
Florian Apolloner, BSc

Determination of selective adsorption

resonance lifetimes on He-Sb(111)

MASTER THESIS

For obtaining the academic degree

Diplom-Ingenieur

Master Programme of

Technical Physics

Graz University of Technology

Graz University of Technology

Supervisor:

Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Wolfgang E. Ernst

Institute of Experimental Physics

Graz, February 2015



This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found

online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template


 
 
 
 
 
 
 
EIDESSTATTLICHE ERKLÄRUNG 
 

AFFIDAVIT 
 
 

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, 

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten 

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht 

habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden 

Masterarbeit/Diplomarbeit/Dissertation identisch. 

 

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all ma- 

terial which has been quoted either literally or by content from the sources used.  

The text document uploaded to TUGRAZonline is identical to the present master‘s 

thesis/diploma thesis/doctoral dissertation. 

 

 

 

 

______________________    _________________________ 

Datum / Date       Unterschrift / Signature 





Kurzfassung

An Kristalloberflächen wird die Symmetrie abrupt unterbrochen, was sowohl

zu einer Änderung der Zahl der Bindungspartner, als auch zu einer Beein-

flussung der Kraftverhältnisse und elektronischen Eigenschaften führt. Dies

kann zu neuen Eigenschaften führen, die sich deutlich von denen des Bulk un-

terscheiden. Aufgrund der Wichtigkeit von Oberflächen für Forschungsfelder

wie topologische Isolatoren und Nanofilme ist ein weitreichendes Verständnis

dieser von großer Bedeutung.

Aus den verfügbaren Möglichkeiten für Oberflächenuntersuchungen kann sich

die Heliumatomstreuung besonders hervorheben, da sie nicht nur zerstörungs-

frei sondern auch rein oberflächensensitiv ist. Mithilfe dieser Technik sind

nicht nur Strukturaufklärungen der Oberfläche möglich, sondern können auch

Informationen über die Oberflächendynamik und das Interaktionspotential

zwischen den Heliumatomen und der Oberfläche gewonnen werden.

Im Zuge der Datenauswertung müssen einige Spezialeffekte berücksichtigt

werden, unter anderem selective adsorption resonances (SAR), wobei hier das He-

liumatom in einen gebundenen Zustand des Interaktionspotentiales übergeht.

In dieser Arbeit werden die Lebenszeiten dieser SAR auf Sb(111) untersucht.

Anschließend folgt ein Vergleich mit zwei theoretischen Modellen, einerseits

nach Fermis Goldener Regel und andererseits durch eine Simulation des
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Experiments. Für Letztere wurde die existierende Implementierung eines Close-

Coupling Algorithmus neu geschrieben und auf Geschwindigkeit optimiert.

Zusätzlich wurde ein neues Web-basiertes Überwachungssystem für den Mess-

apparat implementiert. Dieses erlaubt einerseits die Überwachung aller Sen-

sorwerte, als auch die Einstellung von Prozesswerten und eine Alarmfunktion,

falls Sensorwerte vordefinierte Bereiche verlassen.
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Abstract

At the surfaces of crystals the symmetry is suddenly broken, leading to an

alteration of the number of bonding partners, as well as change in the force

constants and electronic states. Those changes can lead to new properties com-

pared to the bulk properties. As surfaces are very important for many research

fields including topological insulators and nanofilms, a deep understanding of

surface properties and their dynamics is of major importance.

Within the available options for surface investigations, helium atom scattering

can position itself as a unique tool as it is not only nondestructive but also

completely surface sensitive. Using this technique, it is not only possible to

obtain information about the surface structure, but also about its dynamics

and the interaction potential between the helium atoms and the investigated

surface.

As part of the data analysis, several special effects have to be considered.

Among them are selective adsorption resonances (SAR) where the helium atom

adsorbs into a bound state of the surface interaction potential. In this work

the lifetime of these SAR on Sb(111) are determined. They are then compared

to two theoretical models, a golden rule treatment and a simulation of the

experiment. For the simulation the existing implementation of a Close Coupling

algorithm was rewritten and optimized for speed.
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Additionally a new web-based monitoring system for the apparatus was writ-

ten, which allows remote monitoring as well as configuration of sensor target

values and alarm functionality if the values are outside of specified operational

ranges.
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1 Introduction

For decades Helium Atom Scattering (HAS) has been the tool of choice when

it comes to surface sensitive, and nondestructive investigations1,2. As the low-

energy helium atoms are repelled by very low surface electron charge densities

already and never reach the first layer of atoms, all information gathered in

experiments has to be a result of the interaction between the helium atom and

the surface electrons.

Not only does HAS provide insights into the structural properties of the

investigated surface3, but it also provides the means to investigate the surface

dynamics4 as well as the interaction potential between the helium and the

probed surface5,6.

To be able to analyze the measured data at hand exactly, a lot of special effects

and their ramifications have to be considered7,8. Among those effects are selec-

tive adsorption resonances (SAR), where the helium atom undergoes a transition

into a bound state of the interaction potential. The longer the helium atom

remains in this bound state on the surface, the higher the interaction probabili-

ties with the electron charge density are, possibly leading to an amplification

of otherwise unobservable effects9. Therefore it is important to know which

bound states have a long lifetime and can be utilized for the amplification.
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1 Introduction

Antimony is an interesting material to investigate with HAS. While being a

metalloid in the bulk, it exhibits metallic character on the surface and serves

as one of the main ingredients for topological insulators10,11. Furthermore,

antimony nanofilms are a promising candidates in spintronics, due to their

tunable band gap and reverse spin polarization12,13.
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2 Theoretical Background

2.1 Surface Description

Throughout this work surfaces will be investigated using HAS. Therefore a

short introduction of the description of surfaces is given in this section.

2.1.1 Crystal Structure

A crystal is a solid material whose constituents form a periodic structure. This

means that the whole crystal can be viewed as an endless repetition of atom

groups which are called the basis. The basis is attached to a lattice as shown in

figure 2.1.

a1
a2

+ =

Figure 2.1: Visualization of the lattice, basis and the attachment of the basis to the lattice.
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2 Theoretical Background

Lattice points are connected via the translation vectors a1, a2 and a3. As a

consequence of the periodicity all points r′, from which the arrangement of the

crystal looks as in point r, can be described as

r′ = r + n1a1 + n2a2 + n3a3, (2.1)

with ni being integers. If there is no other set of translation vectors with a

volume less than a1 · (a2 × a3) while still filling the crystal completely then the

vectors ai are called primitive lattice vectors. These primitive lattice vectors form

the primitive unit cell. One way to easily construct such a minimal volume cell

is by constructing a Wigner-Seitz cell as follows:

• Choose a lattice point and connect it to its neighbors using straight lines.

• Draw planes (or lines in two dimensions) perpendicular to the lines

through their center point.

• The smallest volume (or area in two dimensions) enclosed by those planes

(or lines) is then the Wigner-Seitz cell.

The possible arrangements of the primitive translation vectors into so called

“Bravais lattices” is limited to five in two dimensions and 14 in three dimen-

sions14.

To describe the crystal completely, the position r of an atom within its lattice

cell is then written as

r = t1a1 + t2a2 + t3a3. (2.2)

Here ti is between zero and one. Given (2.1) and (2.2), one can describe the

position of any atom in the crystal.

4



2.1 Surface Description

2.1.2 Surface Structure

While infinite crystals are a nice construct, in reality one inevitably has to deal

with surfaces. Similar to the bulk, the structure is described via a basis and

lattice in two dimensions:

R′ = R + n1A1 + n2A2 (2.3)

R = t1A1 + t2A2. (2.4)

Following existing conventions, the nomenclature of Cabrera et al.15 is adapted

here. In this nomenclature all vectors in the surface plane are written in capital

letters. Three dimensional vectors derived from those surface vectors are often

written as r = (R, z).

Although this already allows one to describe the structure of the surface, there

is no indication how this surface plane is oriented with respect to the bulk.

Therefore the planes are described using Miller indices which are constructed

as follows:

• The intersections with the axes spanned by ai are determined, eg 3a1, 2a2

and 2a3.

• A vector normal to the plane is constructed by taking the reciprocals of

these numbers, leading to 1
3 , 1

2 and 1
2 .

• Multiplying with the lowest common multiple yields the final Miller

index of (2, 3, 3).

Symmetry equivalent planes to (2, 3, 3) are then written as {2, 3, 3}. Planes

parallel to an axis have a zero in the corresponding position as shown in

figure 2.2. Negative indices are written with a bar over the numbers instead of

a minus sign in front of them.
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2 Theoretical Background

(100) (110) (110)

a3
a2

a1

a3
a2

a1

a3
a2

a1

Figure 2.2: Illustration of planes specified by Miller indices. Original figure by Felix Kling,

adapted from https://en.wikipedia.org/wiki/File:Miller_Indices_Felix_

Kling.svg

2.1.3 Reciprocal Space

To describe scattering experiments the reciprocal lattice is used. The reciprocal

lattice resides in reciprocal space, also named momentum space, and is obtained

via a Fourier transform from real space. The Wigner-Seitz cell in reciprocal

space is called Brillouin zone. To obtain the reciprocal base vectors the following

formulas can be used to obtain them from their real space counter parts:

(B1, b1,z) = b1 = 2π
a2 × n

a1 (a2 × n)
(2.5)

(B2, b2,z) = b2 = 2π
n× a1

a1 (a2 × n)
. (2.6)

Here, a surface plane parallel to the plane spanned by the vectors a1 and a2 was

chosen and the third vector was replaced with n, the unit vector normal to the

investigated surface. Following this, a general translation vector in reciprocal

space can be written as

Gh,k = hB1 + kB2, (2.7)

with h and k as integers.

6
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2.2 Properties and Structure of the Sb(111) Surface

2.2 Properties and Structure of the Sb(111)

Surface

Antimony is a metalloid and located in the fifth group and fifth period of the

periodic table with an atomic number of 51. It exhibits metallic properties on

the surface and is one of the main ingredients for topological insulators10,11.

As nanofilm it undergoes topoeletronic phase transitions depending on the

thickness of the film12. Due to the tunable band gap and reverse spin polariza-

tion, Sb(111) nanofilms are promising candidates for spintronic applications13.

Given those features, HAS-based surface analysis is a perfect method to com-

plement the existing investigations of electronic surface states. Throughout

Figure 2.3: LEED picture of the Sb(111) surface in the high symmetry direction ΓM. The colors

have been enhanced using the GNU Image Manipulation Program (GIMP).

our experiments pure antimony was used as sample. In the bulk it crystallizes

in a rhombohedral A7 structure16 and has two atoms per unit cell. As other

7



2 Theoretical Background

pnictogens, antimony has a puckered bilayer structure perpendicular to the

<111>-direction. The bonding type is covalent within a bilayer and van der

Waals like between the bilayers. The forces between the bilayers are slightly

weaker, which allows easy cleaving of the crystal perpendicular to the <111>-

direction. The puckered bilayer structure, along with its lattice distances is

depicted in figure 2.4(b). The cleaved surface exhibits a hexagonal structure,

which can be verified by LEED (low-energy-electron-diffraction) as shown in

figure 2.3. When the electron energy is increased to a point where they can

penetrate below the first layer of atoms, the structure reduces to a three-fold

symmetry as the second layer of atoms from the first bilayer become now

relevant. For the energy range of HAS experiments, though, the crystal can be

considered as six-fold symmetric (compare with figure 2.4(a) for a top view of

the structure).

a

b

c

(c)

(a)

1st layer
2st layer
3st layer
4st layer

a = 4.30 Å
b = 1.50 Å
c = 2.24 Å

M

K

Γ

(b)

Figure 2.4: Diagram depicting the surface structure of Sb(111). (a) Top view onto the crystal,

the first layer atoms form a hexagonal structure. (b) Side view with the first and

second bilayer, showing the difference in lattice distances. (c) First Brillouin zone,

with the high symmetry directions for a six-fold symmetric structure.
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2.3 Lattice Vibrations and Phonons

2.3 Lattice Vibrations and Phonons

Lattice vibrations are fundamental in any crystal and usually described by

quasiparticles, the so called phonons. Phonons are quanta of vibrational mo-

tions at a specific frequency. The lattice dynamics as a whole can then be

described as superposition of those single phonons. The simplest possible

C M a

s-1 s s+1 s+2

Figure 2.5: 1-dimensional chain of atoms connected by Hookean springs.

crystal imaginable is a one-dimensional chain of atoms. As long as all of the

atoms are in their respective equilibrium position, there is no force on the

atoms. If one atom is moved, the neighboring atoms are exposed to a force,

moving them out of their equilibrium position, too, and in turn, those atoms

again induce a motion in their neighbors, effectively resulting in a motion of

the whole crystal. This system can be described as a chain of atoms (compare

with figure 2.5) connected by Hookean springs with the spring constant C, as

long as the displacements are small. With those conditions in mind, the force Fs

on an atom at lattice position index s and a displacement of us can be written

as:

Fs = C(us+1 − us)− C(us − us−1). (2.8)

Following Newton’s laws, the equation of motion for an atom with mass M

is

M
d2us

dt2 = C(us+1 + us−1 − 2us), (2.9)

9



2 Theoretical Background

which can be solved by assuming plane wave solutions of the form

us(t) = u · ei(q·sa−ωt). (2.10)

Here a is the spacing of the atom in the equilibrium position and q the wave

vector of the phonon. Substituting this solution into equation (2.9) a dispersion

relation ω(q) is derived:

ω(q) =

√
4C
M

∣∣∣sin
(qa

2

)∣∣∣ . (2.11)

This dispersion starts linearly for small wave vectors, resulting in a constant

group velocity in the long wave limit. It reaches its maximum at the zone

boundary π
a and goes back to zero at the reciprocal lattice constant b = 2π

a .

The dispersion then continues with a periodicity equal to the reciprocal lattice

constant. Therefore all relevant information is contained in the first Brillouin

zone. In general this model is too simple to describe the lattice dynamics of

CM1
a/2M2

a/2

s-1 s s s+1 s+1

Figure 2.6: 1-dimensional chain of atoms with different masses connected by Hookean springs.

a crystal. A better model is obtained by assuming different force constants

between the atoms or assuming different masses for the atoms in the unit cell, as

shown in figure 2.6. Those two approaches are mathematically equivalent. For

simplicity in the equations, different masses will be assumed in the following

derivation. The two masses now lead to a set of coupled equations:

M1
d2us

dt2 = C(ws + ws−1 − 2us) (2.12)

M2
d2ws

dt2 = C(us+1 + us − 2ws). (2.13)

10



2.3 Lattice Vibrations and Phonons

Using the same plane wave solutions as before and solving the equations gives

rise to two dispersion branches, namely an acoustic (ω−) and an optical branch

(ω+).

ω2
± = C

( 1
M1

+
1

M2

)
±
√(

1
M1

+
1

M2

)2

− 4
M1M2

sin2
(qa

2

)  . (2.14)

The result is depicted in figure 2.7, the acoustic branch roughly corresponds

0
0

π
a

acoustic branch

optical branch

√
2C/M2

√
2C/M1

Figure 2.7: Dispersion relation for a linear chain of atoms with alternating masses M1 and M2,

giving rise to a band gap and an optical branch.

to the dispersion relation of the mono-atomic case, whereas the optical branch

shows a completely different behavior and has a finite energy at zero mo-

mentum. The band gap between the two branches is a result of their mass

11



2 Theoretical Background

difference and vanishes as the masses approach each other. Along with the

vanishing band gap, the dispersion relation also reduces to the mono-atomic

case, although with a different Brillouin zone boundary as the mass density is

doubled compared to the original derivation (the lattice constant is now a/2

compared to the original value of a).

While the one dimensional case obviously does not fully represent the situation

in the crystal, certain high symmetry directions can be considered as one

dimensional problems. Other directions need a more complete treatment, in-

cluding more neighboring atoms as well as different force constants depending

on their distances. Also neglected so far is the polarization of the phonons,

which gives rise to additional branches per polarization14. Finally, all those

waves in the crystal correspond (in their description) to a harmonic oscillator,

leading to a quantization of the energy

ε =

(
n +

1
2

)
h̄ω, (2.15)

with n as the number of active phonons in this mode.

2.3.1 Surface Phonons

At the surface of the crystal the situation changes drastically. Due to the

symmetry break new vibrational modes emerge17,18. Those modes are mostly

confined to the surface, exhibiting wave-like properties parallel to the surface

and decay rapidly inside the bulk. The new modes are called surface phonons,

due to their localization to the surface. In addition to the surface localized

modes there are many extra modes, which cannot be explained by a simple

two dimensional oscillator model.

12



2.3 Lattice Vibrations and Phonons

ω = constant

π/a0
0

~q
~qz

~Qsurf

~Qbulk

ω

q2
z ≥ 0 q2

z < 0

Figure 2.8: Schematic representation of a dispersion relation for surface phonons. They can

be seen as a projection of the bulk modes onto the surface, leading to bulk bands

(gray area) as long as q2
z ≥ 0. The depicted colored modes originate purely from

the two-dimensional surface as described in more detail in section 2.3.1.

The origin of these modes is easily understood with the help of figure 2.8: For

one energy ω, there is a multitude of bulk phonon momenta q with this exact

13



2 Theoretical Background

energy and leading to multiple projections Qbulk,i on the surface. Repeating

this for multiple phonon energies results in bulk projected bands as depicted by

the gray area in figure 2.8. The figure also shows modes which cannot originate

from the bulk, as the surface wave vector Qsurf would be higher than the bulk

wave vector q. Those modes originate purely from the two-dimensional surface

and are always lower than their corresponding bulk bands. This is a result of

the alteration of the force constants between the atoms on the surface, as they

have fewer neighbors than in the bulk. In general this leads to a softening of

the modes17.

2.4 Helium Atom Scattering from Surfaces

The first helium atom scattering experiments were performed on the (100)

crystal face of lithium fluoride around 1930 by Estermann and Stern [19]. The

experiment showed that it is possible to perform atom diffraction experiments

if the de Broglie wavelength of the particle is in the order of the spacing between

the surface atoms. Further measurements were complicated by the fact that

the helium beam’s velocity distribution was not narrow enough. This changed

in the 1960s with the development of high pressure nozzles, allowing a quasi

mono-energetic beam. Nowadays the beams are of such high quality that

resolutions below one millielectron volt are achieved easily, which opened

the path to measurements of surface phonons as described later in this thesis.

Aside from the good resolution, HAS offers a few advantages over other surface

investigation methods:

• The method is absolutely non-destructive due to the low energies used

(roughly 15 to 45 meV in our experiments) and due to the classical turning

14



2.4 Helium Atom Scattering from Surfaces

point being a few Ångström away from the core positions.

• Atom scattering, as opposed to neutron or electron scattering, is purely

surface sensitive. The atoms only interact with the electron density distri-

bution at the surface. As such any data gained about the bulk has to be

coupled to the electron density oscillations on the surface in some way.

• The use of noble gases is of advantage due to their magnetic, electric and

chemical inertness. Furthermore, due to their low natural occurrence, the

detection becomes less complicated.

initial helium atom

diffraction

inelastic scattering

selective adsorption

Figure 2.9: Graphical representation of the scattering mechanisms occurring in HAS.

This section will provide an overview over surface interaction potentials and the

scattering mechanism occuring in HAS, figure 2.9 gives a simple graphical sum-

mary of those mechanisms. Furthermore, a quantum mechanical framework to

calculate the scattering intensities is derived.
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2 Theoretical Background

2.4.1 Interaction Potentials and Surface Corrugation

The interaction between the helium atom and the surface is described in detail

in earlier literature20,21,22,5, as such this section is just a short overview and the

interested reader is referred to the existing material.

To obtain an interaction potential several simplifications are usually taken.

First of all, the interaction between the helium atoms themselves, and their

orientation is neglected. The potential is then written as V(r, {ui}) with r = |r|
as the position of the helium atom and the set {ui} of displacements of the

surface atoms. To simplify the calculations further the thermal motion of the

atoms is ignored. Finally the potential is written as a sum (or integral in the

continuum model) of two-body potentials:

V(r) = ∑
i

V(|r− ri|). (2.16)

Conceptually those two-body potentials consist of an attractive and repulsive

part, as a consequence of the Van-der-Waals forces and the Pauli repulsion,

respectively. Several choices exist for those potentials23,24, with the Lennard-

Jones (or 12-6) potential as one of the more popular choices:

VLJ(r) = 4D
[(σ

r

)12
−
(σ

r

)6
]

. (2.17)

Here r is the distance between the two atoms, D is the well depth and σ is the

equilibrium position. Since the position of the impinging atom with regard to

the surface atoms is not known, it is easier to work with a surface averaged

interaction potential instead. This is done in the continuum model where the

crystal is assumed to be a homogeneous mass and the sum is exchanged with

an integral, leading to an analytical solution, namely the 9-3 potential23,25:

V9−3(z) = 33/2 D
2

[(σ

z

)9
−
(σ

z

)3
]

. (2.18)

16



2.4 Helium Atom Scattering from Surfaces

As the potential is laterally averaged only the normal distance z to the surface

is relevant anymore; σ and D describe the same quantities as before.

Another commonly used potential, which is often chosen for its easy analytical

accessibility26, is the Corrugated Morse potential27:

V(R, z) = D
[

1
V0

e−2χ[z−ξ(R)] − 2e−χz
]

. (2.19)

Here, ξ(R) is the corrugation function, χ the stiffness of the potential, and V0

the surface average of the exponential of the corrugation function,

VG =
1
∑

∫
∑

e−iG·Re2χξ(R)dR, (2.20)

evaluated at G = 0. The corrugation function is defined as the locus of all

turning points of the scattering process. It is highly dependent on the Bravais

lattice and the lattice constants, as the position of the atoms strongly affects the

electron density on the surface. Our samples possesses a hexagonal structure

on the surface, leading to a corrugation as depicted in figure 2.10, calculated

using

ξ(R) = ξ0 ·
[

cos
(

2π

a
·
(

x− y/
√

3
))

+ cos
(

2π

a
·
(

x + y/
√

3
))

+

+ cos
(

2π

a
·
(

2y/
√

3
))] (2.21)

as corrugation function, with a the lattice constant and ξ0 the corrugation

amplitude. One important aspect of the corrugated Morse potential is that its

surface averaged potential is a standard Morse potential, allowing easy analytic

calculation of its bound states, as well as the derivatives26.
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Figure 2.10: Example of the corrugation for a two dimensional hexagonal lattice. Red areas

correspond to positions directly over the atomic cores, units are arbitrary.

2.4.2 Elastic Scattering

Scattering is considered elastic if the initial energy of the helium atom Ei is

equal to the final energy Ef after the scattering event. Since the surface is

periodic, the Laue equations can be used to derive conditions for the diffraction

of incident waves by the crystal lattice. They state that the difference between

the initial wave vector ki and the final wave vector kf has to be equal to the

reciprocal lattice vector g. Together with energy conservation this yields four

equations:

Ef = Ei, (2.22)

kf = ki + g. (2.23)

As HAS is surface sensitive the scattering only involves two-dimensional

reciprocal lattice vectors. Following the common surface science nomenclature

the wave vector k = (K, kz) is split into a two dimensional vector K residing
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2.4 Helium Atom Scattering from Surfaces

in the surface plane and a scalar kz for the component normal to the surface.

The direction perpendicular to the surface can be assumed to have infinite

periodicity, leading to a relaxation of the Laue condition to

∆K = Kf −Ki = Gh,k. (2.24)

A graphical interpretation of this condition is shown in figure 2.11.

00 01010203

~kf

~ki

θi

~Ki

~Kf

~G

Figure 2.11: Construction of the Ewald sphere for two dimensions. Compared to the three

dimensional case, the aperiodicity in the surface normal direction causes the lattice

points to transform into rods, enabling a wider range of intersection possibilities.

θi is the angle of incidence to the surface normal, the rest as described in the

section.

2.4.3 HAS Peak Positions

Using the nomenclature from above it is possible to determine at which angles

diffraction peaks occur. The following calculations assume in-plane diffraction,

i.e. the wave vectors and surface normal are all in one plane. This is done since
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the apparatus has source and detector arms in one plane, therefore in-plane

diffraction will be assumed throughout the rest of this thesis unless noted

otherwise. The energy conservation can be expressed as

0 = ∆E = Ef − Ei =
h̄2

2m

(
k2

f − k2
i

)
=⇒ k2

f = k2
i (2.25)

with m as the mass of the helium atom. Exploiting the in-plane diffraction, and

further assuming that the initial wave vector is parallel to a reciprocal lattice

vector, the parallel momentum transfer ∆K can be written in terms of the initial

wave vector ki = |ki| and the scattering angles θi and θf:

∆K (θi) = ki (sin θf − sin θi) . (2.26)

By combining the previous equation with (2.24),

θi =
θSD

2
− arcsin

[
Ghk

2ki cos θSD
2

]
(2.27)

is derived, with θSD = θi + θf, the fixed source-detector angle. If the surface

structure is known, θi can be calculated for a fixed energy ki of the helium

atom. In case the structure is not known yet, the measured position of the

diffraction peaks can be used to extract Ghk.

2.4.4 Inelastic Scattering

While elastic scattering gives insight into the lattice structure, inelastic scat-

tering can be used to obtain information about surface phonons and their

dynamics. Helium atoms interacting with the surface can create or annihilate

phonons and thereby loose or gain energy. This energy exchange results in a

velocity change of the atoms, which can be measured at the detector. For sim-

plicity and also because it is the most likely process for inelastic scattering only
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2.4 Helium Atom Scattering from Surfaces

single phonon events will be considered. As before, the energy and momentum

of the system has to be conserved, leading to a set of three equations:

Ef = Ei + ∆E (2.28)

Kf = Ki + ∆K. (2.29)

The parallel momentum transfer ∆K splits into Gh,k + Q, where Q is the

momentum of the created/annihilated phonon. By combining the two conser-

vation laws, and assuming in-plane scattering, the energy ∆E of the phonon

can be written as:

∆E = h̄ω(∆K) =
h̄2

2m

[
ki · sin(θi) + ∆K

sin(θf)

]2

− Ei. (2.30)

This equation gives the energy for fixed initial conditions in dependence of the

phonon momentum. Plotting this so called scancurve over a surface phonon

dispersion relation, as shown in figure 2.12, will yield a few intersections which

can be measured. To reach other phonons along the dispersion branches, either

the angle of incidence or the initial energy of the helium atoms has to be

changed.
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Figure 2.12: Scan curve for inelastic scattering processes. The blue line represents a scan curve

and the red line is an approximation for a Rayleigh mode. Only at the marked

intersections in black, scattering conditions are fulfilled. Changing either the angle

or initial energy will move the scan curve slightly, which allows probing the whole

dispersion relation in consecutive scans.

2.4.5 Calculation of Scattering Intensities

While the angular position of the diffraction peaks can be used to determine the

lattice constants, the height of the peaks provides some insights into the surface

corrugation. To calculate the intensities of the diffraction peaks a quantum

mechanically complete approach, namely the Close-Coupling (CC) formalism,

is applied. As first approximation the peaks can be seen as elastic effects,
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2.4 Helium Atom Scattering from Surfaces

therefore Q = 0 and the Bragg condition simplifies to

∆K = Kf −Ki = G. (2.31)

The time-independent Schrödinger equation which describes the scattering

process is given by [
−∇2 + V(r)− k2

i

]
Ψ(r) = 0, (2.32)

with h̄2/2m = 1 to simplify the equations. Since the surface is assumed to

be periodic, both the wave function Ψ and the interaction potential V can be

written as Fourier series (following Sanz and Miret-Artés [22]):

Ψ(r) = ∑
G

ΨG(z)ei(Ki+G)·R, (2.33)

V(r) = ∑
G

VG(z)eiG·R. (2.34)

By substituting equations (2.33) and (2.34) into equation (2.32), multiplying

with the exponential of −i(Ki + G) ·R and integrating over a single unit cell, a

set of coupled equations is obtained:[
d2

dz2 + k2
G,z −V0(z)

]
ΨG(z) = ∑

G′ 6=G
VG−G′(z)ΨG′(z). (2.35)

Here, V0(z) is the thermally and laterally averaged interaction potential (see

section 2.4.1), and k2
G,z gives the z-component of the diffracted wave:

k2
G,z = k2

i − (Ki + G)2. (2.36)

Within this model, the Fourier coefficients VG−G′ for a corrugated Morse

potential are given by:

VG−G′ = D
VG−G′

V0
e−2χz. (2.37)

The CC-formalism then introduces the concept of diffraction channels, which

are supported by an effective potential of the form V0(z) + (Ki + G)2, where
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the addition to the bare potential can be viewed as the asymptotic energy28

of the channel G. Channels can be separated into open and closed ones. The

classification is best described via a case analysis of k2
G,z, depending on whether

the normal kinetic energy of the particle is above or below zero. In case of

negative kinetic energies the impinging particle undergoes a transition into

a bound state before leaving the surface again (more details in section 2.4.9).

This leads to the following two cases:

• k2
G,z ≥ 0: In this case the energy of the particle is above the asymptotic

energy of the potential and as such in a classically allowed region. This

case corresponds to open channels, usually written as
∣∣∣Ki + G, k2

G,z

〉
.

• k2
G,z < 0: This area is classically forbidden and a particle is only allowed

to enter this state if k2
G,z is equal to the bound state energy εν of the bare

potential. The wave function can then be written as |Ki + G, ν〉 and the

channel is said to be closed.

Equation (2.35) can be written in matrix form as

d2

dz2F =W(z)F (z), (2.38)

whereas the elements of those matrices are:

wG,G′(z) = −k2
G,zδG,G′ + VG−G′(z), (2.39)

fG,G′(z) = ΨG,G′(z). (2.40)

By discretizing this system (zi = z0 + i · h, with i the running index and h the

distance between the points) and applying Numerov’s method a matrix version

of the standard Numerov algorithm is obtained:[
I − 1

12
h2Wi+1

]
Fi+1 +

[
I − 1

12
h2Wi−1

]
Fi−1 −

[
I + 10

12
h2Wi

]
Fi ≈ 0.

(2.41)
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Here I is the identity matrix and the error per step is O(h6). To solve this

matrix equation the Fox-Goodwin algorithm29 is used. A new matrix R is

introduced which describes the propagation from Fi to Fi+1.

Fi−1 = Ri−1Fi (2.42)

Fi = RiFi+1 (2.43)

Substituting equation (2.42) into equation (2.41) a recursive formula for the

propagation matrices is derived,

Ri =

[[
2I + 10

12
h2Wi

]
−
[
I − 1

12
h2Wi−1

]
Ri−1

]−1

·
[
I − 1

12
h2Wi+1

]
.

(2.44)

The whole system is solved by assuming the usual boundary conditions for

the diffracted waves22,

Fi =

Sin

0

+

Cos 0

0 Exp

 ·
K
E

 (2.45)

with Sin, Cos restricted to the open channels and representing the incoming

and outgoing waves:

SinG,G′ =
1√
kG,z

sin (kG,zzi) δG,G′ , (2.46)

CosG,G′ =
1√
kG,z

cos (kG,zzi) δG,G′ (2.47)

and Exp restricted to the closed channels with a decaying solution:

ExpG,G′ =
1√
|kG,z|

exp (−|kG,z|zi)δG,G′ . (2.48)

K and E represent the channel intensities of the wave function. Given the

framework above, it is easily possible to calculate the reaction matrix K from
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equation (2.42). The overall intensities are then extracted from the scattering

matrix S which is calculated via30:

S = (1− iK)−1(1 + iK). (2.49)

The intensities are then given by

IG,0 = |SG,0|2. (2.50)

2.4.6 The Debye-Waller Factor

The close coupling calculations up to this point assumed that the atoms do not

move. This is not the case for any real system, where the atoms undergo zero-

point and thermal motions, resulting in inelastic scattering of the helium atoms.

Due to the inelastic scattering, the scattering conditions for elastic diffraction

is no longer fulfilled, leading to an attenuation of elastic scattering peaks and

an increase of the signal in between them. To accommodate for this thermal

attenuation, the so-called Debye-Waller factor31 can be used to extrapolate from

the intensity I0 at zero Kelvin and a sample at rest to the intensity I(TS) of a

sample at temperature TS:

I(TS) = I0e−2W(TS). (2.51)

Here, the exponential is the Debye-Waller factor and

W(TS) =
1
2

〈
(u · ∆ki)

2
〉

T
. (2.52)

The outer brackets are the thermal average, u is the displacement of the lattice

atoms from their equilibrium position and ∆ki refers to the momentum transfer

from the scattering.
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The Debye-Waller factor was initially proposed for x-ray and neutron diffrac-

tion, where interactions during the scattering event are short and weak. Since

this does not hold for helium atom scattering, the above equations should not

be trusted lightly. Nevertheless, they describe many experiments quite well,

which justifies the use as first approximation before more accurate methods

like inelastic close coupling calculations are required.

A simple expression for the Debye-Waller factor can be obtained by assum-

ing that there is no parallel momentum transfer to the surface, simplifying

equation (2.52) to:

W(TS) =
〈

u2
z

〉
· (∆kz)

2 . (2.53)

Assuming a classical harmonic oscillator with frequency ω, the atomic dis-

placement can be related to the temperature TS via:

1
2

Mω2
〈

u2
z

〉
=

3
2

kBTS (2.54)

The mass of the surface atoms is given by M. Furthermore, by assuming the

Debye model, the frequency ω can be written in terms of the surface Debye

temperature θD:
h̄ω

kBT
=

θD

T
. (2.55)

Inserting those equations into equation (2.51), the final result

W(TS) =
3
(

h̄2∆k2
z

)
TS

2MkBθ2
D

(2.56)

is obtained. Further improvements can be done by applying the Beeby correc-

tion as described in the doctoral thesis of Michael Mayrhofer-Reinhartshub-

er4.
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2.4.7 Extension to Inelastic Scattering

Depending on the sample and its direction, as well as the chosen potential,

elastic CC calculations sometimes yield zero intensity for higher order diffrac-

tion peaks6. To achieve agreement with the measurements, a more complete

approach, namely inelastic CC (iCC) has to be used. The term inelastic stems

from the fact that phonon interactions are included in the model. As a first

consequence of the lattice vibrations, the time-independent approach used

before has to be dropped and the full time-dependent Schrödinger equation is

employed to describe the interaction between the incoming particle and the

surface:

ih̄
∂Ψ(r, t)

∂t
=
[
−∇2 + V(r, t)

]
Ψ(r, t). (2.57)

It stands to reason that the time dependence of the potential V arises through

the position R + u(R, t) of the atoms, where u(R, t) describes the displacement

of atoms from their respective equilibrium positions. The displacement is

conveniently described by32

u(R, t) = ∑
Q,ν

A (Q, ν, T) eiQ·R cos [ων(Q)t] , (2.58)

with ων(Q) as the frequency in mode ν of a phonon with a parallel wave vector

Q. A (Q, ν, T) describes the amplitude of this motion, including the phonon

polarization vector and the dependence on the surface temperature T.

Since the displacement of the atoms is considered to be small compared to the

lattice constant, a first order Taylor expansion is used to model the potential:

V(r, t) ≈ V(R) + u(R, t) · ∇V(r). (2.59)

Due to the periodicity of the lattice, the potential can be written as Fourier

series, in analogy to the elastic case. The same applies to the total wave function,

28



2.4 Helium Atom Scattering from Surfaces

with the addition of a periodicity in time:

Ψ(r, t) = e−ik2
i t/h̄ΨG+Q,nQ,ν(z)e

i(Ki+G+Q)·Re−inQ,νων(Q)t, (2.60)

where nQ,ν represents the number of phonons in the active mode. After in-

serting the Fourier series into the Schrödinger equation, multiplying with

exp [−i (Ki + G + Q)] as well as with exp [inQ,νων(Q)t] and integrating over

time and the area of a single unit cell, a set of coupled equations is obtained22:[
d2

dz2 + k2
G+Q,nQ,ν,z −V0(z)

]
ΨG+Q,nQ,ν(z)

= ∑
G′ 6=G

VG−G′(z)ΨG′+Q,nQ,ν
(z)

+
1
2

A(Q, ν, T) ·∑
G′

[
FG−G′−Q(z) + FG−G′+Q(z)

]
×
[
ΨG+Q,nQ,ν+1(z) + ΨG+Q,nQ,ν−1(z)

]
and [

d2

dz2 + k2
G+Q,nQ,ν+1,z −V0(z)

]
ΨG+Q,nQ,ν+1(z)

= ∑
G′ 6=G

VG−G′(z)ΨG′+Q,nQ,ν+1(z)

+
1
2

A(Q, ν, T) ·∑
G′

[
FG−G′−Q(z) + FG−G′+Q(z)

]
×
[
ΨG+Q,nQ,ν+2(z) + ΨG+Q,nQ,ν(z)

]
.

In the above equations

k2
G+Q,nQ,ν,z = k2

i − (Ki + G + Q)2 − nQ,νh̄ων(Q) (2.61)

is the kinetic energy component normal to the surface, and

FG−G′±Q(z) ≡
[
i
(
G−G′ ±Q

)
VG−G′±Q(z), V′G−G′±Q(z)

]
(2.62)

is a vector function representing the perpendicular and normal force contri-

butions from the gradient of the potential. Following the elastic case, open
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and closed channels can be introduced once again, using the following nota-

tion: Open channels are written as
∣∣∣Ki + G + Q, nQ,ν, k2

G+Q,nQ,ν,z

〉
and closed

channels are written as |Ki + G + Q, nQ,ν, ν〉. In literature the channels are said

to be dressed by the phonon field33. All channels within a single active mode

form a so called Floquet block. In the case of single-phonon scattering, three

Floquet blocks need to be considered: First a block dressed with zero phonons,

which represents the elastic scattering contributions. The other two blocks,

dressed with plus and minus one phonon respectively, stand for the creation

and annihilation of phonons. Multi-phonon interactions are then achieved by

adding more Floquet blocks on both sides as needed.

Care has to be taken about the coupling between the channels. The coupling

factors are now split into intrablock, corresponding to the elastic coupling, and

interblock couplings for the phonon interactions. Comparing the elastic and

inelastic CC suggests that the scalar function

A(Q, ν, T) · FG−G′±Q(z) (2.63)

is the interblock coupling and responsible for the thermal attenuation, which is

otherwise approximated by the Debye-Waller factor.

To ease the calculations, a Debye model for the surface is assumed. Within this

model, only the linear Rayleigh branch is considered, which usually exhibits a

nearly shear-vertical character in the long wavelength limit. Exploiting this, the

perpendicular components of FG−G′±Q(z) can be set to zero, simplifying the

coupling to

A(Q, ν, T) · FG−G′±Q(z) ' A(Q, ν, T) ·V′G−G′±Q(z). (2.64)

The spatial derivative for the potential VG−G′±Q(z) can often be calculated an-

alytically for potentials like the (used) corrugated Morse potential. In principle
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A(Q, ν, T) as a whole would be a fitting parameter, but a simple form has been

derived for copper surfaces32, which has the benefit that it allows fitting the

surface Debye temperature instead, in turn allowing easier comparison with

previous results:

A(Q, ν, T) =
1

aQc

√
384h̄2πT
MkBΘ2

D
(2.65)

Here, Qc describes a cut-off factor for the harmonic movement. Till now, the

calculations done throughout this work set the phonon momentum to zero.

This is done as a first approximation, as the coupling factors have not yet

been evaluated for phonons bearing momentum. Taking those limitations into

account, it is possible to calculate scattering intensities in exactly the same way

as in elastic scattering. The calculated intensities do not represent a measurable

quantity, as it only includes a single phonon mode. To be able to compare

with the measurable intensities it is necessary to include all modes within the

selected phonon branch, that is integrate over all phonons weighted by their

spectral density ρ(ων(Q)) up to the Debye frequency ωD:

〈IG+Q〉 =
∫ ωD

0
IG+Q,nQ,ν ρ(ων(Q))dων(Q) (2.66)

Within the Debye model, the two-dimensional spectral phonon density is

ρ(ω) =
3ω

ω2
D

. (2.67)

2.4.8 Implementation Considerations

To solve the above equations and calculate the scattering intensities, suitable

channels and integration ranges have to be chosen. The number of channels

has to be limited, since on one hand an infinite sum cannot be calculated unless

one finds an analytical expression for it and on the other hand the calculation
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time is of order O(N3), with N being the number of included channels34.

Open channels always have to be included completely since they are classically

allowed. The number of closed channels usually depends on the corrugation,

a higher corrugation results in larger coupling factors and therefore more

channels have to be included5. The integration ranges are chosen according to

the potential, starting way in the forbidden region so the wave function ΨG

can be assumed to be zero and ending in the allowed region where the slope

of the attractive potential is nearly zero22.

2.4.9 Selective Adsorption Resonances and Resonance

Lifetimes

Section 2.4.5 briefly touched selective adsorption resonances (SAR) while

describing the concept of channels in close coupling calculations. This section

is going to provide a deeper insight into SAR and their importance for HAS.

SAR have always been an area of great interest for HAS as they allow a better

understanding of the gas-surface interactions near the surface15,35,36. Since they

can affect the measured signals strongly, it is important to understand under

which conditions they occur. Knowledge about their occurrence can then be

used to enhance effects which would not be observable otherwise.

Although they can also manifest when phonon creation/annihilation is in-

volved in the process, the following derivation only takes elastic scattering

into account, extension to the inelastic case is trivial and does not change the

concept behind it. More details about phonon assisted SAR can be found in

the literature37.
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z
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2m K2
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|εν| = Ei − h̄2

2m (Ki + G)2

Figure 2.13: Illustration of selective adsorption process. An impinging atom is scattered into a

bound state by taking up a surface G-vector. Its kinetic energy therefore increases

from h̄2K2
i /2m to h̄2(Ki + G)2/2m.

In the CC calculations, SAR appeared as part of the coupled equations. This

section will revisit them from a simple kinematic point of view. SAR are only

possible if the interaction potential supports bound states. If this is the case, the

incident atom, under certain conditions, can be scattered into and get trapped

in such a bound state. This situation is depicted in figure 2.13. A calculation of

the total energy in this state yields

En(K) =
h̄2K2

2m
− |εν|, (2.68)

with εν as the energy of the bound state and K the wave vector of the atom on

the surface. For a bound state to be involved in diffraction, two conservation

laws have to be fulfilled. Energy conservation requires En(K) to be equal to

Ei or Ef. Furthermore the Laue condition has to be satisfied, so either Ki or Kf

has to be equal to K±G with G 6= 0.

For purely elastic scattering, the atom enters a bound state and picks up G′

in momentum, leading to K = Ki + G′ and leaves the surface again during

33



2 Theoretical Background

interaction with G′′, leading to a final momentum of Kf = K−G′′, so that

Kf = Ki + G′ −G′′. (2.69)

This equation fulfills the Laue condition for the final as well as the initial state.

Energy conservation for the elastic process requires Ei = En(K) = Ef resulting

in

Ei =
h̄2

2m
(ki sin(θi) + G′)2 − |εν|

=
h̄2

2m
(kf sin(θf) + G′′)2 − |εν| = Ef.

(2.70)

Equation (2.70) allows the calculation of initial and final scattering angles under

which the transition into a bound state is possible. From equation (2.69) it

becomes evident, that a particle can either adsorb into a bound state or undergo

direct scattering with a reciprocal lattice vector G′ −G′′ – the net result is the

same, both leave the surface at the same angle and same energy. Quantum

mechanically speaking, the only difference between the diffracted waves is a

phase difference. This explains why the measured signal can contain maxima

and minima when the conditions for bound state transitions are fulfilled, as

the reflected particles interfere with each other.

In the presented model SAR are usually written as(
G1 G2

ν

)
, (2.71)

denoting the involved bound state ν and the initial reciprocal lattice vector G′.

An overview over all possible SAR including inelastic processes is depicted in

Figure 2.14.

The time the helium atom is trapped on the surface can be seen as its lifetime.

A higher lifetime can then lead to higher interaction probabilities with the

34



2.4 Helium Atom Scattering from Surfaces
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Figure 2.14: Diagram depicting all possible resonance types. (a) is the standard elastic scattering

with bound state n. (c, d, e) depict inelastic scattering with bound state n. (b, f)

are scatter processes in the specular channel.

surface electron cloud, resulting in an amplification of otherwise unobservable

effects. To estimate the line widths, and from that the lifetimes, the Fermi golden

rule can be used as a first approximation38. Within the golden rule treatment,

the scattering process can be described as half a collision process, where the

system is initially in the bound state ν of the closed channel B and then decays

along all open diffraction channels G39:

Γ(0)
B,ν = π ∑

G

∣∣∣∣〈Ψ(0)
G,k2

B,G,z

∣∣∣∣VB−G

∣∣∣∣Ψ(0)
B,ν

〉∣∣∣∣2 , (2.72)
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2 Theoretical Background

with

k2
B,G,z = ε

(0)
ν + (Ki + B)2 − (Ki + G)2 (2.73)

representing the relative kinetic energy between the closed channel B and one

open channel G. The superscript in the above equations represent the zero order

approximation when the full interaction potential is approximated by V0(z) and

the other Fourier coefficients are seen as perturbation. An analytical expression

for the linewidth was suggested by Hernández et al.39 (the superscripts have

been dropped for reading convenience):

ΓB,ν =π ∑
G

2γ− 2ν− 1
64ν!Γ(2γ− ν)

∣∣∣∣VB−G

V0

∣∣∣∣2 h̄2ω2

D

× sinh(2πβν)

cosh2(πβν)− cos2(π(1/2 + γ))

×
[
(γ− ν− 1/2) + β2

ν + 2γ
]2

× |Γ(1/2 + γ− iβν)|2 ,

(2.74)

with: ω = χ(m/2D)−1/2, γ = 2D/h̄ω, βν = (h̄χ)−1(2mεν)1/2 and Γ(k) the

gamma function of k. Due to the finite number of open channels, the sum can

be evaluated to get the line width and from there a mean value for the lifetime

τB,ν via the uncertainty principle:

ΓB,ντB,ν ≥ h̄. (2.75)
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3 Experimental Setup

The apparatus used in our experiments was originally constructed at the FU

Berlin and then moved to the Graz University of Technology. Its design is

similar to most other HAS machines, therefore a detailed description can be

found in literature40,2 as well as in the doctoral thesis from Anton Tamtögl21.

To be able to reach a good energetic resolution in the experiments, the helium

beam needs to have a small energy spread. This is achieved by a supersonic

expansion of the helium gas (He 6.0 at 50 bar) through a 10 µm nozzle into a

low pressure chamber (base pressure < 10−6 mbar). The central component

of the beam is then selected with a skimmer to transfer only the laminar flow

region into the next chamber. Depending on the temperature of the nozzle,

which can be cooled down to 60 K and heated up to roughly 300 K, the helium

atoms have a velocity between v = 700 m/s and v = 1700 m/s and a mean

free path way above the apparatus dimensions. The velocity spread ∆v/v was

calculated21 to be roughly 1.5 %. After the skimmer a removable chopper disks

splits the beam into small parts to allow time of flight analysis for inelastic

measurements.

In the main chamber ultra high vacuum conditions are needed to keep the

sample clean as long as possible (base pressure < 10−10 mbar). The sample

is mounted on a sample holder, which is attached to a 6-axes manipulator,
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3 Experimental Setup

Figure 3.1: 3-dimensional CAD drawing21 of the apparatus used in the experiments. The

apparatus is divided in three separately pumped chambers, namely the source,

main, and detection chamber. Red compartments symbolize the vacuum pumps

and the blue line is the helium beam.

and can be cooled with liquid nitrogen to −100 °C, or heated up using a

button heater to ≈ 200 °C. Furthermore, the main chamber contains an Argon-
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Ion sputter gun, to clean the sample, as well as a QMS (quadrupole mass

spectrometer) for residual gas analysis and a combined AES/LEED (auger

electron spectroscopy/low energy electron diffraction) for surface analysis.

The detector arm consists of several differentially pumped stages, separated

by small apertures to only select directly scattered helium atoms and no

background particles. Atoms passing through the whole arm are then ionized

at the end and detected using a QMS with a home-made multi-channel analyzer

(MCA). It is worth to note that the angle between the source and detector

chamber is fixed to θSD = 91.5◦, resulting in fewer movable parts and easier

vacuum setup, but making a few of the measurements cumbersome and others

completely impossible.

This setup allows for several types of measurements which we categorize as

elastic and inelastic measurements, even though our elastic measurements also

include inelastic features. For the common elastic measurements, the energy of

the helium atoms is kept constant and the incidence angle is swept through,

resulting in diffraction patterns dependent on the crystal structure. A typical

result of such a scan, including a more detailed description can be found in

figure 3.2. For inelastic measurements the time of flight of the helium atoms is

recorded, which allows to calculate their velocity and from there their kinetic

energy, giving information on the energy loss or gain during the scattering

process. Those energy changes can then be attributed to phonons and used to

obtain information about the phonon dispersion relation on the surface. One

inelastic result is depicted in figure 3.3.
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Figure 3.2: Typical angular scan in the ΓK direction. The specular peak is in the center and

first and second order peaks are clearly visible. The background between those

peaks is due to inelastic effects. The angular distance between the peaks allows

determination of the crystal structure and lattice distances.
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Figure 3.3: Exemplary time of flight measurement in the ΓK direction at 67.2 K. The large peak

at 0 energy represents helium atoms which did not interact with any phonons.

Peaks with a negative energy transfer indicate phonon creation events, in this case

most likely on the Rayleigh mode.
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4 Experimental Results

4.1 Measurement of SAR Lifetimes

Section 2.4.9 laid the ground work for SAR and provided an estimation for

their lifetimes. In this section, line widths will be extracted from the measured

drift spectra and compared to the theoretical results.

4.1.1 Measurements and Simulations

SAR can easily be measured by keeping all but one of the incidence parameters

constant. For our drift spectra the temperature of the nozzle was varied and

as such the energy of the incoming helium atoms. After cooling the sample to

−113 ◦C and aligning the crystal in the ΓM direction, the angles were fixed to

the specular channel (θSD/2). Starting from a nozzle temperature of 57 K, one

point was recorded every 0.25 K for a duration of 5 s by counting the number

of helium atoms reaching the detector. The measurement was stopped at a

temperature of 150 K. The raw results can be seen in figure 4.1.
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Figure 4.1: Drift spectra along the ΓM direction to allow the calculation of SAR lifetimes. The

measured data shows three sharp peaks, as well as underlying oscillations from

the surface structure.

Every 20 data points a time of flight spectrum was recorded, which allows a

better determination of the helium energy than using the measured temperature

of the nozzle. The raw data was then corrected using a linear model to account

for the drift, the values for the measured temperatures as well as the quality of

the fit can be found in figure 4.2. Unless otherwise noted, all calculations in

this section are based on a Morse potential as central potential and the recently

reported parameters for antimony from our group5. Given this preparation of

the data, a simple kinematic analysis following equation (2.68) was carried out
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Figure 4.2: Linear fit to account for the temperature drift between the set value and the values

obtained via the time of flight.

to get estimates for the SAR positions. The result can be found in figure 4.3.

The figure also confirms that there are no critical values of incidence which

could enhance resonance features strongly. This would be the case if the curve

is tangent to the a bound state line41. A comparison of the intersections in

figure 4.3 with figure 4.1 indicates that the highest three bound states are clearly

visible in the drift spectrum. Simple kinematic calculations like these tend to

ignore many effects like shifts in the peak positions due to band structure

effects of the periodic potential the helium atom encounters on the surface42.

Therefore eCC calculations have been carried out for the region of interest. As

expected, they display a shift with regard to the kinematic conditions as shown

in figure 4.4. An interesting aspect of the eCC calculations is the difference

in the peak profiles, namely all resonances for the reciprocal lattice vector
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Figure 4.3: Simple kinematic analysis to assign the measured peaks to SAR. Dashed lines are the

supported bound states of the interaction potential. Solid lines represent the normal

kinetic energy of a helium atom after interacting with the respective reciprocal

lattice vector. SAR are then possible at every intersection. It is important to note that

due to symmetry considerations some of the lattice vectors are degenerate, even

though the notation does not make this obvious immediately, but their distance to

(0, 0) is the same.

(1, 0) appear to be of Lorentzian type, whereas the degenerate (1,−3) and

(−2, 3) channels manifest as Fano resonances. This appears to be a result of the

degeneracy, although the coupling between these two channels is very weak

and needs further work to confirm the origin of those shapes. For comparison

the eCC calculations have also been carried out using a Hybrid Morse potential

as central potential, leading to the results in figure 4.5. While the overall shape

looks roughly the same, there are extra peaks around 14 meV and 18 meV

which cannot be explained yet, hence the rest of the analysis will only consider

the plain Morse potential.
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Figure 4.4: eCC calculations of the recorded drift spectrum. The blue line displays the raw

results, the green line is corrected with the Debye Waller factor and a factor of

1/
√

T to account for the dropping nozzle intensity. Dashed lines represent the

kinematic SAR positions for G = (1, 0).
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Figure 4.5: Same plot as figure 4.4 using a Hybrid Morse potential as central potential.
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Table 4.1: Line widths and lifetimes of the SAR calculated using equation (2.74) and by fitting

the peaks in the eCC calculations using Lorentz functions.

G ... The reciprocal lattice vector the SAR corresponds to

ν ... The quantum number of the bound state

Γ ... The width (FWHM) in millielectronvolts calculated

using Fermi’s golden rule (equation (2.74))

τ ... Lifetime in picoseconds, calculated via the uncertainty

relation (equation (2.75))

Γint
eCC ... The internal width (FWHM) in millielectronvolts ex-

tracted from the eCC simulation

τeCC ... Lifetime in picoseconds, calculated via the uncertainty

relation (equation (2.75))

G ν Γ/meV τ/ps Γint
eCC/meV τeCC/ps

(1, 0) 4 0.0140 46 0.0146± 0.0003 45.2 ± 0.8

(1, 0) 5 0.0098 66 0.0089± 0.0002 74 ± 2

(1, 0) 6 0.0043 151 0.0037± 0.0002 176 ± 8

4.1.2 Line Widths and Lifetimes

Section 2.4.9 covered the theoretical background for line widths, as well as their

respective lifetimes. In this section the analytical line widths will be compared

to line widths obtained from the eCC calculations and the measurements.

Evaluating equation (2.74) leads to a first estimate for the line widths as shown

in table 4.1. In a similar fashion line widths from the eCC simulation, as

well as the experiment, can be obtained by fitting the peaks to Lorentzian

functions and extracting their full width at half maximum. The broadening

of the peaks in the eCC simulations is a direct result of the coupling between
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4.1 Measurement of SAR Lifetimes

the diffraction channels and consequentially the corrugation and the surface

structure. This is standing to reason when the effect of the corrugation on the

interaction potential is considered. On a flat surface the interaction potential

is independent of the lateral position of the helium atom, allowing it to travel

in an equilibrium distance to the surface without any force influencing the

helium atom. Contrary to that, a rough surface exhibits a constantly changing

net force on the helium atom, allowing it to leave the surface (earlier) again.

With this in mind, line widths have been extracted from the eCC simulations.

Before those widths can be compared to the golden rule treatment, one further

adjustment is needed: Intensity profiles, as observed in the experiment, are a

function of scattering variables (incidence energy and angles) and not of the

normal kinetic energy k2
G,z, which is the only variable representing the intrinsic

properties of a resonance. Therefore two new types of variables are introduced:

external and internal22. External variables are all variables which can be accessed

and changed directly in the experiment. Internal variables on the other hand are

the normal kinetic energies of the open and closed channels which depend on

external variables. To convert external to internal variables a first order Taylor

expansion can be used by keeping all but one of the experimental variables

fixed and expanding around the SAR position38:

Γint
G,ν =

∣∣∣k2
G,z(E± Γext

E , θ, φ)− εν

∣∣∣ (4.1)

'

∣∣∣∣∣∣
(

∂k2
G,z

∂E

)
E,θ,φ

· Γext
E

∣∣∣∣∣∣ . (4.2)

Using the formula above, line widths and lifetimes have been calculated for

the eCC simulation, as displayed in table 4.1. They are in agreement with

the simple analytical approach and increase for higher vibrational quantum

numbers, which is expected as atoms in the lower states interact stronger

with the corrugated part of the surface potential, forcing the atom to leave the
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4 Experimental Results

surface earlier43.

When analyzing the measured data, it was first assumed that the three visible

peaks between 15 meV and 20 meV would correspond to the bound state levels

four to six. Overlaying the temperature corrected data with the eCC calculations

as in figure 4.6 invalidated this assumption. The current hypothesis is, that the

first peak is caused by kinematical focusing44 with either the Rayleigh mode or

an even lower lying plasmon mode. The shape of the peak does support this

hypothesis and the effect would also explain why there is no corresponding

peak in the eCC results. Nevertheless, confirmation of this theory has to wait

until the inelastic measurements on antimony are fully analyzed.
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Figure 4.6: Comparison of the measured data with eCC calculations.

To obtain the line widths of the measured peaks, a proper fitting model has

to be chosen. In general the peaks are expected to follow a Voigt profile, a

convolution of a Lorentzian and a Gaussian, where the Gaussian is needed to

account for the energy spread of the beam. Due to the complex background

of the signal and the overlapping peaks, which makes the fitting cumbersome

at best, the peaks were fitted using Gaussians to keep the parameter space
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4.1 Measurement of SAR Lifetimes

smaller. The background was also fitted using a broad Gaussian, which has

no real counterpart, but at least allows a fit at all compared to an accurate

background model including an exponential decay and overlayed oscillations

for the surface terraces. Figure 4.7 shows the best fitting results obtained, the

matching parameters can be found in table 4.2.
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Figure 4.7: Best fitting results (black) for the measured data points (blue). Parameters can be

found in table 4.2.
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Table 4.2: Best fit parameters for the peaks from figure 4.7.

G ... The reciprocal lattice vector the SAR corresponds to

ν ... The quantum number of the bound state

E ... The position of the peak in millielectronvolts

A ... The amplitude of the Gaussian in arbitrary units

σ ... The standard deviation of the Gaussian in millielec-

tronvolts

G ν E/meV A/a.u. σ/meV

(1, 0) 4 16.348± 0.006 7.3 ± 0.4 × 103 0.33± 0.01

(1, 0) 5 17.81 ± 0.02 4.0 ± 0.3 × 103 0.32± 0.02

(1, 0) 6 18.44 ± 0.04 8.4 ± 2.5 × 102 0.20± 0.03

Before calculating the lifetimes from the fitted standard deviations two cor-

rections have to be taken into account. The beam has an energy spread of

∆E/E ≈ 1.5% and is expected to exhibit a Gaussian character21. Since the

convolution of two Gaussians is again a Gaussian, the new standard deviation

can be easily calculated from σ2 = σ2
1 + σ2

2 . After deconvolution the internal

linewidth has to be calculated as described by equation (4.1). The final results

can be found in table 4.3.

It is clearly evident that the measured data and the theoretical models do not

match. While the two theoretical models are in nearly perfect agreement, they

ignore any inelastic effects, as well as scattering from defects, or, as in the case

of the golden rule treatment, are only valid for weak corrugations. It therefore

seems necessary to extend these models to inelastic (and possible even more)

effects to accurately describe this type of experiments.
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Table 4.3: Line widths and lifetimes for the SAR obtained from table 4.2.

G ... The reciprocal lattice vector the SAR corresponds to

ν ... The quantum number of the bound state

Γext ... External line width in millielectronvolt

Γint ... Internal line width in millielectronvolt

τ ... Lifetime in picoseconds, calculated via equation (2.75)

from the internal line width

G ν Γext/meV Γint/meV τ/ps

(1, 0) 4 0.70± 0.03 0.190± 0.008 3.5 ± 0.1

(1, 0) 5 0.68± 0.06 0.19 ± 0.02 3.5 ± 0.3

(1, 0) 6 0.3 ± 0.1 0.08 ± 0.04 8.2 ± 3.8
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4.2 Environmental monitoring

The laboratory uses a custom monitoring application called Oversight to keep

track of all the sensors. The goal of this section is to provide an overview over

the architecture of this setup so it can be reproduced and changed easily. At the

time of writing, this system aggregates data from ten sensors via RS-232 serial

connectors. The data is stored in a SQLite database with a time resolution of one

minute and can be viewed via any Web browser. To ensure that measurements

do not conflict with the monitoring, the system also provides an API which

serializes concurrent requests to provide isolation. The application is currently

accessible at https://hesurfer.tugraz.at and written in Python and Django.

Figure 4.8 shows screenshots of the overview and detail pages.

Figure 4.8: Screenshot of the overview and detail pages of Oversight.
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4.2 Environmental monitoring

4.2.1 Installation and Con�guration

In its current form the system is meant to be installed on a Raspberry Pi (RPi)

computer. As such the setup scripts assume a compatible configuration. The

source code is hosted on Github and can be downloaded onto the local PC

using git:

g i t c lone ht tps :// github . com/apol lo13/overs ight

The folder oversight contains the actual source code and the folder ansible is

used by the automation tool Ansible to configure a RPi which only needs to

have Debian installed on it. Before the initial deployment can start, certain files

need to be created, which are not in the repository for security reasons as they

contain sensitive information like encryption keys. First of all, Ansible needs

to know the hostname of the RPi. This information is usually contained in

ansible/hosts under the section oversight:

[ overs ight ]

hesur fer . tugraz . a t

Oversight additionally needs some secret keys for security purposes, those are

configured in group_vars/oversight which has to be a valid YAML file:

−−−
o v e r s i g h t _ s e c r e t _ k e y : << i n s e r t 20 random alnum chars >>

overs ight_api_key : << i n s e r t 20 random alnum chars >>

s s l _ p r i v k e y : |

−−−−−BEGIN RSA PRIVATE KEY−−−−−
<< i n s e r t x509 key>>

−−−−−END RSA PRIVATE KEY−−−−−
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ssl_pubkey : |

−−−−−BEGIN CERTIFICATE−−−−−
<< i n s e r t x509 key>>

−−−−−END CERTIFICATE−−−−−

Once those files exist, the initial setup can be done by executing

ans ib le−playbook −t bootstrap , deployment s i t e . yml

in the ansible folder. Subsequent runs can drop the bootstrap tag, so the deploy-

ment of new code will be faster.

4.2.2 Sensor Con�guration

After logging in on the web page a link labeled Admin will take the user to

the administration interface where users, groups and sensors can be edited,

figure 4.9 shows the edit mask for sensors. The name and unit fields can be

changed at will, while the Api endpoint should not change after initial creation

(more details on the latter in the following section). Each sensor is represented

by a Python class, which implements a read and write method and inherits

oversight.sensors.base.Sensor for common functionality. The configuration of the

sensor (for instance which serial port or the number of decimals) is done via

the Params field in the admin. The data has to be a valid JSON object and the

keys have to be supported by the constructor of the sensor class. The system

currently supports temperature sensors via Eurotherm controllers which require

the following configuration:

• Sensorclass: oversight.sensors.eurotherm.EuroTherm

• port: The serial port this device is attached to (eg. /dev/ttyUSB1)
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Figure 4.9: Screenshot of the admin page for sensors.

• register: The register on the controller, consult the controller’s manual for

register calculation.

• number_of_decimals: The controller returns numbers without decimal

points depending on its configuration, this parameter can be used to

readjust it to the correct number of decimals.

Pressure sensors are controlled via Balzers TPG 300 controllers and are config-

ured with:

• Sensorclass: oversight.sensors.pressure.PressureSensor

• port: The serial port this device is attached to (eg. /dev/ttyUSB1)

• sensor: The sensor to read, as shown on the controller display (A1 etc).
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4.2.3 API Usage

The system provides access to the sensor data via an API, to allow other devices

in the network to interact with it. HTTPS is used to secure the communication

and a shared secret (namely oversight_api_key as configured earlier) is used to

prevent unauthorized users from changing sensor values. The API is accessible

under https://hesurfer.tugraz.at/oversight/api/<endpoint>/<action>/,

where endpoint is the API endpoint configured in the admin interface and action

currently is read or write (note that not all sensors/register support writing).

The request to the endpoint must use the POST-method and has to include

the shared secret as api-key and any arguments for the action as args. As an

example, a request via curl to modify the configured nozzle temperature is

shown:

c u r l −XPOST −d " api−key=<api_key>&args =59" \

<server >/overs ight/api/temperatur−nozzle−s e t /wri te/
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5 Summary and Discussion

During the course of this thesis, lifetimes of selective adsorption resonances

on the He-Sb(111) system were measured and compared to two theoretical

models.

As first approximation, a simple golden rule treatment as described in sec-

tion 2.4.9 was used to obtain estimates for the order of magnitude of the

lifetimes. This approach resulted in lifetimes between 46 ps and 151 ps. Addi-

tionally eCC calculations (figure 4.4 on page 47) in the area of interest have

been carried out and lifetimes were extracted from the simulation. The results

are in perfect agreement with the golden rule treatment as shown in table 4.1

on page 48.

When comparing the simulation with the actual measured data (as in figure 4.6

on page 50) it becomes evident that there is still a massive difference in the

line widths and subsequently in the lifetimes. Part of this difference can be

accounted for by taking the energy spread of the beam into account, but the

lifetimes calculated from the measurement are still lower by a factor of ten to

20 (compare tables 4.1 and 4.3). One explanation could be that the current close

coupling calculations do not consider inelastic effects (phonon creation and

annihilation) since the inelastic parameters are not known yet for antimony.

While this is true, Tuddenham et al. [45] found out that it should not affect the
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widths of the features drastically. Instead, they suggest to use a potential with

a corrugated attractive region as it should not affect the diffraction intensities

but can change the signature of the features drastically46.

Since our calculations already use a corrugated Morse potential, which exhibits

this characteristic, it would be an interesting topic to reevaluate angular scatter-

ing spectra in conjunction with a drift spectra and different potentials, to not

only account for the diffraction intensities but also for the signature of bound

state resonances. So for now, the reported lifetimes should be taken as upper

and lower boundaries and further work has to show if the experiment can be

brought into concordance with an improved theory.

Last but not least, it should be mentioned that during the work on this thesis a

new monitoring system was developed for the laboratory. It not only allows

easier control of sensor data, but also provides better feedback in case of

failures, including alarm functionality. The setup and configuration for this

system can be found in section 4.2.
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