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Abstract

Along with noise, image blur is probably the most widespread reason for image degra-

dation. It originates from a vast variety of sources, including atmospheric turbulences,

defocus and motion. Nowadays fast and accurate deblurring algorithms become more and

more important due to the ubiquitous smartphones. The majority of recent deblurring

algorithms first estimate the point spread function, also known as blur kernel, and then

perform a non-blind image deblurring. In this work we introduce a novel approach for

both non-blind and blind image deblurring, which is motivated by variational models.

We follow the idea of Chen et al. 2015 and derive a network structure which is related to

minimizing an iteratively adapted energy functional. Moreover, we present a differentiable

projection onto the unit simplex based on the Bregman divergence to constrain the blur

kernels. The non-blind as well as blind deblurring networks are trained in a discriminative

fashion to enhance properties of natural sharp images because recent discriminative recon-

struction approaches demonstrated their superiority in terms of quality and runtime. Both

deblurring networks are qualitatively evaluated and numerous experiments demonstrate

the clear quality boost of the resulting image and blur kernel estimates. Furthermore, in

contrast do neural networks, all individual parameters of the proposed networks can be

easily interpreted due to the close relation to energy minimization.
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Kurzfassung

Verzerrungen und Unschärfen sind neben Rauschen wahrscheinlich die weitverbreitesten

Gründe für degradierte Bilder. Unter anderem können Bewegungen einer Kamera oder

von Objekten während der Bildaufnahme, aber auch Atmosphärische Turbulenzen

und falsche Fokussierung zu verwischten und verzerrten Bildern führen. Die Anzahl

der so degenerierten Bilder wird heutzutage zunehmend größer aufgrund der

allgegenwärtigen Smartphones und der darin enthaltenen Kameras. Deshalb werden

schnelle und qualitativ hochwertige Algorithmen zum Entzerren von Bildern zunehmend

bedeutender. Der Großteil der kürzlich veröffentlichten Methoden schätzt zuerst die

Punktverteilungsfunktion, auch bekannt als Verzerrungskernel, und entzerrt dann das

verwischte Bild mit dem geschätzten Kernel. In dieser Arbeit stellen wir einen neuen

Ansatz zum Entzerren von Bildern vor, der sowohl für bekannte Verzerrungskernel

als auch unbekannte angewendet werden kann. Unser Entzerrungs-Algorithmus

ist angelehnt an Variationsmethoden und motiviert durch die Ideen von Chen et

al. 2015. Die so abgeleitete Netzwerkstruktur kann als Minimierung eines iterativ

adaptierten Energiefunktionales interpretiert werden. Zusätzlich präsentieren wir eine

differenzierbare Projektion auf das Einheitssimplex basierend auf Bregman Distanzen,

um die möglichen Verzerrungskernel zu beschränken. Die beiden vorgestellten Netzwerke

werden diskriminativ trainiert, um der Methode Eigenschaften von natürlichen scharfen

Bildern beizubringen und aufgrund der herausragenden Qualität und Laufzeit neuster

diskriminativer Bild-Rekonstruktionsmethoden. Die Netzwerke werden betreffend der

resultierenden Bildqualität evaluiert und zahlreiche Experimente zeigen die herausragende

Qualität der Bild- und Verzerrungskernel-Schätzungen. Des Weiteren hilft unsere

Methode ein besseres Verständnis für gute Entzerrungs-Algorithmen aufzubauen. Denn

im Gegensatz zu Neuronalen Netzwerken kann jeder einzelne Parameter eines Netzwerkes

einfach interpretiert werden aufgrund der engen Verbindung zur Energieminimierung.
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Introduction

Contents

1.1 Image restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Image deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Recording images has never been easier than today. An image can be acquired in a

fraction of a second almost everywhere on earth and easily shared using todays smart-

phones. Due to this freedom the number of images taken around the world exploded. A

major part of these images suffer from bad quality due to noise and motion degradation.

While the noise is inherently generated by the acquisition sensor, image blurring denotes

the degradation of images by virtue of the image formation process itself. Possible sources

for blurring are e.g. object motion, camera shake and so forth.

One strategy to overcome this problem is to avoid the degradation in the first place.

To do so, one should either take pictures of quasi static scenes just under suitable lightning

conditions, or use high-end cameras which generate low noise, have a sensor stabilization

to reduce camera shake and very sensitive sensors for fast imaging. However, in this thesis

we do not propose any hardware modifications but rather concentrate on the restoration

of degraded images.

1.1 Image restoration

The field of image restoration deals with reconstructing a sharp and clean image of an

observed scene by solely considering a degraded image. The most fundamental restoration

problems are image denoising and deblurring, since both sources of degradation frequently

occur in today’s imaging systems. In this work we focus on deconvolution, motivated by

the recent progress in image denoising [13].

1

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration
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1.2 Image deblurring

When taking an image of a scene the resulting observation is often blurry. This blur either

originates from camera intrinsic elements such as out of focus blur, or extrinsic factors

such as relative movement between camera and scene. These different blur sources can be

further categorized as shown in the next section.

1.2.1 Blur types

To better understand image deblurring, a deeper knowledge of the different reasons for

image blurring is necessary.

1.2.1.1 Motion blur

Generally speaking, motion blur is induced by a relative movement between a camera and

a scene during exposure. It is usually caused by either long exposure time or fast motion.

Depending on the moving component we can further distinguish between object motion

blur and camera shake blur. Object motion blur occurs when taking a picture of a dynamic

scene with a fixed camera, e.g. see Figure 1.1a, whereas, camera shake blur is generated

by a movement of the camera, as depicted in Figure 1.1b. When looking at the images in

Figure 1.1 one can see that the blurring is not necessarily constant throughout an image.

For instance, in Figure 1.1a only the moving tram is smeared, also in Figure 1.1c just

the background is blurred. Furthermore, the blurring in the background in Figure 1.1c is

spatially variant due to the rotational movement. Parts of the image which are closer to the

rotation axis are not as much blurred as those further away. This circumstance is especially

visible when comparing the region where the hammock is mounted with the upper border.

The smearing of the tree leaves is much larger than those of the string mounted around

the tree. Consequently, the blurring in images of typical scenes is spatially variant.

Also the combination of object motion and camera shake blur appears quite often in

modern photography. Figure 1.1d provides an example. Clearly, the camera was moved

during exposure time, however, it also seems as if the women moved as well. In this case

finding the blur and the non-blurred image at all positions in the image is rather hard

since the motion can be arbitrary complex.

1.2.1.2 Out of focus blur

Nowadays imaging systems are built up on lenses. By adjusting these lenses photographers

can focus exactly on one distance for each shot. However, the sharpness of objects decreases

steadily before and behind this focal depth. In photography the distance between the

nearest and farthest object appearing acceptable sharp in an image is called the Depth of

Field (DoF). In other words, within the DoF the unsharpness of objects is not visible. It

depends amongst others on the object-camera distance, focal length of the lens and iris

aperture.
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(a) (b)

(c) (d)

Figure 1.1: Motion blur examples: (a) static scene with a moving object; (b) scene where the
camera follows the linear motion of a cyclist; (c) rotational movement of a camera looking at a
static scene: (d) diffuse motion under bad lightning conditions. All images are taken from Flickr1.

(a) (b)

Figure 1.2: Out of focus blur examples: (a) incorrect focus setting; (b) artistic usage of limited
DoF . Both images are taken from Flickr1.

1 http://www.flickr.com/, Accessed: 2015-07-14

http://www.flickr.com/
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Figure 1.2a shows one picture taken with a wrong focus setting. In this image the

whole scene is outside the DoF , hence the image is entirely blurred. However, this effect

is often used in art to highlight the foreground, as Figure 1.2b demonstrates. The jars are

apparently sharp, whereas, the background is badly blurred. Even the edge of the table

is blurry.

The human visual system behaves in the same manner. When looking at an object

close to ones eyes, the background appears blurry. Furthermore, if one holds his/her hand

close in front of his/her eyes and focuses on the background, the edges of the fingers are

blurred as well. This also holds if just one eye is used. This behavior evolves naturally,

since todays imaging systems operate in a similar way as the human eye.

1.2.1.3 Atmospheric turbulence blur

Blurring due to atmospheric turbulences is caused by the nonuniform index of refraction

when light waves emit through our atmosphere. As pointed out by Roggemann [35] the

atmosphere is built up of a multitude of randomly distributed regions of uniform index

of refraction, called turbulent eddies. At each eddy a light wave traveling through the

atmosphere is refracted differently, which manifests in a blurry observation of the light

source. This phenomenon is always present when taking images via long distances, for

example at sea, areal/satellite photography and astronomy. Both images in Figure 1.3

(a) (b)

Figure 1.3: Atmospheric turbulence blur examples: (a) blurred observation of the moon surface;
(b) atmospheric blurring due to naval long distance imaging. Images are taken from [48].

have blurry edges due to the random refraction of the light while traveling through the

atmosphere. The blurring caused by this effect is likely to be nonuniform by virtue of the

random distribution of the turbulent eddy’s index of refraction.

Reference:

Roggemann, M.C. and Welsh, B.M. and Hunt, B.R. (1996)
Imaging Through Turbulence

Reference:

Zhu, Xiang and Milanfar, P (2013)
Removing Atmospheric Turbulence via Space-Invariant Deconvolution
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1.2.2 Uniform vs nonuniform blur

The above blur examples pointed out some important details. Not only can the shape of

a blur be arbitrary, but also it is likely that it changes within an image, which we call a

nonuniform blur. However, a uniform blur is defined such that it does not change across

the entire observed image. Small camera shake when imaging a distant scene can be well

approximated by this assumption. Nevertheless, large objection motions or camera shake

strongly violet it.

Despite these limitations, we consider uniform blur in the rest of this work, since we

first have to solve this problem properly before we can try to tackle the nonuniform case.

1.2.3 Blurring as convolution operations

A typical mathematical formulation to describe the uniform blurring process is by means

of a convolution operation. In the continuous setting the two dimensional continuous

convolution is defined by

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

u(x− χ, y − ξ)a(χ, ξ)dχdξ + n(x, y), (1.1)

where f is the blurred observed image, u the true sharp image, a the blur function (often

called Point Spread Function (PSF)) and n the noise generated by the image acquisition

process. Clearly, this formulation smears the intensity values of a hypothetic scene picture,

denoted by the sharp image u, according to a in oder to generate the blurry observation f .

For further considerations we assume that the noise n is zero-mean Gaussian white noise.

Note, also other noise types may occur, e.g. , Poisson noise or impulsive noise.

Since we are dealing with digital, discrete images, we have to formulate the blur process

also in the discrete setting. The discrete formulation of Equation (1.1) is

f(i, j) =

H/2∑
h=−H/2

W/2∑
w=−W/2

u(i− h, j − w)a(h,w) + n(i, j). (1.2)

Again, f is the blurry observation, u the sharp image and a ∈ RH×W the blur kernel,

being the discrete version of the PSF . Within this formulation the finitely sized image f

is constructed from the also not infinitely large image u. Therefore, assumptions about

image pixels outside of u have to be made due to the indexing u(i− h, j −w), which may

result in negative indexes or ones being larger than the actual size of u. The treatment

of the indexes outside the domain of a digital image is called border handling. Many

different approaches exists and the most popular are valid, zero-padded, symmetric or

circular border handling. In this work we consider the valid and zero-padded boundary

handling, see Appendix B. However, quite often also circular boundaries are used due to

their theoretical properties. The associated discrete, circular convolution formulation is
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defined by

f(i, j) =

H/2∑
h=−H/2

W/2∑
w=−W/2

u(i− h mod M, j − w mod N)a(h,w) + n(i, j), (1.3)

where ‘mod’ defines the modulo operation and the image u is of size M ×N . For the sake

of simplicity, we use the short vector notation

f = a ∗ u+ n, (1.4)

to express the valid convolution defined in Appendix B and

f = u
M×N∗ a+ n, (1.5)

if the circular convolution is used. To sum up, convolution operations can be used to

mathematically describe the uniform blurring process in the continuous and discrete set-

ting elegantly. Thus, we can treat the deblurring problem as a deconvolution problem.

1.2.4 Blind and non-blind image deconvolution

Deconvolution problems can be divided into two fundamentally different problems:

non-blind: Given a noisy observation f and the (probably estimated) PSF a, find

the unknown sharp image u.

blind: Given just a noisy observation f , find the unknown PSF a and the sharp

image u.

At first glance the non-blind image deconvolution problem seems to be simpler than the

blind one. Indeed, it is easier to solve, however in practice both inverse problems are hard

to solve due to their ill-posedness. Well-posed problems in the sense of Hadamard satisfy

the existence and uniqueness of their solution and furthermore have solutions that contin-

uously depend on the data. In contrast, an ill-posed problem has non-unique solutions or

non-existing ones for every possible data or does not continuously depend on the data. In

the following sections we outline the ill-posed nature of the deconvolution problems.

1.2.4.1 Non-blind image deconvolution

In the continuous setting Bertero and Boccacci [4] provide a detailed analysis why the im-

age deconvolution problem is ill-posed. To sum up, despite the uniqueness of the solution,

the existence and continuous dependency on the data is not satisfied. Fortunately, Bertero

and Boccacci [4] also pointed out that ill-posed problems can be turned into well-posed

ones by discretization. However, the solutions of these problems are usually unacceptable

from a physical point of view due to their corruption by noise. The following experiment

illustrates this circumstance.

Reference:

Bertero, M. and Boccacci, P. (1998)
Introduction to Inverse Problems in Imaging

Reference:

Bertero, M. and Boccacci, P. (1998)
Introduction to Inverse Problems in Imaging
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Let us denote by

F(u)(k, l) =

M−1∑
m=0

N−1∑
n=0

u(m,n) exp

(
−2πi

(
mk

M
+
nl

N

))
(1.6)

the circular Discrete Fourier Transform (DFT) of an image u of size M×N and its inverse

by

u(m,n) = F−1(F(u))(m,n) =
M−1∑
k=0

N−1∑
l=0

F(u)(k, l) exp

(
2πi

(
mk

M
+
nl

N

))
. (1.7)

A well known property of the Fourier transform is the convolution property, defined as

F(a
M×N∗ u) = F(a)F(u), (1.8)

where periodic boundary conditions of the discrete convolution are required. Imagine, for

some reason we have acquired a noise free image called f̂ , however it is still blurred. Due

to the uniform blur constraint, the formation process of f̂ can be specified by

f̂ = a
M×N∗ u. (1.9)

If we apply the DFT on this equation and use its convolution property we end up with

F(f̂) = F(a)F(u). (1.10)

After rearranging this equation and computing the inverse DFT , we get a closed form

solution for the non-blind deconvolution problem

u(f̂ , a) = F−1

(
F(f̂)

F(a)

)
, (1.11)

which is also known as inverse filtering. Figure 1.4a depicts the noiseless observation

f̂ and Figure 1.4b the reconstructed image using Equation (1.11). As we can see the

reconstruction is perfect, yielding the desired true sharp image. However, if we perform

the same reconstruction with the noisy observation f instead of f̂ , the resulting image,

shown in Figure 1.4d is definitely not physically plausible. Although the difference between

f (Fig. 1.4c) and f̂ (Fig. 1.4a) is minimal, the two reconstructed images are far apart,

which violates the continuous dependence of the solution of a well-posed problem on

the input data. This issue originates from the division by the Fourier transform of a

in Equation (1.11). If the value at a certain frequency is very small and inaccurate, it

can severely influence the result of the inverse filtering output due to its global influence.

To overcome this problem, the popular Wiener deconvolution added a constant to the
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(a) (b)

(c) (d)

Figure 1.4: Illustration of the ill-posed nature of non-blind image deconvolution: (a) blurry but
noise free observation of a scene; (b) reconstructed sharp image using Equation (1.11); (c) same
image as in (a) with 1% Gaussian white noise added; (d) reconstruction using Equation (1.11) and
the noisy observation.

denominator and is defined as

û(f̂ , a) = F−1

(
F(a)F(f̂)

|F(a)|2 + 1
SNR(u)

)
,

where · denotes the complex conjugate and SNR(u) the signal noise ratio of u. Moreover,

the multiplication and division on the frequency domain are point-wise. Consequently,

the non-blind image deconvolution problem can be solved, however, the image quality of

this simple method is rather poor.

1.2.4.2 Blind image deconvolution

Obviously the blind image deconvolution problem is also ill-posed as it has basically the

same structure as its non-blind pendant. Yet, it is by far more difficult to solve since it

does not even fulfill the uniqueness constrained of well-posed problems, as Chaudhuri et
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al. [10] showed. The bottom line is because of the low-pass filtering nature of blurring,

parts of the information are lost during acquisition. As a consequence, there exists a huge

manifold of approximate solutions for the sharp image u and the blur kernel a yielding

almost the same observation f within some noise level.

This fact is demonstrated by a second experiment. Once more, we consider a noise free

but blurry image f̂ . If we reinterpret Equation (1.11), we can choose any blur kernel a and

compute an image u such that we get exactly the same observation f̂ , when convolving a

with u. Of course, this procedure is only successful if all elements of the DFT are different

from zero, because the division by zero is not defined. A selection of kernel and image pairs

all computing f̂ when convolved, are depicted in Figure 1.5. Even though the difference of

these four image and kernel pairs is huge, they all point to the same point in the solution

space. Note that the same experiment still works if the noisy observation f instead of the

(a) (b)

(c) (d)

Figure 1.5: Illustration of non uniqueness nature of blind image deconvolution: (a) true sharp
image and correct blur kernel; (b) trivial solution consisting of the blurry observation and the delta
kernel; (c) correct blur kernel corrupted with 1% Gaussian white noise and its associated image;
(d) transposed true blur kernel and the computed image using Equation (1.11).

noise free f̂ is used. The resulting images u would then be much more noisy, similar to

Figure 1.4d.

Reference:

Chaudhuri, Subhasis and Velmurugan, Rajbabu and Rameshan, Renu M (2014)
Blind Image Deconvolution - Methods and Convergence
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As a result, neither the non-blind deconvolution problem nor the blind one can be

suitably solved using simple inverse filtering approaches. However, a typical way to turn

such problems into well-conditioned ones, is by exploiting all a priori knowledge about

the result, thus reducing the space of possible solutions.

1.2.5 Bayesian inference

Without knowing the true sharp image u (and the blur kernel a in the blind case) it is

difficult to formulate any explicit prior knowledge. Nevertheless, incorporating constraints

is still possible if we consider the sharp images u (and the blur kernels a) to be samples of

a probability distribution describing for example naturally plausible images (or kernels).

We further denote this distribution as p(u|, a, f) for non-blind image deconvolution and

p(u, a|f) in the blind case. For each hypothesis (u or (u, a)) a probability expressing how

well it suits the observation (f) under the prior knowledge can be computed using the so

called Bayesian framework.

The selection of the best hypothesis is usually done by minimizing the expected loss.

For the non-blind deconvolution problem this minimization problem is defined by

u∗ = arg min
u

∫
U
`(u− ū)p(ū|a, f)dū,

whereby the loss function ` is typically chosen as a `p-norm and U denotes the set of all

hypothesis. A very popular choice is the squared error loss ` = 1/2 ||·||22, which yields

u∗ = arg min
u

∫
U

1

2
||u− ū||22 p(ū|a, f)dū.

The solution of this problem can be computed by setting its derivative to zero.∫
U

(u∗ − ū)p(ū|a, f)dū = u∗
∫
U
p(ū|a, f)dū︸ ︷︷ ︸

1

−
∫
U
ūp(ū|a, f)dū

!
= 0

u∗ =

∫
U
ūp(ū|a, f)dū (1.12)

Thus, this loss is minimized when computing the expected value of the distribution

p(u|a, f). The associated solution is called the mean squared estimate. Another im-

portant loss function is the zero-one loss. It assigns zero loss to the true image and one to

all the others. Its norm based description in the infinite function space is tricky. Thus, we

characterize it as `(u− ū) = 1− δ(u− ū), where δ(u− ū) is defined such that it satisfies∫
U
f(u)δ(u− ū)du = f(ū).
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Hence, it is a variant of the Dirac delta function. The minimizer of the associated expected

loss can be computed by solving

u∗ = arg min
u

∫
U

(1− δ(u− ū))p(ū|a, f)dū.

This problem can be reformulates as

u∗ = arg min
u

∫
U
p(ū|a, f)dū︸ ︷︷ ︸

1

−
∫
U
δ(u− ū)p(ū|a, f)dū

= arg min
u

1− p(u|a, f)

= arg max
u

p(u|a, f), (1.13)

because the integral of the Dirac delta function over the entire domain is 1. So, this

loss is minimized by choosing the hypothesis which maximizes the conditional a posteriori

probability. Therefore, this loss motivated approach is call Maximum A Posteriori (MAP)

estimation within Bayesian inference theory. In general this problem is easier to solve,

since it avoids the computation of the high dimensional integral in Equation (1.12). The

same derivations can also be performed for blind image deconvolution.

Consequently, we are interested in finding the image u (and kernel a) maximizing the

a posteriori distribution given the observation f .

non-blind: u∗ = arg max
u

p(u|a, f) (1.14)

blind: (u∗, a∗) = arg max
u,a

p(u, a|f). (1.15)

By using Bayes rule we can further refine it to

non-blind: p(u|a, f) =
p(f |u, a)p(u)

p(f)
(1.16)

blind: p(u, a|f) = p(u|a, f)p(a) =
p(f |u, a)p(u)p(a)

p(f)
, (1.17)

where p(f |u, a) is the likelihood of the observation f given the hypothesis of the sharp

image u and the blur kernel a, p(u) specifies the prior distribution of sharp, natural images

u and p(a) the one of the kernel. The probability distribution p(f) can be computed by

marginalization over the likelihood p(f |u, a). It is used as a normalization factor to ensure

proper posterior probabilities. Hence, it can be neglected from the MAP formulation.

A still open question in research is how to model these probability distributions prop-

erly. In case of the likelihood term and when dealing with independent and identically
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distributed (iid) additive white Gaussian noise, an often made choice is

p(f |u, a) =

MN∏
i=1

1√
2πσ2

exp

(
−((a ∗ u)i − fi)2

2σ2

)
=

1√
2πσ2

exp

(
− 1

2σ2
||a ∗ u− f ||22

)
, (1.18)

where MN is the number of pixels of f ∈ RM×N , σ the standard deviation of the Gaussian

noise and ||·||2 the `2-norm.

A classical but still broadly used prior model for natural images is

p(u) =
1

Cu
exp (−ρ(Ku)) , (1.19)

where ρ is called the potential or penalty function, K a linear operator applied on an image

u and Cu a normalization constant, which ensures that marginalization over p(u) yields 1.

The task of this prior is to sort out unnatural images and favor sharp naturally appealing

ones. This simple yet powerful prior permits modeling a vast variety of statistical image

properties in order to express the statistics of natural images.

For blind image deconvolution also a model of natural blur kernels is needed. From

the physical process of blurring we know the follow two facts. First, it is impossible that

a PSF removes any light, since it aggregates the light of its neighborhood to form the

output intensity. Hence, the PSF must be positive on its entire domain. Second, blurring

does not change the average light intensity of a scene because it does not remove or add

light. Consequently, the integral over the whole domain of the PSF must be 1. For a

general blur we cannot make any further assumptions like sparsity or anything else due

to the vast diversity of blur kernels. These requirements in the continuous setting can be

directly translated into the discrete one. Thus, all the elements of a discrete blur kernel a

must be positive and sum up to 1. In other words a must life on the unit simplex, being

defined as

∆ =

{
a ∈ RH×W :

HW∑
i=1

ai = 1, ai ≥ 0 i = 1 . . . HW

}
. (1.20)

Based on this definition we can define the indicator function of the unit simplex.

δ∆(a) =

{
0 if a ∈ ∆

∞ else
(1.21)

Using this knowledge we can state the kernel prior p(a) formulated as

p(a) =
1

Ca
exp(−δ∆(a)), (1.22)
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where Ca is a normalization constant, which ensures that this distribution integrates to 1.

So, p(a) is either one if a lies on the unit simplex or zero if a is outside of it.

All this prior information can be plugged into Equation (1.16) and (1.17) and if we

omit the constants we end up with

non-blind: p(u|a, f) ∝ exp

(
−ρ(Ku)− 1

2σ2
||a ∗ u− f ||22

)
(1.23)

blind: p(u, a|f) ∝ exp

(
−ρ(Ku)− δ∆(a)− 1

2σ2
||a ∗ u− f ||22

)
. (1.24)

If we compute the MAP solution based on these equations and take the negative logarithm,

we get

non-blind: u∗ = arg min
u

ρ(Ku) +
1

2σ2
||a ∗ u− f ||22 (1.25)

blind: (u∗, a∗) = arg min
u,a

ρ(Ku) + δ∆(a) +
1

2σ2
||a ∗ u− f ||22 . (1.26)

Both arguments of the minimization problems can be interpreted as energy functionals.

This yields the variational formulation of the image deconvolution problems, which are

defined as

non-blind: u∗ = arg min
u

E(u) = ρ(Ku) +
λ

2
||a ∗ u− f ||22 (1.27)

blind: (u∗, a∗) = arg min
u,a

E(u, a) = ρ(Ku) + δ∆(a) +
λ

2
||a ∗ u− f ||22 . (1.28)

In variational models the first terms depending solely on the solution is called the regular-

ization, while the second term, which originates from the likelihood, is usually known as

the data term. Instead of the noise variance σ2 a parameter λ is used to tune the trade-off

between regularization and data fidelity. Thus, the proper choice of λ is closely related to

the noise level within an image.

A similar derivation of this energy minimization approach is possible by using a Markov

Random field (MRF) formulation. A MRF is a set of random variables defined over a

graph G = G(V, E), which consists of vertexes V and their connections are defined by the

edge set E , see [1]. Typically a MRF assigns a random variable to each vertex, which

models the data likelihood, and another one to each clique within the graph. A clique is

a subset of a graph whose vertexes are fully connected. The statistical properties within

the graph are modeled based on the cliques. This theory can be applied to images by

considering the regular pixel grid as a graph, whose nodes are given by the pixels and

the edges are defined by the incorporated neighborhood. Provided that the distribution

is strictly positive, an associated Gibbs measure can be defined, which is based on a

Reference:

Barber, D (2012)
Bayesian Reasoning and Machine Learning
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Boltzmann distribution

p(x) =
exp(−E(x))∫

x∈X exp(−E(x))
.

In this formulation the energy E(x) is set up such that it satisfy the properties of the

graphical model. Hence, the energy of the associated Boltzmann distribution builds a

bridge between MRF and variational models. However, the normalization of the prob-

ability distribution is in practice infeasible due to the large set of possible hypothesis

X . Therefore, the variational approach is easier to solve, as it avoid to evaluate high

dimensional integrals.

In the following chapters we derive our image deconvolution methods based on these

variational formulations.
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The task of non-blind image deconvolution is rather theoretical because it uses a blur

kernel as input. Therefore, it cannot directly be used for blind image deblurring. However,

many recent blind deblurring methods [23, 24, 47] first estimate the unknown blur kernel

and then deconvolve the blurred observation. This restoration process is frequently used as

it circumvents the problem of naive Maximum A Posteriori (MAP) methods when jointly

estimating the unknown blur kernel and the true image, see Chapter 3. Moreover, the

Point Spread Function (PSF) and its associated blur kernel can be accurately measured

in different imaging systems, e.g. Magnetic Resonance Imaging (MRI) or astronomy. For

instance, the PSF of a telescope can be determined by pointing it to a bright isolated star.

Thus non-blind image deconvolution is still an important problem.

2.1 Image deconvolution in energy minimization

As we have seen in the previous chapter, the task of non-blind image deconvolution is

defined as:

Given a blurry and noisy observation f of a scene and the according blur kernel a,

estimate the sharp image u.

Moreover, we pointed out that in the continuous setting this problem is ill-posed, whereas

its discrete version is well-posed with unacceptable noise driven solutions though. To han-

dle this problem we incorporated prior knowledge about the true image u and ended up

15

Reference:

 ()
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with a variational approach. It is a widely adopted field of mathematical analysis dealing

with maximization or minimization of functionals. If we interpret these functionals as en-

ergies, we wind up with the field of energy minimization. Consequently, MAP estimation,

calculus of variations and energy minimization are closely related.

2.1.1 Formulation

A more general formulation of the non-blind image deconvolution problem than (1.27) is

u∗ = arg min
u

E(u) = R(u) +
λ

2
||a ∗ u− f ||22 , (2.1)

where R(u) is a regularization term expressing the prior knowledge about the true image

u, λ is still a tuning parameter for weighting the data fidelity and ||·||2 is the standard

`2-norm. This formulation is basically the same for all MAP or energy minimization

related methods. The diversity within these methods originates from the choice of the

regularizer R(u) and the optimization method. Most methods use the `2-norm around

the image formation process due to the Gaussian noise assumption. However, there are

some algorithms such as Xu and Jia [47] which use a `1-norm instead, to better cope with

outliers. In the next section we look at these methods in more detail.

2.1.2 Popular regularization

An early approach to circumvent the ill-posedness of problems is called the Tikhonov regu-

larization, which was introduced by Tikhonov and Arsenin [45]. It uses a quadratic penalty

function and if applied to the deconvolution problem we get the following formulation

u∗ = arg min
u

E(u) = ||∇u||22 +
λ

2
||a ∗ u− f ||22 , (2.2)

where ∇ is the first-order finite difference operator. If we have a closer look at this energy

functional we see that it is quadratic and convex and the solution u∗ can be computed

in closed form. It has to fulfill the first order optimality condition for unconstrained

optimization problems defined as

∂E

∂u

∣∣∣∣
u∗

!
= 0.

To ease computation, we can rewrite the convolution operation using matrix-vector nota-

tion a ∗ u⇔ Au without changing the energy functional, see Appendix B. The derivative

is then given by

∂E

∂u
= ∇T∇u+ λAT(Au− f).

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring

Reference:

Tikhonov, A N and Arsenin, V I A (1977)
Solutions of ill-posed problems
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Thus, the optimal solution can be computed as

u∗ = λ
(
∇T∇+ λATA

)−1
ATf.

The advantage of the Tikhonov regularization in this formulation is that the solution can

be efficiently computed in closed form. However, the actual result is not satisfactory, see

Figure 2.1b, although it is by far better than the output of the simple inverse filtering

(Figure 1.4d). The difference to the blurry observation is rather small though. The edges

in the output image of the Tikhonov model are over smooth due to the quadratic penalty

function, which assigns high cost to steep edges.

A very popular regularization for image denoising that overcomes this problem was

introduced by Rudin, Osher and Fatemi [38]. They proposed the so called Total Variation

(TV), which in its isotropic discrete form is defined as

TV(u) = ||∇u||2,1 =

MN∑
i=1

√
(∇xu)2

i + (∇yu)2
i ,

where ∇x is the first-order difference operator in x-direction, ∇y in y-direction respectively

and the image u is of size M ×N . Soon after its introduction this model was also applied

to non-blind image deconvolution [37] and its discrete formulation is given by

u∗ = arg min
u

E(u) = ||∇u||2,1 +
λ

2
||a ∗ u− f ||22 . (2.3)

Compared to the Tikhonov model, see Equation (2.2), the ROF-model uses the `1-norm

over the image gradients. This slight change lead to a dramatic improvement in image

regularization. In Figure 2.1 the results of both models are depicted. While the output of

the Tikhonov model suffers from over smooth edges, the ROF-model result posses sharp

ones. This demonstrates the huge benefit of the TV regularization since it disfavors small

(a) (b) (c)

Figure 2.1: Image deconvolution using a Tikhonov and TV prior. (a) corrupted observation
(blur kernel in upper left corner and 1% Gaussian noise); (b) deconvolution result with λ = 5; (c)
resulting image when using a TV prior and λ = 500.

fluctuations like noise but allows steep discontinuities such as sharp edges. A drawback

Reference:

Rudin, Leonid I. and Osher, Stanley and Fatemi, Emad (1992)
Nonlinear total variation based noise removal algorithms

Reference:

Rudin, L.I. and Osher, S. (1994)
Total variation based image restoration with free local constraints
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Algorithm 1: Primal-dual algorithm of Chambolle and Pock [8].

Data: f, Choose: τ, σ > 0, τσL2 = 1, θ ∈ [0, 1] and x0, y0

Result: x
x̄0 ← x0;
while not converged do

yn+1 ← proxσF ∗(yn + σKx̄n);
xn+1 ← proxτG(xn − τK∗yn+1);
x̄n+1 ← xn+1 + θ(xn+1 − nn);
t← t+ 1;

x← xt+1;

might be that it cannot be solved in closed form, however there exist efficient and ac-

curate algorithms to solve it [8]. The TV is very popular within image regularization

and is still widely used, even in todays State-of-the-Art (SotA) algorithms [47] for image

deconvolution.

Let us have a closer look at the primal-dual algorithm of Chambolle and Pock [8]. It

can solve saddle-point problems of the form

min
x

max
y
〈Kx, y〉+G(x)− F ∗(y),

where G(x) and F ∗(x) are proper, convex, lower semi-continuous functions. Furthermore,

F ∗ is the convex conjugate of a convex lower semi-continuous functions. Their approach

is stated in Algorithm 1. In order to apply this algorithm, we need to map the TV

regularized ROF model, see Equation (2.3), to a saddle-point problem of the above form.

Therefore, we need the convex conjugate of a function, which is defined as

f∗(y) = sup
x
〈y, x〉 − f(x).

The biconjugate of a function f is then defined by

f∗∗(x) = sup
y
〈x, y〉 − f∗(y).

Basically it is the convex conjugate of the convex conjugate of a function. For a convex and

lower semi-continuous function it follows that f(x) = f∗∗(x). Hence, the convex function

itself is given by its biconjugate. The TV can also be expressed using the `1-norm. Thus,

we can set f(x) = ||x||1 and since it is a convex and lower semi-continuous function, it

can be substituted by its biconjugate. If we plug this idea into Equation (2.3), we get

u∗ = arg min
u

max
p
〈∇u, p〉+

λ

2
||Au− f ||22 − δ||.||∞≤1,

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A first-order primal-dual algorithm for convex problems with applications to imaging

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A first-order primal-dual algorithm for convex problems with applications to imaging

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A first-order primal-dual algorithm for convex problems with applications to imaging
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Algorithm 2: Primal-dual algorithm for non-blind image deconvolution.

Data: f, Choose: τ, σ > 0, τσL2 = 1, θ ∈ [0, 1] and u0, p0

Result: x
ū0 ← u0;
while not converged do

pn+1 ← proj||.||∞≤1(pn + σ∇ūn);

un+1 ← (I + τλATA)−1((un − τ∇Tpn+1) + τλATf);
x̄n+1 ← xn+1 + θ(xn+1 − nn);
t← t+ 1;

x← xt+1;

whereby A is the matrix associated to the convolution operation and δ||.||∞≤1 is the dual

function of ||.||1, which is given by the indicator function of the dual norm ball. In order

to apply Algorithm 1, we need to compute two proximal maps. The proximal map of

the dual variable p can be easily computed because it is related to an indicator function.

Thus, it is given by the projection onto the `∞-norm ball.

p = proxτδ||.||∞≤1
(p̃) = proj||.||∞≤1(p̃)⇔ pi =

p̃i
max(1, ||p̃i||2)

Moreover, the proximal map of the primal variable u can also be solved in closed form

u = proxτ λ
2
||Au−f ||22(ũ) = arg min

u

1

2τ
||u− ũ||22 +

λ

2
||Au− f ||22 .

The solution of this quadratic, convex optimization problem is given by

u = (I + τλATA)−1(ũ+ τλATf).

Based on this results, we can state the primal-dual algorithm for non-blind image decon-

volution, see Algorithm 2. It can be used to efficiently and accurately solve the ROF

model. Later we will use this algorithm as a reference method.

If we take a closer look at Figure 2.1c, we see the major drawback of the ROF-model

as it generates so-called ’stair-case’ artifacts. These develop because the minimizer of the

ROF-model favors piecewise-constant regions, which can be especially seen at the river or

mountains in Figure 2.1c. This side effect can be avoided when incorporating higher order

derivatives, as Bredies et al. [6] showed with the total generalized variation regularization.

Due to additional information of higher order derivatives it correctly reconstructs steep

edges and smooth regions.

All of the so far discussed regularizer are convex. Hence, the associated models have a

global minimizer since also the data term is convex. However, if we consider the statistics

of image gradients, depicted in Figure 2.2, we have to conclude that they follow a heavy

Reference:

Bredies, Kristian and Kunisch, Karl and Pock, Thomas (2010)
Total Generalized Variation
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Figure 2.2: Negative logarithmic Probability Density Function (PDF) of the first order image
gradients (∇xu). In the top row are the images, the statistics are computed from. The bottom

row depicts the associated PDF with fitted approximations. Note that for image (a) | · | 12 fits best,

whereas, the statistics of image (b) are better described using | · | 23 .

tailed distribution. Consequently, the quadratic penalty function of the Tikhonov model

is a rather rough choice. The `1-norm of the TV , being the closet convex approximation,

is better suited, which validates its success. It is a rather poor fit though.

From a statistical point of view, better regularizer embed the underlying statistics,

which leads us to non-convex regularization. In 2007 Levin et al. [25] introduced a sparse

non-convex prior on image gradients. Their model is formulated as

u∗ = arg min
u

E(u) =

MN∑
i=1

|(∇xu)i|α + |(∇yu)i|α + λ ||a ∗ u− f ||1 , (2.4)

where the image u is of size M ×N and ∇x and ∇y are the directional first order image

gradient operators. It employs a `1-norm data term, which is invariant to large outliers

as shown in [8]. Moreover, it approximates the distribution of natural image gradients
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by a hyper Laplacian distribution with α = 0.8. As they pointed out, in contrast to a

Gaussian quadratic prior, a sparse gradient prior concentrates the gradients to a small

amount of pixel, while leaving the majority constant. This effect helps to reduce noise,

generate sharper edges and avoid image artifacts such as ringing.

The downside of this model is that it is not convex anymore, in spite of the convex

data term. Therefore, finding a global minimizer is a very hard problem, however, sta-

tionary points, i.e. plateaus, global and local minimas, can be still computed. Levin and

colleagues used an iterative reweighted least squares process that optimizes a sequence of

least squares problems whose derivative weights are updated based on the result of the

previous iterations. The individual least squares problems are solved using a variant of

the conjugate gradient algorithm.

Motivated by the long runtime of the iterative reweighted least squares algorithm, Kr-

ishnan and Fergus [22] proposed their own model, based on hyper-Laplacian distributions

of image gradients. It is closely related to the previous model of Levin et al. and defined

as

u∗ = arg min
u

E(u) =
MN∑
i=1

Nk∑
k=1

|(fk ∗ u)i|α +
λ

2
||a ∗ u− f ||22 , (2.5)

where Nk = 2 typically, f1 and f2 are the first order x/y-directional derivative filters

and α ∈ (0, 1) is the hyper-Lapalcian parameter. In their paper they experimented with

different values for α, including 1/2 and 2/3. If these values are used, the associated

Laplacian distribution fits the underlying data well, see Figure 2.2. This model would be

equivalent to Levin’s model if a `1-norm data term and α = 0.8 was used. To optimize

this non-convex energy functional, Krishnan and Fergus adopted a half-quadratic penalty

method [16, 17], which uses auxiliary variables for each filter fk. The two associated

subproblems can then be efficiently solved using the Fourier transform for optimizing u

and a lookup table or an analytic solution for computing the auxiliary variables (details

see [22]) because they become independent over the pixels due to splitting. By using this

approach, the runtime is up to 350 times faster than the one proposed by Levin et al.

2.1.3 Learning image regularization

So far all the proposed methods use regularization techniques constructed by humans to

incorporate information about the true solution. As we have seen in the previous section,

finding a suitable regularizer is hard, even for the rather basic first order directional

derivative filters. Consequently, the field of learning image priors evolved, motivated by

the success of machine learning and the urge for rich local image priors with larger domain

to better describe more complex properties of natural images.

A still handcrafted first attempt to infer this kind of regularization was done by the

pioneering work of Geman and Geman [18]. They interpreted images as graphs G =

G(V,E), where the nodes V of the graph represent the image pixels and the edges E the
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relations within the nodes based on some defined neighborhood. Their prior model is set

up by a manifold of potential functions, which are defined on cliques that are inferred by

the neighborhood. Each of these potential functions assigns a certain value (constant) to

the energy, based on its clique.

If we transfer this idea to variational models and allow the potential functions to be

proper functions, we end up with the Field of Experts (FoE) model [36], formulated as

R(u) =

MN∑
p=1

Nk∑
i=1

αiρi ((ki ∗ u)p) , (2.6)

where ρi model the potential functions, also known as experts, evaluated at a local clique,

ki is a convolution kernel determining the clique, αi is the expert parameter fixing the

influence of expert i and the image u is of size M×N . Due to the flexibility of the experts

and the formulation of the cliques as filters, this model is able to describe a huge variety

of complex image statistics. In their introductory work [36], Roth and Black applied this

regularizer to image denoising and inpainting. They fixed the expert functions to be either

the heavy-tailed Student-t distribution or a smooth approximation of the `1-norm [9] and

trained the associated filters ki and expert parameters αi. Despite the simplicity of this

model, they achieved results close to SotA methods, even though they did not train their

model for a specific task. The FoE prior was also applied to non-blind image deconvolution

yielding also good results [11] due to its powerful statistical basis.

Chen et al. [13] took the idea a bit further. Based on the FoE model they proposed a

reaction diffusion process for image restoration such as denoising and JPEG-deblocking.

The success of this method lies in two points. First, they tremendously increase the

expressive power of the FoE model by also learning the expert functions. Second, the

fixed amount of iterations and the optimization of all model parameters lead to a fast and

high quality image restoration method at SotA level. The related variational formulation

of this model is defined as

u∗ = arg min
u

E(u) =
MN∑
p=1

Nk∑
i=1

ρi ((ki ∗ u)p) +
λ

2
||a ∗ u− f ||22 , (2.7)

where ρi is the i-th penalty function, ki the associated linear filter and the image is of size

M ×N . In this formulation we omitted the time-dependence of the parameters φi, ki and

λ to point out the relation to energy minimization. One interpretation of their algorithm

is that they minimize the energy (Equation (2.7)) by just performing a certain amount

of pure gradient descent steps. The parameters of each of those steps are then learned in

a supervised manner such that the output best matches the true image. The success of

this model in image restoration highly motivates our approach to learn specific models for

image deconvolution.

A completely different approach for learning image priors, being patch based, was
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introduced by Zoran and Weiss [49]. They maximize the so called Expected Patch Log

Likelihood (EPLL) under a prior p, which is defined as

EPLLp(x) =
∑
i

log p(Piu), (2.8)

where Pi is a matrix extracting the i-th patch of all overlapping patches from an image

u. To incorporate the statistics of natural images, they model the prior p by means of

Gaussian Mixture Models (GMM)

log p(x) = log

 J∑
j=1

πjN (x|µj ,Σj)

 ,

where J defines the number of Gaussian mixtures, πj are the mixing coefficients, which

sum up to 1, and µj and Σj are the mean and covariance of the j-th Gaussian mixture.

The parameters of this prior model are trained using the Expectation Maximization (EM)

algorithm. Despite the fact that their prior is patch-based, the results of non-blind image

deconvolution with this prior is on par with SotA.

2.1.4 Choice of weighting parameter λ

In the variational formulation of the non-blind image deconvolution, see Equation (2.1),

basically two parameters can be tuned. First and probably most important the regular-

ization, as we have seen in the previous section. Second, the weighting parameter λ. It

balances the trade-off between data fidelity and regularization and is mainly defined by

the assumed noise variance σ2, which was pointed out in Chapter 1. Thus, one assumes

that if the noise level (σ) stays constant and an image is convolved with different blur

kernels, the best deconvolution results should be obtained with the same λ. However, in

practice this is not the case.

To demonstrate this effect, the following experiment was set up. We took two images of

the dataset of Levin et al. [28] and convolved each one with all eight blur kernels within this

dataset. After the convolution we added Gaussian white noise with a standard deviation

of σ = 0.01, which is equivalent to a 1% noise level, to all blurry images. Then these

noisy and blurry observations were deconvolved using a TV prior and different values

for λ by applying the primal-dual Algorithm 2. The λ values which resulted in the best

PSNR values for the deconvolved images are depicted in Figure 2.3. Unfortunately, the

maximum PSNR value for each image and kernel cannot be obtained for a certain λ. Not

only depends the best estimated λ on the blur kernel but also on the image, as we can

see if we compare both plots in Figure 2.3. Let us for instance consider kernel 4. While

for image 1 λ = 100 is best, image 2 requires a three times larger one. Thus, this data

dependency makes an automated choice for λ very hard. A typical approach to circumvent

this problem is to start with low λ values and gradually increase them [28, 34].
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Figure 2.3: Demonstration of the influence of the weighting parameter λ. Both plots depict the
λbest value, which resulted in the best Peak Signal Noise Ratio (PSNR) values of the deconvolved
image for varying blur kernels. The plots were generated using the first two blurry samples of the
Levin et al. dataset [28].

2.2 Image deconvolution using iteratively adapted energy

minimization

We formulate our non-blind image deconvolution approach based on the image denois-

ing framework proposed by Chen et al. [13]. Although Chen’s framework was originally

designed as a reaction diffusion process, we motivate our approach by minimizing its as-

sociated energy. For more details about the relation between energy minimization and

diffusion processes we refer to [12]. By applying the associated regularizer of Chen’s

framework into our general non-blind deconvolution variational formulation, we end up

with

u∗ = arg min
u

E(u) =
1

Nk

MN∑
p=1

Nk∑
i=1

ρi ((ki ∗ u)p) +
λ

2
||a ∗ u− f ||22 , (2.9)

where ρi is an arbitrary smooth penalty function, ki a linear filter and λ a weighting

parameter. In contrast to Chen’s reaction diffusion process, we added a normalization

factor 1/Nk for implementation issues. Since the convolution operation can be expressed

as matrix-vector product a∗u⇔ Au⇔ Ua with suitably defined matrices, see Appendix B,

our formulation changes to

u∗ = arg min
u

E(u) =
1

Nk

MN∑
p=1

Nk∑
i=1

ρi ((Kiu)p) +
λ

2
||Au− f ||22 . (2.10)
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Unfortunately, this energy cannot be solved in closed form because the smooth penalty

functions ρi can be arbitrarily shaped. However, the first and easiest algorithm to minimize

this kind of energy is the first-order steepest gradient descent method. If one wants to

minimize a function f(x), it is defined as

xt = xt−1 − ht∇f(xt−1), (2.11)

where ht is a proper step size and ∇f(x) the gradient of f(x). This method generates a

sequence {xt}T1 that converges to a stationary point, which can either be a local/global

minimum/maximum or a saddle point. In order to apply this method, we have to compute

the gradient of E(u), which is given by

∇E(u) =
1

Nk

Nk∑
i=1

KT
i φi(Kiu) + λAT(Au− f), (2.12)

whereby φ(x) = ∂ρ(x)/∂x is the derivative of the scalar function ρ(x). Hence, we can

apply the steepest gradient descent method to our problem and get the following iterative

update rule

ut = u(t−1) − ht
{

1

Nk

Nk∑
i=1

KT
i φi(Kiu(t−1)) + λAT(Au(t−1) − f)

}
, (2.13)

where we have to select a suitable step size ht in each iteration t.

Usually, this update scheme is repeated in hundreds or thousands of iterations due to

the poor convergence rate of the first-order steepest gradient descent method. Analogue to

Chen, we fix the amount of iterations to T and try to find the best update scheme (2.13),

given some objective. To do so, we break up the chains of this static update strategy by

allowing free changes of the regularizer parameters φi and ki and the weighting parameter

λ. As a result, we transfer our approach from an iterative scheme to a network structure,

whose stages are motivated by the iterative updates (2.13). If we cast this idea into

a mathematical formulation, we can define the update of a certain stage t within our

deconvolution process as

ut =

u(t−1) − ht
{

1
Nk

∑Nk
i=1K

T
tiφti(Ktiu(t−1)) + λtA

T(Au(t−1) − f)
}

if t > 0

u0 if t = 0.

Due to this change, the scale of the influence functions φti(x) and λt can be arbitrary

selected within each stage. Therefore, we can define a new set of functions φti(x) = htφ̃ti(x)

and weights λt = htλ̃t without loss of generality. As a consequence, the update scheme
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IAM-DCT

S1 St−1 St St+1 STu0 uT

Figure 2.4: Demonstration of the Iteratively Adapted Minimization for non-blind Deconvolution
(IAM-DC) network structure. The input of the procedure is the blurry observation u0, which is
processed by a series of stages St, implementing the update rule (2.14). The output of the net
after performing T updates is the deconvolved image uT .

changes to

ut =

u(t−1) −
{

1
Nk

∑Nk
i=1K

T
tiφti(Ktiu(t−1)) + λtA

T(Au(t−1) − f)
}

if t > 0

u0 if t = 0,
(2.14)

which is identical to the denoising formulation of Chen et al. [13] despite the presence of

the convolution operator A in the reaction term. Figure 2.4 depicts the structure of the

proposed IAM-DC network. The input u0 is the blurry observation, which is initially the

best guess for the true image, since we cannot predict the sharp one. The initial guess is

then processed by a sequence of successive stages St until the final estimate uT is restored

after T updates.

Due to the relaxation of the regularization parameters and λ, this approach does not

minimize the energy in Equation (2.10) exactly. However, an interpretation is that in each

stage a gradient descent step of a related energy functional, which depends on the network

parameters (φti, kti and λt), is performed. Thus the network attempts to minimize in every

stage an iteratively adapted energy of the form

Et(u) =
1

Nk

MN∑
p=1

Nk∑
i=1

1

ht
ρti ((Ktiu)p) +

λt
2ht
||Au− f ||22 ,

where ht represents the latent step size at stage t.

2.2.1 A straight forward IAM-DC network

Motivated by the simple update rule of Equation (2.14), we introduce a first IAM-DC

based network, whose successive stages are defined as

ut = T

{
up(t−1) −

(
1

Nk

Nk∑
i=1

KT
tiφti(ηKtiup(t−1)) + λtA

T
(
Aup(t−1) − f

))}
, (2.15)
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where up(t−1) = Pu(t−1) is a padded version of the input to this stage. This padding is

required to limit the influence of inconsistent border handling. The operator T is a matrix

representation of a truncation operation, which is necessary to ensure that the image size

of u(t−1) and ut is the same. In contrast to the previous model, we added a constant factor

η, which is used to scale the argument of the influence functions φti for implementation

issues. The basic idea of this model is to use the expressive power of the regularization,

defined by the kernels kti and the associated penalty functions ρti =
∫
φti(x)dx, to learn

better priors respective regularizer. This is achieved by training the network.

2.2.1.1 Training

Due to the success in image denoising of Chen’s framework [13] and other discriminative

learning approaches in the filed of image deconvolution [39–41], we also train the networks

in a discriminative fashion. Therefore, we define an objective function

L(Θ) =

S∑
s=1

`(uT (Θ, us0), usgt), (2.16)

which is minimized by a training algorithm. In this formulation S defines the amount

of training samples and each of those consists of a blurry and noisy observation us0 and

its associated ground truth, which is the true sharp image usgt. Furthermore, we see that

the output of the IAM-DC network uT is a function of the input us0 and the network

parameters Θ, which are defined as

Θ = {θt, t = 1 . . . T}
θt = {λt, (φti, kti) i = 1 . . . Nk}.

The usual choice of the function `(uT , u
s
gt) is based on a certain image measure. In our

case we want to maximize the PSNR, which is larger the smaller the squared error of the

image differences is

`(uT , u
s
gt) =

1

2

∣∣∣∣M(uT − usgt)
∣∣∣∣2

2
, (2.17)

where the diagonal matrix M is used to suppress errors at border regions. This elimination

of an error at the border is necessary because all typical border-handling methods (zero-

padding, cyclic or symmetric repetition of the image values) induce errors. Moreover, if

the cropping was not done, also image inpainting at border regions would be part of the

deconvolution problem. For the sake of simplicity we further on denote the output of the

network stage t for training sample s as ust .

Along with [13, 39], which solve similar problems, we use the famous L-BFGS algo-

rithm [14] to minimize the objective function (2.16). It is a memory efficient quasi-Newton

gradient related optimization algorithm which was successfully applied to many large scale
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problems. In order to use it for minimizing an objective function, one just needs to com-

pute the function value and its derivative with respect to its parameters for a given point

in the parameter space. Both computations are necessary since it employs sophisticated

line-search schemes.

Due to the complexity of non-blind image deconvolution, we cannot assume that the

network will deliver good results for just a few (one or two) stages, thus some kind of pre-

training is necessary. The task of a pre-training phase is to guide the network parameters

to an already good solution, which can be further improved by a final joint training.

Furthermore, the depth of a network drastically increases its expressive power. Along

with its expressiveness also the complexity of the network increases, which hardens joint

training. Therefore, we split the training of the networks into two phases. First, the

network is greedily pre-trained until a depth of 5 is reached, then these stages are trained

jointly. Afterwards the next 5 stages are added in a greedy manner and trained jointly,

while keeping the parameters of the first 5 stages constant. This block-training procedure

is repeated until the final depth is reached.

Greedy pre-training: To get good initial parameters for the joint training, we employ

a divide and conquer strategy. For that reason, we use a greedy scheme which allows

to train the parameters θt of each stage independently. We start with a single stage S1,

train its parameters using L-BFGS and then fix its output u1. Afterwards, another stage,

which uses the constant output of the previous stage as input, is added and its parameters

θ2 are trained. In the same way, also the output of this stage u2 is fixed. By following

these scheme we successively add stages and train them independently until the next joint

training phase is executed. The training of the individual stages is done by minimizing

the following objective function

L(θt) =

S∑
s=1

`(ust , u
s
gt). (2.18)

Hence, one computes the parameter set θt such that the output of stage t resembles the

true image as close as possible. This greed of each stage for the best fit gives the applied

approach its name.

However, the important advantage compared to the joint training is that ust just de-

pends on the parameters of the current stage θt, given the constant output of the previous

stage us(t−1). After the pre-training of each stage, the parameters θt are stacked together

to form the initial estimate.

Joint training: The aim of this training phase is to refine the parameters of the current

network part, in order to minimize the objective function (2.16). It is again optimized using

the L-BFGS algorithm. In contrast to the pre-training, the flexibility while minimizing

the objective function is much larger because here the intermediate latent images ut can
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be arbitrary. Consequently, this training stage is the most important, since it can exploit

the entire complexity of the network.

In the next section the computation of the derivatives required for training are outlined.

Furthermore, it refines the parametrization of the influence functions φti and its associated

kernels kti.

2.2.1.2 Gradient derivation

Most of the derivations are the same as in [12] due to the similarity of the approaches.

Analogue to the training phases, also the derivation of the gradients is partitioned, starting

with those necessary for pre-training.

In order to minimize (2.18) using L-BFGS, we need to compute its derivative with

respect to the parameters θt of a single stage.

∂L

∂θt
=

S∑
s=1

∂`(ust , u
s
gt)

∂θt
. (2.19)

For the sake of simplicity we consider only one training example in the following deriva-

tions, since the gradient of more training samples can be easily computed by simply

summing those of the individual ones. Consequently, Equation (2.19) can be expressed by

summing up all the following derivatives of the individual training samples.

∂`(ut, ugt)

∂θt
=

∂`

∂θt
=
∂ut
∂θt

MTM(ut − ugt) =
∂ut
∂θt

M(ut − ugt)︸ ︷︷ ︸
=:et

=
∂ut
∂θt

et.

MTM = M , since M is a diagonal matrix holding just zeros and ones. In this notation we

introduced a new variable et, which defines the error at each pixel given the current output

ut. The derivative of the stage output with respect to its parameters can be computed by

splitting up the parameter vector θt into its individual components.

Weighting parameter λt: This derivative can be easily computed using the matrix

calculus and is defined as

∂ut
∂λt

= −(Aup(t−1) − f)TATTT, (2.20)

where TT is the adjoint operator of the truncation which is basically a padding with zeros.

Thus ∂`/∂λt is given by

∂`

∂λt
= −(Aup(t−1) − f)TATTTet.
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Regularizer filters kti: The computation of this derivative requires exact knowledge

about the problem. If we start with the convolutional formulation of the stage update

rule (2.15) and omit all parts which do not depend on kti, we get

∂ut
∂kti

= − 1

Nk

∂

∂kti

g(kti) ∗ φti(ηu(t−1) ∗ kti)︸ ︷︷ ︸
h(kti)

TT, (2.21)

where g(kti) is a function miming the behavior of the transpose operation on a convolution

matrix KT
ti . This function can be further expressed as

g(kti) = R180kti, (2.22)

whereby the matrix R180 computes the adjunct of the kernel kti by simply rotating it by

180 degree. Note, that this operation is not valid for all boundary-handling methods of

the convolution operation. Based on this formulation we can refine the above derivative

by using the chain rule

∂ut
∂kti

= − 1

Nk

(
∂g

∂kti

∂ut
∂g

+
∂h

∂kti

∂ut
∂h

)
TT

The outer convolution g ∗ h in Equation (2.21) can be expressed by its associated matrix-

vector representation Gh⇔ Hg. Consequently, the individual derivatives are

∂ut
∂g

= HT

∂g

∂kti
= RT

180

∂ut
∂h

= GT = (KT
ti)

T = Kti

∂h

∂kti
= ηUT

p(t−1)diag
(
φ′ti(ηUp(t−1)kti)

)
= ηUT

p(t−1)Λti,

where Up(t−1) is a convolution matrix for that kti ∗ up(t−1) ⇔ Up(t−1)kti ⇔ Ktiup(t−1) is

equivalent and φ′ti(ηUp(t−1)kti) denotes the derivative of the function φti(x) evaluated at

every pixel of the image ηup(t−1) ∗ kti. Based on this results we can state the desired

gradient

∂ut
∂kti

= − 1

Nk

(
RT

180H
T + ηUT

p(t−1)ΛtiKti

)
TT. (2.23)

As pointed out by Chen [12] the convolution KT
tiφti(Ktiup(t−1)) suffers from a scaling prob-

lem. To overcome it, we fix the kernel norm and let the influence functions be arbitrary.

An easy method to fix their norm to one, is to construct them from normed basis functions.

Reference:

Chen, Yunjin (2015)
Learning fast and effective image restoration models
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A suitable choice is the discrete cosine transform basis, as it forms a basis for the whole

space the filters live in. The constant basis function of it can be omitted to enforce the

derivative nature of the filters. For filters of size Ks×Ks the corresponding discrete cosine

basis B is of size K2
s × (K2

s − 1), where the constant basis function is already neglected.

Thus, the filter kernels can be constructed by

kti = B
cti
||cti||2

,

which ensures that the norm of the kernels is always one. However, one has to compute

the gradient of ` with respect to cti, since it is the actual training parameters.

∂`

∂cti
=
∂kti
∂cti

∂`

∂kti
∂kti
∂cti

=
1

||cti||2

(
I − ctic

T
ti

cTticti

)
BT

Combining the above derivatives yields

∂`

∂cti
= − 1

Nk ||cti||2

(
I − ctic

T
ti

cTticti

)
BT
(
RT

180H
T + ηUT

p(t−1)ΛtiKti

)
TTet.

Influence functions φti: If we derive the stage update Equation (2.15) with respect to

the influence functions, we get

∂ut
∂φti

= − 1

Nk

∂

∂φti

(
KT
tiφti(Ktiup(t−1))

)
TT.

In oder to make the influence functions trainable, some kind of parametrization is neces-

sary. In our work we use Gaussian radial basis functions because they have been success-

fully used in many regression tasks. Hence, a single influence function can be expressed

as

φti(x) =

Nw∑
j=1

wjtiϕ

(
x− µj
γ

)
,

whereby µj is the mean of the j-th basis function and γ its standard deviation and the

individual basis functions are Gaussian ϕ(x) = exp(−x2/2). This parametrization can also

be expressed in terms of a matrix vector product, where the matrix Φ(x) is constructed by

all basis functions and the weights wjti form a vector. If φti is applied to a vector x ∈ RO,
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we get 
ϕ
(
x1−µ1
γ

)
· · · ϕ

(
xO−µ1
γ

)
...

. . .
...

ϕ
(
x1−µNw

γ

)
· · · ϕ

(
xO−µNw

γ

)


︸ ︷︷ ︸
=:Φ(x)


w1
ti

w2
ti
...

wNwti

 =


φti(x1)

φti(x2)
...

φti(xO)

 .

As a result, we have to compute the derivative with respect to the actual parameter of

the influence functions, which is wti.

∂ut
∂wti

= − 1

Nk

∂

∂wti

(
KT
tiΦti(Kitup(t−1))wti

)
TT

= − 1

Nk
ΦT(Kitup(t−1))KtiT

T

Finally, we can state the derivative of the loss function ` with respect to the influence

function weights wti

∂`

∂wti
= − 1

Nk
ΦT(Kitup(t−1))KtiT

Tet. (2.24)

Finally, we computed all derivatives to express ∂`/∂θt and consequently the pre-training

can be performed. However, the parameter set of a single stage changed to

θt = {λt, (wti, cti) i = 1 . . . Nk},

due to the re-parametrization of the influence functions and their kernels.

Joint training: Analogue to the greedy pre-training phase we need to compute the

gradient of the objective function with respect to the parameters. In this case, these

are the parameters of the current network block Θ, though. Furthermore, just the block

output uT is processed by L, see (2.16). Hence, the derivative of L for the joint traning

of a single block is given by

∂L

∂Θ
=

S∑
s=1

∂`(usT , ugt)

∂Θ
.

For the same reasons as above, considering a single training example for the computation

of this derivative is sufficient. Thus, we just compute the gradient ∂`(uT , ugt)/∂Θ, which
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IAM-DCT

S1 St St+1 St+2 ST eT
et e(t+1)

∂u(t+1)

∂ut

Figure 2.5: Illustration of the error back propagation within a IAM-DC net. The error at the
final stage eT is back propagated through the network by following the reverse path within the
stage updates. This scheme enables an efficient training.

is given by

∂`(uT , ugt)

∂Θ
=

∂`

∂Θ
=
∂uT
∂Θ

M(uT − ugt)︸ ︷︷ ︸
=:eT

=
∂uT
∂Θ

eT .

Computing ∂uT /∂Θ directly is rather difficult, however, the network structure can be

exploited. Therefore, we group the parameters Θ according to their stages St and compute

∂uT /∂θt for each stage of the current network block. In the context of Neural Network

(NN) this divide and conquer approach is well known as the back-propagation algorithm.

So, we need to compute ∂`/∂θt, which can be done by the successive use of the chain rule

∂`

∂θt
=
∂u(T−1)

∂θt

∂uT
∂u(T−1)

eT︸ ︷︷ ︸
e(T−1)

=
∂u(T−1)

∂θt
e(T−1)

=
∂u(T−2)

∂θt

∂u(T−1)

∂u(T−2)
e(T−1)︸ ︷︷ ︸

e(T−2)

=
∂u(T−2)

∂θt
e(T−2)

...
...

=
∂ut
∂θt

∂u(t+1)

∂ut
e(t+1)︸ ︷︷ ︸

et

=
∂ut
∂θt

et.

This scheme can be stopped as soon as stage t is reached, because the latent images

ui, i < t are not influenced by the parameters of stage t. Moreover, we can extract a

recursive definition for the error et, which is generated by the output of stage t, and is

defined as

et =
∂u(t+1)

∂ut
e(t+1).

The recursive manner of this back propagation scheme is depicted in Figure 2.5. Because

we already computed ∂ut/∂θt for the pre-training, we just need to compute the gradient

of the output of a stage with respect to its input. Due to the padding, this gradient can
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be constructed by two parts.

∂u(t+1)

∂ut
=
∂utp
∂ut

∂u(t+1)

∂utp

Based on the stage update rule, the first gradient can be easily obtained by using the chain

rule of the matrix calculus and is given by

∂u(t+1)

∂utp
=

{
I −

(
1

Nk

Nk∑
i=1

ηKT
(t+1)iΛ(t+1)iK(t+1)i + λ(t+1)A

TA

)}
TT,

where Λ(t+1)i again is a diagonal matrix holding the first oder derivatives of the influence

function φ′(t+1)i evaluated at the image ηK(t+1)iupt. The second gradient is defined as

∂utp
∂ut

= PT,

which is basically the adjoint operator of the padding operation. By putting both parts

together we get

∂u(t+1)

∂ut
= PT

{
I −

(
1

Nk

Nk∑
i=1

ηKT
(t+1)iΛ(t+1)iK(t+1)i + λ(t+1)A

TA

)}
TT.

This recursive back-propagation of the error, enables an efficient training scheme, where

first the error information is spread through the network and then the individual gradient

∂`/∂θt are evaluated. The final gradient ∂`/∂Θ is then given by stacking the ones of the

stages.

2.2.1.3 Evaluation

In order to evaluate the proposed network for different hyper-parameters such as net

depth, kernel size and so forth, we trained each variant on the same training dataset. It

consists of 200 samples of the form (us0, f
s, usgt, a

s), where us0 is the initial image estimate,

fs the blurry observation, usgt the true sharp image and as the true blur kernel. 100 of

these samples use the blurry observation as initial image estimate us0 = fs, whereas, the

remaining 100 samples are initialized with the true image us0 = usgt. This split helps the

regularization to better distinguish between sharp and blurry images. All the training

images are cropped patches extracted from images in the BSD500 dataset [30] and the

blur kernels are randomly sampled from the dataset proposed by Schelten et al. [39].

Throughout the different tested IAM-DC networks, we use Nw = 63 Gaussian radial

basis functions to parametrize the influence functions φti and an argument scaling param-

eter η = 1/1.25. The Gaussian basis functions are uniformly distributed in the interval

[−1, 1] and have a standard deviation γ = 2/Nw. The influence functions were initialized

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Schelten, K and Nowozin, S and Jancsary, J and Rother, C and Roth, S (2015)
Interleaved Regression Tree Field Cascades for Blind Image Deconvolution
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TV IAM-DC3×3
10 IAM-DC3×3

15 IAM-DC3×3
20

Dataset PSNR σ PSNR σ PSNR σ PSNR σ

Levin 29.361 3.584 30.820 2.065 31.334 2.113 31.548 2.123
BSD500 27.285 3.489 28.267 3.037 28.666 3.018 28.892 2.999

Table 2.1: Comparison of the experimental results for the proposed IAM-DC 3×3 nets. Depicted
are the average PSNR(dB) and the corresponding standard deviation σ for the data set of Levin
et al. [28] and 32 image samples from the BSD500 dataset [30] convolved with the kernels of Levin.
The TV results are computed by using the primal-dual algorithm of Chambolle and Pock [8], which
is outlined in Algorithm 2. While all the network filters kti are of size 3× 3, the depth of the nets
varies. For instance the IAM-DC3×3

10 consists of 10 stages.

IAM-DC5×5
10 IAM-DC5×5

15 IAM-DC5×5
20

Dataset PSNR σ PSNR σ PSNR σ

Levin 31.495 2.064 32.073 2.233 32.132 2.236
BSD500 28.721 3.021 29.074 3.048 29.138 3.053

Table 2.2: Comparison of the experimental results for the proposed IAM-DC 5×5 nets. Depicted
are the average PSNR(dB) and the corresponding standard deviation σ for the data set of Levin
et al. [28] and 32 image samples from the BSD500 dataset [30] convolved with the kernels of Levin.
All the network filters kti are of size 5× 5, however the depth of the nets varies.

to follow the gradient of the heavy tailed distribution log(1 +αx2) and the filters kti were

set up by the i-th basis of the discrete cosine transform. The padding operation P is per-

formed by replicating the image borders with bH/2c in y- and bW/2c in x-direction pixels

if the blur kernel as is of size H ×W . Consequently, the truncation operator T removes

these padded regions by cropping the image accordingly. Furthermore, we ensured that

the intermediate images have values in the interval [0, 1] by truncating those outside.

Based on this configuration the networks were trained as described in Section 2.2.1.1.

The pre-training of the stage parameters θt involved 100 iterations of L-BFGS and the

blocks, consisting of 5 stages, were trained jointly by executing another 100 L-BFGS

iterates. This procedure was repeated until the final net depth was reached.

The so trained network was evaluated on the dataset of Levin et al. [28], which consists

of 4 images, depicted in Figure 2.6, and 8 blur kernels, hence 32 combinations are possible.

Moreover, we used 32 randomly extracted images from the validation set of the BSD500

dataset and computed blurry observations using the blur kernels of Levin and colleagues.

This test set is called BSD500. Note that the images and kernels in both test sets are

different than those in the training data. Each test data was constructed using the ground

truth images within this dataset and the true blur kernels. All convolved images were

corrupted by 1% additive Gaussian white noise to form the noisy and blurry observation

fs. The same corruption was also performed with the training data. The input to the

network was given by the blurry observation us0 = fs. Table 2.1 and 2.2 depict the average

PSNR values and the standard deviation across both datasets.

The first column of Table 2.1 states the results of the primal-dual algorithm [8] applied

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A first-order primal-dual algorithm for convex problems with applications to imaging

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A first-order primal-dual algorithm for convex problems with applications to imaging
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(a) (b)

(c) (d)

Figure 2.6: Ground truth sharp images of the dataset of Levin et al. [28]. (a) - (d) are images 1
to 4.

to non-blind image deconvolution with TV regularization. Despite the problem of the data

dependent choice of λ, see Section 2.1.4, we used λ = 500 as it is a good compromise and

perform 1000 iterations. This simple model already generates good results if we look at

Figures 2.7b to 2.9b. However, the results suffer from the TV favor of piece-wise constant

regions, see for instance the chin of the child in Figure 2.8b, the grass in Figure 2.7b or

the shirt of the children in Figure 2.9b. The last image is also corrupted by artifacts due

to inconsistencies at the border, which cannot be avoided despite the large amount of

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms
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(a) (b)

(c) (d)

Figure 2.7: Deconvolution results of a sample image in the BSD500 test set. (a) blurry observation
with true blur kernel in upper left corner. Deconvolution results (b) primal-dual TV algorithm,
(c) IAM-DC3×3

20 and (d) IAM-DC5×5
20 .

iterations. This example is challenging, though, as kernel 4 is the largest in the dataset

and the majority of its weights is concentrated at the corners.

In contrast, the proposed IAM-DC networks are much better suited for image decon-

volution. Not only are all networks by a margin of almost 1dB better than the TV method

in terms of PSNR, but they can also be computed much more efficiently and faster due

to the small amount of stages. The bottom rows in Figures 2.7 to 2.9 show the outputs

of the IAM-DC3×3
20 and IAM-DC5×5

20 net. Compared to the TV results, these methods

can restore details within the images much better, see for instance the hair of the child

in Figure 2.8 or the wrinkle below the left eye. However, very fine texture is considered

as noise and filtered out. This effect is visible at the sand in the bottom right corner in

Figure 2.9. In the same image the pattern of the children’s shirt is better restored, despite

the large blur, because the leopard pattern has a large enough support and contrast to be

not considered as noise. Furthermore, the structure of the grass in Figure 2.7 or the barrel

are better reconstructed. However, if we have a look at the top right corner in this images,

we see both network outputs suffer from ringing artifacts at strong edges. Nevertheless,

the outputs of the IAM-DC5×5
20 posses better PSNR results, which can be explained by the
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(a) (b)

(c) (d)

Figure 2.8: Deconvolution results for image 4 and kernel 7 of Levin’s dataset. (a) blurry ob-
servation with true blur kernel in upper left corner. Deconvolution results (b) primal-dual TV
algorithm, (c) IAM-DC3×3

20 and (d) IAM-DC5×5
20 .

better suppression of noise and ringing artifacts. If we take a closer look at the children’s

chin and compare Figure 2.8c and 2.8d, we can observe that the result of the IAM-DC5×5
20

net is much smoother. That is because the increased filter size and the larger amount of

filter and influence function pairs allow the network to better describe image statistics and

consequently improve its performance to suppress artifacts and noise.

Another key advantage of the proposed network is that the individual parameters can
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(a) (b)

(c) (d)

Figure 2.9: Deconvolution results for image 1 and kernel 4 of Levin’s dataset. (a) blurry ob-
servation with true blur kernel in upper left corner. Deconvolution results (b) primal-dual TV
algorithm, (c) IAM-DC3×3

20 and (d) IAM-DC5×5
20 .

be simply interpreted despite the learning approach due to its close relation to energy

minimization. Figure 2.10 illustrates the learned filters kti and their associated penalty

functions ρti =
∫
φti(x)dx for selected stages of the IAM-DC5×5

20 net. The integration

of the influence functions was approximated by its discrete counter part and performed

by the Matlab command cumsum(φti(x)). The penalty functions of the first stage are

dominated by various forms of the Mexican hat function. Due to the close relation to
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energy minimization we can interpret this circumstance such that the network assigns

high costs to small and high filter responses, while, medium valued generate low costs and

thus they are enhanced. Furthermore, this Mexican hat functions are mainly associated

with complex kernels, hence they remove noise. However, the largest impact comes from

the truncated ‘convex’ functions in the first and second row because of their scale. For

example the first kernel-function pair in the first row penalizes large diagonal edges and

the last one in that row its orthogonal pendant. Therefore, they model the sparse gradient

constraint of natural images.

The behavior of the second stage is fundamentally different. As depicted in the center

of Figure 2.10, much more ‘concave’ shaped functions are present and moreover their scale

undermines their importance. The first and last kernel-function pair in the first row are

related to vertical and horizontal edges due to the kernel shape. The concavity of the

related influence functions enforces the regularizer to suppress small edges and enforce

large ones. Thus, this pairs are responsible for reducing ringing artifacts. Also the first

and last kernel-function pair in the second row support this effect. Additionally, the second

pair in the third row and the last one in the fifth row repress small dark and bright spots.

Within the whole network the effect of those two stages is successively repeated, as can

be seen in Figure 2.11. While the odd stages remove noise and fine texture, the even

stages try to restore the fine details within an image and push down ringing artifacts.

Without the joint training of the network blocks this behavior would not be possible

because in the greedy pre-training phase the input image cannot be altered, which limits

the expressiveness.

If we take a large leap towards the end of the network, we see that the stage behavior

changed once more. The kernel and penalty function pairs of stage 20 are illustrated at

the bottom of Figure 2.10. This stage is dominated by truncated ‘convex’ functions, which

assign low costs for small and medium filter responses. Therefore, small structures like

fine lines and textures are reconstructed towards the end of the network. However, some

functions are hard to interpret due to their irregular shape. The second last influence

function in the fifth row is almost identical to the absolute function but its associated

filter is not a first oder derivative, thus it does not correspond to the TV .

Over all, the proposed network performs very well if we compare the depicted images

and the performance measures despite its simple structure. Moreover, its relation to energy

minimization eases the interpretation which helps to understand the performed operations.

Furthermore, its simple operations and structure allow an efficient implementation.
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Figure 2.10: Filters kti and associated penalty functions ρti of some stages of the IAM-DC5×5
20

net. Top row illustrates the parameters of the first stage, in the central row are those depicted of
the second stage, while, the last row shows the filters and penalty functions of the final stage.
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Figure 2.11: Intermediate results of the first 6 stages of the IAM-DC5×5
20 net for the image

depicted in Figure 2.7. Top left image is the output of the first stage, to the left is the one of the
second stage, while u3 is below and so forth.
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2.2.2 Improved IAM-DC network

The treatment of the data term within the various non-blind deconvolution methods dis-

cussed in Section 2.1.2 is almost identical. Most models use an `2-norm motivated by

the Gaussian noise assumption, however, Levin et al. [25] use an `1-norm to suppress ef-

fects of large outliers. Both assumptions work, so a natural extension of the IAM-DC

network defined in Equation (2.15) is to train this penalty function too. Moreover, we

employ differently filtered versions of the data term to better recover the image at edge

regions, motivated by the results of Shan et al. [42]. Furthermore, the noise of the blurry

observation can be better handled. Consequently, the stage update rule changes to

ut = T

{
up(t−1) −

(
1

Nk

Nk∑
i=1

KT
tiφti(ηKtiup(t−1)) + . . .

1

Nd

Nd∑
i=1

ATK̄T
ti φ̄ti

(
η̄K̄ti

(
Aup(t−1) − f

)))}
, (2.25)

where φ̄ti(x) defines the influence function of the data term, which is associated with a

filter k̄ti being represented by its convolution matrix K̄ti. The scalars η and η̄ are used to

scale the argument of φ(x) and φ̄(x) respectively such that they can be constructed from

a common basis. By comparing both parts of this update rule, we see that they resemble

each other. The sole difference in terms of structure is the argument of the influence

functions. While, the regularization works just on the image u, the data term influence is

based on the image formation process.

Due to the modification of the stage update rule, the parameters of a single stage have

changed to

θt = {(cti, wti) i = 1 . . . Nk, (c̄ti, w̄ti) i = 1 . . . Nd}.

The parametrization of the kernels and influence functions of the data term is done in the

same way as those of the regularizer. Hence, the kernels k̄ti are set up using a discrete

cosine basis

k̄ti = Bd
c̄ti
||c̄ti||2

, (2.26)

whereby the basis Bd holds additionally the constant basis function. It is required to

express the delta kernel, which allows the computation of the unfiltered data term

AT(Aup(t−1) − f). The network structure was not effected by this modification, though.

Hence, this IAM-DC model can be trained in the same manner as the previous one.

Reference:

Levin, Anat and Fergus, Rob and Durand, Frédo and Freeman, William T (2007)
Image and Depth from a Conventional Camera with a Coded Aperture

Reference:

Shan, Qi and Jia, Jiaya and Agarwala, Aseem (2008)
High-quality motion deblurring from a single image
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2.2.2.1 Gradient derivation

Since the stage parameters changed due to the modification of the stage update rule,

we need to adapt the derivative ∂ut/∂θt. The gradients with respect to cti and wti stay

unchanged because the regularization was not changed compared to the previous model,

see Equation (2.15). The parameter λt was neglected, as it can be included in the scale of

the influence functions φ̄ti(x).

Data-term filters k̄ti: The gradient ∂ut/∂k̄ti can be computed in a similar way as the

regularizer filters beforehand because the problem structure is the same. If we derive the

stage update rule (2.25) by k̄ti, we end up with

∂ut
∂k̄ti

= − 1

Nd

∂

∂k̄ti

g(k̄ti) ∗ φ̄ti(η̄k̄ti ∗
(
Aup(t−1) − f

)
)︸ ︷︷ ︸

h(k̄ti)

ATT,

where the function g(x) is defined in Equation (2.22). As before, we can employ the chain

rule to express this derivative

∂ut
∂k̄ti

= − 1

Nd

(
∂g

∂k̄ti

∂ut
∂g

+
∂h

∂k̄ti

∂ut
∂h

)
ATT.

Furthermore, the convolution g ∗ h can be expressed by its associated matrix-vector rep-

resentation Gh⇔ Hg. As a result, the individual derivatives are defined by

∂ut
∂g

= HT

∂g

∂k̄ti
= RT

180

∂ut
∂h

= GT = (K̄T
ti)

T = K̄ti

∂h

∂k̄ti
= η̄

(
Aup(t−1) − f

)T
diag

(
φ̄′ti(η̄k̄ti ∗

(
Aup(t−1) − f

)
)
)

= η̄
(
Aup(t−1) − f

)T
Λ̄ti,

where
(
Aup(t−1) − f

)
is a convolution matrix for that kti ∗

(
Aup(t−1) − f

)
⇔(

Aup(t−1) − f
)
kti is equivalent and φ̄′ti(x) denotes the derivative of the data term

influence function φ̄(x). Consequently, the gradient is given by

∂ut
∂k̄ti

= − 1

Nd

(
RT

180H
T + η̄

(
Aup(t−1) − f

)T
Λ̄tiK̄ti

)
ATT. (2.27)
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Due to the parametrization of the filters k̄ti, see Equation (2.26), this derivative needs to

be further refined.

∂k̄ti
∂c̄ti

=
1

||c̄ti||2

(
I − c̄tic̄

T
ti

c̄Ttic̄ti

)
BT
d

Now we can compute the required derivative for training by putting all the pieces together,

which yields

∂`

∂c̄ti
= − 1

Nd ||c̄ti||2

(
I − c̄tic̄

T
ti

c̄Ttic̄ti

)
BT
d

(
RT

180H
T + η̄

(
Aup(t−1) − f

)T
Λ̄tiK̄ti

)
ATTet.

Data-term influence functions φ̄ti: Also this influence functions are constructed using

Gaussian radial basis functions and a weight vector w̄ti

φ̄ti(x) = Φ(x)w̄ti.

If we insert this circumstance into the stage update rule (2.25) and compute the derivative

with respect to w̄ti, we get

∂ut
∂w̄ti

= − 1

Nd

∂

∂w̄ti

(
ATK̄T

tiΦ
(
η̄K̄ti(Aup(t−1) − f)

)
w̄ti

)
TT

= − 1

Nd
ΦT
(
η̄K̄ti(Aup(t−1) − f)

)
K̄tiAT

T

Finally, we can state the gradient of the objective function in case of greedy pre-training

∂`

∂w̄ti
= − 1

Nd
ΦT
(
η̄K̄ti(Aup(t−1) − f)

)
K̄tiAT

Tet. (2.28)

This concludes the derivation of the gradients necessary for the greedy pre-training phase.

In addition, the modification of the stage update rule also effects the joint training of the

network.

Joint training: The basic principle of the joint training phase stays the same, as the
network structure was not effected by the modifications of the stage update rule. However,
the error propagation within this framework relies on the gradient ∂u(t+1)/∂ut, which is
indeed effected by any change of the update rule. Thus, we need to recompute it. As its
structure is almost identical to the regularization it can be derived using the chain rule
and is given by

∂u(t+1)

∂ut
= PT

{
I −

(
1

Nk

Nk∑
i=1

ηKT
(t+1)iΛ(t+1)iK(t+1)i +

1

Nd

Nd∑
i=1

η̄ATK̄T
(t+1)iΛ̄(t+1)iK̄(t+1)iA

)}
TT,

where Λ(t+1)i and Λ̄(t+1)i are diagonal matrices which hold the derivatives of the influence

functions φ′(t+1)i(ηupt ∗ k(t+1)i) and φ̄′(t+1)i(η̄(upt ∗ a− f) ∗ k̄(t+1)i) respectively.
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I2AM-DC3×3
10 I2AM-DC3×3

15 I2AM-DC3×3
20

Dataset PSNR σ PSNR σ PSNR σ

Levin 31.498 1.765 31.844 1.738 31.921 1.754
BSD500 28.790 2.939 28.960 2.950 29.004 2.953

Table 2.3: Comparison of the experimental results for the proposed Improved Iteratively
Adapted Minimization for non-blind Deconvolution (I2AM-DC)3×3 nets. Depicted are the av-
erage PSNR(dB) and the corresponding standard deviation σ for the data set of Levin et al. [28]
and 32 image samples from the BSD500 dataset [30] convolved with the kernels of Levin. All
the network filters kti and k̄ti are of size 3 × 3, however the depth of the nets varies, e.g. the
IAM-DC3×3

10 consists of 10 stages.

I2AM-DC5×5
10 I2AM-DC5×5

15 I2AM-DC5×5
20

Dataset PSNR σ PSNR σ PSNR σ

Levin 31.917 1.767 32.402 1.715 32.594 1.680
BSD500 28.918 2.936 29.137 2.984 29.229 2.996

Table 2.4: Comparison of the experimental results for the proposed I2AM-DC 5×5 nets. Depicted
are the average PSNR(dB) and the corresponding standard deviation σ for the data set of Levin
et al. [28] and 32 image samples from the BSD500 dataset [30] convolved with the kernels of Levin.
All the network filters kti and k̄ti are of size 5× 5, however the depth of the nets varies.

Eventually, the network defined by the stage update rule (2.25) can be trained using the

scheme developed in Section 2.2.1.1 and the updated gradients ∂ut/∂θt and ∂u(t+1)/∂ut.

2.2.2.2 Evaluation

The improved network models were trained with the same training set as the IAM-DC nets,

consisting of 200 training samples of the form (us0, f
s, usgt, a

s), in order to ease comparison.

Moreover, the same training strategy was employed. First, each stage is greedily pre-

trained by 100 L-BFGS iterations until all stages within a block are done (5 stages are one

block). Then the entire block is trained jointly, afterwards all its parameters are fixed.

The next block is trained in the same fashion using the output of the first one as constant

input. This approach is repeated until the final network depth T is reached. Furthermore,

the network parameters such as Gaussian radial basis functions, η and the initialization of

the regularization parameters were unchanged. The kernels of the data term k̄ti were also

initialized using the i-th basis component of the according discrete cosine transform basis.

However, the delta kernel was used instead of the constant basis to express the classic data

term loss. In contrast to the regularization, the influence functions of the data term were

initialized as φ̄ti(x) = x, which is the derivative of 1/2x2. The corresponding argument

parameter η̄ was set to 1.

The various I2AM-DC networks were then evaluated using the 32 images of the Levin

et al. [28] dataset and the same BSD500 test set as before. Their resulting average PSNR

and the according standard deviation for both test sets are illustrated in Table 2.3 and 2.4.

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms
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(a) (b)

(c) (d)

Figure 2.12: Deconvolution results of a random image sample from the BSD500 test set. (a)
blurry observation with true blur kernel in upper left corner. Deconvolution results (b) IAM-
DC5×5

20 , (c) I2AM-DC3×3
20 and (d) I2AM-DC5×5

20 .

If we compare the results of the I2AM-DC3×3
10 to those of IAM-DC3×3

10 for the test set of

Levin, we see that the average PSNR is 0.67dB larger. However, the mean PSNR of

the I2AM-DC3×3
15 is just 0.51dB better than those of the IAM-DC3×3

15 and furthermore the

difference after 20 stages is just 0.38dB. So, the deeper the network is, the less important is

the training of the data term parameters. Interestingly though, we can observe the opposite

effect when considering the I2AM-DC5×5 nets. For 10 stages the margin is 0.42dB, after

15 stages it is a bit more than 0.33dB and for the 20 stage networks the PSNR of the

improved net is 0.46dB larger. Hence, the training of the data term penalty functions

does improve the results quite strongly. If we look at the resulting images in Figures 2.12

to 2.14, the visual difference is rather small due to the high PSNR values. The superior

results of the improved networks manifest in a better recovering of details within images

and suppression of ringing artifacts.

Again, the 5 × 5 kernels improve the denoising performance of the network, which

can be seen when comparing the resulting images in Figures 2.12 to 2.14. Moreover, a

difference of 0.67dB of the 20 stages improved nets validates this observation.

Also the parameters of the improved nets can be analyzed in the same fashion as in
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(a) (b)

(c) (d)

Figure 2.13: Deconvolution results for image 4 and kernel 7 of Levin’s dataset. (a) blurry
observation with true blur kernel in upper left corner. Deconvolution results (b) IAM-DC5×5

20 , (c)
I2AM-DC3×3

20 and (d) I2AM-DC5×5
20 .

the evaluation of the IAM-DC networks. Figure 2.15 illustrates the filters kti and penalty

functions ρti of the regularization for selected stages of the I2AM-DC5×5
20 net. At the top

the parameters of the first stage are depicted. Although the filters resemble those of the

IAM-DC5×5
20 , the penalty functions are quite different. The first stage functions ρ1i of the

IAM-DC5×5
20 net were dominated by Mexican hat variants, whereas, in the I2AM-DC5×5

20

network this influence is rather limited. Most penalty functions are shaped like a tailed
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(a) (b)

(c) (d)

Figure 2.14: Deconvolution results for image 1 and kernel 4 of Levin’s dataset. (a) blurry
observation with true blur kernel in upper left corner. Deconvolution results (b) IAM-DC5×5

20 , (c)
I2AM-DC3×3

20 and (d) I2AM-DC5×5
20 .

distribution with a little nibble in the center. The first and last kernel-function pair in the

first row represent the sparse gradient constraint of natural images. Overall, this stage

seems to have a smoothing character.

The second stage, however, seems to remove artifacts such as ringing because the first

and last gradient related functions in the first row have ‘concave’ shapes. Therefore, they

assign high cost to small edges while favoring large ones. In contrast, the first filter in the



50 Chapter 2. Learning variational models for image deconvolution

fourth and the second in the last row together with their penalty functions express once

more the sparse gradient constraint of natural images. It seems as if those two effects

cancel each other out but the scale of the concave functions is much larger. Thus, the

second stage mainly reduces artifacts. This behavior is also shown in Figure 2.17, which

depicts the intermediate images of the first six stages of the I2AM-DC5×5
20 net. While the

result of the first stage suffers from severe ringing artifacts, the second stage reduced their

intensity to a large extent. However, along with the increasing amount of details, more

finer ringing artifacts appear.

If we compare the filters and functions of the final stage of the I2AM-DC5×5
20 net to

those of the IAM-DC5×5
20 , we see that they are rather similar. Strong edges are enhanced

and small details are reconstructed. The irregularly shaped functions have little influence

due to their scale.

The data term filters k̄ti and their associated penalty functions ρ̄ti are depicted in

Figure 2.16 for the first, second and last stage of the I2AM-DC5×5
20 net, to highlight their

influence. The penalty functions were initialized by the quadratic function 1/2x2. How-

ever, in the first stage most of the functions are either shaped like the absolute function or

heavy tailed. So, the training did change them quite a lot. This circumstances undermine

the application of the `1-norm for the data term. Furthermore, the filters have a more

derivative based characteristic than those of the discrete cosine basis.

However, with increasing net depth the domination of the absolute and heavy tailed

functions deceases. As the intermediate images of the stages get closer and closer to the

true sharp image, see Figure 2.17, just the noise remains in the data term ut ∗ a− f ≈ n.

Due to the Gaussian nature of the noise, the optimal penalty function is the quadratic one.

Consequently, most of the penalty functions of the deeper stages preserve their quadratic

shape.
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Figure 2.15: Filters kti and associated penalty functions ρti of some stages of the I2AM-DC5×5
20

net. Top row illustrates the parameters of the first stage, in the central row are those depicted of
the second stage, while, the last row shows the filters and penalty functions of the final stage.
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Figure 2.16: Filters k̄ti and associated penalty functions ρ̄ti of some stages of the I2AM-DC5×5
20

net. Top row illustrates the parameters of the first stage, in the central row are those depicted of
the second stage, while, the last row shows the filters and penalty functions of the final stage.
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Figure 2.17: Intermediate results of the first 6 stages of the I2AM-DC5×5
20 net for the image

depicted in Figure 2.12. Top left image is the output of the first stage, to the left is the one of the
second stage, while u3 is below and so forth.
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2.3 Conclusion

We proposed a novel iteratively adapted minimization approach for non-blind image de-

convolution motivated by the denoising method of Chen et al. [13]. The models are trained

by a greedy pre-training followed by a joint refinement of the parameters, which enables

the full expressive power of the network blocks. Moreover, we demonstrated the flexibility

of the method and evaluated the resulting models using different images and kernels. The

obtained PSNR scores are up tp 3.23dB better than those of the simple TV regularized

model on the test set of Levin and almost 2dB larger on the BSD500 test set. The result-

ing deconvolved images posses sharp edges and less noise, undermining the power of the

proposed networks. The evaluation of the introduced networks pointed out that ringing

artifacts can be better suppressed by using larger filters for the regularizer kti and the

data term k̄ti. Furthermore, the improved data term also helps to avoid those artifacts.

Due to their close relation to the field of energy minimization, a profound analysis

of the individual parameters is possible, as demonstrated in the sections above. Also all

the intermediate images can be interpreted, since they all live in the same space as the

input and output images. Moreover, the networks develop compelling regularizer, which

can be employed in other problems. Additionally, the gained knowledge helps to better

understand good deconvolution strategies and improves the insight into the problem.

The demonstrated experiments are just a small subset of the already performed ones

and many still have to be done. For instance, training a network that shares the parameters

across all stages and so forth. Moreover, the influence of even larger filters than 5× 5 has

to be investigated.

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration
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Blind image deconvolution is currently a hot topic in computer vision and image pro-

cessing communities due to its fundamental application in image deblurring. The overall

goal is to find an efficient and accurate algorithm that overcomes the strong ill-posedness

and the non-uniquness of the solution (u, a), as we have demonstrated in Chapter 1.

In the following sections we highlight the problem of blind image deconvolution in

the field of energy minimization in more detail, discuss recently proposed algorithms that

overcome those and derive our method.

3.1 Blind image deconvolution in energy minimization

In general, the blind image deconvolution problem is characterized as:

Given a blurry and noisy observation f of a scene, estimate the sharp image u and

the associated unknown blur kernel a.

A variational formulation of this problem was derived in Chapter 1, see Equation (1.28). If

we consider the argument of this minimization problem as an energy, we can interpret the

Maximum A Posteriori (MAP) motivated derivation of the blind deconvolution problem

as energy minimization.

55
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ut

at

∗ +

n f

∗

uδ

aδ

Figure 3.1: Demonstration of the underlying problem of the blind deconvolution energy mini-
mization. Both image-kernel pairs (ut, at) and (uδ, aδ) generate the same blurry observation f .

3.1.1 Energy formulation

By replacing the prior of (1.28) with a general regularizer on the image R(u), we get

(u∗, a∗) = arg min
u,a

E(u, a) = R(u) +
λ

2
||a ∗ u− f ||22 + δ∆(a), (3.1)

where λ is a weighting parameter balancing between data-fitting and regularization and

δ∆(a) is the indicator function of the unit simplex (1.21). This is the basic formulation of

the blind image deconvolution problem which we will further build on.

3.1.2 Energy minimization issue

An intuitive interpretation of Equation (3.1) is that one searches for the image-kernel pair

(u, a) which has minimal energy E(u, a). Of course, the obvious choice for the minimizing

pair is (ut, at), which is the true image and the true blur kernel. However, it turns out the

actual minimizer of Equation (3.1) strongly depends on the applied regularizer, implying

that (ut, at) is not always the correct solution of problem (3.1).

To demonstrate this behavior let us consider two hypotheses for the minimizer of (3.1),

which are the true solution (ut, at) and the delta pair (uδ, aδ), both are depicted in Fig-

ure 3.1. The true solution (ut, at) consists of the true unblurry noise-free image and the

actual blur kernel that was used to generate the noise-free blurry image, while, the delta

solution (uδ, aδ) contains the blurry and noisy observation and the delta kernel. If one

convolves an image u with the delta kernel aδ, the resulting image is exactly the same as

the input to the convolution operation, thus it satisfies

u ∗ aδ = u.

As we demonstrated in Chapter 1, both pairs generate the same result f , assuming that

the noise n added to the true solution is the same as the one used during the image
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formation process. If we plug the first pair into the energy E(u, a), we get

E(ut, at) = R(ut) +
λ

2

∣∣∣∣ut ∗ at − f ∣∣∣∣2
2

+ δ∆(at).

If we replace f with the mathematical formulation of the image formation process (1.4),

we end up with

E(ut, at) = R(ut) +
λ

2

∣∣∣∣ut ∗ at − (ut ∗ at + n)
∣∣∣∣2

2
+ δ∆(at)︸ ︷︷ ︸

0

= R(ut) +
λ

2
||n||22 .

Thus, the energy is solely determined by the `2-norm of the noise and the regularization.

The same derivations performed for the delta pair (uδ, aδ) yields

E(uδ, aδ) = R(uδ) +
λ

2

∣∣∣∣∣∣uδ ∗ aδ − f ∣∣∣∣∣∣2
2

+ δ∆(aδ)︸ ︷︷ ︸
0

= R(uδ).

Note that both kernels at and aδ live on the unit simplex, hence the indicator function is

zero. As we can see, both energy levels are mainly defined by the regularization. Since we

are interested in computing the true solution (ut, at) based on the observed image f , we

have to ensure that

E(ut, at) < E(uδ, aδ)

R(ut) +
λ

2
||n||22 < R(uδ),

otherwise we can never expect to end up with the true solution when minimizing the

energy E(u, a). It we further assume that the noise is small compared to the regularization

energies, we end up with

R(ut)

R(uδ)
< 1. (3.2)

Consequently, a suitable regularization has a lower energy for the true image ut than for

the blurry observation uδ.

Despite the simplicity of inequality (3.2), not a single regularizer, which was introduced

in Chapter 2, fulfills it. To demonstrate this circumstance, 100 pictures ut were randomly

selected from the BSD500 dataset [30]. These images were then convolved with a kernel of

the Schelten et al. [39] database in order to compute uδ, the blurry observation. For each

sharp image ut and its blurry pendant uδ the regularization energy for a variety of typical

image priors was computed, see Table 3.1. Additionally, the ratio of both regularizer

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Schelten, K and Nowozin, S and Jancsary, J and Rother, C and Roth, S (2015)
Interleaved Regression Tree Field Cascades for Blind Image Deconvolution
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||∇u||22 ||∇u||2,1 RL(∇u) Rlog(u) RIAM-DC205×5(u)

R(ut) 1.37 7.14 16.94 1635 −14948
R(uδ) 0.068 1.87 6.08 1457 −15186
R(ut)
R(uδ)

18.36 3.69 2.71 1.12 1.02

Table 3.1: Mean regularization energies divided by 103 for 100 randomly sampled images of the
BSD500 dataset [30]. The regularizer are from left to right: Tikhonov, Total Variation (TV), spare
gradient regularization of Levin et al. [25], Rlog = log(1 + α(|∇xu|2 + |∇yu|2)) with α = 109 and
the regularizer related to the first stage of the IAM-DC5×5

20 network. Note that the associated
energies of the IAM-DC regularization are negative since the penalty functions ρti are defined by
φti(x) =

∫
φti(x)dx. Hence, an arbitrary constant can be added to each penalty function.

energies according to inequality (3.2) was computed. If a prior was suitable for blind-

image deconvolution in energy minimization, the ratio should be less than 1. However,

all these ratios are larger than 1, see the last row in Table 3.1. But why do all these

regularizers fail? Most of them are designed to exploit the fact that natural images have

sparse gradients. This physical property is very important in case of image denoising.

Since true sparsity (`0-norm) is rather hard to optimize, approximations such as `1-norm

or heavy-tailed distributions are used. The drawback of this penalty functions is that they

prefer smaller gradients, see Figure 2.2. In other words, the energy assigned to smaller

gradient values is lower than the one for larger gradients. Moreover, the gradients of the

blurry image uδ are always smaller than those of the associated true sharp one ut due

to the low-pass filtering nature of blurring. As a result, the regularization energy of a

blurry image uδ is smaller than the one of the sharp true image ut for simple gradient

based regularizer, thus they favor the delta solution. However, the logarithmic regularizer

Rlog(u) and the one of the learned deconvolution network are already very close to 1.

For piece-wise constant images the logarithmic regularization works quite well, as can be

seen in Figure 3.2. The logarithmic regularizer is very narrow, hence it is a very close

approximation to the Potts model, which basically counts the intensity changes within

an image. The blurry observation f = u ∗ a, depicted in Figure 3.2b, has more different

grayvalues than the sharp image due to the blurring. Consequently, its regularization

energy is much higher than the one of the sharp image and the blind deconvolution energy

minimization algorithms work. The resulting image, shown in Figure 3.2c, has sharper

edges than the original one because of the heavy tailed prior. Natural images posses a

large variant of grayvalues, though. Therefore this idea cannot be mapped to natural

images if details have to be recovered.

Additionally, the modeling of the first order gradient statistics is not sufficient to

characterize natural images, as the following experiment demonstrates. In Chapter 1 we

computed the statistics of the first order x-directional gradient of two images. The x-

directional gradient of the second image is depicted in Figure 3.3b. The corresponding

negative logarithmic Probability Density Function (PDF) is plotted below in black. Since

we can estimate this probability distribution based on the samples within an image, also

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Levin, Anat and Fergus, Rob and Durand, Frédo and Freeman, William T (2007)
Image and Depth from a Conventional Camera with a Coded Aperture
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(a) (b)

(c) (d)

Figure 3.2: Blind deconvolution demonstration of a piece-wise constant image. (a) true sharp
Shepp-Logan phantom. (b) blurry observation f = u ∗ a. It was generated using the true kernel,
which is depicted on the left in (d). The resulting image of the blind deconvolution is depicted in
(c) and the estimated kernel on the right in (d). The deconvolution operation used a heavy tailed
prior of the form Rlog(u) = log(1 + α((∇xu)2 + (∇yu)2)) with α = 104.

random samples can be drawn from it. The image depicted in Figure 3.3d was exactly

generated by drawing random samples from this distribution. Obviously it does not look

as if it corresponds to a natural image. However, the majority of its values are close to zero

(grayish) and just some larger gradients (white and black dots) are present. Furthermore,

the estimated PDF of this image, red line in Figure 3.3c, is almost identical to the one of

the naturally looking gradient image. Thus, also their regularization energies are almost

the same. As a result, this first order gradient related prior models are not suitable for

distinguishing between artificial and natural images. Consequently, higher order models

are necessary to better describe natural image structures.

Despite this major problem of blind image deconvolution in the field of energy mini-

mization, there exits some methods that deliver good results by exploiting other properties,

as we will see in the next section.
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Figure 3.3: Demonstration of the gradient distribution of a natural image and an artificial sample.
(b) Illustration of the x-directional gradient of image (a). It is computed by convolving the image
with the filter fx =

(
1 −1

)
. (d) Random samples from the distribution of ∇xu. (c) Illustration

of the two PDF s of image (b) and (d). The black one is computed from the natural image, while,
the red one corresponds to the gradient image consisting of random samples.

3.2 Recent blind image deconvolution methods

Blind image deconvolution is a fundamental problem in image restoration, thus it has

been extensively studied in the past. A broad overview of recently proposed methods

can be found in [10, 26, 46]. In this section we provide an outline of blind deconvolution

methods influencing our approach. Therefore, they have been grouped according to their

fundamental kernel/image restoration procedures.

3.2.1 Blur kernel estimation

As pointed out by Levin et al. [28], the naive MAP joint estimation of the blur kernel and

the true image favors the trivial solution, defined as the delta kernel and the blurry image,

if typical sparse image priors are used. That is because these priors prefer solutions with

Reference:

 ()


Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms
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small gradients, hence blurred images, as we have demonstrated in the previous section.

As a consequence, many recent methods [15, 21, 22, 24, 27, 28, 43, 47] circumvent this

problem by first estimating the blur kernel and then performing a non-blind deconvolution

using the estimate. This lead to a paradigm change in blind-deconvolution: From prior

selection to better blur kernel estimation.

3.2.1.1 MAPa estimation

Based on information theory, Levin et al. [28] state that large enough observed images

provide a sufficient amount of cues to accurately estimate the underlying blur kernel using

a MAP scheme because the number of measurements (pixel in the observed blurry image)

is usually much larger than the number of unknowns (blur kernel elements). The MAPa
estimation is then defined as

a∗ = arg max
a

p(a|f), (3.3)

where p(a|f) is the a posteriori probability distribution of the kernel a given the blurry

observation f , which can be computed by marginalizing over the joint distribution

p(a|f) =

∫
p(u, a|f)du.

However, this marginalization is computationally infeasible because it requires all possible

u explanations. Therefore, just a few algorithms [15, 27] tackle this problem, although

Levin et al. [28] showed that p(a|f) is maximized by the true kernel due to the strong

asymmetry between image and blur kernel size if a local prior is used.

A good method to compute an approximate solution of (3.3) was proposed by Levin et

al. [27]. They adopt an Expectation Maximization (EM) approach to optimize the MAPa
estimate. In the expectation step a non-blind deconvolution problem is solved yielding the

mean image given a blur kernel and the associated covariance around it. The maximization

step then uses the mean image and the covariance to estimate the true kernel given the

blurry observation. This iterative scheme is very similar to the MAPu,a estimations, which

first set the kernel constant and estimate the best image and then fix it and determine

the best blur kernel. In contrast, this algorithm embeds the covariance around the image

estimate when computing the best kernel, which makes the kernel estimation robust. At

first glance the computational complexity of computing the marginalization over the joint

distribution p(u, a|f) is avoided, however, it was transfered to computing the covariance

matrix around the image estimates. This can be done efficiently, though, by considering a

suitable estimate of it. Levin and colleagues use a diagonal approximation, which can be

computed fast. Thus, they embed a mixed strategy. While the blur kernel is based on the

MAP estimate, the mean image is defined as the mean squared estimate given the blurry

image and the current blur kernel. Their resulting robust kernel and also the mean image

Reference:

 ()


Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

 ()


Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Efficient marginal likelihood optimization in blind deconvolution
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estimate can then be further used in a non-blind deconvolution step.

3.2.1.2 Edge based kernel estimation

To estimate the blur kernel more robust, many recent blind-deconvolution algorithms

concentrate on image regions where suitable edges are located. A very popular edge based

kernel estimator was proposed by Xu and Jia [47], which consists of two phases. In the

first phase an accurate initial blur kernel is estimated by carefully selecting sharp edges

that guide the kernel estimation, which is followed by a coarse image restoration. These

steps are repeated on each layer of a multi-scale representation of the problem for a certain

amount of iterations. The interesting point in their approach is that they do not use all

edges in the images because they pointed out that those of objects having a smaller scale

than the kernel could flaw kernel estimation. Therefore, they introduced the r-metric

which is defined as

r(x) =

∣∣∣∣∣∣∑y∈NH×W (x)(∇f)(y)
∣∣∣∣∣∣

2∑
y∈NH×W (x) ||(∇f)(y)||2 + 0.5

, (3.4)

where f is the blurry observation, ∇ a linear operator computing the first order derivatives

in x/y-direction and NH×W (x) defines a H ×W window centered at x (it is assumed that

the unknown blur kernel is of size H ×W ). This measure, is small for flat regions and

spikes in the observed image f , thus it can be used to sort out these edges. Furthermore,

small edges are omitted by thresholding the edges of a shock-filtered [32] version of the

blurry observation f , yielding an edge image ∇uS . Using these extracted edges, the blur

kernel can be estimated by minimizing the following energy

a∗ = arg min
a

1

2

∣∣∣∣∇USa−∇f ∣∣∣∣2
2

+
τ

2
||a||22 ,

where ∇USa is the matrix-vector representation of the convolution ∇uS ∗ a and τ is a

weighting parameter used to balance data fidelity and regularization. Since this energy

functional is smooth and convex in a, it can be solved in closed form, yielding a fast

estimation. Its solution is given by

a∗ =
(

(∇US)T∇US + τI
)−1

(∇US)T∇f.

The kernel estimate is then used to compute a coarse estimation of the true image by

minimizing

u∗ = arg min
u

1

2
||A∗u− f ||22 +

λ

2

∣∣∣∣∇u−∇uS∣∣∣∣2
2
,

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring

Reference:

Osher, Stanley and Rudin, Leonid I. (1990)
Feature-Oriented Image Enhancement Using Shock Filters
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where A∗ is the associated matrix when convolving u with a∗. This minimization problem

can be also solved in closed form and its minimizer is given by

u∗ =
(

(A∗)TA∗ + λ∇T∇
)−1 (

(A∗)Tf +∇T∇uS
)
.

Their approach yields a fast initial kernel estimate, however, the accuracy is not good

enough due to the Gaussian regularization on the kernel and image. To overcome this

shortage, in a second phase the kernel is refined using an iterative support detection

method which maintains the deblurring quality while removing kernel noise. As we have

seen, this estimation method uses a lot of handcrafted operations to ensure a good kernel

estimate.

Xu and Jia’s method demonstrated the basic principle of edge based kernel estimation

approaches. First, suitable edges are selected using a mask. Then the blur kernel is

estimated by solving an optimization problem, whose structure varies among the different

estimation methods. Finally, the true image is partly reconstructed by optimizing another

energy functional depending on the blur kernel estimate and the structure of the method.

A fascinating kernel estimation method, which is also kind of edge based, was intro-

duced by Lai et al. [24]. They first compute an edge mask M based on the r-map (3.4) and

the responses of Gaussian derivative filters [43] to exactly locate edges that are present

in the true image and not caused by some artifacts such as ringing. This mask yields

step edges between two color clusters. In a blurred observation these edges are typically

smeared, thus the color distance between two pixels in a patch, centered at an edge pixel,

is reduced. The colors of all pixels within such patches must approximately ly on a line

connecting the two cluster centers because at step edges are per definition just two colors

involved. Within this patch the pixels can be clustered and based on the clustering the

original step edge is restored by maximizing the margin between these two clusters. This

patch-based edge refinement is performed for many edge pixels yielding a latent coarsely

deblurred image, which is used to estimate the unknown blur kernel, see Figure 3.4. The

iterative refinement is repeated from coarse-to-fine in an image pyramid to ease kernel

estimation in the coarse layers and up-sample good initializations for the next finer one.

This method is strongly related to the one proposed by Sun et al. [43]. They also extract

patches at step edges and generate a partially deblurred image by restoring the selected

step edge’s contrast. The so coarsely restored image is then used to restore the blur kernel.

The resulting blur kernel estimate at the finest layer is finally used as input to a non-blind

image deconvolution method.

3.2.2 Joint image/kernel estimation (MAPa,u)

Despite the problem of the joint MAP estimation and its associated energy minimization

formulation, there exist some recent methods [33, 34, 42], which deliver solutions on par

with State-of-the-Art (SotA) methods.

Reference:

Lai, Wei-Sheng and Ding, Jian-Jiun and Lin, Yen-Yu and Chuang, Yung-Yu (2015)
Blur Kernel Estimation Using Normalized Color-line Priors

Reference:

Sun, Libin and Cho, Sunghyun and Wang, Jue and Hays, James (2013)
Edge-based blur kernel estimation using patch priors

Reference:

Sun, Libin and Cho, Sunghyun and Wang, Jue and Hays, James (2013)
Edge-based blur kernel estimation using patch priors

Reference:
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Figure 3.4: Outline of Lai et al. method, Image taken from [24]. For each layer in a coarse-to-fine
pyramid an edge mask M is estimated. Then patches at step edge pixel locations are extracted and
the step edge is reconstructed by maximizing the distance between the two color cluster centers c1
and c2. Based on the so obtained coarsely deblurred image x̂, the kernel is estimated. These two
steps are repeated until a proper blur kernel estimate is found, which can be used to non-blindly
deblur the image by any suitable method.

Shan et al. [42] proposed a successful and interesting method, which was especially

designed to avoid ringing artifacts due to poor kernel estimates. Their approach transfered

to our energy minimization notation is defined by

(u∗, a∗) = arg min
u,a

λ1 ||Φ(∇u)||1 + ||a||1 +

λ2

(
||(∇xu−∇xf)⊗M ||22 + ||(∇yu−∇yf)⊗M ||22

)
+

Nk∑
i=1

wi ||ki ∗ (u ∗ a− f)||22 , (3.5)

where⊗ denotes the point-wise multiplication, λ1, λ2 and wi are weights balancing between

the individual components and M is mask. The purpose of this mask is to select regions,

where the gradients of the estimated image u should match the blurry ones. This local

prior helps to reduce ringing artifacts because M masks out regions containing edges and

texture. Thus, it solely constrains flat regions. The global regularizer is the absolute

sum of a function Φ(x) applied to the image gradients. Φ(x) is a heavy-tailed function,

which was trained to best match the gradient statistics of natural images. It is basically

a combination of a quadratic and an absolute function. As a consequence, also this prior

suffers form the fact that the blurry image has smaller regularization energies.

The more interesting idea in this formulation is the use of different filter ki in the data

term in Equation (3.5). They employ all derivative filters of order zero to two, to better

model the Gaussian noise constraints. In their alternating minimization scheme, also first

the image is estimated based on the energy (3.5) by holding the blur kernel a fixed. Then

a is restored based on the updated image estimate. For a fixed image the energy (3.5)

reduces to

E(a) = ||a||1 +

Nk∑
i=1

wi ||ki(Ua− f)||22 .

Reference:

Lai, Wei-Sheng and Ding, Jian-Jiun and Lin, Yen-Yu and Chuang, Yung-Yu (2015)
Blur Kernel Estimation Using Normalized Color-line Priors

Reference:

Shan, Qi and Jia, Jiaya and Agarwala, Aseem (2008)
High-quality motion deblurring from a single image
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Algorithm 3: Projected Alternating Minimization Algorithm of Perrone and
Favaro [34].

Data: f, blur size, initail large λ, λmin
Result: u,a
u0 ← pad(f);
a0 ← uniform;
while not converged do

ut+1 ← ut − εu
(
AT
t (Atut − f)− λ∇ · ∇ut|∇ut|

)
;

at+1/3 ← kt − εa
(
UT
t+1(Ut+1at − f)

)
;

at+2/3 ← max(at+1/3, 0);

at+1 ← at+2/3

||at+2/3||1
;

λ← max(0.99λ, λmin);
t← t+ 1;

u← ut+1;
a← at+1;

There is a loose relation to the edge-based kernel estimation methods of the previous

section because if minimizing this energy, the kernel is especially influenced by edge regions.

To overcome the problem of blind-deconvolution in energy minimization, Shan et al. re-

duce the influence of the regularizer after each iteration of their optimization algorithm

by decreasing the parameters λ1 and λ2. Ergo they reduce the over-smoothing effect of

the regularizer. Nevertheless, this approach is strictly speaking no energy minimization

method more.

Another method which also exploits this idea was introduced by Perrone and

Favaro [34]. Their variational formulation is very simple and defined as

(u∗, a∗) = arg min
u,a

E(u, a) = λ ||∇u||2,1 + ||a ∗ u− f ||22 + δ∆(a), (3.6)

where they moved the weighting parameter λ to the TV regularizer. To minimize this

energy, they proposed a projected alternating minimization algorithm, see Algorithm 3.

In contrast to the previous methods, no optimization problems are solved during the

individual iterates of their algorithm. They simply alternate between a gradient descent

step with respect to the estimated image and one for the kernel followed by a back-

projection onto the unit simplex. At the end of each iterate the influence of the regularizer

is reduced by decreasing λ, which mimics the behavior of Shan and colleagues. Their

algorithm works because it exploits the favor of piece-wise constant solutions of the TV .

Initially the weight λ is very high, thus the first intermediate images are favored to be

piece-wise constant. As a consequence, their edges are sharper and closer to the true

solution. In this fashion the blur kernel estimate gets closer to the true one, avoiding

the delta solution. If the kernel estimate is good enough, the regularization on the image
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gradients can be decreased to better reconstruct image details.

An advantage of this algorithm is that it has very simple update rules in each itera-

tion, however, quite many iterations are necessary due to the re-weighting of the energy.

Furthermore, no subgradient information is incorporated when computing the derivative

of the TV and the projection on the simplex is not a proper projection. The method

produces results close to SotA, though.

3.2.3 Learning based

Recently, more and more learning based methods are proposed due to their success in

other image processing fields. A very promising and efficient algorithm was proposed by

Schelten et al. [39]. The novel idea is that they learn the parameters of the posterior

probability directly in a discriminate way using Regression Tree Fields (RTFs). It can be

expressed as an Gaussian Conditional Random Fields (CRFs) of the form

p(u|f, a) ∝ N (u|µ(f, a), C(f, a)),

where the parameters of the mean µ(f, a) and the associated covariance matrix C(f, a)

are partly derived from the learned RTFs, while keeping the kernel a fixed. Details about

training and evaluating RTFs can be found in [19, 20]. To estimate a sharp image based

on the Gaussian CRFs, they maximize the posterior likelihood

u∗ = arg max
u

p(u|f, a) = µ(f, a).

The mean can be computed by

C(f, a) =

(
W (f) +

1

σ2
ATA

)−1

µ(f, a) = C(f, a)

(
w(f) +

1

σ2
ATf

)
,

where the matrix W (f) and the vector w(f) are regressed from the input image features by

the RTFs. Due to the complexity of the blind deconvolution problem, a single estimation

of the mean is not sufficient. Thus, they stack some RTFs together to form a cascade,

which leads to subsequently better estimates. As a result, also the intermediate images ui
and kernels ai, which are the output of the i-th cascade, can be used to better estimate the

parameters of the next stage Wi+1(f, ui) and wi+1(f, ui). Algorithm 4 outlines the basic

computations within the method of Schelten and colleagues. By comparing this algorithm

to the one introduced by Levin et al. [27], we see that the estimation of the latent image

ui is quite similar because in both algorithm it is computed incorporating the covariance.

The difference lies in the prior as Schelten et al. use RTFs and Levin et al. count on sparse

image gradient priors. In contrast, the kernel estimation is quite different. Schelten et
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Efficient marginal likelihood optimization in blind deconvolution



3.2. Recent blind image deconvolution methods 67

Algorithm 4: Blind deconvolution using interleaved RTFs cascade of [39].

Data: f, initial blur kernel a0

Result: u,a
for i = 1 . . . N do

ui ←
(
Wi(f, ui−1) + 1

σ2A
T
i−1Ai−1

)−1 (
wi(f, ui−1) + 1

σ2A
T
i−1f

)
;

ai = arg min
a
λ ||a||1 + ||∇f − a ∗ (∇ui)||22;

u← uN ;
a← aN ;

al. estimate the blur kernel in each stage by minimizing

ai = arg min
a
λ ||a||1 + ||∇f − a ∗ (∇ui)||22 .

So, they compute a sparse prior based on the edges of the blurry input f and the current

image estimate ui. In this manner a subsequent kernel refinement is done within the

cascade. To sum up, their method achieves the best blind deconvolution results at the

moment. Its success lies in the iterative refinement of an already good initial blur kernel

estimate and the expressive power of the RTFs which model the posterior probabilities.

Another learning based blind deconvolution method which takes the idea of learning a

bit further was proposed by Schuler et al. [41]. Instead of separating the feature extraction,

kernel estimation and image reconstruction phases of the previous algorithms, they embed

all into a Neural Network (NN) framework. Thus, all parameters of the individual stages

can be trained jointly. Therefore, they introduced a network architecture consisting of

three modules.

The first module is used to extract suitable features for blur kernel estimation. Within

it, a convolutional layer is used to extract features, which are then combined using a linear

network layer to form the features for kernel estimation. In the second module the blur

kernel is estimated by solving

ã = arg min
a

∑
i

∣∣∣∣∣∣a ∗ ũi − f̃i∣∣∣∣∣∣2
2

+ βa ||a||22 ,

where ũi and f̃i are the computed features of the feature extraction module. This problem

is quadratic in the kernel a, thus it can be solved in closed form and efficiently computed

in Fourier space.

ã = F−1

(∑
iF(ũi)�F(f̃i)∑
i |F(ũi)|2 + βa

)
(3.7)

In this formulation the Fourier transform is denoted by F(·) and its inverse by F−1(·),
· denotes the complex conjugate and � the Hadamard product. The hyper-parameter
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βa is trained during network training and is responsible to balance between Tikhonov

regularization and data-fitting. This formulation can be easily transfered into the NN

layer structure, yielding the kernel estimation module. In their work, they call this layer

type ‘quotient’-layer. The final third module can be derived in a similar manner. Based

on the resulting blur kernel estimate and the computed features, the image is restored by

minimizing

ũ = arg min
u
||ã ∗ u− f ||22 + βu ||u||22 ,

which can be solved again by using a quotient layer. To get the final network architec-

ture, a series of those three modules are stacked together, where the output of the image

restoration module is the input to the feature extraction of the next stage. Thus, the

entire network can be interpreted as computing a fixed amount of iterates of a simple

blind deconvolution algorithm. The advantage of this formulation is that it can be easily

trained end-to-end. As all other blind deconvolution methods, the network is applied us-

ing a coarse-to-fine image pyramid. Despite the unsuitable Tikhonov regularization when

computing the kernel and image estimate, their network performs quite well.

3.3 Blind image deconvolution using iteratively adapted en-

ergy minimization

We motivate our algorithm by the outstanding results of the learning based blind decon-

volution methods and those of the joint image/kernel estimation (MAPa,u). Therefore, we

want to minimize the energy in Equation (3.1) in a joint fashion. The success of the prior

proposed by Chen et al. [13], drives its application in our model. By introducing this prior

in (3.1), one gets

(u∗, a∗) = arg min
u,a

E(u, a) =

MN∑
p=1

Nk∑
i=1

ρi ((ki ∗ u)p) +
λ

2
||a ∗ u− f ||22 + δ∆(a), (3.8)

where ρi(x) is an arbitrarily shaped penalty function and ki its associated filter kernel. The

function δ∆(a) is the indicator function of the unit simplex, defined in Equation (1.21).

This energy is in general non-convex due to the freedom of the penalty functions ρi(x).

Furthermore, δ∆(a) is non-smooth, thus computing the true minimizer is rather hard.

However, Bolte et al. [5] recently proposed an algorithm called Proximal Alternating Lin-

earized Minimization (PALM), which is able to solve a certain class of non-convex and

non-smooth problems. They proved that each bounded sequence generated by PALM

globally converges to a critical point. These points are those in the solution space, whose

subdifferential contains 0, thus local/global minimum/maximum and saddle points. It can

be applied to minimize problem (3.8), as we show in the next sections.
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Algorithm 5: Proximal Alternating Linearized Minimization algorithm of [5].

Data: start with any (x0, y0) ∈ Rn × Rm
Result: (x, y)
while not converged do

Take γ1 > 1, set ck = γ1L1(yk) and compute

xk+1 ∈ proxckf

(
xk − 1

ck
∇xH(xk, yk)

)
;

Take γ2 > 1, set dk = γ2L2(xk+1) and compute

yk+1 ∈ proxdkg

(
yk − 1

dk
∇yH(xk+1, yk)

)
;

k ⇐ k + 1;

x← xk;
y ← yk;

3.3.1 Details on PALM

In order to validate the usage of PALM to minimize energy (3.8), we first have to ensure

that the problem fulfills the constraints. As demonstrated in [5], PALM is a powerful

algorithm for solving non-convex and non-smooth problems of the form

min
x,y

Ψ(x, y) := f(x) + g(y) +H(x, y). (3.9)

It is assumed that the functions f : Rn → (−∞,∞] and g : Rm → (−∞,∞] are proper

and lower semicontinuous functions and H : Rn × Rm → R is C1. Algorithm 5 sketches

their proposed scheme to solve problem (3.9), where the proximal operator, defined as

xk+1 = proxtf

(
xk −

1

t
∇h(xk)

)
,

is equivalent to solving the following problem

xk+1 ∈ arg min
x
〈x− xk,∇h(xk)〉+

t

2
||x− xk||2 + f(x). (3.10)

The application of PALM is tied to the justification of the following problem assumptions:

(i) infRn×Rm Ψ > − inf, infRn f > − inf and infRm g > − inf

(ii) For any fixed y the function x → H(x, y) is C1,1
L1(y), namely the partial gradient

∇xH(xk, yk) is globally Lipschitz with moduli L1(y). Likewise, for any fixed x the

function y → H(x, y) is assumed to be C1,1
L2(x) either.

(iii) If H is C2, also the other assumptions in [5] are satisfied.

If they are fulfilled, Algorithm 5 can be employed to solve the desired problem.
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3.3.2 Applying PALM to blind image deconvolution

First, we need to map the energy minimization problem for blind image deconvolution (3.8)

to the general form (3.9). If we set x to be the image u and y to reflect the estimated blur

kernel a, a suitable choice of the functions is

H(a, u) =
1

Nk

MN∑
p=1

Nk∑
i=1

ρi(ki ∗ u) +
λ

2
||u ∗ a− f ||22

f(u) = 0

g(a) = δ∆(a).

With this setup, we have ensured that f(u) and g(a) are proper and lower semicontinuous

functions and moreover, that H(a, u) is C1.

3.3.2.1 Proof of applicability

Due to the chosen mapping, the basic assumption are validated. It remains to show that

this mapping satisfies the necessary assumptions (i) to (iii).

(i) Since H(a, u) ≥ 0 ∀a, u and by the definition of the functions f and g, assumption (i)

is proven.

(ii) To fulfill this constraint, we need to compute the Lipschitz constants of the gradients

∇uH(a, u) and ∇aH(a, u). We start by stating the gradient of H(a, u) with respect

to a

∇aH(a, u) = λUT(Ua− f),

where u ∗ a ⇔ Ua. The Lipschitz constant L2(u) is characterized by satisfying the

following property

||∇aH(a1, u)−∇aH(a2, u)||∗ ≤ L2(u) ||a1 − a2|| , (3.11)

where ||·||∗ is the dual norm of the applied norm in the proximal map ||·||. Hence,

the Lipschitz constant of the kernel update can be computed as∣∣∣∣∣∣λUT(Ua1 − f)− λUT(Ua2 − f)
∣∣∣∣∣∣ ≤ |λ| ∣∣∣∣∣∣λUTU(a1 − a2)

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣UTU
∣∣∣∣∣∣ ||a1 − a2||

L2(u) = λ
∣∣∣∣∣∣UTU

∣∣∣∣∣∣ ,
which concludes the first part of this proof. Note that we do not specify this norm,

since it is related to the norm used in the proximal map (3.10).
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The computation of the Lipschitz constant L1(a) is a bit more elaborate. Again, we

start by computing ∇uH(a, u)

∇uH(a, u) =
1

Nk

Nk∑
i=1

KT
i ρ
′
i(Kiu) + λAT (Au− f),

whereby u ∗ a⇔ Au, ki ∗u⇔ Kiu and ρ′(x) denotes the first order derivative of the

function ρ(x). By substituting φi(x) = ρ′i(x) and applying the Lipschitz definition

for ∇uH one gets∣∣∣∣∣
∣∣∣∣∣ 1

Nk

Nk∑
i=1

KT
i (φi(Kiu1)− φi(Kiu2)) + λATA(u1 − u2)

∣∣∣∣∣
∣∣∣∣∣
2

≤ L1(a) ||u1 − u2||2

1

Nk

Nk∑
i=1

∣∣∣∣KT
i

∣∣∣∣
2
||φi(Kiu1)− φi(Kiu2)||2 + λ

∣∣∣∣ATA∣∣∣∣
2
||u1 − u2||2 ≤ L1(a) ||u1 − u2||2 .

Here the `2-norm is used because the proximal map of the image update is solved

using it. To estimate the Lipschitz constant we need to compute an upper bound

for

||φi(Kiu1)− φi(Kiu2)||2 .

Therefore, we assume that φi(x) ∈ C1 and hence ρi ∈ C2. In other words, φi(x) has

a smooth derivative. Then its Lipschitz constant is defined as

Li = sup
x

∣∣φ′i(x)
∣∣ .

Thus, an upper bound can be formulated as

||φi(Kiu1)− φi(Kiu2)||2 ≤ Li ||Kiu1 −Kiu2||2 ≤ Li ||Ki||2 ||u1 − u2||2 .

By putting all pieces together we can define L1(a) as

L1(a) =
1

Nk

Nk∑
i=1

∣∣∣∣KT
i

∣∣∣∣
2
Li ||Ki||2 + λ

∣∣∣∣∣∣ATA
∣∣∣∣∣∣

2
.

Due to the physical properties of the blur kernel a and the parametrization of the

filters ki, all this kernels have norm 1. This property is shared between a convolution

kernel and its associated matrix representation. Consequently, the Lipschitz constant
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simplifies to

L1(a) = λ+
1

Nk

Nk∑
i=1

Li

and assumption (ii) is proven.

(iii) Since we require ρi(x) to be C2 and ||a ∗ u− f ||22 ∈ C2 with respect to a and u, also

H(a, u) ∈ C2 and assumption (iii) follows.

As a result, the PALM algorithm can be applied to solve problem (3.8).

3.3.2.2 Derivation of proximal maps

As we have proven, the blind image deconvolution problem can be solved by the PALM

algorithm. In order to apply it, we first need to compute the proximal maps, which are

stated in Algorithm 5.

Proximal map of the kernel: Let us start with the derivation of the proximal map

related to the blur kernel a.

ak+1 ∈ proxdkg

(
ak −

1

dk
∇aH(ak, uk+1)

)
This map can be computed by solving the problem

ak+1 ∈ arg min
a

〈
a− ak, λUT

k+1(Uk+1ak − f)
〉

+
dk
2
||a− ak||+ g(a),

which is equivalent to solve the following smooth constrained optimization problem

ak+1 = arg min
a∈∆

〈
a− ak, λUT

k+1(Uk+1ak − f)
〉

+
dk
2
||a− ak|| , (3.12)

since g(a) = δ∆(a) is the indicator function of the unit simplex. This kind of constrained

optimization problems has been well studied [3, 44], since the unit simplex is a convex set

which is widely used, e.g. at the optimization of probability distributions. Unfortunately,

a closed form solution does not exists for the above problem due to the simplex constraint.

However, as shown by Beck and Teboulle [2] and Ben-Tal et al. [3] a closed form solution

of this convex problem can be computed by introducing a more general distance metric.

Therefore, we reformulate the proximal map problem to

ak+1 = arg min
a∈∆

〈
a− ak, λUT

k+1(Uk+1ak − f)
〉

+ dkDf (a, ak), (3.13)

where Df denotes the Bregman divergence associated with the function

f(x) =
∑

i xi log(xi), which is also known as the entropy. As introduced by Bregman [7]
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in 1967, Df is defined as

Df (a, b) = f(a)− f(b)− 〈∇f(b), a− b〉 ,

where he already proved that the entropy f(x) yields proper Bregman distances Df .

Furthermore, Teboulle proved in [44] that problem (3.12) and (3.13) share important

properties regarding minimization, i.e. they share the set of minimizer. Therefore, we

further on consider problem (3.13). When plugging the function f into the definition of

the Bregman divergence, we get

Df (a, b) =
∑
i

ai log(ai)−
∑
i

bi log(bi)− 〈log(b) + 1, a− b〉

=
∑
i

ai(log(ai)− log(bi))− (ai − bi).

This reveals the advantage of problem (3.13). If any element ai of the blur kernel a is

below or equal to zero, Df (a, ak)→∞. Consequently, we can omit the ai ≥ 0 constraint

of the unit simplex ∆, as it is implicitly handled by the distance function. Hence, the

problem simplifies to

ak+1 = arg min∑
i ai=1

〈
a− ak, λUT

k+1(Uk+1ak − f)
〉

+ dkDf (a, ak),

which can be solved using a Lagrange multiplier. The associated Lagrange function is

given by

L(a, ν) =
〈
a− ak, λUT

k+1(Uk+1ak − f)
〉

+ dkDf (a, ak) + ν

(∑
i

ai − 1

)
.

A minimizer of the above problem has to fulfill the following conditions ∇aL(a, ν) = 0

and ∇νL(a, ν) = 0.

∇aL(a, ν) = λUT
k+1(Uk+1ak − f) + dk(log(a)− log(ak)) + ν = 0

∇νL(a, ν) =
∑
i

ai − 1 = 0

Let us introduce a new variable ∇ak = λUT
k+1(Uk+1ak − f) to ease writing. In order to

compute a solution, we have to calculate the Lagrange multiplier ν beforehand.

∇ak + dk(log(a)− log(ak)) + ν = 0

− 1

dk
∇ak + log(ak)−

1

dk
ν = log(a)

diag

(
exp

(
− 1

dk
(∇ak + ν)

))
ak = a
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This equation must hold for all elements in the vector a.

exp

(
− 1

dk
(∇ak + ν)

)
i

aki = ai

By summing up all these individual equations, we can express the remaining simplex

constraint. ∑
i

exp

(
− 1

dk
(∇ak + ν)

)
i

aki =
∑
i

ai
!

= 1

The Lagrange multiplier ν can then be computed by

exp

(
− 1

dk
ν

)∑
i

exp

(
− 1

dk
(∇ak)i

)
aki = 1

exp

(
1

dk
ν

)
=
∑
i

exp

(
− 1

dk
(∇ak)i

)
aki

ν = dk log

(∑
i

exp

(
− 1

dk
(∇ak)i

)
aki

)
.

If we plug this result in the initial equation, we get

0 = ∇ak + dk(log(a)− log(ak)) + ν

0 = ∇ak + dk(log(a)− log(ak)) + dk log

(∑
i

exp

(
− 1

dk
(∇ak)i

)
aki

)

log(a) = − 1

dk
∇ak + log(ak)− log

(∑
i

exp

(
− 1

dk
(∇ak)i

)
aki

)

By computing the exponential function of this equation we get the final proximal map

a = diag

(
exp

(
− 1

dk
∇ak

))
ak

(∑
i

exp

(
− 1

dk
(∇ak)i

)
aki

)−1

a =
diag

(
exp

(
− 1
dk
∇ak

))
ak∑

i exp
(
− 1
dk

(∇ak)i
)
aki

.

Again, this equation must be valid for any element in a.

aj =
akj exp

(
− 1
dk

(∇ak)j
)

∑
i aki exp

(
− 1
dk

(∇ak)i
)
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It is clear, that this entropic proximal map computes a blur kernel a ∈ ∆, as long as

ak ∈ ∆ is true.

As we have pointed out during the computation of the Lipschitz constant L2(u), the

norms applied in Equation (3.11) depend on the distance function used in the proximal

map. Although the `2-norm also generates suitable results, we can do better if the `1-norm

is used. To validate its usage, we have to show that the Bregman divergence Df (a, b) is

bounded from below by the associated `1-norm distance for all elements in the domain.

Df (a, b) ≥ 1

2
||a− b||21 ∀a, b ∈ ∆

In other words, the `1-norm distance never over-estimates the actual used one. To do so,

we start by plugging in the definition of Df

f(a)− f(b)− 〈∇f(b), a− b〉 ≥ 1

2
||a− b||21 ∀a, b ∈ ∆,

which is equivalent to

f(a) ≥ f(b) + 〈∇f(b), a− b〉+
1

2
||a− b||21 ∀a, b ∈ ∆.

Thus, the function f(a) must be 1-strongly convex with respect to the `1-norm on the unit

simplex ∆. This circumstance can also be expressed as the strongly monotone property

〈∇f(a)−∇f(b), a− b〉 ≥ ||a− b||21 ∀a, b ∈ ∆,

see [31], which has been proven by Beck and Teboulle [2]. As a result, we can update

L2(u). The updated version of Equation (3.11) is then given by

||∇aH(a1, u)−∇aH(a2, u)||∞ ≤ L2(u) ||a1 − a2||1 ,

since ||·||∞ is the dual norm of the `1-norm. Hence the Lipschitz constant can be computed

by

L2(u) = λ
∣∣∣∣∣∣UTU

∣∣∣∣∣∣
1,∞

= λ ||u||22 ,

where the ||·||1,∞ is defined as

||A||1,∞ = sup
||x||1=1

||Ax||∞ .

Thus the Lipschitz constant simplifies to the sum over all image pixel squares. This can be

seen if the structure of the convolution matrix U is analyzed. It basically consists of shifted

versions of the image u, therefore, if multiplied with its transpose, the correlations of the

shifted image variants are computed. Since the ||·||1,∞ extracts the maximum element of its

Reference:

Nesterov, Y (2004)
Introductory lectures on convex optimization: A basic course

Reference:

Beck, Amir and Teboulle, Marc (2003)
Mirror descent and nonlinear projected subgradient methods for convex optimization



76 Chapter 3. Learning variational models for blind image deconvolution

argument, the Lipschitz constant is given by the maximal correlation, which is given for no

shift. Hence, the Lipschitz constant is equivalent to the maximum of the autocorrelation

function. This Lipschitz constant is very important for the further derivations, since it

reflects the data dependency of the step size dk.

Proximal map of the image: The proximal map with respect to the image can be

computed much easier. It is defined as

uk+1 ∈ proxckf

(
uk −

1

ck
∇uH(ak, uk)

)
,

which is equivalent to solving the following problem

uk+1 = arg min
u

〈
u− uk,

1

Nk

Nk∑
i=1

KT
i φi(Kiuk) + λAk(Akuk − f)

〉
+
ck
2
||u− uk||22 .

This smooth unconstrained convex optimization problem can be solved in closed form and

its solution is given by

uk+1 = uk −
1

ck

{
1

Nk

Nk∑
i=1

KT
i φi(Kiuk) + λAk(Akuk − f)

}
.

It is basically a gradient descent step with the blur kernel estimate of the previous iteration

ak in the data term. This iterative update rule is almost the same as the one in the non-

blind image deconvolution problem, see Equation (2.13).

3.3.2.3 PALM for blind image deconvolution

By putting all the bits and pieces of the previous derivations together, we can state the

PALM algorithm for blind image deconvolution, see Algorithm 6. The corresponding

Lipschitz constants are defined as

L1(ak) = λ+
1

Nk

Nk∑
i=1

Li, (3.14)

L2(uk+1) = λ ||uk+1||22 (3.15)

where Li = sup
x
|φ′i(x)| is the Lipschitz constant of the i-th influence function. If we

compare this algorithm to the projected alternating minimization method of Perrone and

Favaro 3, we see that the image update is almost identical, whereas, the kernel refinement

can be done in closed form with our approach. Furthermore, our projection method is

theoretically justified and differentiable.
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Algorithm 6: Proximal Alternating Linearized Minimization algorithm for blind
image deconvolution.

Data: start with (a0, u0)
Result: (a, u)
while not converged do

Take γ1 > 1, set ck = γ1L1(ak) and compute

uk+1 = uk − 1
ck

{
1
Nk

∑Nk
i=1K

T
i φi(Kiuk) + λAk(Akuk − f)

}
;

Take γ2 > 1, set dk = γ2L2(uk+1) and compute
∇ak = λUT

k+1(Uk+1ak − f);

a(k+1),j =
akj exp

(
− 1
dk

(∇ak)j

)
∑
i aki exp

(
− 1
dk

(∇ak)i

) ;

k ⇐ k + 1;

a← ak;
u← uk;

3.3.3 Iteratively adapted energy minimization approach

As we have seen, the blind image deconvolution problem can be solved by iterating between

two gradient descent steps. While, the update rule of the image estimate u in Algorithm 6

is almost identical to the non-blind deconvolution scheme (2.13), the gradient descent

step of the blur kernel a is multiplicative. In general, such schemes require hundreds or

thousands of iterations to get a good estimate for u and a due to the relatively poor

convergence rate of this simple gradient related algorithms. The iterative approach of

Perrone and Favaro [34] takes for instance 10, 000 iterations. Although this iterates can

be computed very fast, it is impractical for real applications.

To overcome this problem, the implementation of the same idea as in the non-blind

case is an obvious choice. Therefore, the amount of iterations are fixed to T and by means

of discriminative supervised learning the output of the last iteration is tuned to best fit

a certain objective criterion. Hence, the iterative approach is transfered to a network

consisting of T stages, where each computes a single iterate. Furthermore, the parameters

of the data term λt and the regularization kti and φti are allowed to freely change within

each stage. As a consequence, the update rules of a single stage are defined by

ut = u(t−1) −
1

ct

{
1

Nk

Nk∑
i=1

KT
tiφti(Ktiu(t−1)) + λtA(t−1)(A(t−1)u(t−1) − f)

}
∇a(t−1) = λtU

T
t (Uta(t−1) − f)

at,j =
a(t−1)j exp

(
− 1
dt

(∇a(t−1))j

)
∑

i a(t−1)i exp
(
− 1
dt

(∇a(t−1))i

) .

Reference:

Perrone, Daniele and Favaro, Paolo (2014)
Total Variation Blind Deconvolution: The Devil is in the Details
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IAM-BDCT

S1 St−1 St St+1 ST

u0

a0

uT

aT

Su

Sa

St

u(t−1)

a(t−1)

ut

at

Figure 3.5: Demonstration of the Iteratively Adapted Minimization for blind Deconvolution
(IAM-BDC) network structure. The input the procedure is the blurry observation u0 and the
initial blur estimate a0. These are processed by a series of stages St, which implement the image
update scheme Su, see Equation (3.16), and the kernel one Sa, depicted in Equation (3.17). The
output of the net after performing T updates is the deconvolved image uT and the blur kernel
estimate aT .

The step sizes ct can be omitted, since it can be expressed by appropriately scaling the

influence functions φti and the weighting parameter λt. However, the step size dt reflects a

data dependency of the kernel update on the input image, as shown during the computation

of the Lipschitz constant L2(u). In oder to keep this data dependency, we express it by

1/dt = τt/
∣∣∣∣u(t−1)

∣∣∣∣2
2
. Hence, the update scheme changes to

ut = u(t−1) −
{

1

Nk

Nk∑
i=1

KT
tiφti(Ktiu(t−1)) + λtA(t−1)(A(t−1)u(t−1) − f)

}
(3.16)

∇a(t−1) = UT
t (Uta(t−1) − f)

at,j =

a(t−1)j exp

(
− τt

||u(t−1)||22
(∇a(t−1))j

)
∑

i a(t−1)i exp

(
− τt

||u(t−1)||22
(∇a(t−1))i

) . (3.17)

The resulting network structure of the proposed IAM-BDC approach is depicted in Fig-

ure 3.5. The blurry observation u0 and the initial blur kernel a0 is processed by the first

stage S1 and its output is further refined by successive stages until the final stage ST is
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reached. Moreover, Figure 3.5 outlines the interrelation of the image and kernel stage

update rules. The image propagation rule Su is based on the output of the previous stage,

whereas, the kernel update Sa already utilizes the updated image ut. This scheme favors

the kernel estimation because within a single stage the image u(t−1) can be modified such

that the blur kernel estimate at the output of the stage at is better.

However, experiments showed that the kernel estimates aT of this network are very

poor if the update rules (3.16) and (3.17) are used. If we compare our approach to SotA

methods such as [24, 39, 41, 42, 47], one difference pops out. All these algorithm estimate

the unknown blur kernel on filtered versions of the blurry observation f and the current

estimate u. The additional filtering is necessary because strong edges are better suited for

the estimation of blur kernels as we have seen in the discussion of the related methods,

see Section 3.2. Therefore, we alter the data term in a similar way as in the non-blind

deconvolution network by introducing data term filters k̄ti, k̃ti and its associated influence

functions φ̄ti, φ̃ti. The modified stage update rules are then given by

ut = T

{
up(t−1) −

(
1

Nk

Nk∑
i=1

KT
tiφti(ηKtiup(t−1)) + . . .

1

Nd

Nd∑
i=1

AT
(t−1)K̄

T
ti φ̄ti

(
η̄K̄ti

(
A(t−1)up(t−1) − f

)))}
(3.18)

∇a(t−1) =
1

Nd

Nd∑
i=1

1∣∣∣∣∣∣K̃tiut

∣∣∣∣∣∣2
2

UT
t K̃

T
ti φ̃ti

(
η̃K̃ti

(
Uta(t−1) − f

))

at,j =
a(t−1)j exp

(
−(∇a(t−1))j

)∑
i a(t−1)i exp

(
−(∇a(t−1))i

) , (3.19)

where η, η̄ and η̃ are scalar factors to scale the argument of its associated influence func-

tion such that all can be constructed from the same Gaussian radial basis functions.

The updated expression for the image ut is almost identical to the non-blind case, see

Equation (2.25) but the latest kernel estimate a(t−1) is used instead of the true one.

Again, the image update is performed on a padded version of the input image defined as

up(t−1) = Pu(t−1). Thus, also the truncation operation T is employed. In contrast to the

simple kernel update scheme depicted in Equation (3.17), the step size moved into the

computation of the kernel gradient ∇a(t−1). Furthermore, the step size parameter τt was

neglected as it can be reflected in the scale of the according influence functions φ̃ti. Nev-

ertheless, the data dependency of the Lipschitz constant L2(u) must still be maintained

within this approach. For a single element of the data term UT
t K̃

T
ti φ̃ti(η̃K̃ti(Uta(t−1)− f))

it can be computed by following the same idea as in the derivation of this method and is

defined as

L2,i(ut) =
∣∣∣∣∣∣k̃ti ∗ ut∣∣∣∣∣∣2

2
.

Reference:

 ()
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This additional refinement of the step size already highlights one advantage of the modified

approach, since in general the Lipschitz constant L2,i(ut) is much smaller due to the

filtering with a derivative kernel. Hence, larger steps are possible which speed up kernel

estimation.

Although the influence functions and kernels of the two data terms are not shared, this

approach can still be seen as gradient descent steps of related iteratively adapted energy

minimization problems. The associated energies to stage t are defined by

Et(u) =
1

Nk

MN∑
p=1

Nk∑
i=1

ρti ((Ktiu)p) +
1

Nd

MfNf∑
p=1

Nd∑
i=1

ρ̄ti(K̄ti(A(t−1)u− f))

Et(a) = δ∆(a) +
1

Nd

MfNf∑
p=1

Nd∑
i=1

ρ̃ti(K̃ti(Uta− f)),

whereby Mf = M −H + 1 and Nf = N −W + 1 if the image is of size M ×N and the

kernel of H ×W . In this formulation the penalty functions ρ, ρ̄ and ρ̃ are the integrated

version of their associated influence functions.

3.3.3.1 Training

In analogy to the non-blind deconvolution network training, the IAM-BDC net is trained

in a discriminative fashion. Therefore, the network parameters Θ are learned such that a

certain objective function is optimized. In this case it is formulated as

L(Θ) =
S∑
s=1

`(uT (Θ, us0, a
s
0), usgt, aT (Θ, us0, a

s
0), asgt), (3.20)

where one training sample consists of the blurry observation us0, the initial blur estimate

as0, the true sharp image usgt and the true blur kernel asgt. In our case we minimize the

squared error of the image and the blur kernel, hence the obejctive function is given by

`(uT , ugt, aT , agt) =
α

2
||M(uT − ugt)||22 +

β

2
||aT − agt||22 , (3.21)

whereby α and β are weights which can be adapted to balance between kernel and image

fitting. The matrix M is a diagonal one that sets the error at border regions to zero, since

every common border handling inserts inconsistencies. The network parameters Θ can be

grouped into stages as in the non-blind case.

Θ = {θt, t = 1 . . . T}
θt = {(φti, kti) i = 1 . . . Nk, (φ̄ti, k̄ti), (φ̃ti, k̃ti) i = 1 . . . Nd}
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Thus, each stage is setup using the parameters θt, which hold the parametrization of the

filters and influence functions of the regularization and both data terms of stage t.

Due to the massive number of parameters of the proposed net, an additional pre-

training is necessary. Consequently, the training is once more split into a greedy pre-

training phase followed by joint training.

Greedy pre-training: The pre-training phase is vital to steer the network parameters

towards a good initialization to ease the successive joint training of the network. Therefore,

we adopt the same greedy manner as in the non-blind case. Starting with a single stage,

its parameters are tuned such that its output best fits under an objective function. Then

the parameters are fixed and so is the output of this stage. Another stage is added on

top of it and just the parameters of the newly added stage are tuned. This procedure is

repeated until the final block depth is reached. Within this scheme, the stages are trained

by minimizing

L(θt) =
S∑
s=1

`(ust , u
s
gt, a

s
t , a

s
gt). (3.22)

As a result, each stage tries to modify the image and the blur estimate (ut, at) such that

they best match the true ones.

Joint training: After the greedy pre-training of a network block consisting of 5 stages,

its parameters Θ are refined by jointly training all the block parameters. Hence, the param-

eter vector Θ is tuned such that the overall objective function, defined in Equation (3.20),

is minimized. This approach enables the entire expressive power of the network since the

intermediate results (ut, at) are not constrained anymore. Therefore, they can be arbitrar-

ily changed to improve the final output of the block. Thus, this stage is most important

within the training framework.

3.3.3.2 Gradient derivation

In both training phases an objective function is minimized. The optimization of those

objectives is done by applying the well known L-BFGS [29] algorithm as in the non-

blind case. It is built upon the gradients of the objective function with respect to its

parameters. Hence, the derivation of these gradients is mandatory for both pre-training

and joint training.

Let us start with the greedy pre-training phase. The minimization of (3.22) requires

the computation of the following gradient.

∂L

∂θt
=

S∑
s=1

∂`(ust , u
s
gt, a

s
t , a

s
gt)

∂θt
. (3.23)

Reference:

Liu, Dong C. and Nocedal, Jorge (1989)
On the limited memory BFGS method for large scale optimization



82 Chapter 3. Learning variational models for blind image deconvolution

For the sake of simplicity, we further analyze the gradient ∂`/∂θt just for a single training

sample, as the overall gradient can be computed by summation. Consequently, the deriva-

tive of the loss function ` of a single training sample with respect to the stage parameters

is defined as

∂`(ust , u
s
gt, a

s
t , a

s
gt)

∂θt
=

∂`

∂θt
=
∂ut
∂θt

αMTM(ut − ugt) +
∂at
∂θt

β(at − agt).

Since, the kernel estimate at is a function of ut, this gradient can be further refined to

∂`

∂θt
=
∂ut
∂θt

αM(ut − ugt) +

(
∂at
∂θt

+
∂ut
∂θt

∂at
∂ut

)
β(at − agt)

=
∂ut
∂θt

(
αM(ut − ugt) +

∂at
∂ut

β(at − agt)
)

︸ ︷︷ ︸
eut

+
∂at
∂θt

β(at − agt)︸ ︷︷ ︸
eat

=
∂ut
∂θt

eut +
∂at
∂θt

eat,

whereby ∂at/∂θt does not need to take care for the relation of ut and θt anymore. The

gradient ∂at/∂ut can be derived as follows

∂at
∂ut

=
∂∇a(t−1)

∂ut

∂at
∂∇a(t−1)

. (3.24)

In order to compute ∂at/∂∇a(t−1) let us reformulate the kernel update rule, defined in

Equation (3.19), to

at =
1

aT(t−1)v
diag

(
a(t−1)

)
v,

where v = exp(−∇a(t−1)). Within this formulation the updated kernel at is constructed

from the old kernel a(t−1), which forms a basis diag
(
a(t−1)

)
, followed by a normalization.

Hence, ∂at
∂∇a(t−1)

can be computed as

∂at
∂∇a(t−1)

=
∂v

∂∇a(t−1)

∂at
∂v

∂at
∂v

=
1

aT(t−1)v

(
I −

a(t−1)v
T

aT(t−1)v

)
diag

(
a(t−1)

)
∂v

∂∇a(t−1)
=

∂

∂∇a(t−1)

(
exp(−∇a(t−1))

)
= −diag (v)

∂at
∂∇a(t−1)

= −diag (v)
1

aT(t−1)v

(
I −

a(t−1)v
T

aT(t−1)v

)
diag

(
a(t−1)

)
. (3.25)
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If we compare this gradient to the derivative ∂kti/∂cti of the kernel filters in the none-

blind case, we see that they resemble each other in terms of structure. This circumstance

originates from the similar definition, as both are constructed from a basis and normalized

vectors. Nevertheless, the missing gradient ∂∇a(t−1)/∂ut can be expressed as

∂∇a(t−1)

∂ut
=

1

Nd

Nd∑
i=1

∂

∂ut


1∣∣∣∣∣∣K̃tiut

∣∣∣∣∣∣2
2︸ ︷︷ ︸

g

UT
t K̃

T
ti φ̃ti

(
η̃K̃ti(Uta(t−1) − f)

)
︸ ︷︷ ︸

h


=

1

Nd

Nd∑
i=1

(
g
∂h

∂ut
+
∂g

∂ut
hT
)
.

The gradient of the introduced variable h can be computed based on the results of the

non-blind gradient derivation. Thus, ∂h/∂ut is defined as

∂h

∂ut
= RT

180

(
K̃T
ti φ̃ti

(
η̃K̃ti(Uta(t−1) − f)

))T
+ η̃AT

(t−1)K̃
T
tiΛ̃tiK̃tiUt,

where the diagonal matrix Λ̃ti holds the derivatives φ̃′ti(η̃K̃ti(Uta(t−1)−f)) in its diagonal.

The computation of ∂g/∂ut is given by

∂g

∂ut
=

∂

∂ut

1

uTt K̃
T
tiK̃tiut

= (−1)
1

(uTt K̃
T
tiK̃tiut)2

2K̃T
tiK̃tiut =

−2∣∣∣∣∣∣k̃ti ∗ ut∣∣∣∣∣∣4
2

K̃T
tiK̃tiut.

By putting all the above derivatives together we get

∂∇a(t−1)

∂ut
=

1

Nd

Nd∑
i=1

1∣∣∣∣∣∣K̃tiut

∣∣∣∣∣∣2
2

{
RT

180

(
K̃T
tiφ̃ti

(
η̃K̃ti(Uta(t−1) − f)

))T
+ η̃AT

(t−1)K̃
T
tiΛ̃tiK̃tiUt − . . .

 2∣∣∣∣∣∣k̃ti ∗ ut∣∣∣∣∣∣2
2

K̃T
tiK̃tiut

(φ̃ti (η̃K̃ti(Uta(t−1) − f)
))T

K̃tiUt

}
. (3.26)

Thus all parts of the derivative ∂at/∂ut are defined. We do not state the complete gradient

explicitly since it would span multiple lines. It can be constructed by multiplying all the

above parts.

After this exhausting derivation, we can finally compute the derivatives of at and ut
with respect to the stage parameters. The gradient of ut with respect to the regularization
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parameters have already been computed in the non-blind case and are given by

∂ut
∂cti

= − 1

Nk ||cti||2

(
I − ctic

T
ti

cTticti

)
BT
(
RT

180H
T + ηUT

p(t−1)ΛtiKti

)
TT (3.27)

∂ut
∂wti

= − 1

Nk
ΦT(Kitu(t−1))KtiT

T, (3.28)

where H = φti(ηKtiup(t−1)), Λti = diag
(
φ′ti(ηKtiup(t−1))

)
and Φ(Kitup(t−1)) is the basis

matrix the influence functions are created from. Note that the kernels kti are parametrized

by cti and the influence functions are constructed using the weights wti. Furthermore, the

gradient with respect to the data term filters k̄ti and its according influence function φ̄ti
have also been computed beforehand and are defined as

∂ut
∂c̄ti

= − 1

Nd ||c̄ti||2

(
I − c̄tic̄

T
ti

c̄Ttic̄ti

)
BT
d

(
RT

180H
T + η̄

(
A(t−1)up(t−1) − f

)T
Λ̄tiK̄ti

)
A(t−1)

(3.29)

∂ut
∂w̄ti

= − 1

Nd
ΦT
(
η̄K̄ti(A(t−1)up(t−1) − f)

)
K̄tiA(t−1)T

T, (3.30)

whereby H = φ̄ti(η̄K̄ti(A(t−1)up(t−1) − f)), Λ̄ti = diag
(
φ̄′ti(η̄K̄ti(A(t−1)up(t−1) − f))

)
and

Φ(η̄K̄ti(A(t−1)up(t−1) − f)) is the matrix representation of the Gaussian radial basis func-

tions. We compute the gradients with respect to c̄ti and w̄ti because the data term filters

k̄ti and influence functions φ̄ti are parametrized by those. As a result it remains to com-

pute ∂at/∂k̃ti and ∂at/∂φ̃ti because ut is not influenced by those parameters. Moreover,

the influence of at on the parameters (cti, wti) and (c̄ti, w̄ti) is already handled within the

error eut.

Data term filters k̃ti: Since ∂ut/∂k̃ti = 0, we just have to compute

∂at

∂k̃ti
=
∂∇a(t−1)

∂k̃ti

∂at
∂∇a(t−1)

.

The gradient ∂at/∂∇a(t−1) has already been computed, see Equation (3.25) and the re-
maining gradient can be computed in a similar manner as ∂∇a(t−1)/∂ut and is given by

∂∇a(t−1)

∂k̃ti
=

1

Nd

Nd∑
i=1

1∣∣∣∣∣∣K̃tiut

∣∣∣∣∣∣2
2

{
RT

180

(
φ̃ti
(
η̃K̃ti(Uta(t−1) − f)

))T
Ut + η̃(Uta(t−1) − f)TΛ̃tiK̃tiUt − . . .

 2∣∣∣∣∣∣K̃tiut

∣∣∣∣∣∣2
2

UT
t Utk̃ti

(φ̃ti (η̃K̃ti(Uta(t−1) − f)
))T

K̃tiUt

}
. (3.31)
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Akin to the other data term filters k̄ti, this kernels are constructed from a discrete cosine

transform basis in order to limit their norm. Thus, they are defined as

k̃ti = Bd
c̃ti
||c̃ti||2

.

Consequently, the training parameter changes to c̃ti and we need to compute ∂at/∂c̃ti.

Based on the above results and the derivations in Section 2.2.1.2 this gradient can be

expressed as

∂at
∂c̃ti

=
∂k̃ti
∂c̃ti

∂∇a(t−1)

∂k̃ti

∂at
∂∇a(t−1)

∂k̃ti
∂c̃ti

=
1

||c̃ti||2

(
I − c̃tic̃

T
ti

c̃Ttic̃ti

)
BT
d

∂at
∂c̃ti

=
1

||c̃ti||2

(
I − c̃tic̃

T
ti

c̃Ttic̃ti

)
BT
d

∂∇a(t−1)

∂k̃ti

∂at
∂∇a(t−1)

. (3.32)

So, the gradient with respect to the data term filter parameters c̃ti can be computed by

first propagating the error to the level of ∇a(t−1) and then computing the influence of the

filters.

Data term influence functions φ̃ti: This gradient can be computed in the same fash-

ion. Since the influence functions φ̃ti(x) are parametrized by a weight vector w̃ti, we have

to compute the gradient ∂at/∂w̃ti, which is expressed as

∂at
∂w̃ti

=
∂∇a(t−1)

∂w̃ti

∂at
∂∇a(t−1)

, (3.33)

where the gradient ∂∇a(t−1)/∂w̃ti can be computed as follows

∂∇a(t−1)

∂w̃ti
=

1

Nd

∂

∂w̃ti

(
Nd∑
i=1

UT
t K̃

T
tiΦ
(
η̃K̃ti(Uta(t−1) − f)

)
w̃ti

)
= ΦT

(
η̃K̃ti(Uta(t−1) − f)

)
K̃tiUt.

This gradient concludes the derivation of the required gradients for the greedy pre-training

phase.

Joint training: Also in the joint training phase the L-BFGS algorithm is used to mini-

mize (3.23). For the same reasons as in the pre-training, we consider just a single training

example. Therefore, we have to compute the derivative ∂`(uT , ugt, aT , agt)/∂Θ with T
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being the output of the current block, which is defined as

∂`(uT , ugt, aT , agt)

∂Θ
=

∂`

∂Θ
=
∂uT
∂Θ

αM(ut − ugt)︸ ︷︷ ︸
euT

+
∂aT
∂Θ

β(at − agt)︸ ︷︷ ︸
eaT

=
∂uT
∂Θ

euT +
∂aT
∂Θ

eaT .

The direct derivation of these gradients is difficult, thus we employ a divide and conquer

approach. For the moment we are just interested in computing the gradient with respect

to the parameters of stage t, hence the gradient changes to

∂`(uT , ugt, aT , agt)

∂θt
=
∂uT
∂θt

euT +
∂aT
∂θt

eaT . (3.34)

Based on the stage update rule we know that uT is a function of u(T−1) and a(T−1) and

aT depends on uT and a(T−1). Thus, the gradients with respect to θt can be refined to

∂uT
∂θt

=
∂u(T−1)

∂θt

∂uT
∂u(T−1)

+
∂a(T−1)

∂θt

∂uT
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∂θt

=
∂uT
∂θt

∂aT
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+
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∂θt

∂aT
∂a(T−1)

.

If we plug this result into Equation (3.34), we get

∂`

∂θt
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∂θt
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=
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∂θt
eu(T−1) +
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∂θt
ea(T−1).

The same derivation can be repeated if the dependencies of u(T−1) and a(T−1) on u(T−2)

and a(T−2) are inserted. The result would be the same, with updated indexes though. This

procedure can be stopped as soon as stage t is reached, since the images ui and kernels ai
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IAM-BDCT
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∂ut

Figure 3.6: Illustration of the error back propagation within an IAM-BDC net. The errors at
the stage euT and eaT are back propagated through the network by following the reverse path of
the stage updates. Furthermore, inside the stage updates the error is distributed by following the
reverse information flow.

for i < t do not depend on θt. So, we end up with the following error propagation rules:

eut =
∂u(t+1)

∂ut
ω

eat =
∂u(t+1)

∂at
ω +

∂a(t+1)

∂at
ea(t+1)

ω = eu(t+1) +
∂a(t+1)

∂u(t+1)
ea(t+1)

Compared to the non-blind error propagation, this result is much more evolved. Figure 3.6

illustrates the error propagation through the IAM-BDC network. The error at the stage

T is pushed into the back propagation scheme and the output of the algorithm is an

error at each stage t, which denotes the portion of the error generated by this stage. The

error propagation has to follow exactly the reverse paths as in the forward computation in

order to distribute the errors correctly. Thus, it has to take both paths for the image and

kernel update Su and Sa as illustrated by the red arrows. In contrast to the Iteratively

Adapted Minimization for non-blind Deconvolution (IAM-DC) net, the error propagation

requires the computation of four gradients. Fortunately, some of those gradients are

closely related to derivatives we already computed before. The gradient ∂a(t+1)/∂u(t+1)
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was earlier derived within the greedy training stage and can be computed as

∂a(t+1)

∂u(t+1)
=

∂∇at
∂u(t+1)

∂a(t+1)

∂∇at
∂a(t+1)
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,

where v = exp(−∇at) and Λ̃(t+1)i = diag
(
φ̃′(t+1)i(η̃K̃(t+1)i(U(t+1)at − f))

)
. Based on the

gradients of the joint training in the non-blind case, we can easily derive ∂u(t+1)/∂ut,
which is defined as

∂u(t+1)

∂ut
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{
I −

(
1
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TT,

where Λ(t+1)i and Λ̄(t+1)i are diagonal matrices which hold the derivatives of the influence

functions φ′(t+1)i(ηutp ∗ k(t+1)i) and φ̄′(t+1)i(η̄(utp ∗ at − f) ∗ k̄(t+1)i) respectively.

The two missing gradients are required to propagate the kernel error back. The gra-
dient ∂u(t+1)/∂at can be derived analogue to the data term filters k̄ti and is given by

∂u(t+1)

∂at
= − 1

Nd

{
Nd∑
i=1

RT
180

(
φ̄(t+1)i

(
η̄K̄(t+1)i(Atutp − f)

))T
K̄(t+1)i + η̄UT

t K̄
T
(t+1)iΛ̄(t+1)iK̄(t+1)iAt

}
TT.

In order to derive the remaining derivative ∂a(t+1)/∂at let us consider to following variants

of the stage kernel update

a(t+1) =
1

aTt v
diag (at) v =

1

aTt v
diag (v) at,

whereby v = exp(−∇at). Since both a(t+1) and v are functions of at, we have to apply

the chain rule once more.

∂a(t+1)

∂at
=
∂at
∂at

∂a(t+1)

∂at
+
∂∇at
∂at

∂v

∂∇at
∂a(t+1)

∂v

The first part of the chain rule looks a bit unfamiliar but it states the derivative with

respect to at for a constant v. It can be easily computed by using the second variant of
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the kernel update rule.

∂a(t+1)

∂at
=

1

aTt v

(
I − vaTt

aTt v

)
diag (v)

To compute the second part of the chain rule, we can build upon the previous results.

However, we still have to calculate ∂∇at/∂at, which can be computed similarly to the

data term kernels k̃ti and is defined as

∂∇at
∂at

=
1

Nd

Nd∑
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Eventually, we can write down the last missing gradient.
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)
diag (v)− ∂∇at

∂at
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(
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T

aTt v

)
diag (at)

As a result, the network can be trained jointly by first propagating the error information

though all stages, which yields eut and eat. Then the gradients of the individual stage

parameters can be computed in the same way as in the greedy pre-training using the

propagated errors as input.

3.3.3.3 Evaluation

To demonstrate the influence of different hyper-parameters of the proposed network such

as net depth and kernel size, we trained all variants on the same training dataset. It

consists of 200 training samples of the form (us0, u
s
gt, f

s, as0, a
s
gt), where us0 is the initial

image estimate, usgt the true sharp image,fs the blurry observation, as0 the initial blur

kernel estimate and asgt the true blur kernel. Half of this samples use the blurry observation

as initial image estimate us0 = f s and the blur kernel estimate of Xu and Jia [47]. The rest

of the training is initialized using the ground truth data us0 = usgt, a
s
0 = asgt. The second

half of the training set helps to guide the network parameters to favor natural sharp images

and avoid delta blur kernels. All the training sample images consist of patches extracted

from the BSD500 dataset [30] and the blur kernels are randomly sampled from the dataset

proposed by Schelten et al. [39]. Note that the initial blur kernel estimates of Xu and Jia’s

method [47] are computed using the entire image instead of the cropped version.

Similar to the non-blind case, we use Nw = 63 Gaussian radial basis functions to

form the basis for all influence functions for all trained networks. They are uniformly

placed in the interval [−1, 1] and have a standard deviation of γ = 2/Nw. To account

for the different argument scales, the influence function argument parameters are set to

η = 1/1.25, η̄ = 1 and η̃ = 1. The influence functions of the regularization are initialized

by the gradient of the heavy tailed function log(1 + αx2) and the filters kti were initially

defined by the i-th basis if the corresponding discrete cosine transform basis. The initial

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Schelten, K and Nowozin, S and Jancsary, J and Rother, C and Roth, S (2015)
Interleaved Regression Tree Field Cascades for Blind Image Deconvolution

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring
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IAM-BDC3×3
10 IAM-BDC3×3

15 IAM-BDC3×3
20

Dataset PSNR σ PSNR σ PSNR σ

Levin 28.621 1.407 28.665 1.378 28.670 1.373
BSD500 28.436 3.382 28.582 3.413 28.583 3.410

Table 3.2: Comparison of the experimental results for the proposed IAM-BDC 3×3 nets. Depicted
are the average PSNR(dB) and the corresponding standard deviation σ for the dataset of Levin et
al. [28] and 28 image samples from the BSD500 dataset [30] convolved with the kernels of Levin.
All the network filters kti, k̄ti and k̃ti are of size 3 × 3, however the depth of the nets varies, e.g.
the IAM-BDC3×3

10 consists of 10 stages.

IAM-BDC5×5
10 IAM-BDC5×5

15 IAM-BDC5×5
20

Dataset PSNR σ PSNR σ PSNR σ

Levin 28.746 1.301 28.820 1.264 28.785 1.247
BSD500 28.633 3.479 28.779 3.520 28.825 3.521

Table 3.3: Comparison of the experimental results for the proposed IAM-BDC 5×5 nets. Depicted
are the average PSNR(dB) and the corresponding standard deviation σ for the dataset of Levin et
al. [28] and 28 image samples from the BSD500 dataset [30] convolved with the kernels of Levin.
All the network filters kti, k̄ti and k̃ti are of size 5× 5, however the depth of the nets varies.

influence functions of the data term φ̄ti and φ̃ti were set to follow the gradient of 1/2x2.

Moreover, the filters k̄ti and k̃ti were also initialized by the i-th basis vector of the related

discrete cosine transform basis. However, instead of the constant basis vector the delta

kernel is used. The padding operation associated with the matrix P is in analogy to

the non-blind case defined by replicating its border pixels. The corresponding truncation

operator T removes this padded pixels from the intermediate results. Furthermore, it is

ensured that the intermediate images have intensity values in [0, 1] by truncating those

outside.

The so configured networks were then trained as described in Section 3.3.3.1. We set

α = 1 and β = 100 in the loss function of a single training sample, see Equation (3.21), to

balance between image and kernel fitting. The greedy pre-training of the stage parameters

θt was done by performing 100 iterates of L-BFGS. The subsequent joint training of

a network block, consisting of 5 stages, involved another 100 L-BFGS iterates. This

alternating training strategy was repeated until the final network depth was reached.

The trained networks were evaluated on the dataset of Levin et al. [28]. The blurry

observations of this dataset have a spatially varying blur due to their acquisition process.

To evaluate also the performance for uniform blur, we generated a test dataset consisting

of random samples of the BSD500 validation set [30] and the blur kernels of Levin et

al. [28]. We added 0.2% white Gaussian noise just as in the generation of the training

data. Both test datasets are constructed from images and kernels which are not included

in the training data. The resulting average Peak Signal Noise Ratio (PSNR) performances

and the associated standard deviation across both test sets are shown in Table 3.2 and 3.3.

While Table 3.2 depicts the results of various IAM-BDC3×3 networks, Table 3.3 states

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Martin, D. and Fowlkes, C. and Tal, D. and Malik, J. (2001)
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms
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(a) (b)

(c) (d)

Figure 3.7: Blind deconvolution results for image 1 and kernel 6 of the dataset of Levin et
al. [28]. (a) blurry observation with initial blur kernel estimate of Xu and Jia [47] in the upper left
corner. (b) ground truth sharp image together with true blur kernel. Deconvolution results of (c)
IAM-DC3×3

20 and (d) IAM-DC5×5
20 .

those of the 5 × 5 nets, which have a larger filter support. The average PSNR of the

3 × 3 nets stays almost constant with increasing net depth. For the dataset of Levin et

al. there is just a slight increase of 0.05dB and the average PSNR of the 28 BSD500 images

increases just by 0.15dB. The average PSNR values of the 5 × 5 networks also increases

slightly along with the net depth. For the BSD500 it increases up to 0.2dB if the network

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring
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(a) (b)

(c) (d)

Figure 3.8: Blind deconvolution results for image 2 and kernel 7 of the dataset of Levin et
al. [28]. (a) blurry observation with initial blur kernel estimate of Xu and Jia [47] in the upper left
corner. (b) ground truth sharp image together with true blur kernel. Deconvolution results of (c)
IAM-BDC3×3

20 and (d) IAM-BDC5×5
20 .

depth is increased from 10 to 20 stages. For the test set of Levin et al. [28] the average

PSNR increases by almost 0.08dB from 10 stages to 15. However, if the depth is further

increased, the average PSNR values decrease. We later show that our network produces

sharper edges than the ground truth images in the test set of Levin and colleagues. The

standard deviation σ is almost identical for the investigated network depths. If we compare

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms
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(a) (b)

(c) (d)

Figure 3.9: Blind deconvolution results for a second sample of the generated BSD500 test set.
The blurry observation (a) was constructed by using the second kernel of Levin’s dataset. The
initial blur kernel estimate of Xu and Jia [47] is added in the upper left corner. (b) ground truth
sharp image together with true blur kernel. Deconvolution results of (c) IAM-BDC3×3

20 and (d)
IAM-BDC5×5

20 .

the resulting PSNR values to the scores of the non-blind deconvolution results, we see that

the non-blind scores are by a large margin better. The performance difference originates

from the much higher complexity of the blind image deconvolution problem. Furthermore,

here we use the original dataset of Levin et al. [28], whose blurry observations are non-

uniformly blurred. Nevertheless, the resulting images and the blur kernel estimates confirm

that the iteratively adapted networks are also suitable for blind image deconvolution, see

Figures 3.7 to 3.12. The outputs of the IAM-BDC5×5
20 net seem to have even sharper edges

than the ground truth images in the dataset of Levin et al. [28]. For instance the face

of the girl in Figure 3.7 and her pants are much sharper or the background in Figure 3.8

posses sharper edges than the ground truth. This difference reduces the PSNR scores,

although from a human point of view the results of our networks seem superior.

Despite the relatively coarse initial blur kernel estimates of Xu and Jia [47], the decon-

volved images and the refined blur kernels of the IAM-BDC nets are of remarkable quality.

However, some ringing artifacts occur in the deconvolved images, for instance to the left of

Reference:

Xu, Li and Jia, Jiaya (2010)
Two-phase kernel estimation for robust motion deblurring

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms

Reference:

Levin, Anat and Weiss, Yair and Durand, Fredo and Freeman, William T. (2011)
Understanding blind deconvolution algorithms
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(a) (b)

(c) (d)

Figure 3.10: Blind deconvolution results for another sample image of the BSD500 validation set.
It was generated using the 7-th kernel of the dataset proposed by Levin et al. [28]. (a) blurry
observation with initial blur kernel estimate of Xu and Jia [47] in the upper left corner. (b) ground
truth sharp image together with true blur kernel. Deconvolution results of (c) IAM-BDC3×3

20 and
(d) IAM-BDC5×5

20 .

the children’s jacket in Figure 3.7c or at the wings of the plane in Figure 3.9c. Note that

the majority of this ringing artifacts are suppressed in the output of the IAM-BDC5×5
20

networks, see Figure 3.7d and 3.9d. Consequently, larger filters help to avoid ringing arti-

facts. Also fine image structures such as the leftmost propeller blade in Figure 3.9 or the

fine edges of the wooden slats of the bridge in Figure 3.8 are filtered out along with the

ringing artifacts.

Moreover, the plane test image has a bad initial blur estimate because the blurry

observation, depicted in Figure 3.9a has very few large step edges, which are favored by

the approach of Xu and Jia [47]. Despite that, the initial blur kernel estimate is refined such

that the output is closer to the ground truth. This effect can also be seen in Figures 3.7,

3.8 and 3.12. The blur kernel estimates are refined to better meet the main properties of

the true blur kernels. One very successfully deconvolved sample is depicted in Figure 3.10.

There is almost no difference visible between the network outputs and the ground truth

image despite the imperfect blur kernel estimate. The same observation is valid for the
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(a) (b)

(c) (d)

Figure 3.11: Blind deconvolution results for a third sample image of the BSD500 validation set.
It was generated using the 5-th kernel of the dataset proposed by Levin et al. [28]. (a) blurry
observation with initial blur kernel estimate of Xu and Jia [47] in the lower left corner. (b) ground
truth sharp image together with true blur kernel. Deconvolution results of (c) IAM-BDC3×3

20 and
(d) IAM-BDC5×5

20 .

images depicted in Figure 3.11. We think that the resulting image of the IAM-BDC5×5
20

net matches the ground truth quite well, however in terms of PSNR this test sample yields

the worst result, which is just above 21dB. This explains the large standard deviations in

Tables 3.2 and 3.3 for the BSD500 dataset. The last example from the BSD500 test set
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(a) (b)

(c) (d)

Figure 3.12: Blind deconvolution results for a fourth sample image of the BSD500 validation
set. It was generated using the 3-rd kernel of the dataset proposed by Levin et al. [28]. (a) blurry
observation with initial blur kernel estimate of Xu and Jia [47] in the lower left corner. (b) ground
truth sharp image together with true blur kernel. Deconvolution results of (c) IAM-BDC3×3

20 and
(d) IAM-BDC5×5

20 .

is depicted in Figure 3.12. It has an average PSNR performance and some tiny ringing

artifacts are present close to strong edges. However, the visual impression of the image

and blur kernel estimate is quite astonishing.

In spite of the complex model derivation, its parameters can still be interpreted such
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as those of the IAM-DC nets. Figure 3.13 illustrates the regularization parameters of the

first, second and last stage of the IAM-BDC5×5
20 net. Similar to the Improved Iteratively

Adapted Minimization for non-blind Deconvolution (I2AM-DC) networks, the penalty

functions ρ1i of the first stage are dominated by heavy-tailed functions with little nibbles

in the center. Additionally, the filters k1i are almost the same as in the non-blind case,

see Figure 2.15. However, the two penalty functions associated with step edges (first and

last kernel-function pair in the first row) are differently shaped than in the non-blind case.

They look like an inverse Mexican hat function. Consequently, this functions either favor

smooth regions or large edges.

In the second stage the shape of the step edge related functions changes again. They

are shaped like in the I2AM-DC5×5
2 net and favor large step edges in order to suppress

ringing artifacts. The remaining filter and function pairs are difficult to interpret due to

their irregular filter shape but it seems as if they model the sparse gradient constraint of

natural images. Hence, they help to suppress noise and artifacts.

The parameters of the final stage resemble those of the non-blind I2AM-DC5×5
2 net.

The first and last filter-function pair in the first row filter out small, smooth edges such

as ringing artifacts. The second filter-function pair in the second row and the first in

the third row are also related to edges. However, their filters are much steeper and their

penalty function has minimal cost for medium sized edges. Hence, they suppress noise

and enhance edges.

The filter k̄ti of the image update data term and their corresponding penalty functions

φ̄ti are depicted in Figure 3.14 for selected stages of the IAM-BDC5×5
20 net. In the first

stages the shape of the penalty functions φ̄ti is a combination of the absolute, quadratic

and heavy tailed function, like in the non-blind case. The absolute and tailed functions

posses the most influence due to their scale. Additionally, the filters k̄ti have shapes closer

related to derivative filters. The influence of the quadratic penalty function grows with

increasing depth. The intermediate images ut and the blur kernel estimates at get closer

to the true solution for increasing t. Thus, just the noise remains in the data term and

it is known that the quadratic penalty function is optimal for denoising Gaussian noise.

Consequently, the penalty functions preserve their quadratic shape.

The behavior of the kernel update data term filters k̃ti and their associated penalty

functions ρ̃ti is totally different. It seems as if the initial discrete cosine transform filters

and the quadratic penalty functions perform already quite well because they are almost

not modified. All the functions in each stage preserve their initial quadratic shape, just

their scale is slightly modified. Obviously, the parameters of the image update steps have

a larger influence on the results. Therefore, the training algorithm concentrates on tuning

those parameters. Nevertheless, the blur kernel refinement works quite well, as we have

seen in the examples depicted in Figure 3.7 to 3.12.

The intermediate results of the first six stages of the IAM-BDC5×5
20 net are depicted

in Figure 3.16. The sequence was generated by pushing the blurry observation shown in

Figure 3.9a into the network. If we look at the output of the first stage, which is shown in



98 Chapter 3. Learning variational models for blind image deconvolution

the upper left corner, we see that the blur kernel was slightly refined and just strong edges

were enhanced. The second stage steadily continues the kernel refinement and enhances

strong edges even more. Additionally, some more ringing artifacts are introduced. The

next two stages keep on enhancing edges, while, the fifth stage filters out the majority of

ringing artifacts. This effect originates from the block training approach. Note that the

blur kernel estimate of the fifth stage is still rather coarse compared to the final estimate,

which is depicted in Figure 3.9d. At the fifth stage the network has already found the

sharp edges of the plain wings. The successive stages are used to further refine the blur

kernel estimate and the deblurred image. Shan et al. [42] pointed out that the better

the blur kernel estimates are, the fewer ringing artifacts appear due to kernel estimation

errors. Consequently, the remaining ringing artifacts can be suppressed by improving the

blur kernel estimate, which is done by the proposed network.
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Figure 3.13: Filters kti and associated penalty functions ρti of some stages of the IAM-BDC5×5
20

net. Top row illustrates the parameters of the first stage, in the central row are those depicted of
the second stage, while, the last row shows the filters and penalty functions of the final stage.
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Figure 3.14: Filters k̄ti and associated penalty functions ρ̄ti of some stages of the IAM-BDC5×5
20

net. Top row illustrates the parameters of the first stage, in the central row are those depicted
of the second stage, while, the last row shows the image update data term filters and penalty
functions of the final stage.
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Figure 3.15: Filters k̃ti and associated penalty functions ρ̃ti of some stages of the IAM-BDC5×5
20

net. Top row illustrates the parameters of the first stage, in the central row are those depicted
of the second stage, while, the last row shows the kernel update data term filters and penalty
functions of the final stage.
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Figure 3.16: Intermediate results of the first 6 stages of the IAM-BDC5×5
20 net for the image

depicted in Figure 3.9. Top left image is the output of the first stage, to the left is the one of the
second stage, while u3 is below and so forth.
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3.4 Conclusion

In this chapter we introduced a novel approach to blind image deconvolution. The idea

originates from the denoising models of Chen et al. [13] and is inspired by the TV blind

deconvolution of Perrone and Favaro [34]. While the approach of Chen and colleagues is

based on reaction diffusion models, we motivate our algorithm by minimizing an energy

functional. The proposed iteratively adapted energy minimization model is derived by

applying the PALM algorithm of Bolte et al. [5] to minimize the according energy. We

ended up with an efficient and fast method for blind image deconvolution. The introduced

IAM-BDC networks are related to the I2AM-DC networks for non-blind image deconvo-

lution, since both the regularization and data term parameters are trainable. The blind

deconvolution networks can also be seen as an expansion to its non-blind pendant because

we simply added a blur kernel update in each stage. The additional differentiable blur

kernel refinement was tricky to derive, however the resulting blur kernel estimates after

just a view updates demonstrate its power. Moreover, the reconstructed images appeal

naturally and posses sharp edges.

In terms of the PSNR image performance measure, our approach is a bit below state

of the art algorithms. For instance the algorithm of Fergus et al. [15] achieves an average

PSNR value of 29.38dB on the dataset of Levin et al. [28]. The very recent and successful

interleaved regression tree field cascade of Schelten et al. [39] obtained an average PSNR

value of 31.50dB on this dataset. Hence, there is still some space for improvement. Nev-

ertheless, the proposed IAM-BDC5×5
20 net delivers good results despite inaccurate initial

blur kernel estimates, as we have seen in the examples above.

The proposed iteratively adapted minimization networks are closely related to energy

minimization just like their non-blind pendants. Therefore, each parameter of the net-

work can be interpreted in an easily understandable way, which helps to understand suit-

able blind deconvolution methods. For instance we demonstrated how the regularization

changes from stage to stage at the end of the previous section. The first stages try to filter

out noise and small textures of the blurry observation and start sharpening strong edges.

The successive stages keep on enhancing edges and refine the blur kernel. The deeper

network stages remove artifacts such as ringing around strong edges, see Figure 3.16.

To sum up, the proposed IAM-BDC networks are suitable for efficient blind image

deconvolution. They generate remarkable results even for inaccurate initial blur kernel

estimates. Furthermore, we have to note that the experiments summarized here are just

a small subset of the already performed ones. However, there are still a lot of interesting

questions open: Is this approach also able to robustly estimate initial kernels, since it

refines the estimates of Xu and Jia [47] quite well? Does the method also work if the

influence functions and kernels of both data terms are kept constant?





4
Conclusion and outlook

4.1 Conclusion

In this work we first profoundly analyzed different reasons for blur in images and outlined

the problems which make the image deblurring task so difficult. We reformulated the uni-

form blurring process as a mathematical convolution operation and derived a variational

formulation of the deconvolution problems. We extended it by introducing the regulariza-

tion structure of Chen et al. [13] and derived an iterative energy minimization approach

by a simple steepest gradient descent algorithm. To speed up computation, we followed

the idea of Chen and colleagues [13] to fixed the amount of iterations and allowed the

regularization and step size parameters of each stage to be arbitrary. We ended up with

the Iteratively Adapted Minimization for non-blind Deconvolution (IAM-DC) network-like

structure, which can be trained in a similar fashion as neural networks. To account for the

large depth of the proposed networks, we applied a block training strategy, consisting of

a greedy pre-training and a joint training of all stage parameters within a block of stages.

Basically any objective function and training algorithm can be used. We decided to apply

the well known L-BFGS algorithm [29] for training and optimize the pixel-wise squared er-

ror between an estimated image and the ground truth. The evaluation of various IAM-DC

nets showed that more stages and larger regularization filters improved the Peak Signal

Noise Ratio (PSNR). The IAM-DC3×3
10 net, which is the simplest, has already average

PSNR scores which are almost 1dB better than those of the frequently used TV-based

non-blind image deconvolution.

We further improved the results by expanding the data term. Instead of a simple `2-

norm of the image formation process, we applied different filtered versions and allowed the

penalty function to change arbitrarily, just like the regularization in the IAM-DC nets.

This Improved Iteratively Adapted Minimization for non-blind Deconvolution (I2AM-DC)

networks are able to recover fine details better and suppress ringing artifacts at strong

edges even more. The resulting data term penalty functions showed that initially an `1-

norm of the filtered image formation process is suitable. However, at deeper network stages

105
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the `2-norm is used because it is optimal to suppress Gaussian noise. This deep analysis

of the network parameters is possible due to the close relation to energy minimization

of the proposed methods. Hence, every single piece of the network such as the image

regularization or the data term filters can be easily interpreted, which is a fundamental

advantage compared to conventional neural networks. As a result, the trained networks

help to deepen the knowledge about natural image regularization.

The relation to energy minimization is maintained in the Iteratively Adapted Mini-

mization for blind Deconvolution (IAM-BDC) networks because they also originate from

an energy minimization problem. The derivation of a differentiable iterative algorithm

to optimize the variational formulation of the blind image deconvolution problem is quite

challenging. We applied the Proximal Alternating Linearized Minimization (PALM) al-

gorithm of Bolte et al. [5] to infer two alternating gradient descent steps. The first step

updates the unknown image and the second refines the blur kernel estimate based on the

current image. Moreover, we presented a differentiable projection onto the unit simplex,

which is required for updating the blur kernel. When the same ideas as in the non-blind

case are applied to the iterative update rules, we end up with the IAM-BDC networks.

Its structure is different from those of Chen et al. [13] and the IAM-DC nets due to the

alternating optimization. Nevertheless, this network can be trained like the non-blind

I2AM-DC networks. The training algorithm has to take the alternating minimization into

account, though. We evaluated those trained networks for various depth and different

kernel sizes. Like in the non-blind case, deeper networks and larger kernels enhance the

quality of the results, in terms of noise and ringing artifacts. However, the improvement is

not as high as for the I2AM-DC networks. Nevertheless, the networks produce naturally

appealing images with sharp edges. The PSNR values for the dataset of Levin and col-

leagues [28] decrease slightly for very deep networks because the outputs posses sharper

edges than the corresponding ground truth. Furthermore, the proposed network is capable

of refining the sometimes inaccurate initial blur kernel estimates of Xu and Jia [47] very

well. All in all, we introduced a novel approach for non-blind and blind image deconvolu-

tion which generates remarkable results and can be easily analyzed due to its close relation

to energy minimization.

4.2 Future work

We have already mentioned that the experiments performed in this work are just an

outline and still many interesting questions are unanswered. Moreover, we demonstrated

that the proposed networks are efficient to evaluate. However, we just use a pure Matlab

implementation so far. Since the networks consist of simple mathematical operations, a

GPU port should decrease the runtime tremendously, see Chen et al. [13].

Additionally, a cascade of IAM-DC networks and iteratively adapted minimization nets

for blur kernel estimation can be set up and trained. Also other objective training func-

tions have to be investigated. For instance, instead of the PSNR we could maximize the
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Structural Similarity Index (SSIM). To get a deeper insight into the deconvolution prob-

lem, we may constrain the network parameters to change linearly throughout the stages

by setting up a suitable training objective. In addition, other training algorithms such

as the stochastic conjugate gradient method could be incorporated to speed up training.

The high flexibility of our approach leaves room for creativity and further improvement.





A
List of Acronyms

CRFs Conditional Random Fields

DFT Discrete Fourier Transform

DoF Depth of Field

EM Expectation Maximization

EPLL Expected Patch Log Likelihood

FoE Field of Experts

GMM Gaussian Mixture Models

I2AM-DC Improved Iteratively Adapted Minimization for non-

blind Deconvolution

IAM-BDC Iteratively Adapted Minimization for blind Deconvo-

lution

IAM-DC Iteratively Adapted Minimization for non-blind De-

convolution

iid independent and identically distributed

MAP Maximum A Posteriori

MRF Markov Random field

MRI Magnetic Resonance Imaging

NN Neural Network

PALM Proximal Alternating Linearized Minimization

PDF Probability Density Function

PSF Point Spread Function

PSNR Peak Signal Noise Ratio

RTFs Regression Tree Fields

SotA State-of-the-Art

TV Total Variation
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B
Convolution in matrix vector notation

B.1 Formulation as matrix vector product

In the discrete setting we define the valid convolution of two 2D signals as

f(i, j) = (u ∗ a)(i, j) =
H−1∑
h=0

W−1∑
w=0

u(i+ h, j + w)a(H − h,W − w), (B.1)

for i = 1 . . .M−H+1, j = 1 . . . N−W+1 whereby the kernel a is of size H×W and the im-

age u of M×N and all dimensions are odd. This formulation is a bit unconventional, how-

ever, it exactly matches the behavior of the Matlab command f=conv2(u,a,’valid’),

which is used throughout our implementations.

Equation (B.1) can be reformulated as

f = Au = Ua⇔ f = u ∗ a, (B.2)

where A is a (M −H + 1)(N −W + 1)×MN matrix, u ∈ RMN , a ∈ RHW and the matrix

U is of size (M − H + 1)(N −W + 1) × HW . The vector u holds the image pixels in

lexicographical ordering and a the kernel elements respectively. This ordering scheme is

used to benefit from the powerful matrix calculus. In order to express the convolution as

matrix vector product, we need to setup the matrices correctly. The matrix A is built up

of row vectors aTn such that

f(i, j) = (u ∗ a)(i, j) =

MN∑
l=1

an(l)u(l)

is fulfilled for n = j(M −H + 1) + i. Therefore, the vector an holds zeros for each element

of u being not under the blur kernel mask if image pixel n is processed and the associated

blur kernel values else. Consequently, A is a Toeplitz matrix which holds in each row

either zeros or the kernel coefficients. The matrix U can be constructed in the same way.
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It is built up of row vectors un and each of those must satisfy

f(i, j) = (u ∗ a)(i, j) =

HW∑
l=1

un(l)a(l),

where n = j(M − H + 1) + i. Thus, each of those row vectors holds the image pixels

that are under the blur kernel mask when the n-th output pixel is computed. So, the

columns of the matrix U are basically shifted versions of the vector u. As a result, all the

formulations in Equation (B.2) are equivalent. The advantage of the reformulation using

matrices is the applicability of the matrix calculus along with its derivative rules.

B.2 Gradients and their relation to convolution operations

The basic formulation of the image deconvolution problem is given by

E(u, a) =
1

2
||u ∗ a− f ||22 .

This model tries to find an image u and a blur kernel a such that the convolution yields

the observation f . An equivalent formulation using the matrix vector notation of the

convolution operations is

E(u, a) =
1

2
||Au− f ||22 =

1

2
||Ua− f ||22 .

Based on this formulation the gradients with respect to u and a can be easily expressed

as

∇uE = AT(Au− f)

∇aE = UT(Ua− f).

Although this formulation is very helpful for deriving the gradients, in practice the direct

convolution operation, see Equation (B.1), is much faster as its matrix-vector pendant.

So, we need to express the operations which correspond to AT and UT multiplied with a

column vector from the right. Let us denote this vector as f̄ ∈ R(M−H+1)(N−W+1), which

is basically a vector representation of the convolution u ∗ a. If AT is multiplied with this

vector f̄ , one gets

ATf̄ = ū,

where ū ∈ RMN . Due to the insertion of zeros in the construction of A, this operation can

be interpreted as a full convolution with zero padding as boundary handling. Moreover,

the transposition implies a 180◦ rotation of the blur kernel a. Hence, this operation can

be computed by the Matlab command conv2(f̄,rot90(a,2),’full’).
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In contrast, if UT is multiplied with the vector f̄ , we get

UTf̄ = ā,

where the vector ā ∈ RHW . Also this operation can be expressed as a convolution with

a rotated image u. In Matlab it can be computed by conv2(rot90(u,2),f̄,’valid’).

Consequently, the time consuming matrix representation of the convolution can be avoided

by using the above commands instead.
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