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Abstract

The present master’s thesis extends a voice activity detection (VAD) algorithm based on deep
belief network classification to perform multi-channel VAD and room localization in a smart
home environment. The simulation data used for evaluating the multi-channel VAD approaches
is based on real life data recorded in an apartment where several microphone arrays have been
applied to the walls and ceiling in each room. The database is a result of the European research
project DIRHA which has been active until 2014. The extended VAD uses at least one signal per
room. The signals are compared to each other by computing a spectral cross-correlation function
on short segments between each channel. The maxima of the resulting functions are related to
each other. This reveals the time difference of arrival of the signal in each channel. Given
the time differences, the corresponding room where the signal originates from can be detected.
The spectral correlation for detection is used before performing VAD where it locates acoustic
events which then will be classified which proved to be more stable under some conditions. It is
shown that in addition, channel selection plays an important role to improve the performance
of the multi-channel VAD. While using only one channel per room increases computation speed,
an algorithm being adaptive to different speaker positions is necessary. Several approaches are
presented and compared to stationary channel sets. Overall, addressing recall as an important
metric for VAD, it reaches 85% correctly detected and localized speech segments in best cases
with an estimated standard deviation of less than 10%.





Zusammenfassung

In der vorliegenden Masterarbeit wird ein Deep Belief Network Klassifikator zur Stimmak-
tivitätserkennung (VAD) um einen Algorithmus zur Raumlokalisierung erweitert. Der Mehrkanal-
VAD soll in einer Smart-Home Umgebung zum Einsatz kommen und eine robuste Lokalisierung
des Raums in dem gesprochen wird durchführen. Die Leistungsfähigkeit des VAD wird an-
hand von Aufnahmen ermittelt, welche in einem realen Appartment ausgestattet mit Mikro-
fonarrays and Wänden und Decken im Rahmen des europäischen Forschungsprojekts DIRHA
aufgenommen wurden. Der Mehrkanal-VAD benutzt mindestens ein Mikrofonsignal pro Raum.
Die Signale werden untereinander mittels Kreuzkorrelation kurzer Abschnitte ihres Spektro-
gramms verglichen. Aus den zeitliche Unterschiede der einzelnen Maxima der Korrelationsfunk-
tionen lässt sich der Kanal und der zugehörige Raum ermitteln, in die Signalquelle vermutet
wird. Wird dieser Algorithmus vor der VAD berechnet dient es der allgemeinen Detektion und
Lokalisierung von akustischen Ereignissen. Diese werden anschließend nur noch als Sprache oder
Störgeräusch klassifiziert was sich unter bestimmten Bedingungen als vorteilhaft erweist. Ein
zusätzlicher Faktor, der nachweislich Einfluss auf die Performance der Mehrkanal-VAD hat ist
die Kanalauswahl. Im Idealfall ist ein Kanal pro Zimmer ausreichend, allerdings muss adaptiv
dafür gesorgt werden, dass sich die Auswahl an unterschiedliche Positionen eines Sprechers an-
passt. Diesbezüglich werden mehrere Ansätze präsentiert. Die Performance wird hauptsächlich
mit einem Recall-Wert beschrieben, welcher korrekt erkannte und lokalisierte Sprachsegmente in
Relation zu ihrer eigentlichen Gesamtzahl setzt. Ein Recall von 85% gemittelt über alle Versuche
mit einer Standardabweichung von weniger als 10% konnten erzielt werden.
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Nomenclature

acc Accuracy - measure of correct classified samples.

AMS Amplitude Modulation Spectrograms feature.

C cepstrum.

c correlation index.

d binary decision function.

F total number of frequency bands.

f frequency index.

f0 fundamental frequency.

F1 F-Score - combining RE and PR in a single value.

FN number of False Negatives.

FP number of False Positives.

FR number of False Rooms.

K total number of frames.

k frame index.

klen frame length.

kr frame rate.

l smoothing length.

MDFTl Mel Discrete Fourier Transformation feature with
smoothing l.

MFCCl Mel Frequency Cepstrum Coefficients feature with
smoothing l.

n sample index.

Nch number of channels used.

Nsp total number of samples containing speech.

PR Precision - measure of amount of noise detected as
speech.

q quefrency index.

R correlation.

RE Recall - measure of actual detected speech.

sr sample rate.

TN number of True Negatives.

TP number of True Positives.

v(k) frame dependent variance.

Xest estimation of clean speech signal in frequency domain
using noise suppression.

xest estimation of clean speech signal in time domain us-
ing noise suppression.

xn noise signal in time domain.
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Xn,est estimation of noise signal in frequency domain using
noise suppression.

xn,est noise signal in time domain.

Xs clean speech signal in frequency domain.

xs clean speech signal in time domain.

Y noisy speech signal in frequency domain.

y noisy speech signal in time domain.

y[n],yA,yB vector of all time dependent speech signals, A and B
denote sub groups of all available signals.
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1
Introduction and Topic Review

The mobile life we know today and in particular the kind of interaction with our environment
is a permanently changing process. New technologies and inventions allow us to combine more
and more interactions into one single device such that a mobile phone has become a remote
control for a lot of applications. When driving a car or staying at home, avoiding the need of
a carried device by somehow monitoring the scenery can be seen as the next step of interacting
with our environment like we interact with other people.

People use the term Smart-Home when referring to a monitoring system which is installed
in a living environment such that certain situations cause a reaction by the system. Using
microphones, the monitoring focusses on acoustic events like falling objects or people talking.
Depending on that, the system automatically could call for help in an emergency or trying to
understand spoken phrases extracting commands like switching the light on or off. It is obvious,
that Smart-Home environments have a huge potential to support elderly or disabled people at
home as well as improving the lifestyle and comfort in general.

Research in the field of acoustic monitoring aiming for Automatic Speech Recognition (ASR)
in particular is still at its roots but develops rapidly as algorithms becomes more efficient and
computational power increases. The European research project Distant-speech Interaction for
Robust Home Applications (DIRHA) was one attempt to completely establish a smart-home
environment by working in a real apartment with multiple channels per room.

In this thesis, the classical single channel Voice Activity Detection (VAD) approach will be
extended to a multichannel VAD which is able to localise speech at room level without loosing
time efficiency. To achieve this, the interaction of event localisation and VAD will be studied by
comparing different approaches. A database which has been generated as part of DIRHA will
be used for evaluation.

1.1 DIRHA - Distant-speech Interaction for Robust Home
Applications

DIRHA was an European research project1 with partners in Austria, Greece, Italy and Portugal
aiming to build a smart-home environment being able to perform ASR and react when a known
command has been detected. For each room one or more arrays of two to six microphones have

1 http://dirha.fbk.eu
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1 Introduction and Topic Review

been applied to the walls or the ceiling yielding in a 40 channel signal in total for the apartment.
The final goal of the projects was to implement a prototype with the fully working system.

To control complexity, the project was split in several research fields like VAD, which will be
shortly reviewed in Sec. 1.2, ASR, source separation or localisation, which in the end should
work together. The main focus lies on its robustness but also on its capability of working in
real-time.

As people from four different countries work on this project, the system should be capable of
all these languages. As a fifth language English is used for comparison purposes. To accomplish
this, a basic database has been generated which contains a variety of environmental noise sources
to simulate different sceneries. This database then has been extended with language dependent
phrases or commands by using impulse responses measured at several discrete positions for all
channels to include the spatial information. Hence, research can focus on different languages
while keeping the data comparable [1].

Figure 1.1 shows the floor-plan of the apartment where the recordings have been produced.
The black dots indicate where microphones have been placed while the coloured rectangles stand
for the possible positions of a speaker during a recording. The four or eight arrows pointing
away from the rectangles give information about speech direction.

Figure 1.1: Floor-plan of the apartment where the recordings of the databases have been made. [1]

1.2 VAD - Voice Activity Detection

Today, VAD is widely used in many applications like telecommunications where different com-
pressing schemes lead to a higher reduction in bandwidth, acoustical computer interfaces to
interact with computers without the need of external devices or hearing aids to improve the
signal quality. Depending on the requirements in terms of noise-type and Signal to Noise Ratio
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1.3 Outline

(SNR) a VAD algorithm should be capable to cope with, the complexity of feature extraction
and decision making varies a lot. For example with high SNR, Mel-Freq-Energy features and
a simple threshold might be sufficient for good results whereas VAD in case of a reverberant
environment with different noise sources like radio or tv, the selection of a robust feature set and
classification algorithm combined with prior signal enhancement becomes a crucial task. In [2]
a detailed literature review of popular VAD approaches of the two past decades can be found.
In this review, algorithms are distinguished by the different types of feature categories they use
as well as by differentiating between decision making approaches, i.e. whether they are based
on thresholding, statistical modelling or machine learning techniques.

While these VAD algorithms have been constructed to perform on single channel signals, multi
channel VAD is of an increasing research interest following various purposes. On the one hand
the use of multiple microphones enables new kinds of signal enhancement or extend known ap-
proaches making them more robust. For example in [3], dereverberation is performed to increase
the SNR while the authors in [4] use the additional information to extend a psychoacoustics based
algorithm for better performance.

On the other hand considering meetings, multiple microphones extend the binary VAD task
between speech and noise by adding the need for reducing the effect of crosstalk as well, as has
been shown in [5].

When using arrays of microphones, beamforming techniques based on differences in time of
arrival or signal power can be adapted to perform automatic source localisation. In addition to
signal enhancement, exploiting this information makes it possible to track where speech comes
from as well as increasing discrimination between multiple sources [6–8].

There exist few attempts to integrate VAD and ASR in a smart-home environment. In
the CompanionAble European Project a monitoring system for interaction with a robot was
implemented which showed promising results assuming certain constraints [9]. The study in
[10] addresses elderly people as target group trying to automatically detect distress calls. As
constraints only one microphone and a limited set of sentences has been used but evaluation
is based on realistic played scenarios. First results showed a promising call detection rate of
roughly 75%. As an example for controlling applications like TV or radio by speech can be
found in [11]. Here, a recognition rate of about 93% could be achieved using 26 command words
being recorded by two microphones in front of the user and classified using Gaussian Mixture
Models.

Compared to the preceeding examples the preconditions for VAD in the DIRHA project are
unique in terms of multiple signals from different rooms which have to be taken into account.
Work referring to room localisation has been done in ?? In addition, while background noise
establishes a realistic noise-floor, additional noise sources like hovering or working in the kitchen
temporarily affects SNR in a realistic way. A VAD algorithm therefore should be capable both
in discriminating between speech and noise by classification as well as robustly locating sound
events in general to exploit spatial information provided by multiple microphones.

1.3 Outline

The multichannel approach developed in this thesis can be separated into localisation of speech or
events and discrimination between speech and noise. As first attempts started with classification
followed by localisation it will be shown that by reversing this order results improve.

For localisation two algorithms exist based on spectral correlation and onset detection respec-
tively. In this case the latter can be seen as a baseline being outperformed by the first approach.
Classification mainly is done using Deep Belief Network (DBN) but will be compared to different
approaches for validation.

In addition, because of the large number of channels available, attempts have been made as
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1 Introduction and Topic Review

well to find an appropriate set of channels the algorithms work on. Stationary as well as adaptive
approaches will be compared and their influence on the overall performance discussed.

The results obtained will be evaluated leading to a recommended multichannel VAD which
performed best.

The thesis is organized as follows. Chapter 2 provides background information. It is meant as
a review and leaves deeper discussion of the theory to literature. In Chapter 3, the main steps
for performing multichannel VAD are discussed in detail. Here, the focus lies on developing
the algorithms for room dependent VAD which is preceded by the basic description of the
experimental settings and steps being used for signal enhancement and signal preparation. As
several approaches to reach the goal have been made, a short summary about the algorithms
used in the experiments is done at the end of the chapter. In Chapter 4 results will be presented
which have been obtained when using the different sets of algorithms on the DIRHA-GRID
corpus. In addition results of experiments with partial knowledge of the database like speech
occurrence or speech origin are presented as well to support understanding of the performance
of the algorithms. Chapter 5 contains the evaluation of the algorithms results depending on
the setting. As the approaches for multichannel VAD separate the detection of voice and its
origin, it can be shown that the performance depends on the order of these two steps in terms of
classification performance of the DBN classifier. At the end of the chapter conclusion regarding
the best approach leads to an outline of possibilities where further research could improve the
performance of the VAD.
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2
Background

The following chapter aims to give a rough overview concerning the theory behind the algorithms
developed.

Section 2.1 addresses speech recognition mainly focussing on the characteristics of speech,
how it can be described and eventually be detected. While this is a huge topic which has been
covered a lot in literature this section is meant to be an introduction into the topics being used
to develop the algorithms. For a detailed discussion of this complex research area the reader
may be referred to standard literature.

Section 2.2 will give an overview about the relevant mathematics used in the developed algo-
rithms for Voice Activity Detection (VAD). It is thought as a review stating important formulas
and explaining some properties where needed. For derivations and deeper understanding the
reader may be referred to standard literature.

2.1 Speech Recognition

Automatic Speech Recognition (ASR) in a complex acoustical environment of the real world faces
the problem of finding a trigger which robustly activates further processing if speech exists and
stops it otherwise. While one could do this by pressing a button for activation, it is of interest
to automatically detect voice activity. For this, knowledge about speech is necessary how it can
be described and how its characteristics can be exploited. Usually this is done by transforming
the recorded signal, trying to focus on certain properties while suppressing everything else to
extract features which together increase distinction between speech and noise. Thresholding or
classifying this new signal eventually results in a binary signal which triggers the post processing
of the recording.

The organisation of this section follows the three main steps mentioned: Sec. 2.1.1 introduces
the speech model describing the basic characteristics of speech. Section 2.1.2 covers different
domains the time signal may be represented in for extracting different types of features. Finally,
Sec. 2.1.3 outlines classification. The latter basically refers to the work of [12] which has been
taken as a basis for this thesis. For a general examination of the topics the reader may be
referred to [13] or [14].

November 18, 2015 – 5 –



2 Background

2.1.1 Characteristics of Speech

Speech basically is a mixture of noise-like sounds as plosives or fricatives as well as harmonic
sounds like vowels or nasals. Here, when air passes through the vocal tract the vocal chords
periodically open and close leading to a periodic train of short air pulses which result in a
harmonic sound with fundamental frequency f0. The spectrum of this sound is further formed
by resonances in the vocal tract which change over time producing different characteristics of
voiced speech. Several resonances, also called formants, in combination give each vowel its own
characteristic.

For unvoiced speech, the vocal chords don’t vibrate but are perturbed by turbulence in the
vocal tract. Unvoiced phonemes like fricatives or sibilants as well as whispering therefore are
just characterised by changes in the vocal tract.

Separating excitation in the glottis as source and the vocal tract as a filter, voiced and unvoiced
speech or its mixture can be modelled as shown in Fig. 2.1. The source either is formed by a
pulse train with a pulse frequency of f0 or random noise which may be added to the pulses as
well. The corresponding source signal is then filtered with the time varying filter H(z) applying
gain and formants for the final speech signal s[n].

Figure 2.1: Source filter model of voiced or unvoiced speech [13].

The range of f0 depends on the gender and lies for male and female together between 60 Hz
and 500 Hz.

2.1.2 Transformation

A speech signal xs usually is available as a sample train in time domain. While analysing xs
during overlapping timeslots using simple features like energy or zero crossing rate is easily
possible, the information gain decreases rapidly if the time signal contains additional acoustic
sources or if reverberation increases. On the other side, spectral analysis of xs may reveal
dominant periodicities and signal characteristics but at the loss of timing information.

The compromise to overcome these problems is to analyse short windowed sections of xs
with some overlapping. For each time slot the spectrum is calculated using Discrete Fourier
Transform (DFT) in general, resulting in a spectrogram Xs. Computing the spectrogram of a
time signal is also referred to as Short Time Fourier Transform (STFT) (see Sec. 2.2.1). Xs

of xs contains timing information as well as spectral distribution coming with the drawback of
loosing both time and frequency resolution. For VAD time resolution is not that critical.

Taking the logarithm of Xs followed by the inverse Fourier transform leads to the cepstral
domain whose coefficients have been shown to produce characteristic features for speech signals.
Especially the preceding spectral compression by summing up certain frequency areas using a
Mel filter-bank reduces bandwidth while retaining speech characteristics. For the Mel filter-
bank psychoacoustical knowledge about spectral resolution of the ear is used which is high at
low frequencies and decreases if frequencies become higher. For the mathematical definition of
the resulting Mel Frequency Cepstral Coefficients (MFCC) see Sec. 2.2.1.

Computing features in time, spectral or cepstral domain aims to find a good representation
of the time signal xs while increasing discrimination between speech and noise and reducing
bandwidth at the same time. Usually, features highly depend on the given task which makes
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2.2 Mathematical Background

it very difficult, to define an optimal set. For this thesis, the feature sets used are based on a
paper by Zhang et al [12]. The definitions of the set and its features can be read in Sec. 2.2.2.

2.1.3 Classification

Classification is the final step in the binary task of a VAD deciding if a time frame contains
speech or not. In an ideal case features are good enough to define a simple threshold taking values
above or below and rejecting everything else. But in reality different features work different well
depending on the situation. Therefore more complex classification schemes are used to decrease
the error rate.

As a preprocessing step features have to be unbiased and normalized to the same range.
Without this step the numerical range of different features could vary a lot leading to dominating
and disappearing features.

Zhang et al [12] did an extensive comparison with different classifiers on a huge dataset. The
most efficient classifier used was a Deep Belief Network (DBN) which showed to produce the best
results in most cases. While it needs a long training phase, classification by using a DBN can
be done in real-time which is a major constraint for this thesis. Besides DBN the G.729B VAD
[15] and Sohn VAD [16] are used as well for a better comparison of the results. The following
outlines the basic principle behind the three classification schemes.

The G.729 is a speech coding standard which is used in telecommunication working at a low
bandwidth of 8 kbit/s. With Annex B a VAD has been added to detect frames without speech
to adapt encoding and compression ratio. The algorithm uses full- and low-band energy and
zero-crossing rate per frame as well as linear prediction spectral coefficients as basis features.
Computing the difference between the instant features and their corresponding average over a
certain time period leads to four parameters on which the final decision can be made. A final
smoothing reduces transient decisions taking past speech frames into account.

The Sohn VAD is based on statistical models of noise as well as speech plus noise in combina-
tion. Depending on the geometric mean of the estimated likelihood ratios per frequency band
decision about speech in the current frame is made. A HMM based hangover scheme where each
state depends on previous and the current observation prevents miss-detections during weak
speech signals.

The DBN based VAD uses a pre-trained neural network for classification. DBN is a special
case of a neural network consisting of a visible layer (bottom) whose units are represented by
the computed features, some hidden layers with hidden units and the top layer representing
the output labels. A DBN can be thought of as a stack of Restricted Boltzmann Machines
(RBMs) [17] being trained from bottom to top. Each RBM consists of a visible and a hidden
layer where the hidden units of one RBM form the visible units of the following. While each
training of the RBMs is unsupervised, a final supervised fine-tuning of the whole stack using
a back-propagation algorithm further improves the model. This two-phase training procedure
helps to prevent over-fitting which usually is a problem using supervised training methods.

2.2 Mathematical Background

As mentioned in Sec. 2.1 the representation of an acoustic signal using special features helps to
extract its characteristics while suppressing noise and reducing redundancy. For this the signal
has to be analysed in different domains using standard transformations. Enhancing the signal
by subtracting estimated noise further improves the results.

This section shortly reviews well known equations in Sec. 2.2.1 and introduces the definitions
of the features used in this thesis in Sec. 2.2.2. Section 2.2.3 gives the mathematical back-
ground corresponding to noise suppression. For evaluation, performance measures are defined
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2 Background

in Sec. 2.2.4.

2.2.1 Signal Transformation

This section states the definitions of the signal transforms which in particular form the basis to
compute the features used in the following chapters. They are well known and commonly used
and therefore only introduced briefly.

The DFT is used to transform a discrete time signal y into its discrete spectral representation
Y . It is defined as

Y [f ] =
N∑
n=0

y [n] e−j2πfn/N (2.1)

If only short windowed sections of y are used it is referred to as STFT and Eq. (2.1) changes
to

Y [f, k] =

N∑
n=0

y [n, k] e−j2πfn/N (2.2)

Shorter sections lead to a higher time resolution but a lower frequency resolution and vice
versa.

The correlation of two signals is defined as

Ri,j [c] =
∞∑

m=−∞
yi[m]yj [m+ c] (2.3)

Using the convolution property of the DFT where the convolution of two time signals correspond
to the product of their spectral counterparts correlation can be computed as follows

Si,j [f ] = Y i[f ]Y ∗j [f ] (2.4)

The complex conjugate of one signal ensures not to flip one signal against the other in time
domain as it would be done for convolving two signals. In case of yi = yj , it is usually referred
to as autocorrelation where the signal is correlated with itself. Performing autocorrelation makes
it easy to detect periodicities inside the signal which might not be obvious due to noise.

The inverse transform of the logarithm of the spectrum is defined as cepstrum

C[q] =
1

N

N−1∑
f=0

ln(|Y [f ]|) e+j2πfq/N (2.5)

Coming from the properties of the logarithm the product of two spectra equates to the sum
of the corresponding cepstra.

2.2.2 Features

The following section introduces the features used for classification by defining them and ex-
plaining relevant properties. The features are selected following [12] which has been used when
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2.2 Mathematical Background

demonstrating the advantages of the DBN classifier.

The MDFTl feature represents a compressed version of the energy Fourier spectrum. A
mel-filter-bank consisting of triangular filters is used to summarize regions of the spectrum in a
non-linear manner which follows the perception of the ear. Mel frequencies are linear below 1
kHz whereas higher frequencies can be computed as [13]:

M(f) = 1125ln(1 + f/700) (2.6)

There are smoothed versions of MDFTl used as well where the window length is indicated by the
index l. Using a normalized rectangular window of l frames corresponds to a simple averaging
of each frequency band over time. The averaged versions of the MDFTl feature focusses on the
long-term evolution of the speech signal suppressing rapid changes which may occur due to noise
or short breaks which may be less important concerning VAD.

The MFCC feature is the cepstral representative of MDFTl. It is computed as

MFCCl(q) =
M−1∑
m=0

ln(MDFTl(fmel)) cos (πq(m+ 1/2)/M) (2.7)

where fmel stands for the compressed frequency bands. As for MDFTl averaged versions of
MFCCl are used as well to gain information of different time properties.

Linear Predictive Coding (LPC) is a well known method in speech coding where each
sample is linearly predicted by its p preceding samples [13]:

y[n] =

p∑
k=1

aky[n− k] + e[n] (2.8)

ak stands for the LPC coefficients and e denotes the prediction error or the difference between
the original and the predicted signal which is also called the residual. Remembering the source-
filter-model in Sec. 2.1.1 the ak represent the filter coefficients of H(z) i.e. the vocal tract while
e stands for the excitation. Depending on the filter length the characteristic spectrum of voiced
phonemes with its major resonances can be represented by the LPC coefficients while spectral
noise between adjacent frequency bands is suppressed.

Relative-Spectral Perceptual Linear Predictive Analysis (RASTA-PLP) features
predict the spectrogram values of MDFTl the same way as for LPC. The difference besides the
use of the perceptively compressed spectrogram lies in an additional prore-filtering of ln(MDFTl)
called RASTA-filtering which is used as a IIR bandpass filter with the transfer function [18]. On
the one hand, the filter is meant to reduce reverberation effects on the other hand it smooths
rapid changes between adjacent frames [13].

Amplitude Modulation Spectrograms (AMS) [19] are derived from the spectral in-
formation of magnitude progression in each frequency band of a mel-spectrogram. For each
mel-channel small Hanning-windowed time-sections are Fourier transformed resulting in a mod-
ulation spectrogram of the channels amplitude. The final AMS features per frame are computed
by grouping frequency bands below 1 kHz into 15 evenly spaced areas being weighted by a trian-
gular shaped window and summarized. In addition to the initial features temporal and spectral
delta features computed by the differences of adjacent frames and frequency bands respectively
are appended to use information about the feature variation as well.

Feature selection is used to decrease the number of features keeping only those which contain
the most information concerning a robust classification. During the work on this thesis a First-
Best algorithm was used to recursively find the best working features to form a new smaller
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set. The algorithm starts by performing classification for each single feature and determines
the one producing the best result. Classification is performed again for all remaining features
in combination with the selected one and again the best result identifies the next best feature
to keep. Iterations are performed until results are converging or until a predefined number of
features has been selected.

2.2.3 Noise Reduction

In this section Spectral Subtraction (SS) used for signal enhancement with respect to noise
reduction will be explained. The goal is to increase the Signal to Noise Ratio (SNR) by reducing
background noise which can be considered stationary over a certain time period.

The principle of SS is based on the assumption that noise is additive i.e. that the noisy signal
y can be written as

y = xs + xn (2.9)

where xs denotes the clean signal and xn stands for noise. If noise is known, subtracting it from
the noisy signal leads to the original signal. In reality noise can only be estimated which after
subtracting it from y leads to an estimation of the original signal:

xest = y − xn,est (2.10)

Estimating the magnitude spectrum of the noise Xn,est and subtracting it from the spectrum
of the noisy signal Y is referred to as SS. Assuming time-changes of xn being sufficient slow
compared to xs an adaptive estimation algorithm is considered to work best. The approach used
in this thesis is based on minimum statistics using an implementation provided by Voicebox2

based on the work of Gerkman et al. [20]. Here the algorithm consecutively estimates the less
changing part of the speech signal by computing the a posteriori Speech Presence Probability
(SPP) to estimate the noise power spectrum. The likelihood for speech presence H1 and speech
absence H0 is assumed to be Gaussian distributed while the a priori probability concerning
speech presence or absence is considered equally likely i.e. P (H1) = P (H0) = 0.5. The main
steps performed by the algorithm will be outlined in the following for a detailed derivation see
[20].

For each frame, a posteriori SPP is computed by

P (H1|Y ) =

(
1 +

P (H0)

P (H1)
(1 + ξH1)e

− |Y |2

|Xn,est|2
ξH1

1+ξH1

)−1

(2.11)

where ξH1 denotes the a priori SNR which in the default setting of the algorithm has been found
to work optimal at 15 dB. After computing P (H1|Y ) it has to be ensured that the algorithm
doesn’t stagnate due to underestimation of noise. This is done by taking earlier a posteriori
SPPs into account using a recursion and establish a limiter if these probabilities have been close
to 1. The time smoothing recursion is computed by

P̄ (k) = 0.9P̄ (k − 1) + 0.1P (H1|Y (k)) (2.12)

To avoid stagnation a limiter is defined which resets P (H1|Y (k)) every time it reaches values

2 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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above 0.99.

P (H1|Y (k))←

{
min(0.99, P (H1|Y (k))), if P̄ (k) > 0.99

P (H1|Y (k)), else
(2.13)

Considering P (H0|Y ) = 1 − P (H1|Y ) the MMSE estimator can be obtained by computing
the conditional expectation:

E
(
|N |2|Y

)
= P (H0|Y )|Y (k)|2 + P (H1|Y )|Xn,est(k − 1)|2 (2.14)

Depending on the a posteriori SPP Xn,est remains the same if the current frame is more likely
to contain speech or it will be adapted to the current frame if it is more likely to contain noise.
To suppress the influence of transients a final recursion is applied when computing the power
noise estimate:

|Xn,est(k)|2 = α|Xn,est(k − 1)|2 + (1− α)E
(
|N |2|Y

)
(2.15)

where α = 0.8.
Figure 2.2 shows an example of enhancing the signal by subtracting the estimated noise

from the original signal by comparing the different spectra of Y , Xn,estand Xest. The noise
characteristic is smooth and especially sharp transients like onsets of syllables don’t appear,
which improves the difference between the more stationary background and impulsive sounds
after subtraction.
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Figure 2.2: Noise subtraction using a noise estimation based on a minimum statistics approach. The top
figure shows the spectrum of the noisy signal y. The middle figure shows its noise estimation. In
the bottom plot, the spectrum after noise subtraction is shown. It is easy to see a much higher
contrast between speech and background sources.

2.2.4 Performance Evaluation

The following outlines standard metrics used in literature to gain information about the classi-
fication performance and to allow comparison between different algorithms or settings.

For binary classification i.e. the decision between speech xs or non-speech xn made for each
frame either results in a correct choice or not. In a testing scenario each decision can be compared
to the ground truth and the result labelled with one of the following metrics. Assuming a frame
containing speech, the number of true positives (TP ) or hits corresponds to the number of
frames where xs has been detected, whereas the number of false negatives (FN) counts how
often speech has been missed. In case of frames without speech the number of correct rejections
corresponds to the number of true negatives (TN) whereas noise detected as speech or false
alarms lead to the number of false positives (FP ).

Usually, these statistics are used in relation to the total number of frames to describe the
performance. In case of VAD the most important ratio describes the percentage of detected
speech also known as recall (RE) by relating TP with the subset Nsp = TP +FN of all frames
containing speech:

RE =
TP

Nsp
· 100% (2.16)
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RE = 0% would correspond to the whole subset Nsp being classified as noise. In the best case
when every speech frame has been detected i.e. RE = 100% a second parameter is needed
containing information about additional false alarms which describes the precision (PR):

PR =
TP

TP + FP
· 100% (2.17)

The characteristics of PR mainly depends on FP while its minimum value is bounded by TP .
In the worst case of labelling everything as noise the term precision becomes meaningless and
PR is therefore undefined.

Taking recall and precision a further parameter often is used as a single value performance
descriptor called F-score (F1) to gain a first feeling how the algorithm is working without looking
at the details:

F1 = 2 · RE · PR
RE + PR

(2.18)

For the current thesis, recall and precision have to be adapted as a correct decision depends
on both, VAD and room detection. This means that a TP only occurs when detected speech is
localised correctly which will be denoted by TP room. Equation (2.16) changes to

RE =
TP room
Nsp

· 100% (2.19)

For precision, the FP term has to be adapted as it not only contains falsely detected voice
activity, represented by FP but also any wrong localisation in case of speech presence which is
denoted as FR. From this, Eq. (2.17) changes to

PR =
TP room

TP room + FP + FR
· 100% (2.20)
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Multi-VAD for ASR

3
Voice Activity Detector

The proposed room-aware Voice Activity Detection (VAD) algorithm is based on a single-channel
VAD introduced by Zhang et al. [12]. This VAD uses a set of common features like Mel Fre-
quency Cepstral Coefficients (MFCC), Linear Predictive Coding (LPC) or Amplitude Modu-
lation Spectrograms (AMS) which together form the feature vector for a Deep Belief Network
(DBN). Zhang et al. compared this algorithm against common standards like G.729B [15],
statistical based VADs like Sohn VAD [16] or machine-learning based VADs using Support Vec-
tor Machine (SVM). The DBN based VAD proved to outperform the competitors in terms of
accuracy in most cases while still being capable of real-time computation.

The multi-channel VAD proposed in this thesis has been developed by separating the process
of detection and localisation into the following steps: signal-enhancement, channel-selection,
VAD and room-selection. These steps will be ordered according to Fig. 3.1 which represents the
main signal flow between the recorded raw signals and VAD room decision respectively.

Channel
Selection

Signal
Enhancement

VAD
Room

Selection

Event
Detection

VAD

y ych Xest

Figure 3.1: Basic signal-flow summarizing the main steps being performed for VAD.

Channel-selection mainly follows the intention of reducing the amount of computation power
needed when using the whole set of 40 channels by finding a small subset of l channels. In the
simplest case selecting only one signal per microphone group reduces redundancy as similarity
between signals within a channel group is high compared to the similarity between signals from
different groups. In a second attempt an adaptive channel selection tries to find an optimal
signal for each room separately without any knowledge about the type of the current signal
focussing on the cross-correlation between signals of each microphone group.

Signal enhancement is based on Spectral Subtraction (SS) where an estimation of the noise
power spectrum Xn,est is subtracted from the spectrum of the noisy signal Y . It aims to reduce
long-term noise which changes slowly over time to increase the Signal to Noise Ratio (SNR). It
is a pre-processing step where each signal of the 40 available channels is enhanced separately.
The description of the basic principle and the algorithm used can be reviewed in Sec. 2.2.3.
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VAD is done by classification of a feature vector using a DBN as proposed in [12]. Additionally,
a simple VAD based on autocorrelation is introduced. For comparison reasons the G.729B VAD
and Sohn VAD will be used as well.

Room-selection exploits the Time Difference Of Arrival (TDOA) of an acoustic event between
different channels resulting from the limited sound velocity in air. While onset detection of
single words or phrases would be a simple approach it heavily depends on the precision of the
preceding VAD which has to be high right at the beginning of speech. This dependency can be
minimised by taking the whole block of speech into account as the influence of noise corruption
decreases and VAD can be considered more stable during the phrase. This can be exploited by
computing cross-correlation of the spectrogram between two channels over time. Comparing the
relative position of the correlation maxima reveals information about the channel, where the
signal has been recorded first.

The split-up after the signal enhancement block in Fig. 3.1, indicates, that room detection
not necessarily has to follow VAD. The performance when room localisation is done before VAD
will be evaluated as well. To make discrimination of the two possibilities easier room detection
being first will be referred to as event detection as in this case, the algorithm not only performs
room localisation but also a certain kind of event detection of acoustic events in general being
independent of speech presence or absence.

In this chapter the detailed discussion of the algorithms proposed is organized in the following
sections.

Section 3.1 contains background information about the databases used, how they are built
up and how signals will be used. In Sec. 3.2 different approaches of channel selection will be
introduced. Section 3.3 covers feature sets and classification. In Sec. 3.4 room detection and the
developed algorithms will be explained in detail.

3.1 Database

The database used for evaluating the proposed algorithms is part of the simulated corpus of
the Distant-speech Interaction for Robust Home Applications (DIRHA) project3. It consist of a
certain number of records of one minute duration at a sample rate of 48 kHz and 16 bit depth.
The German version, called DIRHA DE , has been used for evaluation. It contains German
spoken phrases and commands which are allowed to overlap. This is an important requirement
the localiser has to deal with but makes the simulation more realistic.

Figure 3.2 shows the floor-plan of the apartment where the recordings have been produced.
There exist five rooms: the kitchen, labelled with K, the living room, labelled with L, the rest-
room, labelled with R, the corridor, labelled with C and the bedroom, which is labelled with B.
40 microphones marked by the black dots are distributed by forming up to five arrays of different
size in each room. The grouping depends on the size as well as the purpose of each room to ensure
a good discrimination for localisation where it might be needed. For example, only the living
room and the kitchen contain a group of six microphones at the ceiling. The coloured rectangles
indicate possible positions of a person during a recording. The speech direction is marked by the
four or eight arrows pointing away from the rectangles respectively. The quantization of space
of positions results from the addition of speech to the database via measured room transfer
functions.

The structure of one simulation contains the following components [1]:

• A keyword followed by a command;

• A spontaneous command (without the keyword);

3 Detailed information can be found at http://dirha.fbk.eu/simcorpora
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Figure 3.2: Floor-plan of the apartment where the recordings of the databases were made. The black dots
indicate the position of the microphones. The coloured rectangles show possible speaker positions.
The arrows at the stand for the direction the speaker gives the command. [1]

• A phonetically rich sentence;

• A segment of conversational speech;

• A variable number of localised non-speech sources (e.g., radio, TV, appliances, knocking,
ringing, creaking and many others).

The commands and phrases can be located at every position marked by the coloured squares
being spoken in any direction indicated by the arrows.

3.2 Channel Selection

Channel selection is the first step in the multi-channel VAD algorithm and comes even before
signal enhancement. It is performed with the intention of reducing the number of signals for
further processing while focussing on channels being close to possible noise sources.

Research concerning channel selection addresses different approaches. In [21] several state-of
the art algorithms are compared and a new algorithm is proposed based on the variance of the
speech intensity envelope.

Considering Fig. 3.2 there exist 40 microphones applied to the walls and the ceiling in each
room. The number of available channels per room depends on its size and importance. For
example the living room or the kitchen contain up to four microphone arrays on the walls
whereas in the corridor or in the bathroom only one group of microphones is installed. For
localising the correct room in case of speech several channel sets are constructed by using different
combinations of channels and tested against each other in terms of distinction and efficiency.
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The maximum possible set contains all available channels. Using this set for room localisation
is very inefficient in terms of room localisation, i.e. using every channel per microphone array
just increases redundancy. Therefore, the set is reduced by using only one channel per array. In
this case the set is stationary using the whole spatial grid of microphones in the apartment with
a minimum of 35% of the recorded signals. Recall from Fig. 3.2 that all rooms together contain
14 microphone arrays, the reduced channel set will be referred to as Stat14Ch.

The minimum set ensuring room discrimination can be achieved by selecting the most relevant
channel per room. This increases efficiency in terms of computation power by considering the
remaining signals per room being redundant. Defining the best signal per room is a difficult
task. While in case of corridor and bathroom each signal can be considered equally important
the best signal in the remaining rooms strongly depends on the speaker position and direction.
Therefore, the simplest way of choosing a stationary set of five reference channels will only be
considered as a baseline. The selected channels used for this set are in case of kitchen and living
room the centre microphones KA6 and LA6 of the ceiling clusters while for the corridor the
C1R channel as the more centred microphone and in the bathroom R1C is taken. In case of
the bedroom B3R is selected assuming best distinctness between signals originating in bedroom
and signals coming from outside. In the following, it will be referred to as Stat5Ch.

The time-varying positions and directions of different speakers make it necessary to adaptively
select the best channel. Hence, for each time-block a new set of channels will be selected by
finding the microphone which can be assumed to be at a minimum distance to the speaker. If
chosen correctly the accuracy of both classification and localisation can be improved. As no
further analysis or classification is involved, none of the channel selection approaches proposed
distinguish between a speaker or a noise source. This is not a problem if speech and noise
are coming from different rooms, it more likely supports the following room detection. If both
sources are located in the same room, it will depend on the intensity of both sources which
channel is being selected at the corresponding time-blocks.

The simplest approach of adaptive channel selection just computes the energy of each signal
and compares the results room wise taking the signal containing the highest energy for each
room respectively. In the following this will be referred as Maximum-Energy-Channel-Selection.

A more enhanced way of finding the best channel per room is to exploit the microphone-arrays
using cross-correlation. This is done by selecting two channels per array which results in two
time dependent vectors yA and yB whose elements yAi[n] and yBi[n] referring to the recorded
signals are pairwise related. n = 1 . . . N denotes time index in samples and i = 1 . . . I stand for
the channel index of all available channels. For each pair of elements, a cross-correlation will be
performed

Ri[c] =
1

M −m



M−c−1∑
m=0

|yAi[m]||yBi[m+ c]|, if c ≥ 0

M−c−1∑
m=0

|yAi[m− c]||yBi[m]|, if c ≤ 0

(3.1)

where −M < c < M denotes the time shift index and where each correlation function Ri denotes
an element of matrix R. Taking the absolute value of the time signals has empirically shown to
provide more stable results.

For each pair yAi[n] and yBi[n] signals can be seen similar because of the small distance
between microphones. Especially in case of events happening in a closer distance and hence are
less destructed by reverberation or noise this similarity increases whereas a higher reverberation
leads to a higher independence between signals. Therefore focussing on the maximum of the
correlation function might reveal some useful information in terms of finding the best microphone
group in each room.
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The first approach addresses the maximum variance. Assuming background noise sources
being corrupted by a lot of reverberation cross-correlation will result in broader peaks with
less amplitude. In case of an acoustic source being close to the microphones cross-correlation
between the two signals will be much stronger i.e. Ri[c] for signal pair i at time shift c will result
in a high but small peak and therefore in a higher variance. Finding the maximum variance
for each room leads to five microphone pairs which can be assumed to be closest to an acoustic
event. For one specific room this can be expressed in the following equation

jmax = arg max
j

(
1

2M − 2

M−1∑
c=−M+1

Rj [c]

)
(3.2)

where j = 1 . . . J denote the channel index of all channel-pairs of one room.

Aligning the corresponding signals yAjmin [n] and yBjmin [n] and taking the mean increases the
SNR in case of acoustic events in this room (Eq. (3.3)). This is also known as Delay and
Sum Beamformer and holds if the events direct signal is less reverberated and strong enough
compared to background noise in order to be able to assign the correlation peak to this event.
In this case background noise can be reduced, while the signal itself stays the same.

yref =
yAjmin [n] + yAjmin [n− cmin]

2
(3.3)

According to its basic principle this algorithm will be referred to as Maximum-Variance-
Channel-Selection in the following sections.

The second approach addresses the peak position of each Ri,max which depends on the speaker
position. If the speaker stands right in front of two microphones, the correlation maximum
would be at Ri,max[c = 0]. If the person moves to the left or right, the location of the correlation
maximum becomes positive or negative. Finding the peak Rj [c∆,min] with minimum deviation
from zero comparing all correlation peak positions per room corresponds to the channel group
with a minimum event to microphone path difference.

jmin = arg min
j

(|cj,max|) (3.4)

where cj,max denotes the correlation index of Rj,max. Again, delay and sum beamforming is used
to suppress noise.

In the following sections this algorithm will be referred to as Minimum-Difference-Channel-
Selection.

3.3 Voice Activity Detection

The classification approach used in this thesis to label each time-frame as speech or noise are on
the one hand the DBN which is a state-of-the-art classifier for speech [12]. On the other hand,
a simple VAD algorithm based on variance and low frequency energy thresholding is used for
comparison purposes (see Sec. 3.3.1). In addition, the G.729 VAD and Sohn VAD are used as a
baseline.
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3.3.1 Spectral Focussing VAD

Recall from the speech model of Sec. 2.1.1 the major part of a signal of spoken language is
characterized by its fundamental frequency and strong first harmonics. Computing the spec-
trogram of a speech signal a striped pattern marks the corresponding time regions where each
stripe corresponds to either the fundamental frequency or one of its harmonics. The more noisy
the signal becomes the less visible the pattern occurs. The following algorithm, which will be
referred to as Spectral Focussing VAD, aims to focus on the harmonic parts of speech to perform
VAD. For this, the assumption has to be made that all relevant commands or words are clearly
spoken but not whispered.

The first step addresses the extraction of spectral periodicities by applying a frequency de-
pendent autocorrelation of each time frame of the spectrogram Xest.

Each frame of XR can be seen as a symmetric function with a maximum at its centre corre-
sponding to the frames energy. Assuming random noise with infinite length, any value except
of the centre value would be zero while in the other extreme for a periodic source with infinite
length, the same maximum occurs after every fundamental period in the simplest case. For
shorter signals this behaviour approximately is the same, hence, computing XR preserves the
regions of vowels with its harmonic structure while flattening any non-periodic frame. As the
focus lies in detecting periodic parts of speech, frequency bands of the spectrogram below 60
Hz and above 1 kHz are discarded when computing XR to reduce the influence of possible peri-
odic noise sources. Recalling the symmetric property of autocorrelation one half of XR can be
omitted.

The remaining part of the XR consists of the frame energy at c = 0 which influences the first
n adjacent values at c = 1 . . . n and the remaining correlation values. As the energy value for
noise or periodic sources can’t be distinguished the first n correlation values will be omitted as
well. From this, the function to compute XR can be written as

XR(k, c) =
F

F − c

F−c∑
m=1

Xest(k,m)Xest(k,m+ c) (3.5)

where k = 1 . . .K denotes the frame index of K frames, c = cn . . . F − 1 denotes the correlation
index of interesting correlation bins and F stands for the number of frequency bands of Xest.
The normalization factor compensates the effect of decreasing results with increasing c when
correlating signals of finite length.

Figure 3.3 shows an example of XR. The striped pattern in the second half correspond regions
of voiced speech.
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0

Figure 3.3: The pictures show an example of the spectral correlation. It contains the second block from the
’sim1.wav’ taken from DIRHA DE using channel LA6. It is the beginning of a spoken phrase
which is indicated by the striped regions in the second half of XR.
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The decision whether the current frame contains noise or a periodic source is done by com-
puting two simple features. Considering the flat versus peaky structure of XR depending on
signal characteristic computing the frame dependent variance will reflect this behaviour. Hence,
using a threshold v(k)thr, a decision function dvar can be computed as

dvar(k) =

{
1, if v(k) > v(k)thr

0, else
(3.6)

where the frame dependent variance is computed as

v(k) =

(
1

(2M − 2)XR(k, 0)

M−1∑
c=−M+1

XR(k, c)

)
(3.7)

which is normalized by the corresponding frame energy at c = 0. c = cn . . . F − 1 denotes the
correlation index of interesting correlation bins.

The second feature is derived by computing the frame-maximum of a band-limited version
of Xest. The band-limits correspond to the frequency range of f0 which is fmin = 60 Hz and
fmax = 500 Hz. Again a threshold is introduced resulting in a second decision function dmax

dmax(k) =

{
1, if |Xest|ffF ,max(k) > |Xest|ffF ,max,thr
0, else

(3.8)

where |Xest|ffF ,max(k) = max(Xest(k, ffF )) denote the frame dependent maximum signal and
ffF = fmin . . . fmax stands for reduced number of frequency bands in f .

If both decision functions equal one, the frame contains a harmonic source with sufficient
energy likely originating from voice. Taking this result short gaps of zeros will be removed
originating from non-harmonic phonemes to gain continuous blocks in speech decision.

Figure 3.4 shows the second block of channel LA6 of sim1.wav from DIRHA DE before (a) and
after (b) thresholding. It can be seen, that the threshold used removes frames with less harmonic
sounds resulting in a distinct onset. Although desired, it produces an unwanted fragmentation
as the amount of harmonics in speech varies a lot. This problem can be reduced when using
multiple channels exploiting sound propagation. While a couple of frames being set to zero (i.e.
no speech), the same frames of an adjacent channel still contain enough energy to be labelled
as speech. Hence, as long as a break between harmonic blocks is not detected in all channels it
is assumed, that speech still exists. In case of Fig. 3.4 the second gap might be small enough to
be labelled as speech due to the late arrival of the signal at distant microphones. Following this
rule the number of onsets can be reduced which again leads to a lower false positive rate.

A major drawback of this algorithm is its lack in distinguishing speech from harmonic noise
sources that meet the above threshold conditions. While the algorithm aims to perform as a
fast but still robust VAD by focussing on the harmonic part of speech it should be taken as a
simple approach which will be mainly used for comparison purposes.
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Figure 3.4: The pictures show an example of the thresholding process of speech likely sounds. It contains the
second block from the ’sim1.wav’ taken from DIRHA DE using channel LA6. It is the beginning
of a spoken phrase which is indicated by the strong harmonic speech regions in the second half
of the spectrogram (a). These regions become sharp edged when thresholding is performed as can
be seen in (b).

3.4 Room Detection

Detecting the correct room where speech originates is a crucial task for further signal processing.
To achieve this, two algorithms have been developed based on the TDOA between different
signals of each event.

The first approach follows VAD and can be seen as an onset-detection algorithm. Comparing
the time of the beginning of each word or phrase between each recording enables room detection
by taking the channel where the signal occurred first and assign it to its corresponding room.
The algorithm will be explained in detail in Sec. 3.4.1.

The second approach is more complex to overcome the dependency of the VAD precision
needed for detecting the correct beginning in each channel. It is based on a time-dependent cross-
correlation of the spectrogram Xest which results in a correlogram per frequency bin followed
by the localisation of each correlation maximum. The relative position between these maxima
reveals information about the TDOA making it possible to select the appropriate room. As
this algorithm mainly depends on the similarity between the channel-signals the spectrum is
pre-enhanced in terms of contrast and transient. This makes it independent of its position in
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the signal chain, i.e. whether it is preceding or following the VAD where it is either locating
acoustic events in general or in the latter case determines the position of already detected speech
blocks. This algorithm is discussed in detail in Sec. 3.4.2.

3.4.1 Room Detection based on Onset Detection

The spectrogram Xest analysed by a VAD can be written as

Xest,vad(k, f) =

{
Xest(k, f), if speech detected

0, else
(3.9)

Taking this, word onsets can be defined at a frame k with Xest,vad(k, f) 6= 0 which is preceded
by a frame being zero at all frequencies, i.e. Xest,vad(k − 1, f) = 0, ∀f . To define an onset of a
new word or phrase, this must be valid in all channels to avoid the detection of single onsets at
a time, where the speech signal reaches more distant microphones like for example during short
gaps between words. As these gaps are not necessarily detected in all channels, estimating the
onset during this time could lead to wrong localisations when a gap occurs in a different room.

After finding an onset, the channel where the onset is detected first is considered to be closest
to the speaker and hence the corresponding room is detected as origin. There might be cases,
where the first onset of two channels from different rooms might occur at the same time frame k
because of similar speaker to microphone distances or due to inaccuracies in VAD. If this is the
case, the energy at frame k between these channels is compared by looking for the maximum.
The frame with the higher energy is assumed to be closer at the source which of course only
holds if the signal analysed is not disturbed by other noise sources.

The usual length of phrases is larger than the block size used, hence, assuming the case of
correctly determine the onset in one block, the following might contain the same phrase but
without its beginning. For this, the preceding decision is remembered and the corresponding
room labelled containing speech, as long as enough signal is being detected in the interesting
area between the first block-frame and its last one or rather the next onset if one exists. This
procedure is important as it is far more difficult to determine the precise end of a word at the
end of a phrase. For example, the end of a word often is spoken with less energy compared to
its beginning which again might be missed by the VAD if distance increases.

Depending on the channel set used, it has been shown to be useful to omit onsets in cases
when speech only has been detected in up to 30% of the channels used. Assuming speech-like
noise falsely being classified as speech holds, if speech in general can be assumed to be detected
in most of the adjacent rooms.

While the algorithm is based on very simple steps, it strongly depends on a robust VAD
implementation being as precisely as possible at the beginning of words especially where some
phrase or command starts. This dependency additionally increases with the low time resolution
of the spectrogram. Furthermore it is not possible to locate two speakers at the same time in
different rooms, due to the condition of a global onset which is necessary to relate local onsets to
each other. As the DIRHA DE database consists of overlapping speech segments onset detection
cannot be used without further constraints.

3.4.2 Room Detection based on Correlation

As xs contains more than one channel, it can be seen as a two dimensional matrix of size
#(samples)×#(channels) and hence Xest containing a spectrogram for each channel it can be
seen as a three dimensional matrix of size #(frames) ×#(channels) ×#(frequencies). Xest

therefore forms the basis information for all of the following algorithms.
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This algorithm segments Xest over time focussing on acoustic events. For each segment cross
correlation functions Rij between each channel are computed from which information about the
events location can be extracted. Figure 3.5 shows the diagram of the steps being performed to
achieve room detection.

Normalisation
Event

Detection
Cross

Correlation

Maximum
Localisation

Channel
Detection

Xest X̂est X̃est,m

Rij(c)

cmax(i, j)j

Figure 3.5: Flow-chart of the room detection using correlation. Input is a vector containing spectrograms
of all channels the output is a binary mask corresponding to the room number. Note that after
event detection multiple events may exist where the remaining steps have to be performed for
each event which is marked by the double lined arrows.

Normalisation of Xest is performed in a first step to improve correlation results. it is divided
into two steps. As the focus lies on transient signals normalization aims to extract regions of
acoustic events and sharpen their spectral pattern. In the first step the Root Mean Square
(RMS) value in each frequency band is subtracted

X̂est(k, f) = Xest(k, f)−

√√√√ 1

K

K∑
k=1

X2
est(k, f) (3.10)

Low values as well as the stationary part in each frequency signal of Xest become negative in
X̂est. Setting these values to zero remains the spectral characteristic of transients and increases
sparsity of the spectrum

X̂0(k, f) =

{
X̂est(k, f), if X̂est(k, f) > 0

0, else
(3.11)

The second step doing normalization addresses equal amplitude scales per channel in each
frequency band to ensure that the focus lies only on time information without being corrupted
by varying dynamics between channels. To achieve this, every signal is divided by its maximum
value over time:

X̂est(k, f) =
X̂0(k, f)

maxk(X̂0(k, f))
(3.12)

Figure 3.6 demonstrates the normalization process of the spectrogram. Compared to Xest in
(a) the bottom plot reveals the characteristic pattern over a broad spectrum while suppressing
weak information which is considered to be noise. In addition the signal is less stationary such
that cross-correlation leads to a more robust positioning of the maxima between each other.

After normalisation, Event Detection is performed. Assuming a speech signal combined
with some rhythmic background noise the latter may dominate X̂est and lead to a false decision
in localisation. To avoid this, the spectrogram is divided into smaller blocks around each detected
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Figure 3.6: This figure demonstrates the normalization performed before performing spectral correlation.
In this example, the spectrogram corresponds to the second block of the file ’sim1.wav’ from
DIRHA DE of channel LA6. Note, that the normalized spectrum is shown with normal ampli-
tude, while the top spectrum is plotted taking the logarithm. Especially in the lower frequency
region the signal is less stationary while pattern at higher frequencies become more important.
From this, cross-correlation maxima can be expected to become smaller and therefore time sepa-
ration between each maximum improves.

acoustic event. For this, the mean value per frame in each channel is computed where higher
values indicate signal activity.

X̃est,i(k) =
1

F

F∑
f=1

Xest,i(k, f) (3.13)

where i = 1 . . . Nch denotes the channel index.

As each acoustic event spreads through the apartment the average of X̃est of all channels is
computed. On the one hand, this broadens the area being considered for correlation as different
time occurrences are being overlaid. In addition, this reduces small gaps between words or
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syllables, resulting after normalization.

Xest(k) =
1

Nch

Nch∑
ı=1

X̃est,i(k) (3.14)

Xest(k) is now thresholded by its mean which results in a binary mask indicating whether a
frame belongs to the acoustic event or not.

marea(k) =


1, if Xest(k) > 1

K

K∑
k=1

Xest(k)

0, else

(3.15)

This will result in clusters of frames being labelled with a one around each acoustic event. To
put them together into the desired area a median like rule is applied on marea

marea(k) =


1, if

ka/2∑
o=−ka/2

marea(k + o) > ka
2

0, else

(3.16)

where ka denotes a minimum duration an event is assumed to last.

The event extraction process can be viewed in Fig. 3.7 based on a spectrogram containing
a speech signal as well as music in the background. Taking the sim15.wav from DIRHA DE
a rhythmic music is played by a radio or TV station. When correlating signals of the whole
three second block against each other, this noise type most likely dominates correlation results
of single words. Separating the block in single short events can help to avoid this dominance, as
in most cases, spoken words contain more energy compared to the noise source. In addition, the
likelihood of strong patterns coming from the noise source is reduced when using shorter blocks
for correlation. On the other hand, it has to be ensured to keep a minimum block-size to ensure
sufficient resolution for maximum discrimination.

Figure 3.7 demonstrates the masking steps to extract interesting areas. In (a) the normalized
spectrogram has been averaged over all used channels revealing important areas where signal
spreads through the apartment. Summarizing this spectrogram leads to the bottom plot (b).
Thresholding the mean signal results in short areas of interest represented by the dashed curve.
Simple median filtering leads to the bold curve which in this example extracts to areas of interest.
The first and broader one corresponds to the end of a speech signal, while the shorter one resulted
from the rhythmic background-music.

The Cross-Correlation can be a good indicator when looking for the same pattern in dif-
ferent signals. While the maximum of the resulting function not only denotes a high similarity
but also the relative position between the original signals it also can be used to find the earliest
appearance of the pattern. Using this for room localisation early tests have shown to be more
stable when correlating spectrogram instead of the time-signals although they come with the
lack of a low time-resolution.

The correlation function for spectrograms of infinite length can be written as

Rij(c, f) =
∞∑

k=−∞
Xi(k, f)Xj(k + c, f), ∀i, j = 1 . . . Nch (3.17)
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Figure 3.7: This figure demonstrates the area extraction using the ’sim15.wav’ file from DIRHA DE which
contains a disturbing rhythmic music as noise in the background. The top plot corresponds to the
averaged normalized spectrogram of the fourth analysed block which further summarized leads to
the bottom plot. Here, the dashed curve represent the masking after simple thresholding. Using
a median-filter, the mask concatenates the smaller blocks leading to two areas shown by the bold
curve which will be correlated.

where Xi and Xj are the spectrograms of two channels and i, j = 1 . . . Nch denote the channel
number with Nch as the number of channels. Note that in case of i = j autocorrelation is
performed. As the signal length is finite Eq. (3.17) has to be adapted referring to indexing and
including a weight factor for bias compensation:

Rij(c, f) =
K

K − |c|

[K+c∑
k=1

Xi(k − c, f)Xj(k, f)

]
c<0

+

[
K−c∑
k=1

Xi(k, f)Xj(k + c, f)

]
c>0

 (3.18)

where c = −K . . . 0 . . .K denotes the shifting of Xi against Xj being the index of each corre-
lation function. K stands for the length of Xi and Xj .

At this point, Rij contains a correlation function for every frequency band of Xest. Without
further enhancement or frequency selection rules these functions are summed up to form an
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overall correlation function per channel pair, i.e.

Rij(c) =

F∑
f=1

Rij(c, f) (3.19)

where f = 1 . . . F correspond to the number of frequency bands. Rij(c) can be seen in Fig. 3.8.

The next step addresses Maximum Localisation. In case of no transient signals i.e. without
any short spoken commands or short noises like door smashes, water flush or using household
aids we can assume stationary noise which is less correlated between rooms (see also Sec. 2.2).
The structure of Rij(c) will be flat without distinct maxima except for the case of i = j as
autocorrelation contains a maximum at c = 0.

In the other case assuming an acoustic event Ae with sufficient energy to spread through most
adjacent rooms. Even with the low time resolution of Xest TDOA of Ae between channels is
detectable for signals in adjacent rooms. When the signal has been recorded at each channel,
cross-correlation results in more or less distinct peaks for each Rij . The peak location depends
on the difference dij between li and lj which correspond to the distance between the source
of Ae and microphone i and j respectively. dij is proportional to |c| i.e. a lower difference
in source-microphone distances will lead to a correlation peak closer to c = 0. The worst case
happens with li = lj and i 6= j i.e. if the source position happens to be in the middle between two
microphones. If reverberation conditions are the same it is impossible to perform room detection
just by using correlation. The sign of c at the correlation peaks depends on the position of Ae
related to the microphone i and j. For li < lj the signal arrives later at microphone j and c > 0.
If li > lj the signal will arrive earlier at microphone j hence c < 0.

According to these properties, extracting the position of the maxima of Rij is the next step
of the algorithm, i.e.

cmax(i, j) = arg max
c

(Rij(c)) (3.20)

which results in a Nch × Nch matrix of correlation indices referring to each corresponding
maximum. Each row contains peak positions of Ri=const,j which represent the perspective of one
channel i being correlated with all channels j.

For Channel Detection Assigning the lowest position to its corresponding channel reveals
where the event most likely originates from.

jmin(i) = arg min
j

(cmax(i, j)) (3.21)

Whether the determined channels correspond to the shortest source-microphone distance or
if they just accidentally occurred first due to the low precision in time or noise disturbances is
controlled by a final rule: a room r is found to contain the acoustic source if jmin(ir) correspond
to channels inside this room. In case of using only one channel per room this would mean that
the peak of the autocorrelation of room r has to be the first maximum. This means that if
the first peak of the correlation functions of some rooms corresponds to r but inside this room
jmin(ir) indicates Ae is coming from outside this room it would be illogically to assign Ae to
r. Using this rule, the worst case result would be if the distance between a person and the
microphone in its room is similar or equal compared to the distance between the person and the
microphone of the next room. This might lead to the location of the person in the other room
respectively making a room detection impossible. The better case of this situation locates the
person each time in the same room so that both rooms will be selected.
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Figure 3.8 shows the result when performing spectral correlation using five channels. The title
of each subfigure indicates which channel is correlated against all channels. Each centre peak
corresponds to an autocorrelation function and therefore is not only the highest but also the
most narrow peak compared to the cross-correlation maxima. As the latter tend to broaden a
lot, the maximum of each function is marked by a circle to compare relative distances between
the signals.

To present the underlying principle described above, the signal which has been used for this
plot is a clean speech signal to avoid influence from noise sources. Therefore, the origin of
speech can be assigned to the living room as the first maximum occurs in every case when the
corresponding signal is correlated.

The correlation process of the algorithm described where room localisation is based on the
results of the correlation in each frequency-band of the spectrogram mainly influences its robust-
ness. In addition with its acoustic event based division of the whole spectrogram the algorithm
becomes independent of a preceding VAD i.e. it could perform event-based room localisation
first followed by the classification of each event. Furthermore, the algorithm is capable of locat-
ing more than one event at the same time. For this it is important that the interference between
both events is at a sufficient low level to ensure not to miss one being dominated by the other.
In addition the channel set used influences the success as well especially in terms of TDOA.

November 18, 2015 – 29 –



3 Voice Activity Detector

5 10 15 20

Kitchen

5 10 15 20

Livingroom

5 10 15 20

Restroom

5 10 15 20

Corridor

5 10 15 20

Bedroom

Kitchen
Livingroom
Restroom
Corridor
Bedroom

Figure 3.8: This figure contains a delay example with cross correlation functions. A clean speech version
of ’sim1.wav’ from DIRHA DE has been used and the channel set has been selected using the
Maximum−Energy −Channel− Selection algorithm. Each maximum is marked by circle to
increase visual distinction as cross-correlation tends to result in broad peaks. In all five cases,
the correlation maximum of the living-room signal comes first compared to the others which
indicates that speech originated in this room.
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3.5 Conclusion

Using the different classification or VAD schemes specified with the developed room detection
algorithms in the previous sections, a whole set of combinations of different multi-channel-
VADs can be constructed to perform the desired tasks. This section is a short summary of the
combinations used.

In addition to the DBN-classification VAD, a VAD focussing on certain spectral parts using
thresholds has been proposed which contains sharp onsets and depends on the tonal part of
speech.

As for localisation, two different approaches have been made. The simpler one, onset detection,
depends on a preceding VAD by comparing the TDOA of the beginning of a word or phrase
between different channels. Because of this, it cannot detect two different speakers at the same
time.

The second room detection algorithm is more complex and based on spectral correlation.
It extracts transient parts of the spectrogram which are cross-correlated to find the temporal
appearance of the signal by comparing the correlation-maxima. The algorithm is capable of
localising speech in different rooms at the same time. In addition, it can be used as event
detector and localiser which can be followed by a VAD. In this case, classification only depends
on signals where events have been localised which are more likely to be less destructed by
reverberation and attenuation.
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4
Results

In this chapter results are going to be presented using the algorithms discussed in Chapter 3.
In all cases the German corpus DIRHA DE has been used.

All computations are performed on segments yb[n] of the recorded signal y. Each segment is
three seconds long and the hop size corresponds to one second. The block-length empirically
has been shown to provide stable results without too much interference produced by background
signals. The overlap is necessary to ensure robust Voice Activity Detection (VAD) where only a
couple of frames at the beginning or at the end of the centre block contain speech. Each block
will be labelled as containing speech activity or not. If voice has been detected a number marks
the room where the source was localised. For better readability, no index b will be used for block
indication.

When training a classifier overlapping is rejected to avoid redundancy and computation time
by using each frame three times.

As the sampling rate of each signal equals sr = 16 kHz, computing the spectrogram Y by
using a frame length klen = 512 samples and a hop-size khop = 160 samples yields in a frame
rate kr = 100 Hz and therefore 300 frames/block.

Depending on the experiment a different number of channels i forms the basis signal set for
VAD and localisation which may change its sources every single block. In all cases block-wise
noise reduction will be performed first to get reliable results. The adaptive algorithm used adapts
noise estimation based on noise information from the preceding block following the minimum
statistics approach in [20] (see Sec. 2.2.3). In the experiments, an implementation prvided by
Voicebox4 has been used.

Table 4.1 shows the features used when performing classification with the Deep Belief Network
(DBN). Although based on [12] different dimensions have been used for the DFT- and MFCC-
Features according to [6].

From this two other sets are derived which will be used for classification using the DBN.
The smallest set representing a kind of reference for improvement simply contains the MDFT8-
Features but as energy mel spectrum. It is therefore referred to as Mel-Freq-Energy Features
in the following sections. The second set consist of the 15 best performing features out of the
full feature set after performing a Best-First search on all features and using gaussian mixture
models for classification. In Tab. 4.1 the Element column contains these features where the
number refers to the element inside the corresponding feature. Here, number one basically
corresponds to the lowest frequency or its feature derivative in the first element of a multi
dimensional feature.
4 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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Feature Dimension Element Feature Dimension Element

Pitch 1 1 MFCC8 13 2,4
MDFT 26 MFCC16 13 12
MDFT8 26 LPC 12 2,5,7,10,11
MDFT16 26 21 RASTA-PLP 17 15
MFCC 13 1 AMS 135 47,91,95

Table 4.1: Feature set proposed by Zhang et al. with adapted dimensions according to [6]

For all experiments the sets of channels defined in Sec. 3.2 will be used for comparing efficiency
in terms of performance vs number of channels and the influence concerning different adaptive
approaches.

Tests are performed on each recording of the database leading to representation metrics like
recall and precision for each scenario respectively. The recall represents the relation of all
detected and correctly localised speech fragments, i.e. TP room over all possible fragments of
voice activity. The precision relates TP room and the sum of correctly detected and localised
speech fragments, falsely detected voice activity and any wrong localisation in case of speech
(see Sec. 2.2.4). The results presented in the following section combine the corresponding metrics
by computing the average and standard deviation of the single values.

The results are ordered in subsections as follows: Section 4.1 will present the results of noise
subtraction between different algorithms as well as the performance of VAD and room detection
which are extracted by using background knowledge. Section 4.2 presents the results concerning
VAD and room localisation in terms of recall, precision and F-score (see Eqs. (2.18) to (2.20)).

4.1 Single Performance Analysis

In the following section, the focus lies on single modules of the algorithm. While in Sec. 4.1.1,
results concerning noise subtraction algorithms are shown Secs. 4.1.2 and 4.1.3 presents the
performance of VAD or room detection by exclude the influence between each other. To achieve
this, background knowledge is used in terms of the interpretation of the results. On the one
hand, when performing VAD localisation will be neglected, i.e. decision is made whether speech
exists or not. On the other hand for room detection, only blocks containing speech are taken
into consideration to provide a perfect VAD. Doing this, the overall results should be easier to
interpret.

4.1.1 Spectral Noise Subtraction

Figure 4.1 plots the increase of accuracy when performing spectral subtraction before classifica-
tion. Accuracy is defined as

acc =
TP + TN

Nsp
(4.1)

The DBN VAD is used and room location is provided. As feature set are the Mel-Freq-Energy
features at a varying smoothing-length l used. The baseline indicates the best result without
spectral subtraction.

Using Voicebox, MMSE-implementations based on the work of R. Martin [14] and T. Gerk-
mann [20] is applied on the MDFTl representation of the spectrogram as well as on the clean
uncompressed representation Y . The latter clearly shows the best improvement of up to 4%,
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Figure 4.1: Accuracy increase of classification after performing spectral substraction.

while using a basic feature for classification. The performance between the both implementations
is very similar. Therefore the choice to use the implementation of R. Martin was an empirical
one.

4.1.2 Classification

Figure 4.2 presents the recall and precision values of the different channel sets, when neglecting
the condition of finding the correct room. Hence, if a speaker has been detected it will count as
hit even if the wrong room has been found. For DBN-classification, the full Zhang feature-set
has been used.

The results are plotted for all three configurations containing DBN-classification, i.e. classifi-
cation before room detection via onset detection or spectral correlation as well as classification
following event detection. This is, because results differ dependent on the room detection scheme
used.

When using spectral correlation the results occur to be quite similar. Taken the recal, both
seem to be less dependent on the channel set used. When performing classification first, recall
increases up to 2% but on the other hand precision drops in a similar matter. Interestingly,
using 14 channels seem to have a stronger influence on precision when using classification first.

The result of VAD followed by onset detection is quite different. Especially recall drops highly
which is not surprising as the onset algorithm partially performs classification as well when no
clear onset exist. Since precision is around 95% on average and recall strongly improves when
using a classification scheme like spectral focussing where thresholding produces sharp onsets,
this dependency becomes more obvious. In addition, the results become dependent on the
channel set used. For spectral focus, using the Maximum-Energy-Channel-Selectionset results
in the highest recall while precision is best when using the 14 channels.
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Figure 4.2: Recall and precision focussing on VAD performance. When DBN-classification and spectral
correlation are used, the results are quite similar and less dependent on the different channel
sets. When onset detection is used, its influence on classification can be seen as the detection
algorithm drops signals in case of non-existent onsets. In this case, the threshold procedure of
spectral focus outperforms DBN-classification. In addition, channel dependency increases where
Maximum − Energy − Channel − Selection results in the highest recall when using spectral
focussing.

4.1.3 Room Detection

The results in Fig. 4.3 correspond to room detection performance. To focus on that, recall and
precision are computed on the result of room localisation taking only signal blocks, where speech
successfully has been detected. As in the preceding subsection, the Zhang feature set has been
used for classification.

Taking recall, spectral correlation outperforms onset detection of about 5%. Considering the
order between VAD and room detection, performing the latter first improves recall as well as
precision. Onset detection after DBN-classification in contrast performs poorly where recall is
about 20% lower in all cases. As only successfully detected speech blocks have been used for this
result, the remaining dependency to VAD only refers to the characteristic of the spectrogram
after performing classification which results in frequency dependent smooth and less predictable
starts of a word.

The overall precision is around 70% in general. Except of the case of spectral correlation
preceded by classification the use of 14 channels clearly improves precision of more than 5%.
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Figure 4.3: Recall and precision when focussing on room detection. Using spectral correlation outperforms
onset detection in terms of recall while on the other hand precision is lower in all cases. Onset
detection used on the DBN classified spectrogram performs poorly where recall is about 20 percent
lower in general.

4.2 VAD and Room Detection

The following experiments are ordered according to the localisation algorithms proposed. Taking
onset detection it will be used as room detector preceded by a VAD as it uses the beginning of
detected voice activity for localisation. The VADs used will be the spectral focussing algorithm
which will be compared to the G729B-VAD and Sohn-VAD as well as the DBN classifier, where
different feature sets have been used.

Using the spectral correlation based localiser only DBN will be used assuming its better per-
formance and to focus more on differences caused by varying channel- and/or feature-sets and
because of its independence of acting as a event detector and localiser followed by a VAD or sim-
ply localising detected voice activity. The number of channel combinations used is increased by
two variations of the Maximum-Variance-Channel-Selectionand Minimum-Difference-Channel-
Selection. They will be used in combination by taking one when performing VAD and the other
for localisation and vice versa. To increase readability when labelling plots, abbreviations are
used in figures which are explained in Tab. 4.2.

Performance in terms of recall and precision has been computed on block level, i.e. blocks
are labelled as speech or non-speech. A number indicates where speech originates from or
has been estimated respectively. Ground truth for comparison is determined by extracting
time information from the database. It is provided in samples and is transformed into block
information for comparison.

The following sections give a short description of the experiments made and its characteristics
and present the results.
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Abbreviation Long form

Stat5Ch 5 stationary channels

Stat14Ch 14 stationary channels

Stat40Ch All 40 channels

AdMaxEn
Adaptive channel set using Maximum-Energy-Channel-
Selection

AdMinDiff
Adaptive channel set using Minimum-Difference-
Channel-Selection

AdMaxVar
Adaptive channel set using Maximum-Variance-Channel-
Selection

AdMDMV
Adaptive channel set using Minimum-Difference-
Channel-Selectionfor classification and Maximum-
Variance-Channel-Selectionfor room detection

AdMVMD
Adaptive channel set using Maximum-Variance-Channel-
Selectionfor classification and Minimum-Difference-
Channel-Selectionfor room detection

Table 4.2: Meaning of the abbreviations used in the figures presenting the results.

4.2.1 Room Detection based on Onset Detection

The onset detection based room detection follows the simple rule, that parts of speech arrive at
different times at different microphones. Selecting the channel with the earliest onset therefore
leads to the room where the speech originated. Hence, VAD is a crucial part especially when it
comes to detect the very first frames of a phrase. Depending on the first syllable in combination
with background noise it can be very tricky to decide wether one frame is speech or not. But to
find the earliest onset robust decision making is necessary to ensure proper time relations.

In the following two experiments two different VADs are used to perform this task. The first
one is described in Sec. 3.3.1 which focusses on the tonal part of speech in a narrow frequency
band. While it doesn’t need a training stage by simply using thresholds for decision making, it
can’t distinguish between speech or background noise with strong harmonics in this frequency
band. Similarly, it cannot be used in case of whispering. But for the energy rich voiced parts of
speech finding the correct onset work well.

The second VAD is based on DBN-classification where the right feature set used is crucial
for success. In the ideal case using the perfect features and being able to train the classifier
with an large amount of data classification would work perfectly. As in reality the database
usually is small and the feature set is not perfect, the algorithm will face problems in case of
loud background noise with strong harmonics, soft-spoken sentences or noise being similar to
speech. These problems especially occur at the beginning or the end of phrases which is one
drawback in using this VAD as basis for a robust onset detection.

Experiment 1 - Spectral Focussing and Onset Detection

Figure 4.4 shows the results of the simplest algorithm combination: the spectral focussing VAD
preceded by the onset detection algorithm as localiser. For comparison, results of the combina-
tion with the reference VADs and onset detection are given as well. These combinations have
been made in both orders such that onset detection is acting as simple localiser (labelled with
-loc in legend) as well as localising events when coming before VAD (labelled with -ev).

Results are plotted in terms of F-score, recall and precision over the different channel sets
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used. Figures on the left side show the mean results over all tested signals while figures on the
right side contain the corresponding standard deviation. The database used was DIRHA DE
and only test signals have been used for comparison reasons with the VAD using classification.
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Figure 4.4: Results of Experiment 1 depending on the channel sets used: classification is used for VAD and
room detection done by onset detection. The left three figures present the mean results over all
tested signals in terms of F-score, recall and precision containing different feature sets. The right
three figures contain the corresponding standard deviation. The used database was DIRHA DE .

Just by looking at the F-score, differences between the known VADs (dotted and dashed lines)
and the spectral focussing VAD are significant. While each combination of onset detection and
the G729B and Sohn VAD respectively produce similar results, the spectral focussing VAD is
depending on the channel-set more than 20% higher. It’s strength lies obviously in its kind
of focussing on the spectrum making it much more precise than the other algorithms. But its
strength also becomes a disadvantage in terms of Recall. For most channel combinations it is
outperformed by all other VADs.

This characteristic is a crucial one, as VAD isn’t the only task but the very beginning of
the Distant-speech Interaction for Robust Home Applications (DIRHA) project. For automatic
speech recognition it must be ensured to detect not only the centre part of words but beginning
and end as well. Therefore the result has to be taken with care.

As for the other VADs the result is exactly the opposite. Especially where onset detection is
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used as event localiser, recall is very high while precision has dropped below 40%. So, both VADs
take most events as voice activity resulting in a lot of false positives. Both implementations are
tested with standard settings but one can assume, that they aren’t adapted well enough for the
task. In case of G729B it’s origin has to be taken into account. Developed for mobile devices
it works under totally different conditions. Furthermore its VAD had been added to increase
compression during pauses in speech. Hence, it doesn’t cost the algorithm if too much noise is
misclassified.

Taking a look at standard deviation. Here, the result is very high in most cases making robust
expectations about the classifiers outcome impossible. Only in case of event localisation values
drop below 10%.

The more interesting part is the comparison between the different channel-sets. Again there
exist distinct differences between the two kind of groups. The spectral focussing VAD gets its
best results with the adaptive maximum energy channel set especially in terms of recall.

Experiment 2 - DBN-Classification and Onset Detection

This experiment uses DBN VAD for classifying the signal while onset detection is meant to
perform room detection. The results can be seen in Fig. 4.5. As in the preceding experiment
the DIRHA DE database is used and the results are presented the same way only comparison
now is performed between different feature-sets.

Comparing the mean values depending on the feature sets best case results of recall reach
more than 70% in case of precision even more than 80%. But the overall performance using
this classifier isn’t sufficient. The problem might be the lack of reliably finding the start point
of words. The classifier might detect single values per frame in one channel as being important
and onset detection won’t work any more.

The values become problematic when considering the high standard deviation values. None
of them is lower than 15% hence the range of values to be expected around the mean value
is still more than 30% in best case. A mean value of 70% in this case would indicate that at
best performance classification results have to be expected in the range of 55% and 85%. This
reduces the effective differences of the average results between different features or channel sets
used as their range is highly overlapping.

Comparing the feature sets used, the reduced Zhang features tends to work better in terms
of recall. In the best case it outperforms the full set up to 15% while standard deviation is
about 20%. Compared with the high reduction of the number of features to little more than 5%
the reduced feature set obviously provides better distinction between noise and speech at word
beginnings increasing the robustness of onset detection.

Looking on the different set of channels differences mainly depend on the feature set used.
The recall of the full Zhang feature-set is almost independent of channels used whereas for the
remaining sets the adaptive sets found by maximum variance or energy seem to give better
results. Taking standard deviation into account, it often increases with better performance,
hence, decreasing the influence of the channel set used.
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Figure 4.5: Results of Experiment 2 depending on the channel sets used: classification is used for VAD and
room detection done by onset detection. The left three figures present the mean results over all
tested signals in terms of F-score, recall and precision containing different feature sets. The right
three figures contain the corresponding standard deviation. The used database was DIRHA DE .

4.2.2 Room Detection based on Correlation

Room detection based on correlation is described in detail in Sec. 3.4.2. VAD is done by using a
DBN as classifier. As mentioned in Sec. 4.2.1 the result increases with better features and with
an increasing dataset. But the big difference compared to room detection done by finding the
first onset that correlation includes many frames together looking for the same pattern. So in
case classification at the edges of a phrase is not perfectly done, the phrase itself will be detected
and the pattern matching process dominates as long as noise corruption doesn’t dominate. The
latter should be avoided by classification.

The following experiments use both algorithms but in different time order. In Experiment 1
room detection is done before classification which means that for each longer or group of shorter
events decision is made in which room they occurred. Suppressing everything else, the classifier
only has to detect voice activity. Experiment 2 does VAD in a first step suppressing everything
not being marked as voice. Correlation now only uses this information for room detection. In
both cases the German database has been used.
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Experiment 1 - Event Detection and Localisation and DBN-Classification

In this experiment event detection and room localisation is performed first, followed by clas-
sification of the remaining signals in terms of speech or non-speech. When done perfectly the
classifier only would get less reverberated signals which should be easier to distinguish. The
classifier has been trained without room localisation first which highly improves results in terms
of recall. The overall performance can be seen in Fig. 4.6.
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Figure 4.6: Results of Experiment 1 depending on the channel sets used: first room detection is done by
correlation followed by classification to detect voice activity. The left three figures present the
mean results over all tested signals in terms of F-score, recall and precision containing different
feature sets. The right three figures contain the corresponding standard deviation. The used
database was DIRHA DE .

Looking at the mean values of the result two major conclusions can be made. First, the
dependency between the feature sets is negligible although the Zhang features and the Mel-
Freq-Energy features behave differently. So dependency increasing, when looking at recall and
precision. Second, the overall performance is high especially in case of recall where high mean
values and a low standard deviation make the result more reliable.

Taking the focus on recall which is important for further processing, the Zhang features
outperform Mel-Freq-Energy. This is not surprising but looking at precision, the full set seem
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to win against the reduced one. On the other hand similarly to the preceding section, standard
deviation changes directly proportional which removes the advantage instantly.

Even for different channel sets, only the use of one signal per group seem to stabilize the
results a little more. This could indicate, that the detection and localisation is the crucial part
in this order which could be improved when using more channels per room in case adaptive
selection is not robust enough.

The same holds for the little dependency of feature combinations. Again, if work has been
done clearly, the training data reduces to signals with a far higher Signal to Noise Ratio (SNR)
compared to the requirement of detecting VAD in every room in case voice energy is sufficiently
high. Here, even the signal in the adjacent room lacks a lot of information and becomes more
difficult to distinguish from similar sources.

Experiment 2 - DBN-Classification and Room Localisation

Compared with the preceding experiment the setting now is switched starting with classifying
each signal for speech and use the result for room localisation. Figure 4.7 presents the results.

Focussing on recall the results look very promising reaching almost 90% in the best case. It
looks quite similar to the preceding experiment although slightly worse in terms of precision and
overall standard deviation.

Very interestingls is the almost identical result of the full and reduced Zhang feature sets.
This seems very surprising at first as the results of using onset detection instead of spectral
correlation showed to contain a significant dependency. On the other side it is worth to note
that the correlation process uses the spectral information just being told in which area one should
expect speech and where not. This makes tiny errors at the beginning or during a phrase less
important as the correlation acts as a pattern search over a longer time period. Onset detection
instead is very sensitive to tiny errors and therefore much more dependent on classification
performance.

Again, the difference in using several channel combinations seems not that important at first
but still reaches differences above 5%. In this case the results seem to making the adaptive
set based on the maximum variance between the signals of a microphone pair the most reliable
choice of channels. Lower standard deviation overall and higher mean values for precision lead
to this result even if the difference is not that high.
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Figure 4.7: Results of Experiment 2 depending on the channel sets used: classification is used for VAD and
room detection is done using correlation. The left three figures present the mean results over all
tested signals in terms of F-score, recall and precision containing different feature sets. The right
three figures contain the corresponding standard deviation. The used database was DIRHA DE .
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5
Conclusion

This thesis presents work on the task of using existing algorithms for Voice Activity Detection
(VAD) extending them with a reliable and efficient source localiser to improve performance in
multi-room environments. The mainly used VAD uses a Deep Belief Network (DBN) classifier
which is -once trained - very efficient in both accuracy and speed.

Being part of the Distant-speech Interaction for Robust Home Applications (DIRHA) project
the constraint not only addressed a reliable detection of voice activity but also detecting most
of it. In terms of recall and precision this means, that a higher rate of false positives, i.e. a
lower precision is more acceptable than a higher rate of speech being missclassified as noise, i.e.
a lower recall.

During this work, it quickly showed to be a task containing lots of parameters to be tuned.
While developing an algorithm for room detection, noise enhancement and feature set compari-
son have been equally important as finding a reliable way in reducing and optimising the number
of signals used to reach that goal. In the end, room localisation algorithms have been developed
as well as a simple VAD which could be used as a feature indicating voiced speech included in a
larger feature set. Similarly several attempts in finding an adaptive way of combining the best
signals per room making selection more robust have lead to more parameters.

It has been shown that starting with the work of [12] the VAD successfully could be extended
by an algorithm being able not only to perform room detection but also to allow overlapping
speech of speakers in different rooms.

The results to focus on the single components like VAD and room detection as well as on
the overall performance of the complete algorithm. In the following sections the results will be
further discussed. In Sec. 5.2 a comparison is made between the performance of the different
settings. Section 5.3 provides a conclusion and Sec. 5.4 will give an outline about future work.

5.1 Overall Performance

The overall performance of the different configurations has been shown to be quite diverse. While
for one setting average F-score values hardly exceeded 60% the next algorithm almost reached
an F-score of 80%. Looking at the underlying metrics of F-score the combination of VAD and
localisation algorithm either results in a high recall at the cost of being less precise or at a high
precision but with an enormous drop-out rate. As for VAD, recall is the more important metric
the comparison will focus on it. At best, an average recall of almost 87% has been reached.
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Beside the average performance, a second important key aspect addresses standard deviation
of recall and precision between the results of each test. In general the resulting standard deviation
is high with values between 15% and 20% where recall usually performs better compared to
precision. One reason for this addresses differences in signal quality such as noise sources or
speech intensity.In addition the segmentation into 60 blocks per recording needs to be considered
as well as a block is labelled as speech without care how much frames actually contain voice
activity. On the other hand, RE and PR depend on two factors i.e. VAD and room detection
which in a similar manner influences the variation. An evaluation about these factors however
didn’t have been performed which means, that the interpretation of the standard variation of
the metrics cannot completely be projected onto the algorithm.

Looking at VAD and room detection separately gives insight whether one part of the detection
and localisation process works better. In both cases the recall is above 85% in case of room
detection it even exceeds 90% when using event detection and DBN-classification. For DBN-
classification and spectral correlation, the difference can be seen when looking at the precision.
Here, VAD is more stable mostly being above 85%, whereas the precision of room detection lies
below 70% in most cases.

Using the G729B- and Sohn-VAD for comparison shows that most configurations outperform
the results obtained with these VADs mostly due to low precision. As no special optimisation
of the algorithms has been performed, the results have to been taken with care. Comparing
the performance of the DBN classifier to additional classification schemes like Support Vector
Machine (SVM) or Linear Discriminant Analysis (LinDA) had to be stopped due to limitations
of the implementation used.

5.2 Comparison

When comparing the results of the different combinations of the algorithms used one combination
doesn’t seem to work together. When performing the classification of the spectrogram the
influence of signal strength and background noise as well as the training data available lead to
a less distinct decision at the start and end of a phrase. For the onset detection algorithm used,
a clear word onset is essential especially when comparing the temporal occurrence between
multiple signals. If this condition can’t be met, the algorithm tends to loose certain speech
fragments.

The spectral focussing approach aims to prevent this loss by thresholding the signal in such
a way, that word beginnings become easy to detect for the algorithm as well as comparable
between each channel. Results indeed improved compared to DBN-classification but still contain
low values of the recall. Although precision is high, it won’t be useful for VAD, as recall is about
70% in the best case which easily is outperformed by the remaining algorithm combinations.

Using DBN for classification and spectral correlation for room detection resulted in the best
performance which could be observed. Therefore the following comparisons made address this
combination. Testing the database by performing classification followed by room detection as
well as by starting with localisation in terms of event detection followed by classification showed
to be different in detail. While not very much apart, starting with localisation yields the highest
recall on average.

Looking closer on the performance of the localisation-classification scheme in terms of VAD
and room detection, the event detection approach is outperforming in case of room detection
(see Sec. 4.1.3). The reason for this could be the normalization and segmentation process of
the spectral correlation algorithm. Here, the complete signal ensures, that all transient details
in all frequencies potentially being important will be enhanced such that correlation performs
more robust. In case of classification being first, the transient characteristic of the spectrogram
is altered in terms of where the beginning of speech has been detected in different channels and
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how much frames are taken into consideration respectively.

After all, the probably largest difference lies in the training data. In case of classification
being first, training has to be performed on all channels. This means, that the classifier has
to distinguish between the clean speech signal and the reverberated and attenuated versions
recorded in the adjacent rooms. When performing event detection, classification only needs
to be performed where events have been localised which reduces computational cost as well as
provides a more distinct way to distinguish between speech and noise data.

Recall from the results of the classification and correlation algorithms both combinations
perform quite similar in terms of the different feature and channel sets used. Interestingly, the
choice of the feature set doesn’t seem to be very important as all three sets result in a similar F-
score. When looking at the recall, differences between the log-spectrum features and the Zhang
feature sets appear. Here, the latter outperform the simple feature set in both, the average and
standard deviation results while being less precise at the same time. The differences between
the full and the reduced versions of the Zhang feature set can be neglected. Compared to the
huge difference concerning the number of features used the reduced feature set can be considered
outperforming as it works much more efficient.

As for the features, the results in terms of different channel sets is very similar between the
two combinations examined. While there is no single channel set being clearly superior to the
remaining, some observations can be made. In case of starting with event detection, the constant
14 channel set as well as the adaptive 5 channel maximum energy set perform better in terms
of precision although in this case being dependent on the underlying feature set. In case of
classification being first, only the channel selection based on maximum energy seem to contain
this advantage. For both combinations the dependency on the channel set of the recall clearly
is stronger for the log-spectrum features with differences up to 15% while the variation between
values for the remaining feature set won’t exceed 10%.

5.3 Conclusion

Taking all together the question arises which algorithms in which combination produce the best
results. As for VAD the highest possible recall is assumed to be the most important compared
to precision or f-score, the combination of event detection followed by classification wins. Here,
the highest recall on average with the lowest variation has been achieved.

Comparing the features, the reduced Zhang feature set holds the advantage of a low compu-
tational cost and a slightly better recall on the cost of a noticeable lower precision compared to
the full feature set. Even with this drawback, it might be the better choice in the competing
final algorithm.

At last, the choice of a channel set depends on several factors. The highest recall is reached
by three adaptive approaches as well as the constant 14 channel set. The latter outperforms the
remaining possibilities in terms of the overall performance b reaching the highest f-score as well
as the lowest standard deviation. The major disadvantage in using this set is the number of
channels which is almost three times the number of channels of the remaining sets. From these,
the Maximum-Variance-Channel-Selectionwins the competition by focussing on the recall.

Deciding about the feature and channel set in this case is quite subtle as differences are
minimal. Depending on additional approaches to improve the results, the need of reconsidering
the decision about what to use might occur.
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5.4 Future Work

The results being achieved can be seen as a good starting point for further investigation. Taking
the setting which came closest to the constraints finding the major weaknesses of each component
should improve the robustness of the algorithm.

As already mentioned, studying the influences of block-size or - more precisely - the influence
of missing starts/stops of a command or phrase on standard deviation of all results can increase
robustness for example when applying a hangover scheme. Depending on its characteristic, recall
can be almost arbitrarily increased but on the cost of precision.

In addition attempts have been made in finding a more precise interpretation when miss-
detections occur by simply dropping parts of the simulations where certain noise types occurred.
While the result was expected to improve when suppressing the influence of certain noise types,
it quickly proved to be much more complex.
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