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Abstract

Electronic structure of self-assembled monolayers
with distributed dipole moments

David A. Egger
Institute of Solid State Physics, University of Technology, Graz

8010 Graz, Austria

The adsorption of self-assembled monolayers (SAMs) on metal electrodes
is well known to enhance the performance of (opto)electronic devices. In
detail, polar SAMs were shown to critically influence the work function and
electronic structure at the metal/organic interface. Attaching polar groups
or changing the docking group of the SAM-forming molecule was discussed
as a tuning strategy in that context. In the present work, the impact of po-
lar units built directly into the molecular backbone is investigated. There-
fore, slab-type band-structure calculations at the density function theory
level are carried out for oligopyrimidines. The resulting polar backbones
are compared to SAMs where strong dipole moments are introduced by
end-group substitutions. An entirely different evolution of the quantities
of interest with the backbone length is found for the two systems. More-
over, a pronounced reduction of the Kohn-Sham gap was found to be the
consequence of a collective electrostatic effect present in such a molecular
ensemble. Furthermore, electronic transport in a device based on mono-
layers similar to the aforementioned SAMs is considered. This is done by
calculating transmission coefficients applying a Greens function approach to
dithiolates bonded to two electrodes. The necessary theoretical and com-
putational knowledge gained during a visit at the Humboldt Universität zu
Berlin is reviewed, tested and compared to the literature. For the investi-
gated systems, significant differences in their transport behavior could be
observed. They were, however, identified as a consequence of the properties
of the isolated SAM-forming molecules. Finally, the the surface-density of
states and surface band-structure are of oligopyrimidine SAMs calculated
by Green’s functions techniques.



Abstrakt

Elektronische Struktur selbst-assemblierter Monolagen
mit verteilten Dipolen

David A. Egger
Institut für Festkörperphysik, Technische Universität Graz

8010 Graz, Austria

Die Adsorption selbst-assemblierter Monolagen (SAMs) hat sich als Meth-
ode zur Effizienzsteigerung (opto)elektronischer Bauelemente bewährt. Ins-
besondere konnte mit polaren Monolagen die Austrittsarbeit von Metallelek-
troden und die elektronische Strukur an der Grenzfläche Metall/organisches-
Molekül modifiziert werden. Die Substitution polarer Gruppen an den jew-
eiligen Enden der SAM wurde in diesem Kontext als Tuning-Strategie disku-
tiert. In der vorliegenden Arbeit wird nun der Einfluss polarer Gruppen
innerhalb der Monolage untersucht. Zu diesem Zweck werden ”slab-type”-
Bandstrukturrechnungen auf Dichtefunktionalstheorie Niveau für Systeme
mit Dipolen entlang der Molekülachse durchgeführt. Diese polaren ”Back-
bones” werden mit ihren Endruppen-substituierten Pendants, deren ”Back-
bones” entsprechend nicht polar sind, verglichen. Hinsichtlich der Evolu-
tion physikalischer Observablen mit der Dicke der Monolage wurde zwei
vollkommen verschiedene Verläufe gefunden. Darüber hinaus wurde eine
prononcierte Reduktion der Bandlücke innerhalb der Monolage als Folge
kollektiver elektrostatischen Effekte festgestellt. Weiters wurde der elektro-
nische Transport innerhalb eines Bauelements basierend auf sehr ähnlichen
SAMs untersucht. Die dafür notwendigen, während eines Forschungsaufen-
thalts an der Humboldt Universität zu Berlin erworbenen, theoretischen und
programmtechnischen Grundlagen werden vorgestellt, getestet und mit der
Literatur verglichen. Für die untersuchten Systeme konnte der Unterschied
im Transportverhalten auf die Eigenschaften der jeweiligen Einzelmoleküle
zurückgeführt werden. Weiters werden die Konzepte der Oberflächen-
Zustandsdichte und Bandstruktur vorgestellt.
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Chapter 1

Introduction

Those who have handled sciences have been either men of experiment
or men of dogmas. The men of experiment are like the ant;they only
collect and use:the reasoners resemble spiders, who make cobwebs
out of their own substance. But the bee takes the middle course; it
gathers its material from the flowers of the garden and of the field,
but transforms and digests it by a power of its own.

Francis Bacon[1]

With the spirit of this brilliant aphorism by Francis Bacon the present
contribution arrogates to take the role of the bee. Computational solid-state
physics, on the edge between theory and experiment, is the topic of this work.

This thesis investigates the electronic properties of self-assembled mono-
layers(SAMs) adsorbed on metal surfaces. Such monolayers are promising
candidates in nanotechnology [2]. In the following, I will overview the con-
tents:

We investigated the electronic structure of SAMS, where dipoles are dis-
tributed along the backbone, by means of density functional theory based
band-structure calculations. The theoretical basics of electronic structure
calculations are summarized in chapter I. We also considered the transport
characteristics of monolayers. Calculating electronic transport needs a few
elements of many-body theory which are introduced in chapter II.

Chapter III starts with reviewing the microscopic origin of SAM-induced
interface modification. There, literature that helped me to understand the
energetics of organic monolayers on surfaces, is summarized. Afterwards the
methodology of our calculations is listed. Ferdinand Rissner helped me to
use the VASP code and enabled me to perform band-structure calculations.
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The main topic in chapter III is the distributed dipoles approach. This
approach is realized with monolayers of different length built of pyrimidine
rings. There, we first investigate how the situation changes when elon-
gating the monolayer. We found a significant difference when comparing
those monolayers to head- group substituted biphenylthiols. Those contents
were published by David A. Egger, Ferdinand Rissner, Gerold M. Rang-
ger, Oliver T. Hofmann, Lukas Wittwer, Georg Heimel and Egbert Zojer
in Phys.Chem.Chem.Phys. [3]. Ferdinand Rissner supported me with his
knowledge on band-structure calculations and introduced me into computa-
tional solid-state physics. His contributions to this section also concerned the
interpretation of the results in a profound way. Gerold M. Rangger helped
me in understanding and analyzing the obtained results. Oliver T. Hof-
mann supported this work in fruitful discussions concerning the polarization
of such polar molecules. Lukas Wittwer performed a part of the geome-
try optimization in GADGET. Georg Heimel made significant contributions
to the scientific discussion and to the published manuscript. Egbert Zojer
contributed frequently to the topic and had the idea of distributing dipoles
along the backbone.

The second scientific aspect in chapter III concerns the investigation of
the electronic structure of the aforementioned monolayers of polar building
blocks. We found the Kohn-Sham gap to be reduced when increasing the
packing density. We can relate those findings to a collective electrostatic
effect present in such an ensemble of polar molecules. In calculations on the
isolated terpyrimidine molecule we found that the ordering of the orbitals
depends on the applied functional. That finding may be related to what is
known as the self-interaction error of GGA. This part of the thesis was initial-
ized by the fact that the IP on the docking side of the free-standing SAM was
changed or remained constant when making the backbone longer, depending
on the nitrogen position within the pyrimidine monolayers. That puzzle was
resolved by a hypothesis: I suggested that the orbitals are localized in the
monolayer. I was introduced to the LDOS by Egbert Zojer and to the RDOS
by Ferdinand Rissner. We found the orbitals to be localized in the SAM
and the hypothesis was confirmed. After I found that a reduction of the
band-gap is the consequence of that localization, we discovered the HOMO
to have σ character. Oliver T. Hofmann helped me in performing several
calculations in GAUSSIAN. There we found a functional dependent molecular
ordering. Leeor Kronik and Amir Natan brought the self-interaction error to
my mind during their visit in Graz, Anna M. Track and Anne-Marie Kelterer
suggested very helpful publications in this context. We analyzed the coverage
dependent electronic structure of those systems in great detail. Here, Ferdi-
nand Rissner was responsible for plotting the LDOS at several coverages and
could streamline the scientific aspect of the topic in several discussions. He
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also made significant contributions to the present composition of the text.

In chapter IV the possibility of calculating electronic transport on the
atomic scale is explored. By means of Green’s function techniques we derive
a formalism to calculate IV-curves within the DFT framework. The theoret-
ical fundamentals and computational implementation, gained during a visit
to the Humboldt Universität zu Berlin, are introduced and explained. The
codes are tested and compared with the literature for a device based on
biphenyldithiolate. We apply the approach to a device based on a SAM with
distributed dipoles and can relate the results to properties of the isolated
molecules. Furthermore, preliminary results in terms of the surface DOS
and surface band structure are shown. Georg Heimel introduced me into this
topic, provided helpful literature and explained the computational implemen-
tation. He also had the idea of considering the surface band structure. Egbert
Zojer suggested the two monolayers as candidates for electronic transport,
participated in several discussions and helped me to perform calculations on
the isolated molecule.
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Chapter 2

Theory I: Equations of motions
for many particles

The problem in theoretical condensed matter physics is to solve the equations
of motion for atomic systems. While hydrogen like atoms are indeed ”pencil
and paper” problems systems constistent of more particles cannot be solved
analtytically. The field of solid state theory did invent a handful of clever
ways around this unsatisfying situation. Some of them have been applied in
this work and are introduced in the following. The content described in the
following stems from Refs. [4, 5].

2.1 Decoupled motion of electrons and pro-

tons or: the Born-Oppenheimer approx-

imation

The motion of an atom can be described as the motion of its electrons and
the positive ions. Those particles behave correlated due to the wide rang-
ing Coloumb interaction. As describing such a correlated motion is a rather
complicated problem, Born and Oppenheimer introduced [6] the concept of
seperating the motion of the ions and electrons. Instead of one wavefunction
describing the behavior of ions and electrons one has two seperated wave-
functions, which together represent the total system:

Ψtotal = ψelectrons × ψions. (2.1)

Figure 2.1 visualizes the Born-Oppenheimer approximation: The ions are
pinned in space while the electrons ”sneak by them“ (Felix Bloch) and we
solve the equations of motion of the electrons. This at a first glance maybe
crude approximation is justified by the fact that the mass of a proton is
around 2000 times bigger than the mass of an electron. It is therefore rea-
sonable to make the assumption that the motion of the light electrons does
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Figure 2.1: Pinned positive ions and ’sneaking’ electrons within the Born-
Oppenheimer approximation

not affect the heavy ions. Thus the motions of electrons and ions are not
considered simultaneously but seperated: The nuclear part of the system is
kept fix while the electronic equations are solved and vice versa.
We therefore split our approach in two parts. First we will derive how to
solve the equations of motion for electrons, and then use the result to find a
solution for the ions.

2.2 From 3N to 3 variables - Density func-

tional theory

The challenging part in solving the equations of motion for many electrons
is the very large number of variables. The (time-indipendent) many electron
problem is described by the corresponding Schrödinger equation:

ĤΨ =
[
T̂ + V̂ + Û

]
Ψ =

[
N∑
i

− ~2

2m
∇2
i +

N∑
i

V (ri) +
N∑
i<j

U(ri, rj)

]
Ψ =

= EΨ. (2.2)

Here, Ψ = Ψ(r1, . . . , rN) is a function of 3N spatial coordinates (we neglect
the N spin coordinates in the discussion of the theoretical basics). Typical
physical problems deal with N = O(1024) particles. Thus it is absurd to even
think of solving Eq. 2.2 in a straightforward manner.
An elegant pathway to handle this dilemma goes back to the briliant idea of
Pierre Hohenberg and Walter Kohn to represent the system by its electron
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density n(r) [7] (this concept is in fact quite a few years older and was
already known as the Thomas-Fermi model [8]). They showed that there
is one unique ground-state wavefunction Ψ0(r1, . . . , rN) associated to the
ground-state electron density n0(r)

Ψ0(r1, . . . , rN)↔ n0(r). (2.3)

This argument can be motivated by the fact that the ground-state electron
density n0(r) is a functional of the ground-state wavefunction Ψ0(r1, . . . , rN)
itself

n0(r) = n0[Ψ0(r1, . . . , rN)] = 〈Ψ0|
N∑
i

δ(r − ri) |Ψ0〉 . (2.4)

Changing the density n(r) would change the external potential V̂ in Eq.
2.2, which, as Hohenberg and Kohn showed, manifests in a change in the
wavefunction of the system. Given an external potential, there is a unique
way to get the ground-state electron density n0 and therefore the ground-state
wavefunction Ψ0! Of course the ground-state energy E0 is also a functional
of the ground-state wavefunction

E0(r) = E0[Ψ0(r1, . . . , rN)] = 〈Ψ0| Ĥ |Ψ0〉 . (2.5)

In this way Hohenberg and Kohn have mapped the quantity of interest from
3N onto three variables. According to what is known as the Ritz method [9]
one has to solve the variatonal problem

δE[n(r)] = 0 N.B.

∫
d3rn(r) = N (2.6)

to finally arrive at the ground-state wavefunction and energy, the problem is
solved!
This is put into perspective by the fact that the complete energy-density
functional

E[n0] = V [n0] + T [n0] + U [n0], (2.7)

is not known. Only the external potential in Eq. 2.7 can be written straight-
forward as a functional of the electron density

V [n0] =

∫
d3r v(r)n0(r), (2.8)

the kinetic part T [n0] and the interaction part U [n0] in Eq. 2.7 are not that
easy to state.
Walter Kohn and Lu Jeu Sham introduced a concept to address this unsat-
isfying situation [10]. The basic idea of Kohn and Sham is the following:
The interaction part of the Hamiltonian is built containing the Hartree term

6



of the Hartree-Fock approach (representing the exact local Coloumb interac-
tion) and two unknown parts, namely the exchange and correlation terms:

U [n(r)] =
e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
+ Ex[n(r)] + Ec[n(r)]. (2.9)

Ex[n(r)] and Ec[n(r) remain unknown and one has to use approximations to
make use Eq. 2.9. The kinetic part of the full Hamiltonian is approximated
by the standard kinetic-energy operator for a Slater-determinant basis:

T [n(r)] =
N∑
i

∫
d3rψ∗i (r)

(
− ~2∇2

2m

)
ψi(r). (2.10)

Here the ψi are meant to be the atomic orbitals that constitute the wave-
function by a Slater-determinant. Thus Eq. 2.10 is the kinetic term for non-
interacting particles. We are of course dealing with interacting particles, so
to take the kinetic represantation of non-interacting particles seems to be
wrong. But that’s the point: Everything that is beyond the non-interacting
situation was already included in Eq. 2.9, i.e. the exchange and correlation
terms. We can perform the variational Ansatz, again by using Langrange
multipliers to successfully arrive at the famous Kohn-Sham equation:[
− ~2

2m
∇2
i + v(r) + e2

∫
d3r′

n(r′)

|r − r′|
+
δExc[n(r)]

δn(r)

]
ψi(r) = εiψi(r). (2.11)

Solving equation 2.11 in a self-consistent manner is what is known as density
functional theory (DFT). This procedure is in principle exact and without any
approximation.
De facto no one knows the analytic expression for Exc[n(r)] in Eq. 2.11.
Therefore, approximations are essential for practical DFT. Two state of the
art exchange-correlation functionals were applied throughout this thesis: The
PW91 [11] functional implemented in the VASP code [12] and the PBE [13]
functional implemented in the SIESTA code [14]. Both rely on a generalized-
gradient approximation (GGA) and depend on the electron density and its
gradient at point r. Non-local phenomena such as Van der Waals-forces are
not treatable within the description of the system by such local functionals.

2.3 Basis sets

Eq. 2.11 implies the need of a proper basis to expand the ψi(r):

ψi(r) =
∑
t

at(k)Φk,t(r). (2.12)
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The resulting basis functions Φk,s(r) are then called a basis set. To benefit
from expressing the wavefunction using a basis set, it has to be finite. There-
fore the introduction of a basis set is an approximation. The usual treatment
is to think of a solid as an infinite repetition of one unit. We immediately
recognize that this reduces the problem from describing the motion of the
particles in the whole solid to describing it in just a part of it. The part of
the solid to which the problem is reduced to is called unit cell and infinitely
expanded in space afterwards. This treatment is realized by periodic bound-
ary conditions; so the physics in the solid has to be same in every unit cell
(here we focus on the expectation value of the wavefunction, but of course
the potential and any other observable is per definition periodic):

|ψ(r + R)|2 = |ψ(r)|2. (2.13)

Here R means the unit vector. Felix Bloch in 1936 [15] derived the suitable
form of wavefuctions representing this philosophy. He showed that every
periodic wavefunction in the sense of Eq. 2.13 has to have the general form:

ψk(r) = uk(r)eikr. (2.14)

Those are called Bloch waves, Bloch’s theorem states that every wavefunction
obeying Eq. 2.13 is a plane wave modulated by the lattice periodic function

uk(r) = uk(r + R). (2.15)

You maybe noted the k indices in Eq. 2.14 and Eq. 2.15 indicating the
periodicity in reciprocal space.
We now know how the wavefunction in general has to look like. The two ways
to approach this general form applied thoughout this thesis are described in
the following.

2.3.1 Plane waves

Plane waves of the general form

Φk,s(r) =
1√
Ω
ei(k+Ks)·r (2.16)

are suitable basis functions for constructing Bloch sets. Is seems not suprising
that the more plane waves one takes into account to represent the wavefunc-
tion, the more accurate the results get. Thus the plane wave Ansatz relies
to high computational effort in order to achieve required accuracy.

8



2.3.2 Atomic orbitals

One shortcoming of the plane-wave method is that its computational costs
scale with N3, where N is the number of electrons in the system. An atomic-
orbital expression [16]

Φk(r) =
∑
n

eikRnΦn(r −Rn), (2.17)

with Φn is an atomic orbital ψα, is implemented in the SIESTA code. SIESTA

is a linear scaling DFT code where the ψα are built of a numerical radial
part and spherical harmonics. But the key attribute of this basis set is its
locality: The atomic orbitals are localized and there is no ’infinite’ long-range
interaction in the system. This is an important feature for some problems in
condensed matter physics (vide infra).

2.4 The link between the seperated motions

of electrons and ions - Hellmann-Feyn-

man Theorem

The Born-Oppenheimer approximation meant to keep the ions fixed and
solve the Schrödinger equation for the electrons within the DFT framework.
Now the influence of the electrons on the ions is needed. Several authors
(e.g. Wolfgang Pauli, Hans Hellmann, Richard Feynman [17]) indipendently
proofed the following Theorem:

∂E

∂λ
=

∫
ψ∗(λ)

∂Ĥλ

∂λ
ψ(λ) dτ . (2.18)

Eq. 2.18 is known as the Hellmann-Feynman Theorem and states that the
derivative of the energy with respect to some variable λ is a functional of the
λ-dependent wavefunction. Now if λ is thought to be the vector r and the
Hamiltonian and wavefunction are obtained via DFT one can calculate the
intra-molecular forces and solve the equations of motions for the ions.
This was carried out by the external optimizer GADGET [18] in internal co-
ordinates (solving the equations of motion in internal coordinates delivered
up to 0.3 eV smaller total-energy values). The Hellmann - Feynman forces
obtained within the DFT calculation are minimized via a geometry optimiza-
tion in GADGET. Therefore, we search for a local mimimum on the potential
energy surface.

9



Chapter 3

Theory II: A few concepts of
many-body theory

The Kohn-Sham equation 2.11 is an effective one-particle equation. The
one-particle approximation neglects many-body effects such as the correlated
behaviour of electrons, and maps the many-body problem on Schrödinger-
like one-particle equations such as Eq. 2.11 with an effective potential. This
framework can’t handle every interesting physical phenomenon.
Without any claim to be complete at this point, a few concepts of many-body
theory are introduced in this chapter. A very intuitive guide through this
exciting field was written by Richard D. Mattuck [19]. The following is based
on Ref. [19].

3.1 Quasi particles

The quasi-particle concept and important concequences can be understood
via a simple ’Gedanken’ experiment: You may think of a box full of negative
ions (-). Now consider a positive ion (+) that travels through the box (Figure
3.1). What happens is that the positive ion gets surrounded by some negative
ones due to Coloumb interaction. The resulting particle (positive ion and

Figure 3.1: The quasi-particle picture - positive ion covered by negative ions
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some covering negative ion) is now called a quasi particle. In quantum
physics the quasi particle is also called the coated or dressed particle. Without
its cloud the coated or dressed particle is called the real or bare particle. So
we have:

real particle + cloud = coated particle (3.1)

or equivalently

bare particle + clothing = dressed particle. (3.2)

From this intuitive picture one can guess some basic properties of a quasi par-
ticle: First, if there are already other positive ions in the system and hence
other positive ions coated by negative and vice versa negative ions coated by
positive, the interaction between those ’shielded’ quasi particles will be much
weaker than between the unshielded bare particles (this is in fact the rea-
son why the ’independent electron approximation’ or ’Sommerfeld’ model for
metals is quite successful despite its crude assumption of independent par-
ticles: each electron pushes other electrons away and creates a surrounding
shield - electrons in a metal are in fact nearly independent quasi particles).
Second the quasi particle travelling through the system with p will still in-
teract with other present quasi particles and thus keeps its momentum p
only for an average time τp . So the quasi particle does travel through the
system with momentum p for a time τp until it gets scattered. τp is called
the lifetime and we can note:

Quasi particles have a lifetime τp. (3.3)

This simple conclusion is of big importance as we know from elemantary
quantum physics that non-interacting particles do have infinite lifetime.

3.2 Self-energy

Due to the cloud or clothes the particle does have to carry ’on its back’, a
new expression for the energy can be given:

ε′ =
p2

2m∗
, (3.4)

where m∗ is called effective mass representing the cloud. ε′ is the energy of
the quasi particle and differs from the energy ε of the bare particle

ε =
p2

2m
. (3.5)

The difference in energy of the quasi and the bare particle is called the self-
energy of the quasi particle:

εself = εquasi − εbare. (3.6)
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The term self-energy stems from the interpretation the particle enters the
many-body system, creates a cloud of particles coating it, disturbing its
motion and changing its energy. Thus, the self-energy is the energy corre-
sponding to the particle interacting with itself via the many-body system.

3.3 The quantum mechanical propagator

The classical propagator is defined as the probability for propagation from
point 1 to point 2. Due to the various (possible) processes along the path
(e.g. the particle gets scattered) one can consider the propagation in several
pieces and, in the classical case, sum them up to arrive at the total probability
P (2, 1):

P (2, 1) = P (process I) + P (process II) + ... (3.7)

The fundamental difference in the quantum case is that the propagator
G(2, 1) is now the sum of each processe’s probability amplitude

G(2, 1) = G(process I) +G(process II) + ... (3.8)

and the total probability P (2, 1) yields:

P (2, 1) = G∗G = |G(I)|2 + |G(II)|2 +G(I)∗G(II) +G(II)∗G(I) + ... (3.9)

In the quantum case, the total probability is the sum of the probability of
each process |G(i)|2 and of interference terms. A very plausible interpretation
of those interference terms and how they govern the quantum world can be
found in the first chapter of [20].
We now focus on the quantum mechanical propagator G and will see how
the propagator looks like for the quasi particle. First we define the quantum
mechanical propagator:

iG+(k2, k1, t2 − t1)t2>t1 = probability amplitude that, if at time

t1 we add a particle in Φk1(r) to the

interacting system in its ground state, (3.10)

the system will be inits ground state with

an added particle in Φk2(r) at time t2.

The Φk(r) are arbitrary single-particle eigenstates, the i is convention and
the + superscript tells us that t2 > t1. We also define:

iG+(k2, k1, t2 − t1)t2≤t1 = 0. (3.11)

We can choose the Φk(r) to be eigenstates of the unperturbed Hamiltonian
H0:

H0 =
−∇2

2m
+ U(r). (3.12)
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Then, if we set U(r) = 0 (i.e. the free particle case), by the time-indipendent
Schrödinger equation, we get:

Φk(r) =
1√
Ω
eikr; εk =

k2

2m
. (3.13)

We can assume the wavefunction at time t1 to be the wavefunction of the
free particle to be Φk1(r):

ψ(r, t1) = Φk1(r). (3.14)

If we let the wavefunction evolve, by the time t2 we will find

ψ(r, t2) = Φk1(r)e−iεk1
(t2−t1). (3.15)

We can now calculate the propagator of the free particle G+
0 (no interaction;

also called free propagator), i.e. the probability amplitude for the particle
being in state Φk2(r) at time t2:

〈Φk2|ψ(t2)〉 =

∫
d3r Φ∗k2(r)ψ(r, t2) = e−iεk1

(t2−t1)

∫
d3r Φ∗k2(r)Φk1(r) =

= e−iεk1
(t2−t1)δk2,k1 . (3.16)

Applying Eq. 3.8 we arrive at the free propagator:

G+
0 (k2, k1, t2 − t1) = −iΘt2−t1e

−iεk1
(t2−t1)δk2,k1 = δk2,k1G

+
0 (k1, t2 − t1), (3.17)

or in general
G+

0 (k, t2 − t1) = −iΘt2−t1e
−iεk(t2−t1). (3.18)

Θ is the unit-step function and preserves Eq. 3.11. We perform the Fourier
transform of the free propagator

G+
0 (k, ω) = −i

∫ ∞
−∞

d(t2 − t1)Θt2−t1e
iω(t2−t1)e−iεk(t2−t1) = ... = (3.19)

=
1

ω − εk
− ei(ω−εk) ∞

ω − εk
, (3.20)

where divergence occurs at the upper limit of the integration intervall. In
order to arrive at a sensible expression, we have to modify Eq. 3.18 and
multiply the propagator by e−δ(t2−t1), where δ is an infinitesimal. Eq. 3.18
then becomes

G+
0 (k, t2 − t1) = −iΘt2−t1e

−i(εk−iδ)(t2−t1). (3.21)

For finite (t2 − t1), the modification does not have consequences because
(t2− t1)δ = 0. For infinite (t2− t1) G+

0 gets zero because (t2− t1)δ =∞· δ =
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∞. Thus the modification has no physical importance, since any physical
observation is bound to a finite time. But the integral is not diverging any
more and we can make use of Eq. 3.21:

G+
0 (k, ω) =

1

ω − εk + iδ
− ei(ω−εk+iδ) ∞

ω − εk + iδ
=

1

ω − εk + iδ
. (3.22)

From Eq. 3.22 we see that G+
0 does have poles at (or to be more specific:

infinitesimal close to) ω = εk, i.e. the energy of the added particle in state
Φk. So the poles of the transformed propagator occur at values ω equal to
the excited state energies minus the ground energy of the system!
We still want to find the quasi-particle propagator for an interacting system.
In section 3.2 we saw that interacting particles behave like non-interacting
particles, only a new energy ε′ and a lifetime τk had to be introduced. Follow-
ing this, we replace εk by ε′k and multiply Eq. 3.18 with the factor e−(t2−t1)/τk

representing exponential decay and the lifetime. We also have to multiply
by a factor Zk ≤ 1 to fullfil the Pauli principle for Fermi systems. We then
get the quasi-particle propagator:

G+
quasi(k, t2 − t1) = −iZke−iε

′
k(t2−t1)e−(t2−t1)/τk . (3.23)

We again perform the Fourier transform and arrive at

G+
quasi(k, ω) =

Zk

ω − ε′k + iτ−1
k

. (3.24)

The exponential decay factor was responsible for vanishing the divergent
behavior of the Fourier integral in Eq. 3.20.
As in the free particle case, the denominator in Eq. 3.24 determines the
excited-state energies by

ωpole = ε′k − iτ−1
k , (3.25)

whereas ε′k is the real part and iτ−1
k is the imaginary part of the complex

energy ωpole.

3.4 The Green’s Function

To relate this more or less intuitive arguments of the last sections to funda-
mental quantum physics, the Green’s function is introduced. A differential
equation

Lψ(x, t) = f(x, t), (3.26)

has a associated Green’s function G that obeys the following equation:

LG(x− x′, t− t′) = δ(x− x′)δ(t− t′). (3.27)
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The time-dependent Schrödinger equation for the free particle(
∇2

2m
+ i

∂

∂t

)
ψ(x, t) = 0 (3.28)

is a differential equation of the form 3.26 with f(x, t) = 0. The Green’s
function associated to Eq. 3.28 thus obeys(

∇2

2m
+ i

∂

∂t

)
G(x− x′, t− t′) = δ(x− x′)δ(t− t′). (3.29)

By Fourier transforming G, we get(
− k2

2m
+ i

∂

∂t

)
G(k, t− t′) = δ(t− t′). (3.30)

For G we set the free propagator G+
0 of Eq. 3.17(

− k2

2m
+ i

∂

∂t

)
G+

0 (k, t− t′) =

=

(
− k2

2m
+ i

∂

∂t

)(
−iΘt−t′e

−iεk(t−t′)δ(t− t′)
)
. (3.31)

By calculating the right side of 3.31, we find that Eq. 3.30 holds - the
free propagator is the Green’s function associated to the time-dependent
Schrödinger equation for the free particle.
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Chapter 4

Computational solid-state
physics I: Modifying surface
properties by adsorption of
self-assembled monolayers

In this chapter the opportunity of modifying surface properties via the cover-
age by organic molecules arranged in a self-assembled pattern is discussed. In
the first section the microscopic origin of monolayer induced interface modi-
fication is discussed by reviewing recent publications in this field. We after-
wards sum up the methodology to then explore the influence of polar groups
built into the backbone of organic monolayers.The latter was published by
David A. Egger, Ferdinand Rissner, Gerold M. Rangger, Oliver T. Hofmann,
Lukas Wittwer, Georg Heimel and Egbert Zojer in Phys.Chem.Chem.Phys.
[3]. In the last section we discuss the electronic states of that monolayer
in detail and explore methodogical issues that were directly related to our
findings.

4.1 The microscopic origin of SAM-induced

interface modification and computational

methodology

In the following section, concepts which are helpful in understanding the en-
ergetics of organic monolayers on surfaces are briefly reviewed. Furthermore,
the computational methodology is introduced.

Naming convention: The molecules a self-assembled monolayer is build
of are commonly seperated into three parts (see Fig. 4.1): The head group
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Figure 4.1: The naming convention: Backbone, head and docking group

pointing away from the surface (an H atom in the example in Fig. 4.1); the
π-conjugated backbone (biphenyl in Fig. 4.1) and the docking group pointing
towards the surface (an -S atom in Fig. 4.1).

Partitioning in the simulation: Following the arguments in Ref. [21]
we choose the following calculation path to constitute the simulation of the
monolayer-on-gold adsorption: (a) The geometry of the SAM on the gold
surface is optimized, the two upper gold layers and the SAM atoms are
allowed to relax (b) within this optimized geometry, the free-standing SAM
(SAM without Au(111) surface) is saturated with hydrogen atoms; their
position is optimized (c) the Au(111) surface within its optimized geometry
(i.e. having the two upper layer reconstructed due to the SAM adsorption)
and (d) the layer of hydrogen atoms the free-standing SAM was satured
with. We thus perform calculations on the complete system, the saturated
free-standing monolayer in its adsorption geometry, the Au(111) surface in
its adsorption geometry and the layer of saturating hydrogen atoms.

The work function: The work function Φ of a metal is defined as the
energy difference between the fermi level EF and the vacuum level VL. As
pointed out in Ref. [22], there are two types of vacuum levels: On the one
hand, the vacuum level is the energy of a resting electron infinitely far away
from any perturbation and is denoted as VL(∞). On the other hand, the
vacuum level measured in experiment, hence the vacuum level of interest, is
the energy of the electron right outside the solid, i.e. right at the surface.
This vacuum level is denoted as VL(s). Due to the tailing of the electron
cloud into the vacuum region and the so induced interface dipole, the electron
right at the surface won’t have the energy of the resting one far away from
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any perturbations. Consequently VL(∞) and VL(s) are different. It is an
experimental fact that the work function of a metal depends on which side of
the crystal an electron is extracted from. Since the Fermi level is common,
this is a consequence of different vacuum levels VL(s) resulting from different
tailing of the electron cloud at different surfaces.

Consequently the electrostatics right at the surface are of great impor-
tance for the work function Φ. Adsorbing a polar monolayer will critically
influence the work function. We will, therefore, first dicuss the electrostatic
behavior of the free-standing monolayer.

Electrostatics of the free-standing monolayer: The left part of Fig.
4.1 shows a single polar molecule. This polar molecule has a dipole moment
d, as illustrated in Fig. 4.1. When a monolayer is formed of such polar
molecules a dipole layer is built. [23, 24] In the example in Fig. 4.1, the
resulting dipole moment is pointing in the +z-direction. Such a dipole layer
induces a step in the electron potential energy

∆φ = − 1

ε0
D(r′), (4.1)

where D(r′) is the dipole area-density. As indicated in Fig. 4.1, this step
happens in the SAM, the electron potential energy change is zero outside
and constant inside the layer.

Electronic states of a self-assembled monolayer: The ionization
potential IP is assumed to be the difference between the highest occupied
molecular orbital HOMO and the vacuum level. The electron affinity EA is
assumed to be the difference between the lowest unoccupied molecular orbital
and the vacuum level. As explained, the vacuum level depends on interface
dipoles. Consequently, the vacuum level is also affected when a dipole layer
is present [21, 24]: There is a left side (i.e. docking side; see Fig. 4.1) vacuum
level and a right side (i.e. head side; see Fig. 4.1) vacuum level. The change
in the vacuum level is denoted as ∆Evac

∆Evac = VLright − VLleft (4.2)

and corresponds to Eq. 4.1. So the hypothetical, infinite monolayer splits
space in two regions of different vacuum energy. As a consequence, each side
of the monolayer has ’its own’ IP (EA), called IPleft (EAleft) and IPright

(EAleft) as illustrated in Fig. 4.3.[21]:

Covalent bonding of the monolayer to the surface: The saturated
monolayer is assumed to bond to the substrate upon hydrogen removal [2]. In
order to extract the charge rearrangements induced by this bonding process,
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(a) (b)

Figure 4.2: (a) An isolated polar molecule and its dipole moment (b) Mono-
layer formed of polar molecules and the resulting dipole layer inducing a
potential step

the following pathway is choosen [21, 24]: The charge density of the hydrogen
atoms ρH is subtracted from the charge density of the saturated free-standing
monolayer ρsam. The charge density of the Au(111) surface ρAu is added.
The result is subtracted from the system’s charge density ρsys and we get the
bonding induced charge rearrangements ρdiff:

ρdiff = ρsys − (ρsam − ρH + ρAu). (4.3)

Those charge rearrangements arise from the Au-S bond formation and Pauli
pushback [21]. In the top of Fig. 4.4 an exemplary plot of such charge
rearrangements is shown. The distribution of the charge rearrangements
clearly indicates an induced series of dipoles near the interface that rapidly
decays both in the metal and the SAM [21, 24]. We can now integrate the one-
dimensional Poisson’s equation of electrostatics and get the bonding induced
change in the electron potential energy, which is shown in the bottom of Fig.
4.4. As we see, those charge rearrangements have the same consequences as
a dipole layer (see Fig. 4.1) - they shift the vacuum level [21]. The amplitude
of that shift is often called bond dipole ∆EBD [21, 24].

Modification of the work function: We can now summarize the conse-
quences of monolayer adsorption on a metal surface [21, 24]: First, a mono-
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Figure 4.3: The isolated monolayer and each side’s IP and EA

Figure 4.4: The charge rearrangements ρdiff induced by the bonding from
the SAM to the substrae (top) and the plane-integrated potential step with
amplitude ∆EBD (bottom) of a prototypical example

layer introduces a potential step of ∆Evac. Second, the bonding of the SAM
to the substrate induces another potential step of ∆EBD, so the work-function
modification ∆Φ is

∆Φ = ∆Evac + ∆EBD. (4.4)

Those two contributions are usually independent of each other and can add
up or partly compensate each other. ∆Φ can be both positive and negative -
SAM-adsorption provides a pathway to tune the work function Φ of a metal.
The work-function modification ∆Φ is demonstated in a summarizing plot
in Fig. 4.5.

Level alignment: The relative alignment ∆EHOPS between the Fermi en-
ergy of the system and the HOMO is another key parameter in device perfor-
mance. The former HOMO in the unbonded SAM is called highest occupied
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Figure 4.5: The complete system with the important observables ∆Φ and
∆EHOPS indicated

π state HOPS after the bonding process (the former LUMO becomes the
LUPS). From the last paragraphs we see that it is not the molecular IP
that governs ∆EHOPS [21, 24], but the states in the SAM near the surface,
i.e. IPleft. Starting from the difference between ΦAu and IPleft, the HOMO is
shifted by ∆EBD. The difference between the energetic position of the HOPS
and the Fermi energy EF is called ∆EHOPS. There is a small perturbation
(< 0.3 eV) of the molecular states due to the bonding to the metal that is
denoted as ∆Ecorr. It is measured by the difference of the right side IP of
the non-bonded monolayer IPright and of the bonded monolayer IPsam. We
can now sum up those contributions to arrive at:

∆EHOPS = ΦAu − IPleft + ∆EBD + ∆Ecorr. (4.5)

In Fig. 4.5 an overview of the final electronic states, the work-function mod-
ification ∆Φ and the relative level alignment between the HOPS and EF

∆EHOPS is shown.

How to extract the quantities of interest: In this paragraph the ex-
traction of the aforementioned quantities after the DFT calculation is listed:

• Work-function modification: ∆Φ was calculated by using Eq. 4.4 and
the z-component dz of the dipole moment within the DFT calculation
of the complete metal-organic system

• Level alignment: ∆EHOPS was found by analyzing the density of states
of the complete metal-organic system. The density of states was ob-
tained using the script obtainingdos written by Gerold M. Rangger.
There, we align the density of states at the metal Fermi-level. The
metal Fermi-level can be found in the OUTCAR file produced by VASP.
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The first pronounced peak below the metal Fermi energy was defined
as the HOPS. Note that this method includes an artificial broadening
of the density of states determined by the parameter σ in the VASP

INCAR file.

• Vacuum levels: The vacuum levels were found by plane-averaging the
electron potential energy of the free-standing SAM using the script
average written by Gerold M. Rangger. The vacuum levels were found
at the respective side of the monolayer induced potential modification,
where the slope of the potential is equal to zero.

• SAM induced potential step: ∆Evac was calculated by using Eq. 4.4
and the z-component dz of the dipole moment within the DFT calcu-
lation of the isolated monolayer.

• Adsorption induced potential step: ∆EBD was evaluated by subtract-
ing the dipole moments of the metal, the isolated monolayer and the
layer of hydrogen atoms from the complete system.

• Tilt angle of the long molecular axis: The tilt angle γ was calculated
by extracting the components (x, y, z) of the vector connecting the
carbon atom with the lowest and the carbon atom with the highest
z-coordinate and using the octave script tilt.m:

1 function t i l t (x , y , z )

3 t i l t=acos ( z ∗(1/ sqrt ( xˆ2+yˆ2+z ˆ2)))∗180/ pi
end

Methodogical summary: To simulate the surface we used the repeated
slab approach, where 5 layers of gold atoms represented the gold surface and
a vacuum gap of > 20 Å was introduced to prevent spurious electronic inter-
actions between consecutive images of the slab in z-direction (see Fig. 4.1)
The dimensions of the real-space unit cell were 5.11 × 8.86 × 45.28 Å. In
that unit cell two molecules are arranged in the typical herringbone pattern
(see Fig. 4.7). The fcc-hollow was initially chosen as the docking site in the
starting geometry. A slight shift of the sulphur atoms towards the bridge site
was observed in the optimized geometry. As start values for the tilt angle
of the long molecular axis relative to the surface normal, we choose 11.1◦

and 12.4◦ for the bipyrimidine ’down’ and ’up’ (vide infra) conformations,
respectively. Lukas Wittwer pre-optimized the geometric structure of the
bipyrimidines. The mono- and terpyrimidine systems were optimized start-
ing from the converged geometry of the respective bipyrimidine by removing
or adding one pyrimidine ring. We performed DFT calculations (VASP 5.2
code) using a plane wave basis set (cutoff energy: 20.13 Ryd) and a PW91

22



(a)

(b) (c) (d)

Figure 4.6: (a) Prototypical example of a monolayer assembled on the
Au(111) surface: periodic in xy- and finite in z-direction (b) ’Intuitive’ unit
cell: the monolayer is followed by Au atoms with Au-interlayer distance (c)
A vacuum gap is introduced to prevent unwanted interactions (d) Compen-
sating electric fields by inserting a dipole sheet
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Figure 4.7: Top-view of the SAM in the typical herringbone pattern; the
unit cell is indicated

exchange-correlation functional. The PW91 functional was chosen because it
was found to perform slightly better for systems where van der Waals inter-
action is present [25] (compared to other semilocal functionals). An 8×5×1
Monkhorst-Pack grid of k-points was used to sample the reciprocal unit cell.
Electronic (∆E < 0.1 meV) and dipole (∆µ < 0.003 eÅ) convergence were
tested carefully. To optimize the geometry, all atoms of the monolayer and
the top two gold layers were relaxed until the maximum force component
was < 0.01 eV/Å. We employed the external tool GADGET to perform the
geometry optimization in internal coordinates.

4.2 Distributing the dipoles

1In organic electronic devices, the alignment of the electrodes’ Fermi-level
relative to the frontier orbitals of the adjacent organic semiconductors crit-
ically influences device performance.[26] The most important parameter in
this context is the electrode work function, Φ.One approach to adjust Φ is the
adsorption of self-assembled monolayers (SAMs) of dipolar molecules.[27, 28,
29, 30, 31, 32] In-depth quantum-mechanical studies on the effect of various
molecules have led to a microscopic understanding of the processes governing
the electronic structure of the metal/SAM interface.[33, 34, 24, 35].
So far, the focus has been largely on the effect of end-group substituents,
e.g., dipolar donor- or acceptor-groups[29, 24, 23] or fluorinated segments

1The following contens were published in [3].
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[27, 28, 29, 30] attached to a non-polar backbone. Here, we propose a novel
approach: distributing a series of dipoles along the molecular backbone. This
provides an additional ’chemical’ handle for tuning interfacial properties, es-
pecially when adapting the number of polar repeat units in each molecule.
Furthermore, it should modify the interaction between the SAM-forming
molecules, and differences in the electric field distribution within the SAM
can be expected to affect parameters like charge transport through the layer.
The quantities of interest in the present computational study are the work-
function modification, ∆Φ, due to the SAM and the alignment,∆EHOPS,
between the Fermi level of the system and the HOMO-derived π-states (the
HOPS) of the SAM. Specifically, we show that the distributed-dipole ap-
proach results in modifications of the interface energetics that differ signif-
icantly from those in conventional SAMs. This is especially true as far as
the evolution of the aforementioned physical quantities of interest with the
length of the backbone is concerned.
The calculations rely on density-functional theory (DFT) within the repeated-
slab approach, applying the PW91 exchange-correlation functional and using
the VASP code [36]. Geometry relaxations were performed in internal coordi-
nates using the optimizer GADGET [18], three-dimensional representations of
the systems were generated with XCrysDen. [37] The applied methodology
follows Ref. [38] and is presented in 4.1.

We investigated thiols adsorbed on the Au(111) surface (Fig. 4.8 a) in a
p(
√

3 ×
√

3) surface forming a herringbone pattern in analogy to what was
found experimentally for biphenylthiols [39]. This procedure also ensures
comparability with our previous calculations. [24, 23, 38] We chose (mono,]
bi, and ter) pyrimidines as backbones, with the dipolar pyrimidine moieties
linked in a head-to-tail fashion. Here, one has to distinguish between two
possible orientations of the nitrogens relative to the docking group (and, thus,
in the SAM relative to the metal substrate), referred to as ’N-up’ (thiol group
in 5-position) and ’N-down’ (thiol group in 2-position), as shown in Fig. 4.8
b. In this way, the resulting molecular dipole moment points either towards
(’N-up’) or away from the metal surface (’N-down’). As reference systems
with non-polar backbones we chose oligophenylthiols [24, 23, 38] (considering
1, 2, and 3 rings) bearing donor or acceptor head groups (Fig. 4.8 b). From
the large pool of possible substituents, we chose the donor amine (-NH2) and
the acceptor trifluoromethyl (-CF3) substituent as the resulting SAMs for
two-ring backbones (the intermediate length case amongst the ones consid-
ered here) give rise to work-function modifications similar to the ’N-down’
and ’N-up’ bipyrimidines.
Conceptually, changing an electrode’s work function by means of dipolar
molecules results from two different microscopic origins: [23] First, the molec-
ular dipole moments give rise to a step in the electrostatic potential energy
across the (non-bonded) monolayer, referred to as ∆Evac. As it is propor-

25



Figure 4.8: (a) Schematic representation of ’N-down’ terpyrimidinethiol SAM
adsorbed on Au(111). The tilt angle γ of the molecule relative to the sur-
face normal is indicated. (b) Chemical structures of the four investigated
molecules (from left to right): ’N-up’ oligopyrimidinethiol (-SH attached at
the 5 position); ’N-down’ oligopyrimidinthiol (-SH attached at the 2 position);
CF3-substituted oligophenylthiol and NH2-substituted oligophenylthiol. For
each system 1, 2, and 3 rings were considered. The arrows schematically
indicate the relevant molecular dipole moments.
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Figure 4.9: Plane-averaged electron potential energy of (a) ’N-down’ ter-
pyrimidinethiol and (b) NH2-substituted terphenylthiol. The left vacuum
energy is chosen as the energy reference (c) Backbone length dependence
of ∆Evacfor ’N-up’ oligopyrimidinthiol (filled squares), ’N-down’ oligopy-
rimidinthiol (filled circles), CF3-substituted (open diamonds), and NH2-
substituted terphenylthiol (open triangles).

tional to the component of the dipoles perpendicular to the substrate surface,
the molecular orientation plays a decisive role. [40] Furthermore, electrostatic
interactions between the molecules forming the monolayer induce coverage-
dependent depolarization effects, [34, 41] ypically resulting in a sub-linear
increase of the magnitude of ∆Evacwith the packing density. [42] Second, an
additional shift in the potential energy (with amplitude ∆EBD) is caused by
interfacial charge rearrangements upon Au-SAM bond formation. To sum
up, ∆Φ = ∆Evac + ∆EBD. We first analyze the electrostatics of the iso-
lated monolayers (with the sulphur atoms saturated by hydrogens). Figs.
4.9 a and 4.9 b show the plane-averaged electron potential energy across ’N-
down’ terpyrimidinethiol and NH2-substitued terphenylthiol. For the non-
polar backbone, all rings are at virtually the same potential; the potential
drop responsible for ∆Evacis confined to the region of the NH2 substituent.
In contrast, for ’N-down’ terpyrimidinethiol, a continuous decrease of the
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potential across the entire backbone is found, as each polar ring introduces
a step in the potential energy landscape. When comparing the ’N-up’ con-
formations with the CF3-substituted oligophenylthiol SAMs, an analogous
situation with different sign of ∆Evacis observed (not plotted). The total po-
tential step across the monolayer, ∆Evac, is plotted in Fig. 4.9c as a function
of the number of pyrimidine/phenyl rings.2

As expected, [41] this potential energy step changes only slightly with the
length of the backbone in the head-group substituted reference systems. In
fact, also previous studies [43, 44] have found a small variation of the work
function with the length of the adsorbed molecules in SAMs of (fluorinated)
alkylthiolates, which could be largely attributed to changes in the geometry
of the alkyl backbone. [44] The (minor) length dependence of ∆Evacin the
case of the -NH2 substituent is in part due to a slight increase of the molec-
ular dipole moment, similar to what has been observed for nitro-substituted
phenylenevinylene [41]. The main origin, however, is purely geometric: The
tilt angle Γ ((Fig. 4.8 a) of the NH2-substituted phenylthiols decreases with
chain length (Table 4.1), which results in an increase of the component of
the dipole moment perpendicular to the surface. Importantly, a pronounced
dependence on the backbone length is found for the oligopyrimidinethiols,
where every additional ring significantly contributes to a further change in
the potential energy. Moreover a close to linear evolution is observed. While
this is what one might have expected for molecules resembling a linear series
of dipoles, it is actually far from trivial as (i) the intra-molecular interac-
tion between the rings changes upon elongating the backbone3 (ii) the inter-
molecular interactions (including depolarization) can be expected to change
with chain length and (iii) significant changes of the backbone orientation
(and thus of the component of the dipole moment perpendicular to the sur-
face) are found with increasing length of the backbone, i.e., the tilt angle
γ decreases with increasing number of repeat units (see Table 4.1). The
second contribution to the SAM-induced work-function modification, ∆EBD,
is obtained by analyzing the adsorption under the assumption of hydrogen

2H-saturation of the thiol group introduces another dipole moment, affecting also the
resulting ∆Evac. While the C-S-H bond angle is unambiguous the C-C-S-H dihedral angle
is not. Although the position of the saturating hydrogen atoms was chosen in a consistent
way for all systems, geometrical differences (such as significantly different molecular tilt
angles or the orientation of the axis around which the molecules are actually tilted) result
in a different effect of the S-H bond on ∆Evac. However, we stress that ∆Evac is not an
experimentally accessible quantity (i.e., there is no ’correct’ way of determining it), as
it characterizes the hypothetical free-standing monolayers. The dependence of ∆Evac on
the H positions is fully compensated by ∆EBD, thus keeping∆Φ and ∆EHOPS, of course,
independent of the H-position in the saturated monolayer.

3The three rings are not equivalent. The first carries a thiol group, the centre ring
is coupled to two adjacent pyrimidine units, and the third (hydrogen-terminated) ring is
coupled to only one pyrimidine unit; a certain amount of charge transfer between these
three distinct moieties cannot be excluded a priori.
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Table 4.1: DFT-calculated work-function modification, ∆Φ, magnitude of the
induced potential energy shift due to the bond dipole, ∆EBD, potential step
across the saturated monolayer, ∆Evac, difference between EF of the system
and the HOPS of the SAM, ∆EHOPS, and tilt angle, γ, of the long molecular
axes relative to the surface normal; as there are two inequivalent molecules in
the unit cell, average values are reported for γ.

SAM rings ∆Φ(eV ) ∆EBD(eV ) ∆Evac(eV ) ∆EHOPS(eV ) γ(◦)

’N-up’
1 0.35 -0.94 1.27 -0.91 37.2
2 1.09 -1.07 2.15 -0.17 26.7
3 0.98 -1.99 2.94 -0.15 19.1

’N-down’
1 -1.96 -0.74 -1.23 -1.67 31.5
2 -2.58 -0.68 -1.91 -1.44 26.7
3 -3.11 -0.85 -2.26 -1.37 24.0

’CF3’
1 1.34 -1.08 2.42 -1.06 16.2
2 1.33 -1.13 2.46 -1.01 13.7
3 1.39 -1.18 2.57 -0.97 12.2

’NH2’
1 -2.21 -1.23 -0.99 -0.83 25.2
2 -2.48a -1.18a -1.30a -0.86a 17.1
3 -2.49 -1.17 -1.32 -0.86 15.7

a These values differ slightly from those reported in Ref. [24] due to a different geometry-
optimization scheme used for the present work.
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Figure 4.10: Backbone length dependence of the work-function modifica-
tion ∆Φ for ’N-up’ oligopyrimidinethiol (filled squares), ’N-down’ oligopy-
rimidinethiol (filled circles), CF3-substituted (open diamonds) and NH2-
substituted terphenylenethiol (open triangles).

removal and Au-S bond formation. Table 4.1 lists the values for all twelve
systems. ∆EBD primarily depends on the docking chemistry. Accordingly, a
similar value of ∆EBD is found for all phenylthiol-docked SAMs independent
of the end-group substituent, as the latter does not affect the docking group
side of the SAM (cf., Table 4.1). For the ’N-down’ pyrimidinethiol SAMs,
∆EBD is somewhat decreased compared to the biphenylthiols, and its magni-
tude is almost independent of the number of repeat units. Consequently, the
evolution of ∆Evac from Fig. 4.9c is translated into an almost linear depen-
dence of the work-function modification on the number of ’N-down’ oriented
pyrimidines as shown in Fig. 4.10. This indicates that distributing dipoles
throughout the molecular entity indeed provides a strategy to tune the work-
function modification over a wide range in a systematic way. One might even
be tempted to think that arbitrarily large work-function changes could be re-
alized as long as one merely synthesized a long-enough backbone (provided
that such molecules would actually form closely packed SAMs). That as-
sessment, however, is put into perspective by the results for the pyrimidine
’N-up’ configuration (cf., Fig. 4.10). There, no linear evolution of ∆Evac with
the number of repeat units is observed. It rather saturates at two rings and
never exceeds the value for the CF3-substituted biphenylthiol (actually, for
three rings even a slight decrease is observed). From Table 4.1, it becomes
obvious that the saturation of ∆Φfor the 3-ring pyrimidine ’N-up’ SAM is
the consequence of the exceedingly large ∆EBD in that system.
In order to understand the ∆EBD value of the ’N-up’ terpyrimidine it is nec-
essary to consider the energetic alignment between the molecular states and
the Fermi-level of the system. As shown in Table 4.1, ∆EHOPS (defined as
the energy difference between the HOPS peak and EF) amounts to -0.91eV in
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’N-up’ monopyrimidine. Upon elongating the backbone, the HOMO-LUMO
gap decreases, as does the ionisation potential of the SAM at the side of the
docking group; together with ∆EBD, the latter determines the level align-
ment. [24, 23] Consequently, also ∆EHOPS becomes smaller and reaches a
value of -0.17eV. If that trend continued for terpyrimidine, its HOPS would
come to lie above the Fermi level, which would be inconsistent with a popula-
tion of the electronic states according to the Fermi-Dirac statistics. Instead,
as soon as the tail of the HOPS-related density of states crosses EF, electrons
are redistributed within SAM and metal, resulting in a sizeable extra inter-
facial dipole layer. This essentially pins the HOPS of the SAM at EF, as can
be inferred from the fact that ∆EHOPS in terpyrimidinethiol is only slightly
smaller than in bipyrimidinethiol. The pinning-induced interface dipole then
manifests itself in the very large ∆EBD for the terpyrimidine SAM in the
’N-up’ configuration. In fact, a closer look at the ∆EBD values in Table 4.1
indicates that already in the two-ring system, weak Fermi-level pinning is at
work. An important conclusion from this finding is that there is a natural
limit for the maximum achievable ∆Φ within the distributed-dipole approach,
which is determined by the energies of the frontier electronic states in the
SAM. That is, ∆Φ can be increased by elongating the molecular backbone
only as long as Fermi-level pinning can be avoided.
As for the work-function modification and ∆Evac, a qualitatively different
behaviour is observed also for the level alignment in the ’N-down’ systems:
Already for the one-ring system, the absolute value of ∆EHOPS is by 0.76 eV
larger than for the corresponding ’N-up’ structure. This is insofar remark-
able, as one is dealing with an identical molecular backbone that is merely
attached in a different orientation to the sulphur docking groups bonded
to the metal. The difference in ∆EHOPS between the ’N-up’ and ’N-down’
configurations further increases for bipyrimidinethiol, where it reaches the
maximum value of 1.27 eV. This behaviour is in sharp contrast to what is
seen in the two reference systems, CF3- and NH2-substituted biphenylthiol.
In spite of the fact that they yield work-function modifications equivalent
to the ’N-up’ and ’N-down’ bipyrimidinethiol SAMs, the differences between
their ∆EHOPS are very minor, as observed in all end-group substituted sys-
tems studied so far. [24, 40] The reason for these qualitatively different
trends is rooted in the fact that, in the absence of Fermi-level pinning, the
level alignment is determined by the ionisation potential of the (non-bonded)
SAM on that side of the layer, which is eventually docked to the metal. This
quantity is virtually unaffected by the dipoles induced by end-group sub-
stituents which, naturally, are attached to the opposite side of the SAM. [23]
It is, however, of course modified by dipoles distributed within the backbone
and by dipoles close to or at the docking group.
In summary, we discussed a novel approach to tuning the interface energetics
of metal/SAM systems through distributed dipoles built into the molecular
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backbones; in the presented prototypical case, this is realized by pyrimi-
dine rings linked in para position. The direction of the SAM-induced work-
function change can be controlled by the pyrimidine orientation and its mag-
nitude increases linearly with the number of repeat units (as long as one can
avoid Fermi-level pinning). This is in sharp contrast to what is known from
SAMs in which the work-function is changed by polar end-group substituents
on otherwise non-polar backbones. Unlike in these systems, one finds that,
for the oligopyrimidine-based SAMs, different work-function modifications go
hand in hand with differences in the alignment between the molecular states
and the Fermi-level. In fact, we observe differences in the level alignment of
up to 1.27 eV for chemically equivalent backbones docked to the substrate
in different orientations.

4.3 Collective effects in self-assembled mono-

layers with distributed dipole moments

Self-assembled monolayers (SAMs) are promising candidates in nanotechnol-
ogy. Their ability to modify macroscopic electronic properties of metal sur-
faces makes them especially attractive for organic (opto-)electronics. How-
ever, the understanding of processes governing the physics of those supra-
molecular structures is essential and not yet complete. To anticipate the
physical properties of a SAM from the properties of the molecules it contains
was shown to be insufficient [21, 45].
In this section the electronic structure of oligopyrimidine monolayers is in-
vestigated. Those molecules have interesting properties due to dipoles dis-
tributed along the backbone [3]. A pronounced change in the Kohn-Sham
gap [46] as a function of the packing density for monolayers formed of those
molecules is found. We explain those findings by collective electrostatic ef-
fects.

4.3.1 Introduction and structure of the system

We investigated monolayers formed of oligopyrimidine molecules (see Fig.
4.11). Here, one has the possibility to choose between two different orienta-
tions of the nitrogens relative to the docking group, previously referred to as
’N-up’ (thiol group in 5-position) and ’N-down’ (thiol group in 2-position),
as shown in Fig. 4.11. In this way, the resulting molecular dipole moment
points either towards (’N-up’) or away from the metal surface (’N-down’).
We choose ’N-up’ terpyrimidinethiol to investigate the electronic structure
of a monolayer built of polar building blocks. The electronic states within
the ’N-up’ oligopyrimidine monolayers were found to shift when elongating
the backbone [3]. Futhermore, the molecular dipole moment of ’N-up’ ter-

32



Figure 4.11: The two possible confirmations of terpyrimidinethiol (’N-up’
and ’N-down’) with their relevant dipole moments schematically indicated

pyrimidinethiol is the largest one of the investigated systems in Ref. [3]. For
this SAM, we focused on the density of states within the layer as a function
of the packing density. In this way, the transition from the properties of the
isolated molecule (i.e. the low coverage regime) to that of the closely packed
monolayer can be observed.

To perform the coverage dependent calculations, we removed one molecule
from our p(

√
3×
√

3) surface unit-cell yielding a coverage of Θ = 1
2
. We sub-

sequently doubled the dimension of the unit-cell in the xy-plane and accord-
ingly reduced the number of k-points to obtain coverages from Θ = 1

4
down

to Θ = 1
64

, which approximates the isolated molecule [42]. The free-standing
SAM was obtained by optimizing the geometry of the densely packed mono-
layer on five layers of Au(111). Monolayers of smaller coverages were not
optimized concerning the geometric structure. As we focused on electro-
static influence on the electronic structure, we tried to prevent geometric
effects.

4.3.2 Results and discussion - coverage dependent den-
sity of states

To understand the influence of distributed dipoles on the electronic struc-
ture of a SAM, we varied the coverage of the free-standing ’N-up’ terpyrim-
idinethiol monolayer. This procedure is known to crucially affect the elec-
trostatics and eigenstates of a monolayer [45, 42, 34]. For example, in Ref.
[42] the highest occupied molecular orbital HOMO of head-group substituted
biphenylthiols was found to shift about 0.5 eV when going from low to full
coverage. Here, it would be interesting to know how the Kohn-Sham gap
reacts to a change of the packing density.

The black solid line in Fig. 4.12 shows the coverage dependent density of
states of ’N-up’ terpyrimidinethiol aligned to the docking side vacuum level.
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Figure 4.12: Density of states of the free-standing ’N-up’ terpyrimidinethiol
monolayer aligned at the docking-side vacuum level for different coverages.
The dashed lines indicate the density of states corresponding to the less
broadened density of states, the associated LDOS is illustrated
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The docking side vacuum level was choosen as a reference due to the impor-
tance of the alignment between the metal Fermi-level and electronic states in
the adsorbed SAM [21, 24]. It is found that, when increasing the coverage,
the density of states changes drastically: We find the HOMO shifting by
more than 1 eV when going from the isolated molecule to the densely packed
SAM. The Kohn-Sham gap, defined as the energy difference between the
HOMO and the LUMO, is decreased by 0.7 eV from 2.2 eV to 1.5 eV when
increasing the packing density. The LDOS of the unoccupied states was not
calculated up to now. It would also be interesting to know how the π-π∗ gap
changes when increasing the packing density.

In order to understand this remarkable result, the shape and position of
those shifting orbitals are investigated. We reduced the broadening of the
density of states to find the discrete eigenstates in the spectrum4. The thin
dashed line in Fig. 4.12 shows the less broadened density of states. We find
that, at a coverage of Θ = 1

2
, the eigenstates start to disperse. Furthermore,

when going to the full-coverage regime, one finds even more peaks very close
in energy in the narrow density of states. This is due to the presence of
the second inequivalent molecule at Θ = 1 (vide supra). We choose not
to distinguish between states derived from each of the two molecules in the
unit-cell and therefore have several peaks associated to one orbital in the
high-coverage regime. At Θ = 1

64
one finds unoccupied states vanishing in

the less broadened DOS. From experience, this can be the case when reading
in a charge density at the beginning of the DFT calculation.

The local density of states was then obtained by integrating around the
peaks of the less broadened density of states. We continually adjusted the
integration interval until the number of bands in the .out file of the calcu-
lation was either one or two (in the full-coverage regime two molecules are
present in the unit-cell). Therefore we resolved one molecular orbital in each
case. The LDOS of ’N-up’ terpyrimidinethiol corresponding to the assigned
peaks in the less broadened density of states is shown in Fig. 4.12. Start-
ing at a coverage of θ = 1

64
we find the two highest occupied states to have

σ-character (see Fig. 4.12). Moreover, a pronounced localization of those
molecular orbitals is found. The HOMO is confined to the two uppermost
(relative to the thiol docking-group) pyrimidine rings where the topmost ring
carries the most part of the electron density. For the second highest occupied
state, the HOMO-1, we find the same orbital with the only difference being
the bigger part of the orbital located at the middle ring. The HOMO-2 is a
π-state delocalized over the whole molecule, whereas the HOMO-3 completes
the series of localized σ-orbitals with the major part of electron density on
the docking-side ring. If following the orbitals from θ = 1

8
to full coverage,

the former HOMO-4 shifts up in energy and becomes the HOMO-3 at half

4A Methfessel-Paxton [47] occupation scheme was employed. We reduced the broad-
ening from σ = 0.2 to σ = 0.01
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Figure 4.13: Absolute (a) and relative (b) energy difference of the different
orbitals depending on the coverage. In (b) the energy position of each orbital
at θ = 1

64
was set to zero

coverage.
Fig. 4.13 illustrates each orbital’s evolution when increasing the coverage.

In Fig. 4.13a) the absolute position in energy of the respective states aligned
to the docking-side vacuum level is shown. As expected [42], a sublinear
dependence on the coverage for the energy positions of all orbitals is found
for the ’N-up’-terpyrimidinethiol monolayer. The orbital assigned as the
HOMO-4 in the low-coverage regime ’passes by’ the former HOMO-3 at half
coverage, as already seen in Fig. 4.12. The energy difference relative to each
orbital’s energy position at Θ = 1

64
is illustrated in Fig. 4.13b). Different

evolutions for the respective orbitals are found when increasing the coverage.
Obviously the shifting of the orbitals depends on their spatial distribution
in the monolayer: Orbitals localized at the head-group oriented ring of the
SAM shift strongly in energy while orbitals localized in the lower part of the
molecule, as well as the delocalized π-state, shift less. Interestingly, we find
the HOMO and the primal HOMO-4, despite of being seperated by more
than 1 eV in energy, to shift equally when increasing the coverage.

Those findinds are rationalized by inherent modifications of the electro-
static situation when changing the packing density. Fig. 4.14 shows the
plane-averaged electron potential energy aligned at the docking-side vacuum
level for two different coverages Θ = 1 and Θ = 1

4
. The induced potential

step is a function of the packing density. Furthermore, a continuous decrease
of the potential across the entire backbone is found for both coverages. A
continuous modification of the potential landscape along the long-molecular
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Figure 4.14: Plane-averaged electron potential energy aligned at the docking-
side vacuum level for Θ = 1 (black solid line) and Θ = 1

4
(grey solid line).

The black dashed line and grey dashed line serve as a guide to the reader’s
eye and illustrate the slope of the potential in the respective coverages. The
symbols depict the consequence of orbitals located at different ends of the
monolayer
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axis in the high-coverage regime was already shown to be a consequence of
distributing dipoles [3]. From electrostatic considerations one finds a con-
stant change of the electrostatic potential along such dipole layers. Conse-
quently, the slope of the potential along the backbone is a function of the
packing density as indicated by the dashed lines in Fig. 4.14. The symbols
in Fig. 4.14 illustrate the consequence of states localized at different ends
of the monolayer. From this picture it makes perfect sense that the shift
of the orbitals depends on there position in the SAM: Orbitals located at
the head-group oriented tail will certainly shift more when increasing the
packing density than states located near the docking-side ring or delocalized
orbitals. The ensemble of molecules present in a densely packed SAM leads
to an entire new electrostatic situation resulting in a fundamental change of
the eigenvalue spectrum.

To understand the reduction of the Kohn-Sham gap, we projected the
density of states on each layer of rings in the SAM. Fig. 4.15 shows this so
called RDOS aligned at the docking-side vacuum level as a function of the
coverage. We find our aforementioned conclusions confirmed in the RDOS:
The shifting of the states when going to a higher coverage increases towards
the head-group oriented ring. Comparing the HOMO and HOMO-1 at Θ =
1
64

and Θ = 1, we find their energetic difference increasing from 0.38 eV in
the isolated molecule to 0.82 eV at full coverage. At Θ = 1

64
, the LUMO

is distributed over all three rings. By increasing the coverage, we find the
delocalized LUMO to shift in energy. The LUMO+1 is localized at the
docking-side oriented ring at low coverage. Therefore, the LUMO+1 shifts
less than the delocalized LUMO. Indeed, we find the main portion of the
LUMO to be on the docking-side ring at Θ = 1. Occupied and unoccupied
states localized at each end of the monolayer are the origin of the Kohn-Sham
gap reduction when increasing the coverage.

Compared to previous work in our group, it was unexpected to find the
HOMO with σ character. At least at Θ = 1

64
, which was assumed to be

the isolated molecule, a π-HOMO would have been expected. In fact, Θ =
1
64

is not the isolated molecule, but the molecule in a very large unit-cell.
From our findings and the long-range Coloumb interaction we concluded
that spurious electric fiels might be responsbible for a shifting of the σ-states
which otherwise would be down in energy at a coverage of Θ = 1

64
.

4.3.3 Calculations on the isolated ’N-up’ molecule -
functional dependent electronic structure

To test if a coverage of Θ = 1
64

fits the situation of an isolated molecule, we
performed calculations on the ’N-up’ terpyrimidinethiol molecule in
GAUSSIAN03[48]. The molecule was investigated in its geometric structure
of the monolayer to rule out geometric effects. We applied a series of aug-
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Figure 4.15: Density of states projected on the docking-side ring (black solid
line), the middle ring (purple dashed line) and the head-side ring (orange
dotted line) of the free-standing ’N-up’ terpyrimidinethiol monolayer aligned
at the docking-side vacuum level for different coverages
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Figure 4.16: Energetic positions and shape of the electronic states of ’N-up’
terpyrimidinethiol relative to the vacuum level obtained with PW91PW91 (black
lines) and B3LYP (red lines)

mented correlation-consistent polarized basis-sets and increased the polar-
ization starting from double-ζ. Those basis-sets were choosen because the
accuracy of the calculation can be increased in a consistent way by just in-
creasing the order of polarization (triple, quadruple-ζ). In this way we can
analyse the effect of the basis set on the electronic structure. To investigate
the role of the exchange-correlation functional, we choose the PW91PW91 and
the B3LYP functional as implemented in GAUSSIAN03. The PW91PW91 functional
serves as a reference for the VASP calculation where also a PW91 XC-functional
was applied. The B3LYP functional was choosen to test the effect of exact-
exchange on the electronic structure.

Regarding the evolution of the atomic orbitals when expanding the basis
set, we found that going from double to triple-ζ results in a minor change
(< 0.05 eV) of the investigated orbital energies for both functionals. Further
polarization had no effect on the energetic position of the orbitals. Therefore,
we choose to discuss the results obtained with the triple-ζ basis-set.

The black lines in Fig. 4.16 mark the energetic positions relative to the
vacuum level of the eigenstates obtained with the PW91PW91 functional. The
orbitals associated to that eigenstates are also illustrated. We find those
orbitals to be in good agreement with the Θ = 1

64
calculation in Fig. 4.12.

The orbital ordering and the trend of the relative energetic differences be-
tween the orbitals are conserved. The HOMO-1 seems to be more delocalized
than in Fig. 4.12, but still with its major part of the density located at the
middle ring. From this finding we can conclude that the Θ = 1

64
calculation

realizes the isolated molecule situation and that no spurious electric fields
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are responsible for the high lying σ-states. In fact, also previous studies
[49, 50] on the isolated pyrimidine molecule found a σ-state as HOMO. Here,
it would be interesting to investigate how the HOMO changes when going
from terpyrimidinethiol to monopyrimidinethiol.

The red lines in Fig. 4.16 mark the energetic positions relative to the
vacuum level of the orbitals obtained with the B3LYP functional. We find
that by using the B3LYP functional, the ordering of the orbitals change: The
HOMO is a π-state and appears higher in energy with respect to the σ-states
compared to the results obtained with PW91PW91. Moreover, the HOMO-3
which was a localized σ-state within PW91PW91 is found to be another π-
orbital within B3LYP. Surprisingly, the difference between the two σ-states
is 0.35 eV and 0.36 eV for B3LYP and PW91PW91, respectively. We conclude
that the position of the π-state relative to the two σ-states is changed when
exchanging the functional.

The result of a functional dependent ordering of the molecular orbitals
was reminiscent to the self-interaction error for localized orbitals within GGA.
Previous studies [51, 52] could explain wrong orbital ordering by an artifical
Coulomb repulsion of the electron from itself [51]. Clearly, that repulsion
is strong for highly localized states which are, as a consequence, shifted up
in energy [51]. The exact-exchange portion in B3LYP increases the binding
energy for localized states and therefore counteracts the self-interaction error
[51]. High-lying σ-states can be explained by the self-interaction error within
GGA. When exchanging the functional, the energy gap between the two σ-
states remains constant. Those orbitals have different localization character
and should, therefore, be affected by a different amount of self-interaction
error. But the difference in the localization of both orbitals is not pronounced
enough to make a general conclusion from that finding.

4.3.4 Conclusion

To summarize, we investigated monolayers formed of terpyrimidine molecules
to understand the influence of electric fields in the backbone on the electronic
structure of the SAM. The Kohn-Sham gap was found to decrease by an
amount of more than 0.7 eV when going from the isolated molecule to the
densely packed SAM. We provide a sound explanation in terms of orbitals
localized at different sides of the monolayer. The coverage induced shift of
those orbitals inherently depends on their spatial position in the SAM. We
compared the loosely packed monolayer representing the isolated molecules
with calculations on the molecule in gas phase. It was found that the ordering
of the orbitals depends on the applied functional. Those finding may be
related to the self-interaction error within GGA.

Our investigation was initialized by the observation of an almost constant
IP at either the docking- or head-side as a function of the backbone length of
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the free-standing monolayer. The position of the nitrogen atoms determined
at which side the IP was constant. That puzzle was resolved when assuming
localization of the states in the monolayer. This might also be interesting
and will be included in an extended version of the text. Furthermore, we plan
to investigate the free-standing ’N-down’ monolayer and both configurations
adsorbed on Au(111).
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Chapter 5

Computational solid-state
physics II: Transmission,
surface DOS and surface band
structure

In this chapter we want to go further in the description of a molecular layer
on a surface. The theoretical concept of the Green’s function is summed up
to arrive at a formalism describing electronic transport and transmission at
the DFT level based on Ref. [53]. Furthermore, we point out the similarity
between the concepts surface DOS, surface band structure and transmission.
Those concepts can handle the influence of a semi-infinite substrate on the
electronic properties of the adsorbate. The computational implementation of
those concepts, which was obtained during a scientific visit to the Humboldt-
Universität zu Berlin, is then discussed in detail. We benchmark the com-
putational implementation by calculating the IV-curves for a biphenylthio-
late monolayer and compare the results with the literature. Afterwards the
transmission and current for a monolayer based on the distributed dipoles
approach are calculated, before we end this chapter with preliminary results
concerning the surface DOS and surface band structure.

5.1 Green’s function techniques

The theoretical fundamentals of calculating the current for nano objects are
now discussed. The pathway of the following stems partly from [54]. A very
clear discussion of this topic was found in several reviews, books and lectures
by Supryo Datta [55, 56, 57, 58]. Also helpful and recommendable are the
review papers [59, 60, 61]
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Figure 5.1: On-site matrix elements ε and off-site matrix elements tαβ when
describing a linear chain of atoms in the tight-binding approach

Tight-binding Hamiltonian: The tight-binding model is briefly intro-
duced because it is somehow similar to the formalism we want to derive.
As the tight-binding model is a semi-empirical model it is, of course, very
different from our DFT-based approach. Nevertheless, it might be useful to
be introduced to the topic via that model.

The tight-binding or matrix Hamiltonian is determined by inner products
of localized states ψα

Hαα = 〈ψα| Ĥ |ψα〉 = εα, (5.1)

for the diagonal elements and by

Hαβ = 〈ψα| Ĥ |ψβ〉 = tαβ, (5.2)

for the off-diagonal elements. Here one finds the first similarity between the
semi-empirical tight-binding approach and the model we choose: We will cal-
culate the Hamiltonian using SIESTA. This DFT-code also uses localized states
ψα (see 2.3).
A nearest neighbor tight-binding model assumes tαβ 6= 0 only for nearest
neighboring sites. We, therefore, face a discrete lattice with localized wave-
functions ψα at each grid point and the associated Hamiltonian matrix H
Eq. 5.1 and Eq. 5.2:

H =


ε1 t12 0 0 . . .
t21 ε2 t23 0 . . .

0 t32 ε3
. . . . . .

0 0
. . . . . . . . .

...
...

. . . . . . . . .

 . (5.3)

This matrix has the typical tridiagonal form, where only the main diagonal
elements and the first diagonal elements below and above the main diagonal
are non-zero. If one would also take next-nearest neighbor interactions into
account, two more non-zero diagonals would be present. The εα represent the
respective eigenvalue at site α whereas the tαβ are the coupling or interaction
between two sites α and β. For a linear chain of atoms this is schematically
illustrated in Fig. 5.1.
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Figure 5.2: The linear chain example in a SIESTA DFT calculation: Overview
of the interactions between the indicated unit cells of Au(111), matrices
representing them and naming convention

The Hamiltonian in a SIESTA DFT calculation: In the linear chain ex-
ample Fig. 5.1 each atom was represented by one site. A Hamiltonian with
the eigenvalues in the main diagonal and, within the nearest-neighbor ap-
proach, the interaction terms between those sites in the first diagonal above
and below the main diagonal was obtained. Thinking of a DFT calculation of
such a linear chain, the unit cells can also be seen as the sites of interaction.
In Fig. 5.2 such an example is illustrated, where the unit-cell contains three
Au atoms and is periodically repeated afterwards in a Gedankenexperiment
in only one dimension to yield the linear chain. Then, for the Hamiltonian
HD, one gets a big matrix whose elements are again matrices.
I will try to make this important point clear by considering the case of
one-dimensional electrode in Fig. 5.2. A 1D nearest-neighbor tight-binding
Hamiltonian in general is written as

H
(1)
total =


H11 H12 0 0 . . .
H21 H22 H23 0 . . .

0 H32 H33
. . . . . .

0 0
. . . . . . . . .

...
...

. . . . . . . . .

 , (5.4)

where the superscript (1) tells us that we consider interaction only with the
first neighboring cell.
The α, α elements are the Hamiltonians representing the interaction within
each unit cell and the α, β elements the ones representing interaction between
unit cells. Comparing Eq. 5.4 with the simple 1D-chain Hamiltonian Eq. 5.3,
those are found to be equal with the only difference being the matrix in Eq.
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5.4 contains matrices instead of numbers.
We want to further resolve Eq. 5.4 and Fig. 5.2. The element H22 for
instance is the matrix representing the interaction in the unit-cell number
two. That unit-cell contains the three Au atoms 1, 2 and 3. A general way
to write this matrix would be

H22 =

 〈ψ1|H(1)
total|ψ1〉 〈ψ1|H(1)

total|ψ2〉 〈ψ1|H(1)
total|ψ3〉

〈ψ2|H(1)
total|ψ1〉 〈ψ2|H(1)

total|ψ2〉 〈ψ2|H(1)
total|ψ3〉

〈ψ3|H(1)
total|ψ1〉 〈ψ3|H(1)

total|ψ2〉 〈ψ3|H(1)
total|ψ3〉

 . (5.5)

We can short the notation in this matrix and write

H22 =

 h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 . (5.6)

The matrices in the other two unit-cells are written in the same way:

H11 =

 h1′′,1′′ h1′′,2′′ h1′′,3′′

h2′′,1′′ h2′′,2′′ h2′′,3′′

h3′′,1′′ h3′′,2′′ h3′′,3′′

 (5.7)

and

H33 =

 h1′,1′ h1′,2′ h1′,3′

h2′,1′ h2′,2′ h2′,3′

h3′,1′ h3′,2′ h3′,3′

 . (5.8)

Those three matrices are the main diagonal elements in Eq. 5.4. We also
need the off-diagonal elements:

H12 =

 h1′′,1 h1′′,2 h1′′,3

h2′′,1 h2′′,2 h2′′,3

h3′′,1 h3′′,2 h3′′,3

 , (5.9)

H21 =

 h1,1′′ h1,2′′ h1,3′′

h2,1′′ h2,2′′ h2,3′′

h3,1′′ h3,2′′ h3,3′′

 , (5.10)

H23 =

 h1,1′ h1,2′ h1,3′

h2,1′ h2,2′ h2,3′

h3,1′ h3,2′ h3,3′

 (5.11)

and

H32 =

 h1′,1 h1′,2 h1′,3

h2′,1 h2′,2 h2′,3

h3′,1 h3′,2 h3′,3

 . (5.12)
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Those matrices are in the first diagonal above and below the main diagonal in
Eq. 5.4. The elements representing the interactions between next-neigboring
cells should be zero in a nearest-neighbor approach, H13 = H31 = 0.

An important question is how many elements in the off-diagonal matrices
H12, H21, H23 and H32 are non zero. For instance, consider the interaction
between cell 2 and 3 in Fig. 5.2 and the associated matrix H23: If there
is no interaction between atom 1 and 2′, then h1,2′ = 0. But then there is
also no interaction between atom 1 and 3′, so h1,3′ = 0. Then the matrix for
interaction between cell 2 and 3 would have the form

H23 =

 h1,1′ 0 0
h2,1′ h2,2′ 0
h3,1′ h3,2′ h3,3′

 . (5.13)

SIESTA constructs a supercell where those standard unit-cells of Fig. 5.2 are
incorporated. That supercell is a multiple of the standard unit-cell and is
called Internal auxiliary supercell. The Internal auxiliary supercell is
defined by the sufficient number of replicated unit-cells needed to describe
the interactions between atoms of different unit-cells. This is explained by
an example, again considering the linear chain built of unit-cells containing
three atoms as shown in Fig. 5.2. It is a priori not clear, how long the inter-
action range of one atom is. For the linear chain example in Fig. 5.2 there
might, for instance, be an interaction between atom 1 and atom 3′. Consider
the Internal auxiliary supercell to consist of three unit-cells as shown in the
picture. If the there is an interaction between atom 1 and atom 3′ and the
Internal auxiliary supercell is only three cells large, then atom 1 has also the
possibility of interacting with atom 3′ via the periodicity of the Internal
auxiliary supercell. This would certainly result in an artificial overlap of
interaction and has to be prevented. In that case the Internal auxiliary su-
percell was choosen to small. SIESTA designes the Internal auxiliary supercell
in three dimensions sufficiently large that no such overlap can occur. Then
one gets a Hamiltonian describing the interaction in the Internal auxiliary
supercell. That Hamiltonian is periodic with respect to the Internal auxiliary
supercell.

Matrix Green’s function: The consequence of localized states ψα (when
using a tight-binding model or SIESTA) is that the Hamiltonian H is de-
scribed on a grid. We define the retarded one-particle matrix Green’s func-
tion GR(E):

GR(E) = [(E + iδ)S−H]−1 . (5.14)

The δ means an infinitesimal 0+, I is the identity matrix and S = Smn =
〈ψm|ψn〉 the overlap matrix. The term matrix Green’s function refers to the
discrete grid the whole problem is formulated on. Eq. 5.14 is very similar
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Figure 5.3: The system parted into a device and two electrode regions

to what we have discussed in chapter 3 (see Eq. 3.22) and also stems from
the Schrödinger equation. The physical meaning of the Green’s function is
discussed later. For now its introduction is justified by the fact that one
can calculate certain physical properties more easily with the use of Green’s
function. Fig. 5.3 shows a prototypical molecular device. It can be parted
into the left electrode, the central region with the monolayer (also called
the device region, or the channel) and the right electrode. The problem is
that in z-direction one has a finite object (3 layers of Au, the SAM and again
three layers of Au) and two semi-infinite objects (the left and right electrode)
coupled to it as indicated in Fig. 5.3. The goal is to incorporate the influence
of the infinite electrodes on the finite central region.

To explore how the Green’s function works, we consider the central region
coupled only to one electrode (see Fig. 5.4). Once the solution to this
problem is known, it is applicable to the second electrode and we can solve
the ’whole’ problem. We can then write the overall Hamiltonian H of this
part of the system as

H =

(
HD HDL

HLD HL

)
, (5.15)

where the subscript D stands for device (i.e. the central region) and L for
the left electrode. The HDL,LD are the coupling matrices of the device to the
left electrode and vice versa. This is essentially the same idea we had in the
linear chain in the last two paragraphs: First we introduced single atoms as
sites of interaction (tight-binding), then unit-cells (SIESTA DFT calculation)
and now we want to describe the interactions on- and between device and
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Figure 5.4: One electrode and the device represented by their respective
Hamiltonians

electrode that both consist of many atoms and unit-cells.
We can formulate the Green’s function G (we don’t denote the subscript R

in the following) for this system in the same fashion as the Hamiltonian

G =

(
GD GDL

GLD GL

)
, (5.16)

where GD is the device’s and GL the left electrode’s Green’s function. From
Eq. 5.14 we can write

G =

(
GD GDL

GLD GL

)
=

=

(
(E + iδ)SD −HD (E + iδ)SDL −HDL

(E + iδ)SLD −HLD (E + iδ)SL −HL

)−1

. (5.17)

We now make use of the following identity:

If

(
a b
c d

)
=

(
A B
C D

)−1

,
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then

a =
(
A−BD−1C

)−1
. (5.18)

Proof.

−→
(

a b
c d

)(
A B
C D

)
=

(
I 0
0 I

)

−→ Aa + Bc = I

−→ Ca + Dc = 0

−→ c = −D−1Ca

−→ Aa + B
(
−D−1Ca

)
= I

−→ a
(
A−BD−1C

)
= I

−→ a =
(
A−BD−1C

)−1

Using the identity Eq. 5.18 we can rewrite the Matrix in Eq. 5.17 and
get

GD = {(E + iδ)SD −HD−
− [(E + iδ)SDL −HDL])G−1

L [(E + iδ)SLD −HLD]}−1, (5.19)

where
GL = [(E + iδ)SL −HL]−1 . (5.20)

We can also define the self-energy matrix here:

Σ = [(E + iδ)SDL −HDL])G−1
L [(E + iδ)SLD −HLD] (5.21)

and rewrite Eq. 5.19 to obtain

GD = [(E + iδ)S−HD −Σ]−1 . (5.22)
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As we see the self energy describes the influence of the left contact on the
device region. Eq. 5.22 means we describe the device by its Hamiltonian and
the influence of the electrode by the self-energy.
We will later see that the Green’s function of the device Eq. 5.19 is the
desired object, once we have GD we can calculate all interesting observables.
We are not interested in the reservoir, we only want to know how it acts
on the device. From Eq. 5.19 we see that (assuming the Hamiltonian is
known) the problem is now reduced to finding the Green’s function of the
left electrode GL. When explaining the computational implementation, we
will refer a method to calculate the Green’s function of a bulk-electrode.

Physical meaning of the Green’s function and the self-energy: The
following is partly based on chapter 8 in [55]. Let me start by recapturing
the definition of the retarded one-particle Green’s function:

GR(E) = [(E + iδ)S−H]−1 . (5.23)

The δ is meant to be an infinitesimal 0+, S is the overlap matrix. We will
rewrite that equation in matrix form and, for the sake of simplicity, assume
we are in an orthogonal basis (the overlap matrix becomes the identity and
we only face diagonal elements):

GR(E) =



1
E−ε1+i0+ 0 0 0 . . .

0 1
E−ε2+i0+ 0 0 . . .

0 0 1
E−ε3+i0+

. . . . . .

0 0
. . . . . . . . .

...
...

. . . . . . . . .

 . (5.24)

We can introduce the Fourier transform of GR(E) by defining

G̃R(t) =

∫
dE

2π~
eiEt/~ GR(E) (5.25)

and find

G̃R(t) = − i
~

Θ(t)e−0+t


e−iε1t/~ 0 0 0 . . .

0 e−iε2t/~ 0 0 . . .

0 0 e−iε3t/~
. . . . . .

0 0
. . . . . . . . .

...
...

. . . . . . . . .

 , (5.26)

where Θ is the unit-step function. We proof this by considering one level ε
and performing the inverse Fourier transform:
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Proof.

GR(E) =

∫
dt eiEt/~ G̃R(t)

= − i
~

∫
dt eiEt/~ Θ(t)e−iεt/~e−0+t

= − i
~

∫ ∞
0

dt ei(E−ε)t/~e−0+t

=
1

E − ε+ i0+

The term retarded refers to the fact that G̃R(t) is zero for t < 0. We see
that this function satisfies the differential equation(

i~
∂

∂t
− εα

)
G̃R
αα(t) = δ(t), (5.27)

or in general (again assuming an orthogonal basis)(
i~
∂

∂t
−H

)
G̃R(t) = Iδ(t), (5.28)

which is the time-dependent Schrödinger equation. Thus the retarded Green’s
function is the response of the system to a perturbation- the matrix element
G̃R
nm gives the nth component of the wavefunction perturbed at its mth com-

ponent.
The retardation of this response is plausible. There is, however, a second
possible solution

G̃A(t) =
[
G̃R(−t)

]∗
, (5.29)

called the advanced Green’s function. It also satisfies the Schrödinger equa-
tion, but is zero for all t ≥ 0. We summarize:

Retarded Advanced

G(E) = [(E + i0+)I−H]
−1

G+(E) = [(E − i0+)I−H]
−1

G̃R(t) = − i
~Θ(t)e−0+te−iεt/~ G̃A(t) = − i

~Θ(t)e+0+te−iεt/~.

(5.30)

The superscript + in G+(E) is in contradiction to the notation in chapter
3, but this is just convention. From the eigenstate representation one may
think that the difference between G(E) and G+(E) is minor, since only the
infinitesimal (that should be ’physically irrelevant’) has a different sign. That
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interpretation is cast into doubt by the time-domain representation of the
Green’s functions: G̃R(t) is a causal function and was shown to propagate
the inhomogenity caused at time δ(t), whereas G̃A(t) is a solution to the
same differential equation but with no physical initial condition.

To point out the meaning of the self-energy Σ we consider just one level,
which means the Hamiltonian reduces to ε and we face numbers instead of
matrices. The (time-domain) Green’s function of the device then has to
satisfy the following equation(

i~
∂

∂t
− ε− Σ

)
G̃R

D(t) = δ(t), (5.31)

whose solution is
G̃R

D(t) = Θ(t)e−0+te−iεt/~e−iΣt/~. (5.32)

We will now explore the meaning of the self-energy by rewriting this equation:

G̃R
D(t) = Θ(t)e−0+t e−iεt/~ e−iΣt/~

= Θ(t)e−0+t e−i(ε+Σ)t/~

= Θ(t)e−0+t e−i[ε+(ReΣ+i=Σ)]t/~

= Θ(t)e−0+t e(−iε+ReΣ+=Σ)t/~

= Θ(t)e−0+t e(−iε+ReΣ)t/~ e=Σt/~

= Θ(t)e−0+t e−iε
′t/~ e−γt/2~, (5.33)

where ε′ = ε+ ReΣ and γ = −2 · =Σ. From this we see the physical meaning
of the self-energy Σ: The real part shifts the state from ε to ε′ while the
imaginary part gives the state a finite lifetime. The latter can be seen by
calculating the amplitude of that function, which tells us the probability
decay after an initial excitation. We get

|G̃R
D(t)|2 ∝ e−γt/~, (5.34)

where we can indicate the lifetime τ :

1

τ
= −γ

~
=

2 · =Σ

~
. (5.35)

From that equation we can formulate an uncertainty principle

− γ · τ = 2 · =Σ · τ = ~. (5.36)

From quantum mechanics we know the uncertainty for transitions to be
∆E = ~/τ . In our case 2 · =Σ appears to play the role of ∆E. That
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Figure 5.5: Schematic picture of two contacts linked by a single state repre-
senting the channel

means, we can ’measure’ the states only within a predetermined resolution
depending on Σ, i.e. the influence of the bulk. A broadening in the density
of states is the consequence of the self-energy Σ - the more the bulk acts on a
state, the less sharp its peak will occur in the density of states. We conclude
our discussion of the Green’s function by noting that since the Green’s func-
tion and hence the self-energy are causal functions, the real- and imaginary
part of the self-energy are linked by the Hilbert transform H.

5.2 Transmission, surface DOS and surface

band structure

In this section further theoretical concepts are illustrated. At first a theoreti-
cal framework to calculate IV-curves from the Green’s function is introduced.
Afterwards we focus on the electronic structure of a surface layer. The con-
cept of the spectral function and two applications, namely the surface DOS
and band structure, are discussed.

5.2.1 Transmission and current

We will now calculate the current on an atomic scale. Two main assumptions
are made: First coherent transport is considered, meaning that no phase-
breaking scattering processes are involved in the description. Second we
calculate the zero-bias transmission, meaning we do not account for the effect
of the applied voltage on the transmission, i.e. T (E, V ) ≈ T (E, 0). We
have to keep in mind that the higher the applied voltage the less a result
makes sense [53]. For the derivation of the following formulas we refer to the
literature (e.g. [54]) The Landauer formula reads [54]

I =
2e

h

∫
dE [f(E − µl)− f(E − µr)]T (E), (5.37)
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Figure 5.6: A device represented by one single state and a contact by a
reservoir of states

where f(E − µi) are Fermi functions describing the contacts. Fig. 5.5 illus-
trates a single channel and two contacts. From this very schematic picture
one can already guess basic priciples of coherent electronic transport.First,
from Eq. 5.37, we see that different Fermi levels in the contacts as indicated
in Fig. 5.5 are a condition for transport. This is achieved by a bias Vd applied
to the contacts, which shifts the Fermi energies by an amount qVD. If the
channel at energy Echannel is far below both Fermi energies of the contacts,
f1(Echannel) = f2(Echannel) = 1 and no current will flow. If a channel is far
above both Fermi energies, f1(Echannel) = f2(Echannel) = 0 and no current
flows. For a current to flow, the state has to lie in the bias window.

The function T (E) in Eq. 5.37 is called the transmission function. It
tells us how many states are available at a certain energy and how well the
two electrodes are connected. From the Green’s function formalism one gets
[54]

T (E) = Tr
[
GDΓlG

+
DΓr

]
, (5.38)

where Γi is the broadening matrix

Γl,r = i
[
Σl,r −Σ+

l,r

]
. (5.39)

The effect of Σi is to broaden and shift the states of the device as was shown
before.

5.2.2 Surface density of states

In DFT calculations the density of states of a monolayer on a surface is broad-
ened artificialy. A real broadening of the DOS is well described in the Green’s
function formalism. Through the last sections a single state and one contact
like in Fig. 5.6 were frequently used to explain the physical situation. The
essence is the same, for a nano device with many states we just get matrices
instead of numbers. The coupling of a second contact to the device results
in the same processes as coupling only one to it.

Therefore I will try to make the concept of a broadened DOS more clear
by discussing the single state example in Fig. 5.6. This subsection follows
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Figure 5.7: Broadened DOS due to the coupling of device and contact

chapter 8.2 in [55]. The total DOS of this system when device and contact
are not coupled is

D(E) = δ(E − ε) +
∑
n

δ(E − εn), (5.40)

which is what we see in Fig. 5.6, where the εn are the energies of the states
in the reservoir and the ε is the energy of the device’s state. If we couple
device and contact, the device’s DOS gets broadened. Here we introduce the
local density of states LDOS, which in general reads

D(r;E) =
∑
α

|φα(r)|2δ(E − εα). (5.41)

The φα are the states associated to the energy levels εα. The LDOS weights
the DOS with the spatial probability density of the states. The LDOS can
be applied to the situation of a decoupled device and contact (see Fig. 5.6).
Then the LDOS for the device would be

D(r;E) =
∑
α

|φα(r)|2δ(E − εα) = δ(E − ε), (5.42)

because the only state present in the device is that associated to the energy
level ε of the device itself (see Fig. 5.6). When device and contact are
coupled, states of the reservoir are allowed to leak into the channel and vice
versa. Therefore, also states at different energy levels than the primal ε of
the isolated channel will have a certain amount of spatial probability density
within the channel. This is exactly what the LDOS in Eq. 5.41 takes into
account: It weights each δ-peak from the uncoupled DOS by the spatial
probability density of the associated states and results in a spatial resolved
DOS. After being coupled to the reservoir the channel’s DOS is broadened
as shown in Fig. 5.7.

The LDOS in Eq. 5.41 represents the diagonal elements (divided by a
constant) of a more general function called spectral function

A(r, r′;E) = 2π
∑
α

φα(r)δ(E − εα)φ∗α(r′). (5.43)
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The spectral function provides the LDOS in any basis. There is an analogue
between the LDOS and the electron density n(r). The electron density n(r)
also represents the diagonal elements of a more general quantity called the
density matrix

ρ(r, r′) =
∑
α

φα(r)f0(εα − µ)φ∗α(r′). (5.44)

Just as the sum over the electron density n(r) gives the total number of
electrons, the sum over D(r;E) gives the density of states D(E). The sum
over diagonal elements is the trace and we can note

D(E) =
1

2π
tr (A(r, r′;E)) . (5.45)

By knowing the spectral function one gets the DOS and LDOS. We now
illustrate that the spectral function can be obtained by using Green’s function
(again assuming an orthogonal basis for simplicity): One can show [55] that
the density matrix ρ(r, r′) can be written as

ρ = f0(H− µI), (5.46)

which by comparing Eq. 5.43 and 5.44 leads us to a similar representation
for the spectral function:

A = 2πδ(EI−H). (5.47)

The δ-function can be rewritten

2πδ(x) =

[
1

x+ i0+
− 1

x− i0+

]
i = ... =

2 · 0+

x2 + (0+)2
, (5.48)

which we use for Eq. 5.47 to get

A = i
[(
E + i0+

)
I−H)

]−1 − i
[(
E − i0+

)
I−H)

]−1
. (5.49)

We can identify the Green’s function in that equation and rewrite the spectral
function again making use of Eq. 5.30 to finally get

A = i
[
G−G+

]
. (5.50)

The Green’s function is directly related to the spectral function, the DOS
and LDOS!

A Green’s function representation of the DOS was derived. Starting at
the LDOS, we showed that knowing the Green’s function means knowing
all the eigenvalues. Moreover we can calculate a basis-resolved eigenvalue
spectrum in any basis. This is of particular interest. One can, of course, use
another basis and not the position states in Eq. 5.41. For example, when
using atomic orbitals, one can resolve the DOS regarding the atomic orbitals.
We call that the projected density of states PDOS. The advantage is
that one starts from the Green’s function that includes the influence of a
semi-infinite bulk.
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5.2.3 Surface band structure

In our DFT calculations the k-points are uniformly distributed. Clearly that
sampling is designed to result in an accurate description of the system and the
observables - density matrix, ground-state energy, DOS and so on. It would
be nice, to conserve that high accuray of the standard DFT calculation, but
calculate the DOS at arbitrary k-points (and not at the k-points associated to
that accuracy, i.e. the uniformly distributed one). Of particular interest are
k-points representing high-symmetry lines in the electronic band structure.
Then one gets a DOS at every k-point of a band structure. That band
structure is not represented by points in an Ek-relationship, it is really more
a 3D band structure with a DOS at each coordinate (ki, Ei). That band
structure yields information beyond the dispersion of the electrons: The
height, i.e. the DOS at each k-point, corresponds to the broadening - if we
would have an isloated and unperturbed state, the DOS would be a δ-peak.
Once that state is perturbed by a self-energy, it has the chance to leave which
results in a finite lifetime, a broadened and smaller peak in the DOS.

In the next section I will outline the computational implementation of
the tranmission, surface DOS and surface band structure.

5.3 Computational implementation

The following will guide through our computational realization of the Green’s
function technique. Those programs were developed in a collaboration with
Georg Heimel from the Humboldt Universität zu Berlin who designed most
of the codes.

How to build a molecular device: To build a molecular device we first
have to build the central region (see Fig. 5.8) To do so, we performed a sur-
face calculation in VASP using the external tool GADGET. Usually one would
therefore consider a slab with three layers of Au(111) and the SAM on top of
it. We have, however, performed the calculation using five layers of Au(111)
for another purpose and therefore started from this geometry. In both ways
one gets a S docking-site. We assumed that the S atoms adsorb in the same
way at the left- and right electrode. We know the docking geometry from the
surface calculation and therefore can apply it to the second electrode. This
is realized by adding three more layers of Au(111) (ABC stacking) on the
opposed side of the adsorbed SAM after the geometry optimization is done.
The tilt angle of the molecules has to be modified to realize that the S atoms
on both sides of the monolayer adsorb in the same way. The unit-cell has to
be choosen in a way that the Au(111) inter-layer difference to the consecu-
tive periodic Au(111) layer is realized. As already mentioned it is possible
to calculate the PDOS, i.e. the DOS projected on atomic orbitals. In this
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Figure 5.8: The molecular device is parted into two semi-indinite electrodes
and the central region with the molecular part and three layers of Au(111)
on each side

way we would like to resolve the DOS of each part in the central region.
For example, it would be nice to distinguish between the layers of Au(111)
and the molecular part sandwiched between the two electrodes. To do so we
project the DOS on atomic orbitals associated to the part where we want to
know the DOS. It is important to sort the atoms in the unit-cell according
to their position in z-direction from low to high. Then one can project the
DOS on each layer of the central region.

The ’rest’ of the semi-infinite electrodes on each side of the central region
is added by a self-energy formalism based on the theoretical basics explained
in 5.1. We therefore have to build a unit-cell for the bulk-electrode. This
unit-cell contains three layers of Au(111) that have to be sorted in exactly
the same way as in the central region.

The pathway to calculate T (E) and the current: To get an overview
the pathway to get the transmission is outlined. The input needed are the
Green’s function of the device 5.22 and therefore the self-energy Σ.

From Eq. 5.22, we see that we need to know the device’s Hamiltonian
matrix HD and the overlap matrix S. Therefore we perform a SIESTA DFT

calculation on the central region of the device we built. By using a modified
pdosk.F file we force SIESTA to write out the Hamiltonian and the overlap
matrix at every k-point. To enable this mechanism, one has to adjust the
parameter nhist in the SIESTA .fdf file. In that file one can find a block
responsible for the PDOS:

$ grep -B 2 ’endblock Projected’ biphen.fdf

%block ProjectedDensityOfStates

-10.0 5.0 0.2 1503 eV
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%endblock ProjectedDensityOfStates

The last number before eV is the parameter nhist. By setting nhist=1503
one specifies a central region calculation and the Hamiltonian and overlap
matrices are written to files

Then one needs to calculate the overlap and Hamiltonian matrix for the
electrode. Therefore a SIESTA DFT calculation on the unit-cell with three
layers of Au(111) which we built in the last paragraph is performed. By
setting nhist=1502 one gets the Hamiltonian and overlap matrices for the
electrode.

For both this calculations an input file named params.inp is needed. In
this input file one has to write the number Internal auxiliary supercell. The
Internal auxiliary supercell was already discussed in paragraph 5.1. It is the
supercell of periodicty for the Hamiltonian and calculated by SIESTA. One
finds it in the outfile of a SIESTA calculation as quoted below

$ grep ’Internal auxiliary supercel’ bulk.out

superc: Internal auxiliary supercell: 3 x 3 x 2

Those three numbers determine the ’Internal auxiliary supercell’, have
to be written into a file params.inp before starting the respective SIESTA

calculations. An example for a params.inp file is quoted below:

$more params.inp

SuperCellX 5

SuperCellY 3

SuperCellZ 1

Note : The way we’ve implemented the scheme so far can only handle
SuperCellZ = 2 or 3 for the bulk calculation. If SuperCellZ = 4 only next-
nearest neighbour interaction between unit-cells is taken into account.

The program transmission.f90 iteratively calculates the self-energy. The
algorithm is based on the idea of the Green’s function introduced in the last
sections. The program needs the Hamiltonian and overlap matrices of the
electrode and central region one gets from the SIESTA DFT calculation. In
transmission.f90 we make use of an algorithm introduced in [62, 63]. When
the Σs are calculated, the device’s Green’s function GD Eq. 5.22 and the Γs
Eq. 5.39 are determined. We then compute the transmission using Eq. 5.38
and are done.

transmission.f90 performs that procedure for every k-point. For every
k-point it needs an input file named transmission.inp.spin1.00<kpoint>. To
produce those input files we used the following script (for 24 k-points in our
case):
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#!/ bin / bash
2

for ( ( i =1; $ i <= 24 ; i++ ) )
4 do

echo ” SpinKpoint 1 $ i ”>t ransmi s s i on . inp . sp in1 .00 $ i
6 echo ”MinMaxStepEne −3.0 3 .0 0 .01

ElectrodeFermi −2.5503
8 CentralRegionFermi −3.7851

ClipWings 450
10 E p s i l o n I t e r a t i o n 1 . e−10

DeltaImaginary 1 .0 e−5
12 StartStopDos 01 1 90

StartStopDos 02 91 180
14 StartStopDos 03 181 270

StartStopDos 04 271 674”>>t ransmi s s i on . inp . sp in1 .00 $ i
16 done

Line 6 determines the range in energy for calculating the transmission and
the discrete steps. Line 7 and 8 are the Fermi energies of the central region
and the electrode found in the output of each SIESTA calculation. We don’t
want to consider the central region’s interaction with its consecutive images,
we add the semi-infinite bulk instead. Therefore, one has to open the file
CheckWings.dat in the directory of the central region DFT calculation. There
one sees the first rows of the Hamiltonian, where (somewhere in the middle
of the matrix) the elements become zero and then again nonzero. One has to
pick a number in the range where everything is zero to clip the interactions
going beyond the unit-cell of the central region. That number has to be
written to Line 9. Line 10 and 11 are the convergence criteria for the Σ
iteration and the δ needed for the retarded Green’s function of the device
Eq. 5.22. The last lines determine the atomic orbitals the density of states
is projected on.

To calculate the transmission one could use a script

#!/ bin / bash
2

for ( ( i =1; $ i <= 24 ; i++ ) )
4 do

t ransmis s ion<t ransmi s s i on . inp . sp in1 .00 $i>
6 t ransmi s s i on . out . sp in1 .00 $ i

done

where line 3 is a loop over the number of k-points. As an output one gets
the transmission for each k-point listed below:
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$ ll transmission.spin1.0*

-rw-r--r-- 1 david david 66711 2010-03-04 09:10 transmission.spin1.001

-rw-r--r-- 1 david david 66711 2010-03-04 09:57 transmission.spin1.002

-rw-r--r-- 1 david david 66711 2010-03-04 10:44 transmission.spin1.003

-rw-r--r-- 1 david david 66711 2010-03-04 11:32 transmission.spin1.004

-rw-r--r-- 1 david david 66711 2010-03-04 12:19 transmission.spin1.005

-rw-r--r-- 1 david david 66711 2010-03-04 13:06 transmission.spin1.006

-rw-r--r-- 1 david david 66711 2010-03-04 13:53 transmission.spin1.007

-rw-r--r-- 1 david david 66711 2010-03-04 14:40 transmission.spin1.008

-rw-r--r-- 1 david david 66711 2010-03-04 15:28 transmission.spin1.009

-rw-r--r-- 1 david david 66711 2010-03-04 16:15 transmission.spin1.010

-rw-r--r-- 1 david david 66711 2010-03-04 17:03 transmission.spin1.011

-rw-r--r-- 1 david david 66711 2010-03-04 17:50 transmission.spin1.012

-rw-r--r-- 1 david david 66711 2010-03-04 18:37 transmission.spin1.013

-rw-r--r-- 1 david david 66711 2010-03-04 19:25 transmission.spin1.014

-rw-r--r-- 1 david david 66711 2010-03-04 20:12 transmission.spin1.015

-rw-r--r-- 1 david david 66711 2010-03-04 21:00 transmission.spin1.016

-rw-r--r-- 1 david david 66711 2010-03-04 21:47 transmission.spin1.017

-rw-r--r-- 1 david david 66711 2010-03-04 23:18 transmission.spin1.018

-rw-r--r-- 1 david david 66711 2010-03-04 23:18 transmission.spin1.019

-rw-r--r-- 1 david david 66711 2010-03-04 19:11 transmission.spin1.020

-rw-r--r-- 1 david david 66711 2010-03-04 19:58 transmission.spin1.021

-rw-r--r-- 1 david david 66711 2010-03-04 20:46 transmission.spin1.022

-rw-r--r-- 1 david david 66711 2010-03-04 21:33 transmission.spin1.023

-rw-r--r-- 1 david david 66711 2010-03-04 22:20 transmission.spin1.024

As you see, the tranmission was calculated using unrestricted spin. Each file
carries the transmission and the PDOS for the energy range you specified:

$ more transmission.spin1.001

-3.0000000000 0.0313415051 0.1319394856 0.1490514420 0.1845801541 0.0430935056

-2.9900000095 0.0312860399 0.1367842169 0.1584191207 0.1942537757 0.0447129078

-2.9800000191 0.0312665433 0.1429603410 0.1690557671 0.2058608908 0.0468657931

-2.9699997902 0.0313670754 0.1497922572 0.1794440452 0.2173130298 0.0495214185

-2.9600002766 0.0315128863 0.1554951679 0.1869733049 0.2249024996 0.0524357545

-2.9500002861 0.0307040215 0.1572128023 0.1887304298 0.2245544587 0.0531632030

-2.9400000572 0.0281045824 0.1525381452 0.1813469500 0.2130226518 0.0475036274

-2.9300000668 0.0265230596 0.1448648720 0.1693718034 0.1970108506 0.0412249815

-2.9200000763 0.0266638398 0.1576283710 0.1787768419 0.2018523997 0.0427065279

-2.9099998474 0.0260734409 0.1704712437 0.1869323985 0.2055662049 0.0433632383

We now have to integrate over the Brillouin-zone, i.e. sum the files up

T (E) =
∑
k

Tk(E), (5.51)

where we used GNU octave as it is perfectly suited for such matrix operations.
According to Eq. 5.37 we can now calculate the IV-curve.

To conclude this paragraph an overview of the steps that are necessary
to obtain the tranmission is given:

1. SIESTA DFT calculation of the electrode:

• params.inp with proper Internal auxiliary supercell

• nhist=1502

• Hamiltonian and overlap matrices are written to one file

2. SIESTA DFT calculation of the central region:

• params.inp with proper Internal auxiliary supercell

• nhist=1503

• Hamiltonian and overlap matrices are written to one file
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3. Calculate T (E)

• Collect the output files of the central region and electrode calcu-
lations

• Produce the input file for every k-point (set the Fermi energies,
clip the wings, set the convergence criteria and the orbitals for the
PDOS

• Start the calculation of T (E) by using the program transmis-
sion.f90

•
∑

k Tk(E)

4. Calculate the current on an atomic scale using Eq. 5.37

Calculating the surface DOS: The tranmission and surface DOS are
very similar. This is also obvios from the fact that we discussed a device
with two contacts by considering a device with only one contact, which is in
fact a surface with a molecular layer on it.

From this point of view, also the computational implementation is quite
similar to that of the transmission. We again have to find the self-energy
of the Au(111) bulk (therefore we need the Hamilton- and overlap matrices
of the bulk), set up the Green’s function (therefore we need the Hamilton-
and overlap of the surface region) and calculate the DOS (by taking the
trace of the anti-hermitian part of the Green’s function), which is broadened
according to the influence of the bulk. The surface region calculation is
performed using a preconverged geometry (in VASP and GADGET) where 5
layers and two organic molecules in the unit cell represent the Au(111) surface
with the adsorbed monolayer. We add three layers of Au(111) to the tail of
that slab and then have 8 layers of Au and the molecules in the unit cell of
the surface-region DFT calculation. We then calculate the self-energy and its
influence on the surface region: We ’append’ the bulk to the surface region,
i.e. exchanging the three layers of Au we’ve added before by an infinite bulk
as shown in Fig. 5.9. After that we are able to compute the spectral function
and the LDOS as explained before. Again, we can calculate the PDOS and
project the DOS on different layers of the surface region. The following steps
summarize the surface DOS calculation:

1. SIESTA DFT calculation of the electrode:

• params.inp with proper Internal auxiliary supercell

• nhist=1502

• Hamiltonian and overlap matrices are written to one file
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Figure 5.9: Influence of an infinite bulk added to the surface region

2. SIESTA DFT calculation of the surface region:

• add three layers of Au (111) to your preconverged surface calcu-
lation

• params.inp with proper Internal auxiliary supercell

• nhist=1504

• Hamiltonian and overlap matrices are written to one file

3. Calculate D(E)

• Collect the output files of the surface region and electrode calcu-
lations

• Produce the input file for every k-point (set the Fermi energies,
set the convergence criteria and the orbitals for the PDOS

• Start the calculation of D(E) by using the program surfacedos.f90

•
∑

kDk(E)

The program surfacedos.f90 also needs the input files for every k-point. We
produced the input files with the following script:

1 #!/ bin / bash

3 for ( ( i =1; $ i <= 24 ; i++ ) )
do

5 echo ” SpinKpoint 1 $ i ”>su r f a c edo s . inp . sp in1 .00 $ i
echo ”MinMaxStepEne −5.0 3 .0 0 .01

7 BulkFermi −2.5503
SurfaceFermi −3.7532

9 E p s i l o n I t e r a t i o n 1 . e−10
DeltaImaginary 1 .0 e−5
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11 StartStopDos 01 1 90
StartStopDos 02 91 180

13 StartStopDos 03 181 270
StartStopDos 04 271 360

15 StartStopDos 05 361 450
StartStopDos 06 451 838”>>su r f a c edo s . inp . sp in1 .00 $ i

17 done

The lines were already explained in the last section. The result of calculating
the surface LDOS at every k-point are files with the bulk-broadened LDOS
projected on the specified

Calculating the surface band structure For the surface band struc-
ture SIESTA is forced to write out the Hamiltonian and overlap matrices at
arbitrary k-points. We want to conserve the high accuracy of the calculation
obtained with a uniformly sampled k-point grid. Therefore we perform a
DFT calculation on the surface and the bulk-electrode. Then one performs a
calculation where the written density matrix needs to be read in by setting
DM.UseSaveDM to .true. in the .fdf file. Then we set MaxSCFIterations to
1 meaning that SIESTA reads in the density matrix and does exactly nothing.
The pdosk.F routine was modified in a way that when nhist=1505 and a file
named kpoints.inp is present, the Hamiltonian and overlap matrices are
written to file for that k-points. The number of k-points has to be in the first
row of k-points.inp followed by the k-points in kx ky kz format. The following
steps summarize the surface bands calculation:

1. SIESTA DFT calculation of the electrode:

• params.inp with proper Internal auxiliary supercell

• nhist=1505

• DM.UseSaveDM .true.

• MaxSCFIterations 1

• kpoints.inp with number of k-points and k-points

• Hamiltonian and overlap matrices are written to one file

2. SIESTA DFT calculation of the surface region:

• add three layers of Au (111) to your preconverged surface calcu-
lation

• params.inp with proper Internal auxiliary supercell

• nhist=1505

• DM.UseSaveDM .true.
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• MaxSCFIterations 1

• kpoints.inp with number of k-points and k-points

• Hamiltonian and overlap matrices are written to one file

3. Calculate D(E)

• Collect the output files of the surface region and electrode calcu-
lations

• Produce the input file for every k-point (set the Fermi energies,
set the convergence criteria and the orbitals for the PDOS

• Start the calculation of D(E) by using the program surfacedos.f90

One ends up with a file for every specified k-point. Those files contain the
DOS as a function of the energy for the specified atomic orbitals. Therefore
we can plot a three dimensional band structure.

5.4 Results and Discussion

Distributing polar groups along the backbone has been shown to critically
influence the metal/organic interface (see 4.2. The electronic structure of the
compound metal/monolayer system was found to be significantly different
when the monolayer was built of polar units. In this section we continue our
investigation of polar backbones in a SAM by exploring how they behave
as molecular-electronic devices. We therefore calculate the transmission and
IV-characteristics of prototypical examples. Furthermore, as an illustration,
the concepts of the surface DOS and band structure are applied to those
systems. This section is started by testing our approach for a monolayer
device based on a biphenyldithiolate SAM.

5.4.1 Transmission benchmark - the biphenyldithio-
late SAM

The biphenyldithiolate SAM in Fig. 5.10 was choosen as the reference system
to test our computaional implementation because i) it served as a reference
system in previous publications of our group (e.g. [21]) and ii) it was already
considered as a molecular device in the literature [64].

Fig. 5.4.1 compares the transmission function obtained by Kim et. al in
Ref. [64] and our results. The authors in Ref. [64] have calculated the
transmission per molecule, whereas we calculate the transmission per unit-
cell. As there are two molecules in the unit-cell, the two plots differ by
a factor of 2. Besides that the agreement is very good. The influence of
different tilt angles of the long molecular axis was considered in Ref. [64]
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Figure 5.10: The biphenyldithiol SAM - the reference device to test our
methodology

(a)

(b)

Figure 5.11: Comparison of the transmission function: (a) Fig. 8 in Ref.[64]
where the three curves represent different tilt angles (see text) (b) The trans-
mission function calculated for biphenyldithiolate
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(a)

(b)

Figure 5.12: Comparison of the DOS projected onto the molecular part of the
junction: (a) Fig. 7 in Ref.[64] (b) The PDOS calculated for biphenyldithi-
olate

, hence the three curves in Fig. 5.4.1. Curve I corresponds to Θ = 15 ◦,
curve II to Θ = 30 ◦ and curve III to a parallel arrangement of the molecules
relative to each other. The agreement seems to be good with curve I and
II, maybe the best with curve I (a tilt of γ = 14.4◦ was measured for our
biphenyldithiolates).

The comparison of the DOS projected onto the molecular orbitals shown
in Fig. 5.4.1 is also very good. Here only the Θ = 15 ◦ curve of Ref. [64] is
plotted. µ Moreover, we compare the IV-characteristics in Fig. 5.4.1. There,
we also find a similar result compared to Ref. [64] . Again, curve I represents
a tilt angle of γ = 15◦.
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(a)

(b)

Figure 5.13: Comparison of the IV-characteristics: (a) Fig. 9 in Ref.[64] (b)
The current calculated for biphenyldithiolate
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Figure 5.14: The 5,5’-bipyrimidine-2,2’-dithiolate (N-out) and the 2,2’-
bipyrimidine-5,5’-dithiolate (N-in) SAM-forming molecule

5.4.2 Distributing dipoles in a molecular device

As a next step we combine our approach of distribunting the dipoles with
the transport formalism derived so far. The actual position of polar groups
within the backbone affected the electrostatic properties of the monolayer.
Two pyrimidinethiol molecules that differ in the position of the nitrogens
only (and therefore were named ’N-up’ and ’N-down’) behave completely
different when assembled into a SAM. In detail, the level alignment was by
an amount of more than 0.7 eV different in those structures, as discussed in
detail in section 4.2.

Building on that finding we investigated two different bipyrimidinedithio-
late based SAMs: A 5,5’-bipyrimidine-2,2’-dithiolate and a 2,2’-bipyrimidine-
5,5’-dithiolate based SAM (see Fig. 5.14), referred to as ’N-out’ and ’N-in’,
were considered as active elements in the junction.

We would expect those two molecules to behave different as a conductor:
Considering the collective electrostatics in the monolayer one might expect
that the N-out configuration should have lower lying states compared to N-
in. Different transmission and IV-characteristics should be the consequence
as also the transport channels are concerned. Indeed, this was found when
calculating the IV-characteristics as shown in Fig. 5.15 - the two currents
differ significantly! In the high-bias regime above 1V the current for both
configuration might differ even more. To investigate the high-bias regime
one would have to perform non-equillibrium Green’s function calculations. A
tranmission and PDOS obtained within the zero-bias approximation cannot
be used for calculating the current in the high-bias regime [53].

Also the transmission and PDOS shown in Fig. fit in that picture of
higher and lower lying states - the occupied orbitals of the N-in monolayer
are closer to the Fermi level than the orbitals of the N-out monolayer as
originally expected. An aspect that requires further attention is that the
transmission spectrum in Fig. 5.4.1 is higher than 2. The reason is that 3 eV
below the Fermi level more than one state is available for transport in the
unit-energy intervall.

The explanation of the different transport characteristics for the N-in and
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Figure 5.15: The current as a function of the voltage for N-in (solid line) and
N-out (dashed line)

(a) (b)

Figure 5.16: Transmission (a) and PDOS (b) for N-in (solid line) and N-out
(dashed line)
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N-out confirmation as a result of the collective behaviour of the polar parts
in a SAM can now be tested. For this to be the case, the shifts in the PDOS
(and transmission) between ’N-in’ and ’N-out’ have to be significantly larger
than the differences in the molecular HOMO energies. Therefore, we per-
formed GAUSSIAN calculations to obtain the HOMO energies1 of the ’N-in’
and ’N-out’ molecule. The HOMO energies in the molecular calculations are
important as we also consider them in the DFT calculation of the device. The
PW91PW91 functional was applied to ensure comparability with the SIESTA

DFT calculations, and the standard 6-31G* basis set. The HOMO energies
were Ein

HOMO = 5.31 eV and Eout
HOMO = 5.68 eV. In the PDOS of the molecular

region (see Fig. 5.4.2) the highest occupied states are ∆Ein
HOMO = 0.51 eV

and ∆Eout
HOMO = 0.81 eV away from the Fermi level. Thus the observed elec-

tronic structure of the isolated molecule is also present in the SAM. Obvi-
ously no ’SAM effect’ of collective electrostatic interaction is responsible for
the different transport characteristics. The transport characteristics of the
two SAMs is largely determined by the properties of the isolated molecules.
Nevertheless, within the last two section, the derived formalism and its im-
plementation were successfully tested.

5.4.3 Preliminary results - the surface DOS and sur-
face band structure of organic monolayers on no-
ble metals

The surface DOS was introduced as a tool to calculate the DOS of a surface.
The advantage compared to a ’standard’ PDOS is that the surface DOS
incorporates the influence of a semi-infinite bulk. One can explicitly define
the molecular orbitals the DOS is projected onto in surfacedos.f90. As a
consequence, the DOS for each layer of the surface region can be resolved
as shown in Fig. 5.18. There, the influence of a semi-infinite bulk onto
each of the five Au(111) layers and onto the ’N-in’ monolayer is shown. One
could also calculate the PDOS of specific compounds of the molecular layer
(e.g. the sulfur orbitals, a certain ring, ...). and explore how those parts are
broadened compared to the PDOS of other compounds of the monolayer.

By using the surface DOS we can also calculate the DOS of a layer in the
’true infinite’ bulk. The DOS of such a bulk layer of Au(111) is plotted in
Fig. 5.18.

1We also calculated the ∆SCF values by explicitly substracting an electron and com-
paring the total energies of the neutral and charged systems. Those values were close to
equal for N-in and N-out which is counterintuitive when comparing the molecular HOMO
energiess. The reason for this behavior is unknown.
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Figure 5.17: The DOS projected onto each layer of Au(111) and the adsorbed
N-in monolayer. The PDOS is broadened due to the influence of the semi-
infinite bulk. The spectrum is aligned to the Fermi-level.

Figure 5.18: The ’true’ DOS of a Au(111) bulk layer. The spectrum is aligned
to the Fermi-level
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Figure 5.19: The surface band structure for the first occupied and unoccupied
states in the ’N-in’ monolayer in a contour plot. The spectrum is aligned to
the Fermi-level

It was argued that within the surface band structure approach one can
obtain a 3D band structure where the z-coordinate is an indicator for the
influence of the semi-infinite bulk on the bands. One can plot each k-point’s
D(E) relationship in a contour plot. Fig. 5.19 shows an overview of the
first occupied and unoccupied states in the ’N-in’ monolayer in a contour
plot. Brighter areas indicate more broadening and hence more influence of
the bulk on the electronic structure of the organic layer. Fig. 5.20 shows the
HOMO and HOMO-1 bands of the adsorbed ’N-in’ monolayer.
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Figure 5.20: The surface band structure for the HOMO and HOMO-1 of the
’N-in’ monolayer in a contour plot. The spectrum is aligned to the Fermi-level
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