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Abstract

Image segmentation is one among many difficult tasks in computer vision. Due to lim-

itations of image modalities that lead to noise or weak boundaries, object occlusion or

intensity inhomogeneities, it is beneficial to incorporate shape prior knowledge to ob-

tain more robust segmentation results. In this thesis, we explore different kinds of shape

constraints for interactive medical image segmentation embedded in a convex variational

framework and show how we can decrease user interaction significantly.

We introduce two types of shape constraints. First, we show how we can describe

shapes globally by means of star prior and moment constraints. While the first con-

straint ensures one-connected star convex objects, the latter constraint is responsible that

first-order moments such as volume or center of gravity are fulfilled. Combining these

constraints results in a powerful tool which can be applied to a variety of applications

in 2D and 3D. We show the application to sinus floor augmentation segmentation and

compare the results to an expert’s segmentation.

The second type of constraints that we consider in this thesis are model specific shape

constraints. While simple objects can be described by means of global shape constraints,

more complex objects need a specific model description which requires prior knowledge

from training data. Vertebrae segmentation is suitable to evaluate model specific shape

constraints in this framework due to the complex substructures of vertebrae. A publicly

available database allows for shape model estimation and provides experts’ segmentations

for quantitative evaluation. We achieve promising results on this database which are

comparable to literature.

All proposed shape constraints can be specified by a single point or an ellipsoid. To

interact with volumetric data, we provide a user-friendly Graphical User Interface (GUI).

We exploit the high parallelization potential of our variational framework and implement

the algorithms on the Graphics Processing Unit (GPU) using NVIDIA R© CUDA.
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Kurzfassung

Segmentierung von Bildern ist ein komplexer Bereich in der Bildverarbeitung. Aufgrund

technischer Limitierungen bildgebender Verfahren, die in Bildrauschen und schwachen

Kanten resultieren, sowie Verdeckung von Objekten und Belichtungsinhomogenitäten,

ist es für eine robuste Segmentierung notwendig, Vorwissen über die Form des zu seg-

mentierenden Objektes miteinzubeziehen. In dieser Arbeit werden zwei Möglichkeiten

analysiert, um die Form eines Objekts in einem interaktiven Segmentierungsframework,

das auf Variationsrechnung und konvexer Optimierung basiert, zu berücksichtigen. Ferner

wird gezeigt, wie mit diesen Methoden die Benutzerinteraktion verringert werden kann.

Die erste Möglichkeit besteht darin, die Form eines Objektes global zu beschreiben.

Ein Beispiel dafür ist der Star Prior, der zur Segmentierung sternkonvexer sowie zusam-

menhängender Objekte dient. Des Weiteren werden Momente betrachtet. Momente

beschränken das Volumen oder den Schwerpunkt des Objektes. Eine Kombination der

genannten globalen Beschreibungen der Form liefern vielversprechende Ergebnisse sowohl

in 2D als auch in 3D. Eine medizinische Anwendung zur Quantifizierung von Knochenma-

terial bei Sinuslift wird gezeigt und mit der Segmentierung eines Experten verglichen.

Während die Form einfacher Objekte global eingeschränkt werden kann, benötigen

komplizierte Objekte ein detaillierteres Modell, das anhand von Trainingsdaten erstellt

wird. Segmentierung von Wirbel eignet sich aufgrund deren komplexen Substruktur um

dieses Modell zu untersuchen. Trainingsdaten einer öffentlich zugänglichen Datenbank

erlauben es, ein spezifisches Modell zu erstellen und die Ergebnisse quantitativ mit Ref-

erenzsegmentierungen zu vergleichen. Es werden vielversprechende Ergebnisse erzielt, die

mit Ergebnissen aus der Literatur vergleichbar sind.

Alle vorgestellten Modelle beruhen auf intuitiver Benutzerinteraktion in Form von

Punkten oder eines Ellipsoides. Um mit volumetrischen Daten zu interagieren, wurde eine

graphische Benutzeroberfläche entwickelt. Des Weiteren wird die Parallelisierbarkeit des

Frameworks ausgenützt und die Algorithmen auf der Grafikkarte mit NVIDIA R© CUDA

implementiert.

ix





Acknowledgments

Firstly, I would like to thank my supervisor Thomas Pock for his excellent guidance

and support during my thesis. Thomas Pock always gave useful feedback and provided

valuable answers to my questions. Secondly, I would like to express my gratitude to

Martin Urschler, my thesis and my master’s project advisor, for his untiring dedication.

Martin Urschler always had time to answer my questions, have discussions and shared

his expert knowledge in GPU programming.

Next, I would like to thank the members of the Institute for Computer Graphics and

Vision not only for insightful discussions and useful input for my thesis but also for their

ongoing support in and outside of academia . I’m particularly grateful to the Medical Im-

age Processing group, namely Darko Stern and Thomas Ebner who I shared an office with.

Parts of this work were done in collaboration with the Department of Dentistry and

Maxillofacial Surgery at the Medical University of Graz. I would like to thank Dr. med.

dent. Susanne Vogl for her support in this project.

Furthermore, I would like to express my gratitude to all my friends, I appreciate the care

and understanding they have shown me during this period. I’m especially grateful to

Andreas Lesch, who convinced me to start an individual master’s program, and for his

collaboration in several lectures and project work during the last few years.

Moreover, I would like to thank my family for their love, support and that they gave me

the opportunity to follow my passion.

Finally, I’m grateful to Michael for his love, support and patience.

xi





Contents

Contents xv

List of Figures xviii

List of Tables xix

List of Symbols xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Image Segmentation and Variational Methods . . . . . . . . . . . . . . . . . 2

1.3 Prior Knowledge in Image Segmentation . . . . . . . . . . . . . . . . . . . . 4

1.4 Medical Image Segmentation and its Limitations . . . . . . . . . . . . . . . 5

1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Variational Methods in Imaging 11

2.1 Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Tikhonov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Total Variation Regularization with L2 Data Term . . . . . . . . . . 14

2.1.3 Total Variation Regularization with L1 Data Term . . . . . . . . . . 15

2.2 From Snakes to Convex Variational Image Segmentation . . . . . . . . . . . 16

2.2.1 Active Contour Model / Snake Model . . . . . . . . . . . . . . . . . 16

2.2.2 Geodesic Active Contours . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Weighted Total Variation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Convex Variational Image Segmentation based on User-Specified

Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xiii



xiv

2.2.4.1 User Constraints . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4.2 Weighting maps . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Numerical Solution of Continuous Variational Problems . . . . . . . . . . . 21

3 Convex Optimization 23

3.1 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Smooth Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Non-Smooth Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Legendre-Fenchel Transformation . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Projection onto Convex Sets . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Proximal Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Proximal Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Saddle-Point Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Shape Constraints 37

4.1 User Interaction in Convex Variational Image Segmentation . . . . . . . . . 37

4.2 Basic Segmentation Framework . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Primal-Dual Algorithm combined with Dykstra’s Projection Algo-

rithm (PD-Dykstra) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Including Constraints directly in Primal-Dual Algorithm (PD) . . . 41

4.3 Global Shape Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Moment Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1.1 Area / Volume Constraint . . . . . . . . . . . . . . . . . . 42

4.3.1.2 Center of Gravity (CoG) Constraint . . . . . . . . . . . . . 44

4.3.1.3 Covariance Constraint . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Star Shape Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Model Specific Shape Constraints . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Evaluation of Shape Constraint Models 51

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Evaluation of Image Segmentations . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Global Shape Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Impact of Global Shape Constraints . . . . . . . . . . . . . . . . . . 54

5.3.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Comparison of PD-Dykstra and PD . . . . . . . . . . . . . . . . . . 57

5.3.3 Examples in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 59

5.3.4 Brain Tumor Segmentation in 3D . . . . . . . . . . . . . . . . . . . . 64



xv

5.3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 64

5.3.4.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 64

5.3.4.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . 64

5.3.5 Sinus Floor Augmentation Segmentation in 3D . . . . . . . . . . . . 66

5.3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 67

5.3.5.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 67

5.3.5.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Model Specific Shape Constraints . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion and Outlook 81

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A List of Acronyms 83

B Upper Bounds for the Norm of Derivative Operators 85

B.1 Derivation in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.2 Derivation in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C Publication 89

Bibliography 91





List of Figures

1.1 Example for image segmentation of a brain tumor core . . . . . . . . . . . . 2

1.2 Examples for different grafting materials . . . . . . . . . . . . . . . . . . . . 8

1.3 Axial Computed Tomography (CT) slice and anatomy of a vertebra . . . . 9

2.1 Original image degraded by 5% additive Gaussian noise . . . . . . . . . . . 12

2.2 Comparison of different denoising algorithms: Tikhonov, ROF and TV-L1

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Difference between isotropic and anisotropic scaling. . . . . . . . . . . . . . 18

2.4 Example for g-weighted Total Variation (TV) based segmentation. . . . . . 20

3.1 Examples for convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Examples for non-convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Euclidean projection onto the unit ball . . . . . . . . . . . . . . . . . . . . . 28

4.1 Artificial input images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Influence of the amount of user interaction on the final segmentation in 2D. 39

4.3 Influence of the amount of user interaction on the final segmentation in 3D. 39

4.4 Derivation of moment constraints from an ellipse. . . . . . . . . . . . . . . . 42

4.5 Illustration of the star shape prior. . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Screenshot of the GUI for segmenting volumetric medical data. . . . . . . . 52

5.2 Input image, constraints and weighting map to show the impact of global

shape constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Impact of global shape constraints . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Impact of preconditioning on convergence . . . . . . . . . . . . . . . . . . . 58

5.5 Input image and weighting map (snake) . . . . . . . . . . . . . . . . . . . . 59

5.6 Segmentation without shape constraints (snake). . . . . . . . . . . . . . . . 60

xvii



xviii LIST OF FIGURES

5.7 Segmentation using a single star center (snake). . . . . . . . . . . . . . . . . 60

5.8 Segmentation using multiple star centers (snake). . . . . . . . . . . . . . . . 60

5.9 Input image and weighting map (banana). . . . . . . . . . . . . . . . . . . . 61

5.10 Segmentation without shape constraints (banana). . . . . . . . . . . . . . . 61

5.11 Segmentation using multiple star centers (banana). . . . . . . . . . . . . . . 61

5.12 Segmentation using multiple star centers and CoG (banana). . . . . . . . . 62

5.13 Input image and weighting map (owl). . . . . . . . . . . . . . . . . . . . . . 62

5.14 Segmentation without shape constraints (owl). . . . . . . . . . . . . . . . . 62

5.15 Segmentation using covariance, area and star prior constraints (owl). . . . . 63

5.16 Comparison of different user interaction methods . . . . . . . . . . . . . . . 63

5.17 Visualization in 3D of brain tumor segmentations and user initalization . . 65

5.18 Brain tumor segmentation on data set 1 . . . . . . . . . . . . . . . . . . . . 65

5.19 Brain tumor segmentation on data set 2 . . . . . . . . . . . . . . . . . . . . 66

5.20 Sinus floor augmentation segmentation on data set 1. . . . . . . . . . . . . . 68

5.21 Interaction in 3D for data set 1 of sinus floor augmentation segmentation. . 68

5.22 Sinus floor augmentation segmentation on data set 2. . . . . . . . . . . . . . 69

5.23 Interaction in 3D for data set 2 of sinus floor augmentation segmentation. . 69

5.24 Example segmentation of the fifth lumbar vertebra . . . . . . . . . . . . . . 72

5.25 Example segmentation of the third thoracic vertebra . . . . . . . . . . . . . 73

5.26 Over-segmentation of ribs in the sixth thoracic vertebra . . . . . . . . . . . 73

5.27 Over-segmentation of intervertebral disc in the first thoracic vertebra. . . . 74

5.28 Example manual correction for the sixth thoracic vertebra. . . . . . . . . . 74

5.29 Dice Similarity Coefficient (DSC) for the cross-validated training set. . . . . 75

5.30 Mean Absolute Surface Distance (MAD) for the cross-validated training set. 75

5.31 DSC for the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.32 DSC for individual test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.33 MAD for individual test cases. . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Tables

4.1 Required user interaction in 2D and 3D. . . . . . . . . . . . . . . . . . . . . 40

5.1 Quantitative results for brain tumor core segmentation . . . . . . . . . . . . 65

5.2 Quantitative results for sinus floor augmentation segmentation using star

prior, CoG and volume constraint. . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Quantitative results for sinus floor augmentation segmentation using star

prior and covariance constraint. . . . . . . . . . . . . . . . . . . . . . . . . . 70

xix





List of Symbols

〈x, y〉 Scalar product

∇ Nabla operator (discrete)

div Divergence operator (discrete)

f∗(·) Convex conjugate function

‖f‖Lp Lp norm, defined as
(∫

Ω|f(x)|
p dµ(x)

) 1
p

‖x‖lp , ‖x‖p Discrete lp norm, defined as ‖x‖p =
(

n∑
i=1

|xi|p
) 1

p

‖x‖p,q Inner lp norm, outer lq norm defined as

m∑
i

(
n∑
j
|xij |p

)q/p
1/q

‖∇x‖TV Total Variation semi-norm, ‖∇x‖2,1
‖∇gx‖TV g-Weighted Total Variation semi-norm, ‖∇gx‖2,1
‖·‖ l2 norm

proj () Projection operator

prox () Proximal operator

Ω Image domain

L(·) Lagrangian function

IC(·) Indicator function of the convex set C

δ+ Forward differences

δ− Backward differences

I Identity matrix

1 Vector of ones

L Lipschitz constant

τ Primal step size

T Diagonal matrix holding dimension-dependent primal step sizes τj
σ Dual step size

Σ Diagonal matrix holding dimension-dependent dual step sizes σi

xxi





1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Image Segmentation and Variational Methods . . . . . . . . . . 2

1.3 Prior Knowledge in Image Segmentation . . . . . . . . . . . . . 4

1.4 Medical Image Segmentation and its Limitations . . . . . . . . 5

1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Motivation

The objective of image segmentation is to subdivide a given input image into a set of

meaningful, non-overlapping regions that share the same features such as intensity, color

or texture. This is one of the most challenging problems in computer vision due to present

noise, weak boundaries, object occlusion and intensity inhomogeneities because of non-

uniform illumination. Image segmentation is crucial to a large number of applications in

computer vision such as object detection, object recognition, tracking and scene under-

standing. Another essential field of application is medical image segmentation. It provides

means to study and assess anatomical structures and pathologies in a non-invasive way.

Medical image segmentation is a key part of computer-aided diagnosis, as it supports ra-

diologists to monitor progress of diseases and effects of therapies and tissue quantification.

Furthermore, medical image segmentation helps radiologists to detect, classify and visu-

alize pathologies such as tumors. An example for brain tumor segmentation is illustrated

in Fig. 1.1.

Up to now, medical image segmentation is often carried out manually. Manual segmen-

tations done by experts are important reference or ground truth segmentations. However,

the quality of the segmentations can only be assessed subjectively. Experts often do not

1



2 Chapter 1. Introduction

Segmentation Input image

Figure 1.1: Example for image segmentation of a brain tumor core. The image is taken from the
BRATS data set [47].

agree about the correct segmentations (inter-observer variability). Furthermore, the seg-

mentations of the same object carried out by one expert at different times do not overlap

completely either (intra-observer variability). This indicates that the task of medical image

segmentation is ambiguous.

While manual segmentation is too time consuming and the amount of image data is

increasing, automatic segmentation methods which do not require any user interaction are

desired to increase segmentation speed. Nevertheless, automatic methods are often not

accurate and reliable enough. The disadvantages of manual and fully automatic methods

give rise to the development of semi-automatic segmentation methods.

Semi-automatic image segmentation methods combine the advantages of manual and

fully automatic segmentation methods, i.e., expert knowledge and powerful computations

to increase segmentation accuracy. Expert or user knowledge can be incorporated in two

different ways. One possibility is to offer a fast correction ability to refine segmentations

arising from automatic methods. The second possibility is to use prior knowledge of the

user to guide a segmentation algorithm. Prior knowledge can be incorporated on the one

hand by means of user scribbles defining object and background and on the other hand

by providing information about the object’s shape.

Shape information is essential for accurate and robust segmentation. The definition of

shape ranges from simple geometric shapes up to highly sophisticated shape models. This

complex topic gives rise to explore different kinds of prior knowledge in terms of shape

constraints and to embed shape information in an image segmentation framework.

1.2 Image Segmentation and Variational Methods

Image segmentation is a complicated and non-trivial task in computer vision. A formal

definition is given as follows [33]:

Reference:

 ()


Reference:

 ()




1.2. Image Segmentation and Variational Methods 3

•
n⋃

i=1
Ii = I

• Ii is a connected set ∀i

• Ii ∩ Ij = ∅, ∀i, j, i 6= j

where I is the input image and n is the number of disjunct subregions. These conditions

implicate that every subregion is a connected region. The union over all subregions denote

that every pixel is assigned to one subregion or label. In practice, we deal either with bi-

nary, i.e., object and background label, often used in interactive segmentation approaches,

or multi-label segmentation problems.

We have mentioned that image segmentation is a very ambiguous task. Obtaining

a reliable segmentation highly depends on the underlying image data, application and

problem formulation. Many low-level segmentation algorithms such as thresholding, re-

gion growing and edge detection [33, 63] are not suitable for this task. During the last

decades, high-level segmentation approaches have been studied extensively to achieve more

robust segmentation results. Well known sophisticated algorithms are graph-cut segmen-

tation [10], mean shift segmentation [20] and variational methods. Prominent variational

methods for image segmentation are deformable contour segmentation [14, 41, 71], level-

sets [60], continuous convex optimization methods and the Mumford-Shah functional [48].

The Mumford-Shah functional is one of the most studied variational problems in image

segmentation. It approximates a given input image with piecewise smooth functions.

The aim is to subdivide an image into a number of disjunct, untextured regions with

smooth boundaries resulting in a cartoon-like representation of the input image. Chan

and Vese [19] solved the Mumford-Shah functional using the level-set method, Pock [53]

proposed a convex relaxation method for its approximate solution. During the last years,

continuous convex optimization methods have become popular in several image processing

tasks. Before we discuss the differences and advantages to other segmentation algorithms,

we first introduce variational problems in general.

The aim of variational methods is to estimate an extremum of a given energy functional.

A functional defines the mapping from a vector valued input function to a scalar value.

It can be defined as the integral over a given domain, i.e., the region where the input

function is defined. Changing the input function by an increment leads to a variation of the

functional. Hence, variations are the same for functionals as derivatives are for functions.

Finding the extremum of a functional implies that the functional has to be stationary,

hence, the first variation is zero. In other words, we want to vary over all reasonable

functions to find functions that give an extremal value for the functional. Solutions can be

obtained using the discretized Euler-Lagrange equation combined with gradient descent

methods to solve the respective partial differential equations numerically. Using convex

functionals provide means for a globally optimal solution.

While level-set methods can easily get stuck in local minima, continuous convex opti-

mization methods yield a globally optimal solution independent of initialization. Further-
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more, continuous convex optimization methods do not suffer from metrication errors such

as graph cuts. Another advantage is that discretization is only necessary when the energy

functional is set up. Continuous, convex energy minimization methods can be applied to

a variety of computer vision problems and thus constitute a powerful general framework.

They offer high parallelization capabilities using Graphics Processing Units (GPUs). Ad-

ditionally, this framework allows for an easy extension to incorporate prior knowledge by

means of additional constraint terms. This is beneficial in order to restrict the space of

possible solutions.

1.3 Prior Knowledge in Image Segmentation

Low-level features such as intensity values, texture and edges often produce poor seg-

mentation results. This makes it necessary to include prior knowledge about objects of

interest. In interactive segmentation, we use experts’ knowledge to make restrictions on

the objects’ shape. Adams and Bischof [1] were one of the first who used foreground

and background scribbles in interactive segmentation approaches. This idea has been

successfully incorporated into the graph cut framework [5, 7, 8, 56] and continuous con-

vex optimization approaches [51, 59, 66, 70]. The latter used foreground and background

scribbles also to build intensity distributions which are used to predict whether a pixel

is likely to be foreground or background, respectively. Besides prior user knowledge, it is

essential to consider prior shape knowledge.

Shape is the geometric information that remains after removing the impact of transla-

tion, rotation and scaling [42]. We focus on two different kinds of shape representation, a

global shape description and a model specific shape representation. Global shape knowl-

edge views objects in a more general way and can be applied to a variety of applications,

when the objects’ shape fits the global shape constraints. Examples for global shape con-

straints are connectivity constraint [68], elliptical shape prior [62], constraints on image

moments [44] and star convexity [35, 67] which require user initialization.

More complex objects cannot be described by means of simple geometric shapes and

make it necessary to use application specific shape knowledge to increase the performance

of segmentation algorithms. Specific shapes can be modeled in terms of a mean shape and

statistical variations in shape. Nevertheless, building these shape models requires a set of

training shapes. One possibility is to represent a shape instance in terms of a finite set of

point correspondences (landmarks) [23]. All training shapes have to be annotated at the

same landmarks. Afterwards, the shapes are aligned using the Procrustes algorithm [34].

Each single shape is transformed to the average shape such that the sum of squared

distances of the point correspondences are minimized. Thus, similarity transformations,

i.e., translation, rotation and scaling are taken into account. After aligning each shape,

a new mean shape is defined and the algorithm is repeated until convergence. Statistical

Shape Models (SSMs) are expressed by means of Principal Component Analysis (PCA)

which models the variations in shape by using a mean shape in addition with eigenvectors
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describing the variations. Any shape can be approximated using the mean shape and

a weighted combination of eigenvectors. This is known as Active Shape Model (ASM)

[23]. The Active Appearance Model [22] is an extension of the ASM which additionally

takes texture information into account. However, it is crucial to get correct landmark

positions. While manual labeling is again time consuming, automatic methods are not

accurate enough to estimate anatomical landmarks. Leventon et al. [46], Rousson et

al. [57] and Cremers et al. [25] proposed to use signed distance functions calculated on

the aligned binary training shapes as input for PCA. The advantage compared to point

correspondences is to allow for slight misalignments of the shape. Cremers et al. [26]

described how to use shape priors in variational image segmentation.

It has been shown that shape prior knowledge is essential to segment e.g. occluded

objects [24]. In medical image segmentation, prior shape knowledge is a hot topic due to

limitations of different medical imaging modalities and complex appearance of anatomical

structures including pathological structures and biological variations requiring experts’

knowledge.

1.4 Medical Image Segmentation and its Limitations

Medical imaging plays a vital role to study and assess anatomical structures in a non-

invasive way. Combined with medical image segmentation, it gives not only insight

into anatomical structures, but it offers also the possibility for computer-aided diagno-

sis of pathologies, therapy planning and quantification. However, biological variations

and pathological anatomical structures as well as limitations of different image modali-

ties influence the accuracy of segmentation algorithms. In the following, we give a short

overview of basic terms that are necessary to understand medical images and commonly

used medical image modalities such as Computed Tomography (CT), Magnetic Resonance

Imaging (MRI), Positron Emission Tomography (PET) and Ultrasound (US) along with

their limitations for medical image segmentation.

Medical images represent a physical domain (Field of View (FoV)) of an object as

discrete pixels (2D) or voxels (3D). Voxel intensities have a quantitative or qualitative

meaning depending on the image modality. The image spacing depicts the physical dis-

tance between voxels and defines the resolution of the image. The lower the image spacing

is, the higher is the resolution. In general, we deal with anisotropic voxels. This means

that the in-plane resolution is high compared to the axial resolution, i.e., slice thickness.

Image resolution has a great impact on the visualization of image edges. The bigger a

voxel is, the more likely it is that several tissues share the same voxel. This results in

blurred or weak image edges and is known as partial volume effect which could be avoided

by using smaller image spacings. However, the image resolution is limited by the under-

lying image modality and its Signal-to-Noise Ratio (SNR). Other problems that influence

segmentation accuracy are noise and low contrast images as well as modality-dependent

artifacts.
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Computed Tomography uses X-rays sent out from different projection angles to image

a tomography or slice of an object. Detector elements capture the reduced amount of

radiation due to attenuation effects such as absorption and scattering. Back-projection

algorithms are used to reconstruct image slices and estimate an attenuation coefficient

for each voxel. The voxel intensities of CT images have a quantitative meaning and are

expressed as Hounsfield Units (HU) which relates the attenuation coefficient to water,

resulting in a scale that ranges from -1024 HU (air) to more than 1200 HU (dense bone

tissue) in practice. A low resolution in CT images can mix up HU from different tissues,

hence, it makes it more difficult to obtain an accurate segmentation. Nevertheless, a higher

resolution requires an increase of applied radiation dose to achieve the same SNR. Common

imaging artifacts in CT that influences segmentation quality are streaking artifacts due to

beam hardening arising at high attenuation tissue such as metal implants or dense bone.

Magnetic Resonance Imaging does not use any ionizing radiation and provides excellent

soft tissue contrast that cannot be attained by any other image modality. It is based on

a strong magnetic field usually between 1.5 T - 7 T. In most medical applications, MRI

focuses on hydrogen atoms that precess like gyroscopes in the static magnetic field. These

protons can be excited using resonant Radio Frequency (RF) pulses and then induce a

signal in a receiver coil. To obtain an image, the signal has to be encoded which is

performed by varying the magnetic field by means of gradient fields. In contrast to CT,

voxels do not usually have a quantitative meaning as they describe the signal intensity

due to excited protons. If the resolution is increased, it results in signal loss. Common

problems influencing segmentation algorithms are motion artifacts as well as intensity

inhomogeneities due to inhomogeneous excitation and coil sensitivities.

An example for functional imaging is PET which measures the concentration of ra-

dionuclide (tracers) inside the body. The used radionuclides are positron emitters and

characterized by a short half-life. When an emitted positron collides with an electron,

they annihilate themselves and two gamma rays are produced carrying the energy of the

destroyed positron and electron. The two gamma rays are emitted in opposite direction

and are detected by two opposing gamma cameras simultaneously. This is called coinci-

dence detection. As in CT, several projections are obtained which are necessary for image

reconstruction. The image resolution of PET image is much lower compared to the other

presented methods due to the low number of counted gamma rays and the geometry of

detector elements of gamma cameras. This makes it difficult to depict sharp edges in the

resulting images.

Ultrasound is a fast and comparably cheap method to examine visceral organs, female

pelvic organs and fetuses without using harmful radiation. Sound waves above the hearing

range are transmitted into the body using a transducer. The transmitted sound waves

interact with tissue, i.e., the waves can be scattered, transmitted or reflected. Reflected

sound waves generate an echo which is recorded. For imaging, an array of transducers is

used and recorded echoes are converted to brightness values. Other modes exist to examine

for example blood flow. However, it needs a lot of experience to assess ultrasound images
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due to high noise level, low contrast and low resolution resulting in very weak boundaries.

The limitations of the presented imaging modalities also make it difficult to use robust,

accurate, fully automatic segmentation algorithms. This justifies to study semi-automatic

algorithms, which include anatomical knowledge provided by the user as foreground and

background scribbles or in terms of shape constraints.

1.5 Contribution

Our work is based on an interactive segmentation framework using Geodesic Active Con-

tours (GAC) [54, 66, 70]. The aim of this thesis is to explore different types of shape

constraints and extend the segmentation framework with these constraints. We study the-

oretical aspects as well as the impact of different shape constraints and combinations of

constraints. We evaluate the constraints qualitatively and if possible quantitatively. We

study global shape constraints based on image moments and a star convexity constraint

as well as model specific shape constraints built from training images. These two types of

shape constraints are shown to be useful for two major medical applications, sinus floor

augmentation segmentation and vertebrae segmentation.

Sinus Floor Augmentation Segmentation1

Maxillary sinus floor augmentation is an operation to increase the amount of bone tis-

sue in the upper jaw bone by putting grafting material in the maxillary sinus. This is

often necessary to be able to set dental implants. Experts are interested in segmenting

and quantifying grafting material in CT images and monitoring the decrease of grafting

material over time. Until now, the segmentation is performed manually by drawing the

boundaries of the grafting material in every axial slice [43]. However, it is not possible to

assess the whole object in 3D and thus the manual method is prone to errors. In general,

sinus floor augmentation segmentation is a very difficult task. On the one hand, different

grafting materials are composed in different ways and thus appear with different HU as

illustrated in Fig. 1.2. This does not allow to use a general intensity model for the predic-

tion of grafting material. On the other hand, we often face weak or no boundaries due to

presence of mucous tissue in the maxillary sinus as well as the similarity and connection

to other bone structures.

Although we have to deal with lots of difficulties, it is possible to assume that the graft-

ing material is a (star) convex shape. This motivates the use of global shape constraints.

In this thesis, we show how we can use foreground and background scribbles to obtain

a segmentation faster. Furthermore, we investigate if additional global shape constraints

lower the amount of user interaction and further improve image segmentation.

1Parts of this work were funded by a project of the Division of Prosthodontics, Restorative Dentistry,
Periodontology and Implantology at the Department of Dentistry and Maxillofacial Surgery at the Medical
University of Graz. We thank Dr. med. dent. Susanne Vogl for her support in this project.
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Grafting material Grafting material

Grafting material

Grafting material

Figure 1.2: Examples for different grafting materials. The first row shows axial cross-sections,
the second row sagittal cross-sections of different grafting material appearances. Grafting material
is indicated with yellow arrows. The left column shows a grafting material whose boundaries are
difficult to estimate. The grafting material illustrated in the second column has many well-defined
boundaries. However, the intensities are the same as surrounding bone tissue which makes it
difficult to find the right boundary that encloses the grafting material.

Vertebrae Segmentation

As most spinal pathologies are related to vertebrae conditions, the development of meth-

ods for accurate and objective vertebrae segmentation in medical images represents an

important and challenging research area. Although bone tissue has characteristic inten-

sity values and good contrast to other tissues in CT images (see Fig. 1.3a), low-level image

segmentation methods are not suitable for spine segmentation. Challenges for vertebrae

segmentation are small intervertebral discs with a weak boundary to enclosing vertebrae,

degenerative bone disease regions, osteophytes and connected ribs. Manual segmentation

of vertebrae is tedious and too time consuming to be used in clinical practice. Semi-

automatic methods often still require much user interaction because foreground and back-

ground scribbles have to be drawn for each individual vertebrae. This substantiates the

use of shape prior information.

Due to the complex appearance of vertebral substructures as illustrated in Fig. 1.3b,

global shape constraints are not sufficient and a more specific shape model is needed
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(a) Axial CT slice of a vertebra (b) Anatomy of a vertebra

Figure 1.3: Illustrations of a vertebra in an axial CT image in (a) and the complex anatomy of
a vertebra in (b). Image (b) is taken from [72].

which requires training data. There exists a database containing ten CT images with

corresponding reference segmentations for each individual vertebra [73]. In this thesis, we

show how to build a specific shape model based on the available data set and incorporate

it into the segmentation framework. We set up an algorithm that minimizes the amount

of user interaction to single point initialization in the vertebral bodies. This initialization

step can be replaced by fully automatic localization methods that do not require any user

interaction. However, this is beyond the scope of this thesis. We refer to e.g. [32] for more

details.

1.6 Outline

This thesis is organized as follows: In Chapter 2 we review common variational methods

in imaging. We introduce image denoising as well as different types of regularizations.

Furthermore, we review variational methods for image segmentation starting from snakes

to recent interactive, convex variational methods based on GAC that are used to build the

basic framework for image segmentation used throughout this thesis. At the end of that

chapter, we show how continuous variational problems can be solved numerically. Impor-

tant mathematical tools to solve convex variational problems are introduced in Chapter 3.

The basic segmentation framework is extended with shape constraints that are handled

theoretically in Chapter 4. The impact of various shape constraints and the application to

medical segmentation tasks such as sinus floor augmentation segmentation and vertebrae

segmentation are evaluated in Chapter 5. Chapter 6 concludes the presented shape con-

straints and gives an outlook to future work and possible enhancements of the algorithms.
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Variational Methods in Imaging
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During the last years, variational methods have become state of the art methods to solve

inverse problems in computer vision. Examples for inverse problems are image segmenta-

tion, denoising, motion correction, Computed Tomography (CT) reconstruction, optical

flow and many others. However, these problems are often ill-posed. The opposite of

ill-posed problems are well-posed problem defined by Hadamard [36]. The definition of

well-posed problems states that

• a solution exists

• the solution is unique

• and the solution is stable, i.e. small changes in the data result in small changes in

the solution

Inverse problems are not trivial to solve. Thus, we have to restrict the space of possible

solutions, i.e., make assumptions on the solution itself by incorporating some regularization

or prior knowledge. Tikhonov [64] proposed to write this as an (variational) optimization

problem:

min
u

R(u) + λD(u, f). (2.1)

The data term D(u, f) models the relationship between a given observation f and the

solution u, while the regularization term R(u) models prior assumptions made on the

solution u. The parameter λ is adapted such that a good trade-off between regularization

term and data term is found.

11
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(a) Original image (b) Degraded image f

Figure 2.1: Original image utrue (a) degraded by 5% additive Gaussian noise (b).

(a) Noisy image (b) Tikhonov (c) ROF (d) TV-L1

Figure 2.2: Comparison of different denoising algorithms. Tikhonov’s method blurs the image.
There is no remarkable difference between ROF and TV-L1 model. Both methods remove noise
while preserving image edges.

In this chapter, we show how various ill-posed image processing problems can be for-

mulated as variational problems. We review common models used in image denoising.

This is an important preprocessing step for image segmentation that we will also use in

our framework. We introduce the Total Variation (TV) semi-norm as regularization. Fur-

thermore, we give an introduction to interactive image segmentation and formulate a basic

variational model that we will extend in Chapter 4.

2.1 Image Denoising

First, let us assume that an image utrue is degraded by additive, Gaussian noise n as

depicted in Fig. 2.1. The noise model is then defined as:

f = utrue + n. (2.2)

The inverse problem is stated as follows: Given the observed, degraded image f , how can

we find the true solution utrue, when the noise n is unknown? We relate to three important

denoising models: Tikhonov, TV-L2 (ROF) and TV-L1 denoising. A comparison of the

three models is shown in Fig. 2.2.
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2.1.1 Tikhonov Model

Tikhonov proposed to restore the image u by solving following variational problem [64, 65]:

min
u

1

2

∫
Ω
|∇u|2 dx︸ ︷︷ ︸
R(u)

+
λ

2

∫
Ω
(u− f)2 dx︸ ︷︷ ︸
D(u,f)

(2.3)

where Ω denotes the image domain. The functional is composed of a quadratic regular-

ization term and a quadratic data fidelity term. The data fidelity term ensures that the

solution u is close to the observed image f . An example denoising result is depicted in

Fig. 2.2b. This denoising model is closely related to Gaussian deblurring which can be

explained by Bayesian theory.

Bayesian Theory

Inverse problems and their applications to image processing have been studied from a

probabilistic point of view [51]. The aim is to find the denoised image u that gives

the maximum probability based on the observation f formulated as posterior probability

p(u|f):
u∗ = argmax

u
{p(u|f)} . (2.4)

This is also known as Maximum A Posteriori (MAP) estimation. The posterior probability

p(u|f) can be expressed in terms of the a priori probability p(u) and the conditional

probability p(f |u) by Bayes’ theorem:

p(u|f) = p(u)p(f |u)
p(f)

(2.5)

where the factor p(f) is a normalization factor. This normalization factor can be neglected

in the maximization of the posterior probability p(u|f). The conditional probability p(f |u)
states how well the observed function f can be described by the solution u and is often

referred to as likelihood or data model. In the case of image denoising, we assume that

the observed image f is degraded by additive Gaussian noise with zero mean and σ2

variance. Hence, the conditional probability can be formulated in terms of independently

and identically distributed Gaussian normal distributions:

p(f |u) =
∏
u∈Ω

1√
2π σ

e−
(u−f)2

2σ2 . (2.6)
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To model the a priori probability, we use the Tikhonov regularization |∇u|2 and assume

again a Gaussian model with variance ν2:

p(u) =
∏
u∈Ω

1√
2π ν

e−
|∇u|2

2ν2 . (2.7)

Using Bayes’ theorem and neglecting the scaling factor p(f), since we will be interested in

maximizing p(u|f) later, we obtain:

p(u|f) =
∏
u∈Ω

1

2πνσ
e−

(u−f)2

2σ2 − |∇u|2

2ν2 . (2.8)

This equation is related to the Boltzmann distribution (Gibbs distribution) known from

thermodynamics:

p(u|f) ∝ e
−E(u)

kBT (2.9)

where E(u) is the free energy, kB is the Boltzmann constant and T is the temperature.

Maximizing the posterior probability is the same as minimizing the energy E(u):

max
u

p(u|f) = max
u

e
−E(u)

kBT = min
u

E(u)

kBT
= min

u
E(u). (2.10)

In the case of denoising, the energy E(u) is given by:

E(u) =
1

2σ2

∫
Ω
(u− f)2 dx+

1

2ν2

∫
Ω
|∇u|2 dx =

λ

2

∫
Ω
(u− f)2 dx+

1

2

∫
Ω
|∇u|2 dx (2.11)

where we set λ = ν2

σ2 . This is exactly Eqn. (2.3).

2.1.2 Total Variation Regularization with L2 Data Term

Rudin, Osher and Fatemi (ROF) were one of the first who introduced TV in computer

vision [58]. The difference to the Tikhonov model is that the regularization term is not

quadratic. This term is known as TV semi-norm.

Total Variation Regularization

The TV semi-norm is defined as the L1 norm of the L2 norm of the image gradient

∇u =
(

∂u
∂x ,

∂u
∂y

)
:

TV(u) =

∫
Ω
|∇u|dx =

∫
Ω

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

dx, u ∈ C1. (2.12)

Here, we assume that u is smooth, i.e., ∇u exists. The TV semi-norm can also be viewed

geometrically. It minimizes the perimeter of all level sets s of u independently expressed
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by the co-area formula [30]:

TV(u) =

∞∫
−∞

Per ({u > s} ; Ω) ds. (2.13)

The denoising problem proposed by Rudin, Osher and Fatemi combines the TV regular-

ization with an L2 data term and is referred to as TV-L2 or ROF model:

min
u

∫
Ω
|∇u| dx s.t. (u− f)2 = σ2. (2.14)

They propose that the solution u and the observation f differ exactly by Gaussian noise of

variance σ2. However, this formulation is a non-convex constrained optimization problem.

Chambolle et al. [16] proposed a convex formulation by replacing the equality constraint

by an inequality constraint:

min
u

∫
Ω
|∇u| dx s.t. (u− f)2 ≤ σ2. (2.15)

They showed that this equation can be expressed by following strictly convex formulation

min
u

∫
Ω
|∇u|dx︸ ︷︷ ︸
R(u)

+
λ

2

∫
Ω
(u− f)2 dx︸ ︷︷ ︸
D(u,f)

(2.16)

where λ regularizes the trade-off between data term and regularization term. This small

change in the Tikhonov model leads to an important enhancement of image features.

While edges are preserved, homogeneous regions are flattened. The amount of smoothing

depends on the choice of the regularization parameter λ. Figure 2.2c illustrates an example

for ROF denoising. Edges are clearly visible. We can also see many piecewise constant

regions which is a drawback of the TV semi-norm, also known as staircaising artifact [50].

This effect could be overcome by using Total Generalized Variation [12].

2.1.3 Total Variation Regularization with L1 Data Term

Until now, we have replaced the regularization term by an L1 norm. It is also possible

to replace the quadratic L2 data fidelity term of Eqn. (2.16) by an L1 norm yielding the

TV-L1 model [18, 50]:

min
u

∫
Ω
|∇u| dx︸ ︷︷ ︸
R(u)

+λ

∫
Ω
|u− f |dx︸ ︷︷ ︸
D(u,f)

. (2.17)

Compared to Eqn. (2.16), this model is not strictly convex, i.e., the globally optimal

solution is not unique. More details on convex optimization can be found in Chapter 3.

As illustrated in Fig. 2.2d, the difference to the ROF model seems negligible. Nevertheless,
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the TV-L1 model has two nice properties. Firstly, it is contrast invariant. The second

property is that it allows to remove salt-and-pepper noise [50].

2.2 From Snakes to Convex Variational Image Segmenta-

tion

Not only denoising, but also many image segmentation tasks are formulated as energy

minimization problems. The most prominent example are active contours. The goal of

active contours is to evolve a deformable curve towards object boundaries based on forces.

A force is commonly modeled using image gradient information. In this section, we give

an overview of important active contour models and introduce a non-smooth, convex

variational image segmentation model using prior user knowledge. This model is used as

basic framework for this thesis.

2.2.1 Active Contour Model / Snake Model

The idea of interactive variational image segmentation goes back to the famous active

contour or snake model introduced by Kass [41] in 1988. Snakes are parametrized curves

C(x) = (x(s), y(s)) : [0, 1] 7→ R2 which are evolved towards salient image features such as

edges. The goal is to minimize the snakes energy defined by internal and external forces:

E(C(s)) =

1∫
0

Einternal(C(s)) ds+

1∫
0

Eexternal(C(s)) ds. (2.18)

Internal forces Einternal(C(s)) describe the behavior of the curve C(s):

Einternal(C(s)) =
1

2
α|C ′(s)|2 + 1

2
β|C ′′(s)|2. (2.19)

The first derivative of C(s) controlled by the parameter α defines the amount of elasticity,

i.e., defines how much the curve can change in length. The curvature is characterized by

the second derivative and β. Setting β to zero lets the curve develop corners. Hence, α

and β control size and shape, respectively, of the snake. Furthermore, snakes are guided

by external forces Eexternal(C(s)) such as image intensities, edges (gradient information)

or zero-crossings as well as user constraints. Although snakes are widely used in medical

image analysis, the traditional snakes model has a number of drawbacks. Firstly, the

initialization is very critical and has to be done close to the optimal solution. Snakes can

easily get stuck in local minima as the optimization problem is not convex. Furthermore,

the zero set is a trivial solution. Secondly, it is not possible to handle topological changes,

i.e., we cannot segment two objects having only one contour. Traditional snakes cannot

capture concavities, which can be done by incorporating gradient vector fields as exter-

nal force as proposed in [71]. Other problems are that traditional snakes need a lot of
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parameter tuning and the final solution strongly depends on the parametrization of the

curve.

2.2.2 Geodesic Active Contours

Caselles et al. [14] proposed an improved snake model that is invariant to curve

parametrization and incorporates geodesic information. This can be achieved by

minimizing the Geodesic Active Contours (GAC) energy defined as

min
C

EGAC(C) = min
C

L(C)∫
0

g (‖∇I(C(s))‖) ds (2.20)

where L(C) is the length of the curve and g ∈ [0, 1] is an edge function depending on the

input image gradient ∇I. The objective is to weight each Euclidean length element ds

by the edge function g to estimate a new, minimal curve length. Looking at this problem

in 3D, we try to find the minimal surface. Common choices are g(x) = 1
1+β‖∇I(x)‖2 or

g(x) = e−α‖∇I(x)‖β , for parameters α, β > 0. Nevertheless, this method is prone to get

stuck in local minima due to the level set framework used for solving the GAC model [14].

Again, a trivial solution is the zero set.

2.2.3 Weighted Total Variation

Bresson et al. [13] reformulated the GAC energy in Eqn. (2.20) leading to the TV semi-

norm weighted by the edge function g

TVg(u) =

∫
Ω
g(x)|∇u| dx =

L(C)∫
0

g(x) ds = EGAC(C). (2.21)

In this formulation, the weighted TV semi-norm incorporates only the image gradient

magnitude. To be able to segment elongated and thin structures, Reinbacher et al. [54]

replaced the edge function g(x) by a diffusion tensor D(x) as proposed by [69]:

TVg,aniso(u) =

∫
Ω
|D(x)

1
2∇u|dx =

∫
Ω

√
∇uTD(x)∇u dx (2.22)

with

D
1
2 (x) = g(x)nnT + n0n

T
0 + n1n

T
1 (2.23)

where n = ∇I
‖∇I‖ is the normalized image gradient, n0 is the tangent to the edge and

n1 = n× n0. The diffusion tensor describes an ellipsoid whose major axes point along n0

and n1, while the minor axis scaled with g(x) points along the edge direction n in three
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x
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(a) Isotropic scaling

x

y

n0

g(x)n

(b) Anisotropic scaling

Figure 2.3: Difference between isotropic and anisotropic scaling.

dimensions. Setting

D
1
2 (x) = diag (g(x)) (2.24)

yields the isotropic weighted TV semi-norm as defined in Eqn. (2.21):

TVg(u) =

∫
Ω

√
g(x)2∇uT∇u dx =

∫
Ω
g(x)|∇u|dx. (2.25)

For the isotropic case, we scale ∇u uniformly with g(x). The different scalings for two

dimensions are depicted in Fig. 2.3. Using anisotropic scaling favors ∇u to be directed

along an edge.

To obtain a solution u based on the weighted TV semi-norm, Bresson et al. [13] pro-

posed to minimize

min
u

TVg(u) s.t. u ∈ {0, 1} (2.26)

where the segmentation u is a binary function u ∈ {0, 1}, hence, no convex set. In order to

obtain a globally optimal solution for the GAC model, u is varied smoothly between [0, 1].

The final segmentation is then obtained by taking an arbitrary level set between [0, 1]. As

we now have a convex functional, the zero set is always a global minimizer. Thus, we need

to incorporate additional constraints:

min
u

TVg(u) + constraints s.t. u ∈ [0, 1]. (2.27)

Bresson et al. [13] proposed also a variational model for image segmentation combining

the weighted TV semi-norm with an L1 data fidelity term:

min
u

TVg(u) + λ

∫
Ω
|u− f |dx s.t. u ∈ [0, 1] (2.28)

where f is a given input image.
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2.2.4 Convex Variational Image Segmentation based on User-Specified

Prior Knowledge

Unger et al. [66] proposed to include prior knowledge in terms of manual user constraints

in the variational framework by introducing a spatially varying regularization parameter

λ(x):

min
u

TVg(u) +

∫
Ω
λ(x)|u− f | dx s.t. u ∈ [0, 1] (2.29)

where f ∈ [0, 1] contains manual user constraints. Values f = 1 are foreground and f = 0

background seed regions, respectively. The spatially varying parameter λ(x) defines the

behavior of the algorithm. If λ = 0, the solution u is only influenced by the weighted TV

semi-norm, hence, the surrounding image edges. This means that the pure GAC energy

is minimized. If λ = ∞, the algorithm is forced to set u = f . Setting 0 < λ < ∞ defines

the trade-off between regularization and data fidelity term.

Throughout this thesis, we use and extend following segmentation method, which has

been used by Reinbacher et al. [54] and Werlberger et al. [70] previously:

min
u

TVg(u)︸ ︷︷ ︸
anisotropic

or
isotropic

+λ

∫
Ω
u · w dx s.t. u ∈ [0, 1]. (2.30)

This can be seen as a continuous graph cut [9]. The edge function g(x) is defined as

g(x) = e−α‖∇I(x)‖β , α, β > 0. (2.31)

Depending on the underlying segmentation problem, we can choose between isotropic and

anisotropic scaling. An example segmentation is illustrated in Fig. 2.4. The function w is

a function which accounts for constraints. To obtain a segmentation, one has to provide

a valid function w, otherwise the segmentation u will be the zero set. The constraints in

w have to be chosen as follows:

• Pure GAC Energy: If w = 0, the solution u is only influenced by the weighted

TV semi-norm, hence, the surrounding image edges.

• Foreground: If w < 0, the algorithm tends to set u = 1 in the minimization scheme.

• Background: If w > 0, the algorithm tends to set u = 0 in the minimization

scheme.

We consider three possibilities for the constraint function w. User constraints, weighting

maps or a combination of both.

Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()




20 Chapter 2. Variational Methods in Imaging

(a) Input (b) Edges g(x) (c) Constraints w (d) Segmentation

Figure 2.4: This example shows a g-weighted TV based segmentation of a lemon using solely
user constraints. The input image is illustrated in (a), the edge image in (b). Image (c) shows
the manual user constraints, where black regions correspond to foreground and white regions to
background, respectively. The final segmentation is depicted in (d).

2.2.4.1 User Constraints

Choosing w = ∞ or w = −∞ forces the segmentation u to be 0 or 1, respectively, ne-

glecting the edges in those areas. Practically, this can be done by drawing foreground

and background scribbles on the image. An example for using pure user constraints is

illustrated in Fig. 2.4. Figure 2.4c shows the user constraints. White regions correspond

to background scribbles and black regions correspond to foreground scribbles. The seg-

mentation result is mainly based on the surrounding edges depicted in Fig. 2.4b, i.e., only

the GAC energy is minimized in regions where no user constraints are set.

2.2.4.2 Weighting maps

Values for w below infinity and regularized by the parameter λ have a weaker impact, they

lead the segmentation to the final segmentation u. The lower the parameter λ is chosen,

the smoother is the final segmentation. For gray value images, we can calculate a weighting

map fulfilling the requirements for background and foreground by using the log-likelihood

ratio between the probability that a pixel x belongs to the foreground distribution pfg and

the probability that it belongs to the background distribution pbg

w = log
pbg
pfg

. (2.32)

To realize this, we build normalized foreground and background histograms based on a

mask or user-defined scribbles on the input image. Each pixel is then classified according

to Eqn. (2.32) where the probabilities pbg, pfg can be looked up in the histograms. The

same scheme can be applied to color images where we use normalized three dimensional

histograms to account for each color channel [66].

A generic weighting map for color images solely based on foreground information can

be obtained by calculating Bhattacharyya distances as proposed by Donoser et al. [29]
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resulting in a map between [0, 1]. The maximum value 1 is likely to be foreground. Thus,

we have to invert the map and center it at zero to obtain a valid weighting map for our

segmentation algorithm.

2.3 Numerical Solution of Continuous Variational Problems

Up to now, we have set up different variational problems for denoising and segmentation

by means of continuous energy-minimization functionals E(u):

E(u) =

∫
Ω
L(x, u(x),∇u(x)) dx

=

∫∫∫
Ω

L(x, y, z, u(x), ux(x), uy(x), uz(x)) dx dy dz
(2.33)

where L(·) is the Lagrangian function. In order to obtain a numerical solution, the contin-

uous formulations of the variational models have to be discretized [15]. On the one hand,

we have to discretize the image domain Ω. On the other hand, we have to discretize the

energy functional and thus the derivative operators that appear in the functional. The

discretized energy functional is written as follows:

E(u) =
∑
i

∑
j

∑
k

L(i, ui, (∇u)i)hxhyhz (2.34)

where i = (i, j, k). We assume that we operate on a 3D image with discrete image domain

Ωd : M ×N ×D defined on a Cartesian grid. The physical distance between pixels, also

known as image spacing, is denoted as hx, hy, hz. Especially in medical imaging, the pixel

spacings hx, hy, hz are of great importance because we often deal with anisotropic pixels.

The discrete pixel locations are given by:

xi = i · hx, 1 ≤ i ≤ M

yj = j · hy, 1 ≤ j ≤ N

zk = k · hz, 1 ≤ k ≤ D.

(2.35)

We have to discretize two derivative operators that appear in the energy functional: The

gradient of a scalar field u and the divergence of a vector field p. We denote the current

position as i = (i, j, k). To realize the discrete gradient operator ∇u = (ux, uy, uz)
T we

use forward differences δ+

(∇u)i =

δ+x ui
δ+y ui
δ+z ui

 (2.36)
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with Neumann boundary conditions

δ+x ui =

{
ui+1,j,k−ui,j,k

hx
if 1 ≤ i < M

0 if i = M

δ+y ui =

{
ui,j+1,k−ui,j,k

hy
if 1 ≤ j < N

0 if j = N

δ+z ui =

{
ui,j,k+1−ui,j,k

hz
if 1 ≤ k < D

0 if k = D
.

(2.37)

The TV semi-norm is the discrete l1 norm of the l2 norm of the vector field ∇u. Hence,

it is defined by replacing the integral of the continuous definition by a sum leading to:

‖∇u‖TV = ‖∇u‖2,1 =
∑
i

|(∇u)i| =

=
∑
i

√
(δ+x ui)2 + (δ+y ui)2 + (δ+z ui)2 .

(2.38)

At this point, we also define the discrete g-weighted TV semi-norm that we use for our

isotropic image segmentation model:

‖∇gu‖TV = ‖∇gu‖2,1 =
∑
i

gi|(∇u)i| =

=
∑
i

gi

√
(δ+x ui)2 + (δ+y ui)2 + (δ+z ui)2 .

(2.39)

The second derivative operator that we need to discretize is the divergence operator of a

vector field p = (px, py, pz). It has to fulfill following condition:〈
u,∇T p

〉
= 〈u,−div p〉 . (2.40)

The discrete divergence operator is realized by backward differences δ− with Dirichlet

boundary conditions:

div pi = δ−x pi + δ−y pi + δ−z pi

=


pxi −pxi−1,j,k

hx
if 1<i<M

pxi if i=1

−pxi−1,j,k if i=M

+


pyi −pyi,j−1,k

hy
if 1<j<N

pyi if j=1

−pyi,j−1,k if j=N

+


pzi −pzi,j,k−1

hz
if 1<k<D

pzi if k=1

−pzi,j,k−1 if k=D

.

(2.41)
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A basic convex optimization problem is defined as follows:

min f0(x)

s.t. fi(x) ≤ 0, i = 1, ..., p

hj(x) = 0, j = 1, ..., q

(3.1)

where x ∈ Rn is the optimization variable, f0(x) : Rn 7→ R the objective function subject

to constraints fi(x) ≤ 0 and hj(x) = 0. Inequality constraint functions are denoted as

fi(x) : Rn 7→ R, equality constraint functions as hj(x) : Rn 7→ R, respectively. If there

are no constraints, i.e., p = q = 0, we have an unconstrained optimization problem. The

optimal solution x∗ of this problem is as follows:

x∗ = inf{f0(x) | fi(x) ≤ 0 ∧ hj(x) = 0, ∀i, j}. (3.2)

In the following, we introduce basic tools of convex optimization that are necessary to solve

various tasks in computer vision. Furthermore, we show algorithms to solve unconstrained

and constrained optimization problems. More details on convex optimization can be found

in [2, 4, 6, 49, 55].
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Figure 3.1: Examples for convex sets
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x1 x2

C

(c) Star shape

Figure 3.2: Examples for non-convex sets

3.1 Convex Sets

Consider two points x1, x2 ∈ C that lie in the set C. For convex sets C, it holds that all

line segments between the two points again lie in C:

x1, x2 ∈ C, αx1 + (1− α)x2 ∈ C, α ∈ [0, 1]. (3.3)

Examples for convex sets are depicted in Fig. 3.1. Counter examples are illustrated in

Fig. 3.2.

3.2 Convex Functions

A function f : C 7→ R is convex if the following inequality holds:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), x1, x2 ∈ C, α ∈ [0, 1] (3.4)

where C is a convex set. Strict convexity is given if and only if the above inequality is

strict

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2), x1, x2 ∈ C, α ∈ (0, 1). (3.5)

For differentiable functions, we have alternative characterizations of convexity.
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First-order condition If f is differentiable over Rn, the function f is convex if

f(y) ≥ f(x) + (y − x)T∇f(x), ∀x, y,∈ C. (3.6)

Strict convexity is given if and only if

f(y) > f(x) + (y − x)T∇f(x), ∀x, y,∈ C. (3.7)

Hence, a convex function f(y) can be underestimated by means of the first-order approx-

imation f(x) + (y − x)T∇f(x).

Second-order condition For twice differentiable functions f over the subset Rn, the

following conditions only can prove convexity:

• If the Hessian matrix ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex

over the convex set C.

• If the Hessian matrix ∇2f(x) is positive definite for all x ∈ C, then f is strictly

convex over the convex set C.

• If f(x) = xTAx, f is convex over the convex set C, if and only if A is positive

semidefinite and symmetric.

For convex functions, it holds that every local minimum is also a global minimum. If

the strict inequality in Eqn. (3.5) holds, there exists only one global minimum. Hence, we

conclude that the global optimum does not necessarily need to be unique. In the following,

we list examples for convex functions:

• affine aTx+ b a ∈ Rn, b ∈ R

• exponential eax, a ∈ R

• powers xa on R++, a ≥ 1 ∨ a ≤ 0

• lp norms ‖x‖p =
(

n∑
i=1

|xi|p
) 1

p

, p ≥ 1

Indicator Function To realize restrictions on optimization variables, the indicator func-

tion is used:

IC(x) =

{
0 if x ∈ C

∞ if x 6∈ C
. (3.8)

If the set C is a convex set, the indicator function itself is convex, too. Thus, we can write

the optimization problem f(x) restricting the variable x to the convex set C in terms of

a constrained or an unconstrained optimization problem:

min
x∈C

f(x) = min
x

f(x) + IC(x). (3.9)
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3.3 Smooth Convex Optimization

Let us now consider an unconstrained optimization problem of the form min
x

f(x) where

the function f(x) is smooth (continuously differentiable) and convex. We denote this

class of functions Fk,l
L . Functions of class Fk,l

L are k−times continuously differentiable.

Furthermore, the l−th derivative is said to be Lipschitz continuous with Lipschitz constant

L:

‖f (l)(x1)− f (l)(x2)‖ ≤ L‖x1 − x2‖. (3.10)

In this thesis, we deal with functions of class F1,1
L . These functions are 1-time continuously

differentiable and following inequality holds:

‖∇f(x1)−∇f(x2)‖ ≤ L‖x1 − x2‖. (3.11)

Gradient Descent

For unconstrained optimization problems min
x

f(x) and functions f(x) of class F1,1
L , the

solution can be obtained by the simple gradient descent method shown in Algorithm 1.

The step size τ has to be chosen such that the algorithm converges. Nesterov [49] showed

that for this class of problems F1,1
L the algorithm converges with rate O

(
1
k

)
for a step size

τ ∈
(
0, 2

L

)
.

Algorithm 1 Gradient descent

Choose x0 ∈ Rn, 0 < τ < 2
L .

for k ≥ 0 do
xk+1 = xk − τ∇f(xk)

end for

3.4 Non-Smooth Convex Optimization

This section introduces a framework to handle possible non-smooth functions. Firstly, the

concept of duality is introduced to handle functions with discontinuities. Furthermore, the

proximal mapping and the proximal gradient descent method, which is a generalization

of the basic gradient descent algorithm, are presented to solve optimization problems

composed of smooth and non-smooth functions.

3.4.1 Legendre-Fenchel Transformation - An Introduction to Duality

Transformations are powerful tools to analyze functions in a different space. Similar

to Fourier transform being important to analyze functions in the spectral domain, the

Legendre-Fenchel transform is essential in convex analysis.
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Let us first introduce the Legendre-Fenchel transform:

f∗(y) = sup
x∈dom f

〈x, y〉 − f(x) (3.12)

where f(x) is an arbitrary (non-)convex function and f∗(y) is the convex conjugate of

f(x). In the following we show why we need this abstract formulation and why it helps to

shift the problem to a new problem in terms of another variable.

Duality Sometimes a problem is easier to solve if we look at it from a different per-

spective. Using the Legendre-Fenchel transform in Eqn. (3.12), we transform the primal

problem f(x) into the dual space. Analyzing this transform in more detail, we see that

the convex conjugate f∗(y) is defined as the supremum over linear functions, hence, it

is always convex independent of the initial function f(x). We map points x of f(x) into

slopes y of f∗(y). Geometrically seen, the function f∗(y) is the intersection with the y-axis

for an optimal point xopt = 0. To make this concept clear, let us have a closer look at

an example. Let the primal function be the absolute function f(x) = |x| which has a

discontinuity at x = 0. Using Eqn. (3.12), we get the dual formulation:

f∗(y) = sup
x∈dom f

〈x, y〉 − |x|. (3.13)

Differentiating f∗(y) with respect to x yields:

y =
x

|x|
= sgn (x), x 6= 0. (3.14)

The gradient is not defined at x = 0. At this point, we have to introduce a generalization of

the gradient for non-differentiable functions called the subgradient. In general, the gradient

is the slope of a function, i.e., tangent to a function. At the discontinuity x = 0 we have

several possibilities to define tangents. This set of tangents is called subdifferential ∂f(x)

at this point. A subgradient is an element of this set. For our example, the subdifferential

is defined as follows:

∂f(x) =

{
sgn (x) if x 6= 0

∈ [−1, 1] if x = 0
. (3.15)

The dual variable y can be any of these slopes:

y ∈ ∂f(x). (3.16)
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projC(x1)
C

Figure 3.3: Euclidean projection of x1 and x2 onto the convex set representing the unit ball
{C | ‖xi‖ ≤ 1, ∀i}.

If we consider a line with a slope 6∈ [−1, 1], it is only tangent to the function at y = ∞.

Thus, the convex conjugate equals the indicator function introduced in Eqn. (3.8):

f∗(y) =

{
0 if |y| ≤ 1

∞ else
. (3.17)

So far, we have defined the convex conjugate f∗(y) of a function f(x). Applying the

Legendre-Fenchel transform 3.12 to f∗(y) yields the bi-conjugate f∗∗(x):

f∗∗(x) = sup
y∈dom f

〈y, x〉 − f∗(y). (3.18)

Furthermore, the Fenchel inequality always holds:

f∗∗(x) ≤ f(x). (3.19)

If f(x) is already convex, f∗∗(x) equals the primal problem f(x). For non-convex functions

f(x), the bi-conjugate f∗∗(x) is the largest convex envelope. Hence, we have a method to

convexify non-convex functions.

3.4.2 Projection onto Convex Sets

Before we show how we can project onto an arbitrary number of convex sets, let us first

consider the Euclidean projection of a point x̂ onto a single convex set C. The projection

operator is defined as follows:

projC(x̂) = argmin
x∈C

1

2
‖x− x̂‖2 = argmin

x

1

2
‖x− x̂‖2 + IC(x) (3.20)

where IC(x) denotes the indicator function of the convex set C defined in Eqn. (3.8).

Note that the solution of the projection operator is unique. An example for a Euclidean

projection onto a unit ball
{
C : ‖x‖ ≤ 1, x ∈ RN

}
is illustrated in Fig. 3.3 for N = 2. If
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we want now to project onto an intersection of n convex sets, Eqn. (3.20) turns into:

projC=∩n
i=1Ci

(x̂) = argmin
x

1

2
‖x− x̂‖2 +

n∑
i=1

ICi(x). (3.21)

Boyle and Dykstra proposed a method to solve the stated problem in [11]. The solution of

Eqn. (3.21) is obtained by generating two sequences
{
x̂ki
}
and

{
hki
}
. The current iterates{

x̂ki
}
are stored in a vector X according to following scheme:

X =
[
x̂k+1
1 x̂k+1

2 ... x̂ki ... x̂kn−1 x̂kn

]
. (3.22)

The iterative projection algorithm is depicted in Algorithm 2.

Algorithm 2 Dykstra’s projection algorithm (primal)

Choose x̂0n = x̂. Set h0i = 0, i = 1, ..., n.
for k → ∞ do

x̂k+1
1 = x̂kn

for i = 1, ..., n do
x̂k+1
i = projCi

(x̂k+1
i−1 − hki )

hk+1
i = x̂k+1

i − (x̂ki − hki )
end for

end for
Solution x = x̂kn, k → ∞

The problem stated in Eqn. (3.21) is usually solved via duality [31] because Dykstra’s

algorithm can be explained in a more convenient way in terms of the coordinate descent [4].

Gaffke et al. [31] showed that using duality, the convergence can be proved easier compared

to [11]. For the dual formulation of Dykstra’s algorithm, we have to introduce dual

variables yi, i = 1, ..., n accounting for each individual convex set ICi . Equation (3.21)

turns into:

min
x

max
{yi}

1

2
‖x− x̂‖2 + 〈x,

n∑
i=1

yi〉 −
n∑

i=1

I∗Ci
(yi) (3.23)

where I∗Ci
(y) denotes the convex conjugate of the indicator function ICi(x). Minimizing

with respect to x leads to:

x− x̂+

n∑
i=1

yi = 0 ⇔ x = x̂−
n∑

i=1

yi. (3.24)
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Our optimization problem now turns into:

max
{yi}

1

2
‖x̂−

n∑
i=1

yi − x̂‖2 + 〈x̂,
n∑

i=1

yi〉 − ‖
n∑

i=1

yi‖2 −
n∑

i=1

I∗Ci
(yi) =

max
{yi}

−1

2
‖

n∑
i=1

yi‖2 + 〈x̂,
n∑

i=1

yi〉 −
n∑

i=1

I∗Ci
(yi).

Let us define the matrix Y =
[
y1 y2 ... yn−1 yn

]
holding all yi. We introduce a cyclic

iterative scheme for alternating optimization of the dual variables yi while keeping the

other yj , j 6= i fixed. Therefore, we have to extend the matrix Y with the current iterates

k:

Y =
[
yk+1
1 yk+1

2 ... yki ... ykn−1 ykn

]
. (3.25)

Now, we are able to solve the following maximization problem. Note that constant terms

can be neglected in the optimization process.

max
yki

−1

2
‖yki +

n∑
j=1
j 6=i

yj‖2 + 〈x̂, yki +

n∑
j=1
j 6=i

yj

︸ ︷︷ ︸
const.

〉 − I∗Ci
(yki )−

n∑
j=1
j 6=i

I∗Cj
(yj)

︸ ︷︷ ︸
const.

=

min
yki

1

2
‖yki +

n∑
j=1
j 6=i

yj‖2 − 〈x̂, yki 〉+ I∗Ci
(yki ) =

min
yki

1

2
‖yki ‖2 + 〈yki ,

n∑
j=1
j 6=i

yj〉+
1

2
‖

n∑
j=1
j 6=i

yj‖2

︸ ︷︷ ︸
const.

−〈x̂, yki 〉+ I∗Ci
(yki ) =

min
yki

1

2
‖yki ‖2 − 〈yki , x̂−

n∑
j=1
j 6=i

yj〉+
1

2
‖x̂−

n∑
j=1
j 6=i

yj‖2 −
1

2
‖x̂−

n∑
j=1
j 6=i

yj‖2

︸ ︷︷ ︸
const.

+I∗Ci
(yki ) =

min
yki

1

2
‖yki −

x̂−
n∑

j=1
j 6=i

yj

‖2 + I∗Ci
(yki ) =

min
yki

1

2
‖yki − z‖2 + I∗Ci

(yki ), z = x̂−
n∑

j=1
j 6=i

yj . (3.26)
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Equation (3.26) is exactly the conjugated projection operator which is the solution for the

update yk+1
i :

yk+1
i = projC∗

i
(z) = argmin

yki

1

2
‖yki − z‖2 + I∗Ci

(yki ). (3.27)

Moreau’s identity, which is introduced in Eqn. (3.31) in a more general way,

z = projC∗
i
(z) + projCi

(z) (3.28)

expresses the dual projection operator in terms of the primal projection operator. Hence,

we can calculate the solution without calculating the conjugated projection and we obtain

the final solution which equals exactly Eqn. 9 of Gaffke [31]:

yk+1
i = z − projCi

(z). (3.29)

Finally, we obtain Algorithm 3 for the projection of a point x̂ onto an intersection of

convex sets C = ∩n
i=1Ci based on alternating minimization using duality. In practice, this

projection has to be performed at every iteration of an outer optimization algorithm (e.g.

primal-dual Algorithm 5 explained later). Assuming that x does not change much during

one iteration of the outer algorithm, the last set of dual variables y should be used as

initialization in the next projection steps for faster convergence. This initialization set of

variables is also called hot starting points.

Algorithm 3 Dykstra’s projection algorithm (dual)

Introduce dual variables y0i , i = 1, ..., n.
for k → ∞ do

for i = 1, ..., n do

yk+1
i = x̂−

n∑
j=1
j 6=i

yj − projCi
(x̂−

n∑
j=1
j 6=i

yj)

end for
end for

Solution x = x̂−
n∑

i=1
yki , k → ∞

3.4.3 Proximal Operator

The projection operator leads to the idea of generalizing it to the proximal operator. This

is done by replacing the indicator function IC by an arbitrary convex function h:

proxτ ·h (x̂) = argmin
x

1

2
‖x− x̂‖2 + τ · h(x). (3.30)
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As the projection operator, the proximal operator also has a unique solution. Examples

for the proximal operator are:

• h(x) = 0 ⇒ proxτ ·h (x̂) = x̂ = x

• Pointwise Euclidean projection onto the unit ball for x̂ ∈ RN×D

h(x) = I‖x̂‖2,∞≤1(x̂) ⇒ proxτ ·h (x̂)i =
x̂i

max(1,‖x̂i‖)

• Shrinkage (soft-threshold) operator

h(x) = ‖x‖l1 ⇒ proxτ ·h (x̂)i = max(0, |x̂i| − τ) sgn (x̂i)

The Moreau identity is a nice property which relates the proximal mappings with respect

to a function h(x) and its conjugate h∗(x):

x = proxτ ·h (x) + τ proxh∗
τ

(x
τ

)
. (3.31)

This is useful because it is often easier to express the proximal mapping of a function h(x)

in terms of the proximal mapping of its conjugate function h∗(x) and vice versa instead

of calculating the proximal mapping directly.

3.4.4 Proximal Gradient Descent

The basic gradient descent presented in Algorithm 1 can be generalized to the proximal

gradient descent. We consider the following composite, unconstrained optimization prob-

lem:

min
x

f(x) + h(x) (3.32)

where f(x) is convex with Lipschitz continuous gradient and h(x) is a convex function

whose proximal mapping is inexpensive to compute.

Algorithm 4 Proximal gradient descent

Choose x0 ∈ Rn, 0 < τ ≤ 1
L .

for k ≥ 0 do
xk+1 = proxτ ·h

(
xk − τ∇f(xk)

)
end for

The algorithm performs an explicit gradient step for f . By solving the proximal

operator, an implicit step for h is performed. For h(x) = 0, the algorithm reduces to the

basic gradient descent. The proximal gradient descent has a proven rate of convergence

of O
(
1
k

)
for any step size 0 < τ ≤ 1

L which is the same as for the gradient descent [49].

Hence, the proximal mapping does not have any influence on the rate of convergence. If we

have h(x) = ‖x‖l1 , the algorithm is called forward backward splitting algorithm [21, 27]

or Iterative Shrinkage and Thresholding Algorithm (ISTA) as proposed in [3].

Reference:
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3.5 Saddle-Point Problems

We first consider a general formulation of the primal problem stated in Eqn. (3.32)

min
x∈X

f(Kx) + h(x) (3.33)

where K is a linear operator and f, h are proper, convex, lower-semicontinuous (l.s.c.)

functions. We already know that this is difficult to minimize if F (Kx) equals the Total

Variation (TV) semi-norm ‖∇x‖TV which has a discontinuity at x = 0. The primal-dual

algorithm proposed by Chambolle and Pock [17] is suitable for these kinds of problems.

The min-max saddle-point problem is defined as follows:

min
x∈X

max
y∈Y

〈Kx, y〉+ h(x)− f∗(y) (3.34)

where X,Y are Hilbert spaces with defined scalar product 〈·, ·〉 and norm ‖·‖ =
√
〈·, ·〉 , y

is a dual variable and f∗(y) is the convex conjugate of f(x). The operator K : X 7→ Y is

a continuous, linear, bounded operator with following properties:

‖K‖op = sup
x∈X,x6=0

‖Kx‖Y
‖x‖X

(3.35)

‖Kx‖Y
‖x‖X

≤ ‖K‖op (3.36)

‖Kx‖Y ≤ L‖x‖X (3.37)

where L is an upper bound for ‖K‖op. The operator norm ‖K‖op defines the smallest L

for which Eqn. (3.37) holds

L = ‖K‖op,2 =
√

λmax(KTK) (3.38)

where λmax is the largest eigenvalue of KTK. The solution of the saddle-point problem

can be obtained by Algorithm 5.

Algorithm 5 Primal-dual algorithm

Choose x0 ∈ X, y0 ∈ Y, τ, σ > 0, τσL2 < 1. Set x̄0 = x0, θ = 1.
for k ≥ 0 do

yk+1 = proxσ·f∗
(
yk + σKx̄k

)
xk+1 = proxτ ·h

(
xk − τKT yk+1

)
x̄k+1 = xk+1 + θ(xk+1 − xk)

end for

Reference:

 ()
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We see that the primal-dual algorithm performs alternating gradient ascent steps for the

dual and gradient descent steps for the primal variable. The step sizes τ, σ are chosen

such that τσL2 < 1. According to [17] the algorithm converges if

τσL2 ≤ 1. (3.39)

The step sizes are often set to τ = σ = 1
L and θ = 1. Furthermore, this algorithm has a

proven rate of convergence of O
(
1
k

)
.

Using this information, we can now solve the variational problems presented in Chap-

ter 2. We estimate now the primal-dual algorithm for our isotropic segmentation model.

The discrete isotropic segmentation model is defined as

min
u

‖∇gu‖TV + λ 〈u,w〉 s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i}
(3.40)

where ∇gu is the discrete g-weighted TV semi-norm defined in Section 2.3, w ∈ RMND is

the user provided weighting function and u ∈ RMND is the unknown segmentation. The

image dimension is given by M × N × D. We apply the Legendre-Fenchel transform to

gi|∇ui|, ∀i = (i, j, k). For simplicity, let qi = (∇u)i:

f∗(pi) = sup
qi

〈qi, pi〉 − gi|qi|

= IPi
(pi), Pi = {pi : ‖pi‖ ≤ gi, ∀i}.

(3.41)

This is used to reformulate Eqn. (3.40) as primal-dual problem:

min
u

max
p

〈∇u, p〉+ λ 〈u,w〉︸ ︷︷ ︸
h(u)

− IP︸︷︷︸
f∗(p)

s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i}

min
u

max
p

〈∇u, p〉+ λ 〈u,w〉 s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
p ∈ P, P = {p : ‖pi‖ ≤ gi, ∀i}.

(3.42)

The corresponding primal-dual algorithm for interactive image segmentation is stated in

Algorithm 6.

Reference:

 ()
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Algorithm 6 Primal-dual algorithm for the 3D isotropic segmentation model

Input: w, gi
Choose u0 ∈ RMND, p0 ∈ R3MND τ = σ = 1

L . Set ū
0 = u0, θ = 1.

for k ≥ 0 do
p̂k+1 = pk + σ∇ūk

pk+1
i =

p̂k+1
i

max(1,‖p̂k+1
i ‖/gi)

ûk+1 = uk − τ∇T pk+1

uk+1 = ûk+1 − τλw
ūk+1 = uk+1 + θ(uk+1 − uk)

end for

In this case, we use the nabla operator ∇ as linear operator. The operator norm L =

‖∇‖op = ‖div‖op is estimated as:

• 2D: L =

√
4
(

1
h2
x
+ 1

h2
y

)
• 3D: L =

√
4
(

1
h2
x
+ 1

h2
y
+ 1

h2
z

)
where hx, hy, hz denote the image spacings. For hx = hy = hz = 1 we get:

• 2D: L =
√
8

• 3D: L =
√
12

The derivations can be found in Appendix B.

Note that the segmentation u is continuous. To achieve a binary segmentation we have to

threshold u. If it is not explicitly mentioned, a threshold of 0.5 is used.

Diagonal Preconditioning

In the last section, we saw that the primal and dual step size τ, σ are estimated using

the operator norm L. The constant L can be easily estimated if the operator K has a

simple structure such as K = ∇. For more complicated operators K, L is often very

large resulting in a slow convergence of the algorithm. Therefore, we use the concept of

preconditioning introduced in [52] which leads to dimension-dependent step sizes τj , σi
instead of global step sizes τ, σ. Using preconditioning, we do not have to estimate the

operator norm of K. Furthermore, the algorithm converges faster if K has a irregular

structure. The dimension-dependent step sizes can be described using diagonal matrices

T = diag (τ1, ..., τn) ,Σ = diag (σ1, ..., σm) and are estimated as follows:

τj =
1

m∑
i=1

|Ki,j |2−α

, σi =
1

n∑
j=1

|Ki,j |α
, α ∈ [0, 2]. (3.43)

Reference:
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It was shown that the algorithm converges for any α ∈ [0, 2], θ = 1 if

‖T
1
2KΣ

1
2 ‖2 ≤ 1 (3.44)

which is analogue to Eqn. (3.39). Additionally, one can scale the step sizes τj , σi by a factor
1
ξ , ξ, respectively, which sometimes results in better convergence. The general primal-dual

algorithm including diagonal preconditioning is shown in Algorithm 7.

Algorithm 7 Primal-dual algorithm using diagonal preconditioning

Choose x0 ∈ X, y0 ∈ Y, T,Σ. Set x̄0 = x0, θ = 1.
for k ≥ 0 do

yk+1 = proxΣf∗
(
yk +ΣKx̄k

)
xk+1 = proxTh

(
xk −TKT yk+1

)
x̄k+1 = xk+1 + θ(xk+1 − xk)

end for

In this chapter, we showed basic mathematical tools to solve convex variational problems.

In the next chapter, we set up a basic framework to account for different shape constraints.

We introduce global and model specific shape constraints and show how we can include

them into our framework.
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In the last chapters, we introduced a convex, Geodesic Active Contours (GAC) based

image segmentation framework along with mathematical tools to solve it. Up to now,

we know that we can guide the segmentation algorithm by manual interaction. In this

chapter, we illustrate why segmentation solely based on user provided foreground and

background scribbles is laborious, especially when dealing with volumetric images. This

motivates the use of shape constraints that cover the main part of this chapter. We show

how we can describe an object’s shape globally. Global constraints are used to restrict for

example the volume or the Center of Gravity (CoG) of a segmentation or we can force a

segmentation to be (star) convex. This is especially useful for simpler shapes. If shapes

appear more complex, we have to use a more specific model. We further illustrate how to

incorporate a specific model into our variational segmentation framework.

4.1 User Interaction in Convex Variational Image Segmen-

tation

In Section 2.2.4, we introduced a convex variational image segmentation framework where

the user guides the segmentation process by drawing foreground and background scrib-

bles. These scribbles are important to constrain the appearance of the final segmentation.

Additionally, the framework is based on GAC, i.e., it takes image edges into account.

However, image edges are not always perfect, for example if we deal with non-closed or

weak image edges. In this section, we illustrate how much user interaction is really needed

37
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(a) Input in 2D (b) Input in 3D

Figure 4.1: Artificial input images

for segmenting two and three dimensional data assuming imperfect edges and why this

gives rise to incorporate further shape constraints.

We recap the discrete isotropic segmentation model:

min
u

‖∇gu‖TV + λ 〈u,w〉 s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i}
(4.1)

where u is the segmentation. As input, we need edge information gi ∈ [0, 1] and user

constraints stored in w. We consider the 2D example depicted in Fig. 4.1a. We want to

segment a square with length a. It has non-closed edges which means that only a certain

percentage k of the edges are visible. We paint foreground scribbles in the shape of a square

of length auser somewhere inside the square we want to segment. The corresponding w

function is set to w = −∞ where we placed foreground scribbles. The border of the image

is set to background and thus, w = +∞. This is illustrated in Fig. 4.2. Next, we consider

image edges. The edge function gi is zero at the borders of the square in Fig. 4.1a and one

elsewhere. We estimate now how big the user’s square auser must be to estimate a correct

segmentation, i.e., a square of length a. We require following inequality to segment the

big square:

‖∇gu‖TV + λ 〈u,w〉 ≤ ‖∇guuser‖TV + λ 〈u,w〉
(1 · (1− k) + 0 · k) 4 a ≤ 4 auser (4.2)

where k is the percentage of visible edges. Hence, the function gi is zero at k percent

and one at (1 − k) percent of the edges. The left hand side denotes the energy of our

desired segmentation. We assume that u is a binary function. Thus, the Total Variation

(TV) semi-norm equals the perimeter of a square (see co-area formula Eqn. (2.13)). The

right hand side denotes the energy of the segmentation uuser corresponding to the user’s

foreground scribbles denoting a square of length auser. The edge function g equals one.

The term λ 〈u,w〉 can be neglected as it is constant for both sides. Rearranging Eqn. (4.2)
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(a) User input
auser = 0.4 a

(b) Segmentation
auser = 0.4 a

(c) User input
auser = 0.5 a

(d) Segmentation
auser = 0.5 a

Figure 4.2: The goal is to segment the square where 50% of the edges are missing. We show the
influence of the user’s input square (black) denoting a foreground scribble on the final segmentation
(red) in 2D depending on the size of the input square.

(a) User input
auser = 0.4 a

(b) Segmentation
auser = 0.4 a

(c) User input
auser = 0.5 a

(d) Segmentation
auser = 0.5 a

Figure 4.3: The goal is to segment a cube where 25% of the surface are missing. We show the
influence of the user’s input cube (blue) denoting a foreground scribble on the final segmentation
(red) in 3D depending on the size of the input cube.

leads to:

auser ≥ (1− k) a, k ∈ (0, 1). (4.3)

The result for different values of k is depicted in Fig. 4.2. While in 2D we minimize the

perimeter, we minimize the surface in 3D. Examining the same example in 3D, i.e., looking

at a cube with surface 6 a23D, leads to:

auser,3D ≥
√
(1− k) a3D, k ∈ (0, 1). (4.4)

Figure 4.1b illustrates the input example in 3D, the corresponding results are shown in

Fig. 4.3. Table 4.1 compares the results for different values k in 2D and 3D. We see that

for 3D we need to draw far more foreground scribbles. Furthermore, the amount of user

interaction increases when we have incomplete edges. In the following sections, we show

how we can decrease the amount of user interaction and interaction time with additional

shape constraints.
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Table 4.1: Required fraction of length of input square (2D) and cube (3D) to length of the desired
object for different percentages of visible edges k.

k 2D: (1− k) 3D:
√
1− k

0.90 0.10 0.32

0.75 0.25 0.50

0.50 0.50 0.71

0.25 0.75 0.87

4.2 Basic Segmentation Framework

Before we are going to explain different shape constraints in detail, we introduce our

basic segmentation framework based on models explained in Chapter 2. We extend the

segmentation model considering anisotropic edge information with an arbitrary number

n of additional constraints which are modeled in terms of convex sets. Thus, we have to

project the continuous segmentation u ∈ RMND onto the intersection of convex sets:

min
u

‖D
1
2∇u‖TV + λ 〈u,w〉 s.t.

u ∈ C, C = ∩n
i=1Ci

C1 = {u : ui ∈ [0, 1], ∀i}

(4.5)

whereD
1
2 is a matrix modeling the diffusion tensor for every discrete ui. We now introduce

a new operator K = D
1
2∇ and a dual variable p = p to obtain a general model. Our

primal-dual problem turns into:

min
u

〈Ku,p〉+ λ 〈u,w〉 s.t.

u ∈ C, C = ∩n
i=1Ci

C1 = {u : ui ∈ [0, 1], ∀i}
p ∈ P, P = {p : ‖pi‖ ≤ 1, ∀i}.

(4.6)

We derive a general primal-dual Algorithm 8. Note that we have to perform precondi-

tioning if K has an irregular structure (see Section 3.5). For isotropic edge handling, we

set K = ∇ and Line 5 of Algorithm 8 changes to the projection of a circle with radius gi.

Furthermore, no preconditioning has to be performed due to the regular structure of K

and global step sizes τ, σ can be used. More details can be found in Section 3.5. In the

following, we focus on the more general case of anisotropic edge handling.

The projection onto the intersection of convex sets can be performed in two ways.

We can either use Dykstra’s projection algorithm presented in Section 3.4.2 or we can

include the constraints directly in the primal-dual framework using additional Lagrange

multipliers (dual variables).
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4.2.1 Primal-Dual Algorithm combined with Dykstra’s Projection Al-

gorithm (PD-Dykstra)

We set K = D
1
2∇ and p = p. In every iteration of the primal-dual algorithm, we

have to project the primal variable u on the intersection of convex sets using Dykstra’s

projection algorithm. The initialization as well as choosing a suitable number of iterations

for Dykstra’s projection algorithm is crucial. Otherwise, the constraints are not fulfilled

properly leading to a wrong solution.

4.2.2 Including Constraints directly in Primal-Dual Algorithm (PD)

We can also include convex constraints directly in the primal-dual algorithm using addi-

tional dual variables q. We rearrange the problem such that we obtain a new operator K

and summarize all dual variables in one vector p. Note again that we have to perform

preconditioning on the new operator K and thus select a suitable parameter α and scaling

factor ξ (see Section 3.5). The used notation is as follows:

K =


D

1
2∇

Kq1
...

Kqn

 , p =


p

q1
...

qn

 , Σ =


Σp 0 . . . 0

0 Σq1
. . .

...
...

. . .
. . . 0

0 . . . 0 Σqn

 . (4.7)

Algorithm 8 Primal-dual algorithm for variational image segmentation with additional
(shape) constraints

1: Input: w,K
2: Choose u0, p0, T,Σ. Set ū0 = u0, θ = 1.
3: for k ≥ 0 do
4: p̂k+1 = pk +ΣKūk

5: pk+1
i =

p̂k+1
i

max(1,‖p̂k+1
i ‖)

6: if ∃ qi, i = 1, ..., n (do not use Dykstra) then
7: Perform projections on dual variables qi
8: end if
9: ûk+1 = uk −TKTpk+1 − λTw

10: if Use Dykstra then
11: Use Dykstra’s projection algorithm to project onto the intersection of convex sets

.
12: else
13: uk+1 = max (0,min (ûk+1, 1))
14: end if
15: ūk+1 = uk+1 + θ(uk+1 − uk)
16: end for
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~e1
~e2
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Figure 4.4: The important image moments area, CoG and covariance matrix can be extracted
from the shape of an ellipse. The eigenvalues of the covariance matrix are proportional to the
square of the semi-axes.

4.3 Global Shape Constraints

Making assumptions on the global shape appearance of an object can considerably increase

segmentation accuracy. In this section, we focus on image moment constraints which

describe properties like area, CoG and covariance, and the star prior constraint, which is

useful when dealing with (star) convex objects. Global constraints are formulated in terms

of convex sets. We show also how these global constraints are included in the PD-Dykstra

and the PD algorithm.

4.3.1 Moment Constraints

In the following, we review the moment constraints presented by Klodt et al. [44, 45].

Especially lower order moment constraints can be useful to constrain the global shape of

segmentations. The important lower-order moments are:

• 0th order: Area (2D) / Volume (3D)

• 1st order: Centroid / CoG

• 2nd order: Covariance

As the three image moments are related to an ellipse (see Fig. 4.4), the constraints can

be extracted from a user-specified ellipse (ellipsoid in 3D). We can also provide them

manually.

4.3.1.1 Area / Volume Constraint

The area (and likewise the volume) constraint ensures that the area of the segmented

object equals the specified area. We constrain the area a by forcing the segmentation u

to lie in the convex set

ĈArea =

{
u :

∫
Ω
udx = a

}
. (4.8)

Reference:
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For practical implementation, we have to work in the discrete domain and above equation

turns into:

CArea =
{
u : 1Tu = a

}
. (4.9)

Solution with PD-Dykstra algorithm

The projection onto the convex set CArea is obtained by solving:

argmin
u

1

2
‖u− û‖2 s.t. 1Tu− a = 0. (4.10)

To account for the equality constraint, we introduce a Lagrange multiplier ν 6= 0 and get

the Lagrangian function

L(u, ν) = 1

2
‖u− û‖2 + ν(1Tu− a). (4.11)

Calculating ∇uL(u, ν) = 0 yields the stationarity condition. If we calculate the gradient

with respect to ν, we obtain the equality constraint.

∇ν L(u, ν) : 1Tu− a = 0 (4.12)

∇u L(u, ν) : u− û+ ν1 = 0. (4.13)

We want to solve for the Lagrange multiplier ν:

u− û+ ν1 = 0 | · 1T

1Tu︸︷︷︸
a

−1T û+ ν1T1 = 0

a− 1T û+ νn = 0

ν =
1T û− a

n
. (4.14)

Plugging in the solution for the Lagrange multiplier ν in Eqn. (4.13) yields the final solu-

tion for u:

u = û− 1T û− a

n
1. (4.15)

Solution with PD algorithm

The constraint is included in the PD algorithm as follows:

min
u

max
p

〈
D

1
2∇u, p

〉
+ λ 〈u,w〉 − IP (p) s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
u ∈ C2, C2 = {u : 1Tu− a = 0},

P = {p : ‖pi‖ ≤ 1, ∀i}.

(4.16)
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We introduce the dual variable q ∈ R and get:

min
u

max
p,q

〈
D

1
2∇u, p

〉
+ λ 〈u,w〉 − IP (p) +

〈
1Tu− a, q

〉
s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
P = {p : ‖pi‖ ≤ 1, ∀i}.

(4.17)

Grouping the dual variables and rearranging this equation yields:

min
u

max
p,q

〈Ku,p〉 − 〈a, q〉+ λ 〈u,w〉 − IP (p), s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
P = {p : ‖pi‖ ≤ 1, ∀i}

K =

[
D

1
2∇
1T

]
, p =

(
p

q

)
.

(4.18)

This requires a modification of Line 7 of Algorithm 8 to qk+1 = q̂k+1 − Σqa.

It is often of interest that the area of an object is defined as inequality constraint, i.e.,

we want to define either a minimum or maximum area for an object. The inequality

constraints have to have the form fi(x) ≤ 0 and are included in a similar way as the

equality constraints by using Lagrange multipliers (dual variables). While for equality

constraints the Lagrange multiplier can have either sign, it is restricted for inequality

constraints to be larger or equal zero.

4.3.1.2 Center of Gravity (CoG) Constraint

Taking the CoG into account, the CoG of the segmentation u has to overlap with a

provided center µ ∈ Rd. The underlying convex set is defined as:

ĈCoG =

{
u :

∫
Ω xudx∫
Ω udx

= µ

}
=

{
u :

∫
Ω
(x− µ)udx = 0

}
. (4.19)

To rewrite this in the discrete domain we define X ∈ Rn×d holding all pixel locations i

and S ∈ Rn×d where d is the dimensionality of an input image I ∈ Rn.

XCoG =

x11 · · · x1d
...

. . .
...

xn1 · · · xnd

 , SCoG =

µ1 · · · µd

µ1 · · · µd
...

...
...

 . (4.20)

Furthermore, let ACoG = XCoG − SCoG. Discretizing Eqn. (4.20) yields:

CCoG =
{
u : (XCoG − SCoG)

Tu = 0
}
=
{
u : (ACoG)

Tu = 0
}
. (4.21)
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Solution with PD-Dykstra algorithm

The projection is obtained by solving:

argmin
u

1

2
‖u− û‖2 s.t. ATu = 0 (4.22)

with A ∈ Rn×d′ , where d′ is the number of rows of the matrix A. We again introduce

Lagrange multipliers ν ∈ Rd′×1, ν 6= 0 and obtain the Lagrangian function:

L(u, ν) = 1

2
‖u− û‖2 + νT (ATu). (4.23)

Calculating gradients yields:

∇ν L(u, ν) : ATu = 0 (4.24)

∇u L(u, ν) : u− û+Aν = 0. (4.25)

The solution for the Lagrange multipliers ν is obtained as follows:

u− û+Aν = 0 |AT from left

ATu︸︷︷︸
0

−AT û+ATAν = 0

ATAν = AT û

ν =
(
ATA

)−1
AT û = A+û. (4.26)

The expression
(
ATA

)−1
AT equals the pseudo-inverse A+. Finally, we obtain for u:

u = û−AA+û. (4.27)

Solution with PD algorithm

The constraint is included in the primal-dual algorithm as follows:

min
u

max
p

〈
D

1
2∇u, p

〉
+ λ 〈u,w〉 − IP (p) s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i}
u ∈ C2, C2 = {u : ATu = 0},

P = {p : ‖pi‖ ≤ 1, ∀i}.

(4.28)
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We introduce a dual variable q ∈ Rd′ which results in:

min
u

max
p,q

〈Ku, p〉+ λ 〈u,w〉 − IP (p) +
〈
ATu, q

〉
s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
P = {p : ‖pi‖ ≤ 1, ∀i}.

(4.29)

Rearranging this equation yields:

min
u

max
p

〈Ku,p〉+ λ 〈u,w〉 − IP (p) s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
P = {p : ‖pi‖ ≤ 1, ∀i}

K =

[
D

1
2∇
AT

]
, p =

(
p

q

)
.

(4.30)

We do not have to modify Algorithm 8 because no additional projections have to be

performed for the dual variable q.

4.3.1.3 Covariance Constraint

The covariance matrix Σ is a symmetric matrix relating width and height of an object. It

is defined as follows:

Σ = V ΛV −1 (4.31)

where V ∈ Rd×d contains the directions of the principal axes and Λ = diag (λ1, ..., λd)

holds the eigenvalues of Σ such that λ1 ≥ ... ≥ λd with d being the image dimension.

This describes an ellipse whose principal axes are proportional to the square root of the

eigenvalues. More precisely, the length of the semi-axes ai scale with 2
√
λi . Thus, the

covariance matrix Σ of an ellipse equals:

Σ = V

[(
a1
2

)2
0

0
(
a2
2

)2
]
V −1. (4.32)

The convex set to account for the dimensions of an object is defined as:

ĈCOV =

{
u :

∫
Ω(x− µ)(x− µ)Tudx∫

Ω u dx
= Σ

}

=

{
u :

∫
Ω

(
(x− µ)(x− µ)T − Σ

)
udx = 0

}
.

(4.33)

Again, we have to introduce a new notation to obtain a similar structure as for the CoG

constraint in Eqn. (4.21). Let us analyze the 2D case. The covariance matrix Σ has the
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structure:

Σ =

[
σ11 σ12
σ21 σ22

]
. (4.34)

Setting mi = (xi − µ), i = 1, ..., n yields the same structure (xi − µ)(xi − µ)T = mim
T
i :

Mi =

[
mi,11 mi,12

mi,21 mi,22

]
. (4.35)

We now vectorize both matrices such that they have dimensionality 1× d2:

Σ∗ =


σ11
σ12
σ21
σ22


T

, M∗
i =


mi,11

mi,12

mi,21

mi,22


T

. (4.36)

Due to symmetry of the matrices, we can lower the dimensionality by removing the double

entries:

Σ̃ =

σ11
σ12
σ22


T

, M̃i =

mi,11

mi,12

mi,22


T

. (4.37)

To generalize this, the vectors Σ̃, M̃i have the reduced dimensionality d̃ = (d+1)d
2 . We now

define the matrices XCOV ∈ Rn×d̃ and SCOV ∈ Rn×d̃ such that

XCOV =


M̃1

M̃2

...

M̃n

 , SCOV =

Σ̃Σ̃
...

 . (4.38)

Furthermore, let ACOV = XCOV − SCOV . Discretizing Eqn. (4.33) yields the same struc-

ture as Eqn. (4.21):

CCOV =
{
u : (XCOV − SCOV )

Tu = 0
}
=
{
u : (ACOV )

Tu = 0
}
. (4.39)

Solution with PD-Dykstra and PD algorithm

Because the covariance constraint has the same structure as the CoG constraint, the

solution can be obtained the same way as shown before. The only difference is the number

of rows of the matrix A.
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star center

ni

∇ui

Figure 4.5: Illustration of the star shape prior. Any ray ni sent out from the star center should
be directed in opposite direction to the gradient of the segmentation ui. This constraint forces
one-connected segmentations.

4.3.2 Star Shape Prior

Another global shape constraint is the star shape prior introduced by Veksler [67] and

Gulshan et al. [35]. We motivate the use of the star shape prior by definition of star

convexity. An object is star convex with respect to a defined star center if a straight line

between any point of the object and the star center lies in the object. Examples for star

convex shapes are the heart shape, star shape and any convex shape. Heart shape and

star shape are only star convex for a certain amount of star centers. Convex shapes are

a special case of star convex objects because they are always star convex with respect to

any star center defined inside the object.

The star shape prior forces any ray sent out from a star center to be directed in opposite

direction to the gradient of the segmentation u as depicted in Fig. 4.5. Thus, we define

the convex set for a star shape prior as

Cstar = {u : 〈∇ui, ni〉 ≤ 0, ∀i} (4.40)

with ni =

(
ni,x

ni,y

)
being the ray direction from the star center to the current point i. We

solve this segmentation problem using the PD algorithm:

min
u

max
p

〈
D

1
2∇u, p

〉
+ λ 〈u,w〉 − IP (p) s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
u ∈ C2, C2 = {u : 〈∇ui, ni〉 ≤ 0, ∀i},

P = {p : ‖pi‖ ≤ 1, ∀i}.

(4.41)

Reference:

 ()
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 ()
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We introduce dual variables q ∈ Rn, qi ≥ 0, ∀i to account for the inequality constraint:

min
u

max
p,q

〈
D

1
2∇u, p

〉
+ λ 〈u,w〉 − IP (p) + 〈〈∇u, n〉 , q〉 s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
P = {p : ‖pi‖ ≤ 1, ∀i},

qi ≥ 0, ∀i.

(4.42)

Rearranging this equation yields:

min
u

max
p

〈Ku,p〉+ λ 〈u,w〉 − IP (p) s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
P = {p : ‖pi‖ ≤ 1, ∀i},

qi ≥ 0, ∀i

K =

[
D

1
2∇

∇xnx +∇yny

]
, p =

(
p

q

)
.

(4.43)

Due to the inequality constraint describing the star shape prior, we have to add a projection

of the dual variables q. Hence, Line 7 of Algorithm 8 changes to qk+1
i = max(0, q̂k+1

i ).

For practical implementation of the star prior we need at least one valid star center as

input. It has the nice property that it forces one-connected objects. Hence, the star prior

connects every foreground scribble to the star center. If a weighting map is used, the star

shape prior tries to connect foreground-like regions.

Up to now, we showed only the case for selecting one star center. To segment other

shapes that are not star convex, we can use an arbitrary number of star centers. In this

case, we take for every pixel i the direction from the closest star center. Another possibility

is to use every pixel of foreground scribbles as individual star centers as proposed in [35].

4.4 Model Specific Shape Constraints

In the previous section, we showed how we can describe shape appearance by global

constraints. When dealing with more complex shapes, global shape constraints are not

sufficient. We need to describe the complex shape by a more specific model. To generate

specific shape models, we require a set of reference shapes. Statistical Shape Models

(SSMs) [23] are used to describe mean shape appearance and shape variations derived

from training shapes. We focus here only on the mean shape model. To obtain a mean

shape, all training shapes have to be registered to a reference shape. Afterwards, these

shapes are averaged which leads to a voxel-wise probability of being part of the shape.

The most important question is how we can use this specific mean shape model in our

segmentation framework.

Reference:
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Incorporating a specific shape model requires a crucial registration step. Registration

can be performed manually, which is very time consuming. In [37], we proposed a reg-

istration procedure which requires only a single-point initialization to place the specific

shape model in the current problem. Assuming a successfully registered shape model, we

can include it in terms of an additional data term. The corresponding energy functional

is:
min
u

max
p

〈
D

1
2∇u, p

〉
+ λ 〈u,w〉+ λshape 〈u,wshape〉 s.t.

u ∈ C1, C1 = {u : ui ∈ [0, 1], ∀i},
P = {p : ‖pi‖ ≤ 1, ∀i}

(4.44)

where wshape represents the specific mean shape model and λshape a regularization param-

eter. To meet the requirements of a weighting map, mean shape regions are represented by

negative values and background regions by a value of one. In general, we could add an ar-

bitrary number of data terms. However, it is difficult to find a suitable set of regularization

parameters.

The solution to this model is obtained by the same primal-dual Algorithm 8 as

the global constraints. The additional data term is considered in the update of the

primal variable u. Hence, Line 9 changes to ûk+1 = uk−TKTpk+1−λTw−λshapeTwshape.

This chapter showed the theoretical aspects of global and model specific shape constraints.

In the next chapter, we evaluate the shape constraint models.
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In this chapter, we evaluate the two presented types of shape constraints: global and

model specific shape constraints. First, we give a short overview of the implementation as

well as quantitative metrics to evaluate segmentations. Afterwards, we study the behavior

of global shape constraints and show the applicability to real 2D and 3D data. For more

complex structures, we have to use more specific shape models. We evaluate the impact

of model specific constraints on the example of vertebrae segmentation.

5.1 Implementation

The algorithms for 2D are implemented in Matlab. The user can draw an ellipse, scrib-

bles and additional initialization points using a simple Graphical User Interface (GUI).

For 3D applications, we utilized the high parallelization potential of the primal-dual al-

gorithm. We implemented the computationally demanding algorithms using NVIDIA R©

CUDA to increase segmentation speed and make it usable for clinical applications. The

algorithm is perfectly suited for parallel implementation because the point-wise primal and

dual updates depend only on the neighboring voxels. We tested our algorithms on a PC

equipped with a NVIDIA R© GeForce GTX 580 graphics card (4 GB), an Intel R© Core
TM

i7

-920 processor (2.67 GHz) and 12 GB RAM.

We developed a GUI to interact with 3D medical data (see Fig. 5.1). This GUI al-

lows to perform preprocessing (ROF or TV-l1 denoising) and parameter selection for edge

51
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Figure 5.1: Screenshot of the GUI for segmenting volumetric medical data. The tool allows for
preprocessing, registration of two data sets (which is not scope of this thesis) and Geodesic Active
Contours (GAC) based segmentation with and without global shape constraints.

calculation. The shape constraints are obtained from a user-specified ellipsoid. The user

can scale, translate and rotate the ellipsoid. Furthermore, the user has the possibility to

draw foreground and background scribbles and to select how the weighting map should be

obtained. We can select between pure local user information, obtain a weighting map from

the mask given by the ellipsoid or scribbles using the log-likelihood ratio or a combination

of both. The user can set the regularization parameter and the maximum number of iter-

ations for the segmentation algorithm. After the algorithm has finished, the segmentation

is displayed.

5.2 Evaluation of Image Segmentations

We evaluate the performance of our image segmentations qualitatively and if possible

quantitatively. Qualitative evaluation means visual inspection of the results. In our case,

we evaluate how global constraints behave in different situations. Quantitative evaluation

requires reference segmentations that we can compare to. A number of evaluation metrics

exist to compare a binary segmentation A against a reference (ground truth) segmentation

B and evaluate the performance objectively. This also allows for comparison between

different algorithms. However, especially in medicine we often do not have large, publicly

available databases with reference segmentations. Different methods are evaluated on

different data sets, so results are also not fully comparable either. In the following, we

review commonly used quantitative metrics.
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Dice Similarity Coefficient (DSC)

A widely used spatial similarity measure is the Dice Similarity Coefficient (DSC) [28]. It

emphasizes the overlap between segmentations and is expressed as a percentage value

DSC =
2|A ∩B|
|A|+ |B|

× 100. (5.1)

A maximum overlap is given if the DSC is 100%. However, if we compare objects with

small surface-to-volume ratio, the DSC is not very meaningful due to similar scores for

good and wrong segmentations.

Mean Absolute Surface Distance (MAD)

The Mean Absolute Surface Distance (MAD) measures the average absolute euclidean

distance d(·, ·) in mm from the surface SA to the reference surface SB as follows:

MAD =
1

|SA|

|SA|∑
i=1

|di(SA, SB)|. (5.2)

Hausdorff Distance (HD)

The Hausdorff Distance (HD) [38] measures how close two surfaces are. It is defined as

the maximum between two directed HDs in mm:

HDmax = max (HDA→B,HDB→A) . (5.3)

The directed HD from A → B is given as

HDA→B = max
sA∈SA

min
sB∈SB

d(sA, sB) (5.4)

where SA, SB denote the set of surface voxels sA, sB. To neglect outliers in the distance

score, the HD95 is used which is the Hausdorff distance for the 95th percentile.

5.3 Global Shape Constraints

In this section, we study the impact of global shape constraints and combinations of

global shape constraints. We point out the difference between the two proposed methods

PD-Dykstra and PD for considering additional constraints. Furthermore, we apply shape

constraints to real 2D images. Finally, we show the application of global shape constraints

to volumetric brain tumor segmentation and sinus floor augmentation segmentation.
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5.3.1 Impact of Global Shape Constraints

We incorporate global constraints in our framework to study the advantages and disad-

vantages of the presented global constraints. We do not want to achieve perfect results,

but to see how various global constraints and combination of global constraints behave.

5.3.1.1 Experimental Setup

The goal for this experiment is to study the behavior of various shape constraints for

brain tumor segmentation. Therefore, we use a contrast enhanced, T1 weighted Magnetic

Resonance Imaging (MRI) axial brain slice taken from the BRATS data set [47]. The

image is ROF denoised. Edges are calculated setting the parameters to α = 20 and

β = 0.55. All constraints are extracted from a user-specified ellipse. This ellipse is also

taken to calculate a weighting map using the log-likelihood ratio, where values inside the

ellipse correspond to foreground and values outside the ellipse to background regions. The

regularization parameter λ is set to 0.03. We consider isotropic edges in our segmentation

algorithm. As a reference segmentation of the tumor core is provided by the dataset, we

compare our results quantitatively in terms of the DSC to the reference segmentation as

well as qualitatively.

5.3.1.2 Results

The input image for this experiment is depicted in Fig. 5.2a. The user-specified ellipse

(Fig. 5.2b) is used to obtain a weighting map (Fig. 5.2c) which is illustrated as color

map. Orange regions depict background, blueish regions depict foreground. Bright or

white regions are classified neither as foreground nor background, hence, the values in

the weighting map are close to zero. The segmentations are compared to a reference

segmentation (see Fig. 5.3). In the comparison, green regions denote correctly segmented

areas. Red regions are wrongly segmented by our algorithm. If our segmentation algorithm

does not capture the tumor core region, it is illustrated in yellow.

Before we consider shape constraints, we illustrate the result of our segmentation

algorithm using the weighting map as only input in Fig. 5.3a. We achieve a clear over-

segmentation. Many regions are estimated as foreground regions in the weighting map

which guides our segmentation algorithm. In the following, we show how we can reduce

the solution to only segment the tumor core.

Figure 5.3b depicts the result using the area constraint. The area is reduced signifi-

cantly compared to the segmentation without shape constraints. It is distributed among

the image. Although regions inside the tumor are classified as foreground, the algorithm

favors regions with highly negative foreground values, i.e., dark blue regions, in the weight-

ing map like the boundary of the tumor and other structures.

The CoG constraint illustrated in Fig. 5.3c is responsible for finding a segmentation u

whose CoG equals the specified center of the ellipse. This results in a partly segmented

Reference:
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(a) Input (b) User-specified ellipse (c) Weighting map

−1

−0.5

0

0.5

1

Figure 5.2: Figure (a) shows the input image. Important information to formulate shape con-
straints is extracted from the ellipse in (b). The Center of Gravity (CoG) is marked by a red
cross. The weighting map obtained from the user-specified ellipse is illustrated in (c). Blue depicts
foreground regions, orange background regions. White regions are classified neither as foreground
nor as background.

tumor. However, as the area is not restricted, many other parts are segmented along

with the brain tumor. Combining area and CoG constraint further reduces the amount of

spurious parts as illustrated in Fig. 5.3d. Holes remain in the tumor region. The border

of the brain is still emphasized.

The covariance constraint takes the ellipse’s geometry into account. It reduces further

the amount of spurious parts as seen in Fig. 5.3e. The algorithm optimizes always the

dimensions of the object as well as the CoG simultaneously because the CoG is fixed for

this constraint (see Section 4.3.1.3). Using the covariance, the algorithm often shrinks

the segmentation. We can add the area constraint which additionally fills the hole in the

tumor. However, all spurious parts are not removed and a small part of the tumor is still

missing. This is illustrated in Fig. 5.3f. Using only moment constraints, the combination

of covariance and area constraint results in the best segmentation.

After showing the impact of image moment constraints, we focus now on the star

prior constraint which is suitable for one-connected segmentations. Figure 5.3g shows the

impact of the star prior. The tumor is already well segmented. Nevertheless, the star prior

tries also to connect other foreground-like regions. In the worst case, this will connect to

structures that are at a completely different location. This is a motivation to incorporate

additional image moment constraints. Indeed, adding area constraint or CoG constraint

yields a correct segmentation of the brain tumor as illustrated in Fig. 5.3h and Fig. 5.3i.

In this example, combining star-prior with CoG constraint yields the best segmentation.

The DSCs which are depicted along with the segmentation results in Fig. 5.3 verify our

observations.
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(a) No shape constraints
DSC=41.50%

(b) Area
DSC=13.41%

(c) CoG
DSC=68.76%

(d) Area + CoG
DSC=72.96%

(e) Covariance
DSC=84.45%

(f) Covariance + Area
DSC=92.50%

(g) Star Prior
DSC=89.48%

(h) Star Prior + Area
DSC=95.51%

(i) Star Prior + CoG
DSC=96.59%

Figure 5.3: All segmentations are compared to a reference segmentation qualitatively and quan-
titatively in terms of the DSC. Correctly segmented regions are depicted in green. Red regions
are wrongly segmented by our algorithm. Yellow regions are missing in our segmentation. The
segmentation using the weighting map and no further shape constraints is illustrated in (a). Im-
pact of global shape constraints and combinations of constraint are illustrated in (b)-(i). The star
center equals the CoG.
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5.3.2 Comparison of PD-Dykstra and PD

In Section 4.2, we introduced two algorithms namely PD-Dykstra and PD to account for

additional constraints. For PD-Dykstra, it is crucial to perform sufficient iterations such

that all constraints are fulfilled. This becomes more important for complicated projections.

Runtime increases linearly with the number of Dykstra iterations. In case of projection

onto the CoG or covariance constraints, we have to compute a pseudo-inverse which is

computationally demanding.

The advantage of PD compared to PD-Dykstra is that the PD algorithm does not

require to compute any matrix inverse which reduces runtime significantly. Furthermore,

we do not have to perform an extra optimization for the projection onto the intersection

of convex sets because they are directly handled in the primal-dual problem. As we have

an irregular structure for the linear operator, preconditioning has to be performed. We

have to select parameters α and ξ for optimal convergence.

We show the dependence of our algorithm on preconditioning for the example of brain

tumor segmentation with star prior and CoG constraint illustrated in Fig. 5.3i. To show

the convergence of our algorithm, we first estimate an optimal solution by performing a

large number of iterations (e.g. iter=109). We calculate the energy for the current iterate

as proposed by [61]:

E(un) = ‖∇gu
n‖TV + λ 〈u,w〉+ δ‖A

Tun∑
i u

n
i

‖ (5.5)

where ATun∑
i u

n
i
describes the CoG constraint (see Section 4.3.1.2) and δ > 0 is a suitable

parameter. Let us denote the optimal energy as E(u∗). The convergence is shown by

plotting the difference of the current energy to the optimal energy:

Ediff = E(un)− E(u∗). (5.6)

In Fig. 5.4, we illustrate the convergence of our algorithm for different values α ∈ (0, 2)

and ξ = 1. The parameter δ is set to 10. We get faster convergence for increasing α.

In the first iterates, the algorithm tries to optimize the overall energy, the segmentation

u gets its rough shape. Afterwards, a plateau can be noticed in the energy plot. The

last part shows a decrease in energy corresponding to fine tuning of the constraints which

mainly effects single voxels. Note again that the segmentation u is continuous. The final

segmentation is achieved by thresholding.

For our constraints, experiments showed that a setting α = 2 and ξ = 1 yields good

convergence. We observed no significant improvement for other scaling factors ξ. However,

we cannot generalize this setup for other applications because the selection of α, ξ, depends

on the structure of the linear operator K. In general, the factor ξ should not be too low

because this lowers the dual step sizes σi too much to get proper convergence. If the factor

ξ is too high, primal step sizes τj may be to low to get proper convergence.
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Figure 5.4: Impact of preconditioning on convergence for different values α. We see that the
algorithm converges best for α = 2.

5.3.3 Examples in 2D

We present examples in 2D to show the great variability of global constraints. Especially

when we combine constraints they show nice properties as we have already seen before. In

this section, we explore the star prior on color images in combination with image moment

constraints and extend it to multiple star centers. Furthermore, we compare the amount of

needed user interaction with the approach that uses foreground and background scribbles

only.

5.3.3.1 Experimental Setup

All input images are ROF denoised to get clearer edges. For edge calculation, the pa-

rameters are set to α = 20 and β = 0.55. For segmentation, we considered isotropic

edges.

Snake

The weighting map is calculated using the log-likelihood ratio from foreground and back-

ground scribbles. The regularization parameter is set to λ = 0.005. We compare the use

of no, one and two star centers.
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(a) Input image (b) Weighting map
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Figure 5.5: Figure (a) shows the input image. The weighting map obtained from user scribbles
is illustrated in (b).

Banana

The weighting map is calculated using the log-likelihood ratio from the user-defined ellipse.

The regularization parameter is set to λ = 0.02. We used several star centers as input

because the banana is not star convex. With this example, we show the influence of the

CoG on the segmentation.

Owl

The weighting map is calculated using the generic approach of Donoser et al. [29] using

the user-defined ellipse as mask. The regularization parameter is set to λ = 0.02. We

illustrate how we can separate a single owl from the other owls.

5.3.3.2 Qualitative Results

In the following, we illustrate the results for the described examples. The weighting maps

are shown as color maps where orange regions depict background, blue regions depict

foreground and white or bright regions are classified neither as foreground nor background.

Finally, we compare the required user interaction for shape constraints to interaction based

on pure user scribbles.

Snake

Figure 5.5a shows the image of a snake, Fig. 5.5b illustrates the weighting map obtained

from foreground and background scribbles shown in Fig. 5.7a. Using only the weighting

map and no shape constraints results in a clear over-segmentation of other structures than

the snake as illustrated in Fig. 5.6. Using one star center as shape constraint is not enough

to describe the entire shape of the snake. Background regions are captured by the star

center to connect to the upper parts of the snake (see Fig. 5.7). Using a second star center

as illustrated in Fig. 5.8 segments the outline of the snake correctly.
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(a) Segmentation u (b) Final Segmentation

Figure 5.6: Segmentation without shape constraints.

(a) Constraints (b) Segmentation u (c) Segmentation overlay

Figure 5.7: Segmentation using a single star center (green circle). The shape of the snake is not
fully described by one star center. Background regions are captured when connecting to the upper
part of the snake.

(a) Constraints (b) Segmentation u (c) Segmentation overlay

Figure 5.8: Segmentation using multiple star centers (green circles). Two star centers describe
the shape of the snake correctely.

Banana

Using only the weighting map (Fig. 5.9b) for segmentation of a banana (Fig. 5.9a) yields an

under-segmented banana as illustrated in Fig. 5.10. The shadow is segmented, some other

parts of the banana are missing. Figure 5.11 shows the result when using multiple star

centers. The corresponding segmentation contains the banana’s shadow on the bottom. In

contrast, putting a CoG yields a segmentation of the banana only as illustrated in Fig. 5.12.

The shadow is not segmented in this case.
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(a) Input image (b) Weighting map
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Figure 5.9: Figure (a) shows the input image. The weighting map obtained from an ellipse input
is illustrated in (b).

(a) Segmentation u (b) Final Segmentation

Figure 5.10: Segmentation without shape constraints.

(a) Constraints (b) Segmentation u (c) Segmentation overlay

Figure 5.11: Segmentation containing the shadow of the banana. The shape constraints are
multiple star centers illustrated as green circles.

Owl

Figure 5.13a shows the input image. The used weighting map is depicted in Fig. 5.13b.

The segmentation without any shape constraints is illustrated in Fig. 5.14. With this

example, we illustrate how to segment an owl out of a group of owls using a combination of

area, covariance and star prior constraint (see Fig. 5.15). The star prior has the advantage

that it closes holes such as the owl’s eyes which are classified as background in our weighting
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(a) Constraints (b) Segmentation u (c) Segmentation overlay

Figure 5.12: The shape constraints are multiple star centers (green circles) and a manually set
CoG (red cross). The banana is segmented without the shadow.

(a) Input image (b) Weighting map
−1

−0.5

0

0.5

1

Figure 5.13: Figure (a) shows the input image. The weighting map obtained from an ellipse
input is illustrated in (b).

(a) Segmentation u (b) Final Segmentation

Figure 5.14: Segmentation without shape constraints.

map. Using the CoG combined with the area constraint is not suitable here because the

area is still distributed to the branch and other owls. Using the covariance constraint

keeps the proportions of the object.

Comparison with pure user scribbles

Figure 5.16 compares the user interaction for our shape constraints to pure foreground /

background scribbles segmentation based on GAC. We see that we need more effort when

segmenting with user scribbles, especially when dealing with highly textured objects. We
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(a) Constraints (b) Segmentation u (c) Segmentation overlay

Figure 5.15: The shape constraints as well as the weighting map are obtained from a single
user-specified ellipse illustrated in (a). Segmenting a single owl out of a group of owls is achieved
by using covariance, area and star prior constraint. The star center equals the CoG of the ellipse
and is denoted by a green circle in (a).

Figure 5.16: Comparison of user interaction to achieve the same segmentation. The top row
shows manual foreground and background scribbles. Using shape constraints, the user interaction
reduces to point initializations and drawing of an ellipse as depicted in the bottom row. We can
also combine user scribbles with shape constraints as showed by the example of segmenting the
snake.

cannot smooth the boundaries away by using a small λ in ROF denoising because we

would loose important edges. Shape constraints are based on a weighting map and single

point initializations of the constraints. We can combine shape constraints also with user

scribbles as shown for the snake in the first column.
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5.3.4 Brain Tumor Segmentation in 3D

In this section, we test our global shape constraint on real 3D examples. The aim is to

segment the tumor core on contrast enhanced T1 weighted MRI images on data sets from

the BRATS 2013 database [47]. The tumor core includes enhanced regions as well as

necrotic tissue inside the enhanced regions. Furthermore, post-operative cavities are also

part of the tumor core region. The image spacing of the input images is 1× 1× 1 mm.

5.3.4.1 Experimental Setup

We perform slight pre-smoothing using the ROF denoising model. The edges are cal-

culated using the parameters α = 20 and β = 0.55. The results are compared to the

reference segmentations. We performed the experiments on two data set with different

tumor sizes and compositions. Data set 1 shows enhanced tumor rims, the inside of the

tumor is necrotic tissue. Data set 2 shows mainly the enhanced tumor. The weighting

map for segmentation is obtained using the log-likelihood ratio based on the user-defined

ellipse. The regularization parameter λ is set to 0.01 and we consider isotropic edges for

segmentation. For both data sets, we use a combination of star prior, CoG and volume

constraint.

5.3.4.2 Qualitative Results

Figure 5.17 illustrates the segmentation as well as the user-defined ellipse which is the only

input for our shape constraints in 3D. The star center equals the CoG of the ellipsoid.

Figure 5.18 depicts the segmentation result for data set 1, Fig. 5.19 shows the same for

data set 2. In both cases, we do not see large deviations from the ground truth data.

5.3.4.3 Quantitative Results

The brain tumor segmentations are evaluated quantitatively in terms of the DSC, MAD,

HD95 and HDmax. Furthermore, the volume of the segmentation is calculated. The results

are depicted in Table 5.1. The MAD is very low for both cases. Data set 1 has a higher

DSC of 96.83% compared to data set 2 (DSC= 94.58%). The HDmax is better for data set

2 than for data set 1. The same holds for HD95. These examples show clearly that there

should be a distance metric considered beside the DSC. The DSC is not very meaningful

for a low surface-to-volume ratio. The surface-to-volume ratio is much lower for data set 1

than for data set 2. Furthermore it shows the difference of using HD95 to HDmax. While

HDmax defines the largest distance between two surfaces, HD95 neglects outliers.

Reference:
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Table 5.1: Quantitative results for brain tumor core segmentation on two example data sets.

Metric Data set 1 Data set 2

Volume in ml 57.53 4.71

DSC in % 96.83 94.58

MAD in mm 0.25 0.24

HD95 in mm 1.41 1

HDmax in mm 6.40 3.16

(a) Data set 1 (b) Data set 2

Figure 5.17: Visualization in 3D of brain tumor segmentations and user-defined ellipsoids (violet)
for two example data sets.

(a) axial (b) sagittal (c) coronal

Figure 5.18: Brain tumor segmentation on data set 1. The top row depicts cross-sections from
the input images. The segmentation results are illustrated in the bottom row. The segmentation is
compared to the reference segmentation. Green regions denote a correct segmentation, red regions
depict over-segmented areas and yellow regions a missing segmentation.
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(a) axial (b) sagittal (c) coronal

Figure 5.19: Brain tumor segmentation on data set 2. The top row depicts cross-sections from
the input images. The segmentation results are illustrated in the bottom row. The segmentation is
compared to the reference segmentation. Green regions denote a correct segmentation, red regions
depict over-segmented areas and yellow regions a missing segmentation.

5.3.5 Sinus Floor Augmentation Segmentation in 3D

The current method for grafting material segmentation in the maxillary sinus is carried out

manually in clinical applications [43]. In every axial slice of the Computed Tomography

(CT) volume, the boundary of the object has to be drawn. Since this method is time

consuming and the whole object appearance in 3D is not regarded which leads to errors in

the segmentation, one seeks for interactive methods guiding the user through this process.

Using GAC based image segmentation has the advantage that the exact boundary has

not to be drawn. Far less user interaction is needed than for manual segmentation. Pure

weighting maps are not useful for this task because the grafting material has the same

or similar intensities as bone tissue leading to over-segmentation. Streaking artifacts that

appear due to the high Hounsfield Units (HU) of implants can influence our segmentation,

too. We show how global shape constraints can support this ambiguous task of sinus floor

augmentation segmentation.

The segmentations are prone to leak out into other teeth, implants or other parts of

the jaw bone. Especially implants depicted in Fig. 5.22 are often classified as foreground.

Implants are set in grafting material. Therefore, grafting material has to be cut out in

order to set implants. Thus, only those parts of the implants where grafting material

was cut out belongs to the final segmentations. Using the covariance constraint does not

prevent this problem. We overcome this problem by defining a cutting plane in the GUI.

All regions below the cutting plane are set to background in the weighting image.

Reference:
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5.3.5.1 Experimental Setup

We perform pre-smoothing using the ROF denoising model to obtain clear edges. The

edges are calculated using the parameters α = 15 and β = 0.55. We estimate a weight-

ing map determined from the user-specified ellipsoid using the log-likelihood ratio. The

regularization parameter is set to λ = 0.02. We experiment with two different data sets

showing different compositions of grafting material. The grafting material is segmented

separately in the left and right maxillary sinus. For data set 2, we defined a cutting plane

to prevent the segmentation to leak out to lower parts of implants. The image spacing is

for data set 1 0.27.27× 1 and for data set 2 0.37.37× 1.

5.3.5.2 Qualitative Results

We compare our results against manually annotated segmentations. Figure 5.20

and Fig. 5.22 show the results for different grafting materials segmented in the left

and right maxillary sinus. Mucous membrane is present in the sinus in both cases

which makes it more difficult to identify the grafting material. As grafting materials

are assumed to be convex and thus one-connected, the star shape prior is suitable for

this segmentation problem. Constraining the star prior further with volume and CoG

constraint led to promising results. A 3D visualization of the used constraints and a

comparison to using pure user scribbles is illustrated in Fig. 5.21 for data set 1 and in

Fig. 5.23 for data set 2.

5.3.5.3 Quantitative Results

We test the experiment for different combinations of global constraints. The evalua-

tion metrics for the combination of star prior, CoG and volume constraint are depicted

in Table 5.2, for the combination of star prior and covariance constraint in Table 5.3. The

first settings performs considerably better on both data sets. The second setting, i.e.,

star prior with covariance constraint performs slightly better for the left grafting material

of data set 2. Combining covariance, volume and star prior constraint did not show any

significant difference compared to the combination of covariance and star prior constraint.

We achieve good results for data set 1 in terms of all metrics. The comparison of HD95

and HDmax indicates that there are no large outliers. Furthermore, the low values of the

HDs show that the segmentation did not leak out to other parts of the jaw bone or other

teeth. Compared to data set 2, the grafting material in data set 1 differs from the jaw

bone.

The results for data set 2 are similar to data set 1. The HDmax for the left grafting

material is rather large. The segmentation leaks out compared to the reference segmenta-

tion. However, even for experts it is not easy to identify if the over-segmented part in our

segmentation is really jaw bone or still grafting material.
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Figure 5.20: Data set 1: Slices through all image planes. We segment the grafting material
in the left and right maxillary sinus. The grafting material is surrounded by mucous tissue.
The edges are not clearly visible. The second column depicts the segmentation when using a
combination of global shape constraints, i.e., star prior, CoG and volume constraint. We compared
the segmentation to a reference segmentation. Green areas depict correctly segmented regions, red
areas are over-segmented by our algorithm and yellow areas are missing.

(a) Pure user scribbles (b) Global shape constraints

Figure 5.21: Data set 1: Amount of user input for segmentation using solely user scribbles (a) and
segmentation using star prior, CoG and volume constraint obtained from a user-specified ellipsoid
(violet) (b).
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Figure 5.22: Data set 2: Slices through all image planes. We segment the grafting material in
the left and right maxillary sinus. The grafting material intensities are the same as surrounding
bone structures. Furthermore, the implants influcence the segmentation. Therefore, we use not
only global shape constraints (star prior, volume and CoG), but specify a cutting plane to not
allow to segment the whole implant. We compared the segmentation to a reference segmentation.
Green areas depict correctly segmented regions, red areas are over-segmented by our algorithm
and yellow areas are missing.

(a) Pure user scribbles (b) Global shape constraints

Figure 5.23: Data set 2: Amount of user input for segmentation using solely user scribbles (a)
and segmentation using star prior, volume and CoG constraint obtained from an ellipsoid (violet)
as well as a user-specified cutting plane (b).
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Table 5.2: Quantitative results for sinus floor augmentation segmentation on two example data
sets. We use star prior, CoG and volume constraint.

Metric Data set 1 (left) Data set 1 (right) Data set 2 (left) Data set 2 (right)

Volume in ml 3.54 2.77 2.54 1.37

DSC in % 92.41 94.20 92.53 91.49

MAD in mm 0.22 0.19 0.22 0.24

HD95 in mm 1.31 1.00 1.07 1.13

HDmax in mm 2.93 3.12 16.87 3

Table 5.3: Quantitative results for sinus floor augmentation segmentation on two example data
sets. We use star prior and covariance constraint.

Metric Data set 1 (left) Data set 1 (right) Data set 2 (left) Data set 2 (right)

Volume in ml 3.18 2.62 2.73 1.89

DSC in % 87.56 90.73 93.92 87.20

MAD in mm 0.50 0.35 0.15 0.24

HD95 in mm 2 1.46 1.07 2.30

HDmax in mm 4.23 2.73 16.87 4.18

5.4 Model Specific Shape Constraints

In this section, we evaluate model specific shape constraints for vertebrae segmentation.

Vertebrae segmentation is a suitable task due to the complex appearance of vertebral

substructures. Furthermore, training data is available which allows to build an application

specific shape model and quantitative evaluation.

5.4.1 Experimental Setup

Our vertebral shape model is derived from the CSI MICCAI challenge training data set [73]

containing ten CT scans of the spine and labeled thoracic and lumbar vertebrae. As we

do not have a large amount of training data available and the variation in shape along the

spine varies greatly, we estimate a shape model for three groups of vertebrae:

• Upper thoracic vertebrae: T1-T6

• Lower thoracic vertebrae: T7-T12

• Lumbar vertebrae: L1-L5

The user initializes each vertebra in the center of the vertebral bodies. We run the segmen-

tation algorithm for each individual vertebra separately. We refer the interested reader

to [37] for more details on the algorithm. For edge detection, we set the parameters to

α = 20 and β = 0.55. In our segmentation algorithm, we consider anisotropic edges due

to the fine vertebral substructures. The regularization parameters are set to λ = 0.04 and

λshape = 0.005 for all experiments. The weighting map f emphasizes bone-like structures

Reference:

 ()


Reference:

 ()




5.4. Model Specific Shape Constraints 71

as foreground regions. The weighting map fshape contains the registered vertebral shape

model. We achieve the binary segmentations by thresholding the segmentation u with a

value of 0.2.

5.4.2 Qualitative Results

A qualitative result of a correctly segmented fifth lumbar vertebra is illustrated in Fig. 5.24.

Figure 5.25 depicts a correctly segmented third thoracic vertebrae of the same subject.

Comparing both figures, we see a significant difference in shape between the vertebrae

which emphasizes the use of different vertebral shape models. In contrast to that, Fig. 5.26

illustrates an example for a sixth thoracic vertebra where the segmentation is influenced by

connected ribs. Small intervertebral discs are segmented wrongly as depicted in Fig. 5.27

showing the first thoracic vertebra. This problem commonly appears in upper thoracic

vertebrae. Our presented framework can also be used for fast correction of wrong seg-

mentations. In this case, the wrong segmentation is used as a weighting map in our

framework where. Incorporating foreground and background scribbles allows for a correc-

tion within seconds. An example for vertebra correction of the sixth thoracic vertebra is

shown in Fig. 5.28.

5.4.3 Quantitative Results

The performance of our algorithm was evaluated by a leave-one-out cross validation on

the training data, i.e., we report average performance over ten experiments. A second

evaluation was performed online on additional five CT data sets of healthy subjects with

unknown reference segmentations. The quantitative evaluation was performed in terms of

the DSC and MAD.

We achieve an average DSC of 93%±4% and MAD of 0.47±0.54 mm over all vertebrae

from the leave-one-out experiment. Our algorithm performs well on lumbar vertebrae

(96% ± 2%) and lower thoracic vertebrae T7-T12 (95% ± 2%). The DSC for thoracic

vertebrae T1-T6 is 89% ± 5%, which can be explained by the influence of ribs and small

intervertebral discs that are connected to the vertebrae. All estimated cross-validation

scores for DSC are depicted in Fig. 5.29. The results for the MAD illustrated in Fig. 5.30

show the same pattern as the DSC. For upper thoracic vertebrae, we achieve an MAD of

0.74± 0.75 mm. Lower thoracic (0.30± 0.25 mm) and lumbar vertebrae (0.35± 0.36 mm)

have a comparable MAD. Large standard deviations indicate the large variation in MAD

due to the limited number of examples and outliers.

The online evaluation of the test set shows the same pattern as for the cross-validation

as depicted in Fig. 5.31. The algorithm performs equally well on lumbar vertebrae (97%±
1%) and lower thoracic vertebrae T7-T12 (96%± 1%), the standard deviation is low. We

achieve a DSC of 91%± 4% for upper thoracic vertebrae. Results for the MAD were not

provided.
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−5 −2.5 0 2.5 5 −1 −0.5 0 0.5 1

Figure 5.24: The top row shows mid-sagittal cross sections and the bottom row axial cross
sections of a fifth lumbar vertebra. Blue regions in the weighting map (left image) are classified
as bone. The registered vertebral mean shape (middle image) and the bone weighting map are
used as main information for the segmentation algorithm. The final segmentation is depicted in
the right images where green regions are correctly segmented. Red regions are wrongly segmented
by our algorithm and yellow regions are missing in our segmentation. The DSC for this example
is 97%, the MAD equals 0.12 mm.

The evaluation for the individual cases is illustrated in Fig. 5.32 and Fig. 5.33. For

all cases except case 6, the average DSC is between 91 − 95% and the average MAD is

0.22− 0.83 mm. Case 6 (DSC= 86%± 9%, MAD=1.4± 1.02mm) contains many regions

corresponding to soft tissue inside the vertebrae, especially in the vertebral bodies. Thus,

the mean shape cannot be registered correctly. The final segmentations are not correct

either, as they are attracted not only to the bone prior, but also to the mean shape.

Furthermore, the registration fails for T12 and L5, hence, they are not included in the

calculations of evaluation metrics.
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−5 −2.5 0 2.5 5 −1 −0.5 0 0.5 1

Figure 5.25: The top row shows mid-sagittal cross sections and the bottom row axial cross sections
of the thoracic vertebra T3. Blue regions in the weighting map (left image) are classified as bone.
The registered mean shape (middle image) and the bone prior are used as main information for
the segmentation algorithm. The final segmentation is depicted in the right images where green
regions are correctly segmented. Red regions are wrongly segmented by our algorithm and yellow
regions are missing in our segmentation. The DSC for this example is 95%, the MAD equals 0.17
mm.

−5 −2.5 0 2.5 5 −1 −0.5 0 0.5 1

Figure 5.26: This example illustrates axial cross sections of T6 where we achieve a DSC of 84%
and an MAD of 1.16 mm. The bone weighting map shown in the left image classifies ribs as bone
tissue. Therefore, the registered mean shape (middle image) is wrongly aligned, as it is attracted by
the ribs. The final segmentation (right image) contains wrongly segmented ribs illustrated in red,
while the yellow parts of the vertebra are missing. The green area depicts the correctly segmented
region.
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−5 −2.5 0 2.5 5 −1 −0.5 0 0.5 1

Figure 5.27: This example illustrates axial cross sections of T1 where we achieve a DSC of 84%
and an MAD of 0.94 mm. The bone weighting map shown in the left image classifies intervertebral
discs as bone tissue. Therefore, the registered mean shape (middle image) is wrongly aligned. The
final segmentation (right image) contains wrongly segmented intervertebral discs illustrated in red,
while the yellow parts of the vertebra are missing. The green area depicts the correctly segmented
region.

Rib

Rib

(a) Comparison (b) Before correction (c) After correction

Figure 5.28: This example illustrates manual vertebra correction for the sixth thoracic vertebra.
Image (a) compares the vertebrae before and after correction. Unstructered blue areas show the
over-segmented ribs. Setting one background scribble (red) in each rib and a few foreground
scribbles (green) in the left transverse process and spinous process as depicted in (b) results in a
corrected vertebra shown in (c).
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Figure 5.29: DSC for the cross-validated training set.
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Figure 5.30: MAD for the cross-validated training set.
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Figure 5.31: DSC for the test set.
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Figure 5.32: DSC for individual test cases.
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Figure 5.33: MAD for individual test cases.

5.5 Discussion

In this section, we evaluated the impact of global and model specific shape constraints.

Prior knowledge in terms of shape constraints are essential to make restrictions on the

solution leading to more accurate and robust results. We showed that we can minimize

user interaction using shape constraints.

Global Shape Constraints

Global shape constraints need only a single ellipsoid or point initializations as input. All

constraints can be extracted from the user-specified ellipsoid. We can also add additional

local user constraints in terms of foreground or background scribbles. A weighting map,

which is a central element of our segmentation framework, can also be obtained from the

ellipsoid information. There exist many ways to obtain a weighting map. Any probability

map or classification output can be used. More sophistic weighting maps can further

improve segmentation accuracy.

We used the star shape prior [35, 67] and image moment constraints [44, 45]. We

studied the impact of image moment constraints in 2D. We saw that using only area or CoG

constraint is not enough for a correct segmentation. The success of using these constraints

highly depends on the weighting map. We observed that the volume is distributed all over

the image if no further constraints are made. Furthermore, objects do not necessarily have

to be connected.
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The star shape prior is very powerful. It has the nice property to segment one-

connected (star) convex objects. To segment more complicated shapes, an extension

to multiple star centers is used. Sometimes it is sufficient to use the star prior only.

We applied this successfully to 2D images. In many cases, the star prior leads to over-

segmentation because it connects to similar structures. We achieve promising results in

2D and 3D when combining the star prior with moment constraints. Especially in 3D,

it turned out that combining star prior with volume and CoG constraints is very useful.

Experiments showed also that combining star prior and covariance constraint is often too

restrictive.

Global shape constraints could also be useful in clinical practice. We studied the

application to sinus floor augmentation segmentation. Nowadays, segmentation is still

performed manually in this very demanding area. Using manual, local user scribbles

combined with GAC segmentation decreases the user interaction time from an hour to a

few minutes which is already a high improvement. Using global shape constraints, we could

further decrease the amount of user interaction while still achieving promising results. We

offer also the possibility to define a cutting plane preventing the segmentation to leak out

in lower axial slices, hence, this increases segmentation accuracy. A combination of star

prior, CoG and volume constraint turned out to be useful for sinus floor augmentation

segmentation. In general, sinus floor augmentation segmentation is a very ambiguous task.

It is difficult to assess which tissue is really grafting material and not bone. To study and

evaluate global shape constraints more extensively, better experts’ reference segmentations

have to be provided. Therefore, we suggest to use GAC based image segmentation with

local user scribbles in clinical practice.

The global shape constraints are all formulated in terms of convex sets. We showed

two algorithms to incorporate these constraints. The PD-Dykstra algorithm includes an

additional optimization algorithm for projection onto convex sets and in our case needs to

compute the pseudo-inverse for CoG and covariance constraint, which is computationally

demanding. Furthermore, depending on the complexity of convex sets, it is difficult to find

the intersection of these sets. We showed how to incorporate the constraints efficiently and

exactly using the PD algorithm. While Klodt et al. [44] used a numerical approximation

based on a lagged diffusivity approach combined with Dykstra’s algorithm to project

onto the intersection of convex set which is not clear that it converges to the optimal

solution our algorithm allows for an exact solution of shape constraints. Preconditioning

is essential for proper convergence. We showed that a good convergence is achieved for

the preconditioning parameters α = 2 and ξ = 1.

We incorporated the moment constraints as equality constraints, thus, the constraints

are very restrictive because they have to be fulfilled exactly. An extension of our algorithm

would be to study the impact of moment constraints in a weak sense, i.e., allow for a

slight deviation. We suggest to define an open ball constraint with radius ε for moment

constraints.
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Model Specific Shape Constraints

The second type of shape constraints that we studied are model specific shape constraints

on the example of vertebrae segmentation. Our proposed method for vertebrae segmenta-

tion based on a variational framework has been successfully applied to ten volumetric CT

data sets provided for the CSI spine and vertebrae segmentation challenge. We incorpo-

rate a successfully registered mean shape model in our segmentation framework guiding

the segmentation algorithm. A common problem in vertebrae segmentation is that edges

of the vertebrae are not clearly defined and that connected ribs may get over-segmented.

Furthermore, trabecular bone intensities sometimes resemble soft tissue. The overall result

of 93%± 4% in terms of the DSC is similar to other published methods.

The result in lumbar region (96% ± 2%) is better than 95% presented by Kadoury

et al. [40] and the result of Ibragimov et al. [39] evaluated only on the lumbar vertebrae

(93%± 2%). In the lower thoracic part of the spine, our result of 95% ± 2% exceeds the

overall result for thoracic vertebrae (i.e. 93%) presented by Kadoury et al. [40]. However,

these methods were evaluated on different data sets, so results are not fully comparable.

A direct comparison to four other methods that were evaluated on the same dataset was

done at the MICCAI vertebrae segmentation challenge where our method won the second

prize (see Appendix C).

The lower DSC values for thoracic vertebrae T1-T6 can be explained by the influence

of ribs and small intervertebral discs that mislead the segmentation. Again, the weighting

map is an essential part of the algorithm, hence, it also has a high impact. Improving the

weighting map using more sophisticated methods, e.g. random forest classification [59],

could further improve the segmentation results.
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6.1 Conclusion

In this master’s thesis, we studied the theory and impact of different kinds of shape

constraints and their applicability to 2D and 3D image segmentation problems. Prior

knowledge in terms of shape constraints is necessary to achieve robust and accurate seg-

mentation results. Furthermore, they allow to decrease the amount of user interaction in

interactive segmentation methods.

We incorporated the shape constraints in a powerful Geodesic Active Contours (GAC)

based variational segmentation framework formulated as a convex energy minimization

problem. Using convex functionals and convex sets yields globally optimal solutions inde-

pendent of initialization. Furthermore, we used an efficient primal-dual algorithm to solve

non-smooth problems and exploited its high parallelization potential on the Graphics Pro-

cessing Unit (GPU). Compared to Dykstra’s projection algorithm, we showed how we can

incorporate the constraints directly in the primal-dual framework resulting in an exact

solution of constraints. Furthermore, we overcome computationally expensive calculations

such as matrix inversions.

Our segmentation framework is very versatile. It can be easily adapted to other con-

straints. On the one hand, we showed the application-dependent incorporation of specific

shape models on the example of vertebra segmentation. The algorithm only needs an

initialization in the vertebral bodies. The quantitative segmentation results are promising

compared to literature. On the other hand, using global shape constraints is not appli-

cation specific. Global shape constraints require a single ellipsoid input or manual point
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initializations. Both moment constraints and star prior constraint have disadvantages

when they are applied solely. Combining them results in a powerful tool. We applied a

combination of star prior with area and Center of Gravity (CoG) constraints successfully

to a number of 2D and 3D examples, including brain tumor and maxillary sinus floor

grafting material segmentation.

6.2 Outlook

A possible future work would be to improve the segmentation GUI in 3D. By now, the

user cannot observe the impact of shape constraints in every iteration. We could enhance

the GUI such that the user gets immediate feedback which allows for fast additional user

interaction.

We tested the model specific shape prior on vertebra segmentation, but it can be

also useful for a number of other task. Furthermore, we plan to test the algorithm on

pathological data if training data is available.

In this work, we used multiple star centers in combination with moment constraints.

It would be interesting to extend this to geodesic stars as proposed by [35] to further

reduce user interaction and describe more complicated shapes easier. In medical image

segmentation, the application of multiple star centers in combination with moment con-

straints could be studied in 3D for segmentation of complex organs showing a large degree

of variations, e.g. the liver. Before global shape constraints are used in clinical practice,

a detailed evaluation has to be performed based on accurate experts’ segmentations.

Besides the shape constraints, weighting maps are an important part of our segmen-

tation framework. Improving the weighting maps using sophisticated machine learning

algorithms may also lead to better segmentation results.



A
List of Acronyms

ASM Active Shape Model

CoG Center of Gravity

CT Computed Tomography

DSC Dice Similarity Coefficient

FoV Field of View

GAC Geodesic Active Contours

GPU Graphics Processing Unit

GUI Graphical User Interface

HD Hausdorff Distance

HU Hounsfield Units

ISTA Iterative Shrinkage and Thresholding Algorithm

l.s.c. lower-semicontinuous

MAD Mean Absolute Surface Distance

MAP Maximum A Posteriori

MRI Magnetic Resonance Imaging

PCA Principal Component Analysis

PET Positron Emission Tomography

RF Radio Frequency

SNR Signal-to-Noise Ratio

SSM Statistical Shape Model

TV Total Variation

US Ultrasound
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B
Upper Bounds for the Norm of Derivative Operators

In the following, we show how we can derive an upper bound for the linear gradient

operator ∇ : X 7→ Y in 2D and 3D. The divergence operator div : Y 7→ X is related to the

gradient operator by 〈∇u, p〉 = 〈u,−div p〉, the operator norm is the same. We estimate

a constant L that bounds both operators from above with the same value. In Matlab, L

can be estimated using the command normest.

‖∇u‖Y ≤ L‖u‖X , u ∈ X (B.1)

‖div p‖X ≤ L‖p‖Y , p ∈ Y (B.2)

For the derivation we operate in the discrete domain as outlined in Section 2.3. We recall

the norms defined for a scalar field u and a vector field p:

• Norm of a scalar field u: ‖u‖X =
√∑

∀i
u2i

• Norm of a vector field p: ‖p‖Y =
√∑

∀i

(
(pxi )

2 + (pyi )
2 + (pzi )

2
)

Additionally, we use following property for the derivation:

‖a+ b‖2 = ‖a‖2 + 2 〈a, b〉+ ‖b‖2 (B.3)

Using Young’s inequality, we get:

‖a‖2 + 2 〈a, b〉+ ‖b‖2 ≤ ‖a‖2 + ‖b‖2 + ‖a‖2

ε
+ ε‖b‖2, ε > 0 (B.4)

Setting ε = 1 yields:

‖a+ b‖2 ≤ 2
(
‖a‖2 + ‖b‖

)
(B.5)
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B.1 Derivation in 2D

We derive the norm of the gradient in two dimensions. The gradient operator is bounded

from above by a constant L as follows:

‖∇2Du‖Y ≤ L‖u‖X
‖∇2Du‖2Y ≤ L2‖u‖2X

Now, we discretize the left-hand side by using forward differences δ+:

‖∇2Du‖2Y =
∑

1≤i≤M
1≤j≤N

(∇ui,j)
2 =

∑
1≤i≤M
1≤j≤N

(
ui+1,j − ui,j

hx

)2

+

(
ui,j+1 − ui,j

hy

)2

The Neumann boundary conditions state that uM+1,j − uM,j = 0 and ui,N+1 − ui,N = 0,

thus the limits for the sum are decreased by one.

∑
1≤i≤M−1
1≤j≤N−1

(
ui+1,j − ui,j

hx

)2

+

(
ui,j+1 − ui,j

hy

)2

≤

∑
1≤i≤M−1
1≤j≤N−1

2

h2x

(
u2i+1,j + u2i,j

)
+

2

h2y

(
u2i,j+1 + u2i,j

)
≤

∑
1≤i≤M
1≤j≤N

4

h2x

(
u2i,j
)
+

4

h2y

(
u2i,j
)
= 4

(
1

h2x
+

1

h2y

) ∑
1≤i≤M
1≤j≤N

u2i,j =

4

(
1

h2x
+

1

h2y

)
‖u‖2X = L2‖u‖2X

We estimate the upper bound L as:

L =

√
4

(
1

h2x
+

1

h2y

)
(B.6)

Depending on the image spacings hx, hy we can specify a constant L for the case of

anisotropic, isotropic and unit voxels:

• Anisotropic Voxels hx 6= hy: L =

√
4
(

1
h2
x
+ 1

h2
y

)
• Isotropic Voxels hx = hy = h: L =

√
8
h2

• Unit Voxels hx = hy = 1: L =
√
8
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B.2 Derivation in 3D

We derive the norm of the gradient operator in three dimensions in the same manner as

for two dimensions. First, we discretize the Total Variation (TV) norm by using forward

differences δ+:

‖∇3Du‖2 =
∑

1≤i≤M
1≤j≤N
1≤k≤D

(∇ui,j,k)
2 =

∑
1≤i≤M
1≤j≤N
1≤k≤D

(
ui+1,j,k − ui,j,k

hx

)2

+

(
ui,j+1,k − ui,j,k

hy

)2

+

(
ui,j,k+1 − ui,j,k

hz

)2

The Neumann boundary conditions state that uM+1,j,k − uM,j,k = 0, ui,N+1,k − ui,N,k = 0

and ui,j,D+1 − ui,j,D = 0, thus the limits for the sum are decreased by one.

∑
1≤i≤M−1
1≤j≤N−1
1≤k≤D−1

(
ui+1,j,k − ui,j,k

hx

)2

+

(
ui,j+1,k − ui,j,k

hy

)2

+

(
ui,j,k+1 − ui,j,k

hz

)2

≤

∑
1≤i≤M−1
1≤j≤N−1
1≤k≤D−1

2

h2x

(
u2i+1,j,k + u2i,j,k

)
+

2

h2y

(
u2i,j+1,k + u2i,j,k

)
+

2

h2z

(
u2i,j,k+1 + u2i,j,k

)
≤

∑
1≤i≤M
1≤j≤N
1≤k≤D

4

h2x

(
u2i,j,k

)
+

4

h2y

(
u2i,j,k

)
+

4

h2z

(
u2i,j,k

)
= 4

(
1

h2x
+

1

h2y
+

1

h2z

) ∑
1≤i≤M
1≤j≤N
1≤k≤D

u2i,j,k =

4

(
1

h2x
+

1

h2y
+

1

h2z

)
‖u‖2X = L2‖u‖2X

We estimate the upper bound L as:

L =

√
4

(
1

h2x
+

1

h2y
+

1

h2z

)
(B.7)

Depending on the image spacings hx, hy, hz we can specify a constant L for the case of

anisotropic, isotropic and unit voxels:

• Anisotropic Voxels hx 6= hy 6= hz: L =

√
4
(

1
h2
x
+ 1

h2
y
+ 1

h2
z

)
• Isotropic Voxels hx = hy = hz = h: L =

√
12
h2

• Unit Voxels hx = hy = hz = 1: L =
√
12
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Publication

My master’s thesis at the Institute for Computer Graphics and Vision led to the following

publication. It is listed along with the respective abstract.

Vertebrae Segmentation in 3D CT Images based on a Variational Framework

Kerstin Hammernik, Thomas Ebner, Darko Stern, Martin Urschler and Thomas Pock

In: Recent Advances in Computational Methods and Clinical Applications for Spine

Imaging (To be published in 2015)

This work was accepted for oral presentation on the second MICCAI workshop for

“Computational Methods and Clinical Applications for Spine Imaging” held at Harvard

Medical School, Boston, MA, USA on September 14th, 2014.

With this work, we took part on the 2014 Vertebra Segmentation Challenge. We won the

second prize and were given an honorable mention award.

Abstract: Automatic segmentation of 3D vertebrae is a challenging task in medical

imaging. In this paper, we introduce a total variation (TV) based framework that incor-

porates an a priori model, i.e., a vertebral mean shape, image intensity and edge infor-

mation. The algorithm was evaluated using leave-one-out cross validation on a data set

containing ten computed tomography scans and ground truth segmentations provided for

the CSI MICCAI 2014 spine and vertebrae segmentation challenge. We achieve promising

results in terms of the Dice Similarity Coefficient (DSC) of 0.93± 0.04 averaged over the

whole data set.
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