn’t changed of course, because these numbers only depend on
the topology of the path and not the order of the tunneling processes.
Now we can finally compute the total numbers of sequences for a certain path.
First of all we compute the number of sequences for a single site. To do that,
we count the number of arrows pointing to a site Na,i. For closed paths this
number has to be of course the same as the number of arrows pointing away
from a site, the numbers of bonds of site i is therefor NB,i = 2Na,i. Addi-
tionally we need to know the number of nodal points Nn,i for this site, i.e.
how often the ground state is present at this site after the first and before
the last hopping process took place. The number of sequences Nseq,i for site
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Figure 7.9: One
possible path in
fourth order.

Figure 7.10: Spanning tree of the path in the
left figure.
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Figure 7.11: One
possible path in
fourth order.

Figure 7.12: Spanning tree of the path in the
left figure.
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i is then

Nseq,i = 2NB,i−(Nn,i+1) (7.10)

and the total number of sequences NS is therefor the product of these NS,i

Nseq =
∏
i

Nseq,i . (7.11)

The number of bonds for a specific site can be determined very easily with
the aid of adjacency matrices. As we know, the ith row tells us, to which sites
particles hop originating from site i. The ith column on the other hand con-
tains the information from which sites arrows point to site i. The adjacency
matrix for the path shown in figure 7.9 for example is

M =

 0 1 0
1 0 1
0 1 0

 . (7.12)

The rows tell us, that there is one hopping process from site 1 to site 2, one
from site 2 to site 1, from site 2 to site 3 and from site 3 to site 2. Therefor,
by summing over either the rows or the columns of the adjacency matrix of
a specific path and multiplying this vector with 2, one gets the number of
bonds of the sites involved. The vector vB resulting when summing over all
columns of the matrix stated by equation (7.12) reads vTB = (1, 2, 1). Dou-
bling it gives us (2, 4, 2) which means that there are two bonds at site 1, four
bonds at site 2 and again two bonds at site 3.
With all that in mind we can reuse most of the algorithms we created for
the energy calculations of the Bose-Hubbard model. The path creation and
the reduction to topologically unique diagrams can be copied without any
change. The algorithm for the energy calculation however has to be adopted
at the point where all the permutations of a path are created. At this point
we have to compute the adjacency matrix for every permutation and to de-
termine the number of bonds for each site. With this information we can
create the allowed σ-sequences for each permutation individually, calculate
the energy for every sequence and sum them up. After all σ-sequences have
been worked off we can proceed to the next permutation.

Results

The additional summing over all σ-sequences of course slows down the com-
plete energy computation compared to the calculations for the Bose-Hubbard
model, but the computation times up to order 6 are still in the range of sec-
onds, as table 7.1 shows In figure 7.13 one can see the high quality of the
data achieved. It shows the computed energy correction of a 2-dimensional
system with filling factor g = 1, but for different orders of correction. The
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Table 7.1: Computation times in seconds for the Jaynes-Cummings energy
correction up to order ν = 6 for different filling factors g and dimensions d.

g = 1 g = 2
ν d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

2 0, 25 0, 24 0, 35 0, 23 0, 22 0, 32
4 0, 37 0, 46 0, 53 0, 58 0, 72 0, 75
6 8, 30 27, 15 27, 71 58, 61 153, 06 156, 54

blue solid line contains only the second order energy correction ∆E(2), the
red line results by combining the second order and fourth order energy cor-
rections, the green line shows the energy correction up to sixth order and the
black dotted line up to the eighth order.

Figure 7.13: Comparing the fidelity of the computed energy corrections de-
pending on the orders of correction included for a Jaynes-Cummings system
with 2 dimensions and unity filling factor.

One can see, that while the blue line differs from the others quite significantly,
the red, green and black dotted lines are very close to each other. In fact,
the green and the black dotted line lie on top of each other perfectly at this
scale, suggesting a very high fidelity already for the sixth order correction.
Additionally, figure 7.14 shows a comparison of data computed with the Vari-
ational Cluster Approach and with the Kato formalism. Two systems were
simulated with the first having 2 dimensions and unity filling factor and the
second also had 2 dimensions but filling factor g = 2.
The solid lines represent the results obtained with the Kato approach and
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Figure 7.14: Comparison of calculations carried out with our Kato algorithm
(solid line) and with VCA (circles) of two systems with dimension d = 2 but
different fillings factors g.

the circles those from VCA. As previously with the Bose-Hubbard system
(see figure 4.13 in section 4.7) our results are in excellent agreement with
VCA.
A comparison of the energy of different systems can be seen in figure 7.15.
Simulated were systems with 1 (solid lines), 2 (dashed lines) and 3 (dotted
lines) dimensions and with the filling factors g = 1 (blue) and g = 2 (blue)
It is worthwhile to note, that the energies of systems with different g differs
more than for systems with different dimensions d. With this we want to
conclude this chapter and move on to the Mott insulator-superfluid phase
transition calculations for the Jaynes-Cummings model.

7.2 The Mott Insulator-Superfluid Phase Tran-

sition

The same changes in the algorithm that have been discussed in the previous
chapter have also to be taken into account if one wants to determine the
Mott insulator-superfluid phase boundary for the Jaynes-Cummings model.
But furthermore it is no longer necessarily true that the number of arrows
pointing from a site is the same as the number of arrows pointing away from
it. This little inconvenience is taken care of by just computing the sum along
the rows and the sum along the columns of the adjacency matrix and adding
these vectors point-wise, thereby getting the number of bonds per site.
With that in mind we can simply take the Mott insulator-superfluid algo-
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Figure 7.15: Comparison of the energies of systems with various filling fac-
tors g and dimensions d as a function of the hopping strength t.

rithm of the Bose-Hubbard model and apply the same changes to the c2

computation part as we applied to the energy correction algorithm in order
to calculate the energy of the Jaynes-Cummings model instead of the Bose-
Hubbard model.

Results

All systems we are going to discuss have in common that we have chosen the
parameter Ω = 0 and we have also set the detuning ∆ = 0. A more detailed
look at different sets of parameters can be found in [42].
Figure 7.16 shows the Mott insulator-superfluid phase boundary for a 2-dimen-
sional system with different filling factors g = 0 (blue), g = 1 (red) and g = 2
(black).
The area that is confined by the blue line is the Mott insulator phase with
a filling factor g = 0. Analogously, the red points limit the Mott insulator
phase with g = 1 and the black points the Mott insulator phase with g = 2.
The same set of parameters we used in figure 7.16 have been used to de-
termine the phase boundary for a 3-dimensional system (figure 7.17). In
figure 7.18 one can see a comparison of these two systems with filling factors
g = 0 and g = 1. The system with 2 dimension is depicted by the blue graph
and the 3-dimensional system by the red one.
As with the Bose-Hubbard system one can see that the lower the dimen-
sionality of the system gets, the higher the values for the critical hopping
parameter become. The 2-dimensional system has much higher tc values for
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Figure 7.16: The Mott insulator-superfluid phase boundary for a system with
2 dimensions, ∆ = 0, Ω = 0 and filling factors g = 0 (blue), 1 (red) and 2
(black).

Figure 7.17: The Mott insulator-superfluid phase boundary for a system
with 3 dimensions, ∆ = 0, Ω = 0 and filling factors g = 0 (blue), 1 (red) and
2 (black).
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Figure 7.18: Comparison of the phase boundary for two systems with differ-
ent number of dimensions (d = 2 and d = 3, ∆ = 0, Ω = 0).

any chemical potential than the 3-dimensional one (mind the logarithmic
scale).
It is also interesting to note that the point, where tc = 0 is independent of
the dimension of the system and can be calculated easily with

√
g −
√
g + 1

(from [42]). If we want to know for example where the g = 1 regime ends and
where the g = 2 regime begins, we simply compute

√
1−
√

2, which gives us
µ = −0, 4142. As one can see, this coincides perfectly with our calculations.
As was the case with the the Bose-Hubbard model, our current algorithms
do not allow to determine the Mott insulator-superfluid phase boundary for
larger critical hopping parameters tc for a 1-dimensional system as the same
reasoning applies as in section 5.3.2.
This is shown in figure 7.19, which contains a comparison of our data with
results obtained with DMRG by [38].
Once again our results match those from DMRG quite good for low val-
ues of tc, but as soon as the hopping parameter gets bigger than 0.12 our
computations do no longer describe the system correctly. Additionally our
results for low µ do not follow the DMRG data as closely as they did for the
Bose-Hubbard model, because we didn’t include corrections of the order 7 or
higher, as the computational time would have been too long.
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Figure 7.19: A comparison of our results with those obtained with
DMRG [38]. A system was considered with 1 dimension, ∆ = 0, Ω = 0
and filling factor g = 1.
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Chapter 8

Conclusions and Outlook

In this work we have demonstrated how the Kato formalism, a very special
approach to the perturbation theory in quantum mechanics, can be used to
study two bosonic systems, described by the Bose-Hubbard and the Jaynes-
Cummings model respectively. This formalism has the great advantage that
any order of correction can be calculated explicitly without having to com-
pute all the previous ones. We also introduced a diagrammatic representation
of the tunneling processes that occur in such systems.
With that we were able to construct algorithms that are capable of comput-
ing the energy of these quantum systems very efficiently and in very short
computational times compared to other numerical methods. Another ad-
vantage of this approach is that it also allows us to simulate other regular
lattices, for example triangular or hexagonal ones, without much effort. One
would only have to alter the path creation algorithms accordingly, the com-
putation of the Kato sequences and the energy correction stays the same for
every lattice.
We went on to explain how the Kato formalism can be implemented to de-
termine the Mott insulator-superfluid phase boundary by introducing the
method of effective potential. This allowed us to compute the phase bound-
ary very accurately for systems with two or more dimensions with little com-
putational effort.
Computing the phase boundary for a one-dimensional system is afflicted with
some problems however, especially for high tunneling strengths t. We there-
for suggested another approach, which still employs the Kato formalism, but
works by calculating the correlation function ξ instead of the expansion co-
efficients c2 of the free energy. This is currently a main point of interest in
our research.
Of course the Kato formalism can also be employed to calculate other prop-
erties of a quantum systems apart from the energy and the Mott insulator-
superfluid phase boundary. A very interesting property would be for example
the already mentioned atom-atom correlation function ξ, but the density-
density correlation function or the occupation number fluctuations are also
highly interesting parameters of a system worth to investigate (see for exam-
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ple [18]).
In the course of this work we also introduced disorder to the Bose-Hubbard
system and explained what one has to pay attention to in order to calcu-
late the energy and the Mott insulator-superfluid phase transition correctly.
It would now be also very interesting to investigate the differences between
various disorder distributions.
Additionally it might also be worthwhile to consider a Bose-Hubbard sys-
tem with nearest-neighbor interaction as suggested by [22] or other, different
quantum systems.
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