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“Properly speaking, such work is never finished;
one must declare it so when, according to time
and circumstances, one has done one’s best.”

[Johann Wolfgang von Goethe, Italian Journey]





Abstract

This thesis deals with the problem of finding correspondences between images that capture the
same image scene taken at different times. The time differences can vary from a few minutes up
to several months which makes it even harder to reliably find correspondences. Basically, local
features proved to be a powerful way to find such correspondences because they are robust to
background clutter, occlusions, or changes of the viewpoint. Even though numerous compre-
hensive feature evaluations have been published, none of these works focused the performance
evaluation in the presence of temporal variations. This is a major drawback because in many
applications multi-temporal image matching is a crucial component in order to successfully
solve the posed problem. Consequentially, this thesis presents a multi-temporal performance
evaluation of selected local detectors and descriptors for non-planar aerial imagery.

The primary goal of this work is to develop a temporal insensitive image matching workflow
that is robust to temporal changes in aerial imagery and achieves highly accurate correspon-
dence alignments. Such a matching algorithm may serve as a fundamental component of a
broad range of applications. For example, the demonstrated algorithm prototype can be used
to enhance existing photogrammetric workflows, where manually intensive user intervention is
usually required in order to correctly match images in the presence of temporal changes.





Kurzfassung

In dieser Diplomarbeit wird das Problem der Bildung von Bildkorrespondenzen zwischen Bildern,
die zu unterschiedlichen Zeitpunkten aufgenommen wurden, studiert. Der Zeitraum, der zwis-
chen den Aufnahmen vergangen ist, reicht von einigen wenigen Minuten bis hin zu mehreren
Monaten, was eine zusätzliche Herausforderung für die zuverlässige Erkennung solcher Korre-
spondenzen darstellt. Methoden, die auf sogenannten “local features” basieren, stellen einen
leistungsfähigen Ansatz zum Finden von Bildkorrespondenzen dar, weil sie insbesondere robust
gegen Änderungen im Bildinhalt sind. Aus diesem Grund gibt es auch zahlreiche Publikatio-
nen, die sich mit der Evaluierung dieser Methoden auseinandersetzen. Das Problem ist dabei
jedoch, dass sich keine dieser Evaluierungen dem Problem der zeitlichen Änderung des Bildin-
haltes widmet. Genau mit solchen Änderungen ist man aber in vielen Anwendungsfällen zum
Beispiel aus der Luftbildphotogrammetrie konfrontiert. Aus diesem Grund werden in dieser Ar-
beit die Auswirkungen von zeitlichen Veränderungen in Luftbildern auf die Performance von
“local features” evaluiert.

Ziel dieser Arbeit ist die Entwicklung eines Workflows, der einerseits robust gegenüber zeitlichen
Änderungen in Luftbildern ist und andererseits Bildkorrespondenzen mit hoher Präzision findet.
Ein solches System könnte in vielen Anwendungen den Benutzerkomfort erheblich verbessern und
gleichzeitig die Qualität steigern: So ist es zum Beispiel in vielen Anwendungen nach wie vor der
Fall, dass der Benutzer manuell Korrespondenzen in Bildern suchen muss, wenn der automatische
Ablauf durch die zeitlichen Veränderungen zwischen den Bildern zu keinen geeigneten Lösungen
kommt.
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Chapter 1

Introduction

Contents

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aims and Objectives of this Thesis . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

During the last decade, the digital revolution brought a massive progress in terms of availability
as well as capability of digital imaging devices. Driven by the technological advances and the
broad applicability of digital imaging, an enormous amount of digital imagery is newly created
every day. In order to efficiently manage this ever growing number of (partially redundant) data
it is more and more important to develop automated procedures that automatically process the
data without the need of manual user interaction.

One of these important steps toward automated image processing is called image registration.
Image registration is the fundamental process of aligning overlapping images and stitching them
seamlessly into high-resolution images. The list of applications based on image registration in-
cludes mosaic construction [6], change detection [44], or three-dimensional model extraction [54].
Of course, this list of possible application fields is by no means exhaustive. However, all applica-
tion scenarios have a common technical background: An unknown spatial transformation maps
locations in one image to corresponding locations in another image and the key to successfully
align a set of images is to determine this spatial transformation. This task is also referred to
as image matching. Even if the geometric fundamentals of this problem are well investigated,
many challenges remain. For example, significant changes of the image characteristics pose a
problem: If images are taken at different times, with different illumination conditions, or from
widely separated viewpoints, it is, e.g., hard to find the same physical location in each image.

1



2 1. Introduction

1.1 Problem Definition

Due to the numerous types of image degradation and the diversity of images to be matched, it is
still impossible to develop a general-purpose algorithm that is applicable to all image matching
tasks. For example, Yang et al. [65] studied the registration of challenging image pairs. Their
goal was to develop a general-purpose registration algorithm that can cope with low image
overlap, substantial scale changes, or physical changes in natural image scenes. The proposed
algorithm is based on the extraction and matching of local features detected with both the
Difference-of-Gaussian [24] and the Harris-Affine [32] detectors and characterized with the SIFT
[24; 25] descriptor. Informally spoken, the algorithm works as follows. Starting from a single
feature match, the algorithm searches for additional matches in the neighborhood of this initial
match. Each time an additional match is found, the estimated alignment model is updated and
refined. These steps are iteratively repeated until convergence. The proposed algorithm achieves
impressing results for a variety of image pairs. However, in the presence of large appearance
variations such as physical changes due to different seasons, the algorithm shows significant
performance deficiencies.

Obviously, achieving accurate corresponding locations between multi-temporal image sets is a
challenging task, because the effects of temporal variations are manifold and tightly related
with the captured image scene. Consequentially, it is essential to use local features in order to
address the problem of multi-temporal image matching. Even though comprehensive evaluations
of local features have been published [11; 12; 30; 33; 34; 52; 59], they are usually limited to
certain domains and none of these works focused the performance evaluation in the presence of
temporal variations.

The absence of evaluation results is a major drawback, because multi-temporal image matching
is often required particularly in fields such as photogrammetry where the overall performance
is tightly related with the accuracy of the image matching stage. For example, in aerial pho-
togrammetry a block of images is processed in order obtain a digital model of the ground. In
this case, a camera is mounted to an aircraft and temporal variations evolve at the time of
image acquisition. During a flight mission, images of the same scene are captured from different
viewpoints and at different times. Low time differences are based on the flight path over the
surveyed area. They can vary between seconds in flight direction, several minutes when adjacent
strips are captured strip-by-strip, or several hours for interleaved strip alignment. High time
differences are the result if images of the same scene is captured by different flight missions.
Often, this happens on a regular basis during different seasons of the year or during several
years.

Figure 1.1 shows the occurrence of short-term temporal variations. The image shown in Fig-
ure 1.1a was captured about noon and the image in Figure 1.1b was captured the other day in
the afternoon. Due to the different positions of the sun, the tower building casts a shadow on
the parking cars (cf. green squares in the images). Furthermore, there is a significant change
in the lineup of the parking cars in the entire parking area (highlighted with red rectangles).
Note that cars usually have a high contrast to their surroundings, hence, they are typically
targeted by feature detectors. Therefore, this kind of temporal variations yield a high number of
feature detections that (a) cannot be re-detected in other images but (b) significantly increase
the computational complexity.

In Figure 1.2, long-term temporal variations are illustrated. The image displayed in Figure 1.2a
was captured in the late afternoon in winter, whereas Figure 1.2b shows the same image scene
captured at noon about five months later in spring time. When these two images are compared,
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the following points have to be noticed. (a) There is a massive change of appearance caused
by seasonal vegetation. For example, see the green rectangles in the images where the trees
cover a large part of the road. (b) The low position of the sun causes large shadows that can
cover significant image structures (cf. red rectangles). (c) Due to the withered vegetation in
Figure 1.2a the shadows are highly textured and feature detections may evolve accidentally
(e.g. orange rectangle).

(a) (b)

Figure 1.1: Illustration of short-term temporal variations.

(a) (b)

Figure 1.2: Illustration of long-term temporal variations.



4 1. Introduction

1.2 Aims and Objectives of this Thesis

The goal of this work is to develop a temporal insensitive image matching workflow that is
robust to temporal changes in the image scene and achieves a high accuracy with correspondence
alignment errors as small as possible, preferably less than a pixel. As already mentioned before,
it is difficult to develop such an algorithm, because there is an unlimited variety of possible image
scenes and distortions. Hence, the focus of this thesis is put on the domain of aerial imagery and
the range of temporal variations collected in three different data sets. Such a matching algorithm
may serve as a fundamental component of a broad range of applications. For example, in many
photogrammetric tasks, it is important to extract topographic information such as an object’s
size, shape, or position solely from a collection of aerial images. Hence, it is important to
capture the same scene from different viewpoints in order to triangulate the relative positions
of corresponding locations in each image. In current systems this process typically runs fully
automated. However, if the images capture a substantial amount of temporal variations, a user
is required to manually identify and select correspondences. In order to design an algorithm
that solves this problem, the following objectives must be addressed.

1. Identification of potential image matching methods
Local features are the key component for many image matching applications. Based on
a review of current state-of-the-art image matching techniques, a subset of promising ap-
proaches is selected and evaluated.

2. In-depth performance evaluation of local features
Literature on local features is vast and comprehensive evaluation papers compare the
properties of different approaches. However, these evaluations give no information about
performance regarding multi-temporal analysis of real-world imagery. Therefore, this the-
sis provides a systematic evaluation of local feature performances particularly focused on
multi-temporal image matching.

3. Design of a temporal insensitive image matching workflow
Based on the evaluation results, a temporal insensitive aerial image matching algorithm –
which is actually a system of existing approaches – is proposed. This workflow should be
robust to a variety of temporal variations captured in the collected data sets and match
corresponding locations with high accuracy.

1.3 Outline

This work is organized as follows. Chapter 2 presents an overview of a typical photogrammetric
workflow and reviews local features from the very beginning up to the most recent develop-
ments. Chapter 3 deals with the experimental setup and protocol. Local feature detectors and
descriptors are selected in Section 3.1. Section 3.2 introduces the collected data sets and in
Section 3.3 the evaluation metrics are discussed. Section 3.4 continues with a recapitulation
of ground truth generation. Finally, Sections 3.5 to 3.7 deal with the systematic evaluation of
feature detectors and descriptors. These evaluation results are used to develop a fully automated
temporal insensitive image matching workflow in Chapter 4. Finally, Chapter 5 concludes this
thesis with a brief discussion of future work.
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This chapter presents a review of related research. Section 2.1 introduces the organization of a
typical photogrammetric workflow and shows how the proposed matching algorithm is related
with such a system. Section 2.2 presents a survey of approaches to feature extraction schemes
proposed in the literature, starting from the very beginning up to the recently developed state-
of-the-art methods. Finally, Section 2.3 gives a brief introduction to image pre-processing based
on total variation.

2.1 A Typical Photogrammetric Workflow

The American Society for Photogrammetry and Remote Sensing defines [1] photogrammetry
as “the art, science, and technology of obtaining reliable information about physical objects
and the environment, through processes of recording, measuring, and interpreting images and
patterns of electromagnetic radiant energy and other phenomena.”

A traditional and widespread application of photogrammetry is to extract topographic informa-
tion from aerial images. Informally spoken, aerial photogrammetry allows the reconstruction of
certain characteristics of an object – such as the object’s size, shape, or position – solely from
aerial images. In order to achieve this, a photogrammetric model which accurately maps 2D im-
age coordinates to the corresponding 3D world coordinates (and vice versa) must be established.
This coordinate transfer is directly related with both the interior (i.e. focal length and position
of the principal point) and exterior (i.e. spatial position and view direction) camera orientation
of an image. While information about the interior orientation is a priori known for calibrated
cameras, precise information about the exterior orientation is usually unknown. Fortunately,

5
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Image Acquisition

Image Pre-Processing

Aerial Triangulation

Digital Models

Feature Extraction

Image Matching

Tie Point Generation

Bundle Adjustment

Block of Images

Bundle Adjustment

Provided GCPs

Provided GPS/IMU

Figure 2.1: A typical photogrammetric workflow.

the elements of the exterior orientation can be obtained from corresponding locations that are
found in two or more images.

Prior to the advances of computer-aided photogrammetry these corresponding locations were
selected manually. In modern systems, the exterior orientation parameters are determined fully
automated during aerial triangulation (AT). The AT computation stage is crucial for any pho-
togrammetric application, because the performance of subsequent processing steps fully depends
on the accuracy of this stage. Based on the image content, it might be difficult for the AT to de-
termine correspondences between multiple views. This is particularly true, if a subset of images
is heavily affected by temporal variations.

Typically, aerial triangulation consists of two steps, namely relative and absolute orientation of
the image set. During relative orientation, adjacent images of an image set are linked together
to form a block of images. The absolute orientation of the model computes an optimal fit of
the image block to the ground coordinates. Figure 2.1 shows the block diagram of a typical
photogrammetric workflow. The orange-colored blocks highlight processing stages that are di-
rectly related with multi-temporal image matching, whereas the blue-colored blocks indicate
supplementary external input data. The remainder of this section gives a brief overview of the
individual stages of the workflow.
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Stage 1: Image Data Acquisition The collection of aerial imagery is based on a pre-
defined flight plan. The details of the flight plan are influenced by several external conditions
such as the solar altitude, the geographic spread, or the maneuverability of the airplane. The
area under investigation is captured along parallel flight strips. Based on the intended purpose
of the application, the required redundancy of the imagery denotes a major issue for flight
planning. Typically, images within the same strip have an overlap of 80% (illustrated with the
blue-colored area in Figure 2.2) and images from two adjacent strips have a sidelap of 60%
(see green-colored area in Figure 2.2). This high redundancy provides an increased robustness
and helps to automate the workflow. As already mentioned before, temporal variations are
integrated in the imagery at this stage.

≈
8
0
%

≈ 60%

Figure 2.2: A block of overlapping images.

Stage 2: Image Pre-processing Modern digital cameras used for aerial image acquisition
provide image formats up to 250 megapixels. Currently, no single CCD sensor with this size is
available on the market, hence, a special concept that applies multiple sensors simultaneously is
required. Due to this fact, there is a need for pre-processing of the raw aerial imagery. Basically,
the pre-processing step eliminates radial or tangential distortions and resamples the individual
images together to a high-resolution image.

Stage 3: Aerial Triangulation Aerial triangulation (AT) is a crucial component of any
photogrammetric application. Informally spoken, AT correlates all images in a data set and
aligns the correlated images to the ground. Since this thesis deals with the image correlation
part of the AT, this processing stage is of special interest and will be discussed in more detail.

Stages 3.1 and 3.2: Feature Extraction and Matching The first step of AT computation
is to establish correspondences between the images. Feature extraction is usually decomposed
into feature detection and feature description. Due to the numerous types of distortions and the
diversity of image scenes to be matched, the applied methods have to be specifically selected.
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Once local features are detected for each image, they have to be matched in order to find
corresponding locations in adjacent images.

Stage 3.3: Tie Point Generation and Ground Control Point Identification The
term tie point refers to a feature correspondence between three or more images. The ground
coordinates of tie points are unknown and computed in consecutive stages of the workflow. In
contrast to tie points, ground control points (GCPs) are feature locations with known coordinates
on the ground. Thus, GCPs establish a relationship between the collected imagery and the
ground, whereas tie points link adjacent images to an image block.

Stages 3.4 to 3.6: Bundle Adjustment Typically, GPS (Global Positioning System) equip-
ment which is attached to the aircraft gives only initial approximations to the exterior orientation
parameters. Hence, the positions recorded during a flight mission are not accurate enough in or-
der to exactly register the block of images to the ground. However, refined positions are available
from Differential GPS (DGPS) and an inertial measurement unit (IMU). According to Triggs et
al. [56], bundle adjustment can be defined as the problem of refining a visual reconstruction to
simultaneously estimate 3D structure and exterior orientation parameters. Informally spoken,
bundle adjustment solves a geometric parameter estimation problem by minimizing a cost func-
tion (e.g. the reprojection error) and refines both the exterior orientation parameters for each
single image in the block and the ground coordinates of the tie points.

Stage 4: Digital Models After aerial triangulation, several digital models can be computed.
A digital surface model (DSM) is a digital representation of the dense ground surface (including
man-made structures), whereas a digital terrain model (DTM) is a digital representation of the
terrain (i.e. the surface without man-made structures). Both models are the source for further
digital representations like orthoimages or 3D maps that let users see 3D buildings which are
textured using composites of aerial images [27].

2.2 Survey of Local Features

In general, the research work in the field of feature matching techniques can be divided into two
main classes, namely, global and local methods. The former approach attempts to use all of
the image information, while the latter strategy attempts to extract points of interest and use a
small amount of local information to find matches. Since the focus of this work is put on local
approaches they will be discussed in more detail in the remainder of this section.

Research literature on local approaches to feature extraction is vast and it is nearly impossible
to discuss each single contribution. However, comprehensive reviews can be found in a series of
survey papers by Fraundorfer and Bischof [11; 12], Mikolajczyk et al. [30; 31; 33; 34], Schmid et
al. [52], or Tuytelaars et al. [59]. The discussion and explanations in this section are informal in
the spirit of a review of the evolution of local approaches over the years rather than a rigorous
discussion of the internals of each approach. Hence, the interested reader is pointed to the
literature for further details.
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2.2.1 Feature Detectors

Local methods use specific locations in the image, such as mountain peaks or building cor-
ners and extract significant information, e.g. gradient information, from their neighborhoods.
This approach offers some desirable advantages since it both saves computational resources and
improves robustness. However, the performance depends significantly on the reliability and
accuracy with which corresponding points can be detected.

2.2.1.1 Early Work on Feature Detectors

Research on local feature-based correspondences dates back to the early years of stereo matching.
Fundamental work into this direction was done by Moravec [35] and Beaudet [5] in the late 1970s.

Hessian Detector

Beaudet [5] developed a rotationally invariant blob detector based on the Hessian matrix

H =
[
Ixx(p, σD) Ixy(p, σD)
Ixy(p, σD) Iyy(p, σD)

]
(2.1)

with second-order partial derivatives

Iuv(p, σD) =
∂2

∂u∂v
g(σD) ∗ I(p) (2.2)

and Gaussian smoothing kernel

g(σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.3)

The Hessian matrix describes shape information in a local neighborhood of image point p =
[x, y]> by the change of the normal to an isosurface. The detector response measure equals the
determinant of the Hessian matrix

rhes = det(H) = Ixx · Iyy − I2
x,y. (2.4)

The feature detection procedure is illustrated in Figure 2.3. Given the input image (Figure
2.3a), the first step is to compute second-order Gaussian-smoothed image derivatives (Figures
2.3b – 2.3i). Each of these images contain different coefficients of H. These values are combined
to form the determinant of the Hessian matrix for each pixel (Figure 2.3j). Figures 2.3k and
2.3l show interest points detected with different thresholds of the determinant of the Hessian
matrix.
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(a) I(x, y) (b) Ix(x, y) (c) Iy(x, y)

(d) Ixx(x, y) (e) Iyy(x, y) (f) Ixy(x, y)

(g) g(σ) ∗ Ixx(x, y) (h) g(σ) ∗ Iyy(x, y) (i) g(σ) ∗ Ixy(x, y)

(j) Detector response (k) Lower threshold (l) Higher threshold

Figure 2.3: Hessian blob detection scheme.



2.2. Survey of Local Features 11

Moravec Detector

In the Moravec corner detection algorithm [35], each pixel is inspected to see whether it is a
corner or not. This test is based on auto-correlation, i.e. measuring the gray-level difference
of a patch centered on the pixel under inspection and nearby patches shifted in four directions
parallel to the rows and columns of the image. The difference between the original patch and
each shifted patch is expressed by the sum of squared differences

SSD(x, y) =
∑

(i,j)∈W

(I(x+ i, y + j)− I(i, j))2 . (2.5)

If the SSD is low, there is only a low difference between the two patches (e.g. homogeneous
region), otherwise, if the SSD is high, there is a significant variance in the gray-values of the
patches. If the SSD is high for each shifted patch, the pixel is considered to be an interesting
point and its strength is defined by the lowest of the four SSD values. In most cases such points
are located on corners and edges. Subsequently, feature matching was based on correlation of
small square image patches of specified size, centered on the detected interest points.

Obviously, the Moravec detector has a major limitation: Due to the discrete neighborhood shifts
and the parallel shift directions, the detector is not isotropic. For example, the limited set of
shifts does not allow to detect interest points located on edges that are oriented in other than
the shift directions.

Harris Detector

Harris and Stevens [14] developed their popular corner detector using the second moment matrix
(which is also known as auto-correlation matrix or structure tensor) instead of discrete shifts.
The second moment matrix

M =
[

I2
x(p, σD) Ix(p, σD) · Iy(p, σD)

Ix(p, σD) · Iy(p, σD) I2
y (p, σD)

]
(2.6)

with the partial derivatives

Iu(p, σD) =
∂

∂u
g(σD) ∗ I(p) (2.7)

and Gaussian smoothing kernel

g(σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.8)

describes the gradient distribution in a local neighborhood of an image point p = [x, y]> by
covering all possible shifts from the shift origin p. The eigenvalues of M are proportional to
the curvature of the local neighborhood of p and they provide a rotation invariant description
of M. There are three possibilities: (i) If both eigenvalues are low, the neighborhood of p has
low intensity variations and is flat. (ii) If one value is high and the other is low, p is located
on an edge because shifts along the edge cause small values whereas shifts perpendicular to the
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edge cause high values. (iii) If both eigenvalues are high then shifts in any direction cause high
values and indicate a corner.

Harris and Stephens propose to use a cornerness measure based on the determinant (i.e. the
product of the eigenvalues) and the trace (i.e. the sum of the eigenvalues) of matrixM in order
to avoid explicit eigenvalue decomposition of the matrix. Let λ1 and λ2 be the eigenvalues of
M, they define the corner response function as

rhar = det(M)− κ · Tr2(M) = λ1 · λ2 − κ · (λ1 + λ2)2 (2.9)

where κ denotes a sensitivity factor. A typical value for κ is 0.04.

Figure 2.4 illustrates the individual stages of the corner detection algorithm. Given the original
image (Figure 2.4a), the first order derivatives in both x and y direction are computed (Figures
2.4b and 2.4c respectively). In the next step, the products of the partial derivatives are computed
(Figures 2.4d, 2.4e, and 2.4f) and subsequently smoothed with a Gaussian kernel (Figures 2.4g,
2.4h, and 2.4i). Each of these images contain different elements of the second moment matrix.
Combining these values gives a cornerness response value for each pixel (Figure 2.4j). Finally,
corners are found at local maxima with response values above a certain threshold (Figures 2.4k
and 2.4l).

Other Early Feature Detection Approaches

Working independently from Harris and Stevens, Förstner and Gülch [10] presented a double-
stage workflow to detect interest points. During the first stage, interest points are detected with
the auto-correlation matrix and at the second stage the localization accuracy is improved with
a differential edge intersection technique

Tomasi and Kanade [55] used the concept of auto-correlation in the context of tracking. They
search for interest points that can be well tracked and the proposed criterion is based on the
smaller eigenvalue of their tracking matrix.

In [9] Förstner presents an interest point detector based on local image statistics. He used the
auto-correlation matrix to classify pixels into one of three classes, namely region, contour, and
interest point. Additionally, he showed that the analysis of local statistics allows to automatically
find a threshold value for the interest point measure.

Summary

Basically, the main steps of auto-correlation based interest point extraction and matching can
be summarized in the following way. (i) Compute the image derivatives and form the auto-
correlation matrix. (ii) Compute a scalar measure for each pixel. (iii) Detect interest points
as local maxima for measures above a certain threshold. (iv) Match image patches centered on
interest points with cross-correlation.

However, one problem with these approaches is that they perform reasonably well only for
translational changes, but many applications require interest points to be matched independently
from the viewpoint. This limitation was subject to the development of interest point detection
techniques that guarantee proper scale stability.
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(a) I(x, y) (b) Ix(x, y) (c) Iy(x, y)

(d) I2
x(x, y) (e) I2

y (x, y) (f) Ix(x, y) · Iy(x, y)

(g) g(σ) ∗ I2
x(x, y) (h) g(σ) ∗ I2

y (x, y) (i) g(σ) ∗ (Ix(x, y) · Iy(x, y))

(j) Detector response (k) Lower threshold (l) Higher threshold

Figure 2.4: Harris corner detection scheme.
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2.2.1.2 Efforts toward Scale and Rotation Invariance

A first approach towards scale changes is fairly straight forward. So called multi-scale methods
extract features over a pre-defined range of scales and use all features together to represent the
image. These methods have a major drawback. If a local image characteristic occurs at several
scales, multiple features are extracted with slightly changing localization and scale values. The
high number of features increases the computational complexity and causes ambiguities related
with feature matching. This disadvantage was addressed by the development of scale invariant
approaches that automatically find a proper scale.

Influential research work on automatic scale selection was done by Lindeberg [23]. He uses
circular patches of varying diameter in order to select maxima of the Laplacian-of-Gaussian
(LoG) function as characteristic scales. Based on this technique, Mikolajczyk and Schmid [32]
presented scale-adapted versions of both the Harris detector (i.e. Harris-Laplace) and the Hessian
detector (i.e. Hessian-Laplace) where each method selects features by iteratively updating both
position and scale until convergence. Note that the Laplacian-of-Gaussian function is circularly
symmetric, hence, detectors based on this operator are rotation invariant by design.

Many scale-invariant detectors require the computation of more or less complex measures such
as image derivatives or the second moment matrix. Since this has to be repeated for every single
feature location (i.e. position and scale), this computation step might become computationally
expensive soon. Thus, based on the work of Lindeberg, Lowe [24] used a set of Difference-of-
Gaussian (DoG) filters in order to efficiently compute an approximation of the LoG.

Inspired by the DoG detector design, Bay et al. [3] developed a detector that uses box filters
and integral images [61] in order to compute a fast approximation of the Hessian matrix. In this
case, the determinant of the Hessian matrix is used for both selecting the spatial location and
the scale.

Putting all the gathered feature information – such as spatial location and characteristic scale
– together, the image patch for each feature location can be normalized to a unit circle and
feature matching based on cross-correlation would work again.

2.2.1.3 Efforts toward Affine Invariance

In many computer vision applications, such as wide-baseline image matching, scale invariance
and rotational invariance do not suffice. These applications may require invariance to affine
transformations.

Maximally Stable Extremal Regions

Matas et al. [26] introduced a watershed-based segmentation algorithm termed Maximally Stable
Extremal Regions (MSERs). MSERs are connected components in an image that are stable
(i.e. they have a consistent size and shape) over a range of intensity threshold values.

In other words, MSERs are image regions where all pixels within the region boundary are either
brighter or darker as the pixels surrounding the regions. This type of features has some favor-
able properties [26]. First, MSERs are invariant to affine intensity changes. Second, they are
automatically detected at multiple scales. Third, MSERs are invariant to continuous geometric
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transformations. The latter property is probably most important, because it means that a con-
tinuous geometric transformation will transform a region into a region again. Hence, rotational
changes, scale changes, or perspective transformations do not effect the repetitive detection of
a region.

The detection of MSERs is implemented with a watershed-like thresholding algorithm: Consider
all possible threshold values ti for a gray-level image I. Thresholding image I with ti creates a
binary image where pixel intensity values less than ti are considered to be “black” and values
greater than or equal to ti are considered to be “white”. For the first threshold value t0 the
binary image is white. With an increasing ti more and more black regions will appear. Some
of these black regions will grow when ti is further increased, however, some of them will hardly
change during a series of threshold operations. These regions are of special interest and they
will be selected as maximally stable if they satisfy the stability criterion

Ψ(Ri) =
|Ri+∆\Ri−∆|

|Ri| (2.10)

where ∆ is a free parameter, Ri is a region that is obtained by thresholding with gray value i,
and | · | denotes cardinality. Figure 2.5 illustrates the stability criterion for the one-dimensional
case. First, there are two distinct regions for threshold ti−∆. When ti further increases, the
two regions merge and remain stable until threshold ti+∆. Following this example, region Ri is
clearly not an MSER, because its area differs significantly from the area of region Ri−∆.

ti−∆

ti

ti+∆

Ri+∆

Ri

Ri−∆ Rj−∆

Figure 2.5: MSER stability criterion.

If it is preferable to have a single point location instead of a region one can compute the center
of gravity of the region. In [38] Obdrzalek and Matas show that the centers of gravity of two
regions are invariant to affine transformations.

Usually the watershed-like thresholding procedure is executed twice. The first run processes the
original input image and detects dark regions (MSER+) while the second run uses the negative
input image and detects bright regions (MSER-). The original algorithm proposed by Matas et
al. [26] runs in O(n log log n) time. Recently, Nistér and Stewénius [37] developed an algorithm
with a computational complexity of O(n).
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Other Detectors

Tuytelaars and Van Gool [57] proposed Edge-based Regions (EBR). The construction of an EBR
is illustrated in Figure 2.6a. Based on a Harris corner location p, two points p1, p2 that move
along intersecting edges in the neighborhood of this corner, are used to define an affine-invariant
parallelogram. The points stop moving along the edges when a photometric measure of the
texture covered by the parallelogram reaches an extremum.

(a) EBR (taken from [57]) (b) IBR (taken from [58])

Figure 2.6: Construction of Edge-based and Intensity-based Regions.

Similar to EBR, Tuytelaars and Van Gool [58] proposed another detector referred to as Intensity-
based Regions (IBR). The construction of an IBR is illustrated in Figure 2.6b. Based on local
intensity maxima, the intensity profiles along radially symmetric rays that emanate from each
intensity maximum are evaluated. If the intensity profile changes significantly along a certain
ray, a marker is placed at this location. All markers are connected to form a region of arbitrary
shape and an ellipse is fitted to this region.

In [29; 34] Mikolajczyk and Schmid present affine adaptions of the Harris-Laplace and Hessian-
Laplace detectors coined Harris-Affine and Hessian-Affine respectively. The affine extension is
based on the shape estimation properties of the second moment matrix. The detectors are initial-
ized with the detections from the multi-scale Harris and Hessian detectors and they determine
the position, scale, and shape in order to obtain affine invariant regions.

Smith and Brady [53] developed a feature detector based on the Smallest Univalue Segment
Assimilating Nucleus (SUSAN) principle. The SUSAN feature detection principle is illustrated
in Figure 2.7 where a circular mask is shown at three different image positions. The center pixel
of the circular mask is called nucleus (shown in red). The intensity value of each pixel within the
mask is compared to the intensity value of the nucleus and an area of intensity values which are
similar to the nucleus’ value is defined. This area is called USAN. In Figure 2.7 the USANs are
those parts of the circular masks that are overlapping with the dark rectangle. The USAN area
is at a maximum when the circular mask is in a flat region (illustrated with the green circle).
If the nucleus is located on a straight edge the USAN is halved (orange circle) and it is even
further decreased when the nucleus is located near a corner point (blue circle). Thus, corners
can be detected at locations where the USAN reaches a minimum (Smallest USAN = SUSAN).

Based on the SUSAN detector, Rosten and Drummond [45; 46] developed Features from Ac-
celerated Segment Test (FAST). In contrast to SUSAN, only the 16 pixels that lie on a circle
centered on the nucleus are compared (cf. Figure 2.8). If there are n contiguous pixels that are
all even brighter or darker than the nucleus’ intensity value, this point detected as corner. The
authors use machine learning in order to compute a high-speed corner detector for any given n.
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Figure 2.7: SUSAN feature detection principle.

Figure 2.8: FAST segment test criterion.

2.2.2 Feature Descriptors

Given the detected interest points or regions, the next step is to determine corresponding loca-
tions in different images. Although simple measures such as the sum of squared differences or
normalized cross-correlation can be used to directly compare the intensities of patches surround-
ing each interest point, it is usually preferable to use scale, orientation, and affine information
to resample the patches. However, even after adjusting for such changes, the local appearance
of the image patches is very likely to still differ from image to image. The key to this issue is
the design of feature descriptors.

In their pioneering work, Schmid and Mohr [50] addressed the problem of matching images
to a large image database. They proposed the use of local greyvalue characteristics, in their
case differential greyvalue invariants introduced by Koenderink [19], to characterize detected
interest points. This approach proved to achieve good results in the presence of occlusions or
background clutter. Since the publication of this paper many new feature extraction schemes
have been proposed.

Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) [24; 25] is one of the most appealing feature
extractors for practical uses because it is both distinctive and relatively fast. In the original work,
SIFT refers to a combination of the Difference-of-Gaussian (DoG) detector and a distinctive
feature descriptor. However, this section discusses solely the feature description stage which
consists of two distinct tasks. First, a dominant orientation is assigned to each detected feature.
Second, the feature descriptor is computed relatively to the assigned orientation.

Orientation Assignment The computation of a reproducible orientation makes the descrip-
tor invariant to rotational changes. The descriptor orientation is obtained from gradient informa-
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tion in a local neighborhood of the feature. For each sample location [x, y]> in the neighborhood
both the gradient magnitude

m =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.11)

and the gradient orientation

θ = tan−1

(
L(x, y + 1)− L(x, y − 1)
L(x+ 1, y)− I(x− 1, y)

)
(2.12)

are computed. Here, L(x, y) = g(x, y, σ) ∗ I(x, y) is the selected Gaussian smoothed image
where σ is closest to the detected scale s. The main orientation is obtained by creating a 36
bin histogram of oriented gradients. For each orientation θ the corresponding magnitude value
m is first weighted with a Gaussian window and then inserted into the histogram. Finally, the
highest peak in the orientation is selected as dominant orientation. Additionally, any other
histogram peaks that are within 80% of the highest peak also denote a dominant orientation.
Hence, multiple descriptors with differing orientation can occur for the same feature location.

Descriptor Formation Figure 2.9 illustrates the task of SIFT descriptor computation. First,
the local neighborhood of the feature is divided into a 4 × 4 grid of subregions containing
the Gaussian weighted gradients (cf. Figure 2.9a). For each subregion these samples are now
accumulated into a 8 bin orientation histogram, giving a 4× 4× 8 = 128 dimensional descriptor
vector (cf. Figure 2.9b). In order to reduce the impact of linear and non-linear illumination
changes, the vector is normalized to unit length, thresholded, and re-normalized again.

(a) (b)

Figure 2.9: SIFT descriptor computation.

Speeded-up Robust Features

Similar to the SIFT descriptor, Bay et al. [3; 4] developed a highly efficient feature descriptor
coined Speeded-up Robust Features (SURF). In contrast to SIFT, SURF is based on first-order
Haar wavelet responses in both x and y direction instead of gradient information. This approach
allows a high-speed implementation based on integral images [61].

Figure 2.10 illustrates the basics of integral image computation. Each value in the integral image
(highlighted orange in Figure 2.10b) is computed iteratively from the corresponding pixel value
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in the original image by adding (highlighted blue) and subtracting (highlighted red) its three
adjacent neighbors in the integral image. More formally, the elements of an integral image IΣ

can be defined as

IΣ(x, y) =
i≤x∑
i=0

j≤y∑
j=0

I(i, j). (2.13)

Once the integral image is computed, the summed area

A = IΣ(x1, y1)− IΣ(x1, y1 − 1)− IΣ(x1 − 1, y1) + IΣ(x0 − 1, y0 − 1) (2.14)

of a rectangle [x0, x1] × [y0, y1] is computed with four samples of the integral image only. For
example, the sum of the highlighted area in Figure 2.10a equals 117 and the same result is
obtained in Figure 2.10c by addition (highlighted blue) and subtraction (highlighted red) of the
values at the rectangle corners. Note that this computation scheme allows to compute areas of
arbitrary size in constant time.
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(b) Integral image
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(c) Area computation

Figure 2.10: Integral image creation.

The concept of integral images is ideally suited to be combined with 2D Haar wavelets [39;
40]. These are simple box filters that encode the relationship between intensities of adjacent
regions. The used filters are shown in Figure 2.11. In order to compute the wavelet response,
the intensity values under the negative (i.e. black) area are averaged and subtracted from the
averaged intensity value under the positive (i.e. white) area.

(a) Response in x
direction

(b) Response in y
direction

Figure 2.11: 2D Haar wavelets used by the SURF descriptor.
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The SURF descriptor extraction task can be separated into two distinct stages, namely orien-
tation assignment and descriptor formation.

Orientation Assignment In order to obtain rotationally invariant descriptors, a dominant
orientation has to be found for each feature. Hence, points are regularly sampled with spacing
s in a circular neighborhood of radius 6s. Here, s denotes the scale at which the feature was
detected. For each sample point the Haar wavelet responses rx and ry are computed and weighted
with a Gaussian that is centered at the feature point. The response values are then represented
as point (rx, ry) in a two-dimensional parameter space. Finally, the orientation is computed by
rotating a sliding orientation window of size π/3. All points that are covered by the sliding
window are used to form an orientation vector. The orientation of the longest vector out of all
sliding windows is assigned to the feature. See Figure 2.12a for an illustration of the orientation
assignment process.

Descriptor Formation The formation of a descriptor is based on square window of size
20s × 20s that is relatively oriented according to the selected orientation. In order to encode
spatial information the square region is divided into a regular grid of size 4 × 4. For each
subregion, Haar wavelet responses rx and ry are computed for a 5 × 5 regular grid (cf. Figure
2.12b). Note that responses in x and y directions are relative to the selected feature orientation
and each response is weighted with a Gaussian that is centered at the feature point. Based
on the wavelet responses, each subregion is then characterized by a four-dimensional descriptor
vector

vs =


∑
rx∑
ry∑ |rx|∑ |ry|

 (2.15)

Combining all subregion vectors builds a descriptor vector of dimension 4×4×4 = 64 (cf. Figure
2.12c). In order to reduce the impact of illumination changes the descriptors are normalized to
unit length.
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Figure 2.12: SURF orientation assignment and vector formation.
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Steerable Filters

Nearly all of the previously mentioned feature descriptors are distribution-based (i.e. these meth-
ods use histograms in order to represent certain characteristics of appearance or shape). In
contrast to these methods, filter-based techniques approximate the neighborhood of a feature
position with local derivatives up to a given order.

The Steerable Filter [13] feature descriptors are based on high-order derivatives of the Gaussian
function. Basically, this approach evolves from the Taylor expansion

f(x0 + x, y0 + y) = f(x0, y0) +

[
N∑
n=1

1
n!

(
x
∂

∂x
+ y

∂

∂y

)n
f(x0, y0)

]
+RN (2.16)

with Lagrange remainder RN , which can be used to describe a small image region in the neigh-
borhood of a feature location [x0, y0]> by using a series of local derivatives up to a given order
N . The responses of the derivatives are then combined to form a descriptor vector.

Note that the applicability of Steerable Filters is not limited to feature description. They can be
used in a variety of computer vision tasks that involve oriented filters. Basically, Steerable Filters
compute filter responses for a few pre-defined orientations only and subsequently interpolate
the responses for arbitrary orientations. In [13] Freeman and Adelson provide the following
illustrative example. Consider a two-dimensional Gaussian function

g(x, y) = exp−(x+y) (2.17)

where scaling and normalization terms are set to 1 for convenience. The first-order partial
derivatives of g are

gx = −2x exp−(x+y) and gy = −2y exp−(x+y) (2.18)

respectively. Since the Gaussian function is isotropic, gy equals gx rotated by 90◦ (i.e. gy = g90◦
x ).

Hence, it can be shown that any orientation θ can be computed by the linear combination of gx
and gy:

gθx = cos(θ)gx + sin(θ)g90◦
x (2.19)

This is illustrated in Figure 2.13, where a filter with orientation θ = 45◦ (cf. Figure 2.13c) is
interpolated from the base filters gx and gy. Remember that the convolution of two signals is
a linear operation. Hence, analogous to Equation 2.19, it is straight forward to filter an image
I(x, y) at arbitrary rotation θ from the linear combination of images filtered with the base filters:

Iθ = cos(θ)(gx ∗ I) + sin(θ)(gy ∗ I) = cos(θ)Lx + sin(θ)Ly (2.20)

In general, the representation of a filter of nth order requires the computation of (n+ 1) deriva-
tives. The orientation of each derivative is given by
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Figure 2.13: Illustration of a steerable filter.

θn,i =
i · π
n+ 1

+ θg i ∈ {0, . . . , n} (2.21)

where θg is directly related with the local image structure. In [33] Mikolajczyk and Schmid use
steerable filters up to the fourth order in order to compute low-dimensional descriptor vectors
given by

v =



Lx cos(θ1,0)
Ly sin(θ1,1)
Lxx cos2(θ2,0)

2 · Lxy sin(θ2,1) cos(θ2,1)
Lyy sin2(θ2,2)
Lxxx cos3(θ3,0)

3 · Lxxy sin(θ3,1) cos2(θ3,1)
Lxyy sin2(θ3,2) cos(θ3,2)

Lyyy sin3(θ3,3)
Lxxxx cos4(θ4,0)

4 · Lxxxy sin(θ4,1) cos3(θ4,1)
6 · Lxxyy sin2(θ4,2) cos2(θ4,2)
4 · Lxyyy sin3(θ4,3) cos(θ4,3)

Lyyyy sin4(θ4,4)



. (2.22)
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In contrast to Mikolajczyk and Schmid, Winder et al. [63; 64] use this concept in order to develop
a high-dimensional descriptor. In their approach they compute the even and odd responses of
second-order quadrature Steerable Filters for η = 6 orientations. For each location within the
patch, the descriptor vector

v =


pos(oddj)
pos(−oddj)
pos(evenj)
pos(−evenj)

 pos(x) =
{
x if x > 0
0 otherwise

(2.23)

is computed for orientation j ∈ {1, 2, · · · , η} giving a vector length of k = 4η. These vectors
are then used to compute a Gaussian-weighted histogram into ξ spatial bins where each bin has
dimension k. Figure 2.14 shows typical lineups of Gaussian-weighted regions with two concentric
rings consisting of six segments (i.e. ξ = 13, see Figure 2.14a) and eight segments (i.e. ξ = 17,
see Figure 2.14b) respectively. Each circle indicates a region where the radius equals a standard
deviation of 1. Hence, the final descriptor vector has a dimension of ξ × k.

(a) 2 Rings with 6 Segments (b) 2 Rings with 8 Segments

Figure 2.14: Gaussian summation regions for Steerable Filters.

Other Descriptors

Inspired by SIFT, Ke and Sukthankar [18] proposed an alternate, more compact representation
of SIFT features. The proposed method accepts the same input – i.e. location, scale, and
orientation – as the original SIFT descriptor. However, instead of using weighted orientation
histograms, they sample the gradient region at 39×39 and apply Principal Component Analysis
(PCA) the normalized gradient patch. This significantly reduces the dimensionality of the
descriptor (from 3042 to 36) vector and improves matching speed.

Another extension of SIFT, namely gradient location and orientation histogram (GLOH), was
developed Mikolajczyk and Schmid [33]. Instead of the 4×4 histogram array, this descriptor uses
a log-polar binning structure (cf. Figure 2.15)with subsequent dimensionality reduction based
on PCA.

In [22] Lazebnik et al. present a descriptor for texture matching applications based on spin
images [17]. Each column of an intensity domain spin image (i.e. a two-dimensional histogram
of intensity values) encodes the histogram of pixel intensities i with the same distance d to the
center of the image patch. This is illustrated in Figure 2.16 where three sample points in the
left image map three different locations in the spin image on the right.
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Figure 2.15: GLOH log-polar binning scheme.

Figure 2.16: Construction of spin images (taken from [22]).

Another class of filter types is based on complex-valued coefficients. Schaffalitzky and Zisserman
[49] use such a filter to develop an algorithm that organizes a set of unordered images. They
use a bank of linear filters derived from the family

Km,n(x, y) = (x+ iy)m(x− iy)nG(x, y) (2.24)

and compute a total of 16 rotational invariants for each image patch in order to establish an
indexing scheme.

2.2.3 Summary

Concluding this review of local feature approaches it is important to note that: (i) The very
nature of local feature detectors and descriptors is tightly related. For example, if the descriptor
provides invariance to a particular type of transformation, the interest point detector can be
less sensitive with respect to this transformation. (ii) There is no perfect combination of a
particular feature detector and descriptor. Both detectors and descriptors must be carefully
selected specifically for the addressed problem in order to achieve best results.

Local features proved to be well suited to many computer vision tasks like matching or recogni-
tion. Basically, the main challenge is to detect locations which are robust to various transforma-
tions and thus can be reliably matched under different viewing conditions. Different techniques
have been proposed to extract such interesting locations and there exist a number of compre-
hensive performance evaluation papers [11; 12; 30; 33; 34; 52; 59].
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2.3 Pre-processing based on Total Variation

The key component of any image matching algorithm is to detect repeatable features while
ignoring non-relevant ones. The remainder of this section describes pre-processing based on
total variation which is used to filter out irrelevant image content before features are extracted.

Variational methods have been successfully applied to solve a number of computer vision tasks
and they have seen rapid progress in recent years. Basically, these methods minimize an energy
functional that is specifically designed to address a certain problem. Especially, the total vari-
ation (TV) norm is of great interest for many computer vision problems due to its ability to
preserve sharp discontinuities. In [48] Rudin et al. were the first who introduced TV methods in
the field of computer vision. In their original formulation of the ROF model (named after the
authors Rudin, Osher, and Fatemi)

min
u

{∫
Ω
|∇u|dΩ

}
s.t.

∫
Ω

(u− f)2dΩ = σ2 (2.25)

they applied the TV-L2 norm for edge-preserving image denoising. In Equation 2.25, Ω denotes
the image domain, u is the true image, and

f(x, y) = u(x, y) + n(x, y) with n(x, y) ∼ N (0, σ) (2.26)

is the observed image degraded by zero-mean white Gaussian noise of variance σ2. Since then,
TV-based methods were successfully applied to solve many other problems such as 3D recon-
struction [20], medical image registration [43], or face recognition [7].

In this work, the goal is to partition an image

f(x, y) = u(x, y) + v(x, y) (2.27)

into an image u(x, y) that contains the structural part (i.e. large objects) of f(x, y) and another
image v(x, y) which contains the textural information (i.e. fine details) and noise of f(x, y).
Figure 2.17 shows an illustrative example of the results of the image decomposition. This can
be computed by solving the variational problem of the TV-L1 model [36]

min
u

{∫
Ω
|∇u|dΩ + λ

∫
Ω
|u− f |dΩ

}
(2.28)

where Ω is the image domain and λ denotes a free parameter. Computing the solution of this
variational model is not an easy task, because the L1 norm is not differentiable at zero. However,
there exist several numerical methods to find a solution (see [41; 42] for a review).

As Figure 2.17 indicates, the TV-L1 model has a strong geometric capability [2; 41] which makes
it particularly interesting for feature detection based on the structural part of the image scene.
Figure 2.18 displays solutions of the TV-L1 model for different values of λ. Note that with a
decreasing value for λ more and more structures move from the structural image to the image
that contains the details.
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(a) f(x, y) (b) u(x, y) (c) v(x, y)

Figure 2.17: Image decomposition with the TV-L1 model.

(a) Original (b) λ = 0.7

(c) λ = 0.5 (d) λ = 0.3

Figure 2.18: Ability of the TV-L1 model to remove fine structures.
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3.1 Selected Methods for Feature Extraction

Due to the numerous types of image degradation and the diversity of images to be matched, it is
still impossible to develop a general-purpose algorithm that is applicable to all matching tasks.
Different features respond to different types of image structures and provide different levels of
invariance. A naive approach would always pursue the highest level of invariance, however, an
increased level of invariance usually implies a decreased level of discriminative power. As a
rule of thumb, it is recommended to use the level of invariance that exactly meets the specific
application scenario.

3.1.1 Feature Detectors

Table 3.1 summarizes the feature detectors presented in Section 2.2.1. The detectors are grouped
according to their level of invariance: rotation, scale, or affine. Additionally, the most important
properties (i.e. repeatability and accuracy) are compared. In the application scenario addressed
in this thesis, there is no special requirement for any kind of invariance since meta information
(such as flight direction, flying altitude, average ground level, etc.) is available for every single

27
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Category Invariance Localization
Detector Corner Blob Region Rotation Scale Affine Repeatability Accuracy

Harris � � � � � � � � � � � �
Hessian � � � � � � � � � � � �
SUSAN � � � � � � � � � � � �

Harris-Lap. � � � � � � � � � � � �
Hessian-Lap. � � � � � � � � � � � �

DoG � � � � � � � � � � � �
Fast-Hessian � � � � � � � � � � � �
Harris-Aff. � � � � � � � � � � � �

Hessian-Aff. � � � � � � � � � � � �
EBR � � � � � � � � � � � �

MSER � � � � � � � � � � � �
IBR � � � � � � � � � � � �

Table 3.1: Summary of feature detectors (adapted from [59]).

image. This information can be used, for example, to pre-order the image sets (i.e. eliminate
the need of rotation invariance), or to determine the ratio of flying altitudes (i.e. eliminate the
need of scale invariance). The following feature detectors have been selected for multi-temporal
performance evaluations.

Harris Detector The Harris detector [14] is one of the most popular and widely used interest
point detectors. This detector searches corner-like structures and it has been shown [52] that it
achieves stable results and a good spatial localization of the feature points.

Hessian Detector Beside corners, blobs are another intuitive image feature and blob de-
tectors are widely used in numerous computer vision applications. Since there are no special
requirements regarding invariance, the Hessian detector [5] is an obvious choice in this category.

MSER Detector Maximally Stable Extremal Regions (MSERs) [26] have proven to be highly
repeatable [34]. Additionally, they are effectively detected with a watershed-like segmentation
algorithm that runs at reasonable computational costs.

The selected detectors are more or less complementary, which means that they may be easily
combined to incorporate different image structures. Thus, the image may be better covered with
features and the overall performance is less dependent on the image content.

3.1.2 Feature Descriptors

Given the detected feature locations, the next step is to describe a region in the neighborhood of
this location. A naive approach is to characterize the region patch by a vector of pixel intensities.
On the one hand, this yields a high-dimensional (i.e. number of patch samples) vector which is
a drawback for the computational complexity of the subsequent descriptor matching task. On
the other hand, the local appearance of the patches is very likely to differ from image to image.
Hence, it is preferable to build alternative descriptions of image patches. Different approaches
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Category Characteristics
Descriptor Distribution Filter Other Dimensionality Performance

GLOH � � � � � � � � �
PCA-SIFT � � � � � � � � �

SIFT � � � � � � � � �
Spin Images � � � � � � � � �

SURF � � � � � � � � �
Complex Filters � � � � � � � � �
Diff. Invariants � � � � � � � � �

Steerable Filters1 � � � � � � � � �
Cross Correlation � � � � � � � � �
Gradient Moments � � � � � � � � �

Table 3.2: Summary of feature descriptors (adapted from [47]).

have been proposed to describe image patches and their performances were compared, e.g.,
in [30; 33]. Table 3.2 summarizes a set of well-known feature descriptors. The table shows
the assigned category along with important characteristics such as the dimensionality and a
rating of the descriptor performance. The following feature descriptors have been selected for
multi-temporal performance evaluations.

Scale Invariant Feature Transform (SIFT) The SIFT descriptor [25] is one of the most
popular and widely used feature descriptors and it has been shown [30; 33] that it achieves
state-of-the-art performances. The descriptor accumulates local gradient information in the
neighborhood of the feature location into a 128 dimensional descriptor vector.

Speeded-up Robust Features (SURF) In [3] it is shown that Speeded-up Robust Features
achieve highly competitive performances. Due to the use of integral images, the descriptor
computation can be executed faster than for other state-of-the-art methods and due to the
relatively low descriptor dimensionality (i.e. 64 dimensions) the time for feature matching is
reduced. These properties make SURF features an appealing alternative to SIFT.

Steerable Filters Winder and Brown [63; 64] studied Steerable Filter1 feature descriptors for
image matching and 3D reconstruction. They used an automated learning algorithm in order to
get reasonable parameter settings. In their work Steerable Filters achieved remarkable results
with significantly lower error rates compared to SIFT.

1Note that Mikolajczyk and Schmid [33] used Steerable Filters up to the fourth order as low-dimensional
descriptors. Here, Steerable Filters are used to compute high-dimensional histogrammed descriptors as proposed
by Winder and Brown [63; 64].
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3.2 Image Data Sets

All images are high resolution (i.e. 11500×7500 pixels) and the image sets capture a substantial
amount of temporal variations. In each set, the image overlap is about 80% in flight direction
(i.e. viewpoint change of about 10 degrees) and 60% for adjacent flight strips (i.e. viewpoint
change of about 30 degrees). The flying altitude is about 1700 meters above the ground level.
Both the position of the camera center (in GPS coordinates) and the orientation are known a
priori, thus, the image sets are already ordered.

The test images are divided into the following three image sets which consist of four flight strips
with four images per strip. Since images in the same strip are captured one after another there
is no temporal impact for any given image pair. However, all cross-strip image pairs contain a
varying amount of temporal variation.

The DEN1 Image Set All images in this set were captured about noon in spring-time. The
captured scene contains an industrial area (characterized by large buildings, spacious parking
areas, a four-lane motorway network, etc.) and a residential area (characterized by small houses
with front gardens and trees). For cross-strip image pairs, the changes in flying altitude are up
to 40 meters. Three strip sequences were captured at the same day and they contain a cross-strip
temporal variation of about 20 minutes. The fourth image strip was captured the other day and
with two hours delay with respect to the other images. The main challenges regarding temporal
variations are (i) moving objects in the industrial area and (ii) different drop shadow directions
due to the position of the sun.

Figure 3.1: The DEN1 image set.

The DAL1 Image Set This image set captures a residential area mainly characterized by
small houses, dense ground vegetation, and small parking areas. For cross-strip image pairs, the
flying altitude changes are up to 30 meters. Three image strips of this set were captured in the
afternoon of the same day in spring-time. These images contain temporal variations of up to
30 minutes. The fourth strip sequence was captured three days later in the morning. The main
challenge of this data set is characterized by substantial appearance changes. The low position
of the sun in the morning causes different shadow directions.
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Figure 3.2: The DAL1 image set.

The DAL2 Image Set As the name indicates, this image set basically captures the same scene
than the DAL1 set with only few large buildings and parking areas. For cross-strip image pairs,
the flying altitude differences are up to 70 meters. The four image strips can be grouped into two
pairs where each pair shows temporal variations of a few minutes only. However, the temporal
variation between these two pairs is about 5 months (December to May). Subsequently, the main
characteristic of this image set is a massive change in appearance due to (i) seasonal vegetation
changes and (ii) drop shadows caused by the low position of the sun.

Figure 3.3: The DAL2 image set.
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3.3 Performance Measures

This section introduces performance measures that will be used to quantitatively analyze the
applied local detectors and descriptors. A lot of influential work regarding performance evalu-
ations has been done by Mikolajczyk and Schmid [30; 31; 33; 34]. In order to be comparable
with their evaluation work, the same measures are applied here. Additionally, the total number
of corresponding features is computed. This value might be of interest because a large number
of correspondences usually increases the accuracy of geometry estimation tasks.

3.3.1 Detector Evaluation

3.3.1.1 Repeatability Score

The basic property of any feature detector is its ability to detect features in a repeatable manner
particularly in the presence of geometric or photometric changes. This property is measured
with the repeatability score [51]

rij =
|Cij |

min(Di, Dj)
(3.1)

where Cij denotes the set of correspondences between image Ii and image Ij , Di and Dj represent
the set of detections in Ii and Ij respectively, and | · | denotes cardinality.

According to Equation 3.1, the repeatability score defines the ratio of the number of corre-
sponding detections to the minimum number of detections in either image. However, finding
the number of correspondences is not an easy task and requires ground truth information for
the given image pair (cf. Section 3.4).

In the case of planar image scenes a homography H (i.e. point-to-point transfer) can be used to
compute correspondences. In [32] the correspondence of two points pi, pj is defined as

‖(H · pi)− pj‖ < 1.5 [pixels] (3.2)

and two regions ri, rj are deemed to correspond if the overlap error

1− r′i ∩ rj
r′i ∪ rj

< 50 [%] (3.3)

where r′i is ri transferred into image Ij . For non-planar image scenes the ground truth geometry
can be characterized with a fundamental matrix F . However, the fundamental matrix defines
a point-to-line transfer between images (cf. Figure 3.6). Thus, a point correspondence for non-
planar scenes is established if the Euclidean distance

dist(F · pi, pj) < dc [pixels] (3.4)
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from point pj to the epipolar line l = F · pi is less than dc pixels.

Due to the large image dimensions (i.e. 11500 × 7500 pixels, cf. Section 3.2) it is not sufficient
to search for correspondences along the epipolar line because typically there will occur more
than one detection close to it. Since parameters like the camera position, orientation, and flying
altitude are known for each image, it is possible to narrow down the search area along the
epipolar line by simply projecting point pi from one image to the other.

In order to obtain a reasonable restriction of the search area, an approximate estimation of the
minimum and maximum projection height is required for each image pair. This is illustrated in
Figure 3.4 where the search area along the epipolar line (blue) is significantly reduced (indicated
by the yellow bounds). The values for the minimum and maximum projection height are collected
by manually verifying the projection of selected points.

(a) (b) (c)

Figure 3.4: Restricted search area along epipolar line.

The transfer of elliptical regions between images pose more problems. First, the point-to-
line transfer of every single region point gives a pencil of epipolar lines and does not allow to
determine the location of the transferred region (assuming the same region shape). Second, the
transfer is tightly related with the 3D image scene. If the ellipse represents a planar part of
the image scene then the transfer yields an elliptical structure too, otherwise, the shape of the
transferred region is arbitrary.

The first issue can be addressed again by applying projective constraints. Analogous to the
point transfer, each pixel in region ri is used to compute the corresponding epipolar line and
the length of each line is limited by the minimum and maximum projection height (cf. Figure
3.5b). Subsequently, the union of all line segments represents the transferred region r′i (i.e. the
blue regions in Figure 3.5b). Since there are only translational and rotational changes between
image views, the second issue is negligible because the lack of projective accuracy has a much
stronger impact on the computed overlap error than the underlying 3D scene.
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(a) Regions in Image Ii (b) Samples with restricted
epipolar line

(c) Transferred regions

Figure 3.5: Region transfer based on epipolar geometry.

3.3.2 Descriptor Evaluation

3.3.2.1 Matching Strategies

Descriptor evaluation is the task of verifying descriptor matches between two images. The
definition of a match depends on the matching strategy.

Threshold-based Matching Two regions RA and RB are matched if the distance d between
the corresponding descriptorsDA andDB is below a threshold td. The definition of this matching
strategy allows a descriptor to have several correct matches.

Nearest Neighbor Matching In this case, regions RA and RB are matched if the distance
d between the corresponding descriptors DA and DB is below a threshold td and if DB is the
nearest neighbor of DA. This definition allows a descriptor to have only a single correct match.

Nearest Neighbor Matching with Distance Ratio This approach is closely related to the
nearest neighbor matching. The only difference is that thresholding is applied to the distance
ratio between the two nearest neighbors DB and DC. Thus, two regions RA and RB are matched
if the distance ratio ‖DA−DB‖/‖DA−DC‖ is below a threshold tr. Again, this definition allows
a descriptor to have only a single correct match.

Mikolajczyk and Schmid [33] show that the ranking of the descriptors is quite similar across all
three matching strategies. However, the approaches based on nearest neighbor matching select
only the best match which yields more correct matches than simple thresholding.

3.3.2.2 Recall vs. 1-Precision

The performance evaluation is derived from the number of true and false matches for any given
image pair and it is strongly associated with the evaluation criteria used by Ke and Sukthankar
[18] and Mikolajczyk and Schmid [33]. The final performance score is expressed with recall
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vs. 1-precision graphs which are generated as follows. For each descriptor in the reference image
nearest neighbor matching is applied and the total number of candidate matches is counted.
Subsequently, these initial matches are verified using epipolar geometry. A candidate match
is correct if the nearest neighbor key point does not deviate more than deg pixels from the
corresponding epipolar line. This verification step divides the number of candidate matches
into the final number of true and false matches. Since it is not possible to determine the true
number of correspondences, this value is approximated by the number of correspondences that
is computed with the repeatability score. With the number of true and false matches, the
number of candidate matches, and the approximated number of correspondences, is is possible
to compute recall vs. 1-precision values as

recall =
# true matches

# correspondences
(3.5)

and

1− precision =
# false matches

# candidate matches
. (3.6)

In order to generate a curve the nearest neighbor distance threshold value td is varied. Recall
measures the fraction of true matches out of all possible matches, while 1-precision measures
the fraction of false matches out of all obtained matches. Thus, it is desirable to both maximize
recall and minimize 1-precision.

3.4 Ground Truth Generation

The objective of the evaluations discussed below is to measure the performance of both local
detectors and descriptors independently. In the latter case, performance analysis can be done
with (robust) descriptor matching. However, matching is not appropriate for the automatic
evaluation of feature detectors, because the final score is not fully decoupled from the descriptor.
Therefore, the evaluation of any feature detector requires ground truth (GT) information on the
geometric constraints of the captured image scene.

Ground truth data is generated by establishing epipolar constraints between views [15]. For
each detected feature in the first image, nearest neighbor matching based on the distance ratio
test (cf. Section 3.3.2) is applied. Two features are selected as a candidate match, if the distance
ratio between the nearest and the second nearest feature is less than 30%. The set of potential
matches is then verified by a robust estimation of the epipolar constraints based on the RANdom
SAmple Consensus (RANSAC) algorithm [8]. A candidate match is correct if the locations of the
features do not deviate more than 0.5 pixels from the estimated epipolar line. This verification
step divides the set of candidate matches into subsets of true and false matches. In order to
further improve the estimation quality RANSAC is applied to the set of true matches to finally
estimate the fundamental matrix.

The quality of the ground truth estimation procedure directly effects the evaluation results.
Hence, the accuracy of the established correspondences is crucial. The initial set of features is
extracted with the rotation-variant version of the SURF detector/descriptor scheme [3] for the
following reasons. First, the goal is to find highly accurate correspondences, thus, a detector
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that offers sub-pixel accuracy is necessary. Second, the procedure should not necessitate any
assumptions regarding image content or detection scale. Therefore, a scale-invariant detector
is preferable. Third, SURF descriptors can be computed and matched at lower computational
costs compared to, e.g., SIFT.

The automatic ground truth estimation procedure completely failed for all cross-strip image pairs
with seasonal variations in the DAL2 image set (cf. Section 3.2). In this case the correspondences
were established by manually finding at least 128 corresponding locations in adjacent images.
Figure 3.6 visualizes the computed ground truth epipolar geometry for two different image pairs.

(a) (b)

(c) (d)

Figure 3.6: Visualization of ground truth epipolar geometry.
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3.5 Detector Evaluation

The feature detectors evaluated in this section are Harris corners [14], Hessian detector [5], and
Maximally Stable Extremal Regions [26]. For all detectors the binaries provided by Mikolajczyk
[28] are used.

3.5.1 General Detection Trends

This first set of evaluations aims at measuring the basic trends for different detector settings
particularly regarding response threshold value, detection scales, and absolute number of detec-
tions.

3.5.1.1 Harris Detector

The detections for scale σ1 = 1.4 and different cornerness thresholds are visualized in Figure 3.7.
In general, the results depend on the captured image scene. In all cases, the strongest detections
are generated by vehicles. Nearly all detections with a corner strength greater than 4096 appear
either at the bodywork, the windshield, or the drop shadow of the vehicle. Only a small portion
of the detections appear on “static” objects like rooftops or swimming pools. Decreasing the
cornerness threshold value usually raises the number of detections. The detections added this
way increasingly arise from corners of houses and from shadows.

(a) Low threshold (b) High threshold

Figure 3.7: Harris detections with different cornerness thresholds.

The previous tests with different cornerness threshold values are based on a detection scale σ1

of 1.4. Now, the objective is to analyze the feature locations for increasing detection scales
σn = sn, where the scale factor s is set to 1.4 and n ∈ {0, 1, 2, . . . , 10}. For detection scales up
to σ3, the feature locations do not significantly change with respect to the observations presented
above. However, starting with σ4 fewer detections come from vehicles and more features arise
near corners of buildings. Tables 3.3 to 3.5 show the minimum, maximum, and mean number
of detected corners for any combination of cornerness thresholds and detection scales.
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Detection Threshold 1024 Threshold 2048 Threshold 4096
Scale min max mean min max mean min max mean

σ0 = 1.00 26726 37976 32249 14121 23143 18622 7271 13262 10145
σ1 = 1.40 19096 26915 23082 10884 17155 13871 5896 10966 8274
σ2 = 1.96 11824 16269 14186 6681 10473 8423 3513 6798 5075
σ3 = 2.74 7247 9919 8696 4008 6064 4992 2020 3653 2786
σ4 = 3.84 4624 6146 5464 2288 3319 2812 989 1566 1264
σ5 = 5.38 2520 3387 2991 1117 1526 1312 420 562 498
σ6 = 7.53 1273 1672 1449 539 709 600 194 245 221
σ7 = 10.54 662 897 735 265 341 293 92 140 113
σ8 = 14.76 313 547 390 132 206 166 41 80 63
σ9 = 20.66 150 292 208 66 118 95 18 45 33
σ10 = 28.93 112 164 138 41 84 61 7 31 19

Table 3.3: Number of Harris detections for DEN1.

Detection Threshold 1024 Threshold 2048 Threshold 4096
Scale min max mean min max mean min max mean

σ0 = 1.00 8771 20516 15848 4537 12224 9189 1900 7041 4870
σ1 = 1.40 7482 16698 13064 4223 10136 7947 2077 6080 4529
σ2 = 1.96 5445 11026 8935 3053 6335 5268 1625 3899 3079
σ3 = 2.74 3701 6953 5705 1972 3723 3094 1014 2035 1651
σ4 = 3.84 2438 4304 3593 1249 2122 1752 566 877 727
σ5 = 5.38 1601 2422 2068 747 945 797 234 370 295
σ6 = 7.53 969 1293 1070 326 519 405 117 218 171
σ7 = 10.54 517 723 587 183 292 233 77 140 110
σ8 = 14.76 302 448 363 105 181 140 41 81 61
σ9 = 20.66 158 249 190 57 89 67 17 31 25
σ10 = 28.93 86 125 102 31 62 43 4 39 20

Table 3.4: Number of Harris detections for DAL1.

Detection Threshold 1024 Threshold 2048 Threshold 4096
Scale min max mean min max mean min max mean

σ0 = 1.00 6599 15853 10981 3130 7355 5079 1340 3329 2179
σ1 = 1.40 5071 12986 8910 2572 6001 4191 1208 2708 1868
σ2 = 1.96 3380 9595 6352 1623 4290 2915 716 1825 1263
σ3 = 2.74 2200 6909 4440 977 2881 1926 404 1143 776
σ4 = 3.84 1496 4905 3145 627 1984 1290 235 700 461
σ5 = 5.38 1063 3501 2204 382 1314 829 137 414 268
σ6 = 7.53 770 2471 1544 263 905 549 85 255 165
σ7 = 10.54 528 1593 1011 181 556 352 43 147 92
σ8 = 14.76 349 1022 633 116 345 209 21 93 51
σ9 = 20.66 184 567 360 50 160 102 8 40 24
σ10 = 28.93 87 325 199 24 85 53 3 23 13

Table 3.5: Number of Harris detections for DAL2.
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3.5.1.2 Hessian Detector

Again, the detection scales are defined by σn = sn, where the scale factor s is set to 1.4, and
n ∈ {0, 1, 2, . . . , 10}. For scale values from σ0 to σ2 a large part of the detections is caused by
high-frequency distortions (e.g. reflections of the sunlight on water surface, or patches of high
contrast on concrete ceilings). With an increasing scale (σ2 to σ6) more and more detections
arise from vehicles, flue-like structures on top of buildings, and shrubbery. Starting with σ7, the
majority of detections is based on rooftops, shrubbery, and shadows. Tables 3.6, 3.7, and 3.8 list
the minimum, maximum, and mean number of detections for several combinations of response
strength thresholds and detection scales.

3.5.1.3 MSER Detector

The Maximally Stable Extremal Regions (MSER) detector is mainly driven by the following two
parameters.

Minimum Region Size A small value for the minimum region size (MS) achieves a relatively
large number of detections. However, very often such small regions evolve from high contrast
patches on concrete ceilings or road markings. Cars are detected up to parameter values of 256
(though, dark colored cars combined with shadows can still appear for region sizes up to 768).
Regions with sizes starting from 512 are typically detected at swimming pools, pavements, or
rooftops.

Minimum Margin The minimum margin (MM) parameter ∆ (cf. Section 2.2.1) controls the
stability of the regions. This parameter has a strong impact on the number of detected regions.
Low values detect a higher number (but less stable) of regions, whereas high values detect only
a few regions that are very stable.

Moreover, considering only bright extremal regions (i.e. MSER-) increases the repeatability
rate significantly, because usually a large portion of dark regions arise from shadowed regions.
The repeatability for bright regions systematically outperforms the scores achieved with all
(bright and dark) regions. Therefore, all repeatability graphs presented in this section show
performances for bright regions only.

The number of detected regions is closely related with the captured image scene, the specified
minimum region size, and the defined minimum margin threshold. Tables 3.9 to 3.11 show the
number of detected MSERs for several combinations of MS and MM values.
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Detection Threshold 64 Threshold 128 Threshold 256
Scale min max mean min max mean min max mean

σ0 = 1.00 7327 30399 17175 3726 6750 5336 1084 1837 1468
σ1 = 1.40 10880 37071 22412 5855 9978 7925 1251 2366 1832
σ2 = 1.96 9154 27146 17432 5490 9597 7463 919 2304 1617
σ3 = 2.74 5702 16853 10973 3700 6843 5158 954 2276 1607
σ4 = 3.84 3943 11177 7408 2485 4630 3509 643 1517 1078
σ5 = 5.38 2391 7196 4655 1414 2466 1914 225 431 337
σ6 = 7.53 1178 4216 2546 638 963 810 76 138 100
σ7 = 10.54 525 2393 1304 277 380 322 20 36 28
σ8 = 14.76 234 1088 609 109 152 128 4 14 8
σ9 = 20.66 113 628 316 55 81 66 2 8 4
σ10 = 28.93 72 386 182 30 49 39 1 7 3

Table 3.6: Number of Hessian detections for DEN1.

Detection Threshold 64 Threshold 128 Threshold 256
Scale min max mean min max mean min max mean

σ0 = 1.00 1823 13919 7151 1043 4174 2615 218 1683 921
σ1 = 1.40 3148 18509 10425 1696 5376 3676 256 1888 1035
σ2 = 1.96 3342 15597 9436 1878 5169 3798 220 1603 880
σ3 = 2.74 2642 10729 6781 1677 4221 3223 205 1315 759
σ4 = 3.84 1869 7771 4756 1221 2832 2237 207 1012 642
σ5 = 5.38 1190 5130 3109 740 1454 1222 106 333 215
σ6 = 7.53 704 2510 1598 357 477 434 23 54 37
σ7 = 10.54 337 1216 764 133 231 176 6 17 12
σ8 = 14.76 195 617 406 91 165 125 4 11 8
σ9 = 20.66 130 380 263 53 110 82 2 8 6
σ10 = 28.93 83 249 164 32 62 43 4 10 7

Table 3.7: Number of Hessian detections for DAL1.

Detection Threshold 64 Threshold 128 Threshold 256
Scale min max mean min max mean min max mean

σ0 = 1.00 1652 12548 5485 856 2204 1446 167 355 250
σ1 = 1.40 2532 15828 7384 1341 3228 2168 220 475 346
σ2 = 1.96 2271 12155 5921 1200 2708 1905 178 454 307
σ3 = 2.74 1591 7977 3982 911 1911 1383 153 328 236
σ4 = 3.84 1087 5500 2728 564 1266 917 121 245 181
σ5 = 5.38 684 4048 1915 310 888 600 44 127 85
σ6 = 7.53 392 2936 1313 161 514 337 16 66 40
σ7 = 10.54 234 2041 899 115 335 221 8 43 25
σ8 = 14.76 175 1359 628 87 223 149 5 34 17
σ9 = 20.66 131 932 454 67 181 113 4 27 13
σ10 = 28.93 101 593 304 47 99 66 0 10 5

Table 3.8: Number of Hessian detections for DAL2.
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Minimum Minimum Size 128 Minimum Size 256 Minimum Size 512
Margin min max mean min max mean min max mean

∆ = 8 4367 5373 4762 2019 2541 2248 1010 1407 1193
∆ = 12 1914 2458 2122 852 1056 946 373 574 472
∆ = 16 873 1146 993 360 511 432 169 283 215
∆ = 20 399 531 469 178 246 213 77 144 106

Table 3.9: Number of MSER detections for DEN1.

Minimum Minimum Size 128 Minimum Size 256 Minimum Size 512
Margin min max mean min max mean min max mean

∆ = 8 2060 3176 2760 1136 1517 1334 621 769 655
∆ = 12 780 1512 1191 404 558 487 173 276 215
∆ = 16 366 761 566 175 262 219 73 146 101
∆ = 20 188 383 281 88 130 104 43 75 56

Table 3.10: Number of MSER detections for DAL1.

Minimum Minimum Size 128 Minimum Size 256 Minimum Size 512
Margin min max mean min max mean min max mean

∆ = 8 1591 2410 2036 1024 1409 1226 622 761 697
∆ = 12 588 893 731 347 479 409 189 227 210
∆ = 16 233 376 298 124 190 158 63 86 73
∆ = 20 94 182 129 47 88 67 21 33 29

Table 3.11: Number of MSER detections for DAL2.
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3.5.2 Repeatability Scores

The number of detected features has a direct impact on the repeatability score of the detector.
If there is a huge number of detections, the image may be cluttered with features such that
correspondences will be established accidentally rather than intentionally. In order to avoid
this, non-maximum suppression will be used in a pre-processing step for the Harris and Hessian
detector. The suppression radius is set to 16 pixels

3.5.2.1 The DEN1 Image Set

The temporal variations in this data set come rather from moving objects than from illumination
or shadow changes.

Harris Detector The repeatability rate ranges from around 7% for a localization error of
0.5 pixel to 50% for a localization error of 5 pixels. The achieved repeatability rate in previous
evaluations [11; 12] lies between 20% and 30% for a viewpoint angle of 30 degrees and a local-
ization error of 1.5 pixels. These performances are comparable to the results presented in Figure
3.8. For the detection scale σ1 (Figure 3.8a), the highest detector response threshold (i.e. 4096)
achieves the worst repeatability rate. This exactly reflects the observation from Section 3.5.1,
where the strongest detections are generated by dynamic structures such as moving vehicles. For
the increased detection scale σ6 in Figure 3.8c the ranking is reversed and the highest response
threshold achieves the best repeatability rates. However, the total number of correspondences
decreases significantly with an increasing detection scale (cf. Figures 3.8d to 3.8f).

Hessian Detector The repeatability scores range from around 3% for a localization error
of 0.5 pixel to 50% for a localization error of 5 pixels. From previous evaluations [11; 12] a
repeatability rate of 25% to 30% may be expected for a localization error of 1.5 pixels. This is
the case for the detection scales σ4 = 3.8 (Figure 3.9b) and σ6 = 7.5 (Figure 3.9c). However for
σ1 = 1.4 the repeatability is considerably lower (10%). The reason for this is that a large part
of the detections is caused by high-frequency distortions such as reflections of the sunlight on
water surface. Just like for the Harris detector, the number of correspondences decreases with
an increasing detection scale.

MSER Detector Figure 3.10 shows the repeatability score and the total number of corre-
spondences for different parameter settings of the MSER detector. With respect to different
overlap errors, the repeatability score ranges from 10% for small errors to 60% for large overlap
errors. The repeatability scores in previous evaluations [11; 12] range from 25% to 30% for a
viewpoint angle of 30 degrees and an overlap error of 50%. Surprisingly, these performances are
below the results presented in Figure 3.10 where the achieved repeatability scores range from
45% to 55%. Generally, MSERs with a minimum region size of 1024 pixels achieve the best
repeatability rates. The stability parameter ∆ is clearly sensitive to the captured image scene.
When ∆ is increased from 8 to 12, the repeatability rates rise about 4% in average. However,
further increasing ∆ does not improve repeatability. The best repeatability values are measured
with a minimum region size of 1024 and the minimum margin parameter ∆ set to 12.
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(a) σ1 = 1.4
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(b) σ4 = 3.8
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(c) σ6 = 7.5
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(d) σ1 = 1.4
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(e) σ4 = 3.8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Localization Error [pixel]  

N
um

be
r 

of
 C

or
re

sp
on

de
nc

es
  

 

 

Thres 1024
Thres 2048
Thres 4096

(f) σ6 = 7.5

Figure 3.8: Harris repeatability rates for DEN1.
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(a) σ1 = 1.4
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(b) σ4 = 3.8
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(c) σ6 = 7.5
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(d) σ1 = 1.4
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(e) σ4 = 3.8
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(f) σ6 = 7.5

Figure 3.9: Hessian repeatability rates for DEN1.
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(a) ∆ = 8
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(b) ∆ = 12
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(c) ∆ = 16
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(d) ∆ = 8
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(e) ∆ = 12
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(f) ∆ = 16

Figure 3.10: MSER repeatability rates for DEN1.
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3.5.2.2 The DAL1 Image Set

This data set is dominated by significant changes in appearance of shadowed regions. Large
parts that are clearly visible in one image are covered with shadow in the other image.

Harris Detector The first point to notice is that there is a massive difference regarding the
number of detected correspondences compared to the DEN1 set. However, this is not a big sur-
prise since there are rather different numbers of detections (cf. Tables 3.3 and 3.4 respectively).
In terms of repeatability, the trend is not so clear. For detection scale σ1 = 1.4 repeatability de-
creases by 5%. For higher scales repeatability increases especially for higher response thresholds.
The best repeatability curve is measured with detection scale σ6 = 7.5 and the response strength
threshold set to 4096. Figure 3.11 lists the repeatability scores and number of correspondences
computed for this image set.
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(b) σ4 = 3.8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Localization Error [pixel]  

R
ep

ea
ta

bi
lit

y 
[%

]  
 

 

Thres 1024
Thres 2048
Thres 4096

(c) σ6 = 7.5
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(d) σ1 = 1.4
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(e) σ4 = 3.8
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(f) σ6 = 7.5

Figure 3.11: Harris repeatability rates for DAL1.

Hessian Detector Basically, the previous observations for the Harris detector also hold for the
Hessian. The number of correspondences is considerably lower than in the DEN1 set. However,
in this case the computed repeatability scores are lower for all detection scales. The results are
listed in Figure 3.12. The best repeatability curve is measured with a detector response strength
of at least 192 at scale σ6 = 7.5.

MSER Detector The repeatability rates are a bit lower than the values computed for the
DEN1 set. The number of correspondences decreases relatively by 50% (e.g. from 250 to 120
for a minimum region size of 256 pixels and ∆ = 8). Nevertheless, MSERs achieve the most
promising results among all detectors for this image set. Again, the best repeatability curves
are measured with MSERs with a minimum size of 1024 pixels and ∆ set to 12.
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(a) σ1 = 1.4
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(b) σ4 = 3.8
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(c) σ6 = 7.5
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(d) σ1 = 1.4
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(e) σ4 = 3.8
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(f) σ6 = 7.5

Figure 3.12: Hessian repeatability rates for DAL1.
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(a) ∆ = 8
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(b) ∆ = 12
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(c) ∆ = 16
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(d) ∆ = 8
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(e) ∆ = 12
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(f) ∆ = 16

Figure 3.13: MSER repeatability rates for DAL1.
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3.5.2.3 The DAL2 Image Set

This data set captures temporal variations of about 5 months. Hence, it is characterized by
massive appearance changes due to seasonal vegetation and shadows caused by the low position
of the sun.

Harris Detector Figure 3.14 presents the repeatability scores along with the number of corre-
spondences detected with Harris. Compared to the previous evaluation results for the DAL1 image
set, the achieved repeatability scores are generally lower (except for detection scale σ1 = 1.4
where the results are similar). Since these two image sets basically capture the same image
scene, the loss of repeatability is caused be the temporal variations of the DAL2 set. In contrast
to the results of the DAL1 image set, the performance does not improve for higher detection
scales. Also note that the total number of precise correspondences vanishes for higher detection
scales.

Hessian Detector With respect to different localization errors, the repeatability scores range
from 5% to 30%. In contrast to the Harris detector the achieved repeatability rates are similar
compared to the results for the DAL1 set. Especially for the higher detection scales σ4 = 3.8 and
σ6 = 7.5 the seasonal variations have less impact to this detector than to the Harris detector.
However, in this case the number of precise correspondences (i.e. localization error ≤ 1.0 pixels)
drops below 100.

MSER Detector Figure 3.16 presents the repeatability score for different parameter com-
binations of the MSER detector. At first glance it becomes clear that this detector is heavily
affected by the seasonal variations. The repeatability rates for regions with a low overlap error
(i.e. ≤ 20%) decrease by 20% compared to the results for the DAL1 set and the number of corre-
spondences drops to at most 50. Tables 3.12 to 3.14 show the distances of the regions’ centers
of gravity to the ground truth epipolar geometry. For the DAL2 set regions with an overlap error
as low as 20%, the centers of gravity deviate more than 2 pixels from the corresponding epipolar
lines while the distances for the DAL1 data set (which basically captures the same image scene)
deviate less than 1 pixel for overlap errors up to 30%.
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(a) σ1 = 1.4
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(b) σ4 = 3.8
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(c) σ6 = 7.5
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(d) σ1 = 1.4
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(e) σ4 = 3.8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

500

Localization Error [pixel]  
N

um
be

r 
of

 C
or

re
sp

on
de

nc
es

  

 

 

Thres 1024
Thres 2048
Thres 4096

(f) σ6 = 7.5

Figure 3.14: Harris repeatability rates for DAL2.
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(a) σ1 = 1.4
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(b) σ4 = 3.8
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(c) σ6 = 7.5
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(d) σ1 = 1.4
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(e) σ4 = 3.8
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Figure 3.15: Hessian repeatability rates for DAL2.
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(a) ∆ = 8
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(b) ∆ = 12

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Overlap Error

R
ep

ea
ta

bi
lit

y 
[%

]

 

 

MS 256
MS 512
MS 1024

(c) ∆ = 16
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(d) ∆ = 8
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(e) ∆ = 12
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(f) ∆ = 16

Figure 3.16: MSER repeatability rates for DAL2.

Minimum Minimum Size 256 Minimum Size 512 Minimum Size 1024
Margin OE 10 OE 20 OE 30 OE 10 OE 20 OE 30 OE 10 OE 20 OE 30

∆ = 8 0.39 0.65 0.82 0.53 0.83 1.02 0.66 0.98 1.26
∆ = 12 0.34 0.49 0.61 0.43 0.61 0.68 0.66 0.74 0.80
∆ = 16 0.27 0.47 0.58 0.40 0.65 0.69 0.68 0.86 0.81

Table 3.12: Distances of MSER centers of gravity to the ground truth for DEN1.

Minimum Minimum Size 256 Minimum Size 512 Minimum Size 1024
Margin OE 10 OE 20 OE 30 OE 10 OE 20 OE 30 OE 10 OE 20 OE 30

∆ = 8 0.60 0.78 0.93 0.60 0.83 0.94 0.65 0.88 0.89
∆ = 12 0.65 0.75 0.81 0.65 0.79 0.83 0.71 0.82 0.83
∆ = 16 0.64 0.66 0.70 0.62 0.67 0.67 0.72 0.74 0.74

Table 3.13: Distances of MSER centers of gravity to the ground truth for DAL1.

Minimum Minimum Size 256 Minimum Size 512 Minimum Size 1024
Margin OE 10 OE 20 OE 30 OE 10 OE 20 OE 30 OE 10 OE 20 OE 30

∆ = 8 0.84 2.17 2.90 0.87 2.62 3.44 0.87 3.51 4.16
∆ = 12 0.47 2.23 2.78 0.34 2.67 3.52 0.46 3.66 4.68
∆ = 16 0.62 0.84 2.41 0.71 0.88 3.85 0.14 0.78 2.00

Table 3.14: Distances of MSER centers of gravity to the ground truth for DAL2.
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3.5.3 TV-L1 Pre-processing

It was shown in Section 3.5.1 that for both Harris and Hessian many detections evolve from fine
image structures. However, these detections are hardly repeatable in other images and they can
be considered as irrelevant. Hence, TV-L1 pre-processing is used to decompose the input image
into an image that contains fine details and another image that contains the structural part of
the input image (cf. Section 2.3). The latter image is then used for feature detection.

This approach can be used to improve the repeatability rates. Tables 3.15 to 3.17 display
the repeatability rates for localization errors up to 1.5 pixels for both the original images and
TV-L1 pre-processed images where the parameter λ was set to 0.7 and 0.5 respectively. Note
that with a decreasing value for λ more and more structures move from the structural image to
the image that contains the details. For detection scales σ1 and σ4 the relative improvement of
the repeatability rates is up to 50% for λ = 0.5. With a further increasing detection scale, the
impact of the pre-processing is reduced. Also note that pre-processing decreases total number
of correspondences significantly.

Detection TV-L1 Repeatability Correspondences
Scale λ ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 0.5 ≤ 1.0 ≤ 1.5

σx = 1.40 N/A 9.03 13.27 16.86 409 601 764
σx = 3.84 N/A 8.05 13.69 16.99 207 352 437
σx = 7.53 N/A 7.62 13.26 18.05 54 94 128

σx = 1.40 0.7 11.71 16.63 21.03 255 362 458
σx = 3.84 0.7 9.02 15.55 19.46 203 350 438
σx = 7.53 0.7 7.02 12.89 17.77 49 90 124

σx = 1.40 0.5 13.49 19.97 24.11 188 278 336
σx = 3.84 0.5 10.07 16.08 20.08 184 294 367
σx = 7.53 0.5 8.14 14.18 18.40 54 94 122

Table 3.15: TV-L1 pre-processed Harris repeatability for DEN1.

Detection TV-L1 Repeatability Correspondences
Scale λ ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 0.5 ≤ 1.0 ≤ 1.5

σx = 1.40 N/A 6.67 10.19 12.69 118 180 225
σx = 3.84 N/A 5.50 9.63 14.68 72 126 192
σx = 7.53 N/A 5.57 10.98 15.41 34 67 94

σx = 1.40 0.7 7.59 12.25 15.55 66 107 135
σx = 3.84 0.7 5.72 10.06 15.62 66 116 180
σx = 7.53 0.7 6.45 11.13 15.13 40 69 94

σx = 1.40 0.5 9.59 15.24 19.55 55 87 112
σx = 3.84 0.5 8.08 13.19 18.18 79 129 178
σx = 7.53 0.5 6.31 11.09 16.04 37 65 94

Table 3.16: TV-L1 pre-processed Harris repeatability for DAL1.
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Detection TV-L1 Repeatability Correspondences
Scale λ ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 0.5 ≤ 1.0 ≤ 1.5

σx = 1.40 N/A 6.50 10.85 13.44 118 197 244
σx = 3.84 N/A 4.01 7.04 10.10 37 65 93
σx = 7.53 N/A 3.15 6.10 8.66 16 31 44

σx = 1.40 0.7 7.00 11.71 15.43 63 105 139
σx = 3.84 0.7 4.12 7.95 10.57 32 62 82
σx = 7.53 0.7 3.02 6.25 7.78 15 31 39

σx = 1.40 0.5 9.92 18.12 26.14 39 71 103
σx = 3.84 0.5 4.49 7.49 12.48 30 50 83
σx = 7.53 0.5 2.47 5.15 6.79 12 25 33

Table 3.17: TV-L1 pre-processed Harris repeatability for DAL2.

3.5.4 Discussion

The goal of this section was to find the best detector for each image set. Section 3.5.2 showed
that parameter settings which yield a higher number of correspondences usually tend to have
lower repeatability scores. Particularly the number of highly precise correspondences (e.g. with a
localization error less than a pixel or with an region overlap error less than 20%) is usually higher
for these settings. In this context, Section 3.5.3 discussed the impact of TV-L1 pre-processing.
Tables 3.15 to 3.17 show that it is possible to improve the repeatability rate while preserving a
considerable amount of correspondences. Altogether, it is necessary to find a reasonable trade-off
between the requirements regarding repeatability rates and absolute number of correspondences.

For the (short-term) temporal variations in the DEN1 and DAL1 image sets, the MSER detector
accomplishes the best performances. For the images in these sets, the repeated regions have an
adequate accuracy which means that the distances of their centers of gravity to the ground truth
epipolar lines are less than a pixel (cf. Tables 3.12 and 3.13 respectively). However, compared to,
e.g., the Harris detector the total number of correspondences is considerably low. Nevertheless,
for these types of temporal variations, the MSER detector is the best choice.

This rating changes for the seasonal variations in the DAL2 set. Although MSERs have the best
repeatability rates for DAL2 it turns out that the centers of gravity of corresponding regions are
not adequately repeatable (see Table 3.14). The main reason for this is the massive appearance
change: Contrary to the DAL1 set which captures significant appearance changes too, the tem-
poral changes in the DAL2 set change the shape of the detected MSERs (while the shadows in
the DAL1 set occlude entire regions) and this causes a negative impact on the repeatability of
the centers of gravity.

In contrast to MSERs, the Harris corner detector proved to achieve reasonable results for all
temporal variations in the image sets. Hence, this detector is not only the best choice for
the DAL2 set, it is also proposed to use the Harris detector for the matching algorithm that is
developed in Chapter 4.

Note that it has been shown that the repeatability scores obtained with Harris and Hessian
are comparable, however, Harris corners generally tend to have better repeatability scores while
simultaneously finding a lot more precise correspondences. Thus, the Harris detector is preferred
to the Hessian detector.
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3.6 Descriptor Evaluation

This section presents the evaluation of SIFT [24; 25], SURF [4; 3], and Steerable Filters [13]
feature descriptors. SIFT is computed with the VLFeat library [60], SURF descriptors are
computed with the original binary [3], and Steerable Filter descriptors are based on a MATLAB
implementation following the results from Winder et al. [63; 64]. Since the image sets are
already ordered, all descriptors are computed in a rotationally variant manner. Following the
conclusions in Section 3.5.4 the descriptors are evaluated with the proposed detectors (i.e. Harris
and MSER).

3.6.1 General Description Trends

The aim of this section is to illustrate the impact of temporal variations to feature descriptors
and to analyze the basic trends for different descriptor settings. The evaluation puts the focus
on two points: (a) To find the best footprint patch size for each descriptor and (b) to evaluate
the basic trends for feature matching with different settings.

Figure 3.17 visualizes temporal variations in descriptor patches. In each example, the temporal
changes have a negative impact on the descriptor performance and none of these samples are
successfully identified as nearest neighbors.

Tables 3.18 to 3.20 quantify this observation by measuring the impact of temporal changes on
the Euclidean descriptor distances between correspondences. These tables list the minimum,
maximum, and mean (along with the standard deviation) descriptor distances for correspon-
dences with a localization error less then 0.5 pixels. The descriptor distances are computed for
Steerable Filter descriptor vectors with footprint patches of size 41× 41, 63× 63, and 127× 127
pixels. For the sake of completeness, all descriptor distances are additionally computed for
in-strip image pairs.

The impact of temporal variations is measured by comparing the distances for cross-strip cor-
respondences. For example, the mean distance for a descriptor footprint patch size of 127× 127
pixels is 785.235 for DEN1, 836.384 for DAL1, and 989.154 for DAL2. Compared to DEN1, the mean
distances increase by 6% for DAL1 and by 26% for DAL2. The same is true for the minimum
distance where there is a relative increase by 260% between DEN1 (198.464) and DAL2 (512.866).
Note that for each data set, the mean descriptor distances decrease for increasing footprint patch
sizes.

Summarizing the results from tables 3.18 to 3.20 it becomes clear that temporal changes have a
negative impact on the distinctiveness of the descriptors. It was shown that particularly seasonal
changes pose a problem for the task of descriptor matching.
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Descriptor patches containing temporal variations.

Descriptor 41× 41 63× 63 127× 127
Distance in-strip cross-strip in-strip cross-strip in-strip cross-strip

minimum 69.886 209.652 58.378 164.548 75.406 198.464
maximum 2004.439 2151.467 1609.216 1785.496 1067.445 1454.729

mean 484.842 945.545 396.815 884.047 301.729 785.235
std 231.731 364.241 197.765 320.613 165.141 264.491

Table 3.18: Steerable Filter descriptor distances for correspondences in DEN1.

Descriptor 41× 41 63× 63 127× 127
Distance in-strip cross-strip in-strip cross-strip in-strip cross-strip

minimum 106.639 234.448 107.981 265.028 131.719 238.394
maximum 896.252 2215.513 848.129 1596.414 646.407 1267.678

mean 469.268 1041.247 384.769 972.088 273.726 836.384
std 174.552 365.591 150.821 270.807 99.791 214.541

Table 3.19: Steerable Filter descriptor distances for correspondences in DAL1.

Descriptor 41× 41 63× 63 127× 127
Distance in-strip cross-strip in-strip cross-strip in-strip cross-strip

minimum 155.377 291.279 166.655 453.078 109.425 512.866
maximum 1419.253 1968.425 1087.488 1924.589 816.661 1436.999

mean 515.571 1133.113 430.757 1097.026 323.756 989.154
std 226.997 347.453 189.516 278.993 131.046 196.112

Table 3.20: Steerable Filter descriptor distances for correspondences in DAL2.
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Previously, the correspondences computed in Section 3.5.2 was used to analyze the impact
of temporal variations on the Euclidean distances between corresponding descriptor vectors.
Now, this information is used to measure the number of correspondences which are successfully
identified as nearest neighbors (NN) for any given detector/descriptor combination. In order
to achieve this, each reference feature in one image is first matched with all detected features
in the adjacent image and then the nearest neighbor of the reference feature is computed and
compared with the corresponding feature. The results are displayed in tables 3.21 to 3.32.

Harris Detector Each descriptor vector is computed for footprint patches of size 41 × 41,
63 × 63, and 127 × 127 pixels. For each combination of detection scale and detector response
threshold, the best recall scores are achieved with a descriptor footprint patch size of 127× 127
pixels and the recall rates of all descriptors are within 95% of the top results. In this evaluation
SURF achieves the best scores for DEN1 and DAL1 whereas Steerable filters perform best for
the DAL2 image set. As an illustration, Tables 3.21 to 3.23 show the recall rates along with
the number of matched correspondences (values in brackets) for the Harris detector combined
with the SURF descriptor. For the DEN1 set about 75% to 90% of the correspondences are
correctly found as nearest neighbors. For DAL1 recall ranges from 65% for detection scale σ1 to
85% for σ6 and for DAL2 recall varies between 50% and 75% respectively. Especially for DAL2
the performance considerably decreased, compared to the other data sets. There are two main
reasons for this. First, the image scene has more repetitive motifs than the scene captured by
the DEN1 set. Second, the seasonal appearance changes in the DAL2 set have a strong effect to
the descriptor performance.

MSER Detector For MSERs the best recall scores are achieved with a measurement region
that is three times larger than the extremal region (i.e. the ellipse scale is 3). For this detector
the best recall rates are computed with Steerable Filters. Tables 3.27 to 3.29 list the computed
recall scores together with the number of matched correspondences (values in brackets). For
DEN1 and DAL1 recall ranges from 75% to 90% and the results are similar than for the Harris and
Hessian detectors. However, for the DAL2 set recall rates drop to 30% to 60%. This is consistent
with the observation from Section 3.5.2, where it was shown that the MSER repeatability is
heavily affected by this kind of changes.

Generally, the low recall rates reported in the tables pose a problem for the matching procedure.
The descriptor vectors are not sufficiently distinctive, thus, actually corresponding descriptors
can not be successfully matched. In order to improve the recall scores the matching task needs
to be enhanced with a geometric constraint. Basically, the same technique was already used to
compute the repeatability measure (cf. Section 3.3.1) where an approximate estimation of the
minimum and maximum projection height was used to restrict the search area along the ground
truth epipolar line. This time, the projection is used to restrict the area where nearest neighbors
are searched. Note that in this context the estimated values for the minimum and maximum
projection height can be less precise than for the repeatability measure. Even for search areas
with a size of 512 × 512 pixels, the recall increases for the DAL2 set to at least 85% for Harris
and 50% for MSERs. Tables 3.24 to 3.26 list the recall rates along with the number of matched
correspondences (values in brackets) for the Harris detector combined with the SURF descriptor
when this geometric constraint is used. Confer tables 3.30 to 3.32 for the improved results of
the MSER detector in combination with Steerable Filters.
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Detection Scale Threshold 41× 41 63× 63 127× 127

σ1 = 1.40 1024 65.28% (267) 72.62% (297) 78.97% (323)
σ1 = 1.40 2048 65.35% (166) 72.05% (183) 80.71% (205)
σ1 = 1.40 4096 68.55% (109) 72.96% (116) 80.50% (128)
σ4 = 3.84 1024 65.22% (135) 72.46% (150) 83.09% (172)
σ4 = 3.84 2048 62.67% (94) 73.33% (110) 81.33% (122)
σ4 = 3.84 4096 68.00% (51) 82.67% (62) 82.67% (62)
σ6 = 7.53 1024 79.63% (43) 85.19% (46) 92.59% (50)
σ6 = 7.53 2048 72.73% (16) 77.27% (17) 81.82% (18)
σ6 = 7.53 4096 66.67% (8) 66.67% (8) 75.00% (9)

Table 3.21: Harris correspondences of the DEN1 set found as NN with SURF.

Detection Scale Threshold 41× 41 63× 63 127× 127

σ1 = 1.40 1024 43.22% (51) 56.78% (67) 67.80% (80)
σ1 = 1.40 2048 45.71% (32) 60.00% (42) 68.57% (48)
σ1 = 1.40 4096 52.17% (12) 65.22% (15) 78.26% (18)
σ4 = 3.84 1024 48.61% (35) 63.89% (46) 76.39% (55)
σ4 = 3.84 2048 55.77% (29) 71.15% (37) 84.62% (44)
σ4 = 3.84 4096 63.33% (19) 76.67% (23) 90.00% (27)
σ6 = 7.53 1024 55.88% (19) 58.82% (20) 85.29% (29)
σ6 = 7.53 2048 53.57% (15) 53.57% (15) 82.14% (23)
σ6 = 7.53 4096 70.00% (7) 80.00% (8) 100.00% (10)

Table 3.22: Harris correspondences of the DAL1 set found as NN with SURF.

Detection Scale Threshold 41× 41 63× 63 127× 127

σ1 = 1.40 1024 39.83% (47) 52.54% (62) 51.69% (61)
σ1 = 1.40 2048 45.90% (28) 59.02% (36) 59.02% (36)
σ1 = 1.40 4096 57.14% (12) 61.90% (13) 61.90% (13)
σ4 = 3.84 1024 48.65% (18) 48.65% (18) 62.16% (23)
σ4 = 3.84 2048 50.00% (11) 63.64% (14) 81.82% (18)
σ4 = 3.84 4096 36.36% (4) 45.45% (5) 90.91% (10)
σ6 = 7.53 1024 37.50% (6) 37.50% (6) 62.50% (10)
σ6 = 7.53 2048 37.50% (3) 62.50% (5) 75.00% (6)
σ6 = 7.53 4096 50.00% (2) 75.00% (3) 75.00% (3)

Table 3.23: Harris correspondences of the DAL2 set found as NN with SURF.
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Detection Scale Threshold 41× 41 63× 63 127× 127

σ1 = 1.40 1024 87.78% (359) 89.24% (365) 91.44% (374)
σ1 = 1.40 2048 90.55% (230) 90.16% (229) 91.73% (233)
σ1 = 1.40 4096 92.45% (147) 90.57% (144) 91.19% (145)
σ4 = 3.84 1024 92.27% (191) 93.24% (193) 95.65% (198)
σ4 = 3.84 2048 92.00% (138) 94.00% (141) 96.00% (144)
σ4 = 3.84 4096 94.67% (71) 98.67% (74) 100.00% (75)
σ6 = 7.53 1024 100.00% (54) 98.15% (53) 100.00% (54)
σ6 = 7.53 2048 100.00% (22) 100.00% (22) 100.00% (22)
σ6 = 7.53 4096 100.00% (12) 100.00% (12) 100.00% (12)

Table 3.24: Harris correspondences of the DEN1 set found as “projective” NN with SURF.

Detection Scale Threshold 41× 41 63× 63 127× 127

σ1 = 1.40 1024 83.05% (98) 83.05% (98) 92.37% (109)
σ1 = 1.40 2048 84.29% (59) 85.71% (60) 92.86% (65)
σ1 = 1.40 4096 82.61% (19) 91.30% (21) 95.65% (22)
σ4 = 3.84 1024 81.94% (59) 93.06% (67) 97.22% (70)
σ4 = 3.84 2048 80.77% (42) 94.23% (49) 98.08% (51)
σ4 = 3.84 4096 86.67% (26) 96.67% (29) 100.00% (30)
σ6 = 7.53 1024 88.24% (30) 85.29% (29) 97.06% (33)
σ6 = 7.53 2048 85.71% (24) 82.14% (23) 96.43% (27)
σ6 = 7.53 4096 100.00% (10) 100.00% (10) 100.00% (10)

Table 3.25: Harris correspondences of the DAL1 set found as “projective” NN with SURF.

Detection Scale Threshold 41× 41 63× 63 127× 127

σ1 = 1.40 1024 86.44% (102) 90.68% (107) 87.29% (103)
σ1 = 1.40 2048 83.61% (51) 91.80% (56) 91.80% (56)
σ1 = 1.40 4096 90.48% (19) 100.00% (21) 100.00% (21)
σ4 = 3.84 1024 83.78% (31) 81.08% (30) 91.89% (34)
σ4 = 3.84 2048 90.91% (20) 81.82% (18) 100.00% (22)
σ4 = 3.84 4096 81.82% (9) 72.73% (8) 100.00% (11)
σ6 = 7.53 1024 93.75% (15) 93.75% (15) 87.50% (14)
σ6 = 7.53 2048 87.50% (7) 87.50% (7) 87.50% (7)
σ6 = 7.53 4096 100.00% (4) 100.00% (4) 100.00% (4)

Table 3.26: Harris correspondences of the DAL2 set found as “projective” NN with SURF.
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MM MS ES 1 ES 2 ES 3

∆ = 8 256 69.75% (219) 68.47% (215) 73.89% (232)
∆ = 8 512 72.68% (133) 72.13% (132) 78.69% (144)
∆ = 8 1024 80.41% (78) 83.51% (81) 87.63% (85)
∆ = 12 256 70.81% (131) 65.41% (121) 69.19% (128)
∆ = 12 512 79.41% (81) 70.59% (72) 76.47% (78)
∆ = 12 1024 85.71% (42) 85.71% (42) 81.63% (40)
∆ = 16 256 72.81% (83) 66.67% (76) 69.30% (79)
∆ = 16 512 83.02% (44) 73.58% (39) 77.36% (41)
∆ = 16 1024 81.82% (18) 90.91% (20) 86.36% (19)

Table 3.27: MSER correspondences of the DEN1 set found as NN with Steerable Filters.

MM MS ES 1 ES 2 ES 3

∆ = 8 256 61.47% (67) 70.64% (77) 74.31% (81)
∆ = 8 512 63.16% (60) 73.68% (70) 80.00% (76)
∆ = 8 1024 68.57% (48) 75.71% (53) 85.71% (60)
∆ = 12 256 66.15% (43) 75.38% (49) 80.00% (52)
∆ = 12 512 75.00% (42) 78.57% (44) 85.71% (48)
∆ = 12 1024 80.49% (33) 80.49% (33) 92.68% (38)
∆ = 16 256 65.85% (27) 80.49% (33) 80.49% (33)
∆ = 16 512 74.29% (26) 82.86% (29) 85.71% (30)
∆ = 16 1024 88.00% (22) 92.00% (23) 96.00% (24)

Table 3.28: MSER correspondences of the DAL1 set found as NN with Steerable Filters.

MM MS ES 1 ES 2 ES 3

∆ = 8 256 32.65% (16) 38.78% (19) 34.69% (17)
∆ = 8 512 29.73% (11) 43.24% (16) 29.73% (11)
∆ = 8 1024 27.27% (6) 45.45% (10) 40.91% (9)
∆ = 12 256 39.29% (11) 46.43% (13) 35.71% (10)
∆ = 12 512 38.10% (8) 57.14% (12) 38.10% (8)
∆ = 12 1024 28.57% (4) 57.14% (8) 42.86% (6)
∆ = 16 256 60.00% (9) 33.33% (5) 46.67% (7)
∆ = 16 512 50.00% (4) 62.50% (5) 62.50% (5)
∆ = 16 1024 40.00% (2) 60.00% (3) 60.00% (3)

Table 3.29: MSER correspondences of the DAL2 set found as NN with Steerable Filters.
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MM MS ES 1 ES 2 ES 3

∆ = 8 256 81.85% (257) 84.71% (266) 86.31% (271)
∆ = 8 512 84.15% (154) 85.25% (156) 87.98% (161)
∆ = 8 1024 88.66% (86) 89.69% (87) 89.69% (87)
∆ = 12 256 85.41% (158) 85.95% (159) 84.86% (157)
∆ = 12 512 89.22% (91) 88.24% (90) 89.22% (91)
∆ = 12 1024 89.80% (44) 87.76% (43) 85.71% (42)
∆ = 16 256 86.84% (99) 87.72% (100) 86.84% (99)
∆ = 16 512 92.45% (49) 92.45% (49) 92.45% (49)
∆ = 16 1024 86.36% (19) 90.91% (20) 90.91% (20)

Table 3.30: MSER correspondences of the DEN1 set found as “projective” NN with Steerable
Filters.

MM MS ES 1 ES 2 ES 3

∆ = 8 256 78.90% (86) 87.16% (95) 88.07% (96)
∆ = 8 512 80.00% (76) 88.42% (84) 86.32% (82)
∆ = 8 1024 85.71% (60) 90.00% (63) 88.57% (62)
∆ = 12 256 86.15% (56) 90.77% (59) 92.31% (60)
∆ = 12 512 87.50% (49) 92.86% (52) 91.07% (51)
∆ = 12 1024 90.24% (37) 92.68% (38) 92.68% (38)
∆ = 16 256 85.37% (35) 90.24% (37) 90.24% (37)
∆ = 16 512 85.71% (30) 91.43% (32) 88.57% (31)
∆ = 16 1024 92.00% (23) 96.00% (24) 96.00% (24)

Table 3.31: MSER correspondences of the DAL1 set found as “projective” NN with Steerable
Filters.

MM MS ES 1 ES 2 ES 3

∆ = 8 256 59.18% (29) 65.31% (32) 55.10% (27)
∆ = 8 512 54.05% (20) 59.46% (22) 48.65% (18)
∆ = 8 1024 54.55% (12) 54.55% (12) 59.09% (13)
∆ = 12 256 64.29% (18) 75.00% (21) 60.71% (17)
∆ = 12 512 61.90% (13) 71.43% (15) 57.14% (12)
∆ = 12 1024 57.14% (8) 64.29% (9) 64.29% (9)
∆ = 16 256 66.67% (10) 73.33% (11) 66.67% (10)
∆ = 16 512 62.50% (5) 62.50% (5) 62.50% (5)
∆ = 16 1024 60.00% (3) 60.00% (3) 60.00% (3)

Table 3.32: MSER correspondences of the DAL2 set found as “projective” NN with Steerable
Filters.
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3.6.2 Recall vs. 1-Precision

The objective of this section is to find the most suitable detector/descriptor combination for each
image set. The performances of the descriptors are measured in terms of recall vs. 1-precision.
Recall is the number of correct matches with respect to the number of correspondences and
1-precision is the number of false matches with respect to the number of putative matches.
Two features are matched if the Euclidean distance between the reference descriptor vector and
its nearest neighbor is below an arbitrary threshold value. In order to generate a curve this
threshold is varied.

For all evaluations, the search area for nearest neighbors is restricted by the geometric constraint
introduced in the previous section. The descriptor footprint patches are fixed to a size of 127×127
pixels and TV-L1 pre-processing is used (the parameter λ is fixed to 0.5) for the Harris detector.
For MSERs the footprint patches are three times larger than the detected regions.

3.6.2.1 The DEN1 Image Set

The temporal variations in this data set come rather from moving objects than from illumination
or shadow changes. Figures 3.18 and 3.19 show the recall vs. 1-precision graphs for the Harris and
MSER detectors respectively. The performances of SIFT and SURF are similar and Steerable
Filters achieve the best scores for both Harris corners and MSERs.

The recall rate ranges from around 10% for a 1-precision value of 0.3 pixel to 98% for a 1-
precision score of 0.85 and the performance slightly decreases for an increasing detection scale
σ. Compared to the results in previous descriptor evaluations [30; 33], it is evident that the
obtained recall vs. 1-precision graphs significantly differ from the reported results. This can be
explained by the different complexities of the image sets.

Note the superior performance of descriptors computed for MSERs. Even though the maximum
recall rate is limited to 73% these rates are obtained for considerably lower 1-precision scores.
For example, for a precision score of 0.5 the recall is 70% (i.e. 220 correct matches) for MSERs
compared the recall of 30% (i.e. 60 correct matches) for Harris.
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Figure 3.18: Harris recall vs. 1-precision rates for DEN1.
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Figure 3.19: MSER recall vs. 1-precision rates for DEN1.

3.6.2.2 The DAL1 Image Set

This data set is dominated by significant appearance changes caused by shadowed regions. Large
parts that are clearly visible in one image are covered with shadow in the other image. The
descriptor performances for this data set are listed in Figure 3.20 for the Harris detector and
Figure 3.21 for MSERs respectively. The recall scores range from 2% to 90% for Harris and
up to 65% for MSERs. Again, the maximum recall rate for MSERs is lower than for Harris,
however, these rates are obtained for considerably lower 1-precision scores.

In contrast to the DEN1 set, where Steerable Filters clearly achieved the best results there is
no big difference here. The individual recall vs. 1-precision graphs are rather similar to each
other. For example, starting with a 1-precision score of 0.5 the recall rate increases drastically
for all curves in Figure 3.20. However, at a second glance it becomes clear that particularly
for the curve in Figure 3.20a SURF outperforms the other descriptors. For example, the recall
rate for a 1-precision score of 0.6 is 20% for Steerable Filters, 30% for SIFT, and 42% for SURF
descriptors.

Compared to the results for the DEN1 image set, the performances are generally lower. This can
be explained with the different image scenes. The DAL1 set contains more repetitive structures
(e.g. swimming pools) which have a higher chance to be mismatched.
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Figure 3.20: Harris recall vs. 1-precision rates for DAL1.
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Figure 3.21: MSER recall vs. 1-precision rates for DAL1

3.6.2.3 The DAL2 Image Set

This data set captures temporal variations of about 5 months. Hence, it is characterized by
massive appearance changes due to seasonal vegetation and shadows caused by the low position
of the sun. Section 3.5.2 already concluded that the MSER detector is not applicable to this
image set. However, for the sake of completeness recall vs. 1-precision scores are presented
in Figure 3.23. The displayed graphs clearly validate these observations particularly for the
increasing minimum region size in Figures 3.23b and 3.23c.

For the recall vs. 1-precision graphs displayed in Figure 3.22 there is generally a huge difference
for the performances of the evaluated descriptors. It is remarkable that the performance of
SURF descriptors is far beyond the performance of SIFT. For example, the recall rate for a
1-precision score of 0.55 is 21% for SIFT and 43% for SURF (cf. Figure 3.22a).
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Figure 3.22: Harris recall vs. 1-precision rates for DAL2.
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Figure 3.23: MSER recall vs. 1-precision rates for DAL2

3.6.3 Discussion

This section presented an experimental evaluation of feature descriptors in the presence of tem-
poral variations. The goal was to compare the descriptor performances for the previously selected
feature detectors and to find the best detector/descriptor combinations for each image set.

It has been shown that the descriptor performances are tightly related with the image scene as
well as the captured temporal variations. Thus, the feature matching stage is crucial for the
performance and needs to be enhanced with a geometric constraint which limits the area for
nearest neighbor search.

For the short-term temporal variations in the DEN1 set, Steerable Filters achieve the best perfor-
mances. Particularly the combination of the MSER detector with Steerable Filters is appealing.
It has been shown that this combination achieve high recall rates at a significantly lower false
positive rate. Hence, for these types of temporal variations, this detector/descriptor combination
is the best choice.

This recommendation changes for the variations in the DAL1 and DAL2 sets. In contrast to the
DEN1 set, where Steerable Filters clearly achieved the best results, SURF outperforms the other
descriptors for these image sets. Furthermore, SURF descriptors are more compact (i.e. 64-
dimensional vectors) than SIFT descriptors (i.e. 128-dimensional vectors) or Steerable Filters
(i.e. 312 dimensions) and due to the use of integral images they can be computed with less
computational costs. Thus, the SURF descriptor is the best choice not only for the DAL1 and
DAL2 sets, but also for a more general setup.

3.7 Conclusion

This chapter presented an experimental evaluation of local feature detectors and descriptors.
For the detectors it is important to find a reasonable trade-off between a high repeatability
rate and a large number of correspondences. As it was shown in Section 3.5.2 the number of
correspondences on the one hand and the repeatability rate at the other hand are competing
properties and they cannot be settled simultaneously. Hence, the choice depends on the actual
application and the expected image degradations.
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Detectors Maximally Stable Extremal Regions (MSERs) achieve the best repeatability rates
for all image sets. Harris and Hessian perform similar, though, Harris corners tend to offer
a better trade-off between repeatability and the total number of correspondences. However,
it does not suffice to analyze the repeatability scores on their own: It turns out that MSERs
are not applicable to the seasonal variations of the DAL2 image set. Although they achieve the
highest repeatability in terms of region overlap, their centers of gravity may not be accurately
repeated. Furthermore, it has been shown that applying TV-L1 pre-processing before using
the Harris detector significantly increases the repeatability rates while decreasing the absolute
number of correspondences. According to Section 3.5.4 the following detectors are proposed
(cf. Table 3.33). For the DEN1 and DAL1 image sets the first choice is the MSER detector with
minimum region size of 256 pixels and the stability parameter ∆ set to 8. For the DAL2 image set
and a more general setup, the Harris detector (with detection scale σ set to 1.4 and a cornerness
threshold of 1024) is proposed be used with TV-L1 pre-processed data (where the parameter λ
is fixed to 0.5) in order to achieve reasonable results.

Descriptors and Matching Strategy The evaluation results in Section 3.6 make two points
clear: First, with increasing temporal variations image matching becomes more and more both
a detection and a description problem. Second, the feature matching strategy plays a major
role in the image matching workflow. A naive approach would use nearest neighbor matching
with tight thresholds in order to compute putative feature matches. However, it may happen
that corresponding features are not even identified as nearest neighbors. In order to overcome
this problem, the matching strategy is required to incorporate a kind of geometric restriction
constraint that limits the area for nearest neighbors search. It has been shown, that even
weak restrictions to a search area of 512 × 512 pixels improve the performance. Following the
discussion of Section 3.6.3 is is proposed to use Steerable Filters for the DEN1 set and the SURF
descriptor for DAL1, DAL2, and more general setup. Tables 3.33 and 3.34 summarize the resulting
detector/descriptor combinations with specific parameter settings.

Image Set Detector Parameter Settings

DEN1 MSER MS = 256, ∆ = 8
DAL1 MSER MS = 256, ∆ = 8
DAL2 Harris σ = 1.4, t = 1024, λ = 0.5

General Harris σ = 1.4, t = 1024, λ = 0.5

Table 3.33: Proposed feature detectors.

Image Set Descriptor Parameter Settings

DEN1 Steerable Filters ellipse scale = 3
DAL1 SURF 127× 127 pixels footprint
DAL2 SURF 127× 127 pixels footprint

General SURF 127× 127 pixels footprint

Table 3.34: Proposed feature descriptors.
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Chapter 4

A Temporal Insensitive Aerial Image
Matching Workflow
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The previous chapter presented a detailed performance evaluation of local features. Based on
these evaluation results, a fully automated temporal insensitive image matching workflow – which
actually a system of existing approaches – is developed in this chapter. Section 4.1 gives a brief
introduction to the components of the proposed algorithm and in Section 4.2 the performance of
the algorithm is measured by comparing the estimated fundamental matrices with the ground
truth.

4.1 Processing Stages

Figure 4.1 shows the block diagram of the proposed workflow. The gray box indicates that this
stage is either optional or not used for all settings. The remainder of this section gives a brief
overview of the individual stages of the workflow.

Stage 1: TV-L1 Pre-processing This processing stage can be seen as optional, because
it does not necessarily improve the accuracy of the estimated fundamental matrix. However,
the pre-processing step is very useful to strip down the computational complexity for both the
feature matching and fundamental matrix estimation stages. According to Section 3.7 it is
proposed to use TV-L1 pre-processing with parameter λ set to 0.5 in combination with the
Harris corner detector.
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TV-L1 Pre-processing

Feature Extraction

Feature Matching

Fundamental Matrix

Figure 4.1: Block diagram of the proposed workflow.

Stage 2: Feature Extraction For the DEN1 and DAL1 image sets the MSER detector in
combination with Steerable Filters was proposed. However, it turned out that MSERs are not
applicable to the DAL2 set (cf. Section 3.5 for further details). The Harris detector achieved good
results for all image sets. Hence, this stage utilizes the Harris detector in combination with the
SURF descriptor. The detection scale σ is set to 1.4 and the cornerness threshold value is 1024.
For each detected interest point a descriptor vector is computed with the rotation variant version
of the SURF descriptor and the descriptor footprint is set to a patch size of 127× 127 pixels.

Stage 3: Feature Matching Different matching strategies have been already discussed in
Section 3.3.2. Based on the evaluation results in Section 3.6, it is proposed to use nearest
neighbor matching with a geometric constraint: In order to be independent from the actual
image content the nearest neighbor search is restricted to features which are located in a 512×512
pixel neighborhood of the projected reference feature.

Stage 4: Robust Fundamental Matrix Estimation The set of putative feature matches
is verified by a robust estimation of the underlying epipolar geometry based on the RANdom
SAmple Consensus (RANSAC) algorithm [8]. A candidate match is defined as correct if the
distance of the feature location to the estimated epipolar line is less than a pixel. In order to
further improve the estimation quality, RANSAC is applied to the set of correct matches to
re-estimate the fundamental matrix.

4.2 Performance Comparison with Ground Truth

In this section, the performance of the algorithm is demonstrated by comparing the estimated
fundamental matrices with their ground truth counterparts. Therefore, the distances of manually
verified correspondences to both the ground truth and the estimated epipolar lines are measured.
Tables 4.1 to 4.3 list the measured values in terms of the mean distance and the standard
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deviation in pixels. Furthermore, each table shows the number of putative correspondences
(i.e. resulting from stage 3) and the final number of inliers after the fundamental matrix was
estimated.

Image Ground Truth Estimated Correspondences
Pair mean std dev mean std dev putative inliers

Fig. 4.2 (a) - (b) 0.24 0.14 0.27 0.18 307 191
Fig. 4.2 (c) - (d) 0.25 0.14 0.31 0.24 178 124
Fig. 4.2 (e) - (f) 0.24 0.14 0.24 0.18 173 119
Fig. 4.2 (g) - (h) 0.24 0.15 0.36 0.24 178 128

Table 4.1: Accuracy and correspondences of the estimated epipolar geometry for DEN1.

Image Ground Truth Estimated Correspondences
Pair mean std dev mean std dev putative inliers

Fig. 4.3 (a) - (b) 0.25 0.14 0.36 0.27 72 63
Fig. 4.3 (c) - (d) 0.22 0.14 0.38 0.36 74 58
Fig. 4.3 (e) - (f) 0.24 0.13 0.35 0.28 59 53
Fig. 4.3 (g) - (h) 0.26 0.14 0.41 0.39 63 56

Table 4.2: Accuracy and correspondences of the estimated epipolar geometry for DAL1.

Image Ground Truth Estimated Correspondences
Pair mean std dev mean std dev putative inliers

Fig. 4.4 (a) - (b) 0.23 0.13 0.45 0.42 67 48
Fig. 4.4 (c) - (d) 0.22 0.13 0.28 0.23 75 53
Fig. 4.4 (e) - (f) 0.22 0.14 0.36 0.28 80 51
Fig. 4.4 (g) - (h) 0.21 0.13 0.35 0.26 73 50

Table 4.3: Accuracy and correspondences of the estimated epipolar geometry for DAL2.

The results clearly demonstrate the robustness of the proposed workflow to different temporal
changes. The overall performance of the workflow regarding both accuracy and the total number
of correspondences is reasonably well. For all image pairs, the accuracy of the estimated funda-
mental matrices does not significantly differ from the ground truth matrices. For the DEN1 data
set, the algorithm finds 120 to 190 correspondences for different image pairs and the accuracy of
the estimated fundamental matrix is convincing – the mean distance of the previously selected
correspondences to the epipolar lines range from 0.27 to 0.36 pixels. Hence, the difference to
the ground truth fundamental matrices is about 0.1 pixels. For DAL1 and even for the seasonal
changes in the DAL2 set, the mean distances of the features to the corresponding epipolar lines
vary from 0.35 to 0.45 pixels and differ from the ground truth by about 0.2 pixels. Note that
due to the TV-L1 pre-processing stage the ratio of putative correspondences to inliers is quite
good for all image sets.

Figures 4.2 to 4.4 display the estimated fundamental matrices for images of the same scene. On
the left-hand side a subset of inliers is plotted as red circles. The corresponding epipolar lines
are drawn in the images on the right-hand side along with the corresponding feature locations
(green circles).
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Figure 4.2: Estimated epipolar geometry for DEN1.
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Figure 4.3: Estimated epipolar geometry for DAL1.
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Figure 4.4: Estimated epipolar geometry for DAL2.
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5.1 Summary

This thesis presents a performance evaluation of local detectors and descriptors in the presence
of temporal variations in non-planar aerial imagery. The goal was to develop a fully-automated
aerial image matching workflow that can cope with substantial temporal variations which are
captured in the provided real-world images.

Local features proved to be a powerful way to find correspondences in two or more images and
the evaluation results in Chapter 3 show that there is a significant performance decrease in
the presence of temporal variations. Parameter settings which yield a higher number of precise
correspondences usually show lower repeatability rates (cf. Section 3.5.2). In this context, it was
shown in Section 3.5.3 that a pre-processing step based on total variation both improves the
repeatability rate and preserves a reasonable number of correspondences for the Harris detector.

For the temporal variations in the DEN1 and DAL1 data sets, Maximally Stable Extremal Regions
(MSERs) performed best. However, it turned out that this feature detector is heavily effected
by the seasonal variations captured in the DAL2 set where MSERs proved to be inapplicable in
the presence of massive appearance changes. In contrast to MSERs, the Harris corner detector
achieves reasonable results for all image sets. Hence, this detector is used in the prototype
implementation of a temporal insensitive aerial image matching workflow in Chapter 4.

The descriptor evaluation results in Section 3.6 showed that with increasing temporal variations
image matching becomes more and more both a detection and a description problem. The main
reason for this is an increased distance for corresponding descriptor vectors due to appearance
changes that poses a problem particularly for repetitive image structures. Thus, the feature
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matching strategy becomes a key issue for the overall performance. It has been shown in Section
3.6.1 that restricting the area for nearest neighbor search boosts the performance significantly.

Steerable Filter descriptors perform best when they are combined with Maximally Stable Ex-
tremal Regions. In all other cases, the use of the Speeded-up Robust Features (SURF) descriptor
is proposed for several reasons. First, it has been shown that SURF achieves highly competitive
performances. Second, due to the use of integral images, the descriptor computation can be ex-
ecuted faster than for other state-of-the-art methods. Third, due to the relatively low descriptor
dimensionality the computational complexity of feature matching is reduced.

The temporal insensitive aerial image matching workflow which is developed in Chapter 4 is
actually a system of existing methods. In order to demonstrate the robustness of the algo-
rithm, the estimated fundamental matrices are compared with their ground truth counterparts.
Therefore, the distances of manually verified correspondences to both the ground truth and
the estimated epipolar lines are measured. The overall performance of the workflow in terms
of both accuracy and total number of correspondences is reasonably well (i.e. correspondence
localization errors less than 0.5 pixels) and the accuracy of the estimated fundamental matrices
does not significantly differ from the ground truth matrices.

5.2 Future Work

This thesis showed the capability of a feature-based temporal insensitive aerial image matching
algorithm. Although the proposed workflow achieves reasonable results on the provided im-
age sets, there is still plenty of room for improvements. Further investigations may focus the
following issues.

Exploit 12 Bit Panchromatic Image Depth The panchromatic aerial imagery is originally
available with a 12 bit depth. Using this information may improve the quality of both the
pre-processing stage and the feature extraction stage. However, even if this is fairly easy to
implement, there are increased requirements for the hardware.

Limited Repeatability and Complementary Features Even though a lot of progress
was made in the field of feature extraction in the recent years, the repeatability rate of the
feature detectors is still limited. A variety of detectors has been proposed and each of these has
its individual strengths and weaknesses. Hence it is quite common to use several detectors in
parallel. This may help to improve the repeatability and simultaneously increase the number of
detected correspondences.

Enhanced Matching Strategy Another improvement might be achieved with an enhanced
matching strategy. This may be either a simple cross-checking strategy where the reference
feature is required to be found as nearest neighbor match of its nearest neighbor or a more
advanced iterative feature matching stage where initially estimated fundamental matrices are
used to iteratively refine the search for feature correspondences. For example, Yang et al. [65]
used such a technique for the registration of challenging image pairs.
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Increased Number of Temporal Variations and Image Scenes The performance of local
features for aerial image matching depends also on the captured image scenes. Thus, it would
be of interest to increase the number of test sets with different image scenes (e.g. rural areas
with forests).
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