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Abstract

The task of robustly fitting multiple parametric models to a noisy set of observed data is
a common necessity in computer vision. Applications range from geometric model fitting
(e.g. plane fitting) through homography estimation to motion segmentation. This thesis
explores existing model fitting approaches, almost all of which rely on the random sampling
paradigm introduced by RANSAC in 1981. This principle solves multiple model fitting as
an application-independent problem of generating candidate models from random subsets
of data, from which the best models are selected based on a predefined quality measure.
We mould existing approaches into a generic model fitting framework for Matlab, built
from exchangeable components for sampling strategies, outlier removal, model estimation
and model selection. From the multitude of possible model fitting pipelines that emerges
from this framework, we evaluate a selection of algorithms on the problem of multiple
line fitting in synthetic two-dimensional data, considering both the quality of fit and the
correctness of the number of models returned by the algorithms. We focus on approaches
that identify clusters of observations based on their likelihood of having emerged from the
same structure. For this purpose, we incorporate recent developments in graph clustering
such as the Graph Shift and Authority Shift algorithms. In addition to the 2D experiments,
we conduct experiments on the Freiburg and NYU datasets of depth data recorded by
Microsoft’s Kinect© sensor, employing the framework to the problem of plane fitting. With
the second dataset, we use the included semantic labeling to extract reference planes (floors,
walls, tables, etc.) as a quasi-ground truth, allowing for the evaluation of the detection
precision/recall of our algorithms.
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1 Introduction

A reoccurring challenge in computer vision tasks is the estimation of one or more parametric
models in observed sets of noisy data. The true structures that these models represent
range from simple geometric shapes (lines, circles, planes) to complex relations such as a
homography between two images of the same planar scene [16, p. 123], the fundamental
matrix between two cameras [16, p. 291], or motion segmentation [44]. Applications such as
acoustic source localization [31] and even speech-based emotion recognition [11] show that
model fitting is not a problem limited to the field of computer vision. Typically, observations
that actually belong to a structure of interest are outnumbered by random, unrelated
observations, which calls for robust methods in order to solve the fitting problem.

(a) (b)

(c) (d)

Figure 1.1: Examples of single and multiple model fitting applications. From left to right: estimation of the
fundamental matrix, multiple homography estimation, range segmentation, motion segmentation.
Sources: [13], [46], [41], [44].
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1 Introduction

1.1 Single model fitting

Let us first consider the scenario in which we expect only a single structure in the observed
data. In this case, the observed data points can simply be divided into two categories:
inliers, belonging to the structure of interest, and outliers, random observations outside
the structure. If the number of outliers is zero, the single model fitting problem comes
down to regression:

With a residual function r(θ,x) that measures the error of fitting data point x with model θ,
the well-known least squares-estimator chooses a model θ that minimizes the sum squared
error

SSE =
n∑
j=1

(
r(θ,xj)

)2
, (1.1)

for data points x1,x2, . . . ,xn. This estimator is optimal for Gaussian error distributions
[30, p. 4]. However, one can easily show that even a single outlier can heavily corrupt the
outcome of such an estimator, as one may see from Figure 1.2.

(a) dataset without outliers (b) dataset with a single outlier

Figure 1.2: Fitting a line to a dataset of five points. The least squares estimator fits models optimally for
Gaussian error distributions, but does not handle outliers well. Source: [30, p. 5].

A multitude of approaches that are robust towards outliers has been proposed over the
years, such as LMedS, which replaces the sum in Equation 1.1 with the median, or the
class of M-estimators, which replaces the quadratic term in Equation 1.1 with a function
of r such that the influence of outliers is diminished. These methods tend to break down,
however, if the number of outliers is greater than 50%, as they were designed under the
assumption that the majority of data support the structure [41].
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1 Introduction

For outlier rates above 50%, the “hypothesize-and-test” paradigm has been widely em-
braced, which picks a definitive model from a large number of candidate models, called
hypotheses, generated from minimal subsets of data points. RANSAC [12] is the most
prominent representative of this technique, which will be discussed in detail in Chapter 2.

1.2 Multiple model fitting

Apart from the many applications of single model fitting, applications in which multiple
structures or relations are to be extracted from observations are equally common. As single
model fitting is the problem of estimating a model θ for given data x1,x2, . . . ,xn, the goal
of multiple model fitting is the identification of multiple structures, i.e., finding a set of
models θ1, θ2, . . . , θm that fits the s structures present in the data. Note that the task not
only includes the parametrization of the models — in most real world problems, the correct
estimation of the number of models m is equally relevant.

The presence of multiple structures inherently leads to a more complex categorization of
data points: From the viewpoint of a single structure, inliers are the points that belong
to the structure in question. Pseudo-outliers are observations that are associated with a
structure, bot not with the current structure. Finally, data points that aren’t affiliated with
any structure are denominated as gross outliers. Figure 1.3 illustrates these relationships.
There is also a distinction among inliers themselves: while most inliers might be part of a
single structure, some of them might be a member of multiple structures. For geometric
structures such as lines, for example, these shared inliers occur at the intersections between
the structures.

Figure 1.3: Types of points in a multiple model fitting problem. From the point of view of one structure, there
are inliers (pink), pseudo-outliers (green), and gross outliers (blue). Multiple structure membership
is possible where two structures intersect.
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1 Introduction

Confronted with the task of fitting multiple models, one might easily come up with the idea
of applying a single model fitting procedure such as RANSAC sequentially, removing inliers
of the previously fitted model before each iteration. This has been shown to be effective
in many cases, but there are a few drawbacks: First of all, a stopping criterion has to be
devised, be it a fixed number of iterations or a threshold for the quality of the fit, such as
the number of acquired inliers for the current structure. The establishment of an adequate
stopping criterion is all but trivial [4]. Secondly, by removing inliers after each run, these
algorithms make the assumption that every point is associated with one structure at most.
This, however, makes different models “compete” for shared inliers, which might reduce
the fitting accuracy.

This has motivated the emergence of several approaches that allow multiple structure
membership. Methods such as Mean Shift [9] and Randomized Hough Transform [43] work
on the parameter space, while Kernel Fitting [4] clusters data points in an application-
independent space based on their affinities with randomly generated hypotheses. Other
approaches do not allow multiple model membership, but still yield good results, such as
J-linkage [36], a hierarchical clustering, and Label Costs [10], which solves the multiple
model fitting problem as a labeling problem. Examples for different multiple model fitting
applications can be seen in Figures 1.1(b), 1.1(c) and 1.1(d).

1.3 Outline

We will survey existing solutions for single and multiple model fitting in Chapter 2. Apart
from the fact that most of these approaches rely on random sampling, many have in com-
mon a certain abstraction that moves the fitting task away from the application domain:
structures are represented by parametric models, which can be generated from a small sub-
set of observations, the so called p-subset. A measure is required to determine the residual
between a model and an observation, such that inliers can be dichotomized from outliers.
Hence, whatever the domain of the application and the class of models may be, the algo-
rithms will work as long as a model can be defined by p observations, and a function to
measure residuals is provided.

For evaluation purposes, a third mapping is necessary: in order to determine the fitting
accuracy, we need a distance function that measures the error between an estimated model
and the corresponding structure defined by the ground truth.

The first contribution of this thesis will be a generalization of existing approaches into a
handful of general strategies. One example for a strategy is Sequential RANSAC. Other
approaches such as J-linkage [36], Local Graph Clustering [24] and Kernel Fitting [4] share
a common strategy, which can be formulated as a generic pipeline consisting of random
hypothesis generation, optional gross outlier removal, the computation of affinities between
observations based on similar residuals with the hypotheses, a clustering of observations in
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1 Introduction

the space defined by said affinities, a function to construct models from clusters, and finally,
an optional model merging procedure, which may include information-theoretic criteria to
select the best set of models for the presented problem. The actual algorithms used for
each of these components can be chosen at will.

The above generalization of techniques materializes in our model fitting framework for
Matlab, which will be discussed in Chapter 3. It incorporates existing source code from
approaches such as J-Linkage, Kernel Fitting and Label Costs [10]. This framework allows
new combinations of elements used by existing model fitting pipelines, and incorporate
recent developments in graph clustering algorithms. From the highly modular design of the
framework, described in Section 3.1, a multitude of possible model fitting setups emerges,
a subset of which is selected for evaluation and therefore described in Section 3.2.

In Chapter 4, we evaluate our setups, both existing and new, on synthetic two-dimensional
data, applying the algorithms to the problem of line fitting. We focus on the employment
of existing model fitting pipelines in combination with new graph clustering algorithms
such as Graph Shift, with some promising results. Section 4.2 centers on the accuracy
of the algorithms when the number of ground truth structures is known. Subsequently,
Section 4.3 assesses the cardinality error, i.e., how well the algorithms estimate the number
of structures in the ground truth.

A few of the approaches evaluated in Chapter 4 are put to the test in Chapter 5, where
they are applied to the real world problem of plane fitting. The data for these experiments
come from two publicly available datasets of RGB-D data, i.e. color images with depth
information, recorded by the Microsoft Kinect ©sensor. We visualize the results of our
model fitting algorithms on the “Freiburg” dataset [35] in Section 5.1. In Section 5.2,
we make use of the semantic labels in the NYU depth dataset [28] to extract reference
planes, which we then try to detect with our algorithms, resulting in a comparison based
on precision and recall.

From the results acquired in Chapters 4 and 5, we draw our final conclusion in Chapter 6.
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2 Related Work

A multitude of approaches has been proposed for the general task of fitting multiple models
to a set of observations. We will begin this chapter with a discussion of the RANSAC family
of robust single model fitting algorithms, which lay the groundwork for all approaches that
employ the “hypothesize-and-test” paradigm of choosing a winning model hypothesis from
a large set of randomly generated candidates. We will also look briefly into Hough-based
methods, which scan the entire parameter space for the most plausible model. Then, we
will discuss several state-of-the-art multiple model fitting pipelines, each of which claims
advantages over their predecessors in terms of parametrization complexity, fitting accuracy
or speed. Figure 2.1 illustrates some concepts of multiple model fitting, each of which will
be explained in detail later on.

(a) random sampling (b) hierarchical clustering (c) dense sub-
graphs

(d) graph cuts

Figure 2.1: Concepts used in (multiple) model fitting. Source for (c): [10].

2.1 Hypothesis generation

Almost all algorithms explored in this chapter are based on the assumption that a candidate
model, or hypothesis, can be constructed from a minimal subset of p observations. That
is, at least p observations are required to uniquely determine one model. In R2, any two
distinct points x = [x1, x2]T ,y = [y1, y2]T define a line [a, b, c]T . This follows from the pair
of linear equations

ax1 + bx2 = −c
ay1 + by2 = −c.

(2.1)

6



2 Related Work

Similarly, three non-collinear points uniquely define a circle, which is illustrated in Fig-
ure 2.1(a). A fundamental matrix can be uniquely determined by seven point correspon-
dences [16, p. 290], etc. The number of required points differs from application to appli-
cation, just like the function that creates a model from these points, but as long as they
are defined, the property that a parametric model can be determined by a p-subset paves
the way for the paradigm of random sampling, i.e. the generation of random hypotheses
by randomly chosen observations from a dataset.

2.2 The RANSAC family

RANSAC, short for “Random Sample Consensus”, was first proposed by [12] in 1981 and
constitutes a reference algorithm for fitting a single model to noisy, outlier-ridden data. It
relies on the principle that a parametric model for the structure in question can be uniquely
determined by a fixed number of observations, the so called p-subset. The algorithm creates
a large set of hypotheses θ1, θ2, . . . , θH different p-subsets randomly picked from the n
observations. The consensus set of such an hypothesis is defined as the set of observations
xj for which the residual remains below a threshold τ ,

Ci =
{

xj : |r(θi,xj)| ≤ τ
}

. (2.2)

Members of Ci are also called the inliers of θi. The hypothesis θi∗ with the most inliers
is chosen as the winning hypothesis, and the final model is constructed by least squares
estimation using the entire consensus set Ci∗ .

Besides the inlier threshold τ , the principal parameter that has to be established is the
number of hypotheses H necessary to have a high certainty of success. When the number
of outliers is known, or can be estimated, H can be determined probabilistically: The
algorithm is successful if at least one of the H picked p-subsets contains only inliers of the
true structure (a so called inlier hypothesis). Hence, if the probability of picking an inlier
is q, then the probability of success is

Pr{At least one inlier hypothesis} = 1− (1− qp)H . (2.3)

In other words, if one desires a probability of success of, for example, 95% for a line fitting
application with 50% outliers, then the number of randomly sampled hypotheses would
have to be at least

H =
log(1− 0.95)

log(1− qp)
≈ −1.3

log(1− 1
2

2
)
≈ −1.3

−0.125
≈ 11. (2.4)

7



2 Related Work

2.2.1 RANSAC variants

One way to improve RANSAC is to take into account inlier residuals, instead of simply
ranking hypotheses by the size of their consensus sets. Effectively, regular RANSAC picks
the hypothesis which minimizes a sum of the cost function displayed in Figure 2.2(a), while
for the same computational price, it could also minimize the cost function in Figure 2.2(b),
which yields equal or better results, especially when the inlier threshold τ is set too high
[38]. This alteration was dubbed MSAC.

(a) ρ1(r) (b) ρ2(r)

Figure 2.2: The difference between RANSAC and MSAC lies in the cost function that is minimized. RANSAC
effectively minimizes

∑n
j=1 ρ1(rj), while MSAC takes inlier residuals into account by minimizing∑n

j=1 ρ2(rj). These plots assume τ = 1.

Torr and Zisserman point out that there is no reason to prefer RANSAC over MSAC, as
MSAC brings a benefit without adding computational cost. Their MLESAC is a variant
that uses maximum likelihood estimation to further improve fitting results [38]. PROSAC
[8] generates hypotheses from growing sets of preferred observations. This requires a partial
order of observations, such as the similarity between two descriptors in point matching
problems. This increases the probability of an early inlier hypothesis being drawn, and
is thus a form of guided sampling. Another example of guided sampling is NAPSAC [27],
which uses a guided sampling technique that selects only one point completely at random.
The rest of the points required for a minimal subset are randomly picked from a surrounding
hypersphere. The method requires a metric defined on the space of observations, plus a
radius for the hypersphere. As points close to an inlier are more likely to be inliers as well,
this accelerates the sampling process. A similar technique that also prefers points that lie
close to each other is presented in Section 2.5.

8



2 Related Work

2.2.2 RANSAC with multiple structures

If one wishes to find more than one structure, the simplest approach is to run RANSAC
sequentially, “peeling” off inliers of the current winning model after each iteration, and re-
applying RANSAC to its outliers. This strategy has been used successfully by Torr [37] and
Vincent and Laganiere [40], among others. Another RANSAC-based approach designed for
multiple model fitting is multiRANSAC , which fits a fixed number of models simultane-
ously, while dynamically altering the number of iterations by a data-driven bound. The
author’s experiments show that this simultaneous approach delivers more stable estima-
tions than its sequential counterpart [46].

The disadvantage of these RANSAC-based approaches is that if a point is an inlier to
multiple structures, it will be removed at some point, possibly deteriorating the fitting
accuracy of a following structure, which in the worst case might not even be identified, as
Figure 2.3 illustrates.

(a) Initial set of points and structures. (b) Points left after 4 iterations.

Figure 2.3: Example scenario in which Sequential RANSAC might be unable to identify the innermost circle,
because its inliers were removed by previous iterations. Colors symbolize true structure membership.

2.3 The Hough Transform

The Hough Transform [17] was originally designed to find lines in a binary image I ∈
{0, 1}n×n. The parameter space of possible lines (ρ, θ), defined by the relationship ρ =
x cos θ + y sin θ, is quantisized into a finite number of bins. Each non-white pixel of I then
casts a vote for every line (ρ, θ) that passes through the pixel, creating local minima for
strong lines, as depicted in Figure 2.4.

9



2 Related Work

(a) Relationship between
line (ρ, θ) and points (x, y).

(b) An example image. (c) Discrete parameter space with accumulated
votes for the image in (b). Rows correspond to
different values for ρ, columns to values of θ.

Figure 2.4: The Hough Transform transforms a binary image into an array of votes for a finite set of lines.
Each line causes a local maximum in parameter space.

One can easily imagine the Hough Transform as a strategy for multiple line fitting, by
picking a fixed number of the strongest local maxima, or by selecting all lines which reach
a minimum number of votes. The Generalized Hough Transform [2] adapts the Hough
principle to find arbitrary, even non-parametric shapes in images by casting votes for the
linear transform of a template cast into the image, rather than voting for the shape itself.

The problem of the Hough Transform is that it searches parameter space exhaustively,
which for high dimensional models can lead to long computation times and memory over-
loads. Also, the resolution of the parameter space has to be cautiously defined. The Ran-
domized Hough Transform solves these problems by only regarding models generated by
minimal subsets, much like RANSAC does, and casting votes into a continuous parameter
space, where models with similar parameter vectors are considered equal [43]. Instead of
using this quantization, which requires a threshold to determine which models ought to be
considered equal, Mean Shift can be used to find the centers of dense clusters in parameter
space [9].

2.4 Residual Histogram Analysis

While Sequential RANSAC requires an inlier threshold and a stopping criterion, Hough-
based methods break down for very high amounts of noise and outliers. These shortcomings
inspired Zhang and Kosecka [45] to design a robust, parameterless algorithm that estimated
both the number of structures and their models’ parameters. After generating a set of
random hypotheses, a histogram of residuals is generated for each point (Figure 2.5). The
authors observe that hypotheses generated by points from one and the same structure
generate a peak in the histogram of most points. By picking the median of the number of
histogram peaks over all points, the number of true structures can be estimated.

10



2 Related Work

(a) Dataset (b) Residual histogram for one
point

Figure 2.5: Models generated from inliers generate peaks in the residual histograms of individual points [45].

Points with histograms containing a different number of peaks are discarded. One point,
x∗, being the point with the strongest peaks, is selected in order to find a representative
model for each peak. Since each peak can be composed of hypotheses around the true
structure as well as hypotheses that have the same residual magnitude “by accident”, the
corresponding peak in the histogram of a randomly chosen point xj 6= x∗ is identified, and
only hypotheses that are present in both peaks are used for the final estimation.

Although RHA does not require a number of models as input, it does depend on the setting
of a residual bin size for the histogram, as well as a threshold to distinguish peaks [41].

2.5 Guided sampling

In Section 2.2.1, we mentioned how PROSAC accelerated the process of random sampling
by following a partial order defined on the set of observations. Let us now consider two
guided sampling methods which prefer points which have a higher probability of being
inliers of the same structure, thereby accelerating the process of finding good hypotheses.

2.5.1 Sampling neighboring points

A simple approach of guided selection is used by J-Linkage and was also used by multi-
RANSAC [46]. After one point x has been drawn, the selection prefers neighboring points
over more distant points by setting the probability that point y is drawn after x to

P (y|x) ∝ exp

(
− 1

σ2
d(x,y)2

)
for x 6= y. (2.5)

Because neighboring points are more likely to belong to the same structure as more distant
points, this increases the likelihood of obtaining a model with sufficient inliers. This strategy
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comes with a certain loss of generality: it requires the definition of a distance function
between observations.

2.5.2 Accelerated Hypothesis Generation

Another approach to find better hypotheses in less time relies on hypothesis rating after
a small amount of m hypotheses have already been generated. For each data point xj,
the absolute residuals |rj1|, |r

j
2|, . . . , |rjm| are computed, where rji = r(θi,x

j). By sorting this
vector, and extracting the first h entries, we obtain the top-h hypotheses for each point.
With this information, a pairwise affinity measure of data points can be established by

w(x,y) =
1

h
|toph(x) ∩ toph(y)| for x 6= y, (2.6)

which counts how many top-h hypotheses the points have in common. The probability
that a point y is drawn after y1,y2, . . . ,yk have already been selected is then chosen to be
proportional to

wk(y) =
k∏
j=1

w(y,yj). (2.7)

In summary, data points with similar top-h sets are more likely to belong to the same
structure, so when we give them a higher probability of being drawn, we increase the
chance of creating a good hypothesis. The top-h lists are updated after each batch of
generated hypotheses in order to include all hypotheses so far [5].

2.6 Model Selection

An important aspect of multiple model fitting is the estimation of the number of true struc-
tures in the data. For this purpose, criteria from information theory are often considered.
Informally speaking, these criteria rely on the principle that if two sets of models explain
a dataset equally well, one should always prefer the simpler one.

A formalization of this idea is the Minimum Description Length principle (MDL), where
the target is to minimize a cost function

C(X,Θ) = Cmodel(Θ) + Cerror(X,Θ) (2.8)

for a dataset X and a model Θ. Cmodel(Θ) determines the cost of using a model with Θ’s
complexity, while Cerror(X,Θ) encodes the error made by using said model [22].
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Model Selection is often used to choose the type of model best suited for a single model
fitting task. For example, if a set of point correspondences between two images are given,
the fundamental matrix cannot be recovered uniquely if the data are degenerate, and the
relation between correspondences has to be described by a homography [39]. In the scenario
of multiple model fitting with a known model type, Model Selection can be used to select
the right set of models. For this, simply consider the set of candidate models returned by a
given algorithm as a single combined model, which can be simplified by removing or fusing
candidates.

Popular MDL-like criteria include Akaike’s criterion (AIC, [1]) and the Geometric Ro-
bust Information Criterion (GRIC, [39]). The latter cost function is used in the model
merging scheme of Kernel Fitting, an approach that will be discussed in Section 2.8. The
Label Costs approach, discussed in Section 2.9.3, also employs the principle of punishing
model complexity, minimizing an objective function that punishes both bad fits and the
introduction of new labels (i.e. models) for the data points.

2.7 Clustering algorithms

The paradigm of random hypothesis generation goes hand in hand with the occurrence of
clusters in one space or another: if a sufficient amount of hypotheses is generated from the
inliers of one and the same structure, they tend to form a cluster in model parameter space
[41]. In Section 2.4, we saw that structures also reflect as peaks in residual histograms, i.e.
clusters in residual space. Finally, it has been observed that inliers of the same structure
themselves form a cluster in certain representational spaces ([36], [4]). This means that the
members of the same inlier cluster can be used to reconstruct a model after their cluster
has been identified.

Clustering is an extensively studied topic in the field of unsupervised classification. The
definition of what a cluster is differs slightly from method to method, but in principle it
denotes a subset of the data with a high density, that is high affinities or short distances
between the subset’s members. The K-Means algorithm [26] is a well known clustering
algorithm, but it has some severe limitations: First of all, it requires the number of clusters
K as input parameter. Secondly, it assumes hyperspherical or -ellipsoidal shapes for the
clusters [20, p. 29]. Thirdly, it assigns all data points to a cluster, which makes it unsuitable
for robust multiple model fitting as long as no explicit outlier removal is performed. Last
but not least, K-Means operates on a continuous, metric feature space, which might not be
available.

The Mean Shift algorithm [9] improves on three of the above items: It does not require
the number of clusters beforehand, and it does not require the clusters to be elliptical, as
it “shifts” each observation towards a stationary point of an underlying density function.
By identifying these stationary points instead of partitioning the data, Mean Shift can be
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made robust to outliers [9]. However, it is limited to a continuous feature space just like
K-Means.

2.7.1 Hierarchical clustering

For non-continuous feature vectors, hierarchical or agglomerative clustering is a popular
clustering method. Instead of working on a continuous feature space, hierarchical clusterers
rather work on a symmetric distance matrix D, which captures the proximity of each pair
of points, such that

Dij = d(xi,xj), (2.9)

where the definition of the distance function d(x,y) is of no concern to the clustering
algorithm. The output of the clustering algorithm is a hierarchy of clusters, which at the
bottom consists of singleton sets for all observations, and at the top consists of a single set
containing all observations. A typical cluster tree can be seen in Figure 2.6. The algorithm
proceeds as follows:

1. Place every observation in its own cluster.
2. Merge the two clusters with the lowest cluster distance.
3. Repeat step 2 until the number of clusters is one.

The definition of the cluster distance in step two is relevant to the outcome of the algorithm:
Single linkage defines it as the shortest distance between two elements of distinct clusters,
while complete linkage takes the longest distance between elements [36]. Toldo and Fusiello
define a linkage technique specialized to the purpose of multiple model fitting.

2.7.2 J-linkage

At the heart of Toldo and Fusiello’s approach lies the representation of observations in con-
ceptual space: After the generation of randomly sampled hypotheses θ1, θ2, . . . , θH , residuals
between hypotheses and observations are computed and thresholded using a predefined in-
lier threshold τ , in the same way consensus sets are constructed by RANSAC. This results
in a H-by-n binary matrix

Sij =

{
1 if r(θi,x

j) < τ

0 otherwise.
(2.10)

The rows of S are the indicator vectors of the hypotheses’ consensus sets. Instead of
assuming the point of view of the hypotheses, however, the creators of J-linkage look at
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Figure 2.6: Typical output of the J-linkage algorithm. The colors correspond to clusters which do not share
common hypotheses. Small clusters are discarded by the algorithm.

the columns of S. These indicate the preference set, PSj, for each point xj, which contains
all hypotheses for which xj is an inlier.

Toldo and Fusiello now define the distance between two observations as the Jaccard -
distance of their preference sets:

d(xi,xj) = 1− |PSi ∩ PSj|
|PSi ∪ PSj|

. (2.11)

The preference set of a cluster is defined as the intersection of all contained preference
sets. With these two definitions, a cluster hierarchy is constructed as described earlier.
The algorithm partitions the cluster tree by seperating clusters which have a distance of
(almost) 1, which means that their combined preference sets have no common hypotheses.
This means that in the top layer, the points in a cluster have at least one hypothesis in
common. After rejecting small clusters, the final model for each top-level cluster is obtained
by estimating the model parameters in the least square-manner considering all the points
in the cluster.

Toldo and Fusiello showed the effectiveness of J-linkage in experiments with line, circle
and plane fitting. In addition, Fouhey et al. successfully employed J-linkage to estimate
multiple homographies between image pairs in their 2010 paper on multiple plane matching
[15].

Even though J-linkage does not require an explicit number of structures as an input, the
number of gross outliers has to be known in order to reject the correct amount of clusters
[4]. A further disadvantage is that each point can only be assigned to a single model, which
gives rise to the same problems as the peeling technique of Sequential RANSAC.
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2.7.3 Graph clustering

We have seen that hierarchical clustering offers us the possibility to cluster objects without
knowledge of the objects’ representation, but rather based on given distances between the
objects. One can easily see that these distances define a weighted, undirected graph: For any
symmetric matrix M ∈ Rn×n there is a graph G = (V,E,w) with vertices V = {1, . . . , n},
edges E = {(i, j) : Mij > 0}, and edge weights w(i, j) = Mij. The equivalence of matrix
and graph is illustrated in Figure 2.7.

(a) A symmetric
matrix.

(b) The corresponding
graph.

Figure 2.7: A symmetric matrix defines an undirected graph with edge weights.

This leads to the concept of graph clustering, the goal of which is the identification of a
dense subgraph of strongly connected vertices. There exist multiple algorithms to identify
these subgraphs, also called clusters, dominant sets or modes of a graph, such as Spectral
Clustering [23] and Replicator Dynamics [29].

The affinity matrix M

Most graph clustering literature speaks of affinities between observations, rather than
distances, as in Section 2.7.1. This corresponds to the intuition that proximity between
nodes should be expressed by higher edge weights in a graph. The two concepts are of
course equivalent: The affinity between two observations is simply the inverse of their
distance. For example, the distance matrix used by J-linkage can be equivalently expressed
by the affinity matrix

Mij =
|PSi ∩ PSj|
|PSi ∪ PSj|

, (2.12)

where |PSi∩PSj|/|PSi∪PSj| is the inverse J-distance (see Section 2.7.2). From Figure 2.8,
one can see that the affinities between inliers of the same structure are usually higher than
their affinities to other data points.
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Figure 2.8: An affinity matrix for 300 points (four structures with 50 inliers each, plus 100 gross outliers).
High intensities correspond to high affinities. For the viewer’s convenience, the rows and columns
are ordered by true structure membership. One can see clearly that inliers of the same structure
associate strongly, while gross outliers do not have such strong associations.
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Defining cluster membership

Before clusters can be identified, we need a method to define what a cluster is. Naturally,
one could define a cluster as a subgraph, represented by a binary indicator vector c ∈
{0, 1}n, with

cj =

{
1 if vertex j is part of the cluster,

0 otherwise.
(2.13)

However, graph clustering techniques such as Spectral Clustering and Replicator Dynamics
allow the entries of c to take values from the entire interval [0, 1], while requiring a total
sum of ||c||1 = 1 (i.e., a stochastic vector). This, in turn, allows the problem of finding a
dense subgraph to be formulated as an optimization problem

c∗ = arg max
c

cTMc s.t. ‖ c ‖1= 1 and cj ≥ 0. (2.14)

cTMc is the sum of all intra-cluster affinities, and is therefore also called the intra-cluster
score or cluster coherency of c. Each entry cj of c can be thought of as the probability of
vertex j being part of cluster c.

2.7.4 Mode finding with Replicator Dynamics

Replicator Dynamics is a game-theoretic technique which finds a local maximum of 2.14
by iterating the replicator equation

c
(t+1)
j ← c

(t)
j

(Mc(t))j
c(t)TMc(t)

, (2.15)

over discrete timesteps t, which converges towards a stationary point c∗, which constitutes a
valid probablisitc cluster as long as the algorithm is initialized with a stochastic vector. The
equation was originally used to model the changes in relative frequency of self-replicating
entities [29]. The definitive set of cluster members can be recovered from c∗ simply by
selecting indices of c∗ with non-zero entries.
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Finding multiple modes

Replicator dynamics has been used by Hairong Liu and Shuicheng Yan to discover common
visual patterns of two images, a specific application of multiple model fitting [24]. In order
to find multiple modes, this approach runs the replicator dynamics procedure for every node
j by deliberately biasing the initialization vector c(0) of the equation to the neighborhood
N (j) of j, setting

ci =

{
1

|N(j)|+1
if i = j or i ∈ N (j)

0 otherwise.
(2.16)

Only modes with a sufficient coherency are kept. Replicator dynamics can drop vertices
from a cluster, but never accept new vertices to said cluster, because

c
(t)
j = 0 implies c

(t+1)
j = 0, (2.17)

i.e. when the probabilistic membership of a vertex to a cluster is zero in time step t, it
remains zero in all following time steps [25]. Therefore, the success of the algorithm depends
on wether the local maximizer is in fact part of the neighborhood of the current node i,
which the authors call the local property. Note that the affinity matrix in the paper is
defined by the differences in distances of point correspondences, not by the more general
distance between models and observations.

Graph modes with similar members are merged by the algorithm, which presumes the non-
intersection property, defined by the authors as the property that structures do not overlap.
In scenarios in which these two properties are not fulfilled, the success of the algorithm is
doubtful.

The proposed algorithm calls the Replicator Dynamics algorithm for n different initializa-
tion vectors. This exhaustive exploration can be justified by the fact that each run only
inspects the neighborhood of the current node, which means that most entries of c are
zero from the beginning, which drastically decreases the runtime of Replicator Dynamics
because only non-zero entries of c have to be updated. Thus, the runtime of local graph
clustering depends on the sparsity of the graph in question: the smaller the neighborhoods,
the faster the clusterer.

2.7.5 Graph Shift

In order to overcome the problem of Replicator Dynamics being “trapped” in local neigh-
borhoods, Liu & Yan devised an algorithm that enables the expansion of a graph mode
from a subgraph GS to the entire graph G. Defining

19



2 Related Work

a(c,d) = cTMd and g(c) = a(c, c), (2.18)

the authors prove that a mode c of GS is also a mode of G if and only if every cluster-vertex
affinity is less or equal to the cluster coherency, i.e. a(c, j) ≤ g(c) for all vertices j, where j
is the indicator vector with all zero entries accept at j. This is illustrated in Figure 2.9.

Figure 2.9: Relation between the mode of a subgraph and the mode of a graph. Cluster members (red dots)
all have the same affinity with the cluster c, and thus lie on the circle g(c). Other vertices have
lower affinities with the cluster and lie “outside” the circle (green triangles). Once the subgraph is
expanded to the entire graph, c remains a mode only if there are no new vertices j with a cluster
affinity higher than g(c) (blue dots). Source: [25].

With this knowledge, the authors propose an algorithm consisting of two main steps,
Replicator Dynamics and neighborhood expansion. Let Gc be the subgraph of G consisting
only of vertices i for which ci 6= 0. Then the algorithm proceeds as follows:

1. Starting from an initialization vector c(0), it identifies a cluster c(1) of Gc(0) using
Replicator Dynamics as before.

2. If c(1) is also a mode of G, the algorithm is done (see above).

3. If not, then the found probabilistic cluster c(1) is updated to c(1)′ = c(1) + ∆c, which
decreases the entries of nodes already in the cluster, and rewards each neighbor j of
c(1) which has a high affinity a(c, j).

4. The updated cluster c(1)′ is now used as the initialization vector for Replicator Dy-
namics, which identifies mode c(2) of the graph Gc(1)

′ . This process is repeated until
c(t) is a mode of G.

One can see that by continuously expanding the subgraph, the Replicator Dynamics sub-
routine will identify a mode of G at some point. The update vector ∆c is tailored such
that vertices outside of c are rewarded in a way proportional the gain in coherency they
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would bring to the cluster, and vertices inside c are punished proportionally to their cluster
membership:

∆cj ∝

{
max {a(c, Ij)− g(c), 0} if cj = 0,

−cj else.
(2.19)

It seems plausible that this algorithm could perform better than the one from Section 2.7.4
if initialized equally, given the ability to expand modes. The authors compare Graph Shift
with the Spectral Clustering technique, claiming higher clustering precision and much
shorter runtimes.

2.7.6 Iterative Graph Clustering

In Section 2.7.4, we saw how Replicator Dynamics can be used to find multiple modes by
biasing its initialization vector towards a single vertex in each run. Instead of changing
replicator dynamics’ initialization vector for every vertex in G, which is only feasible when
G is sparse, we could however also change the affinity matrix itself after each run: The first
cluster c(1) is identified by applying replicator dynamics to the original affinity matrix M.
To find a second cluster, the intra-cluster affinities of the first cluster are diminished by a
factor λ before the algorithm is run again, leading to an updated version of M:

M̃ = M− λ(c(1)c(1)T ) (2.20)

As this can lead to negative entries, which are undesirable, we set all negative entries of M̃
to zero. Finally, we enhance the non-negative updated version M̂ by a scalar multiplication,
in order to keep the total energy of the matrix constant:

M(2) =

∑n
i,j=1 Mij∑n
i,j=1 M̂ij

· M̂. (2.21)

Then, Replicator Dynamics is run on M(2), and the new solution c(2) is injected into the
original problem to find the second local maximum. This procedure is repeated until a
sufficient amount of modes has been found, or the affinity of the found clusters slips under
a fixed threshold. This technique, which we dub Iterative Graph Clustering, thus requires
a stopping criterion just like Sequential RANSAC, but it has the advantage of being faster
than the local graph clustering approach from Section 2.7.4 if the affinity matrix is not
sparse. Iterative Graph Clustering could also be carried out with other mode finders such
as Graph Shift or Authority Shift, the clusterer presented below.
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2.7.7 Authority Shift

Introduced by Cho & Lee in 2010, this relatively new approach is a graph clusterer based
on Google’s PageRank algorithm [7]. This algorithm follows a random walker on a large
graph, going from vertex i to vertex j with a certain probability pij, and sometimes jumping
to a random vertex. It thus requires a transition matrix P, containing the probabilities of
transitions pij, and a parameter α regulating the number of random jumps. Consistent with
the theory of Markov chaings, this random walker has a steady state vector r, satisfying

rT = αrTP + (1− α)vT , (2.22)

where the entries of v creates a bias of the steady state towards certain nodes, which is why
v is called the personalization vector. The personalized PageRank PPR is defined as

PPR(v) = rTP such that rT = αrTP + (1− α)vT , (2.23)

If v only has one non-zero entry vi = 1, then we write PPR(i) for the PageRank vector
personalized to a single node, and PPR(i, j) for its j-th entry, which represents the im-
portance of node j for node i. Cho & Lee define higher order PageRanks for single nodes
by

PPRn(i) = PPR(PPRn−1(i)), with PPR1(i) = PPR(i). (2.24)

The relationship between this random walker modeled on the World Wide Web and the
problem of graph clustering can be explained as follows: First of all, the affinity matrix M
defining a graph can be transformed into a transition matrix P = [p1,p2, · · · ,pn]T simply
by making its rows mT

1 ,m
T
2 , . . . ,m

T
n stochastic, i.e.

pTi =
mT

i

‖mi ‖1

. (2.25)

Second of all, we can shift every vertex towards the most “important” node in its (higher
order) personalization vector, its so called authority, which we will denote by

Authn(i) = arg max
j
PPRn(i, j). (2.26)

For each node i, we look for a = Authn(i), then for Authn(a), etc., until we pass a node
a second time, which means that we have reached a circle, called the authority sink. An
authority sink, together with all the nodes for which this node traversal ends in said sink,
represents a cluster. We can repeat this clustering for increasing order of n, until all vertices
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end up in the same cluster. Thereby, we have constructed a hierarchy of clusters, as shown
in Figure 2.10.

Figure 2.10: An example of the hierarchical output of Authority Shift. Higher order PageRanks lead to coarser
clusters. Source: [7].

To make the algorithm more efficient and stable, the authors introduce supernodes in the
hierarchical construction. While clustering the data for increasing order k, clusters are
handled as supernodes as soon as the increase of k changes the clustering results.

Properties of Authority Shift

Since the PageRank function was developed for the World Wide Web, which is a very large
graph, the values for PPRn can be computed with high efficiency. The disadvantage of Au-
thority Shift is that it assigns all data points to a cluster, thereby not inherently removing
outliers. This problem was tackled by the authors in their 2012 paper, “Mode-seeking on
graphs via random walks” [6], where they propose an adaption of Authority Shift which
produces dense subgraphs instead of clusters, thereby making the algorithm applicable to
outlier-ridden data. Unfortunately, no source code of this approach was available at the
time this thesis was written, which is why we tested and evaluated the regular variant of
Authority Shift with an explicit outlier removal step, as it will be explained in Chapters 3
and 4.
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2.8 Kernel Fitting

Let us now consider an eleborate multi-model fitting pipeline by Chin et al. [4]. Simi-
larly to previously discussed approaches, it handles multiple model fitting as a problem
of clustering data points. The main idea of their approach is the employment of approved
statistical learning methods such as Principal Component Analysis to facilitate the clus-
tering problem. It also employs explicit outlier removal and information-theoretic model
selection.

The Ordered Residual Kernel

As with previous approaches, the basis of Kernel Fitting is a set of hypotheses θ1, θ2, . . . , θH ,
generated by randomly sampled data points (see Section 2.2). For each data point xj, this
results in residuals

rji = r(θi,x
j) for i = 1, . . . , H. (2.27)

Based on these residuals, the authors design an affinity measure (or kernel) between data
points that (a) does not require the definition of an inlier threshold and (b) allows the
application of statistical learning methods. For point (a), they rely on residual ordering.
Recall the affinity measure based on top-h lists of best fitting hypotheses from Section 2.5.2,
where data points are compared by the number of hypotheses shared in their top-h lists.
In order to capture not just the similarity of two points’ top-h lists, but also the fraction of
hypotheses that two points have in common in other parts of the ordered hypothesis list,
we can define the difference of intersections kernel (DOIK):

kt(x,y) =
1

h

(
|topth(x) ∩ topth(y)| − |top(t−1)h−(x) ∩ top(t−1)h(y)|

)
, (2.28)

which is a measure of common hypotheses in the t-th part of the ordered hypothesis lists.
The combination of all DOIKs k1(·, ·), . . . , kH/h(·, ·) allows us to compare observations not
just by their top-h lists, but by less important windows of their ordered hypotheses lists
as well. Naturally, windows at the front of the list should weigh highest in the comparison,
while the weights of the DOIKs should decrease towards the end of the list. In other words,
the weight of a window should be inversely proportional to the position of the window.
This is accomplished by the Ordered Residual Kernel

k(x,y) =
1

Z

H/h∑
t=1

1

t
kt(x,y), (2.29)
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where Z =
∑H/h

t=1
1
t
. Chin et al. prove that k(·, ·) is a valid Mercer kernel, i.e. a function that

allows the application of the kernel trick : the kernel implicitly defines a transformation φ
by

〈φ(x), φ(y)〉 = k(x,y), (2.30)

to a feature space where dimensionality reduction, outlier removal and clustering can be
performed by powerful and mathematically sound machine learning techniques. The ad-
vantage of this mapping is illustrated in Figure 2.11.

Figure 2.11: The mapping of data points into feature space facilitates the removal of outliers (black crosses
close to origin) and the clustering of inliers (colored dots). Source: [4].

Outlier removal and structure discovery in feature space

Gross Outlier Removal

The transformed data A = [φ(x1) . . . φ(xn)] are projected to their principal subspace by
computing the eigenvalue decomposition of ATA, yielding projections [b1 . . .bn]. Note that
B can be computed even though A is never explicitly given. The authors point out that
observations xj with high ‖ bj ‖2 are more probable to be outliers. This means we can
separate them from projections with low norms (corresponding to inliers) using a Gaussian
mixture model.
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Structure discovery

In preparation of structure discovery, the remaining data after outlier removal are projected
to their principal components using Kernel PCA [32, p. 151] in order to reduce dimension
and facilitate the clustering problem. As in many other approaches discussed so far, the
data are assumed to cluster around the underlying structures due to the nature of kr̃(·, ·),
which gives higher values to point pairs that emerge from the same structure. The data are
clustered using spectral clustering [33] on an affinity measure defined by of the projected
data.

Model merging scheme

Initially, the k clusters resulting from structure recovery are transformed into models by
LMedS [30] estimation, and together they form the set of models Mk. In order to reduce
the number of models, a pair of model is merged if the resulting model can still “explain”
the data. For each possible pair of models (θ1, θ2) in Mk, a new set of models is created
by combining the inliers of θ1 and θ2 and reestimating a new model θ from their inliers.
This setp results in

(
k
2

)
candidate sets of models. The candidate set with the lowest cost

φ(M) becomes the next layer in the hierarchy, Mk−1. This process is repeated until the
final layerM1, has been constructed, containing a single model. Finally, the layer l∗ which
best explains the data, i.e. l∗ = arg maxl φ (Ml), is chosen as the final set of models.

The cost function was taken from [39], and is defined as

ϕ(M) = −2L+ β
(
n log(d) + p|M| log(dn)

)
(2.31)

where n is the total number of inliers, p and d are model and data dimensions, and

L =

|M|∑
i=1

[
ni log

(
1√

2πσi

)
−

ni∑
j=1

r2
ij

2σ2
i

]
(2.32)

with ni inlier residuals ri1, ri2, . . . , rini
for each model, and their standard deviation σi.

The first term in Equation 2.31 expresses the cost of making fitting errors, while the second
term punishes the total model complexity.
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Results

Chin et al. successfully apply their model fitting pipeline to line fitting, homography estima-
tion and motion segmentation. For the first application, their approach beats Randomized
Hough Transform, Residual Histogram Analysis and J-linkage by far in terms of the MSFE,
an error measure which will be defined in Chapter 4.

2.9 Other Approaches

In addition to the strategies in Section 2.7, which all cluster data points in one represen-
tation or another, we will discuss three other strategies, each of which can be considered
state-of-the-art.

2.9.1 Dynamic and Hierarchical Multi-Structure Fitting

The authors of Accelerated Hypothesis Generation further develop the idea of top-h lists
into a full framework for multiple model fitting [42]. The workflow of the approach is shown
in Figure 2.12 and will be explained in detail further below.

Figure 2.12: Dynamic and Hierarchical Multi-Structure Fitting consists of two steps: guided hypothesis gener-
ation and the construction of a hypothesis hierarchy. Outliers are removed along the way. Image
source: [42].

First of all, top-k lists are introduced for each generated hypothesis, which contain the k
best fitting data points of the model. A distance measure for hypotheses θi, θi′ is defined
based on the order of data points in their top-k lists. For example, if a data point xj is
the point best fitted by θi, and the fourth-best for θi′ , then xj adds a value proportional
to 4− 1 = 3 to the distance d(θi, θi′).
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Based on this distance measure, a quality measure for hypotheses relative to other hy-
potheses in a set Θ is given by

wΘ
i =

∑
θ∈Θ

exp

(
− 1

2δ2
d(θi, θ)

2

)
. (2.33)

Hypothesis Filtering & Guided Sampling

After a batch of b hypotheses has been sampled randomly, the best hypothesis for each

data point xj is determined by ej = arg maxw
toph(xj)
i . Only these exemplars are kept — all

other sampled models are discarded. Now, the p-subset necessary for the creation of the
next candidate model is sampled from the top-k list of the least promising exemplar ej.
This choice has two effects:

• If xj is an outlier, the top-k list of its exemplar is probably fairly random, which
leads to the exploration of new structures (early stage).

• If xj is an inlier to a structure, the top-k list probably contains other points from the
same structure, leading to exploitation of said structure (later stage).

Gross Outlier Removal

In order to filter out gross outliers, at each time step t, i.e. after the generation of a batch,
each data point xj is assigned a value sj that averages the residuals r(xj, ekj ) over time
steps k = 1, . . . , t. Points with large sj (outliers) are separated from points with small sj
(inliers) by a Gaussian mixture model.

Hypothesis Hierarchy

After a set of good hypotheses has been sampled iteratively as described above, a hierarchy
is created. Neighboring models are merged if they share more than 50% of their top-k data,
resulting in hypothesis clusters. The hypothesis with the smallest sum of squared residuals
is chosen as the representative of the cluster in the next hierarchy level. This procedure
results in a multi-scale collection of models, with a more detailed description of the data
at the lower level, and coarser models at the top.
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2.9.2 AKSWH

In their paper [41] from 2011, Wang et al. (also the authors of Kernel Fitting) propose
a full multiple model fitting framework which does not require any manual configuration
of parameters. The inlier/outlier threshold necessary for RANSAC is replaced by scale
estimation, other parameters are estimated using information-theoretic approaches.

The algorithm starts with a set of generated hypotheses, which can either have been sam-
pled at random or in a guided manner. For each hypothesis θi, an ordered list of absolute
residuals

|r̃1
i |, |r̃2

i |, . . . , |r̃ni | with |r̃1
i | ≤ |r̃2

i | ≤ · · · ≤ |r̃ni | (2.34)

is computed. Note that this list orders the residuals of points per hypothesis, contrary to
Section 2.8, where residuals were sorted per point. An iterative scale estimator proposed by
the authors, depending on the K-th ordered residual1 r̃jK , gives each hypothesis an inlier
scale. The weight of each hypothesis θi is determined by

wi =
1

n

n∑
j=1

KN
(
r(θi,x

j)/hi
)

sihi
, (2.35)

where n is the number of data points, si is the previously determined scale for the hypoth-
esis, KN(·) is the Epanechnikov kernel

KN(r) =

{
3
4

(1− r2) if |r| ≤ 1

0 otherwise,
(2.36)

and hi is an estimated bandwidth depending on both residuals and scale. Note that this
weight is not much more than a count of inliers within a data-driven bandwidth around a
hypothesis, much like the inlier count used by RANSAC.

Hypothesis Filtering

The authors try to reduce the number of relevant hypotheses by rejecting hypotheses which
contain little information. They define a probability measure

pi ∝ wmax − w2
i , (2.37)

from which the total entropy over all models is computed. Hypotheses that contribute little
to this entropy are rejected.

1K is set to 10% of data, b n
10c, in the paper.
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Clustering Hypotheses

Just like data points cluster around structure models in conceptual space, hypotheses clus-
ter around structures in parameter space. To identify these clusters, the J-linkage algorithm
from Section 2.7.2 is used. Thresholding is again done using the data-driven entropy ap-
proach described above. A major difference (and advantage) to classic J-linkage is that
hypotheses, not data points, are clustered. The number of filtered hypotheses is much
smaller than the total number of data points, which means this form of J-linkage is much
more efficient than the original.

Each cluster is represented by its most significant hypothesis. A problem that occurs is
that multiple clusters might develop on one and the same structure (e.g. clusters around
two similar lines when the inlier noise is high). Therefore, the authors propose a fusing
step. The fusing of clusters (i.e. representative hypotheses) is also based on information
theory: the pairwise mutual information is computed for each hypothesis pair. Pairs with
mutual information > 0 are fused.

Summary

Hypotheses are sampled, then weighted using a data-driven scale estimator, filtered based
on their information content, clustered by J-linkage and then fused. The remaining hy-
potheses are the output of the algorithm. The only parameter set by hand is the value K
for the scale estimator.

2.9.3 Label Costs

Approximate Energy Minimization with Label Costs [10] forumlates multiple model fitting
as a labeling problem with data costs, a pairwise cost function, and label costs. The idea
is to minimize an energy

E =
n∑
i=1

D(f(xi)) +
n∑

i,j=1

V (xi,xj) +
∑
l∈L

cl · δl(f), (2.38)

where f denotes a labeling, D(f(x)) denotes the cost of labeling data point x with label
f(x), L is the set of all possible labels, cl is the cost of introducing label l, and δl(f) is zero or
one depending on wether an x exists in the data such that f(x) = l. V (xi,xj) is a pairwise
cost function, which might incorporate a priori knowledge about the relationship between
observations. In many applications, there is a spatial relationship between observations,
and points that lie closer together are more likely to have the same label. Since this function
rewards regions of coherent observations, V (xi,xj) is also referred to as the smoothness
term.
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If V (xi,xj) ≡ 0, this problem is known as the uncapacitated facility problem, which is NP -
hard. A greedy heuristic solution for this special case was proposed by Kuehn & Hamburger
in 1963 [21].

If cl ≡ 0, the α-expansion algorithm [3] offers a fast heuristic. Delong et al. generalized
this heuristic to handle label costs besides unary and pairwise costs [10], and incorporated
it into the PEARL algorithm:

An affinity matrix M is created from observations and initial hypotheses as in previous
sections. Then, the energy in Equation 2.38 is optimized using α-expansion, yielding a
labeling L1. After removing the outlier cluster, a new set of hypotheses is estimated from the
labeled inlier sets. This procedure is repeated until the labeling is stable, i.e. no observations
change their labeling.

A typical choice for V (xi,xj) is the Potts model [10],

V (xi,xj) =

{
0 if i = j

wij otherwise.
(2.39)

Besides PEARL, the C++ library made public by the authors also incorporates Kuehn &
Hamburger’s solution for V (xi,xj) ≡ 0, which yields results up to 30 times faster [10].

2.10 Summary

In this chapter, we have discussed a series of algorithms designed for or related to multiple
model fitting. Classic Hough-based methods exhaustively scan the parameter space from
which models are chosen. Other algorithms rely on randomly sampling minimal subsets of
data points, from which candidate models (so called hypotheses) can be constructed. Many
approaches require a manually set inlier threshold, which determines the granularity of the
fitting problem. Some also require other parameters such as the number of true structures,
a threshold for a stopping criterion, or algorithm-specific regulating terms such as the rate
of random jumps in Authority Shift. There are algorithms that claim to be parameterless,
such as Residual Histogram Analysis, which scans the residual histogram of each point for
peaks. In practise, even the most high end model fitting pipelines require some form of
configuration: Kernel Fitting has a window size h, and AKSWH requires a residual index
K in order to perform scale selection. Generally speaking, we can conclude that many
approaches can be broken down into components that are shared among other approaches,
a property we will make use of in the next chapter to construct a multiple model fitting
framework from exchangeable building blocks.
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One of the goals of this thesis was the comparison of the approaches described in Chapter 2.
For this purpose, we constructed a general framework incorporating the algorithms that we
discussed previously. Some components were implemented by hand, others were available
as parts of existing model fitting pipelines for which source code was available online. These
were wrapped in order to fit the framework’s demands. The overall requirements to our
framework were the following:

• Provide a common interface to different sources of data, either from available datasets
or from generators of synthetic data.

• Provide model specific functions for model construction, residual functions, etc.
• Provide core functionality independent from the model class, such as inlier/outlier

dichotomy, fitting strategies and graph clusterers.
• Provide general strategies that mold the above components into powerful model fit-

ting pipelines.

All these requirements demand a highly modular design of exchangeable building blocks,
as we will see in Section 3.1.

3.1 Design of the framework

We intended to create a highly generic and flexible model fitting framework for Matlab,
which can be internally configured to run any existing model fitting algorithm (or a recom-
bination of existing approaches), while operating as a “black box” to the outside, taking
observations as input and delivering discovered models as its output. Its flexibility applies
to the different algorithms, but also to the class of input data, i.e. its dimension (2D, 3D)
and type (lines, circles, planes, homographies, . . . ). The design of the framework is shown
in the chart of Figure 3.1. The most high level function that can be defined in the configura-
tion is the strategy : This function acts as a controller that coordinates the flow of the used
components. It defines the order in which subroutines are called, without explicitly naming
these subroutines. For example, the J-linkage approach described in Section 2.7.2 and the
Iterative Graph Clustering technique from Section 2.7.6 are both variants of a strategy we
named Data Affinity Clustering : their difference lies in the affinity kernel (J-distance vs.
Ordered Residual Kernel), and in the clusterer (J-linkage vs. graph clustering) applied to
these affinities.
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3 Model fitting framework

Figure 3.1: Partial diagram of the framework design. For clarity, not all implemented building blocks are shown.
Arrows with triangular heads represent implementations (e.g. Sequential RANSAC is a Strategy),
while diamond-shaped arrow heads signify a composition (e.g. Sequential RANSAC has a Sampling
Method).
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3.2 Methods

After having categorized a broad spectrum of multiple model fitting methods in Chapter 2,
we will now discuss the different combinations of components that form the setups evaluated
in Chapter 4. We will also provide a nomenclature for the setups. We divide the used
methods into strategies, the top level building blocks of our framework. Our main strategy,
Data Affinity Clustering, is further divided by the methods used to identify clusters.

3.2.1 Sequential RANSAC

The simplest of our strategies, Sequential RANSAC consists of two steps: calling RANSAC
to identify the most prominent structure, and removing its inliers from the set of observa-
tions. These steps are repeated until a certain stopping criterion is met, which can be:

• Stop after a predefined number of iterations (denominated as SRa).
• Stop if the number of inliers is lower than a certain threshold (setup SRb).
• Stop if the information-theoretic cost of the previous set of models is lower than the

cost of the current set (setup SRc).

Both the main loop of the strategy and the RANSAC algorithm itself were implemented by
the present author. The different setups of Sequential RANSAC are visualized in Figure 3.2.
All setups use the least squares method for the final model estimation.

Figure 3.2: The three variants of Sequential RANSAC for our evaluation.

For SRc, we used the same cost function as in Section 2.8.

3.2.2 Data Affinity Clustering

This strategy encompasses a large category of algorithms, each of which clusters data
points, or rather their similarities, in terms of matching hypotheses encoded in an affinity
matrix. Its flow consists of the following steps:
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1. Generate hypotheses from randomly sampled subsets.
2. Perform inlier/outlier dichotomy.
3. Compute affinities between data points.
4. optional remove gross outliers.
5. Identify multiple clusters using the resulting affinity matrix.
6. Estimate models from cluster members.
7. optional fuse similar models.

The following subsections will handle the different setups under this strategy, organized by
the type of clustering that are employed.

3.2.3 J-linkage

Relying on the J-distance kernel, this clusterer is the one described in Section 2.7.2. For the
computation of the J-distance kernel and the J-linkage algorithm itself we used the original
code published by the authors online1. The J-linkage pipeline is shown in Figure 3.3. The
algorithm depends on an inlier threshold for the inlier/outlier dichotomy, and, in order
to choose the right amount of clusters from its cluster hierarchy, a minimal cluster size
(JLb) or the number of total models (JLa). The final set of models may be merged by
Kernel Fitting’s cost-based model selection step (IT model selection in the figure, JLc). A
major difference between our usage of J-linkage and the one proposed by the authors is
the sampling process, which is guided in the original paper, but for which we used random
sampling as it is the standard hypothesis generator in our model fitting framework.

Figure 3.3: Three variants of the J-linkage pipeline.

3.2.4 Stand-alone Graph Shift

The Graph Shift algorithm was designed as an enhancement to the local graph clustering
approach discussed in Section 2.7.4. Therefore, its source code2 can be configured to be

1www.toldo.info/roberto/files/JLinkage.rar
2https://sites.google.com/site/lhrbss/
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either a stand-alone clusterer, seeking modes in local neighborhoods, or a single-run mode
finder, which will be discussed in Section 3.2.6. For the stand-alone variant, the code allows
the caller to freely define from which nodes the Graph Shift algorithm should evolve: In the
simplest case, we evolve from each single node and initialize it with a membership value
of 1 (see Section 2.7.5). It is also possible to define larger subgraphs with non-uniform
cluster memberships. However, we discarded this option in an early stage because it did
not improve results.

Figure 3.4: Graph Shift as a stand-alone model fitting setup.

As we did not consider stand-alone Graph Shift for the evaluation of cardinality estimation,
Figure 3.4 includes only one setup, GS, which creates a fixed number of models from the
largest clusters returned by Graph Shift (see Section 4.3).

3.2.5 Stand-alone Authority Shift with Outlier Removal

Just like Graph Shift, The Authority Shift algorithm described in Section 2.7.7 is in itself
a clusterer which provides a label for each observation. Hence, it seems sensible to apply
it directly, without iteratively looking for a single mode as we do in Section 3.2.6. As
discussed earlier, the variant of Authority Shift which seeks dense subgraphs, and thereby
implicitly filters out gross outliers, had no source code available at the time of this writing.
Nevertheless, we were interested in Authority Shift’s performance, so we used the source
code3 for the Authority Shift partitioning clusterer, and combined it with the explicit gross
outlier removal module from Section 2.8.

Figure 3.5: Four variants of stand-alone Authority Shift, focussing on the number of clusters, i.e. models, that
are returned. The first three steps will be shown as a single component in further figures.

3http://cv.snu.ac.kr/research/∼authorityshift/
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The number of models produced by the Authority Shift pipeline was controlled in four ways,
leading to four different setups: ASa simply selects a fixed number of largest clusters, ASb

rejects small clusters, ASc fuses similar clusters based on their parametric representation,
and ASd uses cost-based model selection. Authority Shift was also employed with the
Ordered Residual Kernel, resulting in the setup ASO shown in Figure 3.6.

Figure 3.6: Stand-alone Authority Shift with ORK affinities.

3.2.6 Iterative Graph Clustering

Here, the iterative clustering approach described in Section 3.2.6 was embedded in the
general model fitting strategy of random sampling, affinity computation, clustering and
model estimation. After finding an initial mode (i.e. cluster), the affinity matrix M is
updated as proposed.

Labeling Although strictly speaking, the labeling of data points is not part of the model
fitting problem (models are reconstructed from the members of a cluster, regardless of mul-
tiple cluster membership), the assignment of a data point to a single model is very helpful
for visualization purposes. In order to convert the set of probabilistic cluster memberships
c1, . . . , cm returned by Iterative Graph Clustering to a labeling where each observation
gets exactly one label, we select the maximal membership for each observation:

L(xj) = arg max
i
cij. (3.1)

For the actual identification of modes in the affinity graph, different algorithms were used:

Iterative Replicator Dynamics

The code for the Replicator Dynamics algorithm originates from the ICG repository and
is compiled to a 64 bit .mex file. We used a regularization term λ in order to counter-weigh
self-affinities of observations, changing the input matrix M to

Mλ = M− λI. (3.2)
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We ran the the iterative procedure for a fixed number of iterations, from which either
a fixed number of clusters is selected based on their size (iRDa), or only clusters with
sufficient size and cluster coherency are selected, after which a fusing step fuses similar
models, by simple comparison (iRDb) or cost-based model selection (iRDc). These last two
setups were also repeated with an explicit outlier removal step, creating setups iRDd and
iRDe, as shown in Figure 3.7.

Figure 3.7: Five setups of Replicator Dynamics within the Iterative Graph Clustering pipeline.

Iterative Graph Shift

Instead of evolving Graph Shift from every single node, we now consider Graph Shift as a
single mode finder initialized by a random subgraph. We added the option of evolving the
algorithm only from a fraction f of vertices, using either bn

f
c randomly chosen vertices or

the bn
f
c vertices with the highest sum of affinities to other vertices. For an evaluation of

how f influences the quality of the algorithm’s output, see Section 4.2.4.

Figure 3.8: Four setups of Graph Shift embedded in the Iterative Graph Clustering approach.

As with other approaches, there are three variants (iGSa, iGSb, and iGSc) of Iterative
Graph Shift, distinguished by the way the final set of models is selected. As one may see
in Figure 3.8, we also propose a fourth variant, iGSd, that uses explicit outlier removal,
mainly to allow a fair comparison between Graph Shift and Authority Shift, which requires
outlier removal in all variants.
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Iterative Authority Shift

As with Graph Shift, the Authority Shift source code was used in two ways. First, as a
stand-alone clusterer, which returns the clusters in the last layer of the Authority Shift
hierarchy (see Section 2.7.7). Secondly, as a mode finder for our Iterative Graph Clustering
approach, yielding only the largest cluster of the algorithm’s output. As this variant yielded
disappointing results in our first row of experiments of Section 4.2, only one setup iAS was
considered, shown in Figure 3.9.

Figure 3.9: Authority Shift as a single-cluster algorithm embedded in the Iterative Graph Clustering approach.

3.2.7 Kernel Fitting

Besides J-linkage, Kernel Fitting (Section 2.8) is the second reference implementation that
can be categorized under the Data Affinity Clustering strategy. We applied the algorithm
KF unaltered, using the publicly available Matlab code4. Its workflow is shown in Fig-
ure 3.10.

Figure 3.10: The Kernel Fitting pipeline.

3.2.8 Label Costs

The Label Costs approach by Delong at al. is a strategy on its own within our framework,
as it is neither RANSAC-like nor based on Data Affinity Clustering. The function that
evaluates the cost for a current set of models was taken from the library published by the

4http://cs.adelaide.edu.au/∼tjchin/doku.php?id=code
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authors of [10] themselves5. The encompassing PEARL algorithm, on the other hand, was
implemented by hand. Since the underlying graph cut algorithm only accepts integer values
for label and data costs, we multiplied and all residuals by 1000 · 1√

2
before rounding them.

The model fitting pipeline LC constituted by this approach is visualized in Figure 3.11.

Figure 3.11: Workflow of the Label Costs approach.

5http://vision.csd.uwo.ca/code/
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4 Experiments on synthetic 2D data

In this chapter, we will evaluate the different setups of the model fitting framework dis-
cussed in Chapter 3 on synthetically generated two-dimensional data. This type of data
provides a basis for relatively fast initial testing and evaluation, and similar data were used
by [4], [5], [10], [19], [36] and [41]. Although our implementation includes functions for the
generation of circle fitting problems as well, we will only consider the application of line fit-
ting. This chapter is divided into three sections: First, we will define the artificial data used
for the performance of the experiments in Section 4.1. Thereafter, Section 4.2 analyses the
algorithms’ fitting accuracy when the number of structures is known. Finally, Section 4.3
evaluates the estimation of the number of structures, as well as the fitting accuracy, when
the number of structures is unknown.

4.1 Generation of Synthetic 2D Data

We implemented a generator of simple, two-dimensional geometric data, which constitutes
the input of the framework. n points are sampled from the domain [0, 1] × [0, 1] ⊆ R2. A
certain number no of these points are marked as gross outliers and sampled randomly from
a uniform distribution. The remaining n− no points are assigned as inliers to a predefined
number of four lines, the true structures. These structures are constructed by randomly
picking two points from the domain, and are hidden from the model fitting algorithms and
only appear as the shape of the Gaussian distributed inliers. Once a structure is defined,
an inlier is created by picking a point on the structure, and moving it by a small random
vector chosen from a Gaussian distribution with standard deviation σ (see Figure 4.1).
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(a) A line is defined, (b) points are chosen on the line, (c) Gaussian noise is added to the
points.

Figure 4.1: Generation of synthetic two-dimensional input data.

In our experiments, the number of true inliers per line was set to 50, which amounts to
200 true inliers per dataset. The number of gross outliers was varied from 0 to 700 in steps
of 100, which translates to rounded gross outlier percentages of 0%, 33%, 50%, 60%, 67%,
71%, 75% and 78%.

4.2 Evaluation with a predefined number of structures

As mentioned in the introduction, there are two main criteria to be rated in multiple model
fitting. This section measures the algorithms’ accuracy, i.e. how well the identified models
fit the ground truth structures. In the case of two-dimensional line fitting, this means
measuring the distance

d(θ̂, θ) = min
{
||θ̂ − θ||, ||θ̂ + θ||

}
, (4.1)

where θ and θ̂ are normalized homogeneous representations (normal vector plus distance to
origin) of the lines involved. In order to evaluate this criterion in the multiple model fitting
scenario, a matching is required between ground truth structures and estimated models,
which is achieved by pairing structures and models that have minimal distance:

ε̄ =
1

min(s,m)

min(s,m)∑
k=1

minDk (4.2)

where s is the number of structures in the ground truth and m is the number of models
yielded by the algorithm for the same image. Ds

1 is the set of distances d(θ̂, θ) for each
ground truth structure θ̂ and estimated model θ. Ds

2 is the same set, but without the
previous minimum (minDs

1), etc. To ensure that no setup has an unfair advantage (setups
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that return many models have a higher chance of yielding high accuracy), the number of
models in the algorithms’ output is fixed to the number of structures in the ground truth,
i.e., m = s. Two examples of average fitting errors are given in Figure 4.2.

(a) ε̄ = 0.0025 (b) ε̄ = 0.2843

Figure 4.2: Examples of the average fitting error when the number of structures is given.

Every setup in this section uses random hypothesis generation and a least squares estimator
to create hypotheses as well as the final models, except Kernel Fitting, which uses an LMedS
estimator [4].

4.2.1 Evaluation of Sequential RANSAC

The first algorithm we evaluated was Sequential RANSAC (SRa), which seems a natural
starting point considering the low amount of free parameters: the number of iterations of
the algorithm can be fixed at four, since that is the number of structures in our ground
truth. The second parameter is the number H of random hypotheses that are sampled in
each iteration. We decided on H = 1500, instead of H = 5000 used in [4]. With this amount
of hypotheses, the probability q of finding a hypothesis constructed only from inliers of the
same structure is greater than 99%, even for the highest amount of outliers:

q = 1− (1− (
ns
n

)2)H = 1− (1− 50

900

2

)1500 ≈ 0.99, (4.3)

where ns is number of observations per structure and n is the total number of observations
[12].
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The third and last parameter to be tuned is the inlier threshold τ , which decides which
observations are part of a model’s consensus set. This value is set to τ = 2σ in [4]. We
decided to compare some multiples of σ, the results of which can be seen in Figure 4.3.

Figure 4.3: Average line fitting error over 100 runs of Sequential RANSAC (SRa) for various outlier percentages
and inlier thresholds. The dashed lines indicate the average amount of observations assigned to any
model for the corresponding run. A lower threshold induces higher accuracy, but smaller consensus
sets.

We can see that the most precise fitting occurs with a sharp threshold of σ = τ . Beside
the fitting error, we also analyzed the average consensus set size (as a fraction of the total
number of points). This size naturally decreases as the number of gross outliers grows. It
seems interesting that with a threshold of τ = 2σ, the algorithm is almost as precise as
with a sharp threshold, while returning larger consensus sets.

4.2.2 Evaluation of J-linkage

J-linkage was the first of the broad class of affinity clustering algorithms that we tested.
Just like Sequential RANSAC, all affinity-based clusters rely on the construction of random
hypotheses and their consensus sets. The difference is that these hypotheses are constructed
only once, not separately for each structure. In order to achieve a high probability of
drawing inlier hypotheses for all structures, we increase the number of hypotheses to H =
3500. For the highest amount of outliers, the probability amounts to

Pr{inlier hypothesis for each structure} = 1−
m−1∑
k=0

(
H

k

)
pk(1− p)H−k ≈ 0.99. (4.4)
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This equation was also used by [36]. J-linkage was the only algorithm in this section that
performed better with τ = 2σ than with τ = σ. Instead of discarding clusters based on
their absolute size, which is the usual approach of selecting models in J-Linkage, we se-
lected the four largest clusters in order to make a fair comparison to Sequential RANSAC.
This corresponds to the setup named JLa in Section 3.2. Results are summarized in Sec-
tion 4.2.6.

4.2.3 Evaluation of stand-alone Authority Shift

As mentioned earlier, the version of Authority Shift employed in our framework does not
implicitly separate inliers from gross outliers. This is illustrated with an example in Fig-
ure 4.4. For this reason, we always ran the algorithm in combination with the outlier
removal step from Section 2.8. This form of outlier removal turned out to work excellent
on our synthetic data — as shown in Figure 4.6, it essentially removes all gross outliers
successfully. This is remarkable because the outlier removal was used for a different data
kernel, i.e. the J-distance kernel instead of the Ordered Residual Kernel.

Figure 4.4: If no explicit outlier removal is performed, the Authority Shift algorithm fails to extract clusters
consisting of inliers only, making exact model fitting impossible (colors correspond to cluster mem-
berships as estimated by the algorithm).

The characteristic parameter of this clustering algorithm is α, the ratio between walk and
jump of the PageRank algorithm expressed in Equation 2.23. Roughly speaking, lowering
α increases the percentage of random jumps in the random walk that defines the clustering
algorithm [7]. The authors set α = 0.95 in their point-clustering experiment. However, we
received better clustering results with lower values. To gain certainty, we varied α between
0.05 and 0.95. Curiously, the accuracy of the algorithm doesn’t change significantly for any
value of α below 0.8, but the error is larger for α = 0.95, as one can see from Figure 4.5.
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Figure 4.5: Averaged results of Stand-alone Authority Shift (ASa) with different values for α over 100 runs
and varying outlier percentages. Small α correspond to a high amount of random jumps in the
clustering algorithm. The setting used for point clustering by the algorithm’s authors, α = 0.95,
performs worst.

In order to fix the number of returned clusters, we pick the layer of Authority Shift’s cluster
hierarchy (see Section 2.7.7) which holds at least s clusters. From those, the s largest are
selected. This is the setup we called ASa in Section 3.2.

The good performance of very low α might an artifact the outlier removal step. As we see
in Figure 4.6, the KSVD outlier removal we use is very good at filtering out outliers as
long as their total amount is not too large.

(a) 67% outliers (b) 75% outliers (c) 78% outliers

Figure 4.6: Authority Shift does not remove outliers from its clusters, so we combined it with an extra outlier
removal step. The KSVD outlier removal from [4] seems to be very good at dichotomizing inliers
with gaussian noise (σ = 0.01) from randomly distributed outlier noise. Red points are identified
as inliers by the removal step. Since it practically removes all outliers, the fitting task seems to
become very easy for any algorithm. Only when the outlier percentage rises above 75%, the outlier
removal classifies some outliers as inliers.
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4.2.4 Evaluation of stand-alone Graph Shift

As mentioned in Section 3.2.6, the Graph Shift implementation from [25] is a combination
of the local graph clustering approach from Section 2.7.4 and the Graph Shift algorithm.
It requires the definition of subgraphs for the initialization and the number of nodes it can
expand in each expansion phase. Furthermore, it lets the user fix the number of inliers per
structure, k, returned for every mode, which it acquires by computing the k nearest neigh-
bors of a small set of mode members. Additional parameters, mostly concerning precision,
were set as recommended by the implementation’s documentation and the included demo
code.

We set k to two thirds of the number of points per structure to get a good final fit. We took
the 2s clusters with the highest coherency, and from those selected the s largest to make
sure the number of structures is fixed (GS). We set the number of nodes in the expansion
phase to the number of points per ground truth structure. The initial subgraphs were set
to individual nodes, just like it was done in the demo. The number of starting points was
varied from one tenth of the nodes to the full number of nodes. Using a smaller set of
starting points speeds up the algorithm significantly, and even increases accuracy for most
outlier counts, as visualized in Figure 4.7.

(a) Fitting Error (b) Runtimes

Figure 4.7: Results for stand-alone Graph Shift (GS), initialized with different amounts of starting points. All
results were averaged over 100 runs on randomly constructed data sets. Choosing fewer starting
points speeds up the algorithm considerably, and even seems to improve the accuracy for outlier
rates below 70%.

4.2.5 Evaluation of Iterative Graph Clustering

We continued with the evaluation of the Iterative Graph Clustering method from Sec-
tion 2.7.6, which updates the affinity matrix after each iteration such that the algorithm
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“steers away” from the previous cluster (Section 3.2.6). We used both Replicator Dynamics
and Authority Shift, as well as Graph Shift, as mode finders.

Iterative Replicator Dynamics

Starting with Replicator Dynamics as a mode finding method, again we retrieved better
results with inlier threshold τ = σ than with τ = 2σ. We set the number of iterations
to twice the number of ground truth structures s, and from those selected the largest s
(iRDa). With fewer iterations, the algorithm often returns small clusters centered around
line intersections. By increasing the number of iterations and selecting the largest clusters,
this problem is circumvented.

The regularization term λ, which creates negative self-affinities by subtracting a constant
from the diagonal of the affinity matrix, greatly influences the performance of replicator
dynamics. We tried out several values, as can be seen in Figure 4.8, before settling with
λ = 3.

Figure 4.8: Results of Iterative Replicator Dynamics (iRDa) for regularizations of λ = 2 (red), λ = 3 (green),
λ = 5 (blue). Affinity matrix M ←M − λI. Results were averaged over 100 runs. Inlier threshold
τ = σ = 0.01.

Iterative Authority Shift

Authority Shift was the second mode finder we analyzed in the iterative clustering setup.
Since the Authority Shift implementation does not return probabilistic clusters, we simply
set the those entries of the cluster vector c that are member of the identified cluster C to
1/|C| after each iteration, giving each point in the cluster equal probabilistic membership.
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For the Authority Shift algorithm iAS itself, we used the same settings as in Section 4.2.3,
using α = 0.2 as walk/jump parameter. The results of this setup will be discussed in this
section’s summary.

Iterative Graph Shift

Instead of configuring Graph Shift with a multitude of starting points, we initialized it
with a single subgraph within our iterative graph clustering loop (IGSa). Just like in the
previous paragraphs, the subgraph membership vector c was chosen at a random point
on the simplex ||c||1 = 1, ci ≥ 0. An interesting parameter to vary here is the size of the
subgraph, i.e., the number of non-zero entries of c. We tried relative sizes of 1%, 10%, 50%
and 100% of all data points. Interestingly, the results were comparable for sizes between
1% and 50%, but turned out much worse when the entire graph was used. Using the entire
graph obviously reduces the advantage of searching for a mode locally. The runtimes for
these variants were nearly identical, the different fitting errors are plotted in Figure 4.9.

Figure 4.9: Avg. fitting error of Iterative Graph Shift (iGSa) for different subgraph sizes. The percentage
indicates how many points were used in the initial subgraph of each iteration. The results were
averaged over 100 runs.

4.2.6 Comparison

To compare the different algorithms, we took the best performing setup of each approach
and plotted them in a common graph (Figure 4.10). The high overall fitting error of J-
linkage is remarkable. Authority Shift (ASa) does well as a stand-alone approach, while
yielding high errors when we incorporate it in our iterative clusterer (iAS). For Graph
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Shift, the opposite is the case: In our iterative framework, Graph Shift (iGSa) has a similar
accuracy as Replicator Dynamics, while producing a significantly higher error on its own
(GS).

Figure 4.10: Comparison of fitting errors with a fixed number of returned models. All algorithms in this plot
(except Sequential RANSAC) operated on an affinity matrix based on the J-distance measure.

4.2.7 Experiments with the Ordered Residual Kernel

Our framework allows us to replace the J-distance kernel used until now with a different
affinity measure, for example the Ordered Residual Kernel (ORK) from Section 2.8. The
computation of the ORK is slower than that of the J-distance kernel, but given the excellent
results Chin et al. presented, it seems worth it to experiment with the combination of ORK
and our best affinity clusterer.

Kernel Fitting

Being a reference implementation, we evaluated the Kernel Fitting approach presented in
Section 2.8 at first. Again, the number of selected hypotheses was set to 3500. The step size
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of the ORK algorithm was set to H
50

= 70. In order to fix the number of models returned
by the algorithm, we cut the model merging scheme of Section 2.8 short by breaking from
the merging loop as soon as the number of models equals our desired number.

This approach proved slower than most other approaches we evaluated so far. The com-
putation of the kernel matrix and the model selection phase were the most costly (each
took up to 5 seconds on our reference machine). However, its performance was much better
than that of our affinity clusterers (Figure 4.12), while still not beating simple Sequential
RANSAC .

Authority Shift with ORK affinities

Since we already used the outlier removal stage of the Kernel Fitting approach with Au-
thority Shift in previous experiments, an obvious choice for an additional setup is the
combination of Authority Shift with the ORK affinity matrix (ASO). Note that the differ-
ence between Authority Shift with ORK and the original Kernel Fitting approach consists
of the clustering step as well as the final model selection, which is a computationally heavy
step in Kernel Fitting.

Evaluation over step size h We initially assumed a fixed value of α = 0.2 (see Sec-
tion 4.2.3) for the Authority Shift algorithm. The main parameter for the Ordered Resid-
ual Kernel is its step size h. This integer determines how many “Difference of Intersection
Kernels” (DOIKs) are summed to form the Ordered Residual Kernel itself, as we explained
in Section 2.8. For example, as we generate 3500 random hypotheses, a step size of h = 70
would produce 3500/70 = 50 DOIKs. The authors used step sizes of h = 20 for 1000 hy-
potheses in their demo code, and h = 100 for 5000 hypotheses in the experiments presented
in their paper [4]. Therefore it seems safe to assume a step size that amounts to one fiftieth
of the number of generated hypotheses. We verified this by experimenting with values of
h = 35, 70 and 140. Looking at Figure 4.11(a), the value h = 70 indeed seems a good
compromise, producing relatively small fitting errors for any amount of gross outliers.

Evaluation over walk/jump parameter α Since the previous experiment with a fixed
value of α = 0.2 did not achieve the same high accuracy as the same algorithm on the J-
linkage kernel, we tried to improve it by choosing a different value for α. As in Section 4.2.3,
we varied α between 0.05 and 0.95 in steps of 0.15. Although the fitting error could be
reduced slightly when we used α = 0.35 (Figure 4.11(b)), this approach did not beat our
previous Authority Shift approach in terms of accuracy.
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(a) (b)

Figure 4.11: (a) Fitting error of Authority Shift applied to the Ordered Residual Kernel (ASO) for different
step sizes h. Using walk/jump parameter α = 0.2, the ORK version of Authority Shift doesn’t
reach the low error produced by our original Authority Shift (ASa), which works with the J-
distance kernel. (b) Varying the α-parameter did not significantly improve the accuracy of ASO.
Results were averaged over 100 runs.

Figure 4.12: This plot compares the accuracy of Kernel Fitting (KF), Authority Shift on the ORK kernel
(ASO), and regular Authority Shift (ASa). Kernel Fitting outperforms both Authority Shift-
based approaches, while replacing the J-distance kernel with the Ordered Residual Kernel does
not bring any improvement to Authority Shift in terms of accuracy. Results were averaged over
100 runs.
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4.3 Evaluation without cardinality restrictions

In the previous section, we discussed the performance of different algorithms when the
number of structures they had to fit was known a priori. This enabled us to focus on the
fitting accuracy. Now, we want to compare the same approaches in terms of cardinality
estimation, i.e., how well do they estimate the number of structures in the data?

For this purpose, we introduce two measures:

• The cardinality error simply measures the difference |s−m| between the true number
of structures s and the number of models m returned by the algorithm.

• The multi-structure fitting error (MSFE), introduced by [4], incorporates both the
cardinality error and the fitting accuracy:

ε = |s−m| +

min(s,m)∑
k=1

minDk. (4.5)

The second term is the sum of fitting errors, comparable to the error in Equation 4.2. The
first term is always a non-negative integer, while the second term usually remains below
one. This means that from an MSFE of for example ε = 3.17, we can deduce that the
algorithm returned three models too many (or too little), and that its fitting error was
0.17. However, since we average the MSFE over 100 runs in our evaluation, we plot both
the MSFE and the cardinality error in all the figures in this section.

Obviously, comparing the MSFEs of different algorithm setups is only useful as long as the
number of structures in the ground truth remains constant. Fortunately, this is the case in
our experiments. The MSFE has one counter-intuitive property: When an algorithm finds
fewer models than there are structures in the ground truth, it is punished to the left of
the decimal point, but not in the decimal places. For example, if an algorithm makes a
fitting error of 0.4 per structure, and detects only three out of four structures, the MSFE
amounts to 1 + 3 · 0.04 = 1.12. Therefore, the difference between cardinality error and
MSFE is 0.12. However, if the number of structures had been known to the algorithm, the
total fitting error would have been 4 · 0.04 = 0.16, which on the first glance may appear as
a higher error than the 0.12 from the MSFE. Also, since we only show averaged errors, an
algorithm with an MSFE of 0.5 may be one that estimates the cardinality correctly every
time, but fits very poorly, or one that produces a cardinality error of 1 in 50% of the runs,
but fits the models very exactly. Examples of multiple model fitting results with different
MSFEs are given in Figure 4.13.
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(a) ε = 0.02 (b) ε = 0.12

(c) ε = 1.05 (d) ε = 3.24

Figure 4.13: Fitting results with various MSFEs (multi-structure fitting errors).
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4.3.1 Kernel Fitting and model selection

We decided to start our evaluation with the Kernel Fitting algorithm, since its source code
features a powerful approach to model selection, which we described in Section 2.8. The
parameter β of Equation 2.31 determines the relative importance between obtaining a good
fit for the data and the complexity of the total model (i.e. the number of models), and
has to be tuned. The authors of Kernel Fitting [4] fixed it at β = 20. We tried β = 5 and
β = 10 as well, with β = 10 being the best choice, at least for datasets with more than
50% outliers, as we can see in Figure 4.14.

Figure 4.14: Kernel Fitting (KF) results for various values of β, which weights the cost of fitting quality
and model complexity. Thick lines represent the MSFE, thin lines represent the cardinality error.
Results were averaged over 100 runs.

Note on computational efficiency We were able to speed up model selection by a factor
of four, simply by caching merged structures while constructing the hierarchy.

4.3.2 Evaluation of Sequential RANSAC

We resume evaluation with the simplest approach of sequentially applying RANSAC to the
data. Since we do not want to give the algorithm the number of structures beforehand, we
have to determine a different stopping criterion. The simplest would be a minimal number
of inliers per model: as soon as the number of inliers falls below a threshold in iteration
k, the iteration stops and returns only the first k − 1 structures. This is setup SRb. The
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second criterion involves evaluating the cost of explaining the data, for which we use the
same cost function as in Section 4.3.1 (setup SRc).

For the first stopping criterion, we defined a percentage of data rather than a fixed num-
ber for the minimal consensus set size. This partially resolves the problem of increasing
outlier counts. We could, of course, define the minimal size as a function of the number of
inliers and gross outliers in the ground truth, but this would give the algorithm an unfair
advantage over other approaches.

Figure 4.15: Comparison of different stopping criteria for Sequential RANSAC. One can see that an information
criterion (blue,green) can achieve better results than a simple size-based criterion (red). For the
information criterion, the artificial outlier residual ro plays a major role.

For the second criterion, we compare the cost of the set of models in the current iteration
with the cost of the set of models in the previous iteration. As soon as the current cost
ϕ(Mk) exceeds the previous one, the iteration is stopped and the previous set of models
is returned. Using the results from the previous subsection, we set β = 10. Since the cost
function in Equation 2.31 only considers inlier residuals, we handled outliers by introducing
an artificial “outlier model”, for which every non-inlier has a residual of ro. We initially
set ro = 1, which constitutes the highest distance any point can have to a line within the
domain [0, 1]× [0, 1], but achieved better results with ro = 1

2
. Making outliers too expensive

obviously encourages the algorithm to introduce new models, leading to a higher MSFE,
as can be seen in Figure 4.15.

In contrast to the evaluation with a known number of structures, Sequential RANSAC
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performed better with τ = 2σ than with τ = σ as far as the MSFE is concerned. This may
have something to do with the fact that the algorithm removes all inlier observations after
each iteration. With τ = 2σ, the cut is more coarse, removing observations that otherwise
could lead to the construction of a second, similar model.

4.3.3 Evaluation of J-linkage

The parameter which implicitly regulates the number of models returned by J-linkage is
the minimal cluster size nmin. Although the authors of J-linkage [36] set this value to ns/2,
i.e. half the number of inliers per ground truth structure, we found that the algorithm
performs best with values around ten, corresponding to ns/5. We conducted runs with
nmin = 9, 10, 11 to show the delicacy of this choice (Figure 4.16). Just like in the accuracy
evaluation, an inlier threshold of τ = 2σ yielded the best results.

Figure 4.16: MSFE and cardinality errors for J-linkage (JLb) with various minimal cluster sizes. Inlier threshold
τ = 2σ. Results were averaged over 100 runs.

After the success of using a cost criterion for model selection with Kernel Fitting in Sec-
tion 4.3.1, we tried the same with J-linkage, the results of which are presented in Fig-
ure 4.17.
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Figure 4.17: MSFE and cardinality errors for J-linkage with Model Selection (JLc). Inlier threshold τ = 2σ.
Results were averaged over 100 runs.

4.3.4 Evaluation of stand-alone Authority Shift

For Authority Shift, we kept the value of α = 0.2 from accuracy evaluation, but tried
different minimal cluster sizes and model fusers. All variants performed best with τ = σ.
First, we fixed the minimal cluster size to 0.3ns (about one third of the number of inliers
per ground truth structure), and ran the clusterer with three different fusing setups: the
first leaves the clusters returned by Authority Shift unaltered (ASb). The second fuses
lines with similar line representations (ASc). The third setup performs information-based
model selection as in Section 4.3.1 (ASd). For the last setup, we also tried reducing the
minimal cluster size, shifting the focus of the model fitting task towards the model selection
procedure. This reduced the MSFE and fitting error even further. The entire experiment
is visualized in Figure 4.18.

The most evident and exciting result in Figure 4.18 is the good performance of the variant
with cost-based model selection. Without a cost-based model selection step, the algorithm
is best configured with a minimal cluster size of 15 = 0.3ns. A lower threshold for the
cluster size obviously returns more promising clusters, while false positives are filtered
out by the powerful model selection procedure. Apparently, the combination of outlier
removal, a correctly configured clustering step and an information-based selection phase
are necessary building blocks for accurate multiple model fitting with graph clusterers.
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Figure 4.18: MSFE and cardinality errors for different setups of Authority Shift. Results were averaged over
100 runs.

4.3.5 Iterative Graph Clustering

Of course, the previous insight is not new: For the largest part, the credit for the good
performance of the algorithm shown in Figure 4.18 goes to the authors of Kernel Fitting[4].
In fact, we used their components and merely exchanged the clustering step. However, we
did achieve an even lower MSFE than the original Kernel Fitting approach, at least on our
own data. Moreover, computation of the J-distance kernel is faster than the computation
of the Ordered Residual Kernel. To see if we can reach similar performance with different
clusterers, we evaluated iterative graph clustering with Replicator Dynamics and Graph
Shift. We discarded the iterative variant of Authority Shift, iAS, as it did not perform well
in our accuracy evaluation.

Replicator Dynamics

For Replicator Dynamics, we set the maximal number of iterations to 20, but also installed
a cluster coherency threshold and a minimal cluster size, which we varied as shown in
Figure 4.19. One can see that using the expensive cost-based model fusing step does not
improve the fitting quality significantly, if at all.
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(a) iRDb (b) iRDc

Figure 4.19: Multiple structure fitting errors and cardinality errors for Iterative Replicator Dynamics (a) with
and (b) without cost-based model selection. “mcs” stands for minimal cluster size, “ct” for
coherency threshold. Results were averaged over 100 runs.

So far, the quality of the setups are comparable to the ones in Section 4.3.4. In order
to find out if outlier removal brings the same boost to Replicator Dynamics as it did to
Authority Shift, we evaluated the Iterative Replicator Dynamics setup nmin = 10, τc = 0.1
with KSVD outlier removal conducted prior to the clustering. This led to the results of
Figure 4.20. The outlier removal does improve the results for most outlier counts, but
only when cost-based model fusing is conducted afterwards, and not as much as one might
expect.

(a) iRDb / iRDd (b) iRDc / iRDe

Figure 4.20: Multiple structure fitting errors and cardinality errors for Iterative Replicator Dynamics with (a)
and without (b) cost-based model selection, both with and without prior outlier removal. Results
were averaged over 100 runs.
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Iterative Graph Shift

We deliberately discarded the stand-alone variant of Graph Shift (GS) because it did not
perform well in our accuracy evaluation. For Iterative Graph Shift, we chose the basic
settings for the algorithm as in Section 4.2.5. The minimal cluster size does not have to
be set since the Graph Shift source code always returns fixed-sized clusters. Finally, the
coherency threshold was set to τc = 0.1 as with Iterative Replicator Dynamics. With cost-
based model selection (iGSc), we achieved a good fitting quality for outlier percentages
up to 50%. Even without cost-based model selection (iGSb), results were not worse than
for most of our other setups. However, the results improved remarkably when we added
outlier removal to the pipeline (iGSd), with which the MSFE remained well below one,
and below 0.5 for outlier percentages up to 60%. (Figure 4.21). Interestingly, the variant
without outlier removal scored slightly better for outlier ratios under 40%. However, we
do not claim that this difference (0.0433 on average) is statistically significant. Overall,
(iGSd) performed even better than the Authority Shift setup ASd from Section 4.3.4, with
an error difference of 0.1247 on average.

Figure 4.21: MSFE and cardinality errors for different setups of Iterative Graph Shift. Results were averaged
over 100 runs.

4.3.6 Note on cost-based model fusing

Note that the smaller the minimal cluster size, the more workload is shifted from the
clustering algorithm to the model selection algorithm. In theory, we could pass all 3500
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random hypotheses directly to model selection, which would probably lead to good results,
but would require

(
3500

2

)
+
(

3499
2

)
+ · · ·+

(
3
2

)
≈ 7 ·109 evaluations of the cost function. Hence,

the decision which hypotheses are passed to model selection is a trade-off between fitting
quality and runtime.

4.3.7 Label Costs

Besides Kernel Fitting, Label Costs (LC) constitutes another state-of-the-art approach to
multiple model fitting. As we know from Chapter 2, we have to define data and label costs
for the optimization procedure, the definition of which has to be carefully tuned.

Parameter tuning

The cost of labeling a point xj with a label i was defined as proposed for line fitting by
the authors in [10, equation 13]:

Dj(i) = − ln

(
1√
2πσ

exp−
r2
ij

2σ2

)
, (4.6)

where rij is the residual between hypothesis i and point xj, and σ2 is the variation of
the residuals. We introduced an extra outlier label 0. Since there are no residuals for this
label, we manually tuned the cost D(f(x = 0)) for assigning this label to an observation.
The relation between this outlier cost and the cost of introducing a new label, cl = c, is a
delicate one: If the cost D(f(x = 0)) of assigning the outlier label to an observation is too
low, all observations are labeled as outliers. If it is too high, all observations are assigned
to a structure and the fitting becomes imprecise. When the cost of introducing a label is
low, it becomes cheaper to introduce an extra (unwanted) model than to assign outliers.
This is especially true when the percentage of gross outliers in the data is high. When the
cost of introducing a label is too high, the algorithm obviously fails to identify all four
structures (Figure 4.22). It would seem best to configure the relation between these two
costs as a function of the true outlier percentage, but as we said, we deliberately do not
pass the outlier count to the algorithms.
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(a) high label cost, low outlier cost (b) high outlier cost, low label cost

(c) both high label and high outlier cost (d) equilibrium of outlier and label cost

Figure 4.22: Example of how the definition of cost functions influences the output of the LC model fitting
algorithm. MSFEs from (a) to (d): 2.07, 5.02, 0.12, 0.01.

As in [10], the smoothness term V (x,y) was set to zero because the data are independent
and identically distributed.

4.3.8 Comparison of setups

We summarized the performance of the best setups from this section in Figures 4.23,4.24
and 4.25. In order to make a fair comparison, we decided to group the evaluated setups
into three classes:

• Setups without gross outlier removal and without cost-based model selection (Fig-
ure 4.23),

• Setups without gross outlier removal, but with cost-based model selection (Fig-
ure 4.24),

• Setups with both gross outlier removal and cost-based model selection (Figure 4.25).
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Finally, we compare the “top five” of these algorithms in Figure 4.26.

Figure 4.23: Comparison of algorithms without gross outlier removal or cost-based model fusing. Remarkably,
the cardinality errors for all approaches meet at the highest outlier rate, while the MSFEs lie
farther apart. It seems likely that Sequential RANSAC has the same difficulties estimating the
number of structures as the other algorithms, but fits them more accurately. Results were averaged
over 100 runs.
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Figure 4.24: Comparison of algorithms without gross outlier removal, but with cost-based model fusing. We
decided to add Label Costs to this plot, since it uses a cost-based criterion similar to ours. One
can see that the introduction of cost-based model selection does not greatly improve cluster-based
algorithms, but the cost-based stopping criterion of Sequential RANSAC boosts its performance
considerably. Results were averaged over 100 runs.
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Figure 4.25: Comparison of algorithms with both gross outlier removal and cost-based model fusing.The gap
between Iterative Graph Shift and Iterative Replicator Dynamics remains large. This corresponds to
the results of [25], which claims Graph Shift to be more successful at identifying dense subgraphs
than simple Replicator Dynamics. The second notable fact is that for outlier rates up to 50%,
our Graph Shift and Authority Shift setups attained a lower MSFE than their Kernel Fitting
counterpart. Results were averaged over 100 runs.

The Authority Shift and Graph Shift setups ASd and iGSd displayed in Figure 4.25 are
essentially variants of Kernel Fitting, simply using a different kernel and a different clus-
terer. They both use the same functions for outlier removal and model selection as the
reference implementation by Chin et al. Their paper [4] claims a much lower MSFE for
line fitting, but as mentioned earlier, they use the same set of lines in each run of the
experiment, which makes it easier to tune parameters accordingly. Also, our versions are
faster, not just because we cache structures in the model selection phase, but also because
the computation of the J-distance kernel is more efficient than that of the Open Residual
Kernel (about 3 seconds versus up to 9 seconds on our reference machine). For details on
runtimes, see Section 4.4.
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Figure 4.26: Top five of all algorithms compared in this section. Sequential RANSAC and Label Costs remain
unbeaten, but our approaches based on Authority Shift and Graph Shift achieve results comparable
to Kernel Fitting.

Summary of manual parameter inputs

The different approaches that were evaluated in this section were not treated completely
equally. Due to the nature of each algorithm, most of them require minimal knowledge
about the application and/or the ground truth. Which algorithms take which parameters
is summarized in Table 4.1.

Besides these explicit parameters, some algorithms require delicate manual tuning of pa-
rameters for each domain. It is safe to say that this form of parameter tuning passes implicit
knowledge about the application and the ground truth to the algorithms.
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Algorithm Inlier noise scale Inlier count
Sequential RANSAC with stopping criterion •
Kernel Fitting
J-linkage • •
Authority Shift • •
Iterative Replicator Dynamics • •
Iterative Graph Shift • •
Label Costs

Table 4.1: Ground truth-related parameters that were passed to the algorithms of this section. The inlier count
refers to the number of observations per ground truth structure. Algorithms do not rely on the inlier
count explicitly, but we use it to define a minimal cluster size.

4.4 Runtime comparison

In this section, we compare the runtimes of different setups from Section 4.3. It is difficult
to conduct a completely objective runtime comparison between the setups: Some of the
functions incorporated in our framework, such as the construction of affinity matrices, were
implemented in C/C++, while others were implemented in Matlab. Due to the nature
of Matlab programming, some parts of each pipeline may have been implemented very
efficiently, while others rely on nested for-loops and are therefore less efficient. Therefore,
we conduct a qualitative runtime analysis, based on the average amount of time each setup
required (measured by Matlab’s tic and toc functions) on our reference machine, a 2.3
GHz dual core with 4GB RAM.

In Figure 4.27, we summarized the runtimes we recorded for each algorithm setup. Some
variants of evaluated approaches had very similar runtimes (e.g. those with vs. without cost-
based model selection). To maintain clarity, we only plotted one curve for these variants.

Iterative Replicator Dynamics was the fastest of our clusterers, closely followed by those
variants of Authority Shift and Iterative Graph Shift that include an explicit gross outlier
removal step. It is obvious that such a step reduces the complexity for a clusterer. This
is certainly the case for Graph Shift, which on our reference machine proved to take up
to 14 seconds if applied without outlier removal. All the more astonishingly, the usage of
an outlier removal step did not significantly influence the runtime of Iterative Replicator
Dynamics, which is why it has only one curve in Figure 4.27.

The slowest algorithm in our evaluation was Kernel Fitting. We managed to speed up the
algorithm considerably by caching structures in the model selection phase, but even so,
it barely surpassed the slowest variant of Iterative Graph Shift. Note that said variant
operates on the full affinity matrix, while Kernel Fitting uses the smaller affinity matrix
that results from explicit gross outlier removal.
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Figure 4.27: Average time in seconds required by the algorithms from Section 4.3.

In general, the runtimes of all algorithms based on clustering seem to grow quadratically
with the number of gross outliers, i.e., the number of observations n. This complies with
theoretical considerations: Building a J-linkage cluster tree takes O(n2) [34], Replicator
Dynamics has a complexity of O(t|E|), where t is the number of iterations of the algorithm
and |E| is the number of edges in the affinity graph, which in the worst case is Θ(n2) [25].
On the other hand, approaches like Sequential RANSAC and Label Costs exhibit runtimes
that are low and remain more or less constant. This is even more remarkable when one takes
into account that these are the strategies that score highest in terms of fitting accuracy
and cardinality estimation (see Sections 4.2 and 4.3).
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5 Experiments on real world 3D data

After our line fitting experiments, we applied our model fitting framework to the problem
of plane fitting in three dimensions. Instead of generating synthetic data, we opted for real
world data from two publicly available RGB-D datasets. In both cases, the data consists
of depth images recorded by a Microsoft Kinect© depth sensor.

In order to convert these depth data to three-dimensional data in euclidean space, the
calibration of the color camera has to be known. For each pixel location (y, x) of the depth
image D, the conversion to P ∈ R3 occurs as follows:

D(y, x) = z ⇐⇒ P =
1

f

[
(x− cx)z

fx
,

(x− cy)z
fy

, z

]T
, (5.1)

where (cx, cy) is the optical center and fx and fy are the focal lengths of the camera. f
is a scale factor which enables the depth values to be stored as integers, for example in
.png-files [18].

5.1 Experiments on the Freiburg depth dataset

The University of Freiburg provides a large dataset of image sequences with depth data,
alongside camera trajectories which constitute a ground truth for SLAM (simultaneous
localization and mapping). We use the depth data to generate point clouds as described
above, on which we perform plane fitting. The dataset was presented in [35] and is available
at https://vision.in.tum.de/data/datasets/rgbd-dataset.

5.1.1 Visualization

Drawing planes as an overlay of an RGB image is tricky. It is possible to draw trans-
parent polygons representing said planes, but this requires the definition of four corner
points. Therefore, we decided to visualize planes only by means of their inliers. As with
our two-dimensional fitting results, we plot the inliers (or rather, the backprojection of
these points onto the image plane) with different color labels, each color representing a
different model.
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5 Experiments on real world 3D data

Each Freiburg dataset consists of many consecutive image frames, but our fitting algorithms
handle each frame as a separate set of observations. If we chose the label colors arbitrarily,
label colors would change per frame, causing flickering effects. One solution for this problem
would be to compute a mapping of labels from one frame to the next, but this approach
could be prone to errors, and it does not disclose any information about the location
and orientation of the plane, which the user would have to guess from the context of the
background image. So instead, we translate the homogeneous representation of the plane
to a color vector, thereby implicitly assigning different colors to different models, while
simultaneously color-coding the orientation and distance of each plane.

From plane parameters n1, n2, n3, d we construct a three dimensional HSV color (h, s, v) ∈
[0, 1]3, where the v component constitutes the brightness, and h and s stand for hue and
saturation [14]. We define the brightness as a function of the plane distance d, such that
a plane close to the camera appears brighter than a parallel plane that is farther away.
Since d can theoretically take any value in [0,∞), we use a function that is defined for all
d ≥ 0. Function v(d) in Equation 5.2 is designed to be at its maximum at zero distance to
the camera, and to slowly approximate zero for greater distances. Furthermore, it reaches
brightness 1/2 at d = 5. Its course is plotted in Figure 5.1(a).

v(d) =
1

2
1
5
d
. (5.2)

The h and s components are defined by the spherical coordinates of the vector n =
(n1, n2, n3)T . We assume that ||n|| = 1 and that n3 >= 0. Then the spherical coordi-
nates are

ϕ = atan2(n2, n1), θ = arccos(n3), r = 1. (5.3)

From this we go to color components by

h =
ϕ

2π
, s =

1

2
+
θ

π
, (5.4)

which results in the color space seen in Figure 5.1(b). Note that s only assumes values
between 1/2 and 1, such that all labels have nicely saturated colors.
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5 Experiments on real world 3D data

(a) Brightness is defined as a function of the plane
distance.

(b) Hue and saturation are defined by the spher-
ical coordinates of the plane normal. Opposing
normal vectors have the same color.

Figure 5.1: Color and brightness functions for the color coding of plane representations.

5.1.2 Determining the inlier scale

Before we can compare different algorithm setups in the three-dimensional application,
we have to determine an inlier threshold τ . In a perfect world, we could simply use a
very small threshold. One would expect, for example, that points on the same desk are
all close to coplanar. However, errors in measurement and camera distortion can result
in significant variation, which is why we determined the inlier threshold empirically. For
the dataset freiburg1 360 we tried values between τ = 0.001 (one millimeter) and τ = 0.05
(five centimeters), for each of which we ran Sequential RANSAC with 500 hypotheses per
iteration on the data. The results thereof can be seen in Figure 5.2. We decided that a
threshold of τ = 0.01 (one centimeter) is the best compromise between precision, i.e. the
fraction of inliers that were correctly labeled, and recall, i.e. the fraction of points on a
planar object that were recognized as inliers.
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5 Experiments on real world 3D data

Figure 5.2: Testing different inlier thresholds with Sequential RANSAC (4 iterations). From left to right: τ =
0.001, 0.005, 0.01, 0.05. The threshold in the leftmost column is too sharp to detect all relevant
planes, and it introduces artifacts: when a hypothesis is constructed from a subset of which the
image coordinates are collinear, then it forms a plane perpendicular to the camera. With a very low
inlier threshold, these planes score higher than others, because a number of points is guaranteed
to lie on the plane, and they are thus selected by the RANSAC algorithm. τ = 0.05 is too imprecise,
as we can see in the bottom right image, where a part of the desk surface is labeled incorrectly.
τ = 0.005 and τ = 0.01 (center columns) both seem to be legitimate choices.
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5 Experiments on real world 3D data

5.1.3 Plane fitting with Iterative Graph Shift

As mentioned earlier, the Graph Shift main function returns very small clusters, a problem
which is solved by adding a fixed number of k nearest neighbors, in terms of affinities,
to each cluster. In the case of plane fitting, this causes the following problem: If k is too
large, small plane segments might be fitted inaccurately because too many neighbors are
added. If k is too small, the iterative clustering procedure will visit the same plane many
times, since it is only discouraged to move away from a small portion of the plane (see
Section 3.2.6).

Therefore, we introduced a slight alteration of the graph shift code: Instead of returning a
cluster with a fixed amount of non-zero entries, we estimate the actual plane model corre-
sponding to the cluster, and declare all inliers of the plane as cluster members (in case there
is an explicit outlier removal step, this only concerns the observations left thereafter). This
might be mathematically inelegant, but it solves the problem of the clustering algorithm
being “trapped” around one large structure.

We set the number of iterations of the meta-clusterer to 10 (resulting in ten models at
most), and did not install a coherency threshold or minimal cluster size. The number of
nodes for the graph shift expansion phase was fixed at k = 100. We doubled the number
of hypotheses to 1000. The experiment was repeated with gross outlier removal prior to
the clustering, as seen in Figure 5.4. Here, the outlier removal step seems less effective
than with synthetic two-dimensional data, usually discarding no more than one third of
the data. This might be explained by the fact that the outlier removal procedure models
the histogram of norms used for the dichotomy by a Gaussian mixture model [4], a method
that probably performs best on data with artificial Gaussian noise such as our 2D data.
However, one could also argue that in the indoor scenes on which we apply plane fitting,
most of the depth data come from objects such as floors, ceilings, doors and desks, and
thus contain a naturally high percentage of inliers.

5.1.4 Label smoothing

So far, the decision which label is given to an observation was made by the model fitting
strategy. Under Sequential RANSAC and J-linkage, each observation is assigned to one
model at most. With the Iterative Graph Clustering method, on the other hand, observa-
tions can be assigned to multiple clusters, and we select the final label as the model for
which the observation has the highest probabilistic cluster membership. These assignments,
though not incorrect in terms of the fitting problem, can seem wrong to the human eye, as
one may see in Figure 5.3(a). Therefore, we run a simple relabeling function before visual-
izing the results: If a point xj with label i1 is also an inlier of model i2, and the neighbors of
the point in the image plane are predominantly labeled i2, then the label of xj is changed
to i2. This generates a more consistent, smoother labeling, as seen in Figure 5.3(b).
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5 Experiments on real world 3D data

(a) Plane fitting results without label smoothing. (b) Plane fitting results with label smoothing.

Figure 5.3: Smoothing the labels of the fitting results brings about a more consistent result.

5.1.5 Summary

Besides the two Graph Shift variants, we ran the stand-alone version of Authority Shift
on the Freiburg dataset. The walk/jump parameter was set to α = 0.2 as in earlier exper-
iments. Judging from the visual output of Figure 5.4, the performance of the algorithms
is comparable, with the exception of Sequential RANSAC, which seems to identify more
significant planes than the graph clusterers. Be that as it may, it is hard to come to an ob-
jective conclusion about the quality of the algorithms based solely on visual output, which
is why we will attempt to carry out an objective evaluation on depth data in Section 5.2.

5.2 Experiments on RGB-D data from the NYU depth
dataset

While the Freiburg dataset allows for nice visualizations of the discussed algorithm’s power,
it does not provide a ground truth for plane fitting. Therefore, we also ran experiments
on the NYU depth dataset1, which consists of 1449 non-sequential RGB-D images from
indoor surroundings and a full ground truth for semantic segmentation [28]. We use these
annotated data to construct a ground truth by identifying planar regions such as floors
walls, desks, doors, etc. and extracting planes from them.

1The dataset can be downloaded at http://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html.
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5 Experiments on real world 3D data

Figure 5.4: Comparison of four algorithms on the Freiburg depth dataset. From left to right: Sequential
RANSAC, Iterative Graph Shift, Iterative Graph Shift with Outlier Removal, and stand-alone Au-
thority Shift.
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5.2.1 Construction of the ground truth

We construct a ground truth for plane fitting by fitting a single plane to each object or
region in the dataset. Every pixel in an image has two associated labels: A class label
identifying the object category, ranging from “air conditioner” to “yoga mat”, and an
instance label, which distinguishes separate objects of the same class. Together, these two
labels identify the pixels belonging to a single object or region. From these pixels, we
construct a point cloud as described in Equation 5.1, and apply RANSAC to fit a plane.

Note that we do not use every pixel, but rather sample the images at a grid size of 10,
effectively reducing the amount of data by a factor of 100, as in Section 5.1. We discard
objects which consist of less than 100 points automatically. Having applied RANSAC to
a point cloud, we count the number of inliers, defined by a fixed inlier threshold of 0.05.
If a plane yields more than 300 inliers, it is accepted to our ground truth. Thereby, we
construct a set of planar objects, which we can see in Figure 5.5. Finally, planes of the
same image that share more than 50% of their inliers are fused. The relatively high inlier
threshold was chosen in order to retrieve high true inlier counts: Lower thresholds lead to
low true inlier counts, for which the algorithms require more random hypotheses in order
to find them (see Equation 5.6).

Figure 5.5: Examples of RGB images of the NYU depth dataset with planes constructed from planar regions
(walls, ceilings, floors) in the depth data.

If our method does not return any planes for an image, it is discarded. In total, 1394
images were selected, with the number of structures per image varying between one and
ten. Details are shown in Figure 5.6.
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Figure 5.6: Numbers of planes found by our plane extraction procedure per image. 12 images contain only one
significant plane, 165 images contain two, etc.

The resulting reference set is not a perfect ground truth: If a scene contains multiple objects
that are aligned in a way such that many of their points lie on the same plane, but none
of the objects alone produce a plane, then an algorithm that correctly identifies the plane
is punished for fitting it. However, this kind of coincidence is also possible in synthetic 2D
data: If randomly inserted gross outliers align to form a line by accident, the same problem
occurs.

5.2.2 Evaluation

For the evaluation of fitting algorithms on our reference set of planes, we could again use
the MSFE from Chapter 4. However, in practice the MSFE seems to be too biased towards
the estimation of the number of structures, regardless of how well the estimated models fit.
For synthetic line fitting problems, the MSFE was adequate because the only structures
the algorithm could fit were those annotated in the ground truth. With the set of NYU
reference planes, however, it is much more common that planes are fitted to gross outliers,
while ground truth planes are missed. This leads to counter-intuitive values for the MSFE,
as illustrated in Figure 5.7.
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(a) ground truth (b) fitting result

Figure 5.7: Authority Shift achieves a MSFE of ε = 0.16 on this image, even though only one of four ground
truth planes is correctly fitted. The low MSFE derives from the fact that the number of planes is
estimated correctly.

Therefore, we employ precision and recall measures to evaluate our algorithm setups: A
true positive is found if a reference plane and fitted model share more than 50% outliers,
i.e.

TP (θ̂, θ) =

{
1 |Ĉ∩C|

|Ĉ∪C| > 0.5

0 otherwise
(5.5)

for structure θ̂ with consensus set Ĉ and model θ with consensus set C. We can make
use of the J-affinity function from Section 2.7.4 to compute this value. We define recall
in the usual way, as the number of true positives divided by the number of structures,
and precision as the number of true positives divided by the number of models. When
a reference plane is detected more than once, it only counts as one. Thereby we punish
algorithms that produce a lot of double detections.

Data

Instead of running every setup on all 1394 sets in our ground truth, which would take very
long as the cost of computing affinities grows quadratically, we decided to use only every
tenth image, resulting in a sequence of 140 images total.
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Setup of Sequential RANSAC

We started evaluation by running our simplest algorithm, Sequential RANSAC. Naturally,
the inlier threshold for the algorithm was the same as in the ground truth. The algorithm
ran for ten iterations at most, and stopped whenever fewer than 100 inliers were found,
because we know from our ground truth that no plane with fewer inliers is featured. Planes
that share more than 50% inliers were fused. The number of hypotheses per iteration was
set to 500.

Setup of Authority Shift

For Authority Shift, we chose a walk/jump parameter of α = 0.10 after a few short trials
with different values. The number of random hypotheses was increased to H = 2500,
such that even those planes with only 300 inliers (smallest in the reference set) have an
acceptable probability of being found (see also Equation 2.3):

Pr{At least one inlier hypothesis for the smallest plane} = 1− (1− 300

3072
)2500 ≈ 90%. (5.6)

As with Sequential RANSAC, planes were fused based on their shared consensus. Inter-
estingly, performing cost-based model selection did not improve results. This might be
explained by the fact that planes in our extraction process are also fused by consensus as a
post-processing step before ending up in the ground truth: Similar methods might produce
similar results.

Setup of Iterative Graph Shift

For Iterative Graph Shift, we kept the parameters at the same values as on the Freiburg
dataset, with an additional simple plane fuser as before. We also activated explicit outlier
removal before clustering, mainly to reduce the complexity of the affinity graph and thereby
speeding up the clustering process.
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Summary

Figure 5.8: Average precision/recall pairs for different setups applied to our NYU reference planes. The corre-
sponding F-Values are plotted on the diagonal.

Besides the three algorithms described in the previous paragraphs, we ran Kernel Fitting
and Label Costs with their default setups. We visualize the fitting output on seven ex-
emplary images in Figure 5.9. The results of the precision/recall evaluation are shown in
Figure 5.8. The large markers indicate the average precision and recall values, P and R,
for each algorithm, with the respective F-Values, F = 2 ·P ·R/(P +R), are projected onto
the diagonal. As one can see, Authority Shift performed worst by far, with a precision of
0.22 and a recall of 0.27. It is likely that the gross outlier removal, that worked so well
on synthetic data, fails to remove non-uniformly distributed outliers. Since the version of
Authority Shift that we use clusters all data rather than finding modes, it is unsuited for
precise model fitting.

On the other hand, we see that our version of Graph Shift competes with state-of-the-art
approaches, and even has a higher recall than the default setup of Kernel Fitting (0.41 vs.
0.37). As Kernel Fitting has a higher precision on its turn (0.52 vs. 0.59), both algorithms
yield the same F-Value at 0.46.
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Although precision was highest for Label Costs (P = 0.67), recall was highest for Sequential
RANSAC (R = 0.72). In terms of the F-Value, Sequential RANSAC is the clear winner,
with F = 0.61 vs. F = 0.55 for Label Costs. One could argue that the former has an unfair
advantage because the ground truth planes were established by RANSAC as well, but it is
still astonishing that such a simple and efficient algorithm yields such superior results.

A word about runtimes

Even though we sampled data points from the depth image with a grid size of ten, reducing
the size of the point cloud from about 300,000 to 3072, the algorithms that rely on the
affinity matrix had a hard time coping with its complexity. On our reference machine, the
Authority Shift setup recorded an average of 70 seconds for an image, Graph Shift required
about 80 seconds. Computing the 3072-by-3072 affinity matrix was the component that
took longest with about 35 seconds, but also the outlier removal step took 22 seconds, a
substantial amount of time. Kernel Fitting was again slowest, with an astonishing average
runtime of 180 seconds, i.e. three minutes. By comparison, Label Costs only ran for about
five seconds, and Sequential RANSAC was fastest with about half a second per image.
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Figure 5.9: Examples of planes fitted by different algorithms. From left to right: ground truth, Label Costs,
Authority Shift, and Iterative Graph Shift. One can see that Authority Shift fails to establish any
models in some images. On the other hand, Label Costs produces very plausible sets of models.
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6 Conclusion

The goals of this thesis were threefold: the first goal was a survey of existing methods for
the problem of robust multiple model fitting, and their generalization into abstract model
fitting categories. The most prominent of these categories is the group of data affinity
clusterers, which produce models from clusters which are found in a space defined by the
affinity kernel. Examples of this category are J-linkage, Kernel Fitting and Iterative Graph
Clustering. The second goal of this thesis was to translate this abstraction to a modular
model fitting framework, implemented in Matlab. The third and final goal was the ex-
ploration of new combinations of model fitting setups within the implemented framework,
as well as their evaluation and comparison to state-of-the-art approaches.

For the first goal, we started out with the discussion of RANSAC, the mother of robust
model fitting techniques. Even though it is only suited for the identification of a single
model, its principal of selecting a winning model from randomly sampled hypotheses forms
a quintessential basis for many existing approaches in the field of robust model fitting.
From RANSAC, we moved on to Sequential RANSAC, the most obvious extension of the
algorithm that handles multiple structures. In its simplest form, it requires the definition
of the number of iterations, which determines the cardinality of the resulting set of models.
However, we showed that this stopping criterion can be replaced with criteria that measure
the number of inliers or the total model cost.

In the clustering category, the first approach we investigated was J-linkage, presented by
Toldo & Fusiello in 2010. Instead of iteratively creating new sets of hypotheses, it generates
them in one batch, after which it clusters data points represented by their preference set,
i.e. the set of hypotheses for which a data point is an inlier. Each cluster is turned into
a model by solving the overdetermined set of equations defined by the cluster’s members.
The J-linkage technique inherently returns a variable number of models. However, it still
requires the definition of a minimal cluster size, which implicitly regulates the number of
returned models.

After J-linkage, we explored the subcategory of graph clusterers, methods that identify
dense subsets of the affinity graph. By applying these clusterers iteratively, multiple clusters
and thus models can be identified, either by randomly changing the starting nodes of the
clusterer, or by altering the affinity matrix after each iteration. As a stopping criterion,
one can threshold the cluster coherency, i.e. the sum over all intra-cluster affinities.

The most elaborate approach based on data affinity clustering that we surveyed was Kernel
Fitting, proposed by Chin et al. in 2009, which incorporates a large spectrum of components

84



6 Conclusion

including scale estimation, explicit gross outlier removal, and cost-based model selection.
For the computation of affinities, the Ordered Residual Kernel is used, for which no inlier
threshold has to be defined. The only parameter that has to be tuned is the step size of the
kernel, which regulates how many of an observation’s best fitting hypotheses are deemed
important.

Other approaches such as Dynamic Structure Fitting, which alternates random sampling
and hypothesis ranking, and AKSWH, which determines all its internal parameters by tech-
niques from information theory, were also examined. In general, the amount of parameters
required by each algorithm varies greatly. However, we can conclude that it is impossible
to define a parameterless algorithm that fits multiple models exactly to our requirements:
After all, the choice of granularity and thereby the inlier noise scale is always subjective
(if my desk is a plane, then what about my keyboard? does it belong to the same plane?),
and hence cannot be determined perfectly by a data-driven method.

With the knowledge we acquired during the realization of the first goal, we implemented a
model fitting framework, which due to its modular design made it very easy to exchange,
discard and enhance single components of different model fitting approaches. This frame-
work constituted the second goal of this thesis. For one part, it was built with publicly
available libraries, such as that of J-linkage, Graph Shift and Authority Shift, and espe-
cially Kernel Fitting, which contributed several functions related to outlier removal and
cost-based model selection. For another part, it consists of source code written by the au-
thor of this thesis. These “home-made” elements include wrappers for library functions and
the control flow of generic model fitting strategies, and also functions for data generation
and algorithms, for example RANSAC and LMedS, and different functions for the purpose
of evaluation. The framework also provides a basis for countless thinkable extensions, e.g.
new applications such as multiple homography estimation, but also different methods for
hypothesis generation, scale selection, or model estimation.

With the help of the model fitting framework described above, we were able to try out
and evaluate many different variants of model fitting setups, both old and new. We started
with the simple problem of line fitting on synthetic data. By varying the number of gross
outliers in each generated dataset, we were able to test the algorithms’ robustness towards
these outliers. First, only the accuracy of the fits themselves were analyzed, by passing
information about the number of structures to the algorithms. In a second run, we also
considered the performance of different setups in terms of cardinality estimation, i.e. how
well the number of structures in the ground truth was matched. An early conclusion was
that the simplest approach, namely Sequential RANSAC, still performed best on these
data. Moreover, we created a faster variant of Kernel Fitting by replacing the Ordered
Residual Kernel with the J-distance kernel and running Graph Shift instead of a spectral
method, which retained comparable results to original Kernel Fitting. On the other hand,
the opposite tactic—iteratively applying graph clustering methods to the Ordered Residual
Kernel—did not yield interesting results.
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Finally, we applied a selection of algorithms to the problem of plane fitting in three dimen-
sions, using data from the Freiburg dataset of RGB-D information recorded by Microsoft
Kinect© sensors. We visualized the resulting models by labeling inliers and color coding
the planes’ normal vectors. We also proposed a method for establishing a plane fitting
ground truth from semantically labeled depth data originating from the NYU dataset, by
applying RANSAC with a fixed threshold to labeled object instances and estimating planes
from those objects that had enough inlier support. Making use of this ground truth, we
compared the detection powers of a handful of algorithms.

The remarkable conclusion that we can draw from our plane fitting experiments is that the
fastest algorithms are also the best in terms of the error functions that we evaluated. The
main argument in favor of graph clustering techniques was the property that observations
can be assigned to multiple models, which is not possible in methods such as Sequential
RANSAC or J-linkage. However, we have seen that this flaw doesn’t seem to undermine
the overall quality of the fitting results, at least not for geometric structures such as lines
and planes. It also seemed that no model fitting algorithm that relies on the computation
of affinities between all observations can be deemed fit for very large sets of observations,
due to the sheer amount of necessary computations. Even if we introduced an affinity
measure that leads to very sparse affinity graphs, which would speed up graph clustering
algorithms such as Replicator Dynamics, the construction of the affinity matrix alone would
still require n ·H +

(
n
2

)
computations for n points and H hypotheses. If we created 1000

hypotheses and used the J-distance kernel for 10000 points (not an unrealistic number
for three-dimensional point clouds), the computation of all affinities would involve the
comparison of

(
10000

2

)
· 1000 ≈ 50 billion bits. On the other hand, one should not forget

that there exist applications where the number of observations is much smaller than that,
such as point correspondences established from interest point descriptor matches for the
purpose of homography estimation. this type of applications, both Kernel Fitting and
J-linkage have demonstrated excellent results ([4], [15]).

All in all, we have seen many interesting developments in the field of clustering in general,
and in the field of graph clustering in particular. The foundation we laid with our model
fitting framework might enable future research in both these fields. With the combination
of faster clusterers, smarter affinity kernels, and the ever growing computational power of
today’s machines, we expect countless promising developments in the domain of multiple
model fitting to occur in the following years.
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