
Masterarbeit

FlexRay Physical Layer Simulation and Validation

Based on Active Star Networks

Martin Krammer

————————————–

Institut für Technische Informatik

Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Begutachter: Ass.-Prof.Dipl.-Ing.Dr.techn. Christian Steger

Betreuer: Ass.-Prof.Dipl.-Ing.Dr.techn. Christian Steger

Dipl.-Ing.Michael Karner

Graz, Februar 2010



Kurzfassung

Das Bordnetzwerk eines modernen Fahrzeugs stellt die Interaktion der verschiedensten elektronischen

Steuergeräte sicher und implementiert dadurch ein verteiltes Kommunikationssystem. Auf Grund zahl-

reicher Einflüsse kann dieses Kommunikationssystem jedoch nicht als vollständig frei von Fehlern be-

trachtet werden. FlexRayTM ist ein neuer Standard für automotive Kommunikationsnetzwerke, welcher

jene Probleme lösen soll, die während der letzten Jahre im Bereich der Automobilentwicklung aufge-

taucht sind.

Die komplexen Strukturen und Architekturen dieser automotiven Kommunikationsnetzwerke verlan-

gen nach neuen Möglichkeiten für Entwicklung, Design, Integration und Test solcher Systeme. FlexRayTM

vollzieht dabei einen Paradigmenwechsel, weg von einer ereignisgesteuerten und hin zu einer zeitgesteu-

erten Kommunikationsarchitektur. Dabei müssen harte Echtzeit-Anforderungen erfüllt werden. Ein der-

artiges System wird als höchst sicherheitskritisch betrachtet, entsprechende Maßnahmen begleiten daher

oftmals den gesamten Entwicklungsprozess. Simulation als Werkzeug hilft, auftretende Probleme bereits

so früh wie möglich erkennen zu können und gleichzeitig Aufwand, Entwicklungszeit sowie Kosten auf

einem akzeptablen Niveau zu halten.

Im Kontext des TEODACS Projektes, einer Kooperation zwischen dem Kompetenzzentrum Das Virtu-

elle Fahrzeug und der Technischen Universität Graz, Institut für Technische Informatik, wurde die Simu-

lation der elektrisch-physikalischen Ebene des FlexRayTM Kommunikationssystems fertiggestellt. Diese

Arbeit beschreibt die Entwicklung von neuen, sowie die Verbesserung von bereits vorhandenen Model-

len, und geht dabei im Besonderen auf den aktiven Sternkoppler eines FlexRayTM Netzwerkes ein. Auf

Grund der Zielarchitektur von TEODACS sind sämtliche Stimuli und Ergebnisse vollständig zwischen

der Simulationsumgebung und dem Labor-Prototypen austauschbar. Ein Schichten-System und dessen

Schnittstellen ermöglicht die effiziente Generierung von Stimuli sowie die Verifikation und Validierung

der resultierenden Gesamtsysteme. Mit diesem gesamtheitlichen Ansatz werden mehrere relevante Netz-

werktopologien untersucht und deren Ergebnisse einer exemplarischen Signalintegritätsanalyse unterzo-

gen.



Abstract

Modern vehicles are equipped with distributed communication networks to enable the interaction be-

tween various electronic control units. Due to the large number of possible interferences, the overall

communication system cannot assumed to be completely fault-free. FlexRayTM is a new standard for

automotive communication networks, addressing many problems which arose over the last few years of

automotive developments.

The complex structure and architecture of such automotive communication networks demands new

possibilities for development, design, integration and test. FlexRayTM introduces a paradigm change

from event-triggered to time-triggered communication architectures. Hard real-time requirements need

to be observed. Since such a system is considered to be highly safety-critical, additional safety require-

ments go along with the entire development process. Simulation helps to detect possible problems as

early as possible, and keep efforts, development time and cost at an acceptable level.

In context of the TEODACS project, a joint cooperation of the Virtual Vehicle Competence Center

and Graz University of Technology, Institute for Technical Informatics, the FlexRayTM electrical phys-

ical layer simulation and validation was completed. This thesis describes the development of new, and

enhancement of various present models, with special focus on FlexRayTM’s active star. Due to the tar-

get architecture of TEODACS, all occurring stimuli and results are completely interchangeable between

the simulation environment and the laboratory prototype, on a number of layers. These layers and their

defined interfaces are utilized for efficient stimulus generation, verification and validation of the result-

ing system. This holistic approach is used to investigate several relevant network topologies. These

simulation results are used for an exemplary signal integrity analysis.
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Chapter 1

Introduction

1.1 Thesis Environment

Modern cars are much more than simple means of individual transportation. Sophisticated electronics

and electrics offer a high level of comfort, increased safety and better environmental sustainability. Due

to the close relation of such embedded systems to the automotive business, this thesis was arranged in

connection with "The Virtual Vehicle Competence Center" Graz1. The Austrian COMET K2 research

program is an international institution in the field of application-oriented vehicle development. It is

organized in five research areas, dealing with system design and optimization, thermodynamics, noise,

vibration, harshness and friction, mechanics and vehicle electrics/electronics and software.

This work was done in cooperation with Virtual Vehicle’s "Area E", Vehicle Electrics/Electronics and

Software. The project acting as host is named TEODACS, which is an abbreviation for "Test, Evaluation

and Optimization of Dependable Automotive Communication Systems". The aim of the TEODACS re-

search project is to gather expertise for the deployment and validation of FlexRayTM based distributed

systems [Cen09]. Special attention is paid to the exploration and interaction of communication ser-

vices and layers. Internal and external mechanisms influencing communications are subject to efficient

and realistic modeling within the simulator and laboratory setup. Therefore, three project branches are

involved:

FlexRayTM Xpert.Research: Development of new concepts and methods for efficient test, evaluation

and optimization of automotive communication systems.

FlexRayTM Xpert.Lab: Prototype development for evaluation and validation of communication ar-

chitectures and simulation models. Simulator and prototype both require defined interfaces between

them.

FlexRayTM Xpert.Sim: The overall goal of this branch is to develop a simulator for the entire com-

munication system at different abstraction levels. This thesis belongs to that branch.

The TEODACS project environment was set up in cooperation with a number of Austrian industry

partners. With austriamicrosystems AG a widely known semiconductor manufacturer joined the project,

their focus is on automotive integrated circuits. Another project partner in the area of semiconductor

design and consulting is CISC Semiconductor Design+Consulting GmbH, based in Klagenfurt, Austria.

CISC has competences in the areas of system design, modeling, simulation, verification and optimiza-

tion of heterogeneous embedded microelectronic systems. Finally, AVL List GmbH rounds off the board

of industry partners. AVL is the world’s largest privately owned and independent company for the de-

velopment of power train systems with internal combustion engines as well as instrumentation and test

1See http://www.virtualvehicle.at for more information.
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CHAPTER 1. INTRODUCTION 2

systems. AVL also develops simulation methods, necessary for development work. Besides The Virtual

Vehicle Competence Center and the Institute of Technical Informatics, Graz University of Technology,

the University of Applied Sciences FH Joanneum Kapfenberg completes the board of scientific partners

in the TEODACS project.

1.2 Motivation and Problem

As already touched in the previous section, distributed automotive communication systems are some-

what difficult to handle over the entire product life cycle. The following requirements are made to such

systems. The development process should be well-defined, understandable, and should allow the easy

generation of test cases. Ideally, the processes of verification and validation cover all layers involved.

The verification process follows closely to all related standards and specifications. Validation techniques,

on the other hand, need to be specified individually according to the engineer’s situation. All these mea-

sures share a common set of objectives: The resulting system should be highly available and stable under

all circumstances possible. External and internal sources are influencing the overall system: Temperature

variability, EMI, EMC or simply deterioration are most common causes. Furthermore, the system should

deliver reliable results at any time and within a fixed time limit. The latter is called a real-time require-

ment. Various industry standards (IEC 61508, ISO 26262 for example) are dealing with the definition

of safety, many additional requirements are derived thereof. Furthermore, from an economic point of

view, an automotive communication system needs to be scalable with respect to different vehicle vari-

ants. Additionally, fault and error diagnosis systems are necessary to ensure maintainability throughout

the whole product life cycle.

Figure 1.1: Distribution of embedded electronic communication systems inside the Volkswagen Phaeton

[Akt09].

Leaps ahead in technology and therefore constantly growing requirements lead to more complex

overall systems. This fact requests new methods and strategies. Figure 1.1 shows the distribution of

an embedded electronic communication system within a typical upper class car. This way, a total cable

length of up to 4 kilometers and a total cable harness weight of up to 64 kilograms is achieved. Around



CHAPTER 1. INTRODUCTION 3

70 ECUs are necessary to connect each sensor or actuator to the network. Cost is the overall criteria

in the automotive industry, so new technologies helping to reduce cost while keeping up with latest

requirements are desperately sought after. [Vas04]

The TEODACS project [AWS+08] strives for a "New Vision for Testing Dependable Automotive

Communication Systems". The project’s vision is illustrated using a V-diagram, as shown in figure 1.2.

One of the main goals of TEODACS is the establishment of integrated interfaces between the left and

right hand side of the V-diagram: The left hand side represents a co-simulation framework, whereas the

right hand side represents a laboratory setup. Furthermore, both sides are made up of several layers,

which allow a concrete definition of the previously mentioned interfaces.
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Figure 1.2: TEODACS vision [AWS+08].

As described in the upcoming section, the goal of this thesis is to add necessary components to the

TEODACS V-diagram at the lower left-hand side. This means the completion of required models and

interfaces at the co-simulation platform, but also the verification and validation with the corresponding

laboratory setup, exploiting the proposed layer model.

1.3 Objectives

This section introduces the main objectives of this thesis. Superior to all other goals is research in the

fields of automotive co-simulation, simulation of automotive components, fault-injection and -investigation

in the automotive area, and finally research of factors which have strong impacts on automotive commu-

nication networks. Within these overall objectives, the following tasks and work packages were supposed

to accomplish.

First of all, a complete and simulatable active star model should be created. Within the TEODACS

project, a number of FlexRayTM network component models is already available, but this network-

extending component is still missing. An existing active star digital logic model written in VHDL should

be used together with other (analog) models to create a functional model of an active star, compliant to

FlexRayTM specifications. A demonstrator should be used to verify the correctness of the resulting over-

all model. In order to accomplish this task, the presence of a bus driver model is necessary. Therefore,

the existing analog bus driver intellectual-property (IP) model written in VHDL-AMS by CISC is subject

to integration into the simulation environment. That bus driver model allows the inspection of the analog

layer, necessary for signal integrity analysis for example.
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Additionally, there is demand for efficient model configuration. This has various reasons. First of

all, the effects of differently parameterized components should be investigated. Second, this is necessary

to validate a specific component against its hardware counterpart and emulate its behavior. All models

should allow the simplest possible methods for parameterization and should integrate seamless into the

TEODACS project environment. Moreover, a fault injection possibility should be provided. This means

that comprehensive options should be available to modify system inputs and system internal variables,

together with the possibilities to observe the effects of these influences. This is aimed at components

on network and logic layers and allows the identification of critical points within the communication

system.

A specific requirement is the use of CISC’s "System Architect Designer" [sya09, KSSP06] co-simu-

lation software platform. All available models should be ported to SyAD R©. Additionally, SyAD R©

compatibility has to be provided throughout the entire TEODACS project and in particular within this

thesis, to ensure an integrated co-simulation environment.

Basic methods for test, verification and validation of various network component models should be

developed. A FlexRayTM network contains many active and passive elements. Their models were par-

tially created earlier within the TEODACS project. The existing and all newly developed elements should

be evaluated carefully in order to ensure sustained reliability of the TEODACS simulation framework.

Different appropriate network topologies should be identified in order to generate efficient test cases

for the verification and validation processes.

FlexRayTM’s specifications include rules to obey when building network topologies. However, a

valid network configuration is no guarantee to achieve a working network. That is why FlexRayTM gives

a lot of recommendations concerning topologies. Based on those assumptions, the overall problem of

signal integrity analysis is subject to investigation. Another thesis written in parallel to this one at The

Virtual Vehicle Competence Center deals with the detection, interpretation and presentation of signal

integrity relevant data. The results of that work will most likely be helpful for automated signal integrity

analysis. The shift of signal integrity along with modifications of network topology should be explored

as well.

1.4 Overview of Chapters

Chapter 2 introduces related work on the topics of automotive communication systems, modeling and

simulation, verification and validation as well as selected topics on FlexRayTM. Chapter 3 outlines the

general approach and nominates software packages and tools to be used throughout the work. The

most important components, models and properties of a typical FlexRayTM network are also given in

this chapter. Chapter 4 includes a complete description of all implemented models and scripts. Finally,

chapter 5 provides a thorough view on significant results achieved during the work on this thesis. Chapter

6 closes this document, summarizing the gained knowledge and pointing out some aspects for possible

future work.



Chapter 2

State of the Art in Modeling and

Automotive Engineering

This chapter introduces literature, which is considered relevant for the accomplishment of this thesis.

First, publications from the area of modeling and simulation are covered in section 2.1, including a short

historical outline in section 2.1.1. Section 2.1.2 is dealing with modeling rules and recommendations.

Some examples of modeling automotive systems and applications are recited as well in section 2.1.3. Ba-

sics of model verification and validation are introduced in section 2.3.3. Some selected topics concerning

the FlexRayTM communication system are given in section 2.3. This includes modeling of FlexRayTM

components (section 2.3.2), verification and validation of FlexRayTM bus systems (section 2.3.3) and

FlexRayTM signal integrity analysis (section 2.3.5).

2.1 Modeling and Simulation

2.1.1 The Early Days of VHDL-AMS

The first draft language reference manual for VHDL-AMS was accepted by the IEEE ballot in October

1997. Besides the well-known electronic domain, VHDL-AMS suddenly offered the possibility to create

new models in other areas of technology. Especially in automotive engineering, where hydraulic and

mechanical components, together with their electronic control units, play important roles in the area of

modeling and simulation. VHDL-AMS acted as a unified modeling language for the first time. [MM98]

From a mathematical point of view, physical components can be described using differential equa-

tions. In the past of 1997, all of the most commonly known languages did not support such an approach

naturally. At that time and today, the introduction of new tools is expensive: Selection, licensing, training

and support engulfs money in no time. Additionally, the model exchange between a company’s internal

departments and external suppliers is posing another problem: Besides technology related issues, time

and financial constraints have to be met. VHDL-AMS is able to fulfill almost all of the discussed require-

ments. It has a mathematical orientation and allows the description of differential algebraic equations.

Since VHDL established a widely accepted standard in the electronic domain in 1987, VHDL-AMS lives

on the good reputation of VHDL. The MSR consortium1 was founded these days in order to find some

unified methods for the easy exchange of product specifications. Based on a study, their choice fell on

VHDL-AMS.

The primary problem in the area of unified modeling in continuous domains is the concept of dis-

continuities or the detection of non-convergence. Proprietary language extensions used questionable

constructs to overcome those problems. However, in most situations they worked out. VHDL-AMS was

the first language to address those difficulties in a native way, by issuing the break-statement as well as

non-conservative communication links.

1See http://www.msr-wg.de, October 2009, for further information.
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VHDL-AMS unified digital and analog electronics for the first time, including system design aspects.

The concept of module development with well-defined interfaces simplified the design of system ar-

chitectures and communication between modules. The availability of co-simulation environments has

increased today, so the need for manual coupling of simulator tools is mostly avoided. VHDL-AMS

covers all missing concepts for multi-domain modeling and unified simulation. Most important for the

automotive industry, VHDL-AMS supports the electronic and hydraulic domain, as well as multi-body

systems and system-level model generation. Mixed-domain simulators are available today, to remedy

the deficiencies from the early days of VHDL-AMS. From the authors point of view, all their wishes and

requirements are entirely fulfilled today.

A few basic examples demonstrating the modeling of electronic and mechanical systems are shown in

[HD04]. Considering an electronic system comprising discrete elements like voltage sources, capacitors,

inductances and resistors, a number of basic component equations are set up. Depending on these specific

components, the resulting equations may contain a derivation after time, leading to differential equations.

All equations are simplified and the contained terms are sorted by their corresponding state variables.

This way, a mathematical system is achieved, ready for simulation and analysis of the assumed circuit.

VHDL-AMS is natively able to deal with such component equations, leaving it to the engineer to describe

the system’s structure.

Those fundamental features make VHDL-AMS an appropriate tool for the development of automotive

components. This was recognized by many car makers and suppliers. It has shown that VHDL-AMS is

able to fill the gap for a unified modeling language very well [Mos96].

In the early 1990s VHDL-AMS became interesting for the automotive industry. An inspection of

typical VHDL-AMS examples was published by [Mos96]. The MSR consortium, founded by german car

makers and suppliers, powered investigations to find a set of minimal necessary capabilities of unified

methods to exchange product specifications and models. To derive language requirements, all participat-

ing companies and individuals were asked to provide possible sample candidates. However, the feedback

they received was insufficient, due to strong legal model restrictions, high complexity of models, and poor

documentation standards. Despite those circumstances, a number of requirements for a unified modeling

language was derived. Following a short excerpt of those requests as mentioned in [Mos96].

• Structural decomposition: Decomposed model parts should be independent entities. The rea-

sons are obvious: First, understanding of models is important. Second, partitioning increases the

reusability of decomposed parts.

• Discrete modeling: Modeling of digital circuits and event driven systems require appropriate

mechanisms, where changes only happen at discrete points in time. System state changes only

happen at discrete time points, so it is reasonable to request an event-driven mechanism. VHDL

already supports event-driven and discrete-time modeling.

• Continuous modeling: The behavior of any mathematically described physical system leads to dif-

ferential algebraic equations. Given initial conditions, equations describe values of each involved

state variable at any time after the initial setting.

• Discontinuities: Physically complicated behavior can be described in an abstract way.

• Interaction between discrete and continuous: Describing mixed systems, containing analog and

digital variables, the difference of simulated behavior on different simulators should be within

some defined margins.

• Network: The language should offer the capability to model energy-flows or conservative commu-

nication facilities. For example, the simulator needs to be aware of Kirchhoff’s law.
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• Block diagram: To illustrate the cause and effect between different blocks, signal-flows are used.

Most control system designers prefer signal-flow diagrams, since directed communication facili-

tates the understanding of cause and effect within systems.

• Piece-wise linear: Many non-linear properties of physical systems are given as characteristic ta-

bles.

• Programming features: To support well-known design patterns, the use of functions and self-

defined data types should be possible.

• Schematic view: Graphical representations exist in almost every domain. They are useful for

documentation and general model understanding. VHDL-AMS however, does not support such a

graphical representation in a native way.

The MSR study group compared VHDL-AMS and other candidate languages for modeling and simu-

lation with respect to the given set of features above. VHDL-AMS supports block oriented and component

modeling, has support for discontinuities and already supports event-driven or discrete time modeling.

The study group also emphasized the efficiency of VHDL-AMS and noted that it is easy to learn because

of its user driven approach.

The only requirement VHDL-AMS completely misses, is a graphical representation or schematic

view. However, most development environments used today offer at least the capability of block-wise

graphical design. VHDL-AMS does not support the definition of over-determined systems, since those

might be ambiguous.

All in all, VHDL-AMS supports almost all of the given requirements. Problems may arise when

working with over-determined systems of differential algebraic equations, for example when dealing

with multi-body-systems. Additionally, an example model is given, comprising a simple, discrete con-

troller. This controller interacts with an electric driver using a signal-flow mechanism. The electric

driver is connected with a plant, consisting of a motor, transmission and load. The author shows that

modeling and simulation of the given system is possible using VHDL-AMS, despite the implicitly present

discontinuities.

2.1.2 Design Space Exploration

VHDL-AMS offers a wide range of modeling possibilities. Despite the fact, that a model is syntactical

correct, there may still arise some problems: The resulting system of differential equations may have

zero or infinite solutions. Todays simulators and compilers give hints to the modeling engineer, pointing

at critical code sections. Early products, after the introduction of VHDL-AMS as an international standard

in 1999, had a not so sophisticated feature set, making it hard for the developer to find the cause for these

problems.

As a reaction to this difficulties, [Haa03] proposed a number of possible problems and derived a set

of rules to overcome those issues. Three different kinds of problems were identified:

• Insufficient considerations of solutions properties.

• Insufficient considerations of VHDL-AMS standards.

• Inadequate considerations of simulator specifics.

Based on mathematical system descriptions, the author shows the solvability of differential algebraic

equations using simple matrix operations. First of all, initial values are analyzed. Each simulator needs

to calculate initial values before running the entire simulation in order to get correct results. After that,

the simulator needs to solve the resulting nonlinear equations to get values for each analog point in

simulation time. Again, matrix operations (i.e. the Jacobi-matrix) are used to verify the existence and

uniqueness of solutions.
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Following, a short overview of the derived set of rules. Common rules affect the uniqueness of node-

and branch-voltages and -currents, as well as free quantities.

• There needs to be a path from each node to the corresponding reference node.

• Using ideal voltage sources, the branch voltage is independent from branch currents.

• Avoid meshes of ideal voltage sources and sections of ideal current sources.

• Do not re-express Kirchhoff’s law in simultaneous statements.

Most important for the initialization phase is the consistency of all given information. Further rules

are affecting the used VHDL-AMS standard. For example, the initialization of signals is critical. If signals

aren’t initialized properly in the declaration section, they will earn a default initialization, depending on

their type. Analog quantities are initialized using Null. Further rules are:

• Proper initialization of real valued signals, which are read in simultaneous statements, is necessary.

• Simultaneous statements need to be solvable even for analog input signals, which are no solutions

to the given simulation task.

• Note that signals are only updated during events.

Keeping these basic rules in mind helps to avoid the most common problems during modeling and

simulation using VHDL-AMS. Of course, that publication does not refer to any simulator specific details.

The creation of a mixed-signal design model is shown in [GAEC06]. The authors emphasize the

importance of multi-domain modeling, requiring new challenges. Additionally, in contrast to other pub-

lications mentioned before, the transformation of HDL models into VHDL-AMS is investigated. The

abstraction level of a model depends on the goals to reach. Specification validation may be necessary at

the early beginning of new projects. At this stage, a high level model could suffice in the system design

process. The authors show a clear procedure of methodology, valid for analog and mixed signal models,

from specifications over model creation to final validation through simulation.

The market for VHDL-AMS simulation tools has evolved: Language standard support, library man-

agement, sufficient accuracy, and high speed simulation are common features nowadays. One important

point is intellectual property (IP) management, which is used to enforce the reuse of standard design

blocks. Thus, the need to redesign an entire block is redundant. This saves time and money, additional

measures can be taken to protect the block from unlicensed modifications. In order to switch to VHDL-

AMS technology, the authors show a proper way of automating the translation of HDL to VHDL-AMS

language. First of all, parameters and functionalities have to be extracted from specifications to dis-

tinguish three different strategies: Pure analog, pure digital and mixed model types written in MAST

language receive different treatments. Synopsis Paragon takes care of analog and mixed signal model

types. Analog model code is handled automatically, whereas mixed signal code needs manual translation.

Pure digital model parts are subject to be ported manually as well 2.

After VHDL-AMS model creation, a proper test bench is needed for model validation. A head to head

comparison between MAST and VHDL-AMS simulator outputs showed good correlations, however, suf-

ficient model documentation is needed in order to identify important parts and transform them correctly.

Finally, that publication demonstrates its approach with the modeling of a high frequency amplifier de-

vice, comprising multiple simulation domains.

2The current version of Saber/MAST already supports analog, digital and mixed domains
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2.1.3 Automotive Applications

An early work in the era of bus system simulations was written by Hale [Hal94]. When that publication

was released back in 1994, the author was "eagerly awaiting" analog extensions to VHDL. Nevertheless,

the entire document describes the modeling of an automotive data bus system using VHDL language.

Interestingly, the author has foreseen the arising complexities in the area of automotive communication

systems. The basic advantages of bus systems are discussed with respect to several aspects. Many

features mentioned in this context are quite common nowadays. Sophisticated diagnostics for example,

a typical property of modern, highly networked automobiles, was considered to be wishful thinking.

The concept of automotive wiring harness is explained, together with the occurring difficulties due

to multiple bus access. A priority managed bus access scheme is described to ensure reliability. It is

recognized that more advanced mechanisms may be necessary to deal with the upcoming complexity of

network design. At that time, VHDL was chosen as modeling language, mainly because of its discrete

and non-proprietary nature. The modularity of VHDL allows a flexible and re-usable design. But also

the sole existence of an analog extensions working group tightened the choice of VHDL.

An ECU model was developed for network modeling, featuring a protocol model, buffering and an

interface to sensors and actuators. Sensors provide data for the bus, whereas actuators are recipients. A

data message itself does not contain a time stamp, but time stamps are attached to messages in order to

trace their timing. The system modeling is based on the widely known OSI model. Each layer involved

is represented using an appropriate VHDL entity. During the process of simulation preparation a network

topology needs to be set up. The modular aspects of VHDL support this step.

The primary purpose of that research project was to discover message latencies in dependence from

bus load. A special logging entity was developed to maintain an ASCII log file. Additionally, a bus-

monitor entity was used to watch the bus. The resulting text files are subject to evaluation, generating

graphical plots was and is still very popular. VHDL was considered to be an ideal language for modeling

data bus networks. From today’s point of view, this might appear outdated. Due to the large number of

simulation tools available today, VHDL faces the competition when it comes to system level modeling.

At hardware level, VHDL is still very popular.

An interesting work, comprising the numerous domains VHDL-AMS is aware of, demonstrates the

design of a virtual prototype for an automotive throttle [PFSLP07]. It shows the interaction of mechan-

ical, electronic and thermal processes. The resulting model was investigated through simulation and

verified by comparison of measurements.

Due to short development cycles in the automotive business, the assessment of virtual prototypes has

become important. Real prototypes are not always available instantly because of cost or time constraints.

Models can be delivered much easier, giving a quick overview of a systems behavior. Much more, the

use of models within simulation allows a deep insight to values, which may be hard or impossible to

observe without any falsification of other values. Additionally, virtual prototypes allow the evaluation of

worst-case scenarios, which may put real prototypes at high risk.

That publications shows the modeling of a complete throttle valve, which is installed in every com-

bustion engine powered car today. A throttle valve consists of a power bridge, an electric motor, a

gearbox, and a mechanical load. To meet the requirements for multi-domain modeling and simulation,

VHDL-AMS is used to describe all necessary parts. Thorough simulation and comparison of output val-

ues with real measurements ensure proper model validation. One special aspect regarding this work is

the consideration of component-related properties, like deviations caused by production or wearout. The

given power bridge for example, consists of 18 relevant parameters, which may have an immediate effect

on the output. With respect to those 18 parameters and their minimum and maximum boundaries, 218

simulations (260 000 runs) would be necessary to cover every limit case. However, limit case does not

necessarily mean worst case, and such worst-case situations are not covered within this work. Multi-

dimensional parameters are not yet taken into account here as well. The modeling of wearout poses an

additional problem.
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The whole throttle valve model consists of one electric and five mechanical components, modeled

entirely in VHDL-AMS. The simulation results show good correlation with measured values. However,

small deviations can be explained due to varying motor brush and winding resistances, which lead to

oscillations of the measured motor current. The simulated current consumption does not show these

oscillations, because this kind of effect was not taken into account inside the motors model. Related

to limit value considerations, some additional tests were performed, demonstrating the dependence of

battery voltage, temperature, and torque constant on throttle displacement.

Another work in the area of automotive modeling shows the fault simulation of a CD player [GRR08].

Just like the previous publication the authors are using VHDL-AMS to describe the electrical and mechan-

ical structures of the CD player. To achieve a sufficient source of faults, the road profile and audio input

are modeled in VHDL-AMS as well. The resulting model is used for fault analysis and failure cause

inspection. The final system model is able to predict reading errors due to road profile variations. The

proposed methodology to minimize fault, reliability, and performance problems is applied throughout

the whole model development process.

The given model uses the ability of VHDL-AMS to describe arbitrary blocks on different levels of ab-

straction. This way, critical components may include more detailed descriptions, whereas less interesting

blocks may contain only basic approximations of behavior. This saves valuable time during simulation

without compromising accuracy. Classical shock tests were executed, to determine the impact on output

audio quality. The following components are modeled with VHDL-AMS:

• CD player electric and mechanical structures.

• CD player connections to the vehicles dashboard, body and suspension system.

• Irregular roadway profile.

Additionally, a real audio waveform is included in the simulation setup, to stimulate the resulting

system with binary information.

Semiconductor manufacturer Atmel has published a document about simulation methodology for

integrated mixed-signal circuits in the area of automotive electronics [AW03]. In that work, VHDL-AMS

was considered in their development process for the first time. Goal of their work was the efficient

modeling and examination of integrated circuits, with respect to simulation. A bottom-up design flow

was used to accommodate boundary conditions.

Atmel is developing automotive integrated circuits in CMOS (or similar) technology. Their integrated

circuits consist of sensor- and actuator interfaces, driver stages, microcontrollers, analog-to-digital and

digital-to-analog converters, digital and analog subsystems, and a number of wireless components. Fol-

lowing a bottom up approach, a low level simulation is performed with focus on single components.

Once these simulation results are satisfying, the development process advances to system-level simu-

lations. Circuits containing a large portion of digital circuitry are primary candidates for mixed-signal

simulation. Only small digital parts may lead to a performance decrease because of the computation-

ally expensive analog-to-digital and digital-to-analog conversions. Additionally, behavioral modeling

can increase simulation speeds dramatically. That publication clearly points out the differences between

several layers of modeling.

According to Atmel, mixed-signal modeling is characterized by the quality of analog-to-digital and

digital-to-analog conversion. Atmel is using input capacitances and threshold voltages for analog-to-

digital conversion. The partitioning of analog and digital submodels is important: Atmel recommends

analog modeling along the critical path, when increased accuracy is an issue.

That publication by Atmel also shows three examples of integrated circuits, modeled using mixed-

signal techniques. Using these hands-on case studies, the basic ideas of that work are emphasized.

Simulation speeds are dependent on the level of modeling, and behavioral modeling can reduce the time
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necessary for simulation. Intelligent partitioning of submodels may also help to improve simulation

performance. Furthermore, the authors take the time necessary for model creation into account and

conclude that behavioral modeling definitely can pay.

2.1.4 Modeling of Non-Automotive Components

The work of [SHM01] describes the development of an efficient VHDL-AMS cable model. Based on

the telegrapher’s equation, that work provides a fast and stable simulation model, used to describe wave

propagation in electrical and fluidic systems. The authors demonstrate basic equations of the lossless

transmission line, by showing a simple voltage/current source system. Time is delayed by parameter τ ,

so this basic model takes care of a lines delay, capacitance and inductance. The resulting differential

equation has no solution and represents only a small section of the overall line. One possible solution is

the segmentation of the entire line, however, this approach leads to a huge number of differential equa-

tions, which might be computationally intense to solve. Another solution referenced in that publication

is based on theories by Bergeron, which are also described in [Ami00]. It represents the transmission line

just through a single line element. Two quite complex equations are described, taking seven parameters.

These equations and parameters were subject to modeling in VHDL-AMS.

First, a short part of the implementation of a lossless transmission line is given. This early model

takes the line’s characteristic impedance, length and delay into account. This implementation is extended

to a lossy transmission line. The simulation step size is adjustable through a single parameter setting.

However, this is actually used to calculate the required simulation step size. The first version of the

lossy transmission line model includes a so called ring queue, to access calculated past values. Due

to performance reasons, this ring queue was replaced by a static, constant delay, to gain advantage of

using VHDL-AMS’s built-in delayed attribute. This is achieved through mathematical optimization,

eliminating a computationally intense sum expression.

The authors also introduce a structural model of the lumped element transmission line, made up of

discrete components. Presumable, this type of model is used for comparison and efficiency calculations.

Finally, a direct comparison between this newly created and optimized model against the widely known

lumped element transmission line model and the PSPICE transmission line model reveals advantages

for the new modeling solution. The authors claim that the precision of the model is sufficient for most

popular applications, however, there are some limitations mentioned. Those are affecting the line’s

series-resistance, parallel-admittance, length and characteristic impedance. Since the evolved model is

going to be used in automotive network models with comparatively short cable lengths, this should not

be a problem at all.

There are several approaches on how to represent a cable within a simulation environment. No matter

which modeling language is used, the fundamentals are roughly the same. As described in [Joh02] and

[JG03], the well known "Telegrapher’s equations" are used in this work to reproduce a cable’s behavior

within the simulation. Originally derived from a coaxial cable, "Telegrapher’s equations" are made up of

small segments or blocks. Each segment represents a discrete equivalent circuit model for a small part

of the line. Typically, such a segment consists of four discrete elements:

• Resistor R in series (H/m)

• Inductance L in series (Ω/m)

• Conductance G in parallel (S/m)

• Capacitor C in parallel (F/m)

Most important fact to note about these values is that they are measured per unit of length. Depending

on the required length, a number of line segments are arranged in series. Figure 2.1 shows such a
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Figure 2.1: Telegrapher’s equations discrete equivalent circuit model (RLGC model) [JG03].

basic transmission line model. Some publications refer to a "lumped line" when talking about RLGC

transmission line models.

This RLGC cable model already implies the effect of losses through the modeling of resistance

and conductance (which can be omitted to get a lossless model). Since one segment generates a set

of equations to be solved by the simulator, many segments are only bearable using optimizations, like

SPICE implements with its shifting operations [JG03, p. 682]. Straight VHDL-AMS implementations

of line segments typically lead to extended simulation times. Together with the previously introduced

behavioral model, both modeling techniques are investigated within the scope of this work, to find an

ideal model to match the cables used in the laboratory’s setup.

2.2 Model Verification & Validation

These two terms are fairly common in the area of computer science nowadays. Originating from other

domains like scientific theory or statistics, verification and validation has made it into software engineer-

ing and informatics. Since the meaning of these terms is interpreted slightly different depending on the

context used, this section defines a terminology for this document. Two documents have proven to be

very helpful, the following definitions valid for this document are derived from [Mac05] and [Sar98].

Basically, the purpose of all models used in this work is to reproduce their dedicated real-world

device’s behavior. The better a model matches its real-world hardware counterpart, the more precise

the simulation output will be. This strengthens the engineer’s confidence and increases the model’s

credibility. This practice is used during various processes today, not just the solving of problems, but

also decision making.

2.2.1 Model Verification

Model verification ensures that the implementation of the conceptual model is correct. This correctness

includes a number of requirements, which are explained as follows.

The model is programmed correctly: The syntax of the used programming or modeling language

does not contain any errors. This requirement is mostly supported by the use of programming paradigms,

like structured programming, object oriented design or program modularity. According to [Sar98], higher

order languages tend to have more errors than low-level or simulation languages. Due to the narrow

design space, programming time is reduced. On the other hand, flexibility is reduced as well.

Algorithms have been implemented properly: This property is more difficult to achieve. Among

others, mathematical or formal methods may be used to show proof. Mind that testing only does not
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demonstrate correctness, because a test case may be successful, although a given algorithm was not

implemented properly.

The model does not contain errors, oversights or bugs: This aspect is treated in modern software

quality management. An algorithm may be implemented correctly from a formal point of view, but may

for example contain typing errors.

Verification ensures that the model’s specification is complete and no implementation mistakes were

made. Testing is a common technique to verify a model. The process of model verification advances, the

more tests are performed and errors are identified. Subsequently, a model becomes more trustworthy with

number of passed tests. According to this statement, full verification is almost impossible to achieve:

With the number of passed test cases, statistical certainty increases. Strictly spoken, the end of the

verification process is not a fully verified model, but rather a model that has passed all verification tests.

The field of verification and testing has become fairly popular over the last few years and gained

huge interest in many software-related branches. This includes a lot of various research topics, like

• requirements and system engineering,

• test case generation,

• automated testing, or

• testing methods.

However, verification does not answer all arising questions concerning a given model’s behavior. It

does not ensure, that a given model

• solves an important problem,

• meets a specified set of model requirements, or

• correctly reproduces the workings of a real world process.

Some of these questions are answered during the validation process, which is described in the up-

coming section 2.2.2.

2.2.2 Model Validation

The process of model validation assures, that a given model represents and correctly reproduces the

behaviors of the corresponding real-world system. Additionally, validation ensures that the model meets

its intended requirements in terms of the methods employed and the results obtained. Quoting [Mac05],

"the ultimate goal of model validation is to make the model useful in the sense that the model addresses

the right problem, provides accurate information about the system being modeled, and to make the model

actually used". Therefore, validation is closely related to the purpose of a given model, and its intended

use. The result of the validation process delivers a model that has passed all validation tests. Such a

model allows a better understanding of its capabilities, limitations and appropriateness for addressing a

range of important questions.

Similar to social modeling, where human decision making leads to fuzziness in the validation pro-

cess, non-modeled effects, unknown interactions or simply complexity lead to the problem of credibility

establishment. Based on a preferable large number of significant experiments, a probably incomplete

verification and validation process, and the experiences gained thereby, an engineer obtains confidence

in his model. The relationship of cost (in time, money, resources, etc.) and value as a function of model

confidence is illustrated in figure 2.2. In common, high model confidence is considered to be very costly.

However, after a sufficiently large number of investments (time, efforts), the model’s costs amortize and

start to deliver even greater value to the engineer.
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Figure 2.2: Model confidence [Sar98].

2.2.3 Model Validation Techniques

In general, the techniques listed by [Sar98] are summarized here. These can be considered as guidelines,

because a combination of techniques is used in most cases. Although many methods have a slightly

different background, they can easily be adapted for specific needs. For this work, the most relevant ones

are picked and explained shortly.

Comparison to Other Models: The results of a given simulation model are compared to the results of

another model, which is known to be valid. This is especially useful if the candidate model was built on

different assumptions than the reference model.

Event Validity: The number of occurrences of a specific event within a certain time interval is counted

and compared to the corresponding number of events of the real system.

Extreme Condition Tests: The models output should be plausible for any extreme or unlikely system

states or inputs.

Face Validity: This method is used by simply asking people knowledgeable about the system, whether

the model’s behavior and output are reasonable.

Fixed Values: Setting inputs or state variables to fixed values, allows the checking of model results

against expected calculated or quickly estimated values.

Operational Graphics: Values of performance measures are shown graphically over the advance of

time. This helps to better understand the dynamic behavior of a given model.

Predictive Validation: The model is used to predict the system behavior, after that, comparisons are

made between the system’s behavior and the model’s forecast to determine if they are the same.

2.3 Selected Topics on FlexRayTM

This section gives basic information about the FlexRayTM automotive communication system. In con-

nection with this thesis, specification version 2.1, revision "B" applies exclusively. The modeling of

FlexRayTM related components is discussed in section 2.3.2. Some publications regarding verification

and validation are reviewed in section 2.3.3. Most important aspects of test and diagnosis are discussed in

section 2.3.4. A highly relevant publication about FlexRayTM signal integrity analysis is also discussed

in section 2.3.5.
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2.3.1 Basic Introduction to FlexRayTM

This section is a brief introduction to the FlexRayTM automotive communication system. Its most

important aspects are summarized here. All information found here is mainly based on the book by

Rausch [Rau08] and the FlexRayTM electrical physical layer specification [Fle06a].

2.3.1.1 Interesting Facts

FlexRayTM is powered by the equally named consortium, founded in the year 2000. At the time of

foundation, BMW, DaimlerChrysler, Philips/NXP and Motorola/Freescale were participating in the con-

sortium’s Core Members group. The consortium irregularly publishes specifications and specification-

related documents, available via the web3.

The FlexRayTM consortium named a few official goals to achieve during the contract period. An

economic goal is the establishment of a new license-free industry standard. Standard components are

manufactured in large quantities at low cost, drawing attention to services, tools and efficient engineer-

ing. Some of the technical requirements are higher bandwidth, increased redundancy, real time capa-

bilities, topology independence, and the management of sporadic versus continuous communication.

FlexRayTM’s areas of application currently include backbone connections, distributed real-time appli-

cations and control systems. Especially, the replacement of the well known CAN bus communication

system is an issue. Some automotive original equipment manufacturer’s (OEM) are currently deploying

FlexRayTM in the chassis area of serially produced vehicles.

FlexRayTM is based on layer 1 and 2 of the OSI layer model. Therefore a physical layer specification

and a protocol specification exists. Higher layers are targeted by software: AUTOSAR for example, cur-

rently seems to establish a new industry standard. FlexRayTM’s main hardware components are electrical

bus drivers, active stars and bus lines.

2.3.1.2 Basic Network Anatomy

A FlexRayTM network consists of several network participants (nodes) and communication channels.

One single node contains a microcontroller (host), a communication controller implementing the logical

protocol itself, and one or two bus drivers, accessing the communication channel. Image 2.3 shows such

an architecture.

Bus driver Bus driver

FlexRay controller

Host controller

Communication channel

Figure 2.3: Typical FlexRayTM node architecture [Rau08].

3See http://www.flexray.com for details.

http://www.flexray.com
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Basic access of the host to the communication channel is shown in image 2.4. The interface between

host and communication controller is application specific, whereas the interface between the communi-

cation controller and bus driver is exactly specified. As can be seen in the graphics, RxD, TxD and TxEN

signals are used to send and receive data streams to and from the bus driver. The latter one has access to

the communication channel, which is realized using BP and BM electrical lines. FlexRayTM is not limited

to electrical channels. Optical channels are possible as well, however, there is no specification for optical

channels available yet.

Bus 

driver

BP

BM

FlexRay 

controller
Host

RxD

TxD

TxEN

Figure 2.4: Bus channel access [Rau08].

The physical arrangement of nodes is called topology. These nodes are interconnected using a shared

communication channel building a network. FlexRayTM supports up to two bus channels per node, which

can be used to increase redundancy and/or bandwidth. A cluster is considered to be a subnetwork, which

is able to operate independently. FlexRayTM supports two basic topologies, which can be used to build

clusters: Bus- and star-topologies. By using two channels, each has its own, fully independent topology.

Star topologies can be made up of either active or passive stars. An active star works like a hub, it

amplifies received signals and distributes them on the network. A passive star has no active components

and is built by simply connecting a number of electrical lines at a single point.

There are various rules to obey in order to build valid FlexRayTM topologies. See [Rau08], [Fle06a]

and [Fle06b] for formal descriptions and examples of valid and invalid topologies.

2.3.1.3 FlexRayTM Communication Protocol

FlexRayTM belongs to the family of TDMA (time division multiple access) protocols. All nodes in such

a network are equal in the sense that there is no central bus arbiter. Each node has one or more time

slots available for communication over the channel. The static distribution of time slots has to take

place in advance prior to using the network. This is called scheduling, and requires a common time

base between all nodes. The clock synchronization process necessary to achieve synchronized nodes is

described in [Rau08] and is not discussed anymore in this thesis.

Messages are sent in frames over the communication channel. A frame contains the data to be sent

plus additional data regarding the communication process itself. One frame consists of:

• 5 bytes of header data

• 0-254 bytes of payload data

• 3 bytes of checksum data (cyclic redundancy check, CRC)

The frame header consists of:

• 5 control bits

• 11 bits frame identifier (frame-ID)

• up to 16 bits of payload-length, indicating the number of 16 bit words of payload
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• 4 bytes of header CRC

• 1 byte of cycle counter

Non return to zero (NRZ) encoding is used for FlexRayTM. Each data transmission starts with a

transmission start sequence (TSS), which has a length between 3 and 15 bits, and is used to activate

active stars and receivers. The activation of these components takes some time, therefore an active

star does not transmit the entire TSS, but a truncated one. After the TSS, a high-bit called frame start

sequence (FSS) follows. Another subsequent high- and low-bit indicates the so-called byte start sequence

(BSS), which precedes every transmitted byte of the payload data. Finally, after the transmission of the

last byte, the frame end sequence (FES) follows, composed of one low- and one high-bit. Image 2.5

illustrates the previous explanations.

Figure 2.5: Typical FlexRayTM frame structure [Rau08, p. 42].

2.3.2 Modeling of FlexRayTM related Components and Systems

A fairly relevant publication utilizing VHDL-AMS to create a behavioral model of a FlexRayTM compliant

transceiver is given with [CVRS09]. The model designers recognized the need for a behavioral model

based design, in order to verify such complex and safety critical systems thoroughly. Errors are found

more quickly, because of the increased controllability and observability. Behavioral modeling avoids the

need for complex hardware development, circumvents low-level design problems, and therefore reduces

cost and time to market. From that work, a mixed-signal FlexRayTM transceiver emerged.

A top-down approach was used to break the overall system description down to primitive elements.

These single elements can be used to compose different subsystems. Additionally, focus was on con-

vergence problems and discontinuities. For modeling of input and output interfaces, analog domain

descriptions were used in order to comply with other transistor level circuit simulators. The transceiver’s

core module is modeled digital style. The resulting transceiver model was subject to verification. In

accordance with the remarks in section 2.2, this means the model was checked for correct implemen-

tation and compliance with specifications. Therefore, the transceiver model was connected to a 45Ω
resistor and 100pF capacitor in parallel. This method is also suggested by [Fle06a, p. 35], to investigate

the transceiver’s output waveform. To evaluate the resulting voltage levels and slew rates, a simple eye

diagram is considered.

One of the main goals was to verify the transceiver’s functionality in connection with different bus

states. By stimulating the analog input ports, the transceiver generated all requested bus states success-

fully. After that, a power supply failure was subject to investigation. The transceiver model passed this

test as well, showing correct behavior at any time. Finally, a short circuit bus line was introduced, mak-

ing the differential bus signal stuck at Vcc or GND. During this test, the transceiver showed expected

behavior.

Finally, the transceiver model’s performance is evaluated by comparing it to a Spectre model. It

shows that the VHDL-AMS model works quite fast while delivering desired results during the described
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simulations. However, no insight is given to implementation details throughout that work. The results of

that work are fairly generic and focused on performance issues. The validation against a real hardware

device is missing.

This thesis is clearly aimed at behavioral and structural modeling, including hardware related aspects.

The work by Wang et al. [WSCW10] shows the development of a transceiver frontend for ECUs in

FlexRayTM based automotive communication systems. It is included at this point for a number of reasons.

First of all, it is fairly difficult to find out details of hardware bus driver implementations. Manufacturers

are very sparing with information, concrete implementation details are kept secret because of various

optimizations. Second, that document shows basic concepts of a FlexRayTM bus driver design. This

thesis does not deal with concrete hardware implementations, because the proposed concept should apply

for a wide number of integrated circuits by various manufacturers.

In the first part of that work, basic FlexRayTM properties are explained, with respect to LVDS tech-

nology in common. The transmitter’s MOS transistors dimensions are calculated on the basis of the

specification’s load given with 40Ω||100pF . The transmitter is made up of two AND and two OR gates,

which take care of the enable and data signaling. Those signals are usually utilized by a communication

controller, implementing the FlexRayTM communication protocol. They are controlling two p-channel

and two n-channel metal-oxide-semiconductor (MOS) transistors, building a voltage bridge. Two 10kΩ
resistors connected to the reference voltage are used to achieve a differential voltage between BP and

BM ports of the circuitry. The receiver is made up of three comparators, implementing a threshold based

digital signal recovery. Implementation details about that comparators and the used voltage regulator are

given. Two 10kΩ resistors ensure high ohmic input ports.

Besides these important components, there are details given: Schematics and dimensioning of clock

generator, the contained ring-oscillator and delay cell. Additionally, focus is put on temperature com-

pensation circuits. Finally, the resulting chip was tested using an oscilloscope. The authors even applied

thermo chamber tests, ensuring functionality between −40◦C and approximately +125◦C. It has shown

that the resulting 0.18µm manufactured chip operates stable under all tested conditions and delivers

FlexRayTM compliant signaling, when loaded as described by the specification. However, there are no

results available, demonstrating a larger working FlexRayTM network using the developed bus driver.

The deployment of a practical FlexRayTM based application is shown by [XKC+08]. The engineers

used SDL (Specification and Description Language) in the development process. Verilog hardware de-

scription language was used to process the emerged SDL source model. Finally, a demonstrator on the

basis of an FPGA is shown, the application involved is some sort of distance warning system.

A dual FlexRayTM bus topology was considered. The architecture of one single FlexRayTM node

consists of host, communication controller, bus guardian, and up to two bus drivers. Software is used to

control the communication process of one single node.

Their approach by using SDL is interesting. Protocol design using this formal language ensures

the compatibility between the requirements of the initial design and final implementation. However,

SDL was standardized by ITU (International Telecommunication Union) in order to model, simulate

and verify communication protocols. Within that work, FlexRayTM communication controller and bus

guardian models are presented, described in SDL. For this purpose, a total number of 32 submodels is

required. The communication controller and bus guardian are realized in a finite state machine using

Verilog. After successful synthesis, a working prototype was available for test.

The designed system is able to operate at speeds up to 76 MHz, for verification it was stimulated

using traffic generated by an automotive distance warning system. A host PC was used to verify the

correctness of all submitted frames.
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2.3.3 Verification and Validation of Automotive Bus Systems

The focus of [GB09] is on verification methodology. That paper shows how to design and verify the

physical layer implementation of FlexRayTM systems through an automated and robust simulation based

engineering method. Its authors have recognized that signal integrity is an important point, not only

during the development stage, but also during the entire product life cycle. Manufacturing tolerances

and environmental impacts are disturbing the network’s reliability. Even if all guidelines given through

FlexRayTM’s specifications and suggestions are met, there is no guarantee that the resulting network

is going to behave as expected. Since building prototypes is not always possible, simulation is the

only choice to evaluate such high-dynamic systems. As evaluation criteria, the following points were

identified:

• Asymmetric Delay

• Propagation Delay

• Truncation of the Transmission Start Sequence

• Bit deformation due to ringing and reflections

• Message frame stretching due to ringing after transition from active to idle

The publication proposes a way to evaluate the given delays and bit deformations, as well as an au-

tomated process for such evaluations. All kind of analyses are heavily dependent on the used network

topology. FlexRayTM is a digital system, however, all data transmission is done in an analog way. De-

formed analog signals are hiding behind the bus driver’s all-digital interfaces. Circuit ringing, reflections,

and other parasitic effects are common causes. FlexRayTM provides robust mechanisms like majority vot-

ing to overcome these issues, nonetheless the network developer has to ensure correct operation, so that

communication among all ECUs is not inhibited.

The behavior of network components is never ideal, the authors mention falling and rising edges with

different slew rates, different transmission delays through the bus driver and varying threshold levels.

When all these effects collude, an asymmetric delay may arise, which is critical for other functionality,

like clock synchronization.

In general, [GB09] makes use of the SABER mixed-signal simulator, which supports MAST and

VHDL-AMS, among a few other modeling languages. The models considered for simulation were a bus

driver, a transmission line, a split termination, and various ESD and EMC related components.

The simulated networks included a passive star topology, to show the previously described effects.

Additionally, the second part deals with analog-to-digital conversion. A software interface for automated

report creation is shown, which interconnects simulation output with spreadsheet software.

Interestingly, a low versus high temperature analysis was performed, considering worst-case limit

values as model parameters. Between both limits, a differential voltage drift of around 0.4V was mea-

sured, which poses a significant impact on signal integrity. Undesired switching of RxD output due to

sampling errors caused by varying thresholds is shown as well to underline the complexity of all param-

eters used.

The given work demonstrates a modeling and simulation design flow, in order to build and analyze

FlexRayTM networks. The differences to this work are diverse, although the goals are similar. The

authors introduce tools and methods for simulating FlexRayTM conform networks, whereas this work

has its place in the huge TEODACS infrastructure and integrated environment, allowing multi-level design

and test operations.

The development and verification of in-vehicle networks is described in [GS05]. The authors empha-

size the multiple design layers of an automotive network. Early verification of such multi-layer systems

has shown to be critical. First, rather generic models are used for simulation, which might be replaced
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by more accurate models in the development process later on. Throughout that work, a CAN network is

build using the SABER simulation environment.

The authors subsequently describe the anatomy of a CAN network including corresponding nodes.

From a high level view, CAN and FlexRayTM networks are quite similar: Both exist on layer one and two

of the OSI model (compare [Rau08, p. 11]) and both utilize the low-voltage differential signaling tech-

nique. This leads to a fairly similar problem space when developing and verifying network topologies.

The verification process proposed in that work is based on worst case parameters and tolerances.

Since such boundary values are usually not available in real hardware models, verification only by mea-

surements is considered to be insufficient. Furthermore, changing existing prototypes would dramatically

raise costs and time. Simulation is assumed to be the only choice for this verification technique. The

SABER simulation environment was used for analog and mixed-signal simulations. The models used for

simulation include numerous CAN nodes, EMC protection circuitry, a transceiver and a CAN controller

model. All CAN nodes are interconnected using a twisted pair transmission line model.

This transmission line model was recognized to be critical, since effects like reflection and crosstalk

are essential for signal integrity. The proposed model consists of two conductors, with capacitances

between them and to ground, respectively. The inductance along both conductors is modeled as well.

The wire model itself was validated against measurements and showed good overall behavior. In order

to filter common mode voltages on the bus, a common mode choke is proposed, which is build by

two coupled inductances. This model is subject to parameterization, in order to characterize a specific

common mode choke.

The used transceiver model was obtained directly from the semiconductor manufacturer. A CAN

transceiver model by Infineon is used to generate bus signals. A simplified CAN controller is used to

control the transceiver. Since CAN is an event-triggered communication protocol, special attention is

payed to the timing behavior and state machine of the controller. Finally, the controller, transceiver, and

bus line models are integrated to a test bench. By stimulating the network with selected bit streams, the

resulting waveforms on the bus are visualized and measured. Besides basic signal properties like rise and

fall times, the correct sampling of bits is thoroughly investigated. The authors are concluding that their

methodologies are successful in the areas of early problem detection, topology changes, and prototype

reduction. Furthermore, their approach could be used for other in-vehicle network technologies as well.

Opposed to CAN, the following publication describes the development of physical layer and signal

integrity analysis of FlexRayTM design systems [GB07]. The goals described are quite similar to those

named in [GS05], with the exception of a different technology. FlexRayTM was chosen in order to fulfill

upcoming requirements to in-vehicle communication systems. The document gives basic information

about FlexRayTM and highlights some economic aspects, which are not commented at this point.

We will turn over to their aspects of simulation instead. According to them, the following components

need to be considered when developing physical layer networks:

• Signal filters

• Active stars

• Bus drivers

• Transmission lines

• ESD protection elements

• Topology types

• Termination
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These elements offer great flexibility in network design, however, it is very difficult to draw a sub-

stantial conclusion about the network’s resulting signal integrity. Because of that, simulation is once

more considered to be the only solution of dealing with complexity. The following aspects of signal

integrity are critical:

• Signal propagation delay

• Asymmetric delay

• Bit deformation

• Truncation of TSS

• Frame stretching

Based on the identification of these critical points, a robust development flow for physical layer im-

plementations is derived. The developer provides information about topology and components, together

with their associated parameter values. The simulation reveals the feasibility of the proposed system, a

number of iterations may be necessary to re-design or optimize the assumed topology.

For demonstrative purpose, a six node passive star is shown. Each node is made up of the following

components:

• Transceiver (bus driver)

• Split termination

• Common mode stabilization unit

• Common mode choke

• ESD protection

As in other publications (for example, see [GS05]) the bus driver model was delivered by an in-

tegrated circuit manufacturer. In that case, NXP provided a MAST model for the SABER simulation

environment. It is a functional kind of model, to ensure proper simulation speed, at the cost of accuracy.

That transceiver model was validated through measurements against a real system implementation. A

similar publication by Bollati [Bol06] released earlier shows interesting details of a receiver and trans-

mitter model. Those models are based on a physical layer, yet contain some functional elements. Simple

switches are used to generate the differential bus voltage, together with various voltage sources. The

receiver is made up of discrete components, including diodes, resistors and bipolar transistors, realizing

a threshold based analog-to-digital converter. The transmission line is a pure behavioral model, demon-

strating only delay and voltage to current ratio. Eye diagrams are used to judge signal integrity, however,

aspects like asymmetric delay or even In the later work by Bollati and Gerke the transmission line model

was identified as a critical component in the simulation framework. Three basic requirements are made

to the model:

• Wire length

• Frequency dependent losses

• Differential and common mode behavior

SABER provides a transmission line model fulfilling all of these requirements. However, the model

equations are defined in frequency domain, convolution operations are necessary to get back to time

domain. A field solver transforms transmission line parameters to an RLGC matrix, which is integrated
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into the simulation environment. The authors prefer that type of model over a lumped element model.

Namely, they try to avoid unnecessary oscillations and computationally intense model instances.

Obviously, no active star model was available for that work, but passive star networks are investi-

gated. By utilizing a round robin communication scheme, basic signal transmission over cables with

different lengths is realized. The received waveforms on terminated and non-terminated nodes are com-

pared. On non-terminated nodes, oscillations and reflections are observed. Passive ferrite core filters are

used to reduce these effects, which has shown to work out to a certain degree. SABER supports parameter

variations very well, so different sized ferrite cores are evaluated.

To assure proper bit sampling during transmission of data streams, the asymmetric delay needs to

be watched carefully. The first negative edge after the TSS in the binary data stream helps to determine

propagation delay. Asymmetric delay occurs due to limitations of the FlexRayTM decoder module and

bus driver [Fle06a, p. 13], and shortens or prolongs the nominal bit length, with reference to TxD of the

sending node. During simulation of the given passive star network, the asymmetric delay was measured

for each pair of nodes, using DATA_1 and DATA_0 bits, respectively. No significant variances were

detected.

That publication concludes that simulation is the method of choice for FlexRayTM based network

design. Simulation helps to keep costs at a low level, because it becomes possible to predict the behavior

of physical layer implementations.

In [Ger07] Gerke describes the development of a robust physical layer implementation for in-vehicle

networks on the basis of CAN technology. CAN as de-facto industry standard, is pushed to its limits.

The number of nodes per vehicle is increasing, and there is always the need for more bandwidth. The

only way to verify prototype topologies is through model based design flow. Simulation is used to

discover possible issues before they arise in early hardware prototypes. The robustness of the resulting

implementation is in focus of that publication.

Future in-vehicle networks may comprise a number of different network technologies, where FlexRayTM

might be used as a backbone for other networks and protocols. CAN technology however, is reaching

its physical limits, 30 ECUs and cumulated wire length up to 50 meter per network are still possible

nowadays. For CAN, these items are sensitive for signal integrity:

• Topology

• Transmission line (type and length)

• Bus driver

• Interface between transceiver and transmission line

System simulation is recognized as a fundamental requirement in early stages of the network design

process, in order to achieve robust network architectures. For modeling, SABER was used as primary

tool.

The transmission line was identified as one of the most critical parts in the simulation model.

Reflection and crosstalk are mentioned as key features, next to simulation speed. Additionally, the

bus driver must provide good accuracy since it has fundamental impact on signal integrity. It is recom-

mended for network developers, to obtain their simulation models directly from semiconductor manu-

facturers.

An application example is given in order to point out the practical use of the proposed models. A

network consisting of 14 nodes was set up, to analyze signal integrity relevant effects, like ringing,

superposition of reflections, and stray inductances, to name a few. In CAN networks, timing is important

for sampling bit values. Therefore, sample point investigations are possible, even with the simplified

CAN controller model used. A second application scenario is given, demonstrating the simultaneous

access of five nodes to the bus. This case is not relevant for FlexRayTM, because of its time-triggered

access scheme.
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Another publication about validation of network topologies was written by Lawrenz and Bollati

[LB07]. In their work, they recognized the difficulties arising by deploying multiple automotive bus

systems in one single vehicle. Throughout that work, their focus is on network topology as well as

modeling of single components. By modeling all relevant network components, the electrical signal

behavior is investigated.

First of all, the authors introduce a number of bus systems and how they are used in modern vehicle

installations. Each of these bus systems has its own specification and requires a different physical layer

implementation. An excerpt of those bus systems including their field of application is recapitulated in

the following list.

• Infotainment: MostTM, D2B

• Power train: CAN, FlexRayTM

• Safety systems: FlexRayTM

• Body electronics: LIN, CAN

As widely known, a vehicle represents a harsh environment for any electronic system, therefore the

given bus systems are designed to succeed in their area of application. However, each system requires

individual adaptation and careful design. Various effects may endanger those communication systems:

Ground shift, battery drop, electrostatic discharge, or electromagnetic interference (EMC) lead to in-

correctly sampled bits or even disturbed communication links. Furthermore, a typical CAN network

architecture is introduced, from physical layer bus signals, transceiver and microcontroller up to ECU

software. Ringing and line reflection are identified as main problems concerning the physical layer and

signal integrity. Individual bits may be sampled wrongly.

It is recognized, that complexity is a major issue, and that new methods are required to deal with

it. Different levels of abstraction provide deep insight into systems and their submodels. The ultimate

goal is to find new methods, in order to cope with different types of models, whether they are of digital,

analog or mixed-signal style. According to [LB07], C&S group has developed a simulation environment

to analyze signal integrity in several vehicle networks.

Using the example of CAN, a node’s architecture is shown, comprising a transceiver, common mode

choke, coupling circuits, termination and ESD protection circuitry. A transmission line model intercon-

nects all available nodes. Modeling is done in three ways: Schematic modeling enforces a very low

level and component related view, where physical properties are relevant. Next, VHDL-AMS is used for

functional modeling, where component behavior is described in a simplified way. Third, MAST is used

to describe the overall communication system.

The authors explain that simulation is a valuable means to identify the valid area of operation of a

given topology. In such a complex system, many parameters are involved. It is useful to know about the

most critical tolerances, in order to achieve significant results. This publication however, does not tell

anything about specific verification or validation techniques.

2.3.4 Test and Diagnosis

This section describes related work about the test and diagnosis concept within the TEODACS project.

2.3.4.1 Layer Model Concept

A layer model for the systematic test of time triggered automotive communication systems is introduced

in [ASHP04]. This work is targeted at problems arising during the test phase of such systems. A layer

model generally helps to distinguish the different services and mechanisms which are available on the

network. Such a layer model is in close relation to the level of abstraction. Especially communication

systems appear much more transparent, if they are properly organized in levels of abstraction. This eases
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the generation of test cases, and allows unerring diagnosis. Additionally, the propagation of potential

faults can be traced more easily.

On the basis of the FlexRayTM protocol, a layer model is introduced. This model is divided in

four different layers, along a transmit and receive path, taking time synchronization issues into account.

The four layers are based on the well known OSI layer model. On top, the application layer generates

and processes arbitrary application messages. The presentation layer below sends and receives payload

data, which is converted to frames on the data link layer. In FlexRayTM, this layer also deals with time

synchronization issues. At the bottom, the physical layer transforms between simple raw bit streams and

physical streams. Several parameters are affecting each conversion process at every layer. For example,

during the conversion of a physical stream to a raw bit stream threshold values, the used oversampling

rate, glitch filter parameters and decoder parameters are affecting the performance of the conversion

process. The entire layer model is presented in detail in [ASHP04].

Each of the previously explained conversion processes may produce erroneous output, because of

three possible reasons: The input may be faulty, something could be wrong with the configuration pa-

rameters, or the mechanism itself produces erroneous output. The proposed model has the ability to track

down faults and their resulting errors along different propagation paths. Sending an receiving paths in

a model behave differently, since in the sending path, information is appended whereas information is

stripped in the receiving path. Finally, that model is applied to fault diagnosis, where a tester node helps

to identify local and remote node faults.

2.3.4.2 Test and Diagnosis of FlexRayTM Communication Systems

A relevant piece of work evolved from the TEODACS project describes efficient means for test and diag-

nosis of FlexRayTM communication systems [ATK+09]. The strength of TEODACS is the common de-

velopment of a real hardware prototype together with a co-simulation framework. This approach covers

the communication system at multiple layers of abstraction, and therefore defines special requirements

for test and diagnosis. An important key-feature introduced in that work is the creation and evaluation

of so called log files. These log files represent an interface between the simulation setup and hardware

laboratory.

In order to diagnose a FlexRayTM communication system at different layers of abstraction, appro-

priate network access is required. Several scenarios are possible: Cyclic debugging using deterministic

replay, model and system validation using simulation results of both hardware and simulation environ-

ment, automated stimulus and test case generation, or even cross-analysis methods. The latter allow the

replay of hardware-monitored signals in the simulation environment and vice-versa.

The proposed log files allow the efficient data exchange between hardware and simulation environ-

ment. Five different log file formats do exist, in order to describe all five different levels of abstraction:

The analog level provides the highest accuracy with the largest data amount. The sample level is located

above the analog level, providing digitized values. Several samples may represent a single standardized

FlexRayTM bit, so the bit level is above the sample level. A FlexRayTM frame regroups several bits, so the

frame level is next. Finally, the signal level totally abstracts the underlying communication architecture

and is composed of application variables.

Log files may be replayed on a given network using a testernode, available on both platforms. Four

import- and export-modules take care of the conversion between simulation environment and laboratory

setup. The software testernode is written in SYSTEMC and described in section 2.3.4.4. The hardware

testernode available to the authors is based on a FPGA platform. Additionally, to fulfill the requirements

above, a log file generator, supporting all previously listed levels of abstraction, was developed to cre-

ate arbitrary bus traffic scenarios from scratch. This advantage is also underlined in [Arm06], as it is

important for system verification. The performance of error detection and correction mechanisms can

be reviewed by repeated fault-injection. After all, the authors demonstrate an industrial use case, which

validates a recently developed active star integrated circuit by austriamicrosystems AG.
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2.3.4.3 Hardware Testernode Model

To fulfill the validation requirements in the TEODACS project, the concept of a hardware testernode was

invented [AWK+09]. The basic idea is to gain access to the real hardware bus communication system

for a large number of scenarios. To manage the arising complexity, the hardware testernode is build on

the layer concept introduced earlier in section 2.3.4.1. A dedicated PCB provides low level access to

the network and offers different physical test points. FlexRayTM’s TxD and RxD pins are routed straight

through an FPGA platform, which enables traffic monitoring and replay. Additionally, two AS8224

active star devices are implemented, each with four different branches equipped with AS8220/AS8221

bus drivers. The functionality of an active star device is discussed in section 3.1.3.3. Each branch offers

the possibility of external termination, allowing various experiments with different cable termination

solutions.
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Figure 2.6: FlexRayTM Xpert.Lab testernode concept [AWK+09].
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1 ;PACKET_NR | Ch | Time | Length | DATA

2 ; | | [ s ] | [ samples ] | [ hex ]

3 1 | A | 0 . 2210030000 | 360 | FFFFF FFFFF 0FFFF

FFFFF FFFFF FFFFF 03FFF FFFFF FFFFF FFFFF 00FFF FFFFF

FFFFF FFFFF 003FF FFFFF FFFFF FFFFF

4 2 | A | 0 . 2210095000 | 360 | 00000 00000 F0000

00000 00000 00000 FC000 00000 00000 00000 FF000 00000

00000 00000 FFC00 00000 00000 00000

Listing 2.1: Sample level log file containing raw data

The previously mentioned FPGA platform implements a host interface to map the user’s requests to

the different modules. Besides timed replay functionality, the FPGA allows traffic monitoring at bit and

frame level, as well as fault injection. The host interface talks to a connected PC platform, containing an

extensive test library. This library consists of various tools and software programs, which are common to

both FlexRay Xpert.Sim and Xpert.Lab environments. Data exchange between both platforms is possible

thanks to the log file format discussed in section 2.3.4.5. Figure 2.6 illustrates the described architecture.

Note the different signal naming convention, where RXE equals RxEN, and TXE equals TxEN.

2.3.4.4 Software Testernode Model

To provide efficient means for testing in the TEODACS simulation environment as well as in the hardware

setup, a software testernode model was developed by Krug [Kru08]. This testernode is the software

counterpart to the TEODACS hardware testernode, which is described earlier in section 2.3.4.3.

The goal of the work by Krug was to provide methods for network traffic monitoring, traffic pro-

cessing and network stimulation in the FlexRayTM Xpert.Sim environment. To comply to the TEODACS

concept and to get an optimal view on the whole communication system, this implementation supports

the various levels of abstraction introduced in section 2.3.4.1 as well.

The software testernode model is entirely written in SYSTEMC and integrates seamlessly into CISC’s

SyAD R©. Therefore it is perfectly usable in the TEODACS co-simulation environment. Basically, the

testernode model is able to convert so called log files to timed real value output. In SyAD R© it is rep-

resented by a composite model having two real type output ports in order to supply two FlexRayTM

channels. By using a real to analog converter, electrical quantities can be used to stimulate a physical

layer model, like the FlexRayTM bus driver for example. Two important configuration files need to be

specified for the software testernode to work: First, the FlexRayTM network configuration as described

in [Fle06a], and second, the TEODACS log file containing information about the signaling itself.

2.3.4.5 The Log File Format

The log file format can be seen as common language between the FlexRayTM Xpert.Sim and Xpert.Lab

environments. All recorded or generated bus traffic data are saved in log file format. The structure of

this file format is defined in [Arm08]. Depending on the different levels of abstraction, the file format’s

fields differ slightly from level to level. To recapitulate the format on sample level, a small example is

given in listing 2.1.

This rather short file is interpreted as follows: The first two lines are of informative type and com-

mented out by use of a semicolon. From this point on, the file is organized in columns, separated by

vertical bars. The first column denotes the packet number and is represented by an increasing integer

value. The second column includes either "A" or "B", indicating the FlexRayTM channel to use. The

third column contains a real value, specifying the exact moment of simulation time in seconds, the data

packet is started to send. The length of the given data packet is given in column number four, 360 sam-

ples at 12.5 nanoseconds each means that this packet will last for exactly 4.5 microseconds. Finally, the
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data itself is given in column five. It is expressed using hexadecimal values. Every high bit representing

one ("1") results in Data_1 on the FlexRayTM bus, whereas every low bit representing zero ("0") results

in Data_0.

Therefore, the log file presented here contains simple pulses. In data packet one, the first one appears

exactly 10∗4∗12.5 = 500 nanoseconds after timestamp 0.221003, lasting for 50 nanoseconds. There are

another three pulses following with durations of 75, 100 and 125 nanoseconds. Data packet two contains

the same pulses as well, but their polarity is inverted compared to data packet one.

2.3.4.6 Log File Generator

A dedicated log file generator written in Perl language is able to produce arbitrary FlexRayTM compliant

log files according to a specific FlexRayTM configuration [Vir08]. This includes parameters like sam-

ple clock period, bit length, communication cycle length, slot durations, etc. All in all, there are 16

parameters specifying the correct protocol behavior.

The log file generator is invoked via command line, its output is a log file containing the requested

signal, according to the given parameters.

2.3.5 Signal Integrity Analysis in TEODACS

This section mainly describes the work by Clazzer [Cla09], emerged as part of the TEODACS project.

The author developed a software tool for the automatic analog layer signal integrity analysis of the

FlexRayTM communication bus. It helps to analyze a given network topology, with respect to electri-

cal signal characteristics. That tool integrates seamlessly into the TEODACS project environment: It is

capable of processing data files recorded by an oscilloscope, as well as simulation output files. It sep-

arates bus activity from non-activity, it is able to generate sample level log files (as discussed later in

section 3.2.1) and furthermore, it performs a signal integrity analysis based on FlexRayTM characteris-

tics and eye diagrams. All signal parameters were chosen in accordance with the FlexRayTM physical

layer specification [Fle06a]. The following sections provide an overview of the mentioned capabilities.

2.3.5.1 Bus Activity Identification

In order to separate noise from signals, a voltage threshold is necessary, ±30mV was determined as a

default choice for the software application. The program is able to distinguish FlexRayTM compliant

data from erroneous glitches, which are disturbing bus communication. To overcome certain memory

limitations, the sliding window approach is used to process huge amounts of input data. The process

of searching for bus activity is performed using a dedicated function, which basically implements the

flow charts given in [Cla09, p. 30-31]. Finally, a complex splitting function [Cla09, p. 36] manages

the breakdown of the input file into several files containing bus activity elements. The result of the

bus activity identification process is a hierarchy of files and folders, containing the found bus activity

elements and a short report giving details about the overall process.

2.3.5.2 Signal Integrity Analysis

With respect to this work, that function seems to be the most interesting one. It relies on the bus activity

identification step introduced in the previous section. Within this signal integrity analysis step, the bus

voltage waveform is analyzed. A well known and proven method of signal integrity analysis is the

creation of an eye diagram. Basically, an eye diagram graphically superimposes all positive and negative

edges of a digital signal in a single diagram. In general, the larger the diameter of the resulting eye,

the better the signal integrity. FlexRayTM clearly specifies the voltage levels necessary for correct signal

recovery, so it is possible to draw an eye diagram depicting the minimum requirements assumed for

a received signal. A so-called six-function approach is used to visualize this minimum eye. Figure
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2.7 shows a minimum-requirements eye diagram for received signals at the bus driver, conforming to

FlexRayTM’s specification.
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Figure 2.7: Minimum requirements eye diagram.

However, this single eye diagram is not very meaningful in the context of FlexRayTM:

• It can be difficult to distinguish between asymmetric delay and larger durations of DATA_0 or

DATA_1

• The chronological synchronization between communication and eye diagram might be a problem,

because there is no fixed point of reference in time available. It may be difficult to determine

effective rising or falling edges of a single FlexRayTM bit.

To overcome these problems, a 10 bit eye diagram is used to analyze signal integrity. A standard

compliant FlexRayTM frame consists of several parts, and is decomposed by the software application ac-

cordingly. The "transmission start sequence" (TSS), "frame start sequence" (FSS), "byte start sequence"

(BSS) and "frame end sequence" (FES) are not in focus of the 10 bit eye diagram, but the communica-

tion part is. This way, each data byte, together with the last bit of the preceding BSS and the first bit of

the subsequent BSS or FES, can be depicted using a single 10 bit eye diagram. Besides the graphical

representation, a textual report is generated by the software application as well, pointing out problems

and possible violations of the minimum eye diagram.

This approach is considered as a hybrid kind of, since it covers two levels of abstraction. First, the

eye diagram is clearly targeted at the analog layer, mainly dealing with voltage thresholds. Second, there

is the BSS synchronization, which involves the sample layer.

The minimum requirement eye diagram mentioned earlier can easily be created using the evolved

software application. Based on five time-value pairs a 10 bit eye diagram is created, representing a

minimum requirement for all 10 bits of the waveform under investigation. There is also the possibility to

create a 10 bit eye diagram containing 10 individual curves. Based on the user’s information, an output
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file is created containing three columns: The first column contains points in time, and the second and

third columns contain BP and BM voltage levels, at a given sample rate. This eye diagram file will be

used to mark the minimum voltage levels during signal integrity analysis.

In context of that work a third function is available, representing an additional interface to the TEO-

DACS framework. It allows the generation of sample layer log files (see 2.3.4.5).

Based on the first step, which extracted bus activity information out of an oscilloscope or simulation

data file, the second step decomposes a FlexRayTM frame and generates a hierarchy of files and folders

containing information about each part. After all, an interface to gnuplot exists, allowing to generate

graphical output and visualize the discussed eye diagrams. The whole software application is available

as a package of command line tools.



Chapter 3

Modeling Concept

The following chapter introduces concepts to address the problems described in earlier parts of this work.

First of all, the overall TEODACS strategy is outlined in section 3.1.1. Then, a general approach is given

in section 3.1.2, naming the tools and software products to be used. The most important FlexRayTM

components involved are described in section 3.1.3. After that, concrete modeling and systems engi-

neering concepts are described in section 3.2, covering the aspects of stimulus generation, modeling of

automotive components using hardware description languages, and model verification and validation.

3.1 General Approach

3.1.1 TEODACS Strategy

Covering the left hand side of the TEODACS V-diagram, CISC’s "System Architect Designer" allows

easy integration of several system and hardware description languages using co-simulation. Low level

automotive network simulations can be achieved this way, featuring a wide range of topologies, effective

stimulus generation and fault injection possibilities. The right hand side of the TEODACS V-diagram

incorporates a comprehensive laboratory setup, including FlexRayTM nodes from various hardware ven-

dors, like Fujitsu, Freescale or Infineon. The software’s co-simulation models are used for validation

against the laboratory setup. Several specified interfaces connect both domains on different levels of ab-

straction: The analog level provides insight to continuous state variables over time, whereas the physical

layer shows bit streams. Completing this picture, the data link layer represents entire frames. On top, the

message and test case levels can be found. Those are not covered in particular within this thesis.

This integrated environment is applicable to accomplish the tasks described in section 1.3. A num-

ber of software modules and models already exist and are ready for use within the scope of this work.

On the other side, a FlexRayTM hardware demonstrator is available, allowing the construction of arbi-

trary topologies. The interface between laboratory and co-simulation setups is represented by a special

FlexRayTM communication node, the TEODACS active star, which can be controlled through a number of

software scripts. All in all, TEODACS project’s vision draws a complete picture of typical development

stages within the area of automotive network design. As this approach relies on a number of hardware

and software tools, the following sections are going to introduce these in a more detailed way.

3.1.2 Software

3.1.2.1 VHDL-AMS

VHDL-AMS is a language for describing digital, analog and mixed-signal systems. Its roots are based

in the United States government’s "Very High Speed Integrated Circuits" (VHSIC) program, which led

to the first VHDL standardization in 1987. In the early nineties, a need for mixed signal modeling

became apparent, and an IEEE working group was established, which initially defined an extension to

30
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VHDL, named VHDL-AMS. The emerging draft was approved in 1999, becoming IEEE Standard 1076.1

"Definition of Analog and Mixed Signal Extensions to IEEE Standard VHDL" [APT03].

VHDL-AMS was chosen because it fills the gap for a standardized and convenient hardware descrip-

tion language allowing simulations on the analog level, with a seamless interconnection possibility to the

digital abstraction level. All other advantages of VHDL-AMS, mentioned earlier in section 2.1, apply as

well.

3.1.2.2 System Architect Designer (SyAD)

CISC’s "System Architect Designer" is currently available in version number three. It is jointly devel-

oped by CISC and Graz University of Technology, Institute for Technical Informatics. SyAD R© is a sys-

tem design, partitioning, simulation and verification tool, which allows to process highly heterogeneous

systems [sya09].

The current version supports a number of industry standard simulator tools, which can be configured

through SyAD R©’s user interface:

• Cadence Design Systems: Virtuosor AMS Designer

• The Mathworks: Matlabr Simulink

• The Mathworks: Matlabr Stateflow

• Mentor Graphicsr: ADVanceMSr

• Mentor Graphicsr: Modelsimr

• Synopsysr: Saberr

• OSCI: SystemC

• Open Modelica: Modelica

SyAD R© allows hierarchical designs through creation of basic and composite models. Each model

seats within a block, which is parameter driven and has configurable properties. Besides the blocks name,

its parameters and ports can be set individually. One symbol per block can be drawn in order to support

SyAD R©’s schematic view, which offers the possibility to setup complex systems just by inserting blocks

and establishing interconnections between them.

A single block can be of different types, written in different languages, or even represent a composite

model block, which houses other interconnected blocks. A block communicates with the outside world

entirely through its ports, which can also be of different data types. The third type of models in SyAD R©

is called a "Testbench", which accommodates the system under test. A test bench is on top of each

hierarchy and requires the insertion of at least one block onto the drawing pane.

Within the scope of this work, SyAD R© is used to setup and co-simulate models in VHDL, VHDL-

AMS and SYSTEMC languages. The simulator used to accomplish this, is described in the next section.

Detailed descriptions of necessary prerequisites to simulation, the simulation itself and the subsequent

data processing are shown in a corresponding application note [KK10], covering all tools involved, in-

cluding SyAD R©.

3.1.2.3 ADVANCEMSTM

ADVANCEMSTM by Mentor Graphics R©is used as primary simulator tool. It offers mixed-signal and

mixed-domain analog/digital simulation using VHDL-AMS and Verilog-AMS languages, pure digital

simulation through VHDL, Verilog, SDF, and VITAL languages. ADVANCEMSTM is IEEE compliant

and matches several important standards. A graphical user interface is available.
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ADVanceMS also supports multiple domain simulation, therefore not only electrical systems, but

also mechanical or fluidic systems can be modeled and simulated. ADVANCEMSTM has the ability

to include pre-compiled binary models, also known as IP blocks. ADVanceMS integrates seamlessly

into SyAD R©, and is available through SyAD R©’s user interface. Special configuration parameters are

accessible via the ADVANCEMSTM user interface. [Men08]

3.1.3 FlexRay Components

The following sections provide an overview of FlexRayTM’s main components, used throughout this

work. These include the communication controller, the bus driver, the active star, and the cables used to

link the previous components in order to build networks.

A common FlexRayTM network consists of several participants plus one or more communication

channels. The participants are also called communication nodes or simply nodes. The communication

channel transmits information by electrical or optical means, however, only the physical layer has been

specified. [Fle06a]

A typical FlexRayTM node includes a microcontroller or host, a FlexRayTM controller or communica-

tion controller (CC) as well as one or two bus drivers. The bus drivers are establishing a physical connec-

tion to the communication channel. The communication controller implements the logical FlexRayTM

protocol. [Rau08]

This section heavily relies on FlexRayTM’s specifications, defined in [Fle06a].

3.1.3.1 Communication Controller

There are two different types of communication controllers: The stand-alone type is an independent

circuit and connected to the host via address- and databus or serial interface. The integrated type is

placed next to the host controller in the same package. Depending on flexibility, performance and cost

factors, one or the other type is used.

The communication controller has a number of interfaces. The interface to the host is implementa-

tion specific and has not been standardized. The interface to the bus driver is standardized and consists

of three ports. "Receive Data" or RxD transmits the bus driver’s received data to the communication con-

troller. In the opposite direction, from the communication controller to the bus driver, data is transmitted

using "Transmit Data" or TxD. Using the third low-active port "Transmit Data Enable-Not" or TxEN the

communication controller signals when to send the data on TxD. [Rau08]

For the tasks given in section 1.2, a communication controller is not strictly necessary in general.

However, there needs to be a mechanism, which is able to send compliant data via TxD and set TxEN

accordingly.

3.1.3.2 Bus Driver

The bus driver is an important element when it comes to build a FlexRayTM system. It operates in a

bi-directional way and converts binary signals to a trivalent differential signal. Its possible logical levels

include high, low, and idle. The other way round, it converts a trivalent differential signal to a binary

signal. Besides sending and receiving data, the bus driver has a lot more to offer.

The bus driver protects the communication controller an other components from electrical surge on

the communication channel. Furthermore, it is capable of detecting errors on the communication channel.

According to the FlexRayTM specification [Fle06a] it has to support supply voltage monitoring. There

are a number of additional, yet some optional, functions defined.

Figure 3.1 shows a block diagram of a FlexRayTM bus driver. On the left side, the digital logic

interface can be seen. "Stand-By Not" (STBN) and "Error Not" (ERRN) are mandatory ports for the host

interface, "Enable" (EN) is optional. As mentioned in section 3.1.3.1, the communication controller has

three ports (RxD, TxD and TxEN). The optional "Bus Guardian Interface" has two ports, named "Bus
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Figure 3.1: FlexRayTM bus driver block diagram [Fle06a, p. 37].

Guardian Enable" (BGE) and "Receive Enable Not". The supply voltage interface has an optional port

named "Inhibit" (INH), next to four additional, partial optional, ports (Vcc, Vio, Vbat and GND) which

realize the voltage input. A "Wakeup" port (WAKE) is optional as well. Finally, the differential bus lines

are connected to the bus driver’s "Bus Plus" (BP) and "Bus Minus" (BM) ports. [Rau08]

All mentioned interfaces, the transmitter and receiver modules, wake-up detector and bus error de-

tection are controlled by an internal logic module. A temperature monitor protects the system from

blistering heat. It’s always possible to add new features to the bus driver, but doing so is not specification

conform and therefore not standardized at all.

The bus driver runs an internal state machine, which switches between four states, two of them being

optional.

BD_NORMAL : The bus driver is able to send and receive data streams on the bus. A high level on INH

(if available) signals, that the bus driver is not in BD_SLEEP state. The bus wires are supplied with a

specified bias voltage.

BD_STANDBY : BD_STANDBY is a so-called low power mode. The bus driver is not able to send

data streams to the bus, nor receive data streams from the bus. If applicable, the bus driver is able to

detect wakeup events. The power consumption is reduced compared to BD_NORMAL. A high level on

INH (if available) signals that the bus driver is not in BD_SLEEP state. Additionally, the bus wires are

terminated to GND via receiver common mode input resistance.

BD_SLEEP : BD_SLEEP is an optional and so-called low power state. Therefore, the bus driver is not

able to send data streams to the bus, nor receive data streams from the bus. All present wakeup functions

are operational. The power consumption is reduced compared to BD_NORMAL and INH is floating.

BD_RECEIVEONLY : The bus driver is able to receive data streams from the bus, but is unable to

transmit data streams to the bus. A high level on INH (if available) indicates, that the bus driver is not in

BD_SLEEP. All bus wires are supplied with a specified bias voltage.
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Figure 3.2: Electrical bus driver state diagram [Fle06a].

Transition Condition

1-3 Detection of Wake-up event or undervoltage condition

4-11 Host command

12 Host command or detection of VBAT or VIO undervoltage condition

13 Power on wake-up

Table 3.1: Simplified bus driver state transitions [Fle06a].

State transitions are happening upon commands from the host via the bus driver-host interface, de-

tection of wakeup events or due to undervoltage conditions. A detected undervoltage situation forces the

bus driver from any non low power mode to a low power mode. In regular use, the bus driver switches

back and forth between BD_STANDBY and BD_NORMAL. The exact undervoltage conditions are skipped

within this context, since those are not strictly necessary for this work’s purpose. Figure 3.2 shows the

bus driver’s states and table 3.1 shows its corresponding state transitions.

Bus Driver – Communication Controller Interface As already mentioned in section 3.1.3.1, the

interface between the bus driver and the communication controller comprises three signals (TxD, TxEN

and RxD), which are used to transfer binary data streams to the bus driver and also read binary data

streams from the bus driver. According to the specification, a timeout needs to be implemented to ensure

that TxEN is not permanent on logical low level. Table 3.2 shows the bus drivers logic used to transmit

data to the communication channel.

If the communication controller wants to read data from the bus channel, it is confronted with the

following situation. Depending on the bus wire signal, RxD changes the way defined in table 3.3.
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operation mode TxEN BGE TxD resulting bus signal

BD_NORMAL high X X Idle

X low X Idle

low high low Data_0

low high high Data_1

Low power modes X X X Idle_LP

Table 3.2: Signaling on bus wires in dependency of bus driver input states [Fle06a, p. 41].

operation mode signal on bus wires wakeup event RxD

BD_NORMAL &

BD_RECEIVEONLY

Idle_LP X high

Idle X high

Data_0 X low

Data_1 X high

BD_STANDBY &

BD_SLEEP

X detected low

X not detected high

All other X X Product specific

Table 3.3: Resulting RxD signal from bus driver to communication controller [Fle06a, p. 41].

3.1.3.3 Active Star

The active star poses an important element in extended FlexRayTM networks. Basically, it acts as a kind

of signal distributor between a number of branches. There is a general set of functions and components

specified, which every active star has to obey, in order to fulfill FlexRayTM standards. Concerning the

implementation, a variety of possibilities exists.

The basic functionality of the active star is the active data transfer, that means, a data stream received

on one branch of the active star is re-sent immediately on all other branches of the active star [Fle06a, p.

68]. The active star not only works on a pure physical layer level, it merely processes the incoming data

stream and distributes it. Additionally, the signal gets a refresh in terms of quality, at the expense of a

slight delay.

Figure 3.3: Active star basic functionality [Fle06a, p. 69].

Operation Modes Just as the bus driver, the active star has operation modes which support energy

saving functions. When the active star is in AS_NORMAL mode, it is able to send and receive data,

as described earlier in this section. There is a variable timeout between 640 and 64000 milliseconds
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Transition Condition

1 Wake-up

2 Sleep timeout

3 Undervoltage condition

4 No undervoltage on VCC

5 Power on (VBAT or VCC)

Table 3.4: Active star state transitions [Fle06a].

specified, which puts the active star to AS_SLEEP mode when no activity on all branches occurs. In

AS_SLEEP mode, the active star is not able to send and receive data, but its wakeup functions are active.

The detection of a wakeup symbol forces the active star to enter AS_NORMAL. AS_SLEEP is a low

power mode, where power consumption is reduced to a minimum level. In case of an undervoltage

condition, the active star remains in AS_STANDBY. As soon as voltages increase to a specified level, the

undervoltage state is left immediately. Figure 3.4 shows the active star’s states and table 3.4 shows the

corresponding state transitions.

Figure 3.4: Active star state diagram [Fle06a, p. 73].

Active Star Timings The specification advises a maximum propagation delay from idle to active mode

of 450 nanoseconds, the opposite direction from active to idle is given with 400 nanoseconds. Both

transitions may last up to 30 nanoseconds. Minimum requirements are not defined. Concerning the

signaling, the propagation delay of positive edges is specified with up to 250 nanoseconds, as well as

the negative edges. Since the propagation delay of positive and negative edges may differ, a so called

asymmetric delay is defined as the absolute value of both delays difference. Additionally, the active star

may truncate a data stream in length, which results due to shortening of the Transmission Start Sequence

(TSS). The Transmission Start Sequence is used to activate active stars and receiving nodes and is cut off

as soon as the devices are activated. The difference between the incoming and outgoing Transmission

Start Sequence is called truncation, and is specified with a maximum of 450 nanoseconds.
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Branch Operating States Similar to the active star itself, each branch can enter a different operating

state. AS_IDLE can be reached on detection by the central logic unit or by the branch itself. As soon as

any activity is detected, the branch enters AS_ACTIVE. In this state, a received data stream is passed on

to the central logic unit. If AS_ACTIVE was reached on request by the central logic unit, the received

data stream is transmitted to the branch. When entering AS_ACTIVE, a timeout starts to run, which

is specified between 1500 and 15000 microseconds. If the branch runs into this timeout, it is excluded

from any further communication. This state prevents defective nodes from disturbing the whole networks

communication and is called AS_FAILSILENT.

3.1.3.4 Wiring Harness

Besides the bus driver, the wiring harness is critical in terms of signal integrity. The market offers a range

of cables with different properties, some of them being FlexRayTM certified. FlexRayTM does not define

any specifications for cables, however, in order to pass a standardized conformance test, a number of

requirements made to the cables must be fulfilled. Therefore, FlexRayTM only makes recommendations

about cables. Mainly, FlexRayTM makes use of copper cables. According to the specification, other bus

channels like fiber are not prohibited, yet lack of standardization. The communication over fiber optical

lines in vehicles has been approved earlier to be working flawlessly [Ros98]. MostTM for example, relies

on an optical physical layer and is used for multimedia applications in current upper class vehicles. How-

ever, there is an increased inherent cost factor, which is currently not bearable for all car manufacturers

or even car variants.

Bus Cables First of all, FlexRayTM recommends shielded cables for bus cable use. The most important

property is impedance, which is given with 90Ω at 10 MHz signal frequency. The specific line delay may

last up to 10 nanoseconds per meter. Using a 5 MHz signal, an attenuation of up to 82 dB per kilometer

is allowed.

Other Cables There are recommendations for power supply cables and connectors as well. Those are

not recapitulated at this point, because they are not relevant for this thesis’ goals.

3.2 Concept Overview

The upcoming section outlines the integration and interconnection of the previously described elements

used to simulate a FlexRayTM automotive network. Special attention is drawn to the early implementation

and integration to VHDL-AMS and SyAD R©.

3.2.1 Stimulus Generation and Data Exchange

Whenever a network engineer plans a communication network, the design process is driven by iterations.

Unforeseen effects, design mistakes and specification defiances are causing network malfunctions. In or-

der to track down those issues and locate the sources of faulty behavior, a repeated test pattern as network

stimulus is very valuable. Usually, many iteration steps are necessary during development, verification

and validation of models written in VHDL, VHDL-AMS, and SYSTEMC. Hence, during model integration

and simulation phases, some well defined component- and network-stimuli are needed. In the TEODACS

project, hardware and software testernodes were developed to solve this issue. The emerged SYSTEMC

software testernode model is used in this work, giving the possibility to inject pre-defined FlexRayTM

compatible data. Key functionality of this software model is its multi-level capability. Signal quality and

integrity analysis requires low-level data access – so this work will mostly cope with the testernode’s

sample level capabilities.
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1 a r c h i t e c t u r e wrapper of t r _ i p _ b l o c k i s

2 b e g i n

3 t r : e n t i t y f l e x t r a n s _ c i s c ( e p l )

4 g e n e r i c map (

5 t _uv_ r e c o v e r => t _uv_ r e c o v e r ,

6 t _ s l e e p => t _ s l e e p ,

7 r _ c l o s e d => r _ c l o s e d ,

8 r _ open => r _open ,

9 f a l l _ t ime => f a l l _ t ime ,

10 r i s e _ t ime => r i s e _ t ime ,

11 )

12 p o r t map (

13 GND=>wr_gnd , BAT=>wr_ ba t , CC=>wr_cc , IO=>wr_ io ,

WAKE=>wr_wake , BP=>wr_bp , BM=>wr_bm ,

STBN=>wr_ s tbn , EN=>wr_en , ERRN=>wr_ e r r n ,

RxD=>wr_ rxd , TxD=>wr_ txd , TxEN=>wr_ txen ,

BGE=>wr_bge , RxEN=>wr_ rxen , INH=>wr_ inh ,

t _ case =>wr_ t _ case

14 ) ;

15 end a r c h i t e c t u r e wrapper ;

Listing 3.1: Bus driver IP block wrapper.

3.2.2 Bus Driver Model

The bus driver model provided by CISC semiconductors is entirely written in VHDL-AMS and available as

IP block, which needs to be provided as an external library through the simulator setup. The implemented

features in accordance with CISC’s documentation [CIS08] are:

• Device status management

• Supply voltage monitor

• Read-out capability

• Temperature monitor

• Local and remote wake-up

• Transmitting and Receiving

• Bus-error and state flags

• Signal timings

• Thermal behavior

Concerning the use within VHDL-AMS, a so called wrapper encapsulates this IP block. This requires

a mapping of all wrapper ports to the IP blocks ports. All properties and configuration parameters,

known as "generics" in VHDL-AMS, need to be mapped to the IP block as well. Listing 3.1 shows the

architecture of such a wrapper, mapping generics and ports to the IP block.

As stated in [KKS+10], there is a FlexRayTM communication controller model available in context

of TEODACS, written in SYSTEMC. It would be possible to use this model to control the electrical bus

drivers, in order to support the holistic multi-layer approach of TEODACS. However, this thesis’ focus

is on physical layer and does not make use of this model. Due to the absence of a communication

controller realizing the FlexRayTM protocol and controlling the connected bus drivers accordingly, all
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bus drivers are set up and controlled in a manual way. Dedicated blocks generating piece-wise linear

output waveforms1 are used to control the analog input ports of every bus driver.

3.2.3 Active Star Model

The full active star model is created of two major components. First, the active star’s logic modules,

written in VHDL and provided by project partner University of Applied Sciences FH Joanneum Kapfen-

berg [Net08]. This code is used to generate a SyAD R© compliant active star model, comprising basic-

and composite-models. All its internal and external interfaces are of digital kind. Second, the bus driver

model is used to build an active star model according to section 3.1.3.3. To connect the bus driver’s

terminal electrical type ports to the active star’s std_logic type ports, analog-to-digital and

digital-to-analog conversion respectively, needs to be performed.

Active star
(VHDL logic model)

A/D
Bus driver

(VHDL-AMS)

Bus driver
(VHDL-AMS)

Bus driver
(VHDL-AMS)

Bus driver
(VHDL-AMS)

D/A

A/D

D/A

A/D

D/A

A/D

D/A

bus branch 1

bus branch 2

bus branch 3

bus branch 4

Figure 3.5: Active star analog/digital conversion scheme.

To get the VHDL logic modules up and running, some additional modules need to be created. Every

digital simulation model requires a clock signal to change its state and advance in time. The ideal or

maximum clock speed to be determined according to all digital or analog modules involved, depending

on their critical path and rise or fall times respectively. Immediately after simulation start, the entire

model needs to be reset in order to enter a defined state. Therefore, the possibility to signalize an

asynchronous reset needs to be created. After those initial tasks, it has to be ensured that the included

state machines work as desired.

The available VHDL model consists of nine modules: one top-module with three sub-modules below

it, and another five sub-sub-modules on the second level. Table 3.5 [Net08] gives a short overview.

struct denotes a module only containing instances of sub-modules. fsm denotes a finite state machine

module. bhv stands for a behavioral model and rtl identifies a register transfer level module.

As declared earlier within this thesis, one of the major objectives is to provide SyAD R© compatibility.

Therefore, these modules are ported to basic blocks and composite models. This allows easy multiple

instantiation and dedicated module tests. Additionally, better traceability and fault-injection possibilities

are achieved.

3.2.4 Wiring Harness & Termination Models

As discussed in section 3.1.3.4, two cable modeling techniques are available and subject to evaluation

within the TEODACS project. Besides proper cabling, the concept of termination is important in every

1See VDA FAT-AK30 library FUNDAMENTALS_VDA available at http://fat-ak30.eas.iis.fraunhofer.de

for details.

http://fat-ak30.eas.iis.fraunhofer.de
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entity name architecture name VHDL file name hierarchy

active_star_device struct active_star_device_struct.vhd Top level

flexray_driver fsm flexray_driver_fsm.vhd 1

voltage_monitor bhv voltage_monitor_bhv.vhd 1

active_star_core struct active_star_core_struct.vhd 1

as_mode fsm as_mode_fsm.vhd 2

voltage_event_ctrl fsm voltage_event_ctrl_fsm.vhd 2

signal_handler fsm signal_handler_fsm.vhd 2

branch_mode fsm branch_mode_fsm.vhd 2

sleep_timer rtl sleep_timer_rtl.vhd 2

Table 3.5: VHDL active star module list.

electrical network containing long lines compared to the signal wavelength. The term electrical length is

often used to refer to this problem. Furthermore, additional measures for network stabilization are taken

in the laboratory setup, which need to be modeled in order to achieve good simulation results.

3.2.4.1 Transmission Line Modeling

Basic possibilities to model a transmission line have been introduced in section 2.1.4. The creation of

an arbitrary length cascaded lumped-element equivalent circuit model in VHDL-AMS is possible using

a for-loop and the capability to instantiate components at elaboration time. Using such a technique,

the output ports of a previous line element are mapped to the input ports of the subsequent line element.

The resulting transmission line has two input- and two output-ports, just as a single line element. In

order to answer the question, how many line elements are necessary to produce a meaningful result,

a tradeoff between simulation time, accuracy and parameter availability is required. A large number

of line elements containing discrete components modeled through quantities take long time to simulate

in VHDL-AMS. On the other hand, the number of line elements should not be too small, compared

to the length of line, to ensure correct simulation of wave propagation. Third, as described in 2.1.4,

the parameters measured in units per length need to be determined in a sufficient way. Usually, cable

manufacturers provide data sheets together with their cables. If those are not available for some reason,

values have to be determined by measurement. In terms of error propagation it is advantageous to

measure long lines and calculate shorter line sections, than vice-versa.

A few interesting concepts about twisted-pair telephone transmission lines are given in [Lao02]. First

of all, all resistances within a conductor are frequency-dependent, meaning that the RLGC model’s "R"

is frequency dependent because of the skin-effect, and that the contained "G" is frequency dependent

because of dielectric loss. For this thesis, these effects are considered to be negligible. However, the

existence of these are kept in mind to explain possible deviations of the simulation result. Next, that

article describes the RLGC model as a balanced line model, which means that the modeling engineer

needs to be aware of interactions between both conductors (capacitances, conductances). This may be

difficult to achieve, due to lack of information or accurate measurement possibilities. Concluding, to

model any twisted pair cable, a two-conductor approach is applied and explained in detail in section 4.4.

3.2.4.2 Termination Modeling

The concept of termination is crucial for stable operation of any electrical network. A bus driver’s

sender is likely to be of low-impedance output type, whereas receivers are commonly designed to have

a high-impedance input. A high impedance termination equals an open circuit, and a low impedance

termination equals a short circuit. According to [Joh02, p. 28] or [JG03, p. 39], the characteristic

impedance Z0 needs to match the lines load Zl in order to appear of infinite length to the sender. In this

special case, the energy generated by the sender is completely absorbed at the receiver’s end of the cable.
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Otherwise, in case of a termination mismatch, a so called reflection occurs on the line, which makes the

energy arriving at the receivers end returning to the sender. The amount of energy traveling backwards

can be determined by calculating the reflection coefficient ρ.

FlexRayTM does not specify a dedicated termination type, but does advise some useful structures. In

order to achieve better EMC performance, FlexRayTM’s specification points out an application hint in

shape of a split termination [Fle06b, p. 10], consisting of two matched resistors RT1
and RT2

, one resistor

R1 and one capacitor C1. Figure 3.6 shows the arrangement of these components. R1 is suggested to be

smaller or equal to 10Ω, C1 should have 4700pF and the matched resistors should coordinate with the

used cables characteristic impedance Z0.

Figure 3.6: Split termination as suggested by [Fle06b].

This termination model is used within this work wherever necessary, the split termination is modeled

as basic block in SyAD R©.

3.2.4.3 Common Mode Choke Modeling

Additionally to the termination explained in section 3.2.4.2, a common mode choke is modeled to reach

a close-to-reality-simulation result, as suggested by the specification. The function of the common mode

choke is to force the current in both signal wires to be of the same strength [Fle06a, p. 11], using two

coupled inductances in series to the bus wires. Therefore, a high impedance arises for common mode

signals.

Figure 3.7: Split termination with common mode choke [Fle06b, p. 11].

Figure 3.7 shows the common mode choke between the ECU and the previously explained split

termination structure. According to FlexRayTM’s specifications, the resistance per line should be smaller

or equal to 1Ω, the main inductance should be larger or equal to 100µH and the stray inductance should
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be within a 1µH limit. Equation 3.2 shows the formulas of both inductances involved, used to model

this common mode choke in VHDL-AMS. They may also be recognized as "transformator equations".

u1 = L1

diL1
(t)

dt
+M

diL2
(t)

dt
+ i1RL (3.1)

u2 = L2

diL2
(t)

dt
+M

diL1
(t)

dt
+ i2RL (3.2)

where M denotes the mutual inductance:

M = k
√

L1L2 (3.3)

k represents the coupling coefficient. Basically, k tells about the quality of coupling between both

inductances. RL equals the ohmic resistance per bus line.

This common mode choke model is used within this work wherever necessary in conjunction with

the split termination model from section 3.2.4.2. The common mode choke is modeled as a basic block

in SyAD R©, and builds a composite block together with the termination model.

Additional electrostatic protection elements, as suggested in [Fle06a, p. 19], are available in the

context of TEODACS.

3.2.5 Model Verfication and Validation

Model verification ensures the operability of a given model by asking if the model was built in a right

and correct way. This includes the model’s parameters as well. By comparing the model with its real

system counterpart, a calibration process is carried out and allows a revision of the considered model.

By constantly comparing and revising the created model, validation is performed. Therefore, model

validation can be seen as an iterative process.

In this work, verification is based on best practice solutions. There is a lot of expertise knowledge

available, as described in chapter 2. Using these basic principles together with the TEODACS approach,

new models evolve quickly. Once the models are available, validation through simulation is performed.

By building small and simple topologies, or just segments respectively, quick validation is possible since

simulation times will be kept on a low level. Some simple topologies may include:

• A single bus driver model and optional termination.

• A single bus driver connected to short circuit line of different length and optional termination.

• A single bus driver connected to open circuit line of different length and optional termination.

• A simple point-to-point connection using two bus drivers and a line of different length and optional

termination.

After successful validation of these small network segments, they are used to build larger networks.

Assuming, that simulation time increases with the number of differential equations, representing state

variables, these networks unavoidably lead to longer simulation times. If these models are successfully

validated against the laboratory’s hardware setup, it is expected that composite higher order systems

validate against the hardware setup as well.

The validation process utilizes two different tools. Both are based on the physical layer, but include

interfaces to higher layers as well. First of all, the waveform viewer EZwave by Mentor Graphics offers a

wide range of possibilities to analyze signal metrics [Men07]. Besides well known time domain metrics

like rise and fall times, slopes and levels, frequency- and statistical-domain values can be measured as

well. These metrics and functions can also be used to compare different signals. However, simple signal

metrics deliver no information about the logical correctness of the signal. This is where the second tool
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comes into play. It is introduced in section 2.3.5, and is based on the automated creation of ten bit eye

diagrams and textual reports.

To achieve a credible validation result, both simulation and hardware platforms ought to be stimulated

using the same input data, yielding significant output data. This requirement is entirely fulfilled thanks to

the modeling of the SYSTEMC software testernode [Kru08] and the TEODACS active star [Net08]. Once

more, both systems are on the same level but on opposite sides of the TEODACS V-diagram, ensuring

integrated analysis possibilities of the resulting system.



Chapter 4

Implementation of Models and Tests

The next sections provide deep insight into the modeling process of each component. Now that all needed

models are known from a behavioral point of view, let’s have a closer look on implementation details.

Besides the internal components of each model, parameterization has shown to be a very important task

which can dramatically improve simulation results and increase the degree of validation. Therefore, the

process of correct parameter retrieval requires our full attention. Once all models and their parameters

are set up properly, larger FlexRayTM network structures are constructed and simulated. A special mea-

surement campaign together with TEODACS project partners supported these tasks in a very valuable

way.

4.1 Bus Driver Implementation

This chapter allows a deeper insight into the bus driver’s implementation, as far as the provided intellec-

tual property module allows. Section 4.1.1 gives an overview of all implemented components. The only

components introduced in detail are transmitter and receiver, since these have been identified as critical

modules, where more information about internals are available courtesy by CISC semiconductor.

4.1.1 Internal Organization

The bus driver’s model is made up of eight components, four of them are strictly necessary for data

transmission to and from the bus channel. Others include additional functionality, like supply voltage

monitoring or wake up detection.

Input-Output Interface This block basically provides an interface for the communication controller.

Based on a number of voltage levels and ratios, given as parameters, this block provides analog type

external and digital type internal ports. Therefore, its main functionality is limited to analog-to-digital

and digital-to-analog conversion. External analog visible ports are: EN, TxD, TxEN, RxD, INH, BGE,

RxEN, STBN, and ERRN. Exactly the same ports are available internally as of digital kind: EN_dig,

TxD_dig, TxEN_dig, RxD_dig, INH_dig, BGE_dig, RxEN_dig, STBN_dig, and ERRN_dig.

Power supply voltages are connected via separate ports, Vbat, Vio and necessarily GND.

Digital Logic The bus driver’s heart in general includes a state machine and several processes, neces-

sary to model the output logic and the next state logic.

4.1.2 Transmitter

The transmitter’s model primarily consists of two analog ports accessing the bus BP and BM lines, an-

other three analog ports for supply voltage Vcc, thermal control, and ground GND. Digital interfaces

44
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1 r _bp1_ e f f == r _bp1 ’ ramp ( r i s e _ t ime , f a l l _ t ime ) ;

2 r _bp0_ e f f == r _bp0 ’ ramp ( r i s e _ t ime , f a l l _ t ime ) ;

3 r _bm1_ e f f == r _bm1 ’ ramp ( r i s e _ t ime , f a l l _ t ime ) ;

4 r _bm0_ e f f == r _bm0 ’ ramp ( r i s e _ t ime , f a l l _ t ime ) ;

5

6 i f ( domain = q u i e s c e n t _ domain ) use

7 i _ h igh _BP == v_ h igh _BP / r _ open ;

8 i _ low_BP == v_ low_BP / r _ open ;

9 i _ h igh _BM == v_ h igh _BM/ r _ open ;

10 i _ low_BM == v_ low_BM/ r _ open ;

11 e l s e

12 i _ h igh _BP == v_ h igh _BP / r _bp1_ e f f ;

13 i _ low_BP == v_ low_BP / r _bp0_ e f f ;

14 i _ h igh _BM == v_ h igh _BM/ r _bm0_ e f f ;

15 i _ low_BM == v_ low_BM/ r _bm1_ e f f ;

16 end use ;

Listing 4.1: Current calculations using variable resistors as switches

connect to the digital logic block using BGE, TxEN, and TxD. The transmitter’s internal structures and

their parameterization are most important for close-to-reality simulation results, especially with respect

to signal integrity.s BP and BM lines, another three analog ports for supply voltage Vcc, thermal con-

trol, and ground GND. Digital interfaces connect to the digital logic block using BGE, TxEN, and TxD.

The transmitter’s internal structures and their parameterization are most important for close-to-reality

simulation results, especially with respect to signal integrity.

DC
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delta u
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Figure 4.1: Transmitter’s voltage bridge schematic.

As shown in figure 4.1, the transmitter’s behavior is reproduced through four switches, which are

modeled using a simple variable resistor. Since FlexRayTM requires a differential voltage signal on

the bus channel, the resistors are operated pairwise. This way, either a positive or negative differential

voltage is applied to the bus line, between BP and BM. However, FlexRayTM uses a trivalent bus signal,

therefore two idle states are defined as well, Idle and Idle-LP, where the latter stands for "low-power".

The parameterization of the given voltage bridge initially posed a problem, due to the modeling of

transient characteristics. The VHDL-AMS attribute ’ramp increases or decreases a signal value in a

linear way with constant slope, with respect to a given time interval. Therefore, it is just instinctive to

model a switch as a variable resistor. This variant is also proposed in [Hes03]. The disadvantage of this

solution becomes imminent when using the resistors resulting value for voltage or current calculations.

An open switch can be expressed using any high-resistive value, a closed switch can not be written using

an arbitrary small number.

In lines 12 to 15 of listing 4.1 the appearing quantity voltage values are divided by the calculated
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resistor values. For very small values of r_bxx numerical problems arise due to the constant integer

increase of ’ramp, leading to unwanted steps during state transitions. There may be a number of solu-

tions available to improve the switches transition function. Nevertheless, we try to cope with a slightly

larger integer value for closed switch states anyway, because of the required internal resistance of the bus

driver when sending data to the bus channel. More on this in section 4.1.4.

4.1.3 Receiver

The bus driver’s receiver has four analog and three digital ports. BP and BM are used to connect to the

bus channel, Vcc and GND are used for power supply and reference, respectively. RxEN, RxD, and

enable_Rx are of digital type and connect the receiver to the digital logic unit. The receiver makes

heavy use of VHDL-AMS’ attribute ’above, to detect threshold value exceedances. These thresholds

are given as parameters, allowing individual adaptation to replicate different receiver behaviors.

There are two VHDL-AMS processes running within the receiver, and a third one was added to im-

prove the simulation output performance. The first one implements the detection of bus activity in

general, and sets a flag accordingly. The second process is in charge of converting the analog bus voltage

levels to digital signals. In situations encountering good overall signal integrity with steep edges, this

method works as proposed by the authors at CISC. However, problems arise when signal integrity is

labile, when heavy reflections occur due to wrong or bad termination, or other voltage fall-offs due to

faulty components. In such cases, very short voltage dips lasting around 10 nanoseconds are trigger-

ing the threshold values too early in time, causing unwanted modifications of the signal’s pulse widths.

Therefore, a method to model noise cancellation and signal stability is needed, as they appear more or

less naturally in integrated circuits.

This is where the third process comes into play. Basically, it allows to check the incoming differential

bus signal for stability over a given time interval. This time interval is specified using the additional

stability_time parameter of the bus driver, 30.0 nanoseconds have proven to be a reasonable value.

At the current simulation time, the process determines if the shifted input signal’s last event occurred at

least before the given time interval in the past. If that is the case, the signal was stable over the last

given time interval, and the digital output port delivers the rising or falling edge of the signal. The

same behavior could possibly have been achieved with the VHDL-AMS attribute ’stable, however,

this attribute was found to be not supported by ADVANCEMSTM.

4.1.4 Inner Resistance and Termination

FlexRayTM’s concept of termination is straightforward to understand, but under certain circumstances

hard to implement. It is not enough just to look at the bus driver’s BP and BM ports, it is necessary

to know what is going on behind these ports. As already pointed out in section 3.2.4.2, the receiver

requires a high impedance input, to ensure that no energy is consumed out of the transmission lines,

since transmitters are not designed to deliver energy through their output ports. This requirement is

easy to match, because in real-hardware systems amplifier circuits are used, which in general have high

impedance input stages. This way, any additional termination measures at the bus driver’s input becomes

immediately effective.

At the sender’s side things are a bit different. The impedance at the output must not be high, since this

would mean the ports are undriven. A very low impedance, as any ideal voltage source with reference

to ground represents, would be impossible to terminate correctly. Any connected line would always see

just the very low impedance at the end, regardless of termination. Concluding from these facts, it is

necessary to parameterize the sender in a proper way, to achieve an effectively working termination and

close-to-reality signal integrity in succession.

Parameter Extraction: In order to replicate the bus voltage and termination behavior of a hardware

bus driver, the TEODACS active star was chosen for investigation. Main parameters to be determined
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were r_open and r_closed, with respect to an applied termination attached to BP and BM. The

measurement setup included the TEODACS active star only, without any lines or termination elements

connected. Using an oscilloscope, the bus output voltages of a single port (BP, or BM respectively) were

measured under a variety of different ohmic loads. Table 4.1 lists the collected values.

R_l[Ω] Ulow[V ] Uhigh[V ] ∆U [V ] trise[ns] tfall[ns] Thigh(bit)[ns] Tlow(bit)[ns]

10 2.35 2.59 0.24 na na 94 106

47 2.0 2.95 0.95 13.0 10.0 98 102

100 1.74 3.22 1.48 11.0 10.5 98 102

150 1.6 3.4 1.8 9.0 11.5 98 102

220 1.52 3.52 2.0 7.5 9.0 99 101

470 1.24 3.76 2.52 7.5 8.5 99 101

1000 1.04 3.96 2.92 7.5 8.0 100 100

3300 0.8 4.08 3.28 7.5 7.5 100 100

10000 0.68 4.16 3.48 7.5 8.0 100 100

Air 0.6 4.16 3.56 8.0 8.5 100 100

Table 4.1: BP measurement outputs.

The first column shows the resistor loads available at the laboratory. The TEODACS active star was

stimulated using the LogFile generator as proposed in [ATK+09] and demonstrated in [AWK+09]. The

resulting FlexRayTM compliant frames were measured with respect to voltage levels, rise- and fall-times

and bit length.

The last row shows measurement data for no resistor placed between the bus driver’s ports. Without

any load R_l, voltage levels were 4.16V for high level and 0.6V for low level. These exact values are

used to supply the voltage bridge described in section 4.1.2. To remain compatible to different supply

voltage levels, these values are modeled as variable factors in the VHDL-AMS transmitter.

It is commonly known, that (FlexRayTM-)bus driver manufacturers are calculating their circuits in a

way, such that signal integrity remains good even under tough conditions. According to the FlexRayTM

specification [Fle06a], any differential voltage level between 0.6V and 2.0V is valid. Early oscilloscope

measurements have shown that high levels of BP and BM are located around 3.1V to 3.2V, whereas low

levels are located around 1.8V to 1.9V. Note that table 4.1 represents BP values. Values for BM would be

similar, with interchanged Ulow and Uhigh data columns.

During regular operation with a correct network topology attached, the bus driver’s steady state

output measures around 1.2V. This represents our model’s calibration target. Without any load, the

voltage drop between positive and negative supply voltage amounts to 3.56V, Rl is known from table

4.1, and the four equal voltage bridge resistors RBx
are connected in series to Rl, therefore it is possible

R_l[Ω] R_Bx[Ω]

10 69.17

47 64.56

100 70.27

150 73.33

220 85.80

470 96.98

1000 109.59

3300 140.85

10000 114.94

Table 4.2: Transmitter’s internal resistor-bridge values.
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Figure 4.2: Bus driver bridge resistance.

to calculate RBx
values for every Rl, as described in equation 4.2:

RBx
=

3.56−δU
2

δU
Rl

(4.1)

RBx
=

Rl(3.56−∆U)

2∆U
(4.2)

Image 4.2 shows a graph of calculated values for RBx
. The requested calibration target lies in the

area around 60Ω to 70Ω. It is worth to note, that the determined value of RBx
is of behavioral nature.

Any internal resistance affecting BP and BM outputs, caused by physically present electrical components,

is therefore expressed through RBx
.

A second method to interpret these results, is to look at Rl as a termination resistor. The split

termination used in the laboratory consists of 2 · 47 = 94Ω, which is slightly below the single 100Ω
resistor used in the preceding calculations.

Termination is implemented in VHDL-AMS language using a SyAD R© basic block model, following

the descriptions of section 3.2.4.2. Since every bus line interface is going to be terminated, either matched

or highly resistive, the termination is included in a composite model, together with the also required

common mode choke model as introduced in section 3.2.4.3. This common mode choke model written

in VHDL-AMS consists of two coupled inductances, which are expressed through VHDL-AMS quantities

and their appropriate differential equations. The termination and the common mode choke models are

electrical quadrupoles, with respect to ground. Therefore the resulting composite model is a quadrupole

as well, containing the discussed basic blocks interconnected in series.

The only parameter of the split termination model is its resistive value. The common mode choke

requires the two inductances L1 and L2, the coupling factor k and the ohmic resistance RL of the induc-

tances. All parameters are provided via SyAD R© as generics to VHDL-AMS.



CHAPTER 4. IMPLEMENTATION OF MODELS AND TESTS 49

4.2 Active Star Implementation

4.2.1 Changes to the Original Active Star Model

This section describes the implementation of a specification compliant active star using a combined

application of VHDL and VHDL-AMS, as introduced in section 3.2.3.

In the top module active_star_device, the entirely digital written flexray_driver was

replaced by tr_ip_block modules, containing the proposed wrapper for access to the intellectual

property bus driver module. The flexray_driver module contained a finite state machine model,

which emulated a simple digital bus driver interface using timed concurrent statements.

The active_star_core module included in the active_star_device model originally

contained all remaining model blocks, together with some logic expressions. These logic expressions

are now pulled out of this block and put into a separate one, in order to keep functionality at bot-

tom level. This approach complies with SyAD R©’s hierarchical structuring. The four branch_mode

blocks were used to control the digital flexray_driver units, their outputs are now redirected to

digital-to-analog converters and in succession to the bus driver models. The active_star_mode,

voltage_event_ctrl, sleep_timer and signal_handler blocks basically remain in place.

There is an interface to a communication controller available, all related signals were kept despite the

absence of such a device model. The sleep_timer and signal_handler blocks however, needed

some adjustments to work properly without valid signaling from a communication controller.

4.2.2 Internal Organization

This section presents the conversion result of VHDL modules to SyAD R© blocks, and gives an overview of

the achieved model architecture. Figure 4.3 (a) shows the digital model structure before the integration

process. The composite model’s depth was two. Figure (b) shows the fully integrated mixed signal

model. Its depth increased to three levels, due to the insertion of a new composite model at the very top

of the model’s structure. All necessary blocks to control the active star were added at this point.

Since the branch_mode and signal_handler blocks, which are controlling the bus drivers,

communicate with the active_star_mode, sleep_timer, and the newly generated active_-

star_core_functional blocks, it was simply a design-driven decision to leave the bus drivers on

top level. All signals needed to control the bus drivers are passed on to the topmost level. This way, all

analog-to-digital and digital-to-analog conversions are performed on top, and a clear separation between

analog and digital models is achieved on top level.

4.2.3 Active Star Block Details

Supply Voltage: The supply voltage blocks VIO and VCC are set to 5 volts DC current, whereas VBAT

is set to 10 volts DC current. The supply voltage blocks are powered on just a few milliseconds after

simulation start.

Bus Guardian: The bus guardian block’s output is set to 4.5 volts, shortly before the beginning of data

transmission, to ensure bus access.

Wake: This block provides the possibility to send a wake-up signal to the bus drivers, as_mode and

active_star_core_functional blocks.

One Bit DAC: This block represents a one-bit digital-to-analog converter. Its only parameter specifies

the reference output voltage. Any digital type std_logic input is converted to either zero or reference

voltage on the terminal electrical output port.
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Figure 4.3: Digital (a) and analog (b) interfaces of the active star model.

One Bit ADC: This block represents a one-bit analog-to-digital converter, or comparator respectively.

Its only parameter specifies the reference voltage used for conversion. Any analog type electrical

quantity is converted to either binary zero or binary one on the digital type std_logic output port.

The conversion process works on the base of threshold detection.

Clock: The system’s clock is generated using this block’s only parameter, the periodic time. A value

of 12.5 nanoseconds therefore corresponds to 80MHz, which allows the active star to operate at a data

transmission speed of 10 megabits per second.

Reset: This asynchronous reset puts all connected digital systems to a defined state. Its output voltage

is 5 volts.

Host Command, Communication Controller: Since these signals are not available or relevant, dummy

blocks are applied to keep the affected ports to logical low or high.
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Unused output ports: The VHDL model initially contained some std_logic type ports marked

with the VHDL keyword open. Those could have been used to connect further models or simply debug

the active star logic model. Since the simulator deployed in this thesis was not able to interpret this

statement, a special block was set up to act as a signal sink.

Output Resistors: Due to the absence of a communication controller, analog electrical output

ports like INH must not left unconnected. A simple 1kΩ resistor connected to ground helps to resolve

this problem.

Thermal Outputs: Every bus driver model block has a thermal type output port, indicating the

current estimated temperature of the bus driver during operation. The purpose of this circuitry is the

early detection of overheating. A dedicated thermal network, representing an appropriate specific heat

capacity, takes care of this output.

4.3 Network Stimulus Generation

As discussed in section 3.2.1, the TEODACS concept enforces direct interfaces between the laboratory

setup and the co-simulation environment. Based on common file formats, data exchange for simulation

and validation becomes not only possible, but convenient for such tasks.

4.3.1 Simple Test Signal

The primary goal was to prepare a fast simulating, significant stimulus file, in order to investigate basic

physical network properties. This simple test signal does not comply to FlexRayTM’s standard signaling.

The basic idea was to generate a stimulus file comprising "very short" pulses to gain knowledge about

the transient behavior of the proposed cables, bus driver, and other models. Figure 4.4 shows this signal

captured directly at the software testernode.
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Figure 4.4: Simple test signal.

The chosen pulse lengths are of 50, 75, 100, and 125 nanoseconds length, with reasonable space

of time between them. The chosen pattern appears twice in the test signal, normal and inverted, to get

an impression of positive and negative switching properties and behavior. Note that 100 nanoseconds

conform to one FlexRayTM bit, the shortest piece of information possible, at a data rate of 10 Megabits

per second. For detailed information about FlexRayTM timing constraints, refer to [Fle06a, p. 84].
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4.3.2 FlexRayTM Frame Test Signal

The FlexRayTM frame test signal contains complete FlexRayTM compliant frames, created using the log

file generator as explained in section 4.3. This log file contains several cycles of communication. In most

cases, the first few frames are sufficient to draw an early conclusion about signal integrity or run some

replay tests. Figure 4.5 shows the first frame out of four simulated ones, captured directly at the software

testernode.
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Figure 4.5: FlexRayTM frame test signal.

4.4 Cable Model Implementation

The following section provides a detailed view on the implementation of the proposed cable models. In

general, there are two cable models available, featuring different properties. First of all, the cables used

in the laboratory are investigated and measured. Then the two models are introduced and discussed.

Afterwards a comparison tries to determine one model for further investigations with respect to signal

integrity.

4.4.1 RLGC Model

The first model discussed in detail is the widely known, so called "RLGC model". The term "telegra-

pher’s equations" is often used to refer to this model as well. Its basic structure is already described

in section 3.1.3.4. However, this basic transmission line model is adapted very often to the engineer’s

needs. For this reason, many modifications can be found throughout the literature. For modeling the

given FlexRayTM cables found in the TEODACS laboratory, a two-conductor transmission line model

was established and described with VHDL-AMS using SyAD R©.

Section 4.4.3 showed the measurement and calculation of the needed R, L, G, and C parameters,

representing a two-conductor cable having a characteristic impedance of 100Ω. Figure 4.6 outlines the

layout of the proposed cable model in SyAD R©.

Each conductor is modeled using a separate RLGC model described in a SyAD R© basic block. Each

basic block has five parameters:

• C_LINE – The line’s capacitance per meter

• G_LINE – The line’s shunt conductance per meter

• L_LINE – The line’s inductance per meter
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Figure 4.6: Transmission line pair in SyAD R©.

• R_LINE – The line’s resistance per meter

• LENGTH – The line’s length in meters

Using the lumped element model introduced in section 3.2.4.1, all constants are broken down to

1/100 of their initial value. Thus, one lumped element of the proposed cable equals 1 centimeter. This

poses a good tradeoff between simulation speed and accuracy: Assuming ideally modeled conditions,

considering signals of 10-80 MHz and a propagation speed of approximately 0.7 times the speed of

light [Joh02, p. 81] the resulting wavelength makes up to a few meters. So if it is possible, to model a

transmission line fulfilling these assumptions, a 20 MHz signal traveling along a 10.5 meter transmission

line, 1 signal period fits the length of the transmission line and needs to pass 1050 segments of the

RLGC model. This is considered enough to observe various effects of signal propagation in FlexRayTM

networks. In SyAD R©, both RLGC conductor models are placed within one composite model, having

two pairs of electrical ports.

4.4.2 Behavioral Model

The second cable model available is based on the work by [SHM01]. One VHDL-AMS model represents

one conductor of the twisted pair cable found in the TEODACS laboratory. For this reason, it is based

on the same five parameters as the RLGC variant, and has four electrical ports as well. Two conductor

models are placed in one composite model, replicating the desired behavior of the twisted pair cable.

Concerning the conductor models’ internals, eight quantities are used within the model, which could

be described as a reactive kind of model. Initially, thirteen constants are calculated, and during simulation

time eight equations are processed whenever necessary.

The cables’ length is also required to perform calculations. Similar to the RLGC model, a segmenta-

tion parameter is used to adjust simulation step size and precision. This behavioral model is characterized

by high simulation speeds, obviously due to the low number of VHDL-AMS quantities.

4.4.3 Parameter Extraction

Subject of this section is to determine all parameters needed for modeling of the given cables, used

in the laboratory’s setup. According to [JG03, p. 34], most important transmission line properties are

characteristic impedance, delay, high frequency loss and crosstalk.

Crosstalk refers to a common phenomenon, by which a signal traveling through one transmission

line causes an undesired effect in another transmission line running close to the first one. There are a

number of countermeasures to attenuate this effect, like twisting corresponding pairs at a different rate

within one cable and using a properly shielded cable. Crosstalk is not in focus of this work, for two

reasons. First, the mentioned countermeasures are usually effective enough nowadays, and second, the

laboratory’s setup does not include any multiple twisted pair cables.
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High frequency loss is an umbrella term used for a number of effects arising when higher frequencies

are applied to the transmission line. These include the Skin effect, the Proximity effect, surface roughness

and dielectric effects. Detailed descriptions of these aspects are available in [JG03], and are not discussed

within this work, for a number of reasons.

Nevertheless, the remaining two terms are quite important for modeling a transmission line in VHDL-

AMS. Characteristic impedance and delay are even closely related to each other. In order to extract

appropriate parameters from the laboratory’s cables for use in simulation models, some measurements

and calculations are needed. Most eminent parameter of a transmission line is undoubtful its character-

istic impedance, which denotes the ratio of voltage to current experienced by a signal traveling in one

direction along a transmission line [JG03, p. 39]. Considering the lumped element model introduced

in section 4.4.1, the series impedance z and the shunt admittance y are frequency dependent and can be

written as

z = jωL+R (4.3)

y = jωC +G (4.4)

Deriving the telegraphers equation using these complex valued variables, the expression for charac-

teristic impedance ZC becomes

ZC(ω) =

√

jωL+R

jωC +G
(4.5)

As described in [JG03, p. 43], in modern transmission lines G becomes almost zero, obviously

because of the used manufacturing techniques and materials. The R term tends to change with frequency.

However, R and G can be neglected at higher frequencies, because jωL and jωC are leading to a steady

plateau of impedance, which is almost constant at high frequencies. This fact allows us to terminate a

transmission line with a single resistor. Mathematically written,

Z0 , lim
ω→∞

ZC(ω) ≈
√

L

C
(4.6)

which is only valid between frequencies above the LC and Skin effect mode, and below the onset

frequencies of waveguide mode. In this region, the characteristic impedance is comparatively flat with

frequency, and Z0 becomes a single real value. The variable ZC is used for characteristic impedance as

a function of frequency.

The laboratory’s setup included cables designed for FlexRayTM networks, made by Kromberg &

Schubert [Kro07]. Those cables are characterized by a mean impedance of 100Ω ± 10Ω from 1MHz

to 50Mhz, at 10MHz the impedance is given with 100Ω ± 7Ω. Delay is given with less than or equal

to 6 nanoseconds per meter. Finally the conductor resistance amounts a maximum of 55.5 milliohm

per meter. The DC conductance G between both conductors is assumed to be fairly small, since very

small currents are driven through the well isolated cable. It is estimated to 1 nanosiemens per meter.

Therefore, only L and C are left to determine. Both are critical due to their dependence on frequency.

The upcoming calculations were already proposed by [ZK09], but repeated here due to the unknown

cables and measuring devices used during their experiments.

As already shown, the (slightly simplified) characteristic impedance Z0 is

Z0 ≈
√

L

C
(4.7)

By knowing one conductors’ delay ∆t for a given cable length l it is possible to calculate the signals’

propagation velocity. Using the longest available cable from the laboratory’s setup (11m), the signal

propagation delay along this conductor was measured 59.215 nanonseconds. Therefore,
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1

ν
=

∆t

l
=

59.215ns

11m
= 5.3832[ns/m] (4.8)

which confirms the datasheet by Kromberg & Schubert. Signal propagation velocity equals simply

the inverse of the delay, and allows the calculation of L and C, if the cables’ characteristic impedance is

known. Since the delay referred to one single conductor out of two, the cables’ characteristic impedance

has to be divided by two. By considering both conductors up and down the line, the overall characteristic

impedance works out to 100Ω, as documented.

1

ν
=

√
LC (4.9)

ν =
1√
LC

= 1.8576 · 108[m/s] (4.10)

Z0 =

√

L

C
= 50Ω ⇒ 2500C = L (4.11)

ν =
1√

2500C2
=

1

50C
(4.12)

C = 107.66363 · 10−12[F ] (4.13)

L = 269.15909 · 10−9[H] (4.14)

With the calculation of L and C, the estimation of G, and R out of the manufacturers datasheet, all

four parameters needed to setup an RLGC cable model are known.

4.4.4 Comparison RLGC vs. Behavioral Model

To compare both models initially described in section 3.1.3.4, two methods are used. The first method is

to compare the modeling itself and possible requirements of both types. Second, the validation against

laboratory measurements is important. By applying fairly basic network topologies, a confrontation

between both models against hardware measurements is inevitable. Additionally, simulation time is an

important criteria, when it comes to business applications.

Model Comparison and Computational Complexity Both cable models are based on the same fun-

damentals, the "Telegraphers’ Equations". The derived RLGC-model poses a convenient and well-

understood way of modeling an electrical cable. Whereas the RLGC model is made up of a number

of discrete elements, the behavioral model is made up of one single element. The only electrical compo-

nents representing a devices state are energy storing devices, like inductances or capacitances. VHDL-

AMS utilizes quantities to match this fact. Since a single lumped element of a RLGC model includes

one capacitance and one inductance per conductor, four quantities per segment are necessary. A twisted

pair, 10 meter cable model, featuring 100 segments per meter, therefore counts 2 · 2 · 1000 = 4000
quantities. Concluding, these will result in 4000 differential equations, which need to be solved over

time. The behavioral model consists of a total number of eight quantities and a total number of eight

recurring equations, which need to be solved and calculated over time. From the point of computational

complexity, the behavioral model causes considerably less efforts than the pure RLGC model.

Both models are represented in time domain, but the pure RLGC model may appear more intuitive

to the experienced engineer. Small changes to the model or even derivations of it are definitely easier to

accomplish using the pure RLGC model. In such a case, the behavioral model or a frequency-domain

based model would need to undergo a complete re-calculation, which might be difficult when using

more sophisticated higher-order transfer functions. Again, both models utilize the exact same set of

parameters, as described in section 4.4.1.
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Validation through Measurement Comparison The pure RLGC and behavioral cable models are

available in VHDL-AMS language and were ported to SyAD R©. To compare the performance of both

models and finally validate them, a few simple test benches were set up. For validation, the same test

benches were assembled using the hardware of the TEODACS FlexRayTM Xpert.Lab laboratory.

4.5 Topology and Test Bench Implementations

This section demonstrates and explains the network topologies used in SyAD R©’s test benches and the

laboratory. The overall idea is to generate simple topologies first, for transceiver behavior and cable

model validation. Based on these basic experiments, more sophisticated networks are constructed, using

the basic segments as some sort of building blocks.

4.5.1 Simple Topologies

The topologies, or even just network segments, shown in this section were used during the model ver-

ification process first. Fast simulating, yet demonstrating elementary physical effects, these structures

provided early simulation results.

Bus Driver Only This was used to verify the bus driver’s output voltage, in order to validate the

calculated results achieved in section 4.1. The only model used in this experiment was the bus driver,

with its bus interface connected to a variable load resistor. The stimulus was provided over the bus drivers

TxD interface, carrying the simple test signal as specified in section 4.3.1.

Figure 4.7: Bus driver in SyAD R© with a simple resistor load

Bus Driver, Short Circuit Cable In this setup, a single bus driver and one cable is used. One end of the

cable is connected to the bus driver, the other end is short circuit. The general idea of this configuration is

to ensure the interaction of the bus driver with the cable model. If the cable behaves in a correct manner,

any signal traveling down the line is reflected at the far end of the line and arrives back at the bus driver.

Basically, a proper termination matching the cables characteristic impedance avoids any reflections.

Put into physical words, a mismatched line is not able to absorb the arriving energy at its end, and the

only way dealing with this fact is to reflect the arriving wave. To calculate the proportion of energy being

reflected back along the cable we need to know the characteristic impedance Z0 and the terminating

impedance Zt [Joh02]. Therefore, the so called reflection coefficient ρ is expressed through

ρ =
Zt − Z0

Zt + Z0

(4.15)

An ideal short circuit cable has a terminating impedance of Zt = 0Ω. Thus,
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ρ =
0− Z0

0 + Z0

=
−Z0

+Z0

= −1 (4.16)

Since ρ has a range of [−1,+1], the entire energy is reflected at the short circuit end of the cable and

the occurring voltage drop across the short circuit cramp is canceled. The reflected signal arriving back

at the sender appears inverted, without any amplitude loss (except possible losses occurring within the

cable). Figure 4.8 shows the given setup. Using SyAD R©, a single wire primitive is used to establish a

short circuit, which means that VHDL-AMS is just connecting the two ports of the line’s end.

Bus driver

RT

cable length l

Figure 4.8: Bus driver with short-circuit transmission line.

Bus Driver, Open Circuit Cable This setup includes, just like the previously described one, a single

bus driver and one cable. One end of the cable is connected to the bus driver, the other end makes an

open circuit with Zt = α (infinitely high). According to the descriptions in the preceding paragraph, the

reflection coefficient ρ becomes

Zt = αρ =
α− Z0

α+ Z0

=
α

α
= +1 (4.17)

In this upper extreme case, the occurring voltage drop across the open circuit resistance works out to

a maximum. The reflected signal arriving back at the sender appears unmodified, without any amplitude

loss (except possible losses occurring within the cable). Figure 4.9 shows the given setup. Using SyAD R©,

a high impedance cable end can be expressed through a "high valued" resistor between both bus lines,

plus two optional resistors towards ground. Experience has shown that values in the order of magnitude

1.0 · 109 are sufficient.

Bus driver

RT

cable length l

Figure 4.9: Bus driver with open circuit transmission line.

Point to Point Connection The previous two setups described are only of scientific value. They do not

make any sense in terms of data transmission and are no valid FlexRayTM topologies at all. The setup

described in this paragraph already represents a valid FlexRayTM topology, containing two bus drivers

and one cable. According to the suggested termination strategy both cable ends need to be terminated,

in order to achieve good signal quality without reflections. Using termination elements matching the

cables’ characteristic impedance (Zt = Z0 = 100Ω), the reflection coefficient ρ becomes
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ρ =
Zt − Z0

Zt + Z0

=
100− 100

100 + 100
= 0 (4.18)

Bus driver

cable length l

Bus driver

Figure 4.10: Point-to-point connection with two bus drivers.

Thus, no signal reflection occurs at all. Figure 4.10 shows the discussed point-to-point topology. The

cables by "Kromberg & Schubert" used in the TEODACS laboratory are designed to meet FlexRayTM’s

recommendations. Their characteristic impedance is given with 100Ω plus some tolerance margin. The

termination elements available in the laboratory are build as introduced in 4.1.4, using two 47Ω resistors.

Therefore, the total terminating resistance sums up to 94Ω, which poses a mismatch to the line:

ρ =
94− 100

94 + 100
≈ 0.03 (4.19)

Rloss = 20 · log(0.03) = −30dB (4.20)

According to this solution, the mismatched line should have no severe impact on signal quality, a

reflection coefficient of just 0.03 seems to be practically negligible: Only three hundredth of the signals’

amplitude are going to be reflected. The return loss (Rloss) according to the formula presented in [Joh02]

amounts −30dB. Equation 4.20 shows the calculation.

4.5.2 Measurement Use Cases

Due to recent activities in the area of bus driver development and topology design, a measurement cam-

paign was organized in context of the TEODACS project. A number of project partners joined researchers

from The Virtual Vehicle Competence Center and Institute for Technical Informatics, Graz University of

Technology, like austriamicrosystems AG and University of Applied Sciences FH Joanneum Kapfenberg.

Goal of this arrangement was the validation of the proposed simulation environment, using the methods

described in section 2.2.2. In general, a FlexRayTM topology was set up in the laboratory and in the

simulation environment in parallel. By utilizing a FlexRayTM compliant oscilloscope by LeCroy, an ad-

ditional interface between both domains was established, complementing the previously mentioned tester

node. This way it was possible to exchange stimuli and outputs as well, allowing a direct comparison

between them. As stimulus, the earlier described simple test file and a number of FlexRayTM compliant

frames were used. To judge the results, two techniques were applied, explained later in chapter 5. The

upcoming paragraphs describe and reason the arranged topologies.

Topology 1: The first topology investigated consists of only two FlexRayTM nodes and five cables of

various lengths. Figure 4.11 shows the setup. On the left hand side of the network, the TEODACS active

star (number one) is used as a sender. It is terminated according to FlexRayTM’s recommendations using

a 2 · 47Ω split termination. An 11 meter cable leads to the first 0.2 meter stub line, which is connected

using a T-element. Another one meter cable extends to the second T-element, branching out the second

stub line of 0.3 meter length. Finally, a 10 meter cable leads to a Fujitsu FlexRayTM node, comprising
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the same bus drivers as the TEODACS active star (AS8220/AS8221, see section 2.3.4.3). The Fujitsu

node (number four) is terminated using the same split termination as the TEODACS active star. Both stub

lines remain open circuit in this setup. Besides these open circuit stub lines, this network complies to

FlexRayTM’s standards in cable length and termination.

TEODACS
Active Star

(Sender)

Fujitsu

Node
11.0 1.0 10.0

0.2

X X

0.3 M
easurem

ent

X

H

2x47 Ohm termination

2x24.85kOhm termination

open circuit cable

xx.x cable length [m]

Node 1 Node 4

(Node 3)

(Node 2)

Figure 4.11: Topology 1 schematics.

The signals sent using the TEODACS tester node number one were measured at the Fujitsu node

number four. In the simulation environment, sending and receiving nodes are only differing in their

drive, however both types include the same bus driver. This way the simulation environment matches the

hardware setup.

Since both stub lines are comparatively short, the signal integrity decrease because of reflections

should only be minimal. Both cable ends farthest away from each other are terminated, matching the

lines characteristic impedance.

Topology 2: The second topology represents a modification of "topology 1". All cable lengths remain

the same, including the two stub lines. However, the first stub line, which is of 0.2 meter length, is

connected to a second TEODACS active star (node number two). This node is terminated using a 2 · 47Ω
split termination. Figure 4.12 shows the network topology.

TEODACS

Active Star

(Sender)

TEODACS

Active Star

(Sender)

Fujitsu

Node
11.0 1.0 10.0

0.2

X

X

X

0.3 M
easurem

ent

X

H

2x47 Ohm termination

2x24.85kOhm termination

open circuit cable

xx.x cable length [m]

Node 1 Node 4

Node 2

(Node 3)

Figure 4.12: Topology 2 schematics.
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This network complies to FlexRayTM’s standards in cable lengths. It does not comply to FlexRayTM’s

specification with respect to termination or DC bus load. There are three termination elements present in

this topology, lowering the total DC bus load under the acceptable threshold. FlexRayTM’s specification

[Fle06a, p. 24] only allows a DC bus load between 40Ω and 55Ω. In order to calculate the DC bus load,

parasitic resistances are neglected, and the following formula applies for this basic parallel circuit, where

Rtm denotes each node’s total termination resistance:

RDCLoad =

(

∑

m

(RTm
)−1

)−1

(4.21)

=
1

1

94Ω
+ 1

94Ω
+ 1

94Ω

= 31.33Ω (4.22)

Therefore, we expect to see a decreased voltage level over correctly terminated topology 1. Besides

that, no significant decrease in signal integrity should occur. Since the first 0.2 meter stub line is termi-

nated matching the lines characteristic impedance, no reflections should occur from this branch. Again,

the leftmost TEODACS active star node number one is used as sender, whereas node number four by

Fujitsu acts as a receiver.

Topology 3: From now on, the rightmost part of the network introduced in the previous paragraphs is

in focus. The strategy was to modify the network successively, moving more and more towards an invalid

topology. By side-by-side comparison the simulation environment was validated against the hardware

setup.

This third topology basically represents a standard compliant FlexRayTM network. It is based on

topology 2, replacing the 2 ·47Ω split termination with a high resistive 2 ·24.85kΩ split termination. The

second 0.3 meter open circuit stub line remains open as in topology 2. Figure 4.13 shows the network

topology.

TEODACS

Active Star

(Sender)

TEODACS

Active Star

(Sender)

Fujitsu

Node
11.0 1.0 10.0

0.2

X

H

X

0.3 M
easurem

ent

X

H

2x47 Ohm termination

2x24.85kOhm termination

open circuit cable

xx.x cable length [m]

Node 1 Node 4

Node 2

(Node 3)

Figure 4.13: Topology 3 schematics.

Because of the high resistive termination at the first 0.2 meter stub line, we expect the network to

behave properly, keeping reflections at a minimum and signal integrity at a maximum level. The DC load

is within the specified range again:

RDCLoad =
1

1

94Ω
+ 1

94Ω
+ 1

24850Ω

= 46.91Ω (4.23)
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Using the second stub line on the right, which poses no correct FlexRayTM network structure of

course, the network is modified to disturb signal integrity.

Topology 4: This network topology basically represents a modification of topology 3 and extends the

stub line on the right in length but remains open circuit. The leftmost TEODACS active star node number

one still acts as a sender, whereas the Fujitsu node number four on the right hand side acts as a receiver.

A signal traveling across the network needs to pass a total of 22 meters of cable. The second stub line

was increased in length to 3.5 meter. The following considerations are viewed from the corresponding

splice or T-element.

Any signal arriving at this point from node one, extends in two directions: First, into direction of

node three (open circuit stub line) and second, into direction of node four. Assuming a signal propagation

time of approximately 5 nanoseconds per meter, any signal takes 17.5 nanoseconds to travel along the

3.5 meter stub line. At the end of this stub line, the signal will be reflected (ρ = +1) due to its open

circuit end.

TEODACS

Active Star

(Sender)

TEODACS

Active Star

(Sender)

Fujitsu

Node
11.0 1.0 10.0

0.2

X

H

X

3.5 M
easurem

ent

X

H

2x47 Ohm termination

2x24.85kOhm termination

open circuit cable

xx.x cable length [m]

Node 1 Node 4

Node 2

(Node 3)

Figure 4.14: Topology 4 schematics.

During that time, the original signal has traveled along 3.5 meter of the 10 meter cable to node four.

Now the reflected signal is running backwards along the stub line, whereas the signal traveling along the

10 meter line progresses normally. After another 17.5 nanoseconds, the reflected signal hits the splice

again, the original signal has passed 7 of 10 meters of cable at this moment. Concluding from these

considerations, a reflected wave is expected to arrive at node four, 7 meters or 35 nanoseconds later

than the original wave, disturbing signal integrity significantly more than the previously introduced 0.3

meter stub line, which caused a reflection to arrive at the point of measurement at node four after just 3

nanoseconds. The topology and the discussed behavior is illustrated in figure 4.14.

Topology 5: This final network topology is based on topology 4. Due to the limited choice of cables in

the laboratory, the 10 meter cable is exchanged with the 3.5 meter stub cable. All termination measures

remain in place, nevertheless, this network does not comply to FlexRayTM’s standards: The two nodes

farthest away from each other on one bus line are not terminated anymore, but the open circuit stub line

became unacceptably long. Figure 4.15 shows the network topology.

Considering the same assumptions as with topology 4, the first signal wave will arrive after 17.5
nanoseconds after passing the second splice at node four. At this moment, the wave propagating along

the 10 meter stub line still has 6.5 meter to go until it gets reflected at the open circuit cable end, and has

another 10 + 3.5 = 13.5 meter to go. It will arrive 20 meter or 100 nanoseconds later than the original
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Figure 4.15: Topology 5 schematics.

signal at node four. 100 nanoseconds correspond to one full FlexRayTM bit, so if the reflected wave is

superimposed with the original signal, it might have serious effects on signal integrity. Assuming the

worst case, it might even destroy the signal and render the network unusable.

Why does it make sense to set up a network topology which is not up to the specification? To

answer this question, methods from section 2.2 need to be recalled. We started our verification and

validation process with simple topologies, as explained in section 4.5.1. From network topology 1 to 5

we successively worsened the signal quality at node four. For this reason, signal integrity at node four

provides a nice indicator for confidence in the simulation environment. Additionally, it helps to answer

questions about the reliability of future network models, where a real hardware prototype would be too

expensive or even impossible to build due to limited resources.

4.5.3 Topologies with Active Star

The final topology presented in this work includes an active star. This test bench is used for a number

of reasons. First of all, it is a proof-of-concept implementation of an active star model, written in VHDL

and VHDL-AMS, demonstrating all characteristics of this FlexRayTM network element. Second, the

active star model is used to show the advantage of additional hardware efforts regarding signal integrity.

Another reason is to temporarily complete the range of available FlexRayTM elements in the simulation

environment.

Figure 4.16 shows a network with cable lengths similar to those of topologies 1 to 5. Basically, a

network engineer could replace the 1 meter interconnecting bus line cable with an active star, achieving

(almost) the same area of coverage. The additional hardware cost and occurring delay is compensated

with a refreshment of signal integrity on all branches of the active star. Each of the four point-to-point

connection type cables is terminated on both ends, therefore no harsh reflections are expected using this

topology.

An important property of an active star’s behavior is the delay it causes. This rather simple topology

is used to verify the implementation of the active star model. A number of characteristics are subject to

investigation, including:

• delays of positive and negative edges

• asymmetric delays

• idle-to-active signal truncation
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Figure 4.16: Active star topology schematics.

There are a number of additional parameters, however, almost all of them can be configured in a direct

or indirect way, primarily using the bus driver’s parameter set. According to the terminology of [Rau08],

this active star model corresponds to a discrete one, opposing a monolithic active star integrated in one

single circuit or model respectively. The timing constraints for monolithic active stars are slightly more

relaxed compared to those of discrete ones.

4.5.4 Other topologies

During research activities within the TEODACS environment, a number of more complex topologies

have been simulated as well: For example, 11 bus drivers, 17 cables and one active star were not a

problem at all, besides the increased simulation time (see section 5.2.1). However, these topologies are

just compound of basic topologies or clusters covered in the previous sections. Therefore, these network

architectures do not introduce any new concepts and their behavior can be analyzed by looking at single

clusters as well.
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Results

This final chapter provides all kind of results emerged from this thesis. Predominantly, these are various

electrical physical layer simulation results. Section 5.1 contains such results. The bus driver model

is validated in section 5.1.1, together with cable models and some other components. Once all these

models are validated, they were used to build whole topologies. The outcome of these experiments is

documented in section 5.1.2 for bus line topologies, and in section 5.1.3 for active star topologies. After

the introduction of these results, they are discussed in section 5.2: Simulation speed and observability

are commented in sections 5.2.1 and 5.2.2, respectively. Network engineers and designers might be

interested in section 5.2.3, where the credibility of the simulation framework is explained. In connection

with that, the behavior of the simulation’s signal integrity is investigated. Finally, some non-modeled

properties are discussed in section 5.2.4.

5.1 Simulation & Validation Results

5.1.1 Bus Driver & Simple Topologies

The parameters determined for bus driver simulation are listed in table 5.1. v_RxD_L and v_RxD_H are

used to set digital voltage output levels, which is important whenever a received data stream is passed on

across one or more bus drivers, e.g. a discrete active star. Both values were determined by measurement

and set accordingly. v_CC_plus and v_CC_minus are factors, which act as multipliers for Vcc

to achieve DATA_0 and DATA_1 bus voltages. According to [CIS09], t_uv_recover controls the

"undervoltage recovery detection time", and t_sleep specifies the "sleep mode timeout". As described

earlier in section 4.1.3, stability_time is used to adjust the receiver’s sensibility to input changes.

Most important, r_open and r_closed are used for internal voltage bridge dimensioning.

Parameter Unit

v_RxD_L V

v_RxD_H V

v_CC_plus 1

v_CC_minus 1

t_uv_recover s

t_sleep s

stability_time s

r_open Ω
r_closed Ω

Table 5.1: Bus driver model parameters.

By adjusting these parameters, the simulation setups introduced in section 4.5.1 led to table 5.2,

64
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showing the resulting output voltages of the bus driver’s BP and BM ports, including the differential bus

voltage.

R_l[Ω] Ulow[V ] Uhigh[V ] ∆U [V ]

10 2.26 2.49 0.23

47 1.94 2.82 0.88

100 1.66 3.10 1.44

150 1.49 3.27 1.77

220 1.34 3.42 2.08

470 1.05 3.71 2.66

1000 0.86 3.90 3.03

Table 5.2: Bus driver simulation output voltage.
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Figure 5.1: Bus driver output voltages.

Comparing these values with table 4.1 from section 4.1.4 leads to figure 5.1. Note the logarithmic

scale of the abscissa. The average difference between simulation and measurement of ∆U is just 0.16
percent. The DC load of a properly terminated FlexRayTM network makes up to 47Ω, the deviation

at this point is 0.07 volts or 7.47 percent. Additionally, the same setup was used in connection with

a 40Ω||100pF load, as suggested by [Fle06a, p. 57]. The absolute value of the differential bus voltage

should range between 600 and 2000 millivolts, the simulated absolute value was exactly 776.7 millivolts.

All other transmitter characteristics can be configured directly via model parameters and are not revised

at this point. The bus driver is considered to be validated sufficiently at this point for further simulation

experiments.

At this point the simulation result of one of the previously introduced simple topologies (4.5.1) is

given, where a single bus driver is connected to an 11 meter open circuit FlexRayTM cable. The simple

test file of section 4.3.1 is used as stimulus for the given setup. Figure 5.2 shows a direct comparison



CHAPTER 5. RESULTS 66

-3

-2

-1

 0

 1

 2

 221.003  221.004  221.005  221.006  221.007

V
o
lt
a
g
e
 [
V

]

Time [ms]

Pulses on 11m open circuit cable

Measurement
Simulation

Figure 5.2: Simple test file on an 11m open circuit cable.

between simulation and hardware measurement. The first 50 nanoseconds pulse is traveling from the bus

driver to the open circuit cable end, becomes reflected due to the implicit high-impedance termination,

and travels back to the bus driver. The last and rightmost 125 nanoseconds pulse has a sufficient length

to superimpose the pulses traveling back and forth. This case needs to be avoided at any time.

The resulting waveforms have a correlation coefficient (see next section) of 0.9728. The rising and

falling edges are matching very good, however the stable voltage levels are visibly differing. We sus-

pected the hardware bus driver to implement an unknown mechanism causing this effect.

5.1.2 Bus Line Topologies

As introduced in section 4.5.2, five bus line network topologies were simulated and measured in parallel,

to observe the changes in signal integrity under various circumstances.

5.1.2.1 Topology 1

Figure 5.3 shows two overlaid signals, one created through simulation, the other one measured using

an oscilloscope. It shows that both lines match very well in general. Figure 5.4 shows a crop of ap-

proximately 2.5µs of the frame shown in figure 5.3. Validation through visual inspection shows good

correlation between both signals.
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Figure 5.3: Topology 1: Complete FlexRayTM frame

It can be seen, that the simulated signal captured at node number four tends to overshoot slightly,

compared to the measured signal. The rising edges of both signals differ slightly (10ns versus 22ns
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at 20% to 80%), with the simulated signal having the steeper rising edge. During the measurement

campaign, the hardware setup was expected to deliver worse signal integrity than simulation. This was

justified with environmental influences caused by the laboratory’s test setup and measurement devices,

which are not present in the simulation environment.

Both open stub lines are too short to have an impact on signals measured at nodes number one and

four. As explained in [Kup07] and [JG03], these stub lines are considered to be electrically short, because

their length is well below one quarter of the signals wavelength:

c = 3 ∗ 108m/s (5.1)

f = 10 ∗ 106Hz (5.2)

λ = c/f =
3 ∗ 108
10 ∗ 106 = 20m (5.3)

0.3 <
1

4
∗ λ (5.4)

The generated 10-bit eye diagram (figure 5.5) clearly shows that signal integrity is very good and

all bits within the frame are far above or below their critical threshold values. The average asymmetric

delay for DATA_1 was −0.86ns, and −0.51ns for DATA_0. This bus line topology has no critical cable

lengths and is terminated correctly, therefore it is no surprise to see such satisfying results.

In order to specify a metric for the similarity of two different waveforms, the pearson product-

moment correlation coefficient, also known as sample correlation coefficient [Bro87], is calculated as

rxy =

∑n
i=1

(xi − x)(yi − y)
√
∑n

i=1
(xi − x)2

∑n
i=1

(yi − y)2
(5.5)

Values of rxy close to 1.0 indicate a close correlation between the samples of x and y. On the

other hand, values close to 0.0 indicate a low or nonexistent correlation between the samples of x and

y. Practically, values smaller than 0.8 already indicate a low correlation. The calculated correlation

coefficient of the complete FlexRayTM frame shown in figure 5.3 is 0.9444. The chosen bit sequence of

figure 5.4 correlates even better with a value of 0.9909.
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Figure 5.4: Topology 1: FlexRayTM frame crop
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Figure 5.5: Topology 1: Eye diagram

5.1.2.2 Topology 2

This network topology is remarkable because of its redundant termination at node number 2. The com-

parison of a full frame is shown in figure 5.6, the signals were transmitted from node number 1 to node

number 4. The additional split-termination causes the overall DC bus load to decrease. Thereby, bus

voltage drops to a visible lower level, as a detailed crop shows in figure 5.7. It is also possible to interpret

this behavior as an unexpected low-impedance connection between both bus lines BP and BM. In this

section, the resulting digital signal at the bus driver’s RxD port is also included. The direct comparison

between simulation and measurement (figure 5.8) shows that the voltage drop does not affect the digital

signal output yet. The correlation coefficient of the complete FlexRayTM frame shown is 0.92, and of the

frame detail even 0.9887. The captured digital signal correlates with a value of 0.994 to the simulated

signal.



CHAPTER 5. RESULTS 69

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

220.280 220.285 220.290 220.295 220.300 220.305 220.310 220.315

V
o
lt
a
g
e
 [
V

]

Time [ms]

Topology 2 simulation and hardware output

Measurement
Simulation

Figure 5.6: Topology 2: Complete FlexRayTM frame

However, the difference between the stabilized DATA_1 level (around 600 millivolts) and the cor-

responding FlexRayTM specific threshold (225 millivolts) is rather small. The time between those two

critical points is just 6 nanoseconds, so any additional short circuit or unexpected capacitance might

have a serious impact on signal integrity of this topology. A look on the 10-bit eye diagram in figure 5.9

underlines this observations. All bits are still transferred and recovered correctly, however, the gap to

FlexRayTM’s minimum requirements became smaller.
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Figure 5.7: Topology 2: FlexRayTM frame crop
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Figure 5.8: Topology 2: Digital signal comparison
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Figure 5.9: Topology 2: Eye diagram

5.1.2.3 Topology 3

A complete FlexRayTM frame captured at node 4 of topology 3 is shown in figure 5.10. A more detailed

crop is shown in figure 5.11. Overshooting of the simulated signal decreased. Still, the simulated signal

has slightly steeper edges, carrying higher frequencies than the measured signal.
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Figure 5.10: Topology 3: Complete FlexRayTM frame

Signal integrity is very good, as the 10-bit eye diagram shows in figure 5.12. The 0.3 meter open

circuit stub line is too short to have any visible impact. It is worth to note that these results are very

similar to those of topology 1, proving that an open circuit stub line has the same impact on signal

integrity than a high-impedance termination or receiving bus driver. The correlation coefficient of the

complete FlexRayTM frame is 0.9465, and of the frame detail even 0.9922.
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Figure 5.11: Topology 3: FlexRayTM frame crop
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Figure 5.12: Topology 3: Eye diagram

5.1.2.4 Topology 4

The simulation and measurement results of topology 4 show the arising problems with long stub lines.

A complete frame transmitted from node 1 to node 4 is shown in figure 5.13. Due to the positive signal

reflection (ρ = 1) at the end of the 3.5 meter open circuit stub line, the reflected signal reaches node

number 4 with a small delay. At a signal propagation time of 5.5 nanoseconds per meter, every reflected

signal edge reaches node four 5.5 · 7 = 38.5 nanoseconds later than the original signal, causing some

ripple as figure 5.14 shows. In this topology, the reflected rising edge interferes with the original rising

edge in the area of approximately +0.3 volts. The FlexRayTM specification defines the threshold for

rising edge analog-to-digital conversion typically at +0.225 volts. Therefore, the bus driver’s switchpoint

might be delayed or, much worse, the digital signal might contain unwanted peaks. In this example,

digital signal recovery is still working at an acceptable level. The digital signal only contains a minor

asymmetric delay of 10 nanoseconds. Figure 5.15 shows a direct comparison between the measured and

simulated digital signal at the receivers RxD port. The resulting 10-bit eye diagram is shown in figure

5.16. The correlation coefficient of the complete FlexRayTM frame is 0.9712, of the frame detail even

0.988. The simulated and measured digital signals match with a value of 0.9765.
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Figure 5.13: Topology 4: Complete FlexRayTM frame
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Figure 5.14: Topology 4: FlexRayTM frame crop
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Figure 5.15: Topology 4: Digital signal comparison
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Figure 5.16: Topology 4: Eye diagram

5.1.2.5 Topology 5

Topology 5 represents an invalid network architecture, either by termination or maximum cable length.

Similar to topology 4, the signal reflected by the open circuit stub line (node number 3) hits node number

4 with a delay. Again, the signal propagation time is considered with 5.5 nanoseconds per meter, and the

additional length caused by the stub line is 2 · 10 meter. Therefore, the reflected signal is approximately

110 nanoseconds late, which corresponds to more than a single bit duration at 10 Megabits per second

of bandwidth.

A complete frame transmitted from node number 1 and captured at node number 4 is shown in

figure 5.17. The differential bus signal at node number 4 experiences heavy distortion, as figure 5.18

shows. This has immediate effects on signal integrity. Figure 5.19 shows a direct comparison between

the measured signal from the corresponding hardware setup and the simulated signal at node number 4.

Additionally, the network stimulus sent at node number 1 is included for reference. Of course, it was

shifted in time to eliminate the propagation delay and make an easy comparison by visual inspection

possible.
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Figure 5.17: Topology 5: Complete FlexRayTM frame

One can see that the measured signal is definitely worse than the simulated signal, leaving out some

entire bits. The simulated signal still switches according to the stimulus, where the measured signal

remains stable. Nevertheless, the digital thresholds are not correctly triggered anymore and the resulting

bits experience asymmetric delays. The worst asymmetric delay within the simulated frame was 44.0
nanoseconds. The generated 10-bit eye diagram in figure 5.20 visualizes these problems as well. As

explained earlier, these results match expectations, because the simulated signal is assumed to behave

"better" than the measured one.
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Figure 5.18: Topology 5: FlexRayTM frame crop

As in the previous sections, the correlation coefficients were calculated for this topology as well. The

complete FlexRayTM frame simulation matches the measurement at a value of 0.9506, the frame detail

reaches even 0.9847. The comparison between the resulting digital signals just reaches 0.5877, for the

reasons discussed in the previous paragraph.
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Figure 5.19: Topology 5: Digital signal comparison
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Figure 5.20: Topology 5: Eye diagram

5.1.3 Active Star Topology

In this section the simulation results of the simple active star topology from section 4.5.3 are reviewed.

First of all, the proposed active star works as expected. Its internal state changes, depending on the

operation phase. All signals received at branch one are passed on to the other three branches. A slight

TSS truncation can be observed, its concrete value depends on the bus driver’s configuration (analog-

to-digital and digital-to-analog delays, threshold voltage configuration, etc.). In connection with that,

the stability_time bus driver parameter was introduced in order to model the integrated circuit’s

response time and signal transition behavior.

During experiments with the simple test file introduced in section 4.3.1, it has shown that the re-

ceiving bus driver skipped the first low-amplitude 50ns pulses. The same behavior was observed in the
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laboratory as well. The incoming pulse is simply too short to charge all (parasitic) capacitances and

toggle the digital output. For this reason, an active star works as a low-pass or peak filter, and therefore

does not distribute such faulty signals. This behavior is illustrated in figure 5.21.
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Figure 5.21: Active star simple test file stimulus and response

Similar to disturbing peaks, a network may suffer from erroneous termination, cable lengths, or other

unforeseen interferences, as described in previous setups (see section 4.5.2). Thus, it is a good reason to

include an active star in a given FlexRayTM communication network, to separate different branches into

independent clusters and increase the system’s overall reliability.

5.2 Discussion of Results

This section discusses and analyses the achieved results from the previous sections. At this point, meta-

information is our matter of interest. Simulation speed, observability, simulation credibility and non-

modeled properties are discussed to complete the entire picture.

5.2.1 Simulation Speed

For industrial applications, simulation speed is an important issue. If a measurement task can solve

a problem, simulation might represent an unnecessary overhead. However, this requires that specific

hardware is available, which is not always the case in research and development departments of the

automotive industry, in most cases due to high cost. Reasons for the effectiveness of simulation have

been outlined in section 1.2.

The main question is, how fast can a specific problem be analyzed, to get the wanted solution or

required information in-time? To answer that question, detailed identification of the problem is necessary.

This helps to choose an appropriate layer for simulation tasks. Usually, analog level simulations are

slow but provide great level of detail. Considering the same simulated time and input data, sample

level simulations are faster, due to the decreased range of values. Bit level, frame level and signal level

simulations are even faster, but their level of abstraction increased as well. A related work emerged of the

TEODACS project, exploiting this situation and optimizing overall simulation performance is presented

in [KAS09]. The models and simulations presented in this thesis were captured mostly on the analog

level (waveforms, signal integrity), parts of it on bit level (active star logic). Interfaces to higher levels

do exist by design of the TEODACS project 2.3.4.1.
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Bus

drivers

Active

stars

Cable

models

Total cable length

[m] 1cm/section

Topology notes Time

1 0 0 0.0 variable ohmic load only 1min 1sec

1 0 1 11.0 (behavioral) 100Ω terminated 1min 14sec

1 0 1 11.0 (structural) 100Ω terminated 1h 35min

4 0 5 25.8 (structural) bus line topology 7h 10min

4 1 0 0.0 active star testbed 55min

4 1 4 24.8 (structural) active star topology 1d 5h 31min

11 1 17 44.0 bus lines, passive star,

point-to-point

2d 14h

Table 5.3: Simulation speeds of various models and test benches.

Table 5.3 shows typical simulation speeds experienced during various experiments of this thesis. In

all cases, the simulated time was 300 milliseconds, where 221 milliseconds were needed for bus driver

startup. After that time, the network’s data transmission (and desired stimulation) started. The stimulus

file contained four FlexRayTM compliant frames, each lasting 25µs. Including idle times, the overall

signal lasts approximately 145µs. In case of larger network topologies, the network startup time is not

negligible at all and simulation may take longer as expected. In theory, this initialization time could be

optimized to reach the beginning of data transmission earlier. Nevertheless, larger intervals allow easier

debugging and better observability of bus driver internals. Of course, if only one single frame is enough

for replay-based experiments, it is possible to stop the running simulation task much earlier. During these

experiments, all bus drivers were equipped with a 2x94Ω split termination and a common mode choke.

All in all, the cable model was found to be the critical factor in this thesis’ models and test benches.

Due to different cable modeling (see section 4.4.4) differences in simulation time do exist. Although

the behavioral model simulates faster in most cases, especially for long lines, the structural model was

still preferred. One advantage thereof is the possibility to trace a signal at any point on the line. This

segmented approach would also be convenient in fault-injection scenarios.

Concerning the available computational power, the SyAD R© server ran on top of a 2 · 2.4 GHz "Core

2 Duo E6600" machine with 2 GB of RAM, the corresponding client was installed on a Pentium 4

processor with 2.4 GHz clock frequency and 1 GB of RAM. For simulation tasks however, only the

server’s performance is crucial. A fast client platform may be helpful during the model and test bench

composition phase.

5.2.2 Observability

Although using an intellectual property module, its internal state variables and quantities are observable

through the simulator. As already described in the previous section, the structural cable model was found

to provide better observability, due to the more intuitive segmented modeling approach. The active star’s

state and digital signals are completely traceable as well. Using EZwave waveform viewer, it is possible

to investigate all variables, signals and electrical quantities in a well-arranged way. All in all, it is safe to

argue that all modeled FlexRayTM Xpert.Sim variables, signals and quantities are perfectly observable.

5.2.3 Simulation Credibility

This term was chosen to rate the overall performance of the simulation environment FlexRayTM Xpert.Sim

in a qualitative way. All results and experiences learned during the compilation of this thesis are influ-

encing this expression. Therefore, it is not a single snapshot, but much more some kind of long-time

observation.

Throughout this thesis, it is shown that all models are written correctly and generate their desired

output. This corresponds to the process of model verification. Additionally, all models involved have
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shown to be validated, because their output matches a dedicated real-world behavior. However, the in-

teresting question is: How good do these models reproduce overall trends and tendencies, when small

changes are made to the system? This can be answered by looking at certain unique events, experienced

during simulation runs. For instance, signal reflection in cables is an effect, which occurred on a reliable

and predictable basis. Voltage drops due to low DC-load and over-termination occurred in a determin-

istic way as well. Concerning signal related properties, it has shown that the FlexRayTM Xpert.Lab

hardware environment has some additional properties which are currently not present in the simulation

environment. Discrimination thresholds for example, acting as some kind of peak or glitch filter, or better

signal integrity due to higher signaling frequencies. For a detailed description of non-modeled effect, see

section 5.2.4.

This basic idea of simulation credibility was extended in [KCA+10]. In this submitted publication

a validation matrix is introduced, opposing two independent, but significant simulation parameters. By

executing different experiments, a validation matrix is set up, allowing to draw conclusions from non-

validated areas of the matrix.

All in all, simulation credibility has shown to be established. The most significant properties of

FlexRayTM’s hardware electrical physical layer are mapped to the simulation environment. General

trends and tendencies in the area of signal integrity are visible and comprehensible.

5.2.4 Non-modeled Properties

During research in the area of automotive electronics, transmission lines and twisted pair wires, several

physical effects were identified which likely contribute to the overall signal integrity behavior. Some of

them are mentioned at this point.

• Skin Effect: As described in [SW98] or [ZSF+08], the well known skin-effect appearing during

the use of transmission lines cannot be neglected. Basically, high frequencies are attenuated too

much, whereas low frequencies are passing conductors in an almost undamped way. This can have

severe impacts on signal integrity, as the skin-effect increases with frequency. Its name is derived

from the property, that electric current tends to flow at the "skin" of conductors. The authors

of [GJDP08] also describe the need for skin-effect modeling in order to do research in the area of

automotive electro-magnetic emissions.

• Eddy Currents: The electric alternating current flowing at the conductor’s skin is mainly caused by

eddy currents. This effect is described in [JG03]. Both effects, the skin-effect and eddy currents

were not modeled nor investigated within this thesis. However, both might have an impact on

signal integrity, though.

• Environmental Issues: The automotive environment can be harsh, as introduced in section 1.2.

Nevertheless, measurements in the FlexRayTM Xpert.Lab environment have shown that any pieces

of metal around a transmission line are acting as a natural low-pass filter. A typical car, predomi-

nantly built of metal, encloses all cables and electronics. Because of that, simulation models often

showed slightly better signal transmission behavior than physical hardware: Steep edges and sharp

overshooting are considered to result from these observations. In order to overcome these prob-

lems, an additional filter capacitor was applied at the BP and BM ports of the bus driver simulation

model. The specification describes such a filter capacitor as well, but as measure for electromag-

netic compatibility. Depending on the networks topology, capacitor values between 150pF and

400pF trimmed the resulting signal to look like its hardware counterpart. However, this can be

considered as a workaround solution, and therefore still remains as a non-modeled property.

• Connectors: The influence of any connectors or plugs involved in the FlexRayTM Xpert.Lab (and

therefore Xpert.Sim) environment was completely disregarded in this thesis. An arbitrary con-

nector or plug has different properties than the used conductor. Additional parasitic capacitances,
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inductances and resistances considered in the simulation environment might have a small, yet

simulation-improving impact on signal integrity analysis.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis deals with modeling, simulation and validation of FlexRayTM physical layer components in

the TEODACS environment. Modeling of automotive networks and components is considered to be a

challenging topic. Based on a number of problems, TEODACS tries to enhance the process of automotive

network engineering and offers a whole new perspective, together with a sophisticated architecture.

Basic principles of modeling and simulation were used to prepare behavioral and structural models.

Advanced concepts were introduced to generate larger, more complex models, like the active star. For

this particular model, existing modules had to be re-used, extended and enhanced. The FlexRayTM

Xpert.Sim co-simulation environment eased the integration of analog and pure digital models. To ensure

the credibility and usability of each model evolved, the process of verification and validation gained

special attention. The TEODACS platform provides concepts and appropriate interfaces for these tasks.

The proposed multilayer approach has proven to work as expected, within the FlexRayTM Xpert.Sim and

Xpert.Lab environments, as well as between them. The generation of appropriate stimuli for various tests

also exploited this advantage of the TEODACS platform, enabling insightful tests.

SyAD R© has proven to be an ideal co-simulation platform software. It supports a number of very

important hardware- and system-description languages, which are relevant to the automotive industry.

Furthermore, it supports various state-of-the-art modeling paradigms: Structuring, reusability or param-

eterization to name a few.

All in all, this thesis shows that a reliable and credible simulation of automotive networks is pos-

sible using the TEODACS architecture. The gained results underline the importance of physical layer

simulation: Many effects happening on the physical layer are becoming evident on higher layers of

communication. Thus, extensive knowledge of the underlying communication system is indispensable.

Two publications have emerged from this thesis, which were accepted at two scientific conferences.

[KKS+10] deals with the overall FlexRayTM Xpert.Sim simulation environment, from top-level software

components down to bottom-level waveforms transmitted on electrical cables. For this reason, that work

underlines a holistic approach to manage the fast-increasing system complexity. [KCA+10] has a strong

focus on signal integrity. On the electrical physical layer, a large number of parameters is affecting the

shape of the resulting waveforms and the interpreted quality thereof. That work discusses the entire

TEODACS test approach and validation process, introducing a new method for analysis and evaluation of

signal integrity in FlexRayTM networks.

6.2 Future Work

Concerning the TEODACS project, all major goals have been reached and the co-simulation and hard-

ware prototype platforms were completed as intended. Nevertheless, this section mentions some ideas

81
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for further improvement of the entire TEODACS platform. Most of them are aimed at the Xpert.Sim

environment.

6.2.1 Workflow Enhancement

This thesis and the overall topic of automotive network simulation has a strong relation to the automo-

tive business. To make these results accessible for business use, the overall workflow, especially the

interaction between the used tools, should be enhanced to ensure an integrated development and test

environment. The output of this work would be a perfectly usable development process, ready for de-

ployment in the automotive business.

6.2.2 Improve Simulation Accuracy

Currently, the simulation environment provides sufficient accuracy for network analysis and validation

tasks. Modeling of currently non-modeled properties, as discussed in section 5.2.4, could improve accu-

racy, simulation credibility and overall performance of the simulation environment even more.

6.2.3 Improve Simulation Speed

Simulation speed is always an issue, especially for business use. There are many improvements possible:

The most obvious one, higher CPU power, might appear naive. But in most cases, a hardware upgrade is

a valid, yet expensive, option. ADVANCEMSTM and SyAD R© already support parallelization, however,

those features have not been fully deployed within TEODACS yet.



Nomenclature

AC alternating current

ADC analog to digital converter

AS active star

BM bus minus

BP bus plus

BSS byte start sequence

CAN controller area network

CC communication controller

DAC digital to analog converter

DC direct current

ECU electronic control unit

EMC electro-magnetic compatibility

ESD electro-static discharge

FES frame end sequence

FPGA field programmable gate array

IP intellectual property

LIN local interconnect network

MOST media oriented systems transport

MSR Messen-Steuern-Regeln

OEM original equipment manufacturer

OSI open systems interconnect

PC personal computer

PCB printed circuit board

TSS transmission start sequence
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