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Abstract

In 2011, Harry Yosh [42] proposed a new cryptographic key-exchange protocol based
on Diophantine equations. Other than previously presented security protocols using
Diophantine equations, Yosh imposed very little restrictions on the used parameters.
This thesis aims to analyze Yosh’s protocol as well as to restrict the set of public and
private keys in order to maintain security and enable an efficient implementation of
the key exchange. After presenting a modern version of the proof of Hilbert’s tenth
problem, which points out the hardness of solving Diophantine equations, a brief
review of existing cryptographic schemes based on Diophantine equations is given.
We then begin the study on Yosh’s protocol in its general form over a unitary ring
and establish minimal requirements for security. In order to use the protocol over a
finite field Fq, we use results from algebraic geometry to show explicit estimates on the
number of q-rational points of an Fq-definable hypersurface. To use the protocol over
the integers, we introduce a broad class of integral Diophantine equations, which can
be constructed from a given solution. We end with an example of the protocol over the
integers and show that the public key has to be chosen very large for the protocol to be
secure.
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Kurzfassung

Harry Yosh führte 2011 ein neues kryptographisches Schlüsselaustauschprotokoll [42]
ein, welches auf Diophantischen Gleichungen aufbaut. Im Gegensatz zu anderen bekan-
nten Protokollen, welche auf Diophantischen Gleichungen basieren, gab Yosh wenig
Einschränkungen für die Parameter, die im Ablauf seines Protokolls benötigt werden.
Das Ziel dieser Arbeit ist sowohl Yosh’s Protokoll zu analysieren, als auch die Menge
von privaten und öffentlichen Schlüsseln so weit zu reduzieren, um Sicherheit und eine
effektive Implementation des Schlüsselaustauschs zu ermöglichen. Nach der Präsenta-
tion einer modernen Version des Beweises von Hilbert’s zehntem Problem, welches die
Schwierigkeit des Lösens von Diophantischen Gleichungen darstellt, wird ein Überblick
über bereits exisitierende kryptographische Protokolle basierend auf Diophantischen
Gleichungen gegeben. Danach beginnen wir die Analyse der allgemeinen Version von
Yosh’s Protokoll über einem unitären Ring, und führen minimale Anforderungen zur
Sicherheit ein. Um das Protokoll über einem endlichen Körper Fq durchzuführen,
beweisen wir explizite Abschätzungen über die Anzahl von q-rationalen Punkten einer
Fq-definierbaren Hyperfläche. Dafür benötigen wir Resultate der Algebraischen Geome-
trie. Um das Protokoll über den ganzen Zahlen durchzuführen, führen wir eine Klasse
von ganzzahligen Diophantischen Gleichungen ein, welche aus einer vordefinierten
Lösung konstruiert werden können. Abschließend geben wir ein Beispiel des Protokolls
über den ganzen Zahlen und zeigen, dass der öffentliche Schlüssel sehr groß gewählt
werden muss, um die Sicherheit des Protokolls zu gewähren.
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1 Introduction

In 1994, Peter Shor developed a quantum algorithm, called Shor’s algorithm [39],
solving both factorization as well as the discrete logarithm problem with the use
of quantum computers. Since then, the continual progress in the area of quantum
computing poses a threat to the security of widely used cryptographic techniques such
as the RSA cryptosystem or the Diffie-Hellman key exchange method.

Public key cryptosystems are usually built on mathematical problems which are be-
lieved to be hard to solve. This way there are operations within these cryptosystems
which can be computed very efficiently with publicly available knowledge, whereas
other operations are feasible only for participants holding secret information. With
the exception of certain families of Diophantine equations, higher order Diophantine
equations are believed to be hard to solve. In addition to that, the following problem
is even undecidable: Given any Diophantine equation, is there a universal algorithm
deciding whether this equation is solvable. This is known as Hilbert’s tenth problem,
and it was proved by Matijasevič in 1970, that no such algorithm exists [9].

Public Key cryptosystems that are based on Diophantine equations may offer an
alternative to those which are based on factorization or the discrete logarithm problem.
As we will see, there are already many such cryptosystems. In 2011, Harry Yosh
proposed the use of multidimensional Diophantine equations over the integers for the
agreement on a key, see [42]. A key agreement protocol is a cryptographic protocol,
where two or more participants establish a fresh key, and each of the participants
influences the outcome. As with any other security protocol, no third party should be
able to recreate the established key based on the exchanged messages.

In the following, an analysis of the key agreement protocol by Harry Yosh will be given.
The security of the protocol is not only based on the Diophantine equation it uses, but
also on the size of families of parameters used by its participants. As a small change
in the underlying parameters may cause a huge increase in the data that needs to be
transmitted or an increase in the number of computations, the efficiency of the protocol
is analyzed as well.

In the first chapter, a modern proof of the negative solution to Hilbert’s tenth problem
is given. The impossibility of constructing an algorithm that decides the solvability
of any general Diophantine equation does not mean that there is no efficient way of
finding all solutions for a given family of Diophantine equations. However, the key
agreement protocol presented in the following works with any non-linear Diophantine
equation in at least 3 unknowns, in contrast to other cryptographic protocols based on
Diophantine equations, which only use a very special family of equations.

In [18], Noriko Hirata-Kohno and Attila Pethő extend the brief observations made by
Yosh concerning the security of the protocol as well as the usage of finite fields. Their
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1 Introduction

results will serve as a foundation for this thesis. Amongst other things they proposed
the use of a certain family of Diophantine equations over the finite fields. In Chapter 3,
we establish that these equations are hard to solve by proving different estimates on
the number of solutions of absolutely irreducible affine varieties over finite fields.

1.1 Notions and Notations

Let K be a field and let

f = ∑
i∈I

aiX
λi,1
1 · · ·X

λi,n
n ∈ K[X1, . . . , Xn]

be a multivariate polynomial for a finite index set I. We say that f is absolutely
irreducible if it is irreducible on the algebraic closure K̄. We will denote by deg f the
total degree of f , i.e.

deg f = max{λi,1 + · · ·+ λi,n | i ∈ I}.

Moreover, if we write degXj
f for some j ∈ {1, . . . , n}, we mean the degree of f as a

polynomial over K[X1, . . . , Xj−1, Xj+1, . . . , Xn].
We say that f is homogeneous, if

λi,1 + · · ·+ λi,n = λj,1 + · · ·+ λj,n for all i, j ∈ I.

Otherwise we will say that f is inhomogeneous.
A Diophantine equation is an equation of the form

f = 0,

where f ∈ Z[X1, . . . , Xn] for n ≥ 2. We say that a Diophantine equation is linear, if
deg f = 1. Linear Diophantine equations are easy to solve, as shown in section 5.4.2. If
f = 0 is a Diophantine equations with deg f > 1, we call it a higher order Diophantine
equation.
A finite field with q elements is always denoted by Fq, where q is some prime power.

2



2 Hilbert’s Tenth Problem

In 1900 David Hilbert published a list of 23 unsolved mathematical problems. The tenth
problem on his list was the following:

Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined in a finite number of operations whether the
equation is solvable in rational integers.

It was proved by Yuri Matiyasevich in 1970 [9] that there is no algorithm which takes
any polynomial f ∈ Z[X1, . . . , Xn] and decides whether the Diophantine equation
f = 0 has solutions or not in finitely many steps. In the following, we will present
a proof given by Yuri Manin [25] of the negative answer to Hilbert’s Tenth problem
which is based on so called D-sets.

First the notion of Diophantine sets is introduced. With the use of D-sets, we can show
that the class of Diophantine sets equals the class of recursively enumerable sets, which
will lead to the desired result.

2.1 Principal Definitions

2.1.1 Diophantine Sets

Definition. A setM⊆Nn
0 , n ∈N0, is called a Diophantine set, if there is some polynomial

D ∈ Z[Y1, . . . , Yn, X1, . . . , Xm] such that

(a1, . . . , an) ∈ M⇔ (∃x1, . . . , xm ∈N0)(D(a1, . . . an, x1, . . . , xm) = 0]

holds.

For a Diophantine setM as given in the definition above, we will call

D(a1, . . . an, x1, . . . , xm) = 0

its Diophantine representation.
Relations of the form D(a1, . . . an, x1, . . . , xm) = 0 describe in fact families of Diophan-
tine equations. The variables a1, . . . , an are parameters and the x1, . . . , xm are unknowns.
Fixing a certain tuple of parameters results in a single Diophantine equation.
In order to examine if certain sets are Diophantine or not, we first have to see what
happens to Diophantine under basic set operations.

3



2 Hilbert’s Tenth Problem

Proposition 2.1.1. LetM1,M2 ⊆Nn
0 be Diophantine sets with Diophantine representations

D1 respectively D2. ThenM1 ∪M2 andM1 ∩M2 are also Diophantine.

Proof. Let (a1, . . . , an) ∈Nn
0 . The integers are an integral domain, so

(∃x1, . . . , xm, y1, . . . , yl ∈N0)

[(D1(a1, . . . , an, x1, . . . , xm) = 0) ∨ (D2(a1, . . . , an, y1, . . . , yl) = 0)]
⇔
(∃x1, . . . , xm, y1, . . . , yl ∈N0)[D1(a1, . . . , an, x1, . . . , xm)D2(a1, . . . , an, y1, . . . , yl) = 0].

This means that the union is Diophantine with the representation D1D2. Similarly the
intersection ofM1 andM2 is Diophantine, defined by the representation

(D1(a1, . . . , an, x1, . . . , xm))
2 + (D2(a1, . . . , an, y1, . . . , yl))

2 = 0.

Proposition 2.1.2. LetM1 ⊆Nn
0 ,M2 ⊆Nm

0 be Diophantine sets with Diophantine represen-
tations D1 respectively D2. ThenM1 ×M2 and the projection ofM1 to its first k coordinates,
k ≤ n are Diophantine.

Proof. For the direct product, we have

(x1, . . . , xn, y1, . . . , ym) ∈ M1 ×M2

⇔ (∃u1, . . . , ur, v1, . . . , vs)[(D1(x1, . . . , xn, u1, . . . , ur))
2 + (D2(y1, . . . , ym, v1, . . . , vs))

2 = 0],

thus the direct product is Diophantine. Next assume thatM′
1 is the projection ofM1

to its first k coordinates for some fixed k ≤ n. Then for all (x1, . . . , xk) ∈Nk
0 we have

(x1, . . . , xk) ∈ M′
1 ⇔ (∃y1, . . . , yr, xk+1, . . . , xn)[D(x1, . . . , xk, xk+1, . . . , xn, y1, . . . yr) = 0],

thus the projection is Diophantine as well.

A relation on k non-negative integers is a subset of Nk
0. If a relation is a Diophantine

set, we call it a Diophantine relation. Similarly, we call a function Diophantine, if its
graph is a Diophantine set. The terms of Diophantine sets and Diophantine relations
are usually interchangeable. For example, take the relation ≤ over the non-negative
integers. The set S of pairs (a, b) with a ≤ b can be seen as a Diophantine set since

(a, b) ∈ S⇔ (∃x1 ∈N0)[D(a, b, x) = 0],

for D = Y1 −Y2 + X1 ∈ Z[Y1, Y2, X1]. This also equals the relation ≤, so we can either
say that the set S is Diophantine or the relation ≤ is, meaning the same thing.
We can generalize this and say that a property P, i.e. a logical expression P, is Diophan-
tine, if the set of all numbers having this property is Diophantine. For example, for the
set of even numbers E ⊂N0 we have

a ∈ E⇔ (∃x ∈N0)[D(a, x) = 0]

4



2 Hilbert’s Tenth Problem

for the polynomial D = 2X − Y ∈ Z[Y, X], so the property ’is an even number’ is
Diophantine. When it is clear which polynomial D is used, we can simplify the notation
and write

Even(s)⇔ ∃x[2x = a].

The domain of x as given above will always be N0, so we will only use this simplified
notation. This definition of an even number shows that the property ’is an even num-
ber’ is Diophantine. Disjunction and conjunction of properties correspond to union
and intersection of sets, so according to Proposition 2.1.1 the disjunction and conjunc-
tion of two Diophantine properties is again Diophantine. The following examples of
Diophantine relations use this fact and will come into effect later on:

a < b⇔ ∃x[a + x + 1 = b],
a|b⇔ ∃x[ax = b],

(2.1)

Let rem(b, c) denote the remainder of b divided by c. Then from the above relations, we
get that

a = rem(b, c)⇔ (a < c) ∧ (c|(b− a)) (2.2)

is Diophantine, which will be used in the next section, and also shows that

a ≡ b mod c⇔ rem(a, c) = rem(b, c)

is Diophantine.

Note that we have constructed equation (2.2) with the use of Proposition 2.1.1. For
Diophantine Relations R1 and R2, R1 ∧R2 is also Diophantine, since this corresponds
to the intersection of the sets. We will use this fact heavily to construct Diophantine
sets and relations in the following sections.

2.1.2 Recursively Enumerable Sets

So far we have not introduced a way of knowing what the term ’algorithmically com-
putable’ means yet. For this matter, we will make use of the well known Church-Turing-
Thesis, which states that algorithmic computability is equivalent to computability by a
Turing machine.

Definition. A Turing machine M is a 7-tuple M = (Q, Γ,�, Σ, F, qstart, δ) where

• Q is a finite set of states, and qstart ∈ Q is the initial state. Further F ⊂ Q is the set of
final states.
• Γ is the finite set of tape symbols, with � ∈ Γ the blank symbol
• Σ ⊂ Γ \ {�} is the set of input symbol
• δ : (Q \ F)× Γ→ Q× Γ× {L, S,R} is the transition function

Assume that x ∈ (Σ \ {�})∗. Then a Turing machine M can take this as an input, and
if M halts on this input, one can derive M(x) ∈ F. For details we refer to [1]. This leads
to the fact that a Turing machine can distinguish between two different cases for the
term ’computable’.

5



2 Hilbert’s Tenth Problem

Definition. Let L ⊂ (Σ \ {�})∗ be a language and let M be a Turing machine. Suppose that
for the set F of final states we have {0, 1} ⊆ F. Then

• M decides L, if for x ∈ L we have M(x) = 1 and for x 6∈ L we have M(x) = 0. We call
L recursive, if there exists a Turing machine that decides L.

• M accepts L, if for x ∈ L we have M(x) ∈ F and for x 6∈ L M will never halt. We call L
recursively enumerable, if there exists a Turing machine that accepts L.

It follows directly from this definition that every recursive set is recursively enumerable.
Indeed, assume that a Turing machine M decides L. Then, we can construct a Turing
machine M′ which accepts L by copying M, and for every state in which M goes to the
final state 0, M′ instead enters a state where it goes to the right without ever halting.
It is not true that every recursively enumerable set is recursive, as the Halting problem,
among many others, gives a set which can be accepted by a Turing machine, but never
decided. We therefore have the following theorem, which is crucial to the answer of
Hilbert’s tenth problem.

Theorem 2.1.3. LetR be the class of all recursive languages, andRE the class of all recursively
enumerable languages. Then R ( RE .

The introduction of primitive recursive functions allows us to further characterize
recursively enumerable subsets of non-negative integers.

Definition. Let

suc : N0 →N0, x 7→ x + 1,

1(n) : Nn
0 →N0, (x1, . . . , xn) 7→ 1,

prn
i : Nn

0 →N0, (x1, . . . , xn) 7→ xi,

denote the basic functions for n ∈N0. The primitive recursive functions are constructed from
the basic functions by applying composition, juxtaposition and recursion.

The composition of two functions is defined in the usual way. For juxtaposition and
recursion let f1 : N

k1
0 → Nn

0 , f2 : N
k2
0 → Nm

0 . For k1 = k2, the juxtaposition of the
functions f1 and f2 is given by

g : N
k1
0 →Nn+m

0

(x1, . . . , xk1) 7→ ( f1(x1, . . . , xk1), f2(x1, . . . , xk1)),

and for k2 = k1 + 2, n = m = 1 the recursion obtained from f1 and f2 is a function g
given by the equation

g(x1, . . . , xk1 , k) =
{

f1(x1, . . . , xk1) : k = 0
f2(x1, . . . , xk1 , g(x1, . . . , xk1 , k− 1), k) : k > 1.

We want to be able to compare recursively enumerable sets with Diophantine sets.
In order to do so, we first note that the basic functions from the definition above are

6



2 Hilbert’s Tenth Problem

Diophantine:

y = suc(x)⇔ y− x− 1 = 0

y = 1(n)(x1, . . . , xn)⇔ y− 1 = 0
y = prn

i (x1, . . . , xn)⇔ y− xi = 0

In addition to that, is is easy to show that any polynomial function is a primitive
recursive function. Moreover, the primitive recursive functions can describe the recur-
sively enumerable sets, as seen in the following theorem. For a proof of this theorem
see [40].

Theorem 2.1.4. A set R ∈ Nn
0 is recursively enumerable if and only if there is a primitive

recursive function f such that

R = {(x1, . . . , xn) ∈Nn
0 | ∃y1, . . . , ym ∈N0 such that f (x1, . . . , xn, y1, . . . , ym) = 0}.

This theorem allows us to do two things. First, as we did with Diophantine sets, we
can identify recursively enumerable sets with primitive recursive functions. Second,
any Diophantine set is recursively enumerable. This follows from the fact that every
polynomial is a primitive recursive function and the definition of Diophantine sets.
In order to proof Hilbert’s tenth problem, we want to establish that the class of
Diophantine sets equals the class of recursively enumerable sets. To do so, a third class
of sets is introduced, the so called D-sets.

Definition. Let E ⊆ Nn
0 . The set G ⊆ Nn

0 obtained by bounded universal quantification on
the i-th coordinate, if

(x1, . . . , xn) ∈ E⇔ ∀k ∈ {1, . . . , xi}[(x1, . . . , xi−1, k, xi+1, . . . , xn) ∈ G].

As in [25], D-sets are defined as follows:

Definition. Let D be the class of Diophantine sets. Let C be the smallest class containing D
which is closed under taking finite unions, finite intersections, finite direct products, projections,
and applying the bounded universal quantifier. A set C ∈ C is called a D-set.

In the next section, we will establish that the D-Sets equal the recursively enumerable
sets. Then, we will show that all recursively enumerable sets are Diophantine.

2.2 Recursively Enumerable Sets are D-Sets

Lemma 2.2.1. The class of all recursively enumerable sets is closed with respect to direct
product, union, intersection and projection.

7
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Proof. Let R1, R2, R3 be recursively enumerable sets with primitive recursive functions

f1 : Nn+a
0 →N0,

f2 : Nn+b
0 →N0,

f3 : Nm+c
0 →N0,

for n, m, a, b, c ∈N0 such that

R1 = {(x1, . . . , xn) ∈Nn
0 | ∃y1, . . . , ya ∈N0 with f1(x1, . . . , xn, y1, . . . , ya) = 0},

R2 = {(x1, . . . , xn) ∈Nn
0 | ∃y1, . . . , yb ∈N0 with f2(x1, . . . , xn, y1, . . . , yb) = 0},

R3 = {(x1, . . . , xm) ∈Nm
0 | ∃y1, . . . , yc ∈N0 with f3(x1, . . . , xm, y1, . . . , yc) = 0}.

Closure under projection follows from the definition. For the other operations, like in
Proposition 2.1.1, we have

R1 ∪ R2 = {(x1, . . . , xn) ∈Nn
0 | ∃y1, . . . , ya, y′1 . . . , y′b ∈N0

with f1(x1, . . . , xn, y1, . . . , ya) f2(x1, . . . , xn, y′1, . . . , y′b) = 0},
R1 ∩ R2 = {(x1, . . . , xn) ∈Nn

0 | ∃y1, . . . , ya, y′1 . . . , y′b ∈N0

with ( f1(x1, . . . , xn, y1, . . . , ya))
2 + ( f2(x1, . . . , xn, y′1, . . . , y′b))

2 = 0},
R1 × R2 = {(x1, . . . , xn, z1, . . . , zm) ∈Nn+m

0 | ∃y1, . . . , ya, y′1 . . . , y′c ∈N0

with ( f1(x1, . . . , xn, y1, . . . , ya))
2 + ( f3(u1, . . . , um, y′1, . . . , y′c))

2 = 0},

and since the product and the sum of primitive recursive functions is again primitive
recursive, the sets R1 ∪ R2, R1 ∩ R2 and R1 × R2 are recursively enumerable.

We need to introduce the so called Gödel function, which is defined by

gd : N3
0 →N0,

(u, k, t) 7→ rem(1 + kt, u).

With the use of this function, we may encode arbitrarily long sequences (y1, . . . , yN)
with the pair (u, t).

Indeed, choose some X ∈N0 large enough such that X ≥ N and for all k ∈ {1, . . . , N}
we have 1 + kN! > yk and set t = X!. Consider the system of equations

u ≡ y1 mod 1 + t
u ≡ y2 mod 1 + 2t
· · ·

u ≡ yN mod 1 + Nt.

For all i, j ∈ {1, . . . , N}, we have gcd (1 + it, 1 + jt) = gcd (1 + iX!, 1 + jX!) = 1, since
any prime p dividing the greatest common divisor would also divide (i− j)X!, meaning
that p < X, but no such p could divide 1 + iX!. Therefore, according to the Chinese
Remainder Theorem, there is a unique solution u ∈ N0 to this system of equations
with u < ∏N

i=1(1 + it). Thus (u, t) encodes the N-tuple (y1, . . . , yN).

By (2.2), the remainder function and thus also the Gödel function are Diophantine.
Moreover, it can be shown that this function is primitive recursive.
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Lemma 2.2.2. The class of all recursively enumerable sets is closed with respect to the bounded
universal quantifier.

Proof. Let E be a recursively enumerable set with primitive function f with domain
Nn+m

0 . Let G ⊆Nn
0 be obtained from E by the use of the bounded universal quantifier.

We define a function g by

g(x1, . . . , xn, u1, . . . , um, t1, . . . , tm) =
xn

∑
k=1

( f (x1, . . . , xn−1, k, gd(u1, k, t1), . . . , gd(um, k, tm)))
2.

Since f and gd are primitive recursive, so is g. We will show that

G = {(x1, . . . , xn) ∈Nn
0 |∃u1, . . . , um, t1, . . . , tm

with g(x1, . . . , xn, u1, . . . , um, t1, . . . , tm) = 0},

meaning that G is recursively enumerable.
First, assume that for a tuple (x1, . . . , xn) ∈Nn

0 , there are some uj, tj such that

g(x1, . . . , xn, u1, . . . , um, t1, . . . , tm) = 0.

This means that for all k ∈ {1, . . . , xn}

f (x1, . . . , xn−1, k, gd(u1, k, t1), . . . , gd(um, k, tm)) = 0,

and hence (x1, . . . , xn) ∈ G by the definition of the bounded universal quantifier.
So now assume that (x1, . . . , xn) ∈ G. Then, for all k ∈ {1, . . . , xn} there are some yi,k,
i ∈ {1, . . . , m}, such that

f (x1, . . . , xn−1, k, y1,k, . . . , ym,k) = 0.

By the definition of gd, there are pairs (ui, ti) with gd(ui, k, ti) = yi,k for all i, k. Therefore
there exist ui, ti such that

g(x1, . . . , xn, u1, . . . , um, t1, . . . , tm) = 0,

which completes the proof.

Lemma 2.2.3. Every D-set is recursively enumerable.

Proof. Every Diophantine set it recursively enumerable. The class of D-sets is obtained
by closing the Diophantine sets under direct product, union, intersection, projection
and the bounded universal quantifier. Thus, by Lemma 2.2.1 and Lemma 2.2.2, every
D-set is recursively enumerable.

To prove the other direction, we use the characterization of recursively enumerable sets
as given in Theorem 2.1.4.

Lemma 2.2.4. Let f : N
d f
0 → N

i f
0 , g : N

dg
0 → N

ig
0 be primitive recursive functions whose

graphs Γ f , Γg are D-sets.

9
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1. Let d f = q, i f = r, dg = p, ig = q. Further let h1 : N
p
0 →Nr

0 be the primitive recursive
function, which is the composition of f and g. Then Γh1 , the graph of h1, is a D-set.

2. Let d f = p, i f = q, dg = p, ig = r. Further let h2 : N
p
0 → N

r+q
0 be the primitive

recursive function, which is the juxtaposition of f and g. Then Γh2 , the graph of h2, is a
D-set.

Proof. 1. By definition, we have

Γh1 = {(x1, . . . , xp, y1, . . . , yr) | h1(x1, . . . , xp) = (y1, . . . , yr)}
= {(x1, . . . , xp, y1, . . . , yr) | ∃z1, . . . , zz ∈N0 with

[g(x1, . . . , xp) = (z1, . . . , zq) and f (z1, . . . , zq) = (y1, . . . , yr)]}.

Hence Γh1 is the projection of (Γg ∩Nr
0) × (N

p
0 ∩ Γ f ) to the first r and last q

coordinates. Since D-sets are closed under finite direct products, intersections and
projections, Γh1 is also a D-set.

2. For juxtaposition, we first define a function

permp,q,r : N
p+q+r
0 →N

p+q+r
0

(x1, . . . , xp, y1, . . . , yq, z1, . . . , zr) 7→ (x1, . . . , xp, z1, . . . , zr, y1, . . . , yq).

It is easy to see that the image of a Diophantine set under permp,q,r is again
Diophantine. By the definition of juxtaposition, the graph is given by

Γh2 = {(x1, . . . , xr, y1, . . . , yq, z1, . . . zr)) | h1(x1, . . . , xr) = (y1, . . . , yq, z1, . . . zr)}
= {(x1, . . . , xr, y1, . . . , yq, z1, . . . zr)) |

f (x1, . . . , xr) = (y1, . . . , yq) and g(x1, . . . , xr) = (z1, . . . zr)}.

Therefore Γh2 = (Γ f ×Nr
0) ∩ permp,q,r(Γg ×N

q
0). Again since D-sets are closed

under intersection and direct product, Γh2 is a D-set.

Lemma 2.2.5. Let f : Nn
0 → N0, g : Nn+2

0 → N0 be primitive recursive functions whose
graphs Γ f , Γg are D-sets. Then the graph Γh, where h is the function defined recursively from f
and g, is a D-set.

Proof. First we write the graph Γh as a union Γh = Γ1 ∪ Γ2, where

(x1, . . . , xn+1, y) ∈ Γh with xn+1 = 0⇔ (x1, . . . , xn+1, y) ∈ Γ1,
(x1, . . . , xn+1, y) ∈ Γh with xn+1 ≥ 1⇔ (x1, . . . , xn+1, y) ∈ Γ2.

By the definition of the recursion of two functions, we have xn+1 = 0 for (x1, . . . , xn+1, y) ∈
Γ1 iff f (x1, . . . , xn) = y, and this holds iff (x1, . . . , xn, y) ∈ Γ f . Hence

Γ1 = permn,1,1(Γ f ×N0) ∩ permn,1,1(N
n−1
0 × {0}),

10



2 Hilbert’s Tenth Problem

therefore Γ1 is a D-set. So it remains to prove that Γ2 is also one. In order to do so, we
introduce a set E, which is the projection of E′ ⊆ Nn+4

0 to its first n + 2 coordinates,
where the E′ is defined by

(x1, . . . , xn, y, z, u, t) ∈ E′ ⇔ z = gd(u, y, t)
and gd(u, 0, t) = f (x1, . . . , xn)

and y ≥ 1, for k ∈ {2, . . . , y}
gd(u, k, t) = g(x1, . . . , xn, k− 1, gd(u, k− 1, t))

We denote the first equation of the equivalence above E1, the second E2 and the third
E3. We claim that Γ2 ⊆ E. Let (x1, . . . , xn, y, z) ∈ Γ2. Further let (a1, . . . , ay) be the
sequence defined by ai = h(x1, . . . , xn, i) for i ∈ {1, . . . , y}. By the definition of the
function gd, we can find u, t such that gd(u, k, t) = ak. Since (x1, . . . , xn, y, z) ∈ Γ2, we
have h(x1, . . . , xn, y) = z and thus equation E1 is true. Also E2 is satisfied, since

gd(u, 0, t) = h(x1, . . . , xn, 0) = f (x1, . . . , xn).

It is easy to show that E3 holds by using induction on k, so indeed Γ2 ⊆ E.
Next we claim that E ⊆ Γ2. To show this, let (x1, . . . , xn, y, z, u, t) ∈ E. Then E1, E2, E3 de-
fine the recursion of f and g which is h, and since by E3 we have y ≥ 1, (x1, . . . , xn, y, z) ∈
Γ2 and thus Γ2 ⊆ E.
Since Γ2 = E, it suffices to show that sets which are determined by E1, E2, E3 are D-
sets, proving that Γ2 is a D-set. E1 is Diophantine and thus the corresponding set is a
D-set. The set determined by E2 is the projection to the first n + 4 coordinates of the
intersection of the D-sets given by the relations

k− 1 = 0, w = gd(u, k, t) and f (x1, . . . , xn)− w = 0,

thus E2 describes a D-set. So let us consider the set that arises from equation E3. Let F
be the set

(x1, . . . , xn, xn+1, u, t) ∈ F ⇔ gd(u, xn+1 + 1, t) = g(x1 . . . , xn+1, gd(u, xn+1, t)).

This is a D-set, as it is the projection to the first n + 3 of the intersection of the sets

w1 = gd(u, xn+1 + 1, t),
w2 = gd(u, xn+1, t),
w3 = g(x1, . . . , xn+1, w2) = w1.

So
(x1, . . . , xn+1, u, t) ∈ E3 ⇔ ∀k ∈ {1, . . . , xn+1 − 1} : (x1, . . . , xn, k, u, t) ∈ F

and thus E3 is a D-set.

Theorem 2.2.6. The class of all D-sets equals the class of all recursively enumerable sets.

Proof. From Lemma 2.2.3, every D-set is recursively enumerable, so we have to show
that the converse is also true. Let E be a recursively enumerable set. By Theorem 2.1.4,
the set E is the projection of

(Nn
0 × {0}) ∩ {(x1, . . . , xn, y) ∈Nn+1

0 | f (x1, . . . , xn) = y}

11
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to its first n coordinates, for some primitive recursive function f . So it suffices to show
that every graph of a recursive function is a D-set. Every recursive function arises
from the basic functions by applying composition, juxtaposition and recursion. So by
Lemma 2.2.4 and Lemma 2.2.5, and the fact that the basic recursive functions describe
D-sets, the graph of every recursive function is indeed a D-set.

Since we have shown that D-sets are the same as recursively enumerable sets, we want
to deduce the equality of the class of D-sets and Diophantine sets. For this, we will need
to show that exponentiation as well as the factorial relation are both Diophantine.

2.3 Pell’s equation

We will first establish that the exponential relation, i.e. the set of all triples (k, m, n) with
m = kn is Diophantine. To do so, we will work with a certain kind of Pell’s equation.
Pell’s equation is a Diophantine equation of the form

x2 − dy2 = 1. (2.3)

This equation is trivial when d is a square, so this case is omitted.
Solutions to (2.3) are connected with properties of the ring Z[

√
d]. In order to work

with it, we will give the following definition.

Definition. Let L/K be a finite field extension, and let µa be the K-linear map

µa : L→ L,
x 7→ ax

for some a ∈ L. We define the norm of a as NL/K(a) := detµa.

We will only need the norm function for an algebraic number field K/Q, which we will
simply denote as N. An algebraic number field is a finite Galois extension, so we can
use the well-known fact that

N(x) = ∏
σ∈G

σx for G = Gal(K/Q).

Let OK be the ring of integers of K. Then for all a ∈ OK, we have |N(a)| = 1 if and only
if a is a unit.

2.3.1 Fundamental Units

Let K be a field and denote by µ(K) the roots of unit of K. For certain d ∈ Z, we will
show that solutions to (2.3) have a finite set of generators.

12
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Theorem 2.3.1 (Dirichlet’s Unit Theorem). Let K be an algebraic number field with [K :
Q] = r1 + 2r2, where r1 denotes the number of real and r2 the number of pairs of conjugate
complex embeddings. Let OK be the ring of integers of K. Then there are some ζ ∈ µ(OK) and
ε1, . . . , εr1+r2−1 ∈ O×K such that every ε ∈ O×K has a unique representation

ε = ζd
r1+r2−1

∏
i=1

εki
i , with d ∈ {0, . . . , ord(ζ)− 1}, k1, . . . , kr1+r2−1 ∈ Z.

This means that
O×K ∼= µ(OK)×Zr1+r2−1.

We denote a tuple (ε1, . . . , εr1+r2−1) as the fundamental units of OK. We can use the
Unit Theorem to prove the following:

Proposition 2.3.2. Let d ∈N0 be square-free with d ≡ 2, 3 mod 4. Then the equation

x2 − dy2 = 1

has an infinite set of solutions S ⊂ Z2, and there is some solution (α, β) ∈ S such that there is
a unique k ∈ Z with

a + b
√

d = ±(α + β
√

d)k

for all (a, b) ∈ S.

Proof. Denote by K the quadratic number field Q(
√

d). Since d is positive, K ⊂ R, hence
µ(K) = {−1, 1}. Moreover there are two real embeddings

σ : a + b
√

d 7→ a± b
√

d,

and with [K : Q] = 2 we have no complex embeddings. Thus, by Dirichlet’s Unit
Theorem, O×K ∼= Z/2Z ×Z. With d ≡ 2, 3 mod 4 we have OK = Z[

√
d]. The set

of units equals the set of algebraic integers α = a + b
√

d ∈ OK with 1 = NK(α) =

(a + b
√

d)(a− b
√

d) = a2 − db2, so the units are in a one-to-one correspondence with
the set S.

We call a pair (α, β), as given in the proposition above, a fundamental solution. Next
we consider the Pell equation

x2 − (a2 − 1)y2 = 1, (2.4)

for some positive integer a > 1. We claim that (x, y) = (a, 1) is the fundamental
solution to the above equation. To show this, we can not work with the abovementioned
proposition, since for the case a ≡ 3 mod 4, we have that d = a2 − 1 is not square-free.
In fact, we will only show that (a, 1) generates the positive integer solutions of the above
equation. So consider solutions to (2.4) given by χ1 = x1 + y1

√
d, χ2 = x2 + y2

√
d ∈

Z[
√

d] with 1 ≤ χ1, χ2. It is easy to see that for any x + y
√

d ∈ Z[
√

d] solving (2.4) we
have

13
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• x, y > 0⇔ x + y
√

d > 1,
• x > 0 and y < 0⇔ 0 < x + y

√
d < 1,

• x < 0 and y > 0⇔ −1 < x + y
√

d < 0,
• x, y < 0⇔ x + y

√
d < −1,

so x1, x2, y1, y2 > 0. If we have 1 ≤ χ1 < χ2, it follows that 1 ≤ x1 < x2 and 0 ≤ y1 < y2,
so the set of all α = x + y

√
d > 1 with x2 − dy2 = (x + y

√
d)(x − y

√
d) = N(α) = 1

is well-ordered. We claim that the smallest α in this set is the fundamental solution
to (2.4). Indeed, on the one hand for any n ∈N0 we have N(αn) = N(α)n = 1, so αn is
a solution. On the other hand for a solution with 1 ≤ β, there is some n such that

αn ≤ β < αn+1,

so 1 ≤ α−nβ < α and N(α−nβ) = 1. By the minimality of α we have α−nβ = 1 and thus
β = αn. Therefore, in order to show that (a, 1) is the fundamental solution, we need
to prove that a +

√
d is minimal among solutions to the Pell equation above which

are greater than 1. Assume that χ = x3 + y3
√

d is a solution with 1 < χ3 < a +
√

d.
But then x3 < a and y3 < 1, which is not possible, so (a, 1) is indeed the fundamental
solution.

2.3.2 The Functions Xa(n) and Ya(n)

Since (a, 1) is the fundamental solution of (2.4), the coefficients (x, y) of any solution
(a +

√
d)n can be expressed through (a, 1).

Definition. Let a, n ∈ N0 with a > 1. We denote by (Xa(n), Ya(n)) ∈ N2
0 the unique pair

solving the system of equations

x2 − (a2 − 1)y2 = 1, (2.5)

x + y
√

a2 − 1 = (a +
√

a2 − 1)n. (2.6)

Note that it follows from the definition above that both Xa(n) and Ya(n) are strictly
increasing functions in n. Moreover, by the previous section, Xa(n) and Ya(n) are
well-defined. In fact, they form a bijective map from N0 to solution pairs over the
non-negative integers of (2.4): For every (xo, yo) ∈N2

0 with x2
0 − (a2 − 1)y2

0 = 1 there is
a unique n ∈N0 with (xo, yo) = (Xa(no), Ya(no)).
Taking conjugates in the ring Z[

√
d] is a ring homomorphism, so from (2.6) we derive

the equivalent equation

x− y
√

a2 − 1 = (a−
√

a2 − 1)n. (2.7)

We will now prove some properties of the functions Ya(n) and Xa(n).

Lemma 2.3.3. Let a > 1. Then for all n, m ∈N0 with n ≥ m we have the following equations:

Xa(n±m) = Xa(n)Xa(m)± dYa(n)Ya(m) (2.8)
Ya(n±m) = Ya(n)Xa(m)± Xa(n)Ya(m) (2.9)

Xa(2n) = 2Xa(n)2 − 1 (2.10)
Ya(2n) = 2Xa(n)Ya(n) (2.11)
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Proof. From (2.6), we obtain

Xa(n + m) + Ya(n + m)
√

d = (a +
√

d)n+m

= (a +
√

d)n(a +
√

d)m

= (Xa(n) + Ya(n)
√

d)(Xa(m) + Ya(m)
√

d).

Noting that (a +
√

s) = a−
√

s = (a +
√

s)−1, we use the same method to obtain

Xa(n−m) +
√

dYa(n−m) = (Xa(n) +
√

dYa(n))(Xa(m)−
√

dYa(m)).

Every element in α ∈ Z[
√

d] can uniquely be written as α = x + y
√

d, so by separat-
ing the above equations into integers and elements in

√
dZ, we obtain the first two

equations. Equation (2.11) follows by setting m = n. For equation (2.10), we have

Xa(2n) = Xa(n + n) = Xa(n)2 + dYa(n)2 = Xa(n)2 + (Xa(n)2 − 1).

By definition, we have

Xa(n) + Ya(n)
√

a2 − 1 = (a +
√

a2 − 1)n

for all n ∈ N0. Thus, for all a ≥ 2, Xa(0) = 1, Xa(1) = a and Ya(0) = 0, Ya(1) = 1. By
setting m = 1 in (2.8) and (2.9), we can represent X and Y as the linear recurrences

Xa(0) = 1, Xa(1) = a, Xa(n + 1) = 2aXa(n)− Xa(n− 1), (2.12)
Ya(0) = 0, Ya(1) = 1, Ya(n + 1) = 2aYa(n)−Ya(n− 1). (2.13)

These recurrences even hold for a = 1, by setting X1(n) = 1 and Y1(n) = n. This allows
us to prove the following:

Lemma 2.3.4. Let a, b ≥ 1 and n, k ∈N0. then

Ya(n) ≡ Yb(n) mod (a− b), (2.14)
Ya(n) ≡ n mod (a− 1), (2.15)
(2a− 1)n ≤ Ya(n + 1) < (2a)n, (2.16)

Xa(n)− (a− k)Ya(n) ≡ kn mod (2ak− k2 − 1). (2.17)

Proof. We show the first equation by induction on n ∈ N0. For n ∈ {0, 1} there is
nothing to show, so assume that n ≥ 2. By (2.13), Ya(n) is a polynomial in a and n.
Hence, also by the above recurrence,

Ya(n)−Yb(n) ≡ 2(a− b)(Ya(n− 1)−Yb(n− 1)− (Ya(n− 2)−Yb(n− 2))
≡ 0 mod (a− b).
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For equation (2.15), we set b = 1. The third equation is easily proved by induction
with (2.13). For the fourth equation, we again use induction on n and the equations (2.12)
and (2.13). For n ∈ {0, 1} there is nothing to show, so assume that n ≥ 2. Then

Xa(n + 1)− (a− k)Ya(n + 1) ≡ 2a(Xa(n)− (a− k)Ya(n))− (Xa(n− 1)− (a− k)Ya(n− 1))

≡ 2akn − kn−1 ≡ kn−1(2ak− 1)

≡ k2kn−1 ≡ kn+1 mod (2ak− k2 − 1).

The following two lemmas are crucial to prove Proposition 2.3.7:

Lemma 2.3.5. With the notations above, we have

n|m if and only if Ya(n)|Ya(m) and (2.18)

Y2
a (n)|Ya(m) if and only if nYa(n)|m. (2.19)

Proof. By definition Ya(n) and Xa(n), for any n ∈ N0, form a solution to the Pell
equation x2 − (a2 − 1)y2 = 1, thus gcd (Xa(n), Ya(n)) = 1. By (2.9)

Ya(n±m) ≡ Ya(m)Xa(n) mod Ya(n),

and thus Ya(n)|Ya(n±m) if and only if Ya(n)|Ya(m). For unique q, r ∈ Z with 0 ≤ r < n
we can write m = qn + r and thus

Ya(n)|Ya(m) ⇔ Ya(n)|Ya(qn + r) ⇔ Ya(n)|Ya(r).

Hence Ya(n)|Ya(m) if and only if Ya(r) = 0 and this holds if and only if n|m. For
equation (2.19), we have

Xa(jn) + Ya(jn)
√

d = (a +
√

d)jn = (Xa(n) + Ya(n)
√

d)j

=
j

∑
i=0

(
j
i

)
(Xa(n))j−i(Ya(n)

√
d)i

= ∑
i even

(Xa(n))j−i(Ya(n)
√

d)i +
√

d ∑
i odd

(Xa(n))j−i(Ya(n)
√

d)i−1.

and hence

Ya(nj) = ∑
i odd

(Xa(n))j−i(Ya(n)
√

d)i−1 ≡ jXa(n)j−1Ya(n) mod (Ya(n))2.

Now assume that (Ya(n))2|Ya(m). Then Ya(n)|Ya(m) and by the first part of the lemma,
there is some k ∈ Z with n = km. Now

kXa(n)k−1Ya(n) ≡ Ya(m) ≡ 0 mod (Ya(m)2)

and thus (Ya(n))2|kYa(m), meaning that nY(n)|m. For the other direction, suppose that
nY(n)|m, and again let k = Y(n). Then

Ya(nYa(n)) ≡ Ya(n)Xa(n)Ya(n)−1Ya(n) ≡ 0 mod (Ya(n))2,

so (Ya(n))2|Ya(nYa(n)), and by (2.18) and the fact that nYa(n)|m, Ya(nYa(n))|Ya(m) and
thus (Ya(n))2|Ya(m).
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Lemma 2.3.6. With the notations above, for a ≥ 2, n ∈N0

Ya(n− 1) + Ya(n) < Xa(n), (2.20)
Ya(4ni±m) ≡ ±Ya(m) mod Xa(n), (2.21)
Ya(4ni + 2n±m) ≡ ∓Ya(m) mod Xa(n), (2.22)
Ya(k) ≡ ±Ya(m) mod Xa(n) if and only if k ≡ ±m mod 2n, (2.23)

where the signs ± do not correspond in equation (2.23).

Proof. By (2.9), we have

2Ya(n− 1) ≤ aYa(n− 1) < aYa(n− 1) + Xa(n− 1) = Ya(n),

hence Ya(n− 1) < Ya(n)−Ya(n− 1) and it follows that

Ya(n− 1) + Ya(n) < 2Ya(n)−Ya(n− 1) ≤ aYa(n)−Ya(n− 1) = Xa(n),

so Ya(n− 1) + Ya(n) < Xa(n).
Next by Lemma 2.3.3,

Ya(2n) ≡ 0 and Xa(2n) ≡ −1 mod Xa(n).

So by (2.9) and using 2n instead of n, we derive

Ya(2n±m) ≡ ∓Ya(m) mod Xa(n)

and thus for all i ∈N0 we have

Ya(4ni±m) = Ya(i(2n + 2n)±m) = Ya(2n +

:=m′︷ ︸︸ ︷
2n + · · ·+ 2n±m) ≡ −Ya(m′) =

= Ya(2n +

:=m′′︷ ︸︸ ︷
2n + · · ·+ 2n︸ ︷︷ ︸

2i−1 terms

±m) ≡ Ya(m′′) ≡ . . . ≡ Ya(2n + 2n±m) ≡ −Ya(2n±m)

≡ ±Ya(m) mod Xa(n).

Equation (2.22) follows along the same lines. For the last equation of the lemma, first
assume that k = 2nj±m for some j ∈N0. With the two equations derived above, we
have

Ya(k) =
{

Ya(4ni±m) ≡ ±Ya(m) for j = 2i
Ya(4ni + 2n±m) ≡ ∓Ya(m) for j = 2i + 1

for some i ∈N0, so Ya(k) ≡ ±Ya(m) mod Xa(m).
So assume now that Ya(k) ≡ ±Ya(m) mod Xa(n). Let 0 ≤ k′, m′ ≤ n be representants
of ±k and ±m modulo 2n. Then there is some i ∈ N0 such that k = ±k′ + i(2n) and
like we showed before

Ya(k) = Ya(2n + · · ·+ 2n± k′) ≡ ±Ya(k′) mod Xa(n).

Likewise it follows that Ya(m) ≡ ±Ya(m′) and thus by assumption Ya(k′) ≡ ±Ya(m′)
mod Xa(n). Suppose that k′ 6= m′. Then, since Ya(n) is strictly increasing in n and by
(2.20),

0 < |Ya(k′ ±Ya(m′)| ≤ |Ya(k′ + Ya(m′)| ≤ Ya(n− 1) + Y(n) < Xa(n),

contradicting X : a(n)|(Ya(k′)±Ya(m′)). So k′ = m′ and hence k ≡ ±m mod 2n.
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We are now able to show that both functions Xa(n) and Ya(n) are Diophantine.

Proposition 2.3.7. Let a ≥ 2. Then c = Ya(n) and d = Xa(n) are Diophantine relations.

Proof. We will prove first that for all (c, a, n) ∈N0, c = Ya(n) holds if and only if there
are d, e, f , g, h, i, j ∈N0 such that

(1) d2 − (a2 − 1)c2 = 1, (4) e = (j + 1)2c2, (7) h ≡ c mod f ,

(2) f 2 − (a2 − 1)e2 = 1, (5) g ≡ a mod f , (8) h ≡ n mod 2c,

(3) i2 − (g2 − 1)h2 = 1, (6) g ≡ 1 mod 2c, (9) n ≤ c.

This would mean that c = Ya(n) is the finite intersection of Diophantine relations
and thus Diophantine. So first assume that for some d, e, f , g, h, i, j ∈N0 the equations
(1)− (9) are true. Then, by definition of Xa(n) and Ya(n), there are some n1, n2, n3 ∈N0
such that

d = Xa(n1), c = Ya(n1), f = Xa(n2), e = Ya(n2), i = Xg(n3) and h = Yg(n3).

So to prove that c = Ya(n), it suffices to show that n1 = n. By relation (4) and (2.22),
we have

c2|e ⇔ (Ya(n1))
2|Ya(n2) ⇔ n1Ya(n1)|n2 ⇒ Ya(n1)|n2 ⇔ c|n2.

By (2.14), Yg(n3) ≡ Y1(n3) mod g − 1, and with g − 1 ≡ 0 mod 2c it follows that
Yg(n3) ≡ Y1(n3) mod 2c, hence

n ≡ h = Yg(n3) ≡ Y1(n3) = n3 mod 2c.

Also with (2.14) we have Ya(n3) ≡ Yg(n3) mod f , therefore

Ya(n3) ≡ Yg(n3) = h ≡ c = Ya(p) mod Xa(n2)

and thus by (2.23) n3 ≡ ±n1 mod 2n2. With c|n2 and n ≡ n3 mod 2c it follows that
n ≡ ±n1 mod 2c, and since 0 ≤ n1, b ≤ c, it follows that n = n1. For the equivalence
to be true is is not necessary that d = Xa(n), but this is also true by relation (1).
For the other direction, assume that c = Ya(n) and let d = Xa(n). By definition (1)
holds and (9) by the monotonicity of Ya. By setting n2 = nYa(n), f = Xa(2n2) and
e = Ya(2n2, (2) holds. By (2.19),

nYa(n)|nYa(n)⇔ c2 = (Ya(n))2|Ya(nYa(n)) = Ya(n2),

and by (2.11) 2Xa(n2)Ya(n2)|Ya(2n2) and thus 2c2|e, so there is some j ∈ N0 with
e = (j + 1)2c2, which is (4). By setting g = a + f 2( f 2 − a), i = Xg(n), h = Yg(n) we
have (5) and (3), and (5) together with (2) and (4) gives (6). By (2.15),

h = Yg(n) ≡ n mod g− 1 and g− 1 ≡ 0 mod 2c

we have (8). By (2.14),

h = Yg(n) ≡ Ya(n) = n mod g− a and g− a ≡ 0 mod f

18
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we have (7).

Now that we have proven that c = Ya(n) is a Diophantine equation, it follows immedi-
ately that d = Xa(n) is Diophantine as well. By definition

d = Xa(n)⇔ d2 − (a2 − 1)(Ya(n))2 = 1,

and the right-hand side is Diophantine.

2.4 Exponentiation, Binomial Coefficient and Factorial are
Diophantine

We are now able to show that both exponentiation and the binomial coefficient are
Diophantine. To do so, we use the properties of the Diophantine functions Xa(n) and
Ya(n) developed in the previous section.

Theorem 2.4.1. The exponential relation m = kn is Diophantine.

Proof. We can assume that n ≥ 1 and k ≥ 2. We will show that for a ≥ Yk(n + 1) we
have

kn = rem(Xa(n)− (a− k)Ya(n), 2ak− k2 − 1).

Since the remainder function and both Xa(n) − (a − k)Ya(n) and 2ak − k2 − 1 are
Diophantine, the exponential relation is Diophantine as well. For all k ≥ 2, k < (2k− 1)
and thus with (2.16) and the assumption that a ≥ Yk(n + 1) we have

k ≤ kn < (2k− 1)n ≤ Yk(n + 1) ≤ a

and thus k + 1 ≤ a. With this we have

a < ak < ak + k− 1 = ak + (k + 1)k− k2 − 1 ≤ ak + ak− k2 − 1 = 2ak− k2 − 1.

Lemma 2.3.4 gives us the congruence

Xa(n)− (a− k)Ya(n) ≡ kn mod (2ak− k2 − 1),

and since 0 < kn < a < (2ak− k2 − 1), kn has to be the remainder of (2ak− k2 − 1)
divided by Xa(n)− (a− k)Ya(n).

Similar to the Gödel function in 2.2, we introduce a code representing tuples of arbitrary
length over N0 to show that the binomial coefficient is Diophantine.

Definition. Let (a1, . . . , an) ∈N0. We call (a, b, c) the positional code of the tuple (a1, . . . , an),
if

(anan−1 . . . a1)b = a

and c = n, that means a1, . . . , an are the digits in the b-ary representation of a of length n.
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2 Hilbert’s Tenth Problem

The b-ary representation of a number a is always the same, but to uniquely determine
a tuple corresponding to a and b, the length of the tuple must be given. Otherwise,
the corresponding tuple can be arbitrarily long with any amount of leading zeros.
When asking for a specific element in the tuple, however, the length of the tuple can be
omitted. Consider the function

Elem : N3
0 →N0,

(a, b, d) 7→ ad,

where ad is the d-th digit in the b-ary representation of a, i.e.

a = anbn−1 + · · ·+ ad+1bd + adbd−1 + ad−1bd−2 + · · ·+ a1 = Abd + adbd−1 + B,

for unique A, B, ai ∈ N0 with B < bd−1 and ai < b for all i ∈ {1, . . . , n}. With
Theorem 2.4.1, it is easy to see that this function is Diophantine:

e = Elem(a, b, d)⇔ ∃x, y, z[(d = z + 1) ∧ (a = xbd + ebz + y) ∧ (e < b) ∧ (y < bx)].

Proposition 2.4.2. The binomial coefficient relation m = (a
b) is Diophantine.

Proof. To prove this, we will use the b-ary representation of non-negative integers.
First note that for large enough d ∈ N0, the code ((d + 1)n, d, n + 1) stands for the
n + 1-tuple ((

n
0

)
,
(

n
1

)
, . . . ,

(
n
n

))
.

This means that we can describe the binomial relation with the function Elem, which
we have shown to be Diophantine. Indeed, we have

(2n + 2)n = ((2n + 1) + 1)n

=

(
n
0

)
(2n + 1)0 +

(
n
1

)
(2n + 1)1 + . . . +

(
n
m

)
(2n + 1)m + . . .

(
n
n

)
(2n + 1)n,

and since 2n + 1 > (n
k) for all 0 ≤ k ≤ n,

m =

(
a
b

)
⇔ m = Elem((2n + 2)n, 2n + 1, m + 1)

Lemma 2.4.3. Let k, n ∈N0 with n > (2k)(k+1). Then

k! =
⌊

nk

(n
m)

⌋
.

Proof. By the definition of the floor-function, it suffices to show that k! ≤ nk/(n
m) <

k! + 1. For the left-hand side, we have

k! < k!
1

(1− 1/n) . . . (1− (k− 1)/n)
=

nk

(n
m)

.
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For the right hand side, first note that

1
(1− k/n)k =

(
1 +

k
n

∞

∑
i=0

(
k
n

)i
)k

<

(
1 +

k
n

∞

∑
i=0

(
1
2

)i
)k

=

(
1 +

2k
n

)k

=
k

∑
j=0

(
k
j

)(
2k
n

)j

< 1 +
2k
n

k

∑
j=0

(
k
j

)
< 1 +

k2k+1

n
.

Therefore,

nk

(n
m)

=
1

(1− 1/n) . . . (1− (k− 1)/n)
< k!

1
(1− k/n)k

< k! +
k!k2k+1

n
< k! +

(2k)k+1

n
< k! + 1.

Proposition 2.4.4. The factorial relation m = k! is Diophantine.

Proof. According to the previous lemma, it sufficed to show that
⌊
nk/(n

m)
⌋

is Diophan-
tine. This is true, since the floor of a fraction is Diophantine as

z = bx/yc ⇔ yz ≤ x ≤ y(z + 1), (2.24)

and as we have seen, both nk and (n
m) are Diophantine as well.

2.5 D-Sets are Diophantine

D-sets are defined to be the closure of Diophantine sets with respect to finite unions,
finite intersections, finite direct products, projections and the application of the bounded
universal quantifier. As we have seen in 2.1.1, in order to show that the class of
Diophantine sets equals the class of D-sets, it suffices to show that Diophantine sets
are closed under the bounded universal quantifier. So for this section, fix a nonempty
Diophantine set D ⊆ Nn+1

0 and assume that E ⊆ Nn+1
0 is the result of applying the

bounded universal quantifier on D, i.e.

(x1, . . . , xn, y) ∈ E⇔ (∀k ∈ {1, . . . , y}∃y1, . . . , ym ∈N0)[ f (x1, . . . , xn, k, y1, . . . , ym) = 0],

where f is the Diophantine representation of D. We denote by d = deg f and by c the
sum of the absolute values of the coefficients of f . Next we need to define the following
sets. Let

X = (x1, . . . , xn, y, Y, N, K, Y1, . . . , Ym) ∈Nn+m+4
0 ,
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and define the sets E1, E2, E3, E3+i ⊆Nn+m+4
0 for i ∈ {1, . . . , m} by

X ∈ E1 ⇔ N ≥ c(x1 · · · xnyY)d and Y < min
i∈{1,...,m}

Yi (2.25)

X ∈ E2 ⇔ 1 + KN! =
y

∏
k=1

(1 + kN!) (2.26)

X ∈ E3 ⇔ f (x1, . . . , xn, K, Y1, . . . , Ym) ≡ 0 mod (1 + KN!) (2.27)

X ∈ E3+i ⇔ ∏
j<Y

(Yi − j) ≡ 0 mod (1 + KN!). (2.28)

Further we define E′ as the projection of ∩m+3
i=1 Ei to the first n + 1 coordinates.

Lemma 2.5.1. Let E, E′ be given as above. Then E ⊆ E′.

Proof. Let (x1, . . . , xn, y) ∈ E and y1,k, . . . , ym,k ∈ N0, k ∈ {1, . . . , y} such that for the
Diophantine representation f of D we have f (x1, . . . , xn, k, y1,k, . . . , ym,k) = 0. Set

Y = max ({y} ∪ {yi,k | 1 ≤ i ≤ m, 1 ≤ k ≤ y}).

Recall the function gd. For any tuple a1, . . . , an one can find u, t such that gd(u, k, t) = ak
for all k ∈ {1, . . . , n}. It is easy to show that for a given t, one can find arbitrarily large
t′ ≥ t such that there is an u′ with the same property, i.e. gd(u′, k, t′) = ak. Assume now
that we have some N, Yi such that

gd(Yi, k, N!) = rem(1 + kN!, Yi) = yi,k

for all i ∈ {1, . . . , m} and k ∈ {1, . . . , n}. Then

Yi + (1 + kN!) = q(1 + kN!) + yi,k + (1 + kN!) = (q + 1)(1 + kN!) + yi,k,

thus for given N we can choose Yi arbitrarily large by subsequently adding the term
(1 + kN!). This means that we can choose N, Yi such that (2.25) is satisfied. For our
given y and N, choose K such that (2.26) is fulfilled. We still need to show that

(x1, . . . , xn, y, Y, N, K, Y1, . . . , Ym) ∈
m+3⋂
i=3

Ei.

By definition of the function gd, we have (1+ kN!)|(Yi − yi,k) and with yi,k ≤ Y we have
(1 + kN!)|∏j<Y(Yi − yi,k). For any 1 ≤ k1 < k2 ≤ y we have gcd (1 + k1N!, 1 + k2N!) =
1 and thus E3+1 for all i ∈ {1, . . . , m}. To show that E3 holds, first note that since
(1 + KN!) ≡ 0 ≡ (1 + kN!) mod 1 + kN! by E1 and gcd (1 + kN!, N!) = 1, we have
k ≡ K mod 1 + kN!. Moreover, we have rem(1 + kN!, Yi) = yi,k and thus Yi ≡ yi,k
mod 1 + kN!. This means that

f (x1, . . . , xn, K, Y1, . . . , Ym) ≡ f (x1, . . . , xn, k, y1,k, . . . , ym,k) ≡ 0 mod 1 + kN!

for all k ∈ {1, . . . , y} and again, since the (1+ kN!) are pairwise coprime, E3 follows.

Lemma 2.5.2. Let E, E′ be given as above. Then E′ ⊆ E.
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Proof. Let (x1, . . . , xn, y, Y, N, K, Y1, . . . , Ym) ∈
⋂m+3

i=3 Ei such that (x1, . . . , xn, y) ∈ E′. We
need to show that there are y1,k, . . . , ym,k for each k ∈ {1, . . . , y} such that

f (x1, . . . , xn, y, y1,k, . . . , ym,k) = 0. (2.29)

We claim that the choice yi,k = rem(Yi, pk) fulfills this requirements, where pj is any
fixed prime divisor of 1 + kN!. By E2 and E3+i we have

pk|(1 + kN!)|(1 + KN!)|∏
j<Y

Yi + j,

for all i ∈ {1, . . . , m} and thus pk|(Yi − j) for some j < Y. Since yi,k is defined to be the
remainder of Yi divided by pk, it follows that yi,k < Y. Since f is a polynomial, we have
f (x1, . . . , xn, k, y1,k, . . . , xm,k) ≤ c(x1 · · · xnkY)d and by E1 this is bounded from above by
N. By definition of the pk, we have pk > N and thus

f (x1, . . . , xn, k, y1,k, . . . , ym,k) < pk. (2.30)

Both congruences E3 and k ≡ K mod 1 + kN! also hold modulo pk, and with yi,k ≡ Yi
mod pk we have that

f (x1, . . . , xn, k, y1,k, . . . , ym,k) = f (x1, . . . , xn, K, Y1, . . . , Ym) ≡ 0 mod pk,

so with (2.30) we have (2.29) and thus the claim follows.

Theorem 2.5.3. The class of Diophantine sets equals the class of D-Sets.

Proof. By the definition of D-sets, every Diophantine set is a D-set. As we have estab-
lished before, to show that every D-set is Diophantine, it suffices to show that the class
of Diophantine sets is closed under the bounded universal quantifier. With the two
previous lemmas, the set E, which we obtain by applying the quantifier is equal to
E′. The sets E1, E2, E3 and E3+i, i ∈ {1, . . . , m} are given by the equations (2.25)-(2.28).
Since both exponentiation and the factorial function are Diophantine, these sets are
Diophantine as well, and as E′ is a projection of the intersection of E1, E2, E3 and E3+i,
it follows that E is Diophantine as well.

2.6 Hilbert’s Tenth Problem is Unsolvable

Let D ∈ Z[X1, . . . , Xn] and assume that we are interested in the positive integer
solutions of

D(X1, . . . , Xn) = 0. (2.31)

Next consider the system of equations

D(X1, . . . , Xn) = 0,

X1 = Y2
1,1 + Y2

1,2 + Y2
1,3 + Y2

1,4,
...

Xn = Y2
n,1 + Y2

n,2 + Y2
n,3 + Y2

n,4.

(2.32)
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Since every natural number can be written as the sum of four squares, every solution
of (2.32) is a solution to (2.31). This means that we can reduce Hilbert’s tenth problem
from finding solutions over the integers to finding solutions over the non-negative
integers.

Theorem 2.6.1. Assume that Hilbert’s tenth problem is solvable over the positive integers.
Then every Diophantine set is recursive.

Proof. Let D be a Diophantine set, and let f ∈ Z[X1, . . . , Xn+m] be its Diophantine
representation, i.e.

D = {(x1, . . . , xn) ∈Nn
0 | ∃y1, . . . , ym ∈N0 with f (x1, . . . , xn, y1, . . . , ym) = 0}.

Let (x1, . . . , xn) ∈Nn
0 . Then, since Hilbert’s tenth problem is solvable over N0, there is

an algorithm that decides in finitely many steps whether there are some y1, . . . , ym ∈N0
such that

D(x1, . . . , xn, y1, . . . , ym) = 0. (2.33)

By the Church-Turing-Thesis, there is some Turing machine M such that

M((x1, . . . , xn)) =

{
1 : ∃y1, . . . , ym ∈N0 satisfying (2.33)
0 : otherwise,

meaning that M decides D and thus D is recursive.

We can now use the fact that D-sets, Diophantine sets and recursively enumerable sets
are the same to show that Hilbert’s tenth problem has no solution.

Corollary 2.6.2. Hilbert’s tenth problem over the integers is unsolvable.

Proof. Assume for the sake of a contradiction that Hilbert’s tenth problem over the
integers is solvable. Then, as we have deduced above, Hilbert’s Tenth problem over the
non-negative integers is solvable. Let D be the class of all Diophantine sets, R the class
of all recursive languages and RE the class of all recursively enumerable languages.
Then by Theorem 2.6.1 we have D ⊂ R, but since we have proved that the classes of
D-sets, RE and D coincide, we have RE ⊆ R, contradicting 2.1.3.
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3 Number of Solutions of Equations over
Finite Fields

The key exchange protocol that we are going to present in Chapter 5 can be implemented
either over the integers or over a finite field. For the case of finite fields, we need to
establish a bound on the number of solutions over Fq for certain polynomials. To do so,
some notions from Algebraic Geometry are introduced.

3.1 Varieties over Finite Fields

In the following, let K always denote an algebraically closed field.

3.1.1 Definitions and Notation

Definition. Let K be an algebraically closed field, and denote by An = Kn the affine n-space.
For polynomials f1 . . . , fm ∈ K[X1, . . . , Xn] we define the affine algebraic set V( f1, . . . fm) ⊆
An as

V( f1, . . . fm) = {x ∈ An | f1(x) = · · · = fm(x) = 0}.

We say that the polynomials in the above equation define the affine algebraic set
V( f1, . . . , fm). The set of such polynomial is not unique in general. Therefore, for any
algebraic set V ⊆ An and any f1, . . . , fm ∈ K[X1, . . . , Xn] with V = V( f1, . . . , fm), we
say that f1, . . . , fm are the defining polynomials of V.
It is easy to show that for a set S of polynomials, we have V(S) = V((S)), where (S)
is the ideal generated by S. In fact, for any affine algebraic set X ⊂ An, we define the
ideal of X to be the ideal I(X) E K[X1, . . . , Xn] with V(I(X)) = X.

Moreover, for any ideals I, J E K[X1, . . . , Xn] we have V(I) ∪V(J) = V(I J) and V(I) ∩
V(J) = V(I + J). Therefore, we can identify affine algebraic sets as the closed sets of
a topology, which we call the Zariski topology. This allows us to define irreducible
algebraic sets via topology.

Definition. Let X be a topological space. Then X is said to be reducible, if X = X1 ∪X2, where
X1, X2  X are closed sets. Otherwise, we call X irreducible.

An irreducible affine algebraic set is called an affine variety. Note that an affine algebraic
set X ⊂ An is an affine variety if and only if I(X) E K[X1, . . . , Xn] is prime.

By Hilbert’s Basis Theorem, K[X1, . . . , Xn] is a Noetherian ring and thus every affine
algebraic set is a Noetherian topological space, i.e. every descending chain of closed
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sets is stationary. Similar to prime decomposition in a unique factorization domain, we
can factor any algebraic set into so called irreducible components.

Proposition 3.1.1. Every Noetherian topological space X can be written as a finite union

X = X1 ∪ · · · ∪ Xm,

where X1, . . . , Xm are irreducible closed subsets of X. If Xi 6⊂ Xj for all i 6= j, then the union is
unique up to permutation.

Proof. First we show existence. We assume that X can not be written as a union
as given above, so X is not irreducible and thus we can assume that X = X1 ∪ X2
for X1, X2  X. This means that, without loss of generality, X1 can not be written
as a union as given above. Repeating this argument r times leads to a descending
chain Xr  . . .  X1  X, which can not be arbitrarily long since X is a Noetherian
topological space. To show uniqueness, assume that X = X1 ∪ . . . ∪ Xm = Y1 ∪ . . . Yk.
This means that X1 ⊆ Y1 ∪ . . . ∪ Yk and hence X1 = (Y1 ∩ X1) ∪ . . . (Yk ∩ X1). Since
X1 is irreducible, we have X1 = Y1 ∩ X1 without loss of generality. This means that
X2 ∪ . . . ∪ Xm = Y2 ∪ . . . Yk, and we are done by induction.

A crucial feature of every algebraic set is its dimension. This can again be defined by
the means of topology.

Definition. Let X be an irreducible topological space, and assume that

∅ 6= X1  X2  · · ·  Xn−1  Xn = X

is the longest chain of irreducible closed subsets of X. Then we define n to be the dimension of X.

This means that we can define the dimension of an affine variety V as the longest
chain of subvarieties. For an affine algebraic set with irreducible components V1, . . . , Vk,
we define the dimension as the maximum of the dimensions of V1, . . . , Vk. Note that
this is a valid definition, since the number of irreducible components is finite and the
decomposition is unique by Proposition 3.1.1. Moreover, the dimension of an affine
variety is finite by the fact that K[X1, . . . , Xn] is Noetherian.

It is an immediate consequence of this definition, that for affine varieties X and
Y with X ( Y we have dim X < dim Y. One can show that for any irreducible
f ∈ K[X1, . . . , Xn] \ K, we have dim V( f ) = n − 1. We call such an affine variety a
hypersurface. Moreover, if f1, . . . , fd ∈ K[X1, . . . , Xn] such that the fi are pairwise
coprime, then dim V( f1, . . . , fd) = n− d.

In 3.2 we will make an estimate on the number of points of algebraic curves over a
finite field. In higher dimensions, an algebraic curve is defined as follows:

Definition. Let C ⊂ An. Then C is called an algebraic curve, if it is an affine variety of
dimension 1.

We also introduce the notion of the degree.
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Definition. Let V ⊂ An be an affine variety. We define the degree of V as

deg V = max {#(V ∩ L) | L ⊂ An linear with codim(L) = dim (V) and #(V ∩ L) < ∞}.

In general, let W ⊂ An be an affine algebraic set, and C1, . . . , Ch its irreducible components.
Then

deg W =
h

∑
i=1

deg Ci.

Note that, by definition, it follows that for a zero-dimensional affine variety, the degree
of the affine variety equals the number of its points. Moreover, deg An = #(An ∩{0}) =
1. Also note that for any affine varieties U, V ⊆ An, we have deg U ≤ deg V if U ⊆ V
and deg (A ∪ B) ≤ deg A + deg B.

We call an affine variety with dimension n− 1 a hypersurface. An absolutely irreducible
hypersurface has an absolutely irreducible polynomial as its defining polynomial, and
the degree of a hypersurface can be seen immediately.

Proposition 3.1.2. Let H ⊂ An be a hypersurface with defining polynomial f . Then the degree
of H equals the degree of f .

Proof. Let deg f = d. As every hypersurface has dimension n− 1, we need to intersect
it with a linear subspace L of dimension 1. After a change of coordinates, we may
assume that L is given by the equation X2 = X3 = · · ·Xn = 0. This means that for a
point P ∈ An, we have P ∈ H ∩ L if and only if P = (k, 0, · · · , 0) for some k ∈ K and
f (P) = 0. This means that P needs to be a zero of the polynomial f (X, 0, . . . , 0) ∈ K[X],
and since K is algebraically closed, there are exactly d such points.

We will also need to introduce the notion of affine linear varieties.

Definition. Let K be a field and An = Kn the affine n-space with underlying vector space
V. We say that L is an affine linear variety, if there is some linear subspace S ⊆ V and some
a ∈ An such that L = a + S. We further define the dimension dim L = dimK S, where dimK S
is the dimension of the K-vector space S..

Note that the dimension of an affine linear variety is well defined. If we have L =
a + S, then the subspace S is unique, whereas we can choose any s ∈ S and have
L = (a + s) + S.

Definition. Let L1, L2 be affine linear varieties. Then we say that L1 and L2 are parallel, if
they have the same defining linear subspace S, i.e. L1 = a1 + S and L1 = a2 + S for some
a1, a2 ∈ An and some linear subspace S.
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3.1.2 Basic Inequalities

In this section we develop three basic inequalities, which will be needed frequently later
on. To do so, we will make use of the general version of Bezout’s inequality, as given
in [12]. Moreover, we will follow [5] to prove the important Theorem 3.3.11. As we will
mostly work with affine varieties over An = F̄q

n which are defined by polynomials
over Fq, we will call such varieties Fq-varieties.

Theorem 3.1.3 (Bezout’s inequality). Let V, W ⊂ An be affine varieties. Then

deg (V ∩W) ≤ deg V deg W.

The next lemma is given in [17].

Lemma 3.1.4. Let Vi ⊂ An, i ∈ {1, . . . , n} be affine subvarieties. Then

deg

(
n⋂

i=1

Vi

)
≤ deg V1(max

i>1
deg Vi)

dim V1

Proof. We prove this by induction on n. For n = 1, set V2 = An. Then

deg V1(max
i>1

deg Vi)
dim V1 = deg V1(deg An)dim V1 = deg V1.

So assume that n > 1 and let V1 = C1 ∪ · · · ∪ Ch be the decomposition of V1 into
irreducible components. For some fixed j ∈ {1, . . . , h} we want to show that

deg

(
Cj ∩

n+1⋂
i=2

Vi

)
≤ deg Cj(max

i>1
deg Vi)

dim Cj . (3.1)

For the case Cj ⊆ V2 we are done by the induction hypothesis, so assume that Cj 6⊂ V2.
Then, since Cj is irreducible, we have dim (Cj ∩V2) < dim Cj. Again, by the induction
hypothesis we have

deg

(
Cj ∩

n+1⋂
i=2

Vi

)
= deg

(
(Cj ∩V2) ∩

n+1⋂
i=3

Vi

)
≤ deg (Cj ∩V2)(max

i>2
deg Vi)

dim (Cj∩V2).

With the Bezout inequality we have

deg (Cj ∩V2)(max
i>2

deg Vi)
dim (Cj∩V2) ≤ deg (Cj ∩V2)(max

i>2
deg Vi)

dim Cj−1

≤ deg Cj(max
i>1

deg Vi)
dim Cj

and hence 3.1 follows. The dimensions of the Ci are bounded by dim V1, and therefore

deg

(
n+1⋂
i=1

Vi

)
= deg

(
V1 ∩

n+1⋂
i=2

Vi

)
= deg

((
C1 ∩

n+1⋂
i=2

Vi

)
∪ · · · ∪

(
Ch ∩

n+1⋂
i=2

Vi

))

≤
h

∑
j=1

deg

(
Cj ∩

n+1⋂
i=2

Vi

)
≤
(

h

∑
j=1

deg Cj

)
(max

i>1
deg Vi)

dim V1 .
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The next lemma gives the first estimate on the number of Fq-points of an affine variety.

Lemma 3.1.5. Let V ⊂ An be an Fq-variety with dim V = r ≥ 0 and deg V = δ > 0. Then

#(V ∩Fn
q ) ≤ δqr.

Proof. For all x ∈ Fq and i ∈ {1, . . . , n}, we have fi(x) = 0 for fi = Xq
i − Xi ∈

Fq[X1, . . . , Xn]. Let

Wi = {(x1, . . . , xn) ∈ An | fi(X1, . . . , Xn)}.

Then we can write
V ∩Fn

q = V ∩W1 ∩ · · · ∩Wn

and thus by Lemma 3.1.4 and since V ∩Fn
q is zero-dimensional, we have

#(V ∩Fn
q ) = deg (V ∩W1 ∩ · · · ∩Wn) ≤ deg V(max

i>1
deg Wi)

r = δqr.

Lemma 3.1.6. Let δ ∈ N and f1, . . . , fm ∈ Fq[X1, . . . , Xn], m ≥ 2 such that deg fi ≤ δ
and gcd f1, . . . , fm = 1 over F̄q[X1, . . . , Xn]. Further let V ⊂ An be the variety defined by
f1, . . . , fm. Then

|V ∩Fn
q | ≤ δ2qn−2.

Proof. We prove this by induction on m. Assume that m = 2. Then gcd ( f1, f2) = 1 and
thus V( f1, f2) = n− 2. Moreover, by Bezout’s inequality we have

deg V( f1, f2) = deg (V( f1) ∩V( f2)) ≤ deg f1 deg f2 ≤ δ2,

hence by Lemma 3.1.5 we deduce that |V( f1, f2) ∩ Fn
q | ≤ δ2qn−2. Assume now that

m ≥ 3 and consider the polynomial v = gcd ( f1, . . . , fm−1) and let d = deg v. Moreover,
we define the polynomials wi ∈ F̄q[X1, . . . , Xn] with v = fiwi for all i ∈ {1, . . . , m− 1}.
Then, by the definition of the greatest common divisor, gcd (w1, . . . , wm−1) = 1.
Assume that for some x ∈ Fn

q we have x ∈ V. Then either v(x) = 0 = fm(x) or
wi(x) = 0 = fm(x) for all i ∈ {1, . . . , m− 1}. For the first case, x ∈ V(v, fm). Again by
Bezout’s inequality we have deg V(v, fm) ≤ dδ and thus |V(v, fm) ∩Fn

q | ≤ dδqn−2. For
the case wi(x) = 0 = fm(x) for all possible i, we use the fact that deg wi ≤ δ− d and the
induction hypothesis to obtain |V(w1, . . . , wm−1, fm) ∩Fn

q | ≤ (δ− d)2qn−2. Therefore

|V ∩Fn
q | ≤ |V(v, fm) ∩Fn

q |+ |V(w1, . . . , wm−1, fm) ∩Fn
q |

≤ dδqn−1 + (δ− d)2qn−2 ≤ δ2qn−2

since 0 ≤ d ≤ δ.
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3.1.3 The Projective Space

Definition. Let K be a field. The projective n space Pn is the set of all linear subspaces of the
K-vector space Kn+1 of dimension 1.

Let the relation ∼∈ Kn+1 × Kn+1 be defined as

a ∼ b if and only if ∃λ ∈ K : a = λb

for a, b ∈ Kn+1. This is an equivalence relation, and since one-dimensional subspaces of
Kn+1 are spanned by single vectors, we can write

Pn = (Kn+1 \ {0})/ ∼ .

We will denote an equivalence class of Pn by (a0 : a1 : . . . : an) and call this a point in
Pn. Similar to affine spaces, we define a projective algebraic set V ⊂ Pn as the zero-set
of homogeneous polynomials, i.e. V is a projective algebraic set if there is a subset
M ⊂ K[X0, X1, . . . , Xn] of homogeneous polynomials with

V = {(a0 : . . . : an) ∈ Pn | f (a0, . . . , an) = 0}.

Note that this definition makes sense for homogeneous polynomials: If deg f = d,
then f (λa0, . . . , λan) = λd f (a0, . . . , an) and therefore f (a0, . . . , an) = 0 if and only if
f (λa0, . . . , λan) = 0 for any λ ∈ K.

The Zariski topology on Pn is defined to be the topology whose closed sets are projective
algebraic sets. Affine varieties and the dimension of affine algebraic sets are defined via
topology, and we define projective varieties and the dimension of projective algebraic
sets analogously.

The notion of an algebraic curve was introduced in section 3.1.1. We will only need
affine and projective algebraic curves in the plane.

Definition. Let C ⊂ P2. Then C is a plane projective curve, if there is a homogeneous
f ∈ K[X, Y, Z] such that C = V( f ). If C′ ⊂ A2, then C′ is a plane affine curve if there is some
f ′ ∈ K[X, Y] such that C = V( f ′).

Note that every plane affine and projective curve is also an algebraic curve. We can
classify curves in smooth and singular curves. The following definition is only given
for plane projective curves, the definition for affine curves is analogously. We say
that a plane curve is (absolutely) irreducible, if its defining polynomial is (absolutely)
irreducible.

Definition. Let C ⊂ P2 be a plane projective curve and F ∈ K[X, Y, Z] homogeneous such
that C = V(F). Let P = (x : y : 1) be a point on C and let f = F(X, Y, 1) ∈ K[X, Y]. Further
let

f = ∑
i,j≥0

ci,j(X− x)i(Y− y)j, ci,j ∈ K

be the Taylor expansion of f at the point (x, y). Then

ordP(C) = min{i + j|ci,j 6= 0}
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is the order of the point P of C. C is called singular at the point P, if ordP(C) > 1 and regular
otherwise. If there exists a point P of C such that P is singular, then C is called singular, and C
is called smooth otherwise.

It is easy to show that there are only finitely many singular points for a given singular
plane curve.

Definition. Let f ∈ K[X1, . . . , Xn] be a non-homogeneous polynomial with deg f = d. Then

f h = Xd
0 f (

X1

X0
, . . . ,

Xn

X0
) ∈ K[X0, X1, . . . , Xn]

is the homogenization of f .
Let V ⊂ An be an affine variety with a subset of polynomials F ⊂ K[X1, . . . , Xn] defining the
variety, i.e. V(F) = V. Then the projective closure of V is the projective variety

V ′ = {P ∈ Pn | ∀ f ∈ F : f h(P) = 0}.

It follows from the definition that for a polynomial f in n variables of degree d,
the homogenization f h is a polynomial in n + 1 variables of degree d. Moreover,
irreducibility is invariant under homogenization:

Proposition 3.1.7. Let f ∈ K[X1, . . . , Xn] be irreducible. Then its homogenization f h ∈
K[X0, X1, . . . , Xn] is irreducible.

Proof. Let d = deg f = deg f h and assume that f h factors into f h = pq. Assume that p
is not homogeneous. Then p has a term t with deg t < deg p, meaning that deg tq <
deg p + deg q = deg f h, which is a contradiction since the term with the highest degree
of tq appears in f h. Therefore we can assume that p and q are homogeneous. Thus

f = f h(1, X1, . . . , Xn) = p(1, X1, . . . , Xn)q(1, X1, . . . , Xn),

so, without loss of generality, p(1, X1, . . . , Xn) is a unit. This is only possible if p = cXm
0

for some c ∈ K and m ∈N, hence X0| f h, which is not possible by the construction of
the homogenization. It follows that f h is irreducible.

3.1.4 The Non-singular Model of a Curve

Definition. Let X be a topological space. A presheaf F of rings on X consists of the following:

• For every open U ⊂ X a ring F (U)
• For all pairs U, V with U ⊂ V ⊂ X a map ρU,V : F (U)→ F (V)

Moreover ρU,V needs to satisfy the following:

• ρU,U is the identity map for all U ⊂ X
• For any U ⊂ V ⊂W we have ρV,U ◦ ρW,V = ρW,U .

A presheaf F is called a sheaf, if it has the subsequent property:
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• Let U ⊂ X be open with an open cover U ⊂ ⋃i∈I Ui such that for all si ∈ F (Ui) and
sj ∈ F (Uj), i, j ∈ I, we have si|Ui∩Uj = sj|Ui∩Uj . Then there is a unique s ∈ F (U) such
that s|Ui = si for all i ∈ I.

Note that a presheaf is in fact a functor F from topological spaces to sets. Moreover,
instead of rings, we can define a presheaf with categories. In the following, we will
usually take the ring of K-valued functions as the underlying ring for sheaves, i.e.
for every open U we have F (U) : U → K. We will denote such sheaves as sheaves
of K-valued functions. We will also denote pairs (X,OX) as ringed spaces, if X is a
topological space and OX is a sheaf of rings on X.

Definition. Let (X,OX), (Y,OY) be ringed spaces where OX and OY are sheaves of K-valued
functions, and let f : X → Y be a function. For any open set U ⊂ Y and any function
ϕ : U → K we denote by f ∗ϕ the composition ϕ ◦ f : f−1(U) → K. Then f is called a
morphism, if

• f is continuous and
• for every open U ⊂ Y we have f ∗OY(U) ⊂ OX( f−1(U)).

We can extend the definition of affine varieties to ringed spaces.

Definition. Let (X,OX) be a ringed space. Then (X,OX) is called an affine variety, if

• X is irreducible
• OX is a sheaf of K-valued functions
• X is isomorphic to an irreducible topological space in the Zariski topology.

Definition. Let (X,OX) be a ringed space. Then (X,OX) is called a prevariety, if

• X is irreducible
• OX is a sheaf of K-valued functions
• There exists a finite open cover X ⊂ ⋃i∈I Ui

such that (Ui,OX|Ui) is an affine variety for all i ∈ I.

Every affine variety is a prevariety by the trivial finite open cover X ⊂ X. We can
usually write X for a prevariety and affine varietiy instead of (X,OX), if we omit the
structure of OX.

Definition. Let X be a prevariety. Then X is a variety, if for every prevariety Y and all
morphisms f1, f2 : Y → X, the set {P ∈ Y | f1(P) = f2(P)} is closed in Y.

Now we are able to introduce the birational map.

Definition. Let X and Y be varieties. A rational map from X to Y, denoted by f : X 99K Y is
a morphism f : U → Y, where ∅ 6= U ⊂ X is open. A rational map f is called birational, if
there is some rational map g : Y 99K X with g ◦ f = idX and f ◦ g = idY.
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By definition, if there is a birational map f : X 99K Y, then there are nonempty open
subsets U ⊂ X and V ⊂ Y such that U ' V.

It is often necessary to work with a non-singular algebraic curve. To do so, it is possible
to construct a curve which is birationally equivalent to a given one, but where the
singularities are resolved. The following Theorem is given in [11].

Theorem 3.1.8. Let C be a projective curve. Then there exists a non-singular projective curve
X and a birational map f : X 99K C which is onto. Moreover, if X′ is a non-singular curve
with birational map f ′ : X′ 99K C, then there is a unique isomorphism g : X → X′ such that
f ′ ◦ g = f .

A birational map f is onto in the usual sense: For every point P ∈ C there is some
P′ ∈ X such that f (P′) = P. For any plane projective curve, we will denote the non-
singular curve X from the above theorem as the non-singular model of C, which is
unique up to isomorphism. For a plane affine curve C′, the non-singular model is the
non-singular model of the projective closure of C′. Let now C be a plane projective
curve with non-singular model X and birational map f : X 99K C. One can show that
for a non-singular point P ∈ C, there is a unique P′ ∈ X such that f (P′) = P. Moreover,
if P is singular, there are finitely many such points P′ ∈ X. It can also be shown that
for an irreducible f defining C, the polynomial f ′ defining its non-singular model X is
also irreducible.

3.2 The Weil Bound for Plane Affine Curves

In this section, we will assume that all given curves are irreducible.

3.2.1 The Genus of a Curve

Definition. Let C be a smooth projective curve. A divisor on C is a formal sum D = ∑P∈C nPP,
where nP ∈ Z and nP = 0 for all but finitely many P.

Denote the set of all divisors on C by Div(C). We define the degree of a divisor
D = ∑ nPP to be degD = ∑ nP. Let C ∈ Pn be a smooth projective curve and denote by
k′(C) the quotient field of the domain K[X0, . . . , Xn]/I(C). We define the function field
of C by

k(C) = { f ∈ k′(C) | ∃g, h ∈ K[X0, . . . , Xn]/I(C) :

g, h homogeneous, deg g = deg h and f =
g
h
}.

For a Divisor D = ∑ nPP, the vector space of multiples of −D is defined to be

L(D) = { f ∈ k(C) | ∀P ∈ C : ordP( f ) ≥ −nP},

and the dimension of D is defined to be dim D = dimK L(D), where dimK denotes the
dimension of a K-vector space.
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Definition. Let C be a smooth projective curve. We define the genus g of C by

g = sup{deg D− dim D + 1 | D ∈ Div(C)}.

It can be shown that the genus is always finite. The genus of a singular projective curve
is defined as the genus of its non-singular model, and the genus of an affine curve is
the genus of its projective closure.

3.2.2 The Weil Bound

A famous estimate on the number of Fq points of an absolutely irreducible smooth
projective curve is given by the Hasse-Weil bound, which was proved in [41]. It uses
the genus of the curve for an upper bound.

Theorem 3.2.1 (Hasse-Weil bound). Let C be a smooth, absolutely irreducible projective
curve defined over Fq of genus g, and denote by N the number of Fq-points of C. Then

|N − q− 1| ≤ 2g
√

q.

We want to use the Hasse-Weil bound to estimate the number of points of a plane affine
curve. In addition to that, we want to eliminate the genus from the inequality. To do so,
we will use the following upper bound on the genus of a plane projective curve, which
is given in [11].

Proposition 3.2.2. Let C be a plane projective curve and f ∈ K[X, Y, Z] with C = V( f ) and
deg f = d. Further let g be the genus of C. Then

g ≤ (d− 1)(d− 2)
2

− ∑
P∈C

ordP(C)(ordP(C)− 1)
2

. (3.2)

Note that the right-hand side of the inequality is finite, since there are only finitely
many singular points. We are therefore able to give a version of the Hasse-Weil bound
for (possibly singular) plane absolutely irreducible affine curves.

Corollary 3.2.3. Let C be a plane absolutely irreducible affine curve over a finite field Fq with
C = V( f ) and deg f = d. Denote by N the number of Fq-points of C. Then

|N − q| < (d− 1)(d− 2)
√

q + d. (3.3)

Proof. Let C′ be the homogenization of C and X be the non-singular model of C′.
Further denote by N(1) the number of Fq-points of C′ and N(2) the number of Fq-points
of X. By the Weil bound, we have

|N(2) − q− 1| ≤ 2g
√

q.

Moreover, by the definition of the non-singular model, we have

|N(2) − N(1)| ≤ ∑
P∈C′

(ordP(C′)− 1) ≤ ∑
P∈C′

ordP(C′)(ordP(C′)− 1)
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and therefore with (3.2) we obtain

|N(1) − q− 1| ≤ |N(2) − N(1)|+ |N(2) − q− 1| ≤ (d− 1)(d− 2)
√

q.

As the projective closure of the plane affine curve has at most d additional points at
infinity, N ≤ N(1) ≤ N + d and thus |N − N(1) + 1| ≤ d− 1. Hence

|N − q| ≤ |N − N(1) + 1|+ |N(1) − q− 1| < (d− 1)(d− 2)
√

q + d.

3.3 Absolutely Irreducible Surfaces

Following [5], we are going to use estimates on the number of points and irreducible
factors of polynomials restricted to linear affine varieties of dimension 2 to show
Theorem 3.3.11. Unless stated otherwise, we are now going to assume that An = F̄q

n

for a finite field Fq.

3.3.1 Affine Linear Varieties

We are going to characterize affine linear varieties by their defining equations.

Definition. Let L be an affine linear variety in An of dimension m ∈N. A parametrization P
of L is an equation of the form

P : X = n + v1Y1 + · · ·+ vmYm, (3.4)

with X = (x1, . . . , xn) and vi = (ν1,i, . . . , νn,i) for all i ∈ {1, . . . , m}, such that for all l ∈ L
there are some Y1, . . . , Ym ∈ K with l = x and such that (3.4) holds.

Note that if L is given by L = a + S and s1, . . . , sm ∈ Kn is a basis of S, then

X = a + s1Y1 + · · ·+ smYm

is a parametrization of L. Conversely, for every parametrization

X = n + v1Y1 + · · ·+ vmYm,

of L, we have L = n + span(v1, . . . , vm).

The main technique that is used in [5] and [37] to show bounds on the number
of hypersurfaces in F̄q

n intersected with Fn
q is to analyze the number of factors of

a polynomial f restricted to affine linear varieties of dimension 2 with a certain
parametrization.
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Definition. Let L be an affine linear variety in An with parametrization

P : Xi = ηi + νi,1Y1 + · · ·+ νi,mYm

for i ∈ {1, . . . , n} and let f ∈ K[X1, . . . , Xn]. Then a restriction of f to L is given by

fL,P = f (η1 + ν1,1Y1 + · · ·+ ν1,mYm, . . . , ηn + νn,1Y1 + · · ·+ νn,mYm) ∈ K[Y1, . . . , Ym].

Note that such a restriction is not unique, since it depends on the chosen parametriza-
tion. However, it can be shown that the number of irreducible factors of fL is always
the same.

Let
P : Xi = ηi + νi,1Y1 + · · ·+ νi,mYm, i ∈ {1, . . . , n}

be the parametrization for some L, and let f ∈ K[X1, . . . , Xn]. Then X = T1y0 + n1,
where y0 = (Y1, . . . , Ym, 0, . . . , 0) ∈ Kn and T1 = (v1, . . . , vm, vm+1, . . . , vn) where
vm+1, . . . , vn ∈ Kn such that T1 is invertible. This means that fL,P = f (T1y0 + n1).
Next let Q be another parametrization on L such that Q : X = T2y0 + n2. Then there is
an invertible T ∈ Kn×n and some n ∈ Kn such that

fL,P(y0) = f (T1y0 + n1) = f (T(T2y0 + n2) + n) = fL,Q(Ty0 + n). (3.5)

Theorem 3.3.1. Let L be an affine linear variety in An, f ∈ K[X1, . . . , Xn] and let P1, P2 be
two parametrizations of L. Further let Ni be the number of irreducible factors of the polynomial
fL,Pi for i ∈ {1, 2}. Then N1 = N2.

Proof. Let g ∈ K[X1, . . . , Xn], T ∈ Kn×n be a regular matrix and n ∈ Kn. We will first
show that g is irreducible if and only if h := g(TX + n) is irreducible. So assume that
g is irreducible. Further let h = hα1

1 · · · h
αk
k , where the hi are irreducible. Since T is

invertible, there is some matrix T̃ and some ñ ∈ Kn such that h(T̃X + ñ) = g(X). Thus

g(X) = h(T̃X + ñ) = h1(T̃X + ñ)α1 · · · hk(T̃X + ñ)αk ,

and by the irreducibility of g we have without loss of generality h(T̃X + ñ) = C ·
h1(T̃X + ñ) for some C ∈ K. But this means that h(X) = C · h1(X), hence h is irreducible.
If we assume that h is irreducible, we can show that g is irreducible analogously.
To prove the theorem, let

fL,P1 =
(

f (1)L,P1

)α1
· · ·
(

f (N1)
L,P1

)αN1 and fL,P1 =
(

f (1)L,P2

)β1
· · ·
(

f (N2)
L,P2

)βN2 ,

where the f (l)L,Pi
are irreducible for all i ∈ {1, 2} and l ∈N. If N1 = N2 we are done, so

without loss of generality assume that N1 ≤ N2. Then, by (3.5) we have(
f (1)L,P1

(y0)
)α1
· · ·
(

f (N1)
L,P1

(y0)
)αN1

=
(

f (1)L,P2
(Ty0 + n)

)β1
· · ·
(

f (N2)
L,P2

(Ty0 + n)
)βN2 ,

and since f (i)L,P2
(Ty0 + n) is irreducible for all 1 ≤ i ≤ N2, we have N1 = N2.
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When restricting a polynomial to an affine linear variety, we will only be interested in
the number of irreducible factors. The theorem above shows that this number does not
change for the choice of parametrization, and thus we will write fL instead of fL,P. This
allows us to make the following definitions:

Definition. Let f ∈ Fq[X1, . . . , Xn] with deg f = δ > 0 and let L ⊂ An be a linear affine
variety with dim L = 2. Further denote by fL be the restriction of f to L.

• M(2)
T is the set of all linear affine varieties of dimension 2.

• As a subset of M(2)
T , we denote by M(2) the set of all planes with the parametrization

M(2) =




X1
X2
...

Xn


t

∈ Fn
q

∣∣∣∣∣∣∣∣∣∣
∃X, Y ∈ Fq with


ν1
ν2
...

νn


t

+


1

ω2
...

ωn


t

X +


0
η2
...

ηn


t

Y =


X1
X2
...

Xn


t
 ,

(3.6)
where ν1, νj, ωj, ηj ∈ Fq for all j ∈ {2, . . . , n} and (η2, . . . , ηn) 6= 0.
• E is the number of planes through a given point and E(2) is the number of planes through

two given distinct points.
• ν(L) is the number of the absolutely irreducible factors of fL over Fq.
• For j ∈ {0, . . . , n}, we define Πj as the set of planes L ∈ M(2) such that |ν(L)− 1| = j.
• Πq−1 is the set of planes where f vanishes identically

Moreover we define

A := |M(2)|, B =
δ−1

∑
j=1

j|Πj|, C = |Πq−1|, D = |M(2)
T | − |M

(2)|.

When we are going to make a sum over all j, where j = |ν(L)− 1| is for some polynomial
f and some linear affine plane, and include the planes where f is identically zero, then
we will simply write ∑

q−1
j=1 .

3.3.2 Estimates on the Restriction to Planes

Lemma 3.3.2. With the notations from the definition above, we have

|M(2)
T | =

qn(qn − 1)(qn − q)
q2(q2 − 1)(q2 − q)

, E =
(qn − 1)(qn − q)
(q2 − 1)(q2 − q)

and E(2) =
qn − q
q2 − q

.

Proof. To count the elements in M(2)
T , we observe that there are qn(qn − 1)(qn − q)

parametrizations of the form
X1
X2
...

Xn


t

=


ν1
ν2
...

νn


t

+


ω1
ω2
...

ωn


t

X +


η1
η2
...

ηn


t

Y,
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since the vector (ν1, . . . , νn) ∈ Fn
q is arbitrary and the other two vectors have to be

chosen linearly independent. Moreover for every affine linear plane L, there are q2(q2−
1)(q2 − q) different parametrizations describing L. The other two equalities can be
proven along the same lines.

The following theorem can be found in [21, Theorem 5]. In the theorem, 4X(p) denotes
the discriminant of a polynomial p with respect to X.

Theorem 3.3.3. Let K be a field and let f ∈ K[X1, . . . , Xn] be absolutely irreducible. Further let
Φ ∈ K[V1, . . . , Vn, W2, . . . , Wn] with deg Φ ≤ 2δ2 such that for all (ν1, . . . , νn, ω2, . . . , ωn) ∈
K2n/1 and

χ := f (X + ν1, ω2X + Z2Y + ν2, . . . , ωnX + ZnY + νn) ∈ K̄[X, Y, Z2, . . . , Zn]

the following holds:

Φ(ν1, . . . , νn, ω2, . . . , ωn) 6= 0⇒lcX(χ) ∈ K̄ and4X (χ(X, 0, Z2, . . . , Zn) 6= 0.

Then there exists a polynomial Ψ ∈ K̄[Z2, . . . , Zn] \ K̄ with deg Ψ ≤ 3δ4/2− 2δ3 + δ2/2
such that for all η = (η2, . . . , ηn) ∈ K̄n−1 with Ψ(η) 6= 0 the polynomial χ(X, Y, η2, . . . , ηn)
is absolutely irreducible.

We use the existence of such an Φ as above, which is also proved in [21], to deduce the
following corollary.

Corollary 3.3.4. Let f ∈ Fq[X1, . . . , Xn] be absolutely irreducible with deg f = δ > 0. Then

there are at most (3δ4/2− 2δ3 + 5δ2/2) q3n−3

q3(q−1) planes L ∈ M(2) such that fL is not absolutely
irreducible.

Proof. With the notations from Theorem 3.3.3, we set K = Fq and define the polynomial

Ξ := Φ(V1, . . . , Vn, W2, . . . , Wn)Ψ(Z2, . . . , Zn) ∈ F̄q[V1, . . . , Vn, W2, . . . , Wn, Z2, . . . , Zn].

For any (ν, ω, η) ∈ F̄q
3n−2 with Ξ(ν, ω, η) 6= 0, the polynomial χ(X, Y, η) is absolutely

irreducible. So the only possible candidates for L ∈ M(2) such that fL is not absolutely
irreducible are those, for which fL = χ(X, Y, η) is not absolutely irreducible and
therefore Ξ(ν, ω, η) = 0. As Ξ defines a hypersurface of dimension 3n − 3 and of
degree less or equal than (3δ4/2− 2δ3 + 5δ2/2), by Lemma 3.1.5, there are at most
(3δ4/2− 2δ3 + 5δ2/2)(q3n−3) different parametrizations of the form 3.6 describing a
suitable plane L ∈ M(2). Since there are q3(q− 1) equivalent parametrizations for every
plane, we are done.

Assume now that we have given an absolutely irreducible polynomial f ∈ Fq[X1, . . . , Xn]
with deg f = δ = 2. Then it follows from the corollary above, that

B =
δ−1

∑
j=1

j|Πj| = |Π1| ≤ (3δ4/2− 2δ3 + 5δ2/2)
q3n−6

(q− 1)
. (3.7)

This is a special case of the following proposition, which is proved in [5, Proposition
4.1].
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Proposition 3.3.5. Let f ∈ Fq[X1, . . . , Xn] be a polynomial of degree δ > 1. Then

B ≤
(

2δ13/3 + 3δ11/3
) q3n−3

q3(q− 1)
. (3.8)

The estimates of the following lemma are crucial for the proof of Theorem 3.3.8.

Lemma 3.3.6. Let f ∈ Fq[X1, . . . , Xn] with deg f = δ > 0 and let L ⊂ An be an Fq-
plane. Further suppose that f is not equivalent to a polynomial in Fq[X1, . . . , Xn−2]. Then the
following inequalities hold:

B
A
≤
(

2δ13/3 + 3δ11/3
) qn−2

qn−1 − 1
, (3.9)

C
A
≤ δ2

q2 , (3.10)

D
A
≤ 4

3q2 , (3.11)

A
E
≤ qn−2. (3.12)

Proof. For the first inequality, let L be a linear affine variety of dimension 2 which
omits to a parametrization as in (3.6). Then there are q3(q− 1) equivalent parametriza-
tions for L. Moreover, there are qnqn−1(qn−1 − 1) = q2n−1(qn−1 − 1) different possible
parametrizations, thus

A =
q2n−1(qn−1 − 1)

q3(q− 1)
. (3.13)

With Proposition 3.3.5, it follows that

1
(2δ13/3 + 3δ11/3)

B
A
≤ q3n−3

q3(q− 1)
q3(q− 1)

q2n−1(qn−1 − 1)
=

qn−2

qn−1 − 1

and thus (3.9) follows. With (3.13), equation (3.12) follows directly by Lemma 3.3.2. To
obtain an upper bound for C/A, consider a plane L ∈ M(2). After a linear change of
coordinates, we may assume that L is of the form X1 = . . . = Xn−2 = 0. The plane L has
qn−2 parallels of the form X1 = c1, . . . , Xn−2 = cn−2 with ci ∈ Fq for all 1 ≤ i ≤ n− 2.
We can write f as

f = ∑
i,j

pi,j(X1, . . . , Xn−2)Xi
n−1X j

n

for some finite index set I ⊂N and polynomials pi,j ∈ Fq[X1, . . . , Xn−2]. Assume that
L′ is a plane parallel to L given by X1 = c1, . . . , Xn−2 = cn−2 such that fL vanishes
on L′. This means that pi,j(c1, . . . , cn−2) = 0 for all i, j ∈ I. Assume that the pi,j have
some common nontrivial factor h. Then f = h ∈ Fq[X1, . . . , Xn−2] since f is absolutely
irreducible, contradicting our assumptions. Therefore by Lemma 3.1.6, and by the fact
that the degree of every pi,j is bounded from above by δ, there are at most δ2qn−2 tuples
(c1, . . . , cn−2) such that pi,j(c1, . . . , cn−2) = 0 for all pi,j. But this means that there are
at most δ2qn−2 parallels L′ to L such that fL′ = 0. Next, for L ∈ M(2) let [L]P be the
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equivalence class {K ∈ M(2) |L is parallel to K} and let D be the number of equivalence
classes. Then

C
A
≤ δ2qn−4D

qn−2D
=

δ2

q2 .

For equation (3.11) we use the fact D = |M(2)
T | − A and thus have

D
A

=
1
A

qn(qn−1 − 1)(qn−1 − q)
q2(q2 − 1)(q2 − q)

≤ 4
3q2 .

Let f be a polynomial in Fq[X, Y] of degree δ. In the following we will set ω(q, δ) :=
(δ− 1)(δ− 2)q1/2 + δ + 1. The next lemma is from [36, lemma 5].

Lemma 3.3.7. Let f ∈ Fq[X, Y] with deg f = δ and ν = ν(Fq[X, Y]). Further let N be the
number of zeroes of f over Fq. Then

|N − νq| ≤ ω(q, δ) + δ2.

Proof. For the proof set ω′(q, δ) := ω(q, δ)− 1. If f is absolutely irreducible then we are
done by Corollary 3.2.3, so assume that f factors into

f = c f α1
1 · · · f αν

ν f αν+1
ν+1 · · · f αk

k ,

where the fi ∈ Fq[X, Y] are absolutely irreducible for i ∈ {1, . . . , ν}, f j ∈ F̄q[X, Y]
are irreducible for j ∈ {ν + 1, . . . , k} and c ∈ F̄q such that every polynomial in the
factorization has a coefficient equal to 1. Let di = deg fi for each i ∈ {1, . . . , k}. Further
let Vi be the plane affine curve V( fi), Vi,j be the affine variety V( fi, f j), Ni = |Vi ∩F2

q|
and Ni,j = |Vi,j ∩F2

q| for i, j ∈ {1, . . . , k}. Then for i, j ∈ {1, . . . , ν}, we can deduce from
Corollary 3.2.3 that we have

|Ni − q| < ω′(q, di)

and by Bezout’s inequality and Lemma 3.1.5 we obtain

Ni,j ≤ didj.

Let j ∈ {ν + 1, . . . , k}. As f j ∈ F̄q[X, Y], there are some ξ j,1, . . . , ξ j,m ∈ F̄q such that
f j ∈ (Fq[ξ j,1, . . . , ξ j,m])[X, Y] and 1, ξ j,1, . . . , ξ j,m are linearly independent. Moreover,
since f j contains a term with coefficient 1, we can write it as

f j = f j,0 + ξ j,1 f j,1 + · · ·+ ξ j,m f j,m,

where f j,0 ∈ Fq[X, Y] and m ≥ 1. By the irreducibility of f j, the f j,r are coprime for
r ∈ {0, . . . , m} and therefore by Lemma 3.1.6 we have

Nj ≤ d2
j .

With the identity ∑i ω′(q, δi) ≤ ω′(q, ∑i δi) we have

N ≥
ν

∑
i=1

Ni −
ν

∑
i,j=1
i 6=j

Ni,j ≥ νq−
ν

∑
i=1

ω′(q, di)−
ν

∑
i,j=1
i 6=j

didj > νq−ω′(q, δ)− δ2.
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On the other hand we obtain

N ≤
ν

∑
i=1

Ni +
k

∑
i=ν+1

Ni ≤ νq +
ν

∑
i=1

ω′(q, di) +
k

∑
i=ν+1

d2
i < νq + ω′(q, δ) + δ2,

so we have
−ω′(q, δ)− δ2 < N − νq ≤ ω′(q, δ) + δ2.

We are now able to show the following theorem, which is the general version of
Theorem 3.3.11, since no restrictions on the size of the finite field are given.

Theorem 3.3.8. Let H ⊂ An be a hypersurface of degree δ and let N = |H ∩Fn
q | . Then

|N − qn−1| ≤ (δ− 1)(δ− 2)qn−3/2 + 5δ13/3qn−2.

Proof. Let f ∈ Fq[X1, . . . , Xn] be the defining polynomial of H, and assume that f is not
equivalent to a polynomial in n− 2 variables. First assume that δ = 1. By the definition
of a hypersurface, N is the number of zeroes of f over Fn

q , and since the degree of
the hypersurface equals the degree of f , the polynomial has total degree 1 and thus
N = qn−1. So we only need to prove the theorem for δ ≥ 2. By Lemma 3.3.7 it follows
that

|N( fL)− q| ≤ |N( fL)− νq|+ |ν(L)− 1|q ≤ ω(q, δ) + δ2 + jq,

where j = |ν(L)− 1|. Hence

∑
L∈M(2)

|N( fL)− q| ≤
q−1

∑
j=0

 ∑
L∈Πj

|N( fL)− q|


≤

δ−1

∑
j=0

 ∑
L∈Πj

|N( fL)− q|

+ ∑
L∈Πq−1

|N( fL)− q|

=

(
δ−1

∑
j=0
|Πj|

)
(ω(q, δ) + δ2 + jq) + ∑

L∈Πq−1

(q2 − q)

≤ A(ω(q, δ) + δ2) + q
δ−1

∑
j=1

j|Πj|+ q(q− 1)|Πq−1|

= A(ω(q, δ) + δ2) + Bq + Cq(q− 1).

Moreover since |N( fL) − q| ≤ q2 we have ∑M(2)
T \M(2) |N( fL) − q| ≤ Dq2. Further by

Lemma 3.3.2 we can write qn−1 = q|M(2)
T |/E = (1/E)∑L∈M(2)

T
q. For the case δ ≥ 3 and
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with Lemma 3.3.6 we conclude that

|N − qn−1| = 1
E

 ∑
L∈M(2)

|N( fL)− q|+ ∑
M(2)

T \M(2)

|N( fL)− q|


≤ 1

E
(

A((ω(q, δ) + δ2) + Bq + Cq(q− 1) + Dq2)
=

A
E

(
ω(q, δ) + δ2 +

B
A

q +
C
A

q(q− 1) +
D
A

q2
)

≤ qn−2
(

ω(q, δ) + δ2 + (2δ13/3 + 3δ11/3)
4
3
+ δ2 +

4
3

)
.

Since we have 5δ13/3 ≥ δ + 1 + 2δ2 + 4/3 + (2δ13/3 + 3δ11/3)(4/3) for δ ≥ 3, we are
done. For the case δ = 2 we use the inequality

B
A

q ≤ (3δ4/2− 2δ3 + 5δ2/2)
4
3

which is a consequence of (3.7). With this inequality we have

|N − qn−1| ≤ qn−2
(

ω(q, δ) + δ2 + (3δ4/2− 2δ3 + 5δ2/2)
4
3
+ δ2 +

4
3

)
≤ (δ− 1)(δ− 2)qn−3/2 + (2δ4 + 3δ)qn−2

≤ (δ− 1)(δ− 2)qn−3/2 + 5δ13/3qn−2.

We still have to treat the case where f is equivalent to a polynomial in n− 2 variables.
We will do this by induction on n. For n = 1 and n = 2 there is nothing to show
since f can not have only n− 2 variables, and the theorem is true by the arguments
above. Therefore assume that n > 2, and that f is equivalent to a polynomial g in n− 2
variables. If we denote the number of zeroes of g in Fn−2

q by N′, then N = N′q2, so by
the induction hypothesis we have

|N − qn−1| = |q2N′ − q2qn−3| = q2|N′ − qn−3|

≤ q2
(
(δ− 1)(δ− 2)qn−7/2 + 5δ13/3qn−4

)
≤ (δ− 1)(δ− 2)qn−3/2 + 5δ13/3qn−2.

3.3.3 Improved Estimate with a Condition on the Field

With two more lemmas, we can improve the estimate given in the previous theorem,
by assuming a lower bound on the number of elements in the finite field Fq. The first
lemma is from [36, lemma 6].

Lemma 3.3.9. Let f ∈ Fq[X1, . . . , Xn] with deg f = δ, N be the number of zeroes of f in Fn
q

and L ⊂ An be a linear affine variety of dimension 2. Then

∑
L∈M(2)

T

(N( fL)− Nq2−n)2 ≤ δEqn−1.
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Proof. We have
∑

L∈M(2)
T

N( fL) = ∑
x∈Fn

q
f (x)=0

∑
L∈M(2)

T
x∈L

1 = ∑
x∈Fn

q
f (x)=0

E = NE

and

∑
L∈M(2)

T

(N( fL))
2 = ∑

x∈Fn
q

f (x)=0

∑
y∈Fn

q
f (y)=0

∑
x,y∈Fn

q
x,y∈L

1 = ∑
x,y∈Fn

q
f (y)= f (x)=0

x 6=y

E(2) + ∑
x,y∈Fn

q
x,y∈L

E

= N(N − 1)E(2) + NE ≤ N2E(2) + NE.

Therefore we have

∑
L∈M(2)

T

(N( fL)− Nq2−n)2 = ∑
L∈M(2)

T

(N( fL))
2 + 2Nq2−n ∑

L∈M(2)
T

N( fL)− N2q2(2−n) ∑
L∈M(2)

T

1

= ∑
L∈M(2)

T

(N( fL))
2 + 2N2q2−nE− N2q2(2−n)|M(2)

T |.

By Lemma 3.3.2 we have q2−n = E/|M(2)
T |. Moreover we have |M(2)

T |E(2) < E2 and thus

∑
L∈M(2)

T

(N( fL))
2 + 2N2q2−nE− N2q2(2−n)|M(2)

T | ≤ N2E(2) + NE− N2 E2

|M(2)
T |
≤ NE.

Since N ≤ δqn−1 by Lemma 3.1.5, it follows that NE ≤ δEqn−1, which finished the
proof.

Lemma 3.3.10. Let q > 15δ
13
3 and let f ∈ Fq[X1, . . . , Xn] with deg f = δ. Then

q−1

∑
j=1

j|Πj| ≤ 4δEqn−3.

Proof. First note that by Lemma 3.3.7 we have

|N( fL)− q| = |(q− ν(L)q)− (N( fL)− ν(L)q| ≥ jp−ω(q, δ)− δ2

and thus with Theorem 3.3.8 we deduce

|N( fL)− Nq2−n| ≥ |N( fL)− q| − 2q−2|N − qn−1|

≥ jp−ω(q, δ)− δ2 −ω(q, δ)− 5δ13/3 ≥ 1
2

jq,

where the last inequality holds since q > 15δ
13
3 . Therefore, with the previous lemma we

have
q2

4

q−1

∑
j=1

j2|Πj| = ∑
L∈M(2)

T

(
1
2

jq)2 ≤ ∑
L∈M(2)

T

(N( fL)− Nq2−n)2 ≤ δEqn−1

and thus ∑
q−1
j=1 j|Πj| ≤ 4δEqn−3.
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Now we are able to prove the following theorem:

Theorem 3.3.11. Let q > 15δ
13
3 and let f ∈ Fq[X1, . . . , Xn] be absolutely irreducible with

deg f = δ. Further let N be the number of zeroes of f in Fn
q . Then

|N − qn−1| ≤ (δ− 1)(δ− 2)qn−3/2 + (5δ2 + δ + 1)qn−2.

Proof. We can assume that f is not equivalent to a polynomial in n− 2 variables, since
the case where it is equivalent to such a polynomial can be treated analogously as in the
proof of Theorem 3.3.8. Moreover note that for the case δ = 1 we have N = qn−1 and
the inequality holds, so we can assume that δ ≥ 2. Similar to the proof of Theorem 3.3.8
we have

∑
L∈M(2)

T

|N( fL)− q| ≤
δ−1

∑
j=0

 ∑
L∈Πj

(ω(q, δ + δ2 + jq)

+ ∑
L∈Πq−1

(q2 − q)

≤
(

δ−1

∑
j=0
|Πj|

)
(ω(q, δ + δ2) + q

δ−1

∑
j=0

j|Πj|+ q(q− 1)|Πq−1|

≤ (A + D)(ω(q, δ + δ2) + 2q
q−1

∑
j=0

j|Πj|

and thus by Lemma 3.3.10 it follows that

∑
L∈M(2)

T

|N( fL)− q| ≤ (A + D)(ω(q, δ + δ2) + 8δEqn−2.

Therefore we have

|N − qn−1| = | 1
E ∑

L∈M(2)
T

N( fL)−
1
E ∑

L∈M(2)
T

q| ≤ 1
E ∑

L∈M(2)
T

|N( fL)− q|

≤ 1
E
(
(A + D)(ω(q, δ + δ2) + 8δEqn−2)

≤ qn−2((δ− 1)(δ− 2)q1/2 + 5δ2 + δ + 1).

3.4 A Family of Collision-Free Functions

In order to construct a Diophantine Equation over a finite field which is hard to solve,
as we need to do in 5.3, we are going to prove the following theorem, as given in [3], by
Bérczes, Folláth and Pethő.

Theorem 3.4.1. Let γ ∈ F∗q , A, B ∈ Fq[X1, . . . , Xn] homogeneous with deg A < deg B = D
and degXi

B = D for all i ∈ {1 . . . , n}. Further suppose that there are k, l ∈ {1, . . . , n} with
k < l and

B(0, . . . 0, Xk, 0, . . . , 0, Xl , 0, . . . , 0) ∈ Fq[Xk, Xl ] (3.14)
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has no multiple zeroes. Set F := A + B and let Pcoll(F, γ) be the probability that F(x) = γ,
where x is chosen uniformly at random from Fn

q . If q > 5D13/3, then

Pcoll(F, γ) ≤ 3
q

. (3.15)

Moreover, F + γ is absolutely irreducible over Fq.

We will use Theorem 3.3.11 to establish the bound of the collision probability Pcoll. We
only need to show that a polynomial F + γ as given above is absolutely irreducible.

Lemma 3.4.2. Let K be a field with algebraic closure K̄. Further let A, B ∈ K[X] such that B
has no multiple zeroes in K̄ and deg A 6= deg B ≥ 1. For some n ≥ 4 we define

G := Yn + AYn−1 + B ∈ K[X, Y].

Then G is absolutely irreducible.

Proof. For the sake of a contradiction assume that G is reducible, i.e. there are U, V ∈
K̄[X, Y] with G = UV. Then U and V are of the form

U = Yk + ak−1Yk−1 + · · ·+ a1Y + a0,

V = Yn−k + bn−k−1Yn−k−1 + · · ·+ b1Y + b0,

with polynomials ai, bj such that

ai ∈


K̄[X] : 0 ≤ i ≤ k− 1
{1} : i = k
{0} : k + 1 ≤ i ≤ n− 2

and bj ∈


K̄[X] : 0 ≤ j ≤ n− k− 1
{1} : j = n− k
{0} : n− k + 1 ≤ j ≤ n− 2.

We first assume that min {k, n− k} ≥ 2. With U, V, ai and bj defined as above, we have

G = UV =
n

∑
i=0

ciYi with ci =
i

∑
j=0

ajbi−j. (3.16)

By equating coefficients we see that a0b0 = B, so we can assume without loss of
generality that deg a0 ≥ 1. Since K̄ is algebraically closed, we choose some α ∈ K̄ with
a0(α) = 0. By assumption B has no multiple root, therefore b0(α) 6= 0. By a simple
inductive argument, it follows that ai(α) = 0 for all i 6= k. Thus U(α, Y) = YK. We have
min {k, n− k} ≥ 2 and thus n− k− 2 ≥ 0, so we can write

Yn + A(α)Yn−1 + B(α) = G(α, Y) = U(α, Y)V(α, Y)

= Yn + bn−1(α)Yn−1 + · · ·+ b1(α)Y + b0(α).

This is a contradiction since 0 = B(α) 6= b0(α).
Assume now that min {k, n− k} = 1, and without loss of generality that k = 1. Then
U = Y+ a0 and V = Yn−1 + bn−2Yn−2 + · · ·+ b1Y+ b0. By (3.16) we obtain B = a0b0 and
a0bi = −bi−1 for all i ∈ {1, . . . , n− 2}. This means that a2

0|B, and since B has no multiple
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roots, a0 ∈ K̄. Moreover, from a0bi = −bi−1 it follows that bn−k−2 = (−a0)kbn − 2 for all
k ∈ {1, . . . , n− 2}, thus

Yn + AYn−1 + B = G = UV

= Yn + (a0 + bn−2)Yn−1 + a0(−a0)
n−2bn−2.

But this means that deg A = deg B, which is a contradiction.

Lemma 3.4.3. Let K be a field, γ ∈ K, A, B ∈ K[X1, . . . , Xn] homogeneous with deg A <
deg B = D and degXi

B = D for all i ∈ {1 . . . , n}. Further suppose that there are k, l ∈
{1, . . . , n} with k < l and

B(0, . . . 0, Xk, 0, . . . , 0, Xl , 0, . . . , 0) ∈ K[Xk, Xl ]

has no multiple zeroes. Set F := A + B. Then the polynomial F + γ is absolutely irreducible.

Proof. Assume that the polynomial g := F + γ is reducible, i.e. there are U, V ∈
K̄[X1, . . . , Xn] such that g = UV and deg U, deg V ≥ 1. Fix some indices i, j ∈ {1, . . . , n}
such that

B0 := B(0, . . . 0, Xk, 0, . . . , 0, Xl , 0, . . . , 0)

has no multiple roots and set

A0 = A(0, . . . 0, Xi, 0, . . . , 0, Xj, 0, . . . , 0),

U0 = U(0, . . . 0, Xi, 0, . . . , 0, Xj, 0, . . . , 0),

V0 = V(0, . . . 0, Xi, 0, . . . , 0, Xj, 0, . . . , 0),

F0 = A0 + B0 and g0 = F0 + γ.

Since deg U ≥ 1 there is some k ∈ {1, . . . , n} such that degXk
U ≥ 1. Since degXs

B = D
for all s and deg A < deg B, degXs

g = D. Moreover, since g− γ is homogeneous, we
have degXs

V < n and degXs
U > 0. By repeating this argument, we can deduce that

1 ≤ degXs
U, degXs

V ≤ D − 1 for all s ∈ {1, . . . , n}. This means that g0 = U0V0 is a
nontrivial factorization of g0. With r = deg Xj A0 we can write g0 as

g0 = B0 + A0 + γ

= XD
j

(
B0

(
Xi

Xj
, 1
)
+

1
XD−r

j
A0

(
Xi

Xj
, 1
)
+ γ

1
XD

j

)
= γXD

j

(
b + aYD−r + YD

)
,

where
X :=

Xi

Xj
, Y :=

1
Xj

, a =
1
γ

A0(X, 1) and b =
1
γ

B0(X, 1).

Since g0 = U0V0, we set K1 = degXj
U0, K2 = degXj

V0 and obtain

g0 = γXK1
j XK2

j

(
1

γXK1
j

U0

)(
1

γXK2
j

V0

)
= γXD

j U′0(X, Y)V ′0(X, Y)

for some nontrivial polynomials U′0 and V ′0. But this gives a factorization of b + aYD−r +
YD, which is absolutely irreducible by Lemma 3.4.2.
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Proof of Theorem 3.4.1. Assume that we have given f = A + B + γ ∈ Fq[X1, . . . , Xn] as
in the theorem. Then by Lemma 3.4.3, f is absolutely irreducible. By Theorem 3.3.11,
we have

|N − qn−1| ≤ (D− 1)(D− 2)qn−3/2 + (5D2 + D + 1)qn−2,

where N denotes the number of zeroes of f in Fn
q . Thus

|N| ≤ qn−1 + (D− 1)(D− 2)qn−3/2 + (5D2 + D + 1)qn−2.

As the collision of F = A + B with γ equals a root of f , we have

Pcoll(F, γ) =
|N|
|Fn

q |
≤ 1

q
+

(D− 1)(D− 2)
q3/2 +

(5D2 + D + 1)
q2

≤ 1
q
+

1
q

(
(D− 1)(D− 2)

q1/2

)
︸ ︷︷ ︸

<1

+
1
q

(
(5D2 + D + 1)

q

)
︸ ︷︷ ︸

<1

<
3
q

.
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4 Cryptographic protocols based on
Diophantine Equations

The proof that Hilbert’s Tenth Problem has not solution means that there is no single
algorithm taking any Diophantine equation as input and solving it. This does not mean
that all Diophantine equations are hard to solve. On the contrary, most equations with
a single variable or zero-dimensional systems of Diophantine equations can be solved
efficiently. However, in spite of great efforts, there are many Diophantine equations for
which there is no known method of solving them in polynomial time or even better.
This fact is a reason for studying the use of Diophantine equations in the construction
of public key cryptosystems.

Kerkhoff’s principle for designing a cryptographic protocol states that an adversary,
who tries to break a protocol, has knowledge of everything except for the private keys,
i.e. the exact execution of a protocol is known. In order for a public key system to work,
a message encrypted by the public key has to be linked to the private key in a way to
decrypt the message. However, the public key can not give away any information of
the private key, even with the knowledge of how the private key was chosen. This idea
is realized through so called one-way-functions.

Definition. A function f : X 7→ Y is called a one-way function, if for all x ∈ X f (x) = y can
be computed in polynomial time, but for any probabilistic polynomial time algorithm A, we have

Pr[A( f (Xn)) ∈ f−1( f (Xn))] < n−ω(1)

where Xn denotes the uniform distribution over Xn.

Informally this means that f is easy to compute, but there is no efficient way of
computing the inverse f−1. Although it is believed that one-way functions exist, e.g.
simple multiplication, it is a fact yet to be proved. A trapdoor function is a special case
of a one-way function, where additional information on the function f ensures the
computation of the inverse of f in polynomial time. To use a trapdoor function f in a
public key cryptosystem, assume that p is the private key only known to the participant
Alice. Alice uses the private key to compute the inverse f−1(m) for some message
m, which she can do in a short amount of time assuming that p is the additional
information required to invert a trapdoor function.

The hardness of solving certain Diophantine equations offers a chance of constructing
possible candidates for trapdoor functions. For example, in section 4.2 we note that the
problem of finding a non-negative solution to the equation

X1s1 + · · ·+ Xnsn = C
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4 Cryptographic protocols based on Diophantine Equations

is NP complete. The coefficients of this equation form the public key of a cryptosystem,
and since it was constructed from the private key in a way that the solution of the
equation for the holder of the private key is easy, this forms a trapdoor function based
on Diophantine equations.

4.1 Ong-Schnorr-Shamir Signature Scheme

The Ong-Schnorr-Shamir cryptosystem for obtaining signatures was first proposed
in 1984, [33]. It is a fairly simple protocol, which can be implemented and executed
rather efficiently. Part of the security is based on the assumption that finding a single
solution to a quadratic Diophantine equation over the ring Zn is difficult. However,
this assumption turned out to be false.

4.1.1 The Protocol

Assume that Alice wants to sign a message M ∈ Zn where n is chosen arbitrarily. The
signature scheme follows the subsequent protocol:

Ong-Schnorr-Shamir signature scheme

Key generation Alice chooses two large primes p and q and sets n = pq. Further she chooses
some u ∈ Z∗n, publishes n and k := −u−2 mod n while keeping u secret.

Signature generation Given a message M ∈ Zn, Alice selects a random X1 ∈ Z∗n and sets
X2 := MX−1

1 . Further she computes

S1 : = (X2 + X1)/2,
S2 : = (X2 − X1)u/2.

The pair (S1, S2) acts as a signature for M.
Signature verification To verify that (S1, S2) is a signature for M, Bob checks whether

S2
1 + kS2

2 ≡ M mod n. (4.1)

To verify that a signature given by Alice indeed fulfills (4.1), we note that X1X2 = M,
and thus

S2
1 + kS2

2 ≡ (X2 + X1)
2/4− u−2(X2 − X1)

2u2/4 ≡ X1X2 ≡ M mod n.

Note that as in other signature schemes, there is no one-to-one correspondence between
signatures (S1, S2) and messages M, since there are n2 possible pairs (S1, S2) and only
n possible messages M ∈ Zn.
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4.1.2 Cryptoanalysis of the Scheme

It can be shown that from the data given by the public key, the scheme cannot be broken
by finding the private key, assuming that the factorization of n is a one-way function.

Proposition 4.1.1. Finding the secret key u−1 is at least as hard as factoring n.

Proof. Assume that we have given n and an algorithm to efficiently compute the secret
key with the knowledge of the public key. Pick some u ∈ Z∗n uniformly at random,
and compute k ≡ −u−2 mod n. Since (n, k) forms a public key for the signature
scheme, we can compute u′ ∈ Z∗n such that −(u′)−2 ≡ k mod n. The equations x2 ≡ k
mod p and x2 ≡ k mod q both have two solutions, thus it is easy to show using the
Chinese Remainder Theorem that x2 ≡ k mod n has exactly four solutions x1, x2, x3, x4,
where the probability that xi ≡ ±xj is 1

2 for i, j ∈ {1, 2, 3, 4}. Therefore u 6≡ ±u′ with
probability 1

2 . Since

−(u′)−2 ≡ −u−2 ⇔ (u′ − u)(u′ + u) ≡ 0 mod n,

and n has only two prime factors, after choosing m different u ∈ Z∗n, we can indeed
factorize n with probability 1− 1

2m .

So the security of the Ong-Schnorr-Shamir signature scheme relies on the difficulty of
solving the quadratic Diophantine equation

x2 + ky2 −m ≡ 0 mod n (4.2)

over Z for given m and k. However, Pollard [34] found a way of solving this equation
efficiently using a probabilistic algorithm. His main idea was the reduction of the above
equation to one with a smaller k and a new m. By iterating this process, an equation
of the form x2 ± y2 ≡ m mod n has to be solved, which can be done efficiently. This
breaks the protocol, even with the given difficulty of finding the private key. The outline
of the algorithm given by Pollard given in [34] is as follows:

1. If n = pk for some prime p, then solve (4.2) by computing square roots in Z∗n.
2. Replace m by a smaller m′ such that −k is a quadratic residuo modulo m0, and

where 0 < m′ ≤
√

4|k|/3 if k > 0 and 0 < |m′| ≤
√
|k| otherwise.

3. If m′ is a perfect square, or m′ = k, solve x2 + ky2 ≡ m′ mod n with y = 0 or
x = 0, go to step 5.

4. Apply the steps above recursively to solve (x′)2 − m′(y′)2 ≡ −k mod n such
that gcd (y′, n) = 1. Solve x2 + ky2 = m′ mod n with x := x′(y′)−1 mod n,
y := (y′)−1 mod n.

5. Solve the recursive steps in 2-4 to obtain a solution to (4.2).

The time complexity of Pollard’s algorithm is givenO((log n)2 log log |k|), so a signature
can be forged very efficiently. A first attempt of repairing the OSS scheme tried to run
the protocol not over Zn, but instead used algebraic integers and executed the protocol
over

Zn,d := {a + b
√

d | a, b ∈ Z, 0 ≤ a, b ≤ n}

50



4 Cryptographic protocols based on Diophantine Equations

for some fixed d ∈ Z. The idea was that Pollard’s algorithm only works over an
Euclidean domain, which Zn,d is not for any d with d > 73 or d < −11. However,
Pollard’s algorithm can be extended to algebraic integers, making this approach for a
signature scheme insecure.

4.1.3 Extensions of OSS

The OSS scheme can be extended to protocols which are similar to the one in 4.1.1, but
which are not vulnerable to any known algorithm solving

x2 − ky2 ≡ m mod n.

Two signature schemes of this kind are treated in [29]. The first one presented exploits
the fact that when solving the equation above algorithmically, there is no control over
the structure of the solution. The base of the signature scheme is to set x := r + m

r for
some random rZn, and publish a hash value of x along with the signature.
The second signature scheme takes advantage of the fact that Pollard-like algorithms
take k as an input. By taking a non-polynomial function k(x) instead of k, it is impossible
for such algorithms to forge signatures.

4.2 Lin-Chang-Lee Cryptosystem

In [24], Lin, Chang and Lee proposed a public key cipher scheme, whose trapdoor
function is based on certain Diophantine equations in n variables which are believed to
be difficult to solve.

4.2.1 The Protocol

Let w ∈N with w = 2b − 1 for some positive integer b. A message M that is encrypted
is assumed to be nb bits long. Further we assume that M can be broken down into n
sub-messages of the form m1, . . . , mn.

Lin-Chang-Lee public key cryptosystem

Key Generation

1. Choose n pairs (q1, k1), . . . , (qn, kn) ∈ Z2 such that gcd (qi, qj) = 1 for i 6= j,
ki > w, qi > kiw(qi mod ki) and qi 6≡ 0 mod ki for all i ∈ {1, . . . , n}.

2. For all i ∈ {1, . . . , n} compute Ri ≡ qi mod ki, Ni = dqi/(kiRi)e,

Qi = ∏
i 6=j

qi and Q =
n

∏
i=1

qi.

3. For all i ∈ {1, . . . , n}, set bi ≡ Q−1
i Ri mod qi and compute

si = QibiNi mod Q.
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4. Publish the key (s1, . . . , sn). The private key is given by the set of pairs
(q1, k1), . . . , (qn, kn), all other parameters need not to be stored.

Encryption
A message M = (m1, . . . , mn) is encrypted to the ciphertext

C =
n

∑
i=1

mis1 (4.3)

Decryption
The i-th block of the message M can be decrypted by mi = bkiC/qic.

4.2.2 Cryptoanalysis

Lin et al. base the security of their public key cryptosystem on the difficulty of solving
linear Diophantine equations over positive integers. They claim that in order to break
the protocol, an attacker has to solve

X1s1 + · · ·+ Xnsn = C

and obtain the message. In fact it can be shown that this problem is NP-complete,
by reducing the integer knapsack problem to solving linear Diophantine equations
with positive integers. However, in [8], Cusick showed that the cipher can be broken
without solving any Diophantine equations. The major weakness of the cryptosystem
is the construction of the public key, where any two numbers share a large common
factor. To see this, define Gi = gcd (s1, . . . , si−1, si+1, . . . , sn) for all i ∈ {1, . . . , n} and
G = gcd (s1, . . . , sn). By (4.3) this leads to the equations C ≡ misi mod Gi and by
defining ti = Gi/G we get

C/G ≡ misi/G mod ti. (4.4)

Now
C/G ≡ xsi/G mod ti

is a linear congruence in a single variable x for all i ∈ {1, . . . , n} and since we have
gcd (si/G, Gi/G) = 1, any solutions are congruent modulo ti. Assume that x0 is the
smallest positive solution to the above equation. In [8], Cusick proves the following
lemma:

Lemma 4.2.1. Given any choice of the public key S = (s1, . . . , sn), we have ti ≥ w for all
i ∈ {1, . . . , n}.

From (4.4) it follows that x = mi ≤ w is a solution and by the above lemma we have
ti ≥ w, so by solving the above linear congruence one obtains in fact x0 = mi. Doing so
for all i ∈ {1, . . . , n}, we have retrieved the message M = (m1, . . . , mn).
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4.3 Pre-conditions For Designing Asymmetric Cryptosystem
Based On Diophantine Equation Hard Problem

The negative answer to Hilbert’s Tenth Problem in section 2.6 concludes that there is
no algorithm that decides whether any Diophantine equation is solvable or not. When
building a cryptosystem that is based on some kind of Diophantine equation, solvability
is usually a triviality, since a solution is mostly part of a private key and thus always
given. In addition to that, restrictions to the appearing Diophantine equation may limit
the number of non-zero coefficients or the degree of the polynomial. In [2], the so
called Diophantine Equation Hard Problem is introduced, addressing the solvability of
Diophantine equations from the following different perspective:

Definition. Let f = v1X1 + · · · + vnXn − u ∈ Z[X1, . . . , Xn] and fix a solution x =
(x1, . . . , xn) ∈ Zn. We call x the prf-solution to f . The Diophantine Equation Hard Problem
(DEHP) is the problem of determining a prf-solution given f .

Note that if a linear f ∈ Z[X1, . . . , Xn] as above is solvable, it has infinitely many
solutions. For cryptography and consequent implementation purposes, one limits or
even fixes the lengths of the parameters of such solutions, resulting in a finite solution
space. As we will see in Proposition 5.4.6, this solution space is exponential in the size
of the bound, which is the cause of the difficulty of the DEHP.

4.3.1 The Protocol

Assume that we have given a message M ∈ Z with bit length 2n and M < 22n−1 +
22n−2.

AAβ public key cryptosystem

Key Generation
Alice chooses two distinct primes p, q with bit lengths of n and pq > 22n−1 + 22n−2. She
computes eA1 = p2q and chooses some representant eA2 of an e ∈ Z∗pq such that eA2 has
bit length 3n.

Encryption
Bob chooses some k1 ∈ Z with bit length 4n and computes the ciphertext C = k1eA1 +
M2eA2.

Decryption
Set W ≡ Ce−1 ≡ M2 mod pq. With the knowledge of p,q and by the Chinese Remainder
Theorem, the four square roots M1, M2, M3, M4 of W mod pq are computed. Select the
i ∈ {1, 2, 3, 4} such that

k′1 =
C−M2

i
eA1

∈ Z

and set Mi = M.

Asbullah and Ariffin prove that the decryption works for the choice of the above
parameters, and that there are no decryption errors.
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4.3.2 Cryptoanalysis

The security of the protocol has been analyzed in [28]. With the bounds on k1 and
the message M in the encryption process, the underlying instance of the DEHP is the
solution of

C = k1eA1 + M2eA2

for unknowns k1 and M2, since the other parameters are public and thus known to
an adversary. Despite the simple nature of this equation, no known attack for this
equation can retrieve the secret parameters within a feasible amount of time. Indeed,
the parameters of the protocol where chosen such that the Euclidean Algorithm or
Gaussian Lattice Reduction lead to a solution, but not efficiently enough to break
the protocol. It is shown that encryption of the AAβ protocol has time complexity of
O(n2).

4.4 Multivariate Public Key Cryptosystems from Diophantine
Equations

As many other public key systems, multivariate public key cryptosystems (MPKC) are
based on the idea of a trapdoor function. In the case of MPKCs, this trapdoor function
takes the form of a multivariate polynomial system of equations over a finite field k,
where the polynomials are usually quadratic. The public key is represented by a map

F̄ : kn → km, F̄ = L1 ◦ F ◦ L2

where n, m ∈ N with m ≥ n, L1 : km → km and L2 : kn → kn are random invertible
affine transformations and the so-called central map F : kn → km is an invertible
nonlinear multivariate polynomial map. The functions L1, L2 and in some cases F form
the private key of this cryptosystem. Two recent MPKCs are so called triangular and
oil-vinegar systems. In [13], Gao and Heindl offer a framework which is a mixture
of both, as discussed in the next section. To present this, we first need to make the
following definition:

Definition. Let k be a finite field. We call f ∈ k[x̌1, . . . , x̌v, x1, . . . , xo] an oil-vinegar polyno-
mial if it is of the form

f =
o

∑
i=1

v

∑
j=1

aijxi x̌j +
v

∑
i=1

v

∑
j=1

bij x̌i x̌j +
o

∑
i=1

cixi +
v

∑
j=1

dj x̌j + e.

We call x1, . . . , xo the oil variables and x̌1, . . . , x̌v the vinegar variables.

4.4.1 General Framework

Let k, F be finite fields with [F : k] = d and l, t ∈N, where l is the number of layers of
oil-vinegar systems and t is the number of polynomials of a system. First we describe
how the public key is constructed. For the function F̄, both L1, L2 are randomly chosen,
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so that we only have to construct the central map F : Fn+lo → Fn+lt. To do so, let fi be
oil-vinegar polynomials such that there are nonlinear

gi ∈ F[Yn+(i−1)t+1, . . . , Yn+it], i ∈ {1, . . . , l},

where each gi( fn+(i−1)t+1, . . . , fn+it) is a product of quadratic factors in F[X1, . . . , Xn+lo].
Let ψ1, . . . , ψn be n such quadratic factors. We define the first triangular system by

Yi = fi(X1, . . . , Xn+lo) = Xi + φi(X1, . . . , Xi) + ψi(X1, . . . , Xn+lo), i ∈ {1, . . . , n},
(4.5)

where every φi is a quadratic polynomial. Next, by setting X1, . . . , Xn the initial vinegar
and Xn+1, . . . , Xn+o the oil variables, we have the first oil-vinegar system

Yn+i = fn+1(X1, . . . , Xn, Xn+1, . . . , Xn+o), i ∈ {1, . . . , t}. (4.6)

In this way, l layers are constructed, where the j-th layer is given by

Yn + i = fn+i(X1, . . . , Xn+(j−1)o, Xn+(j−1)o+1, . . . , Xn+jo) i ∈ {(j− 1)t + 1, jt} (4.7)

for j ∈ {2, . . . , l}, with vinegar variables X1, . . . , Xn+(j−1)o and with oil variables
Xn+(j−1)o+1, . . . , Xn+jo. The central map is then given as

F(X1, . . . , Xn+lo) = ( f1, . . . , fn+lt).

In order to conduct the decryption, we need to assume that there are functions hi such
that

hi(g1, . . . , gl) = ψi

for all i ∈ {1, . . . , n}. The decryption of a ciphertext C ∈ km is performed as follows:
First compute

(Y1, . . . , Yn+lt) = L−1
1 (C)

and compute the value of ψi by substituting Yn+1, . . . , Yn+lt into g1, . . . , gl and evaluating
the hi. This way, (4.5), (4.6) and (4.7) form a triangular system of equations, which can
be solved iteratively. With the resulting X1, . . . , Xn+lo we finish the decryption by

M = L−1
2 (X1, . . . , Xn+lo).

Unfortunately, this framework includes two possibilities for decryption failure. First, one
may not be able to compute inverses for evaluating the hi. Second, for any oil-vinegar
system, the linear systems in the oil variables may not be solvable.

4.4.2 An Instance Based on Diophantine Equations

Gao and Heindl show how to construct a cryptosystem based on the above framework
and on Diophantine equations of the form

AB = CD + EF + GH + I J + KL,

where C, D, . . . , J are oil-vinegar polynomials and there are no restrictions on K and L.
The equation can be rewritten as

ψ1ψ2 = f1 f2 + . . . + f9 f10,

where degψ1 = deg ψ2 = deg fi = 2 for i ∈ {1, . . . , 10} and
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• ψ1 ∈ F[X1, . . . , Xn], ψ2 ∈ F[Y1, . . . , Yn],
• fi ∈ F[X1, . . . , Xn, Y1, . . . , Yn] for all i ∈ {1, . . . , 10} and further fi are oil-vinegar

polynomials for i ∈ {1, . . . , 8}.

Without going into detail, the central map is constructed to be of the form F : F45 → F74

consisting of one triangular system and 7 layers of oil-vinegar systems.

4.4.3 Cryptoanalysis

When trying to break the protocol with attack strategies based on either linear algebra
or algebraic attacks, which have proven to be useful at analyzing other multivariate
public key cryptosystems, the cryptosystem seems to be secure for the choice of at
least |k| = 216 and d = [F : k] = 1. A higher choice of any of those two variables may
increase security, but will decrease efficiency of the cryptosystem.
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5 The Key Exchange Protocol by Harry
Yosh

Let R be a ring with unity, and assume that there exist some a ∈ R, b ∈N such that the
function

Ta,b :R[X]→ R[X]

X 7→ (X + a)b

is invertible. In the key exchange protocol proposed by Harry Yosh, two participants
Alice and Bob want to agree on a secret with the use of public key cryptography. The
public key of Alice consists of a multidimensional Diophantine equation, and her secret
is a predetermined solution to this equation. As we will see, this cryptographic protocol
can be executed for the cases R = Z and R = Fq.

5.1 The Protocol

Yosh’s key exchange protocol

1. Alice chooses a polynomial f ∈ R[X1, . . . , Xn] \ R and some r = (r1, . . . , rn) ∈ Rn, such
that r is a solution to the Diophantine equation

f (X1, . . . , Xn) = 0. (5.1)

She publishes f and keeps r a secret.
2. Bob chooses some g ∈ R[X1, . . . , Xn] and parameters a1, . . . , am, b1, . . . , bm ∈ R such

that Tai ,bi is invertible for all i ∈ {1, . . . , m}, where Ta,b is defined as

Ta,b : R[X1, . . . , Xn]→ R[X1, . . . , Xn],

q 7→ (q + a)b.

He computes

h′ = Tam,bm ◦ · · · ◦ Ta1,b1(g) = (. . . (g + a1)
b1 + a2)

b2 + · · ·+ am)
bm (5.2)

and chooses a representative h of h′ in R[X1, . . . , Xn]/( f ). Bob publishes both g and h.
3. Alice now computes both s = g(r) and u = h(r) and sends u to Bob.
4. In the last step, Bob computes

T−1
a1,b1
◦ · · · ◦ T−1

am,bm
(u) = s.
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Alice

1.
f ∈ R[X1, . . . , Xn]
r ∈ Rn

f (r) = 0

3.
s = g(r)
u = h(r)

Bob

2.

g ∈ R[X1, . . . , Xn]
a ∈ Rm, b ∈Nm

h′ = Tam,bm ◦ · · · ◦ Ta1,b1(g)
h ≡ h′ mod f

4. s = T−1
a1,b1
◦ · · · ◦ T−1

am,bm
(u)

f

g, h

u

Figure 5.1: After finishing the protocol, Alice and Bob share a secret s ∈ R.

Theorem 5.1.1. After running the protocol above, Alice and Bob have a shared secret s.

Proof. Alice first calculates s by s = g(r). Since h ≡ h′ mod f , there is some q ∈
R[X1, . . . , Xn] such that h = h′ + f q. Thus

u = h(r) = h′(r) + f (r)q(r) = h′(r), (5.3)

and with (5.2) we get

T−1
a1,b1
◦ · · · ◦ T−1

am,bm
(u) = T−1

a1,b1
◦ · · · ◦ T−1

am,bm
(h′(r)) = g(r) = s.

A simplification of Yosh’ protocol was made in [18] by using only 2 parameters a and b
for the function Ta,b. It was originally defined as

T′a,b,c(x) = (x + a)b + c,

which would lead to

Ta′m,b′m,cm ◦ · · · ◦ Ta′1,b′1,c1
(g) =

(. . . (g + a′1)
b′1 + c1 + a′2)

b′2 + · · ·+ cm−1 + a′m)
b′m + cm

in (5.2). But this equals Tam+1,bm+1 ◦ · · · ◦ Ta1,b1(g) with a1 = a′1, aj = a′j + cj−1, am+1 = cm,
bk = b′k, bm+1 = 1 for j ∈ {2, . . . , m}, k ∈ {1, . . . , m}, so the third parameter c is
obsolete.

A single protocol run between Alice and Bob established exactly one secret s, and both
participants have exactly one public key. Thus a single protocol run is represented by
the parameters used to exchange the secret s.
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Remark We denote the parameters of a given protocol run as ( f , r, g, h, a, b), where f = 0 is a
Diophantine equation as in 5.1, r ∈ Rn a solution to this Diophantine equation and g, h, a,b
are chosen as in step 2 of the protocol, where a = (a1, . . . , am) and b = (b1, . . . , bm) for some
m ∈ N. Note that from ( f , r, g, h, a, b), r, a and b are kept secret, whereas f , g and h can be
assumed to be available for any attacker. Furthermore, we will always denote by n the number
of variables and by m the number of ai, bi as chosen in step 2 of the protocol, unless indicated
otherwise.

5.2 Security Essentials

In Yosh’s brief analysis of the protocol, two possible points for an attack of the protocol
were given. First of all, an attacker observes the system

f (X1, . . . , Xn) = 0,
h(X1, . . . , Xn) = u.

(5.4)

By solving the system (5.4) an attacker knows the solution r ∈ Rn, so he can compute
g(r) = s. However, if this system is positive-dimensional, it is hard to solve in general
as we have seen in Chapter 2. A second strategy that Yosh proposed for a possible
attack was to decipher the sequence

Tam,bm ◦ · · · ◦ Ta1,b1(g) ≡ h (5.5)

and thus retrieve the numbers a1, b1, . . . , am, bm. With these numbers, an attacker can
compute the secret s like in step 4 of the protocol, since u is part of the public informa-
tion of sender and recipient. Similar to (5.5), an attacker can also try to decipher

Tam,bm ◦ · · · ◦ Ta1,b1(s) = u. (5.6)

Note that this equation follows immediately from (5.3) and (5.2). A notable difference
between the two equations above is, that h is only one representative of the left-hand
side of (5.5), whereas equality holds for the equation above. In addition to that, s adds
another unknown to equation (5.6) in comparison to (5.5). The equation (5.6) is further
analyzed in 5.4.1.

Lemma 5.2.1. Let f ∈ R[X1, . . . , Xn] \ R, where R is a field and assume that for r =
(r1, . . . , rn) ∈ Rn we have f (r) = 0 and f (X1, r2, . . . , rn) 6= 0. Then there exist n− 1 protocol
runs with parameters ( f , r, gi, hi, ai, bi), i ∈ {2, . . . , n}, such that the system of polynomial
equations

f (x1, . . . , xn) = 0,
hi(x1, . . . , xn) = ui, i ∈ {2, . . . , n}

(5.7)

has only finitely many solutions.
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Proof. Let f0 ∈ R[X2, . . . , Xn], f1 ∈ R[X1, . . . , Xn] be the unique polynomials such that
f = f0 + X1 f1. Further let

G := {(x2, . . . , xn) ∈ Rn−1|(x1, . . . , xn) ∈ Rn \V( f0, f1)},

where V( f0, f1) is the affine variety V( f0, f1) = {x ∈ Rn | f0(x) = f1(x) = 0}. Since
f 6= 0, at least one of the polynomials f0, f1 is not equal to 0, hence G contains infinitely
many points. Note that (r2, . . . , rn) ∈ G.

Now consider the choice of the hi. For any gi ∈ R[Xi], consider the equation 0 =
hi(xi)− ui. When we choose h = h′, we have

0 = hi(xi)− ui = hi(xi)− hi(ri) = h′i(xi)− h′i(ri)

= (. . . (gi(xi) + a1)
b1 + · · ·+ am)

bm − (. . . (gi(ri) + a1)
b1 + · · ·+ am)

bm

and thus hi(xi)− ui = 0 if and only if gi(xi)− gi(ri) = 0. We claim that we can fix
parameters ( f , r, gi, hi, ai, bi), i ∈ {2, . . . , n} such that

V(h2 − u2, . . . , hn − un) ⊆ G.

Indeed, if we set for example gi = Xi for all i ∈ {2, . . . , n}, then hi(xi)− ui = 0 if and
only if xi = ri and

V(h2 − u2, . . . , hn − un) = {(r2, . . . , rn)} ⊂ G.

So for any (a2, . . . , an) ∈ V(h2 − u2, . . . , hn − un), we have f (X1, a2, . . . , an) ∈ R[X1] \
{0}, and thus f (X1, a2, . . . , an) = 0 has only finitely many solutions, since V(h2 −
u2, . . . , hn − un) is finite, as every polynomial hi is a polynomial in only one unknown.
It follows that (5.7) has only finitely many solutions.

Assume that a, b and g are chosen such that gcd ( f , h− u) ∈ R. Then the system

f (X1, X2) = 0,
h(X1, X2) = u,

is obviously zero dimensional, thus it can be solved within a short amount of time. This
gives a lower bound for n, namely n ≥ 3.
In many instances it is convenient to reuse the public key of a protocol. In the case of
Yosh’s key exchange protocol, this may be done at most n− 2 times.

Proposition 5.2.2. The protocol can be used at most n− 2 times using the same parameters f
and r.

Proof. Assume that Alice has run the protocol (not necessarily with the same partner
Bob) i times using the pair f and r. At the i-th run, an adversary observes the system
as in (5.4):

f (x1, . . . , xn) = 0,
hi(x1, . . . , xn) = ui.
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It follows that after n− 1 protocol runs, n equations in n unknowns are given, leading
to a system of equations

f (x1, . . . , xn) = 0,
h1(x1, . . . , xn) = u1,

...
hn−1(x1, . . . , xn) = un − 1.

By Lemma 5.2.1, this system may be zero-dimensional and thus vulnerable to an
attack.

Next we define bounds on a, b used in a protocol with parameters ( f , r, g, h, a, b).

Definition. k Let R be a ring with unity and absolute value | · |, T ,S ∈N, and let

B̂(R) = {b ∈N | Tb is invertible}

where Tb : R[X] → R[X] with x 7→ xb. Further let P(T ,S) be the set of all parameters
( f , r, g, h, a, b) for protocol runs such that the number of steps for performing step 1-4 of the
protocol is bounded by T and the number of bits needed to store ( f , r, g, h, a, b) is at most S .
We define

MT ,S := max {|ai| ∈N | ∃( f , r, g, h, a, b) ∈ P(T ,S) with a = (a1, . . . , ai, . . . , am)},
BT ,S := max {bi ∈ B̂(R) | ∃( f , r, g, h, a, b) ∈ P(T ,S) with b = (b1, . . . , bi, . . . , bm)}.

Further define
BT ,S (R) := {b ∈ B̂(R) | b ≤ BT ,S}.

Note that in the above definition, we consider the size of the ai as a natural number
|ai|. This makes sense, since we want to measure the ai by the number of bits that are
needed to represent them.
Let T ,S ∈ N and ( f , r, g, h, a, b) be the parameters of a protocol run such that
( f , r, g, h, a, b) ∈ P(T ,S). We want to investigate lower bounds on T and S . To do so,
we only cover step 2 of the protocol, since step 1 depends on the way of choosing f ,
and both step 3 and 4 can be executed efficiently.
So assume that degXi

g = ti. Then u′i = degXi
h′ = tib1b2 . . . bm. The upper bound on

the number of terms for h′ is given by (u1 + 1) . . . (un + 1), and since polynomials in
sparse representations, e.g. polynomials with relatively few non-zero terms compared
to their degree, are rare, we can assume that the number of non-zero terms of h′ is

O(u1 . . . un) = O(t1 . . . tn(b1b2 . . . bm)
n).

We choose h such that h ≡ h′ mod f , thus there is some H ∈ R[X1, . . . , Xn] such that
h = h′ + H f . By assuming that degXi

f ≤ u′i for any i ∈ {1, . . . , n}, we can always
choose H such that degXi

h ≤ ui. Since h is part of the public key, we cannot store
h as h′ + H f , since the knowledge of h′ might lead to an attack on the protocol as
we will see later. Thus h needs to be stored in dense representation, which needs
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O(t1 . . . tn(b1b2 . . . bm)n) many bits.
For the sake of convenience we writeM and B instead ofMT ,S and BT ,S when not
talking about certain bounds S , T .

A way for an attacker to retrieve the secret s is to find solutions to the Diophantine
equation f = 0. Finding the solution r is not the only way of attacking the protocol. If
the Diophantine equation has at least m solutions, the protocol can be broken if m of
them are given, even without knowing r.

Proposition 5.2.3. Let ( f , r, g, h, a, b) be the parameters of a protocol run. If an adversary can
compute m different solutions to the Diophantine equation (5.1), then he can also compute s in
O(Bm+n).

Proof. First note that if one of the computed solutions is in fact r, then the adversary
can compute s by simply following the protocol.
Let now t ∈ Rn such that f (t) = 0. An adversary knows g, so he can compute β = g(t).
As a representative of h′ in R[X1, . . . , Xn]/( f ), h is of the form h = h′ + S f for some
S ∈ R[X1, . . . , Xn], hence h(t) = h′(t). This gives us the equation

(. . . (β + a1)
b1 + a2)

b2 + · · ·+ am)
bm = h(t). (5.8)

Assume now that we have m different solutions to (5.1), t1, . . . , tm ∈ Rn and fix some
b1, . . . , bm ∈ {1, 3, 5, . . . ,B}. By defining

hk = h(tk), βk = g(tk) for k ∈ {1, . . . , m}

and introducing integer variables G(i)
j for i, j ∈ {1, . . . , m}, we can transform the set of

m equations of the form (5.8) into the following polynomial system:

A :=


G(1)b1

1 = h1,
...

G(1)b1
m = hm,

B :=
{

G(i)
j = G(i+1)bm−i

j + a(m+1−i), j ∈ {1, . . . , m}, i ∈ {2, . . . , m− 1}

C :=


G(m)

1 = β1 + a1,
...

G(m)
m = βm + a1.

There are m2 + m unknowns, namely ai, G(i)
j for i, j ∈ {1, . . . , m}. Moreover, there are

m equations in the set A, m(m− 1) in the set B and again m in C, giving us m2 + m
equations. This system is zero-dimensional, hence it can be solved in O(Bn) steps using
an algorithm based on Gröbner bases as in [23]. Since we have to solve the above system
for any b1, . . . , bm ∈ B(R), this gives us a runtime of O(BnBm)

62



5 The Key Exchange Protocol by Harry Yosh

5.2.1 Importance of Choosing a Representant h

In step 2 of Yosh’s key exchange protocol, the public key part h is chosen as a rep-
resentative of h′ in R[X1, . . . , Xn]/( f ). This not only leads to a possible reduction of
the size of the public key, but also adds to the security of the protocol. In fact, we can
show that if h = h′, an attacker can break the protocol in at most O(B2mt|B(R)|m+1),
where t = degXi

g for some i ∈ {1, . . . , n} such that t ≥ 0. As we will see later, B, m
and t have to be small positive integers for the protocol to be efficient, thus such an
attack would be managable within a feasible amount of time. To do so, we have to
establish how to efficiently compute a ∈ R, r ∈ B(R) and h ∈ R[X1, . . . , Xn] for a given
f ∈ R[X1, . . . , Xn] such that

hr + a = f . (5.9)

For the rest of the chapter assume that h′ = h and that R is an integral domain.
First let f , h ∈ R[X] with f = anXn + · · ·+ a1X + a0, g = bmXm + · · ·+ b1X + b0 such
that f = hr for some r ∈ N≥2 with x 7→ xr invertible. Then r|n and br

m = an. By
expanding hr we get

(bmXm + · · ·+ b1X + b0)
r =

BmXn + Bm−1Xn−1 + · · ·+ B0Xn−m +O(Xn−m−1)
(5.10)

where

Bi = br−1
m bm−i + ∑

k1m+···+ki−1(m−i+1)=mr−i
k1+···+ki−1=r, k≥0

(
r

k1, . . . , ki−1

)
bk1

1 . . . bkm−i+1
m−i+1 (5.11)

for i ∈ {0, . . . , m}. By (5.10) and f = hr we get a system of equations

Bm = am, . . . , B0 = an−m. (5.12)

We want to solve this system for unknowns bm, . . . , b0. Since r is invertible, bm = r
√

an.
Moreover, by (5.11) every Bi is a polynomial in bm, . . . , bm−i, thus we immediately get a
solution for bm−1 via the equation Bm−1 = am−1, which leads to a solution for bm−2 via
Bm−2 = am−2 and so on. Hence we can solve the above system in O(m) steps. By [19]
we can expand (bmXm + · · ·+ b1X + b0)r in less than r2(m + 1)2 steps, hence we can
compute r

√
f = h in

O(r2(m + 1)2) +O(m) = O(r2
(n

r

)2
) = O(n2).

The procedure above computes r
√

f = h without needing the constant term of f ,
therefore to solve an equation of the form f = a + hr, we can first compute h and
then a = f (0)− (h(0))r. To use this for an equation of the form (5.9), we can view
any f ∈ R[X1, . . . , Xn] as a polynomial in Xi over R[X1, . . . , Xi−1, Xi+1, . . . , Xn] where
i ∈ {1, . . . , n} such that degXi

f ≥ 0.

This leads to Algorithm 1.
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Algorithm 1: Find all solutions for ai, bi to the nested equation
(. . . (g(X1, . . . , Xn) + a1)

b1 + a2)b2 + · · · )bm−1 + am = h(X1, . . . , Xn)

Let LM(g) = Xβ1
1 . . . Xβn

n
j = 0 /* global variable */

1 NestedRoot(0,h,j)

2 Function NestedRoot(i,H,I)
3 Let LM(H) = Xα1

1 . . . Xαn
n

4 D = gcd (α1, . . . , αn)
5 for r ∈ {x ∈ B(R)} | x divides D} do
6 if βi - αi

r for any i ∈ {1, . . . , n} then
7 stop
8 G = r

√
H

9 j = j + 1
10 if i < m− 2 then
11 b[I,j]

m−i−1 = r

12 a[I,j]
m−i = H(0)− G(0)

13 NestedRoot(i + 1,G,j)
14 else
15 if (G(X1, . . . , Xn)− G(0)) = (g− g(0)) then
16 b[I,j]

1 = r

17 a[I,j]
2 = H(0)− G(0)

18 a[I,j]
1 = G(0)− g(0)

Note that Algorithm 1 only works if m is known. For unknown m, one could run the
algorithm for all m ∈ {1, . . . , K} where

K = max {k ∈N | ak deg g ≤ deg h}

and 1 < a = minB(R). This is an upper bound for m, since by our assumption of h,
we have deg h = deg gb1 . . . bm for some bi ∈ B(R). Thus the algorithm has to be run at
most (log deg h− log deg g)/ log a times. Further note that the step

G(X) = r
√

H(X)

may not be computed the way it is above for every r, since H(X) is not an r-th power
for all r ∈ {x ∈ B(R)} | x divides D} in general. Hence we need to add the step of
checking that G(X) ∈ R[X] and G(X)r = H(X), which does not increase the time for
taking the r-th root of O(n2).

Theorem 5.2.4. Let g, h ∈ R[X1, . . . , Xn] with degXi
g = t for some i ∈ {1, . . . , n} such that

t ≥ 1. Algorithm 1 finds all ai ∈ R, bi ∈ B(R), i ∈ {1, . . . , m} with

(. . . (g(X1, . . . , Xn) + a1)
b1 + a2)

b2 + · · · )bm−1 + am = h(X1, . . . , Xn) (5.13)

in at most O(B2mt|B(R)|m+1).
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Proof. As we have seen before, for a given h ∈ R[X1, . . . , Xn] NestedRoot(0, h, j) com-
putes all bm−1 ∈ B(R), am ∈ R and gm−1 ∈ R[X1, . . . , Xn] such that

gbm−1
m−1 + am = h.

For i ∈ {1, . . . m− 2} NestedRoot(i, gm−i, j) gives us all solutions for

gbm−i−1
m−i−1 + am−1 = gm−i

and thus we receive aj, bj, gj such that

h = gbm−1
m−1 + am

= (gbm−2
m−2 + am−1)

bm−1 + am

...

= (. . . (g1)
b1 + a2)

b2 + · · · )bm−1 + am.

We have g + a1 = g1, hence a1 = g1(0) − g(0). Taking any root of h takes at most
(tb1 . . . bm)2 = O(B2m) time, and since deg gi < deg h for i ∈ {1, . . . , m− 1}, this gives
an upper bound for any root calculation performed in the algorithm. By the nested
character of the NestedRoot calls, the algorithm finds all solutions to 5.13 in

O(B2m)(|B(R)|+ · · ·+ |B(R)|m) = O(B2m)
|B(R)|m+1 − 1
|B(R)| − 1

= O(B2mt|B(R)|m+1).

Algorithm 1 finds at most Bm pairs (a, b) satisfying (5.13). To choose one, let A be the
set of all a[I1,I2]

k1
computed by the algorithm, where k1 ∈ {1, . . . , m} and I1, I2 ∈N. For

any i1, i2 ∈N such that there exists some a[i2,i1]
1 ∈ A, a solution to (5.13) is given by

a = (a[i2,i1]
1 , a[i2,i1]

2 , a[i3,i2]
3 , . . . , a[im−1,im−2]

m−1 , a[im,im−1]
m ),

b = (b[i2,i1]
1 , b[i3,i2]

2 , . . . , b[im−1,im−2]
m−2 , b[im,im−1]

m−1 ).

5.3 The Protocol over Finite Fields

We have to ensure that security of the protocol can still be given in finite fields. In 5.2
we established that the solution of the system of equations (5.4) breaks the protocol.
Although the solution space over a field Fq is finite, the solution of systems of higher
order congruence equations is NP-complete for n ≥ 3, c.f. [14].
Next, we require the function x 7→ xb to be invertible over F∗q . It is a well-known fact
that this holds if and only if gcd (q− 1, b) = 1. The following lemma gives us a way of
fixing a finite field suitable for the protocol:

Lemma 5.3.1. Let p1, p2 be odd prime numbers with p2|(2p1 − 1). Then p2 > p1.
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Proof. Since
2p1 ≡ 1 mod p2,

we have ordF∗p2
2|p1, and since p1 is prime ordF∗p2

2 = p1. Thus p1|(p2− 1) and it follows
that p2 > p1.

Now let B be an upper bound for the exponents b1, . . . , bm. For any prime number r,
the smallest prime factor of 2r − 1 is at least r. Thus by choosing r prime with r > B
and q = 2r, every exponentiation we perform in the protocol is invertible in F∗q .

5.3.1 Choosing a Polynomial f

As in [18], we are going to use Theorem 3.4.1 to construct a Diophantine equation
f (X1, . . . , Xn) = 0 over a finite field, which can not be solved in a reasonable amount of
time by guessing solutions x ∈ Fn

q uniformly at random. In order to do so, we need to
find homogeneous polynomials A and B that fulfill the requirements of the theorem.

Proposition 5.3.2. Let F = A + B ∈ Fq[X1, . . . , Xn] with

A = α1Xs
1 + · · ·+ αnXs

n,
B = β1Xr

1 + · · ·+ βnXr
n,

where αi, β j ∈ F∗q for i, j ∈ {1, . . . , n}. Let 0 < s < r < q and further let gcd(r, q) = 1. Then
F satisfies all assumptions of Theorem 3.4.1.

Proof. The diagonal form of the homogeneous polynomials A and B ensures deg A <
deg B = r and degXi

B = r for all i ∈ {1 . . . , n}, so it remains to prove that

b(Xk, Xl) := B(0, . . . 0, Xk, 0, . . . , 0, Xl , 0, . . . , 0) = βkXr
k + βlXr

l ∈ Fq[Xk, Xl ]

has no multiple roots. The binary form b(Xk, Xl) has no multiple roots at (a, b) ∈ (F∗q)
2 if

and only if ∂
∂Xk

b(Xk, Xl)|Xk=a,Xl=b 6= 0 or ∂
∂Xl

b(Xk, Xl)|Xk=a,Xl=b 6= 0. Since gcd(r, q) = 1
and both a 6= 0, βk 6= 0 we have ∂

∂Xk
b(Xk, Xl)|Xk=a,Xl=b = βkrar−1 6= 0.

Assume now that Alice and Bob want to execute Yosh’s key exchange protocol over a
finite field. First, they agree on a finite field Fq, where q = 2r for some large enough
prime r. Then with Algorithm 2, Alice can construct a suitable Diophantine equation
over Fq.

Theorem 5.3.3. Let f ∈ Fq[X1, . . . , Xn] \Fq be constructed by Algorithm 2. The probability
of finding a root x of f , when x runs uniformly through the elements of Fn

q , is at most 3
q .
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Algorithm 2: Construct a polynomial f ∈ Fq[X1, . . . , Xn] and r ∈ Fn
q with f (r) =

0.
Input : v, M ∈N

1 Choose αi, βi ∈ F∗q for i ∈ {1, . . . , n}
2 Choose r ∈N odd with 3 ≤ r < ( q

5 )
3/13

3 Choose s ∈N with 1 ≤ s < r
4 Set A = α1Xs

1 + · · ·+ αnXs
n, B = β1Xr

1 + · · ·+ βnXr
n

5 Choose r ∈ Fn
q

6 γ = A(r) + B(r)
7 if γ = 0 then
8 go to 5

9 f = A + B− γ

Proof. First, we choose the coefficients αi, βi of the polynomials A and B according to
Proposition 5.3.2. Choosing r odd ensures that gcd (r, q) = 1. Moreover r < ( q

5 )
3/13

induces r < q as well as q > 5r13/3. With the go to loop we choose r ∈ Fn
q randomly

until we find a γ ∈ F∗q . By selecting r uniformly from Fn
q , we obtain γ 6= 0 with

high probability according to Lemma 5.3.4. Thus we can assume that the algorithm
terminates. By Theorem 3.4.1, Pcoll(A + B, γ) ≤ 3

q , and therefore the same probability
holds for finding a root of f .

Note that we assume the termination of Algorithm 2 based on a probabilistic argument.
By the Schwartz-Zippel Lemma below, the probability of A(x) + B(x) 6= 0 is at least

1− rqn−1 1
qn > 1− 1

53/13qn−3/13 ,

hence it is highly unlikely that γ = 0 occurs even once for any chosen q and n ≥ 2.

Lemma 5.3.4 (Schwartz-Zippel). Let f ∈ Fq[X1, . . . , Xn] be non-zero with deg f = d the
total degree of f . Then the number of zeros of f is at most dqn−1.

Proof. Since V( f ) is a hypersurface with dim V( f ) = n − 1 and deg V( f ) = d by
Proposition 3.1.2, the lemma follows directly from Lemma 3.1.5.

Despite the analogy of the Schwartz-Zippel Lemma and the above theorem, there are
two main advantages for polynomials chosen subject to the conditions of Theorem 3.4.1.
First, for q sufficiently large, the probability of finding a uniformly chosen root x is
always bounded by 3

q , whereas the other bound, d
q depends on the total degree d of the

polynomial. Second, the polynomial f found by Algorithm 2 is absolutely irreducible,
hence the equation f = 0 can not be solved via factoring f .
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5.3.2 Finite Fields with Characteristic Greater than 2

Now let Fq be a finite field with 2 - q. This means that we can not use Lemma 5.3.1 to
set B(Fq).
Let B′ = {3, 5, . . . ,B}, which is the set of candidates for B(Fq). There are no even
numbers in B′, since 2|(q − 1) for every choice of q. First assume that q is a prime.
Then

B(Fq) = {b ∈ B′ | gcd (q− 1, b) = 1}.

Since the greatest common divisor can be computed efficiently, this set is easy to build.
If it is too small, we have to choose a different prime q.
Assume now that q = pn for a prime p. For small primes, it is easy to achieve a set
B(Fp) which is almost as large as B′. Then we can choose an exponent n ∈ N such
that |B(Fp)| ≤ 2|B(Fq)|. Indeed, for an initial choice n0, we have

gcd (pn0 − 1, pn0+1 − 1) = gcd (pn0 − 1, pn0+1 − pn0)

= gcd (pn0 − 1, p(p− 1))
= gcd (pn0 − 1, p− 1),

thus any divisor of pn0 − 1 that is divisible by some b ∈ B(Fp) can not be a divisor of
pn0−1 − 1 and vice versa. In the worst case, such divisors are evenly distributed, and
we can choose n ∈ {no, no + 1} and q = pn such that |B(Fq)| = 1

2 |B(Fq)|.

When we choose q to be a large prime, we may choose different polynomials A and B
in Algorithm 2.

Proposition 5.3.5. Let p be a prime and q = pk for some k ∈N. Further let P ∈ Z[X] be the
irreducible polynomial

P = Xn + λn−1Xn−1 + · · ·+ λ1X + λ0

with n < p. Assume that P has no multiple roots over C and that P̄ ≡ P mod q has no
multiple roots over F∗q . Let α1, . . . , αn ∈ C be the roots of P, and define the multivariate
polynomial

NP :=
n

∏
i=1

(X1 + αiX2 + α2
i X3 + · · ·+ αn−1

i Xn).

Then NP is a homogeneous polynomial in Z[X1, . . . , Xn] of degree n, and

N̄P(X1, X2, 0, . . . , 0) ≡ NP(X1, X2, 0, . . . , 0) mod q

has no multiple roots in (F∗q)
2.

Proof. The degree of NP and the fact that it is homogeneous follow immediately from
the definition. So we first show that NP is an integral polynomial. Let M = Q(α1, . . . , αn)
and let OM be the ring of integers of M. For all σ ∈ Gal(M/Q), we have

σ(
n

∏
i=1

(X1 + αiX2 + · · ·+ αn−1
i Xn)) =

n

∏
i=1

(X1 + σ(αi)X2 + · · ·+ σ(αi)
n−1Xn)
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and thus σ(NP) = NP, since σ only permutes the factors in the product. Therefore we
have NP ∈ Q[X1, . . . , Xn]. Moreover, NP ∈ OM[X1, . . . , Xn] and thus NP is integral since
Z is integrally closed.
Next we have

NP(X1, X2, 0, . . . , 0) =
n

∏
i=0

(X1 + αiX2) =

= Xn
1 + Xn−1

1 X2

(
∑

1≤j≤n
αj

)
+ · · ·+ X1Xn−1

2

(
∑

1≤j1≤...≤jn−1≤n
αj1 · · · αjn−1

)
+ Xn

2

n

∏
i=1

αi

= Xn
1 + Xn−1

1 X2λn−1 + · · ·+ X1Xn−1
2 λ1 + Xn

2 λ0 ∈ Z[X1, . . . , Xn].

Assume that for (a, b) ∈ (F∗q)
2 we have

NP(a, b, 0, . . . , 0) ≡ bn−1P̄
( a

b

)
≡ 0 mod p.

Then, since b ∈ F∗q , P̄
( a

b

)
≡ 0 mod p. Now

∂

∂X1

(
n

∏
i=1

(X1 + αiX2)

)∣∣∣∣∣
X1=a,X2=b

≡ bn−1P̄′
( a

b

)
mod p,

and this can not be equal to 0, since P̄ has no multiple roots.

Let now M = Q(α1), where α1 is defined as above. A polynomial as defined above
is called norm form, since it is strongly related to the norm function of an algebraic
number field. For x = x1 + α1x2 + · · ·+ αn−1

1 xn we have x ∈ Z[α1], and thus for the
norm we have NM/Q ∈ Z. Moreover, we have

NM/Q(x) =
n

∏
i=1

σi(x) =
n

∏
i=1

(x1 + σi(α1)x2 + σi(α1)
2x3 + · · ·+ σi(α1)

n−1xn)

=
n

∏
i=1

(x1 + αix2 + α2
i x3 + · · ·+ αn−1

i xn).

Every n-tuple (x1, . . . , xn) corresponds uniquely to some x ∈ Z[α1] by setting x =
x1 + α1x2 + · · ·+ αn−1

1 xn. Thus, for every (x1, . . . , xn) ∈ Zn we have

NP(x1, . . . , xn) = NM/Q(x) ∈ Z.

With Proposition 5.3.5, we can find polynomials A and B satisfying the requirements of
Theorem 3.4.1. By choosing polynomials P and Q, such that Q̄ has no multiple roots
and such that deg P < deg Q <

( q
5

)3/13, we can set A = NP and B = NQ.

5.3.3 Choosing a, b and h over Fq

We want to fix r ∈N such that the size of the finite field Fq, q = 2r is large enough for
the security of the key agreement protocol. By having r ≥ 127, Theorem 5.3.3 ensures
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that the polynomial which is output by Algorithm 2 is a Diophantine equation which
can be used as a public key. In chapter 5.2, we already concluded that B has to be a
small positive integer. In the case of finite fields, we can abandon the boundM and
choose a1, . . . , am ∈ F∗q . This way an adversary has no chance of obtaining the secret
s with methods like we will discuss in section 5.4.1. To choose the representative h
of h′ in Fq[X1, . . . , Xn]/( f ), we can choose some V ∈ Fq[X1, . . . , Xn] randomly with
1 ≤ deg V ≤ deg f and set h = h′ + V f .

5.4 The Protocol over Z

It is well-known that the function Tb : Z[X]→ Z[X], X 7→ Xb is invertible if and only
if b is odd. This means that B is some positive odd integer, B(Z) = {3, 5, . . . ,B} and
clearly |B(Z)| = (B − 1)/2.

5.4.1 Security over Z

Assume that we have given the equation

Xbm
m = u,

with known u ∈ Z and unknowns Xm ∈ Z, bm ∈ N, bm odd, and assume we know
that there exists at least one solution to this equation. By [4] (and assuming that
|u| > 16), we can use a perfect-power classification algorithm to compute some X̄ and
b̄ in (log |u|) expO(

√
log log |u| log log log |u|) steps such that

X̄b̄ = u. (5.14)

By Proposition 5.4.1, we can ensure that b̄ is an odd integer by factoring out a maximal
power of 2 and raising X̄ by the same power. This allows us to uniquely compute
u′ := u1/bm . Now assume that ( f , r, g, h, a, b) are the parameters of a given protocol run.
From equations (5.3) and (5.2) we can deduce that

(. . . (s + a1)
b1 + a2)

b2 + · · · )bm−1 + am)
bm = u. (5.15)

Comparing this with what we have computed above, we can write X̄ as (. . . (s + a1)
b1 +

· · · )bm−1 + am), leading to a similar equation

Xbm−1
m−1 + am = u′ ⇔ Xbm−1

m−1 = u′ − am. (5.16)

with Xm−1 = (. . . (s + a1)
b1 + · · · )bm−2 + am−1).

Proposition 5.4.1. Let k ∈N and k = pα1
1 . . . pαm

m its prime decomposition. Then k is a perfect
power if and only if D := gcd (α1, . . . , αm) > 1. Moreover, the positive integer solutions to the
equation

Xb = k

are given by

b =
D
d

, X = kd/D,

where d runs over all positive divisors of D.
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Proof. First assume that D > 1. By setting k̄ := pα1/D
1 . . . pαm/D

m ∈ N we can write
k = k̄D, meaning that k is a perfect power. If k = k̄a for some k, a ∈ Z and a > 1, then,
by the uniqueness of the prime decomposition in Z, a|αi for i ∈ {1, . . . , m} and thus
a|D, so D > 1.

In Definition 5.2, we have introduced positive integersM and B, such thatM is the
upper bound of the absolute values of the ai, i.e. |ai| ≤ M for i ∈ {1, . . . , n} and B is a
bound for the bj, j ∈ {1, . . . , m}. This means that equation (5.16) has only finitely many
solutions. So let X̄m−1, b̄m−1, am be such a solution. Again X̄m−1 is of the form

X̄m−1 = (. . . (s + a1)
b1 + a2)

b2 + · · · )bm−1 + am−1 = Xbm−2
m−2 − am−1.

By iterating this method, we can deduce Algorithm 3.

Algorithm 3: Find all possible solutions to the nested equation
(. . . (s + a1)

b1 + a2)b2 + · · · )bm−1 + am = u with bounds on the unknowns
Input : u ∈ Z, m,B,M ∈N

Output : An array containing all possible solutions

1 j = 0 /* global variable */

2 Findpairs<m (1,u,0)

3 Function Findpairs<m(i,c,I)
4 for b ∈ {3, 5, 7, . . . ,B} do
5 x0 = bc1/bc
6 k = 0
7 x−k = x0

8 while c− (x−k )
b <M do

9 j = j + 1
10 y(i,b,[I,j]) = c− (x+k )

b

11 j = j + 1
12 y(i,b,[I,j]) = c− (x−k )

b

13 if i + 1 < m then
14 Findpairs<m(i + 1,x+k ,j− 1)
15 Findpairs<m(i + 1,x−k ,j)
16 else
17 Findpairs=m(x+k ,j− 1)
18 Findpairs=m(x−k ,j)
19 k = k + 1
20 x+k = x0 + k
21 x−k = x0 − k

22 Function Findpairsn(c, I)
23 for −M ≤ k ≤M do
24 y(m,k,I) = k
25 s(k,I) = c− k
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Theorem 5.4.2. Algorithm 3 finds all solutions to the equation

(. . . (s + a1)
b1 + a2)

b2 + · · · )bm−1 + am = u, (5.17)

with |ai| ≤ M and bi ∈ {3, 5, . . . ,B}, i ∈ {1, . . . , m} in at most O((2B 3
√
M)m(1 + 2M))

steps.

Proof. By setting X1 := (. . . (s + a1)
b1 + a2)b2 + · · ·+ am−1) we can write equation (5.17)

as
Xbm−1

1 + am = u. (5.18)

First, the algorithm executes Findpairs<m(1, u, 0), which finds all values for X1 ∈ Z

and am ∈ {−M, . . . , M} solving (5.18) as follows: We successively choose an integer
b ∈ {3, 5, . . . ,B} for the exponent, thus solving the equation for every possible bm−1.
Since we require −M < am < M and am = u − Xbm−1

1 , we find all possible X1 by
setting x0 = bc1/bc and finding all possible x+,−

k = x0 ± k, k ∈ Z such that −M <

u− (x+,−
k )b <M. By writing X1 = Xbm−2

2 + am−1, we can find solutions for X2, bm−2
and am−1 the same way as above, thus every solution for X1 is a new input for a
function Findpairs<m(2, X1, I). Hence, for all i ∈ {1, . . . , m− 2} we find solutions for
Xi = Xbm−i−1

i+1 + am−i, and it takes 2M steps for the function Findpairs=m to find all s, a1
with Xm−1 = s + a1. Now we need to bound the number of steps of the algorithm. By
definition x0 = bc1/bc ≤ c1/b and thus c− xb

0 ≥ 0. This gives us a chain of (c− (x−k )
b)

with k ∈ {1, . . . , K} such that K is maximal with (c− (x−k )
b) <M:

0 ≤ (c− (x−0 )
b) < (c− (x−1 )

b) < · · · < (c− (x−k )
b) <M⇔

−c ≤ −(x−0 )
b < −(x−1 )

b < · · · < (x−k )
b <M− c.

Hence the number the while loop is executing is equal to b
√
M− c− b

√
−c and this is

bounded from above by 2 b
√

M. Since b ∈ {3, 5, . . . ,B}, we get an upper bound

2 3
√
M+ 2 5

√
M+ · · ·+ 2 B√M ≤ B 3

√
M (5.19)

for the number of steps of a single Findpairs<m function. Every Findpairs<m calls again
two Findpairs<m and after m− 1 nested calls Findpairs=m, this gives us at most

m−1

∑
i=0

(2B 3
√
M)i + (2B 3

√
M)m2M =

(2B 3
√
M)m − 1

2B 3
√
M− 1

+ (2B 3
√
M)m2M

< (2B 3
√
M)m(1 + 2M)

many steps.

First of all, note that Algorithm 3 finds in fact the secret s, meaning that the knowledge of
the parameters a and b is obsolete for breaking the protocol. If the y(i,b,[I1,I2]) are stored,
however, a solution to (5.15) can be given as follows: Choose some (b1, . . . , bm−1) ∈
(B(R))m−1. Further choose indices Ij ∈ N and some k ∈ [−M,M] such that the
elements of

y := (y(1,bm−1,[I1,I2]), y(2,bm−2,[I2,I3]), . . . , y(m−2,bm−1,[Im−2,Im−1]), y(m−1,bm−2,[Im−1,Im]), y(m,k,Im))
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are in the output of Algorithm 3. Then the chosen bi together with a = y form a
solution.
A disadvantage that the algorithm suffers is that the runtime depends on the knowledge
of m. If m is known, it can be executed as above, leading to as many asO((2B 3

√
M)m(1+

2M)) solutions to equation (5.15). If m is not known, an adversary has to run the
algorithm above for every m̂ ≤ m and then check for all such m̂, if the result matches
the parameters of the protocol.

Any perfect power with odd exponent in the interval [u−M, u +M] is a solution
to (5.16). If Algorithm 3 would be set not to loop over all b ∈ B(R) but over perfect
powers in this interval, the runtime would be asymptotically the same, as we can see
in Proposition 5.4.3. This also shows that the upper bound in (5.19) could instead
be estimated asymptotically as 2 3

√
M. The proof of the following proposition is a

modification of the proof of [31, Theorem 1].

Proposition 5.4.3. Let u ∈ Z, K ∈N and define

P(u, K) = {x ∈ [u− K, u + K] | x is a perfect power with odd exponent e ≤ B}.

Then |P(u, K)| ≈ 3
√

u + K− 3
√

u− K ≤ 2 3
√

K.

Proof. Let NB3 (x) denote the set of perfect powers less than or equal to x, where the
exponent is odd and at most B. It suffices to show that |NB3 (x)| ≈ 3

√
x. Since we

can easily compute the exact size of NB3 (x) for small x, we can assume that B ≥ 3
and x ≥ 8. Next, we define the sets An(x) := {kn | k ∈ N, kn ≤ x} for n ∈ N and
set M := blog2 xc − [blog2 xc is even], where [·] is the Iverson bracket, cf. [16]. Then
2M ∈ AM(x) and 2M+1 6∈ AM+1(x) because 2M+1 > x, so

M′ := max {m ∈N | ∅ 6= Am(x) ⊆ NB3 (x)} =
{

M, if M < B
B, if M ≥ B.

The elements of NB3 (x) are all in some An(x) for n ∈ {1, . . . , M′}, hence

NB3 (x) =
M′⋃

n=3,
n odd

An(x). (5.20)

Any set An(x) contains b n
√

xc elements, so with the assumption that B ≥ 3 and the fact
that the union in (5.20) is in general not disjoint we get

b 3
√

xc = A3(x) ≤ NB3 (x) ≤
M′

∑
n=3,
n odd

b n
√

xc. (5.21)

Now we can bound the sum on the right-hand side of (5.21) as follows:

M′

∑
n=3,
n odd

b n
√

xc ≤ b 3
√

xc+
M

∑
n=4
b n
√

xc ≤ b 3
√

xc+
M

∑
n=4

4
√

x ≤ b 3
√

xc+ 4
√

x(M− 2),
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and by L’Hospitals rule we get

1 x→∞←−−− b
3
√

xc
3
√

x
≤ NB3 (x)

3
√

x
≤ b

3
√

xc
3
√

x
+

4
√

x(M− 2)
3
√

x
<
b 3
√

xc
3
√

x
+

log2 x
12
√

x
x→∞−−−→ 1,

hence NB3 (x)→ 3
√

x for x → ∞.

5.4.2 Choosing a Diagonal Polynomial

In order to make the protocol in chapter 5.1 secure, the polynomial f ∈ Z[X1, . . . , Xn]
has to be chosen such that f = 0 is hard to solve. Other than that, an efficient way
for calculating a solution r ∈ Zn when defining the polynomial in the first step of the
key-exchange is required, as well as a representation of the polynomial with feasible bit
length in respect of an implementation. For all this, Hirata-Kohno and Pethő suggest to
choose a diagonal polynomial of the form

f = c1Xd1
1 + . . . + cnXdn

n + c0, (5.22)

with d1, . . . , dn ≥ 2.

Algorithm 4: Construct a diagonal polynomial f and an r ∈ Zn with f (r) = 0.
Input : v, M ∈N

1 Choose d1 ∈ {2, . . . , M}
2 for 2 ≤ i ≤ n do
3 Choose di ∈ {di−1, . . . , M}
4 Choose r′i ∈ {−2v, . . . , 2v} for {1, . . . , n}
5 if (r′1, . . . , r′n) = 0 then
6 go to 4

7 Choose cm+1 ∈ {−2v, . . . , 2v} \ {0}
8 d = gcd (r′1, . . . , r′n)

9 Set ri =
r′i
d for {1, . . . , n}

10 R = (rd1
1 , . . . , rdn

n )t

11 Let yi ∈ Zn, i ∈ {0, . . . , n} with (y0
t + q′1y1

t + · · ·+ q′nyn
t)R = cm+1

for any q′i ∈ Z for {1, . . . , n}
12 Choose qi ∈ Z for {1, . . . , n}
13 (c1, . . . , cm) = y0

t + q1y1
t + · · ·+ qnyn

t

14 r = (r1, . . . , rn)

15 f = c1Xd1
1 + . . . + cnXdn

n + cm+1

The idea of Algorithm 4 is to set the exponents and to choose a solution for the diagonal
polynomial in a certain way, then use the solvability of linear Diophantine equations to
compute the coefficients for f . The way this is done, there are infinitely many n-tuples
of coefficients for fixed exponents and r with f (r) = 0.
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Lemma 5.4.4. Let f ∈ Z[X1, . . . , Xn] be given by

f = c1X1 + c2X2 + · · ·+ cnXn

with ci 6= 0 for all i ∈ {1, . . . , n} and let c0 ∈ Z \ {0}. Then the Diophantine equation
f − c0 = 0 is solvable if and only if gcd (c1, . . . , cn)|c0.

Proof. Let d = gcd (c1, . . . , cn). First, assume that that there are some a1, . . . , an ∈ Z

with
c1a1 + · · ·+ cnan = c0.

Then d|c1a1 + · · ·+ cnan and thus d|c0. For the other direction, assume now that d|c0.
We claim that there exist some a′1, . . . , a′n ∈ Z such that

c1a′1 + · · ·+ cna′n = d.

We prove this by induction on n. For n = 2 the lemma follows from the well-known
Euclidean algorithm. So assume that n > 2 and let d′ = gcd (c1, . . . cn−1). By the
induction hypothesis there are some a′′1 , . . . , a′′n ∈ Z with

c1a′′1 + · · ·+ cn−1a′′n−1 = d′.

Since
d = gcd (c1, . . . , cn) = gcd (gcd (c1, . . . cn−1), cn),

there are some a, b ∈ Z with

d = ad′ + bcn = a(c1a′′1 + · · ·+ cn−1a′′n−1) + bcn,

hence our claim is proved. By multiplying c0
d ∈ Z to (15), we obtain some a1, . . . , an ∈ Z

with
c1a1 + · · ·+ cnan = c0.

Theorem 5.4.5. Algorithm 4 finds a pair ( f , r) with

f = c1Xd1
1 + . . . + cnXdn

n + c0 ∈ Z[X1, . . . , Xn]

and f (r) in polynomial time.

Proof. We start the proof by noting that the term ’Choose’ in Algorithm 4 stands for
a choice at random. At the start of the algorithm we choose the exponents di such
that 2 ≤ d1 ≤ . . . ≤ dn ≤ M. Further we fix cm+1, r′1, . . . , r′n for some given bound. The
if-statement in line 5 ensures that 0 6= d = gcd (r′1, . . . , r′n). Since r1, . . . , rn are set such
that gcd (r1, . . . , rn) = 1 we have gcd (rd1

1 , . . . , rdn
n ) = 1, hence the linear Diophantine

equation
c0 = c1rd1

1 + · · ·+ c1rdn
n (5.23)
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is solvable by Lemma 5.4.4. For solving this equation in polynomial time, we can use
an algorithm introduced in [10], giving us y0, . . . , yn ∈ Zn such that

(y0
t + q1y1

t + · · ·+ qnyn
t)

rd1
1
...

rdn
n

 = cm+1

for any q1 . . . , qn ∈ Z. By fixing the qi we can set (c1, . . . , cm) = y0
t + q1y1

t + · · ·+ qnyn
t

and hence we have both f and r with f (r) = 0.

Special cases of the Diophantine equation of diagonal form (5.22) have been studied
extensively. First consider equations of the form X2

j + C = Xn
i , which have only finitely

many solutions. In fact, for any C there is a computable K(C) bounding all possible
values for Xj. In practice, however, this bound is too large to solve the equation in
a feasible amount of time by considering all Xj in this bound. Another special case
of (5.22) is given by X2

j + ciX2
i = m. This equation has infinitely many solutions. It is

the Diophantine equation the OSS-Scheme in 4.1 is built on, and as we have seen, it can
be solved quickly. However, unlike in the case of the OSS-scheme, only the solution r
or m different solutions would break the protocol, as we have seen in Proposition 5.2.3,
so we need control on the solutions of the equation X2

j + ciX2
i = m. The fastest known

way of finding a general solution is only pseudo-polynomial in ci. In fact, if we set
c1 = 1, c2 = −1, input any values for Xk for k > 2 and set d1 = d2 = 2, the resulting
equation is of the form X2

1 − X2
2 = n. Finding solutions to this is as hard as factoring

n.

By Kerckhoffs principle, it is safe to assume that an attacker knows that the solution r
to f = 0 fulfills gcd r = 1. To avoid a brute force attack, i.e. test whether

c1rd1
1 + · · ·+ c1rdn

n − c0 = 0

for all possible r with |ri| ≤ 2v/di , we need to choose v larger than a certain bound.

Proposition 5.4.6. Let d1, . . . , dn, v ∈N with dj = mink dk and di = maxk dk. The number of
n-tuples (r1, . . . , rn) ∈ Zn such that gcd (r1, . . . , rn) = 1 and |ri|di ≤ 2v for all i ∈ {1, . . . , n}
is in the interval 2

n(v+1)
di

ζ(n)
,

2
(n+1)v

dj

ζ(n)
+O(2

(n−1)v+n
dj )

 .

Proof. By the lemma in [32, page 1], the number Zk(t) of k-tuples v ∈ {1, . . . , t}k such
that gcd v = 1 is given by tk/ζ(k) +O(tk−1). We denote by Z(χ1, . . . , χn) the number
of all all n-tuples v = (v1, . . . , vn) ∈ Zn with gcd v = 1 and 1 ≤ vi ≤ χi if χi ≥ 0 and
χi ≤ vi ≤ 0 otherwise for all i ∈ {1, . . . , n}. Then

2
nv
di

ζ(n)
≤ Z

(
2

v
di , . . . , 2

v
di

)
≤ Z

(
2

v
d1 , . . . , 2

v
dm

)
≤ Z

(
2

v
dj , . . . , 2

v
dj

)
≤ 2

nv
dj

ζ(n)
+O(2

(n−1)v
dj ).
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Next we consider Ẑk(t), by which we denote the number of k-tuples v ∈ {−t, . . . , t}k

such that gcd v = 1. By the symmetry of the greatest common divisor, we have

Ẑn(t) = ∑
χ1,...,χn∈{−t,t}

Z(χ1, . . . , χn) =
n

∑
l=0

(
n
l

)
Zn(t) = 2nZn(t),

since the cases where any number of vi = 0 adds to theO(tn−1) term of Zn(t). Replacing
Z with Ẑ as we have replaced Zk with Ẑk leads to the desired result: Let Ẑ(χ1, . . . , χn)
be the number of n-tuples v = (v1, . . . , vn) ∈ Zn with gcd v = 1 and |vi| ≤ χi for all
i ∈ {1, . . . , n}. Then

2nZn

(
2

v
di

)
≤ Z

(
2

v
d1 , . . . , 2

v
dm

)
≤ 2nZn

(
2

v
dj

)
.

To avoid an attack, v has to be chosen such that the number of possibilities for (r1, . . . , rn)
is at least 2128. By the proposition above, this means that

2
n(v+1)

di

ζ(n)
≥ 2128 ⇔ v ≥

dj

n
(128 + log2 (ζ(n)))− 1,

where 0 < dj = max (d1, . . . , dn). Further, Hirata and Pethő suggest to choose the di to
be small, namely di ≤ 7. To omit trivial cases for f , we also require that di ≥ 2 for all
i ∈ {1, . . . , n}.

5.4.3 The Diagonal Polynomial is Irreducible

Let f be the diagonal polynomial from the previous section, and assume that f is
primitive, such that there is some k ∈ {1, . . . , n} with

d = gcd (c1, . . . , ck−1, ck+1, . . . , cn, c0) = 1.

If f is not of this form, we can change two coefficients of f in order to bring it to this
form. Indeed, since gcd (r1, . . . , rn) = 1, there is some rj such that d - rj. For a fixed
i ∈ {1, . . . , n}, setting

cl =


cl + kr

dj
j : l = i

cl − krdi
i : l = j

cl : l ∈ {1, . . . , n} \ {i, j}

for some k ∈ Z \ {0} still solves the equation (5.23), so this again gives a valid diagonal
polynomial.

With the assumption above, we can therefore show that f is in fact irreducible over Z,
excluding trivial attacks on the protocol by factoring f into smaller factors which may
be easy to solve. To show irreducibility of f , we use the following proposition, which
states a well-known fact about irreducibility:
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Proposition 5.4.7. Let K be a field and n ∈N with n ≥ 2. Further let a ∈ K∗. Assume that
for all prime numbers p with p|n we have a 6∈ Kp, and if 4|n we have a 6∈ −4K4. Then

Xn − a ∈ K[X]

is irreducible over K.

Next we are going to need the following lemma:

Lemma 5.4.8. Let c0, c1, . . . , ck ∈ Z \ {0} and let

g = c0 + c1Xd1
1 + · · ·+ ckXdk

k ∈ Z[X1, . . . , Xk]

be primitive for some exponents di ≥ 2, i ∈ {1, . . . , k}. Then

g 6∈ (Q(X1, . . . , Xk))
p and g 6∈ −4(Q(X1, . . . , Xk))

4

for all prime numbers p.

Proof. Since g is primitive, it suffices to show the lemma for Z[X1, . . . , Xk] instead of
Q(X1, . . . , Xk). So for the sake of a contradiction, assume that there is a polynomial
h ∈ Z[X1, . . . , Xk] such that g = hp for some prime p. As c1 6= 0, we have that
M := Xd1/p

1
p
√

c1 has to be a monomial appearing in h. Moreover, since Xd1
1 is the

highest X1-term in g, M is the highest X1-term in h. The constant term of g is not
equal to zero, so the same has to hold for h. Let 0 6= c = h(0). As Xd1

1 is the only
monomial in g divisible by X1, M is the only monomial of h divisible by X1. But then
pcp−1Xd1/p

1
p
√

c1 ∈ Z[X1, . . . , Xk] is a monomial of hp = g, a contradiction. We can show
that g 6∈ −4(Z[X1, . . . , Xk])

4 along the same lines.

The assumption that f is primitive and Gauss’s lemma allow us to prove that f is
irreducible.

Theorem 5.4.9. Let

f = c1Xd1
1 + . . . + cnXdn

n + c0 ∈ Z[X1, . . . , Xn]

be a polynomial that was constructed in Algorithm 4. Then f is irreducible over Z.

Proof. By our initial assumption and if necesarry after renumbering, we can write f as
f = c1Xd1

1 + g for a primitive g ∈ Z[X1, . . . , Xn]. By Gauss’s lemma, we can work in
Q(X1, . . . , Xn) and thus f is irreducible by Proposition 5.4.7 and Lemma 5.4.8.
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5.4.4 Choosing a Non-diagonal Diophantine Equation

In Algorithm 4, an initially chosen solution r leads to a diagonal Diophantine equation
via solving the linear equation

c1rd1
1 + · · ·+ c1rdn

n = c0

for known d1, . . . , dn and c0. This can be done efficiently by a multidimensional ex-
tension of the Euclidean algorithm. We can extend this idea to a more general class
of Diophantine equations. Again we start by choosing a solution r = (r1, . . . , rn) with
gcd (r1, . . . , rn) = 1 and some c0 ∈ Z \ {0}. For some given N ∈ N, we want to find
di,j ∈ N0 and ci ∈ Z with i ∈ {1, . . . , N} and j ∈ {1, . . . , n}, so that we can define an
f ∈ Z[X1, . . . , Xn] with

f = c0 +
N

∑
i=1

ciX
di,1
1 . . . Xdi,n

n (5.24)

and f (r) = 0. We can do this the following way:

Since gcd(r1, . . . , rn) = 1, we can find some nonempty multisets R1, . . . , RK for K ∈
{2, . . . , n} such that

R1 ∪ . . . ∪ RK = R and

gcd ( ∏
r∈R1

r, . . . , ∏
r∈RK

r) = 1,

where R is the multiset {r1, . . . , rn}. The union does not need to be disjoint. Then we
can choose the exponents di,j ∈N0 such that for every monomial Xλ1

i1
· · ·XλK

iK
of f we

have ri1 , . . . , rik ∈ Rj for some j ∈ {1, . . . , K}. Moreover, for all j ∈ {1, . . . , K}, there
has to be a monomial Xλ1

i1
· · ·Xλk

ik
in f with ri1 , . . . , rik ∈ Rj. With this exponents, the

following proposition shows that we can choose the coefficients of f the same way as
we did in the previous section:

Proposition 5.4.10. Assume that f ∈ Z[X1, . . . , Xn] is given as above with r = (r1, . . . , rn) ∈
Zn and gcd (r1, . . . , rn) = 1. Then

gcd (rd1,1
1 · · · rd1,n

n , rd2,1
1 · · · rd2,n

n , . . . , rdN,1
1 · · · rdN,n

n ) = 1.

Proof. Let R′ = {rd1,1
1 · · · rd1,n

n , rd2,1
1 · · · rd2,n

n , . . . , rdN,1
1 · · · rdN,n

n }. Further let r := r
dj,1
1 · · · r

dj,n
n ∈

R′ and let rj1 , . . . , rjl be the factors of r with dj,j1 , . . . , dj,jl ≥ 1. By the choice of the ex-
ponents as given above, we have rj1 , . . . , rjl ∈ Rs for some s ∈ {1, . . . , K}. This means

that for every Rs, there is some r
dj,1
1 · · · r

dj,n
n ∈ R′ such that r

dj,1
1 · · · r

dj,n
n |∏r∈Rs

rdj,1···dj,n . It
follows that

gcd (rd1,1
1 · · · rd1,n

n , . . . , rdN,1
1 · · · rdN,n

n )| gcd ( ∏
r∈R1

rd1,1···d1,n , . . . , ∏
r∈RK

rdN,1···dN,n) = 1.

proving the proposition.
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Thus by defining ri := rdi,1
1 . . . rdi,n

n , we have the linear Diophantine equation

c1r1 + · · ·+ cNrN + c0 = 0 (5.25)

in the unknowns c1, . . . , cN which is easy to solve. As long as we have the monomials
of f corresponding to r1, . . . , rN as constructed above, we can add any amount of
arbitrary terms. Assume that we want to add the polynomial g ∈ Z[X1, . . . , Xn] to
f ∈ Z[X1, . . . , Xn, c1, . . . , cN ]. We can do this by setting

cnew0 := c0 + g(r1, . . . , rn),

and solving equation (5.25) with cnew0 instead of c0. The partitioning of the multiset R
into R1, . . . , RK is assumed to be easy to compute, since K ≤ n is a small integer.

It is even possible to extend the approach above of constructing a Diophantine equation
from a given solution to polynomials without a constant term. To see this, let r =
(r1, . . . , rn) ∈ Zn, such that for some A, B1, . . . , Bm ⊆ {1, . . . , n}, dk,l ∈ N0 with k ∈
{1, . . . , m + 1}, l ∈ {1, . . . , n} and

R0 = ∏
i∈A

rd0,i
i , Rj = ∏

i∈Bj

r
dj,i
i for j ∈ {1, . . . , m}

we have
gcd (R1, . . . , Rm)|R0.

This allows us to find c0, c1, . . . , cm ∈ Z with

c0R0 + c1R1 + · · ·+ cmRm = 0.

Hence
c0Xd0,1

1 . . . Xd0,n
n + c1Xd1,1

1 . . . Xd1,n
n + · · ·+ cmXdm,1

1 . . . Xdm,n
n = 0 (5.26)

is a Diophantine equation of the form f = 0 without constant term and f (r) = 0.
However, this equation is not wise to use in the cryptographic protocol, since we
have established in section 5.2 that the knowledge of any solutions to the Diophantine
equation f = 0 may decrease the security of the protocol. A trivial solution of (5.26)
is always given by (r1, . . . , rn) = 0, and if f is not of the form f = f ′ + g, where g is a
diagonal polynomial without constant term, than there are even infinitely many trivial
solutions, which would break the protocol.

Comparing the general approach of a Diophantine equation f = 0 where f is given
in (5.24) with the polynomial from the previous section, we see that the diagonal
polynomial is a special case of this more general Diophantine equation with a very
sparse representation. Other than that we have broader choice in equations and thus in
public keys, by a weaker restriction on the number or structure of monomials.

5.4.5 Choosing a,b and h over Z

Let f = c1Xd1
1 + . . . + cnXdn

n + c0 be the Diophantine equation for the key exchange
protocol performed over the integers, as constructed in the previous section. We still
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need to define how to choose the other parameters and polynomials used in the
protocol.

In 5.2 we established that the degree of h′ is deg gb1 . . . bm, meaning that the number
of coefficients which are non-zero of the public key h is about O((deg gBm)n). This
means that B, n and m have to be small integers, and g should be a linear or quadratic
polynomial. Moreover, we have to expect that most of the coefficients of h have a size
of aboutMb1 ...bm . By Theorem 3 we can break the protocol in O((2B 3

√
M)m(1 + 2M)).

To counter this, the parameters a1, . . . , am should fulfill |ai| ≥ 108 for all i ∈ {1, . . . , m}
and henceM≥ 108.

One way of choosing h ≡ h′ mod f is to pick a polynomial V ∈ Z[X1, . . . , Xn] at
random and set h = h′ + V f . A very simple deterministic approach of computing a
representative is the use of a pseudo-division algorithm for polynomials, as given by
Knuth in [22].

Proposition 5.4.11. Let R be a unique factorization domain, u, v ∈ R[X] with

u = umXm + · · ·+ u1X + u0, v = vnXn + · · ·+ v1X + v0

such that vn 6= 0 and m ≥ n ≥ 0. Then there are unique polynomials q and r such that

vm−n+1
n u = qv + r.

Now choose some i ∈ {1, . . . , n} such that degXi
g ≥ 1, degXi

f ≥ 1 and note that
R̃ := R[X1, . . . , Xi−1, Xi+1, . . . , Xn] is a unique factorization domain and R̃[Xi] =
R[X1, . . . , Xn]. We have degXi

f = di ≤ 7 and ki := degXi
h′ ≥ (b1 . . . bm) so ki ≥ di ≥ 0.

With the above proposition, there are some q, r ∈ R[X1, . . . , Xn] such that

cki−di+1
i h′ = q f + r ⇔ h′ = q f + r− (cki−di+1

i − 1)h′

and thus h′ ≡ r − (cki−di+1
i − 1)h′ mod f , where ci is the leading coefficient of h′ ∈

R̃[Xi]. The remainder r can be found with any polynomial division algorithm, since then
factor vm−n+1

n in the above proposition, which corresponds to cki−di+1
i , was chosen such

that any division performed in such an algorithm stays within the chosen ring, thus in
Z. Both the deterministic and the random approach of choosing the representant h ≡ h′

mod ( f ) can be done very fast. However, the random approach has the advantage of
not adding any information about the structure of h. With the deterministic approach,
an adversary could obtain more information in order to calculate any parameters which
are kept secret.

5.4.6 An Example over Z

As a first example, we use the smallest possible n, namely n = 3 and work over
Z[X1, X2, X3]. Assume that Alice chooses some r = (9, 7, 5), c4 = 313 and the exponents
(d1, d2, d3) = (3, 5, 7). By Algorithm 4, the polynomial f is constructed by solving the
linear Diophantine equation

c193 + c273 + c357 = 313.
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Since gcd r = 1, this equation has infinitely many solutions. Alice picks one such
solution and thus retrieves f ∈ Z[X1, X2, X3] with

f = c1X3
1 + c2X3

2 + c3X7
3 − c4,

c1 = 201, c2 = 10042812, c3 = −2160508.

Bob selects a quadratic polynomial g = X2
1 + X2X3 ∈ Z[X1, X2, X3]. With the minimal

choice for m and b1, b2, b3 and the small a1, a2, a3, which are clearly impractical to use
in a protocol by Theorem 5.4.2 due to security reasons, he is given

m = 3,
b1 = b2 = b3 = 3,
a1 = 131, a2 = 250, a3 = −19 and

h′ = (((X2
1 + X2X3 + 131)3 + 250)3 − 19)3

to compute h ∈ Z[X1, X2, X3]/( f ). With the fairly small parameters, h′ is already very
large. It is made up of 406 monomials, and the arithmetic mean of the coefficients is
5.44 · 1054. The internal storage used for h′ alone is 95.60 kilobytes in Mathematica. We
set h = h′ + f .

With the knowledge of g and h, Alice computes

s = g(9, 7, 5) =116,
u = h(9, 7, 5) =400758352336691378193916217914839

12288884256394373438362807024520.

Finally, Bob can retrieve the secret s by computing

s = ((u1/3 + 19)1/3 − 250)1/3 − 131 = 116.

Taking into account the lower and upper bounds for all parameters established in
section 5.4.5, we look at the size of parameters with larger f and ai. Again, let m = n = 3.
For the construction of f via Algorithm 4, a lower bound for v is given by

v ≥ dmax

n
(128 + log2 (ζ(n))− 1 =

7
3
(128 + log2 (ζ(3)))− 1 ≈ 298.286,

so we choose v = 299. This gives the bounds

|r1| ≤ 2
299
3 ≈ 1.00 · 1030, |r2| ≤ 2

299
5 ≈ 1.00 · 1018,

|r3| ≤ 2
299
7 ≈ 7.21 · 1012, |c4| ≤ 2299 ≈ 1.01 · 1090.

So assume that Alice chooses coprime r1, r2, r3 and c4 with

r1 = 214524320291525612533021757155,
r2 = −907194993065307412,
r3 = −67353381470,
c4 = 412758574673874772.
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This leads again to infinitely many possible coefficients c1, c2, c3. Alice selects such a
tuple, and thus f is given by

f = c1X3
1 + c2X3

2 + c3X7
3 − c4,

c1 = −216075779524989596501529484579175432832572228,
c2 = −3471622298075298163934975161534718691459421,
c3 = −47875172606803782836928827504389477492012204.

This choice of coefficients minimizes |c1|+ |c2|+ |c3|, however it is a hard problem in
general to find this minimum. For the choice of h′, assume again that b1 = b2 = b3 = 3
and use the same polynomial g. The minimal size for the ai is given by 108, so let h′ be
given by

h′ = (((X2
1 + X2X3 + a1)

3 + a2)
3 − a3)

3 with
a1 = 38751531,
a2 = −849101056 and
a3 = 26893070.

Despite the increased size of the ai, the internal storage used for h′ by Mathematica is
almost the same as before with 103.96 kilobytes.
The size of h′ and thus h changes dramatically when m or n is increased. Indeed, as we
have shown in 5.2, the degree of h′ grows exponentially in n and m. So assume that
m = n = 4 and let

g = X2
1 + X2X3 + X4,

h′ = (((g3 + 250)3 − 19)3 − 77)3.

Then h′ consists of 95284 monomials, and the internal storage of h′ takes 29.27

megabytes.
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6 Conclusions

The security of the key agreement protocol by Harry Yosh is based on the hardness
of solving a system of higher degree Diophantine equations. Unlike with other cryp-
tosystems based on Diophantine equations, Alice can choose the polynomial f fully
arbitrarily. Although it is true that no general algorithm for solving such equations
exist, there are many equations which are easy to solve. Hence the polynomial f must
be chosen carefully, as it was done in 5.3.1 and 5.4.2.
Like in the Diffie-Hellman key exchange, both participants of the protocol are in-
volved in setting the secret s, with Alice choosing an r ∈ Rn and Bob choosing some
g ∈ R[X1, . . . , Xn], resulting in g(r) = s. However, they both need an extra step in
exchanging the secret compared to other protocols, which is not only a disadvantage in
efficiency, but also may cause a vulnerability of the security, since f , g, h and u are all
publicly available.

The main drawback of the protocol is the amount of data that needs to be stored
and transmitted. First consider the polynomial f . In 5.3.1, the polynomial is chosen to
be of the form f = A + B− γ, where A and B are polynomials omitting to a sparse
representation, however we cannot control the size of γ ∈ Fq. In order to enable the
hardness of solving the equation f = 0 when f is constructed to fulfill the requirements
of 3.4.1, we need to choose q ≥ 2127.
Over the integers, by taking the sparse representation, the polynomial f ∈ Z[X1, . . . , Xn]
has only n + 1 many terms. However, the size of the coefficients may be very large,
even with the use of [10] in Algorithm 4, which tries to keep the coefficients small.
Next we consider the polynomial h. As we have established in 5.2, the degree of h′ is
tb1 . . . bm and the number of non-zero coefficients is about O(t1 . . . tn(b1 . . . bm)n), where
t = deg g and ti = degXi

g for all i ∈ {1, . . . , n}. Hirata-Kohno and Pethő suggest to
control the degree of one variable Xi through the choice of the representant h, in the best
case however, this gives O(t1 . . . tn(b1 . . . bm)n−1) coefficients in h. Furthermore over the
integers, small a1, . . . , am would lead to insecurity, so they have to be chosen relatively
large. For a as part of a protocol, assume that a = max {|a1|, . . . , |am|}. We have to
expect that most coefficients of h′ have the size ab1 ...bm . We set a = 108, m = n = 3,
b1 = b2 = b3 = 3 and degXi

g = 1 for all i ∈ {1, . . . , n}, corresponding to a minimal
choice of the parameters. With this we still have to transmit about 1000 coefficients of
the size 1072.
Compared to other public key cryptosystems like RSA for key transmission or Diffie-
Hellman, the number of steps which are needed to be performed in order to agree on a
secret is fairly large as well. We can therefore say that, as long as key agreement proto-
cols based on integer factorization or the discrete logarithm problem remain unbroken,
the protocol by Harry Yosh provides a secure yet resource-intensive alternative.
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Matemáticas 27 (2006), pp. 5–16 (cit. on pp. 76, 84).

[11] W. Fulton. Algebraic curves: an introduction to algebraic geometry. Advanced book
classics. Addison-Wesley Pub. Co., Advanced Book Program, 1989 (cit. on pp. 33,
34).

[12] W. Fulton. Intersection Theory. Ergebnisse Der Mathematik Und Ihrer Grenzgebiete,
3. Folge, Bd. 2. Springer-Verlag GmbH, 1998 (cit. on p. 28).

[13] Shuhong Gao and Raymond Heindl. “Multivariate public key cryptosystems
from diophantine equations.” In: Designs, Codes and Cryptography 67.1 (2013),
pp. 1–18 (cit. on p. 54).

[14] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.
isbn: 0716710455 (cit. on p. 65).

85



Bibliography

[15] Andreas Gathmann. “Algebraic geometry.” In: University of Kaiserslautern (2003).

[16] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science. 2nd. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1994. isbn: 0201558025 (cit. on p. 73).

[17] J. Heintz and C. P. Schnorr. “Testing Polynomials Which Are Easy to Compute
(Extended Abstract).” In: Proceedings of the Twelfth Annual ACM Symposium on
Theory of Computing. STOC ’80. 1980, pp. 262–272 (cit. on p. 28).

[18] Noriko Hirata-Kohno and Attila Pethő. “On a key exchange protocol based on
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