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by (8-65) and (8-92), since V == Vc and hence (V - Vc )/2R is very nearly zero; and 
Bis associated with the factor 27r and not 47r, as (8-76) shows. 

8.3 Inverse Problems in Isostasy 

Consider Pratt's model (sec. 8.1.1) . The compensation takes place along vertical 
columns; this is loeal eompen3ation. There is a variable density contrast t::.p given 
in terms of elevation h by (8-3). The corresponding isostatic gravity anomaly t::.gI 

(8-37) will in general not be zero, partly because of imperfections in the model. The 
inverse problem consists in trying to make 

t::.gI == 0 (8-113) 

by determining a 3uitable dütribution t::.p( z) 0/ the den3ity anomaly in each vertical 
column. 

On the other hand, consider isostatic models of Airy and Vening Meinesz type. 
Here the density eontrast t::.p is eon3tant, but the Moho depth T is variable, depending 
on the topography locally (Airy) or regionally (Vening Meinesz) in a prescribed way 
(now T and Ta are again used in the sense of sec. 8.1!). Here the inverse problem 
would consist in making t::.gI zero by determining a suitable variable Moho depth T 
for a prescribed constant density contrast t::.p, which need not be 0.6 g/ cm3 but can 
be any given value between 0 and 0.7g/cm3 (say). 

Rather than making t::.gI zero, we may also prescribe the Bouguer anomaly field. 
This amounts to the same since by (8-37), t::.gI = 0 implies 

(8-114) 

So the problem is in fact: given Ac, to determine the compensating masses that 
produce it. In the inverse Pratt problem this is done by seeking an appropriate 
density contrast t::.p, in the inverse Vening Meinesz problem this is achieved by suitably 
selecting the Moho depth T. Thus we have genuine inverse problems (with given 
constraints) in the sense of Chapter 7 (cf. also Barzaghi and Sanso, 1986). 

8.3.1 The Inverse Pratt Problem 

The basic paper is (Dorman and Lewis, 1970) . Consider a column defined by fixing 
the spherical coordinates (0, )..); the column extends from the earth's surface radially 
to the earth's center (theoretically : this corresponds to D = R in sec. 8.1.1). In each 
column t::.p is a function of the radius veetor r (or of depth), which accounts for the 
functional dependence 

t::.p = t::.p(r, 0, )..) (8-115) 

One assumes t::.p to be linearly related to the topography (height h) bya "convolution" 

t::.p(r' , 0' , )..') = II h(O/l , )../I)K(r', 7jJ')du (8-116) 

h 

IV 

to 
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where the "kernei" K, as far as dependence on 0, ). is concerned, is isotropie: it 
depends only on the spherical distance .,p', where 

COS.,p' = cos ()' cos 0" + sin ()' sin ()" cos()." - ).1) (8-117) 

between the points (0' , N) and (0", ).") on the unit sphere (Fig. 8.14); the author 

(T' ,fJ', A') 
joT ßp 

(O"Y') joT h 

FIGURE 8.14: Various points on the sphere that playa role in the theory of Dor­
man and Lewis 

apologizes for the clumsy notation with primes and double primes. Furthermore, K 
depends on depth through the radius vector r'. (The concept of "kernei" used here 
is, of course, completely different from that in sec. 7.2!) 

Symbolically we may write the convolution (8-116) in a standard way as 

ßp(r' , ()I, ).1) = h«(}", ).") * K(r' , .,p') or ßp = h * K (8-118) 

Eq. (8-116) is the exact spherical analogue of the farniliar one-dimensional convo­
lution on the line 

00 

f(;c') = ! h(;c")K(;c' - ;c")d;c" or f = h * K 

where 1;c'-;c"1 denotes the distance between the points;c' and;c" and thus corresponds 
to the spherical distance 'I/J'. 

Now the potential of the compensating masses at a point (r, (), ).) is represented 
by Newton's integral (1-1): 

Vc(r, (), ).) = G I!! ßP(r
l

/, ).') dv (8- 119) 
earth 
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and the corresponding attraction by 

Ac = - 8;C = III D(r', ~)ßp(r', B', A'):~ (8-120) 
earth 

where 

(8-121) 

as given by (8-64), with rp and r replaced by r and r'j ~ is shown in Fig. 8.14, and, 
of course, du refers to the point (B", A"). The dependence of Don r is eliminated by 
computing Vc and Ac at a point at sea level for which 

r = R = const. 

With 

dv = r'2dr'du , 
dv , 
- = dr du 
r t2 ' 

which is (8-41) in the present notation, we get 

R 

Ac(R, B, A) = II I D(r', ~)ßp(r', B', A')dr'du 
q 1"=0 

R f ßp * D(r', ~)dr' 
1"=0 

using the convolution symbolj cf. (8-116) and (8-118). 
Now we substitute (8-118): 

R 

Ac(R, 8,.\) = J h * K(r\ ~') * D(r', ~ )dr' 
1"==0 

or, since h = h( B", '\") does not depend on r', 

R 

Ac(R, B,.\) = h(B", .\") * J K(r', ~') * D(r', ~)dr' 
1"=0 

We define the üoatatic reaponae function F by 

R 

F(~") = J K(r', ~') * D(r', ~)dr' 
1"=0 

Writing here the convolution integral explicitly, we have 

R 

F(B, .\j B", .\") = J JJ K(r', ~')D(r', ~)dudr' 
1"=0 a 

(8-122) 

(8-123) 

(8-124) 

(8-125) 

(8-126) 

(8-127) 
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with (8-117) and 

cos'IjJ = cos 0 cos 0' + sin 0 sin 0' cos()..' - )..) 

Further, by Fig. 8.14, 

cos 'IjJ" = cos 0 cos 0" + sin 0 sinO" cos().." - )..) 

In fact, F depends only on this spherical distance 'IjJ" between the points (0, )..) and 
(0", )..") for reasons of symmetry. (To see this, regard, for amoment, (0, )..) and 
(0", N') as fixed and the point (0', N), to which du in the above convolution integral 
refers, as moving freely all over the sphere.) Then (8-126) becomes 

Ac(R, 0, )..) = h(O", )..") * F('IjJ") 

To simplify the notation, we finally replace (0", )..") by (0', N), which is possible 
because, ultimately, both are not hing else than notations for a point that is freely 
variable on the sphere. We thus obtain 

Ac(R, 0, )..) = h(O', )..') * F('IjJ) (8-128) 

since'IjJ denotes the spherical distance between the points (0, >') and (0', N) as ex­
pressed by the eosine theorem above. 

Given Ac and the topographie height h, the isostatic response function can be 
determined by "deconvolution". 

Remember the two basic assumptions underlying the theory of Dorman and Lewis: 

1. linearity in h; see eq. (8-116) but note that even Pratt's formula (8-3) is only 
approximately linear; cf. eq. (8-151) below; 

2. üotropy; see again (8-116). 

Let us also stress the difference with respect to the simple Pratt model: there, ßp = 0 
from r = 0 to r = R - D and constant in each column from r = R - D to r = R, 
whereas now the density contrast ßp within each column is a function of r. 

Deconvolution. The problem is to solve the convolution equation for the isostatic 
response function F( 'IjJ). Dorman and Lewis (1970) perform this "deconvolution" 
first in the plane approximation, which is quite natural if the problem is considered 
local. This involves Bessel functions and Hankel transforms and would thus require 
mathematical tools not used in general in this book. 

It is more in keeping with the spirit of the book to consider the original spherical 
global problem, which can be solved by means of our usual spherical harmonies. 

In the spectral domain, convolution of two functions simply me ans multiplication 01 
the corre&ponding &pectra; cf. (Papoulis, 1968, p. 51; Hofmann-Weilenhof and Moritz, 
1986, p. 236). This is very weil known for the infinite line, where the spectral domain 
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is also the infinite line. What one is often less aware of, is the fact that the spectral 
domain in the case of the sphere consists of the discrete points 

n 
m 

0, 1, 2, 3, 4, 5, .. . 
-n, -n + 1, ... , -1,0,1, ... , n - 1, n 

(8-129) 

and that the spectrum are the spherical harmonic coefficients anm and bnm , or fnm in 
the notation of sec. 7.6.1. 

That a convolution on the sphere corresponds to the multiplication of the spherical 
harmonic coefficients by a factor (multiplication of the spectra!) is well known from 
many examples from physical geodesy. Poisson's integral (Heiskanen and Moritz, 
1967, sec. 1-16) is a convolution: ibid., eq. (1-89), which is equivalent to multiplying 
the spectrum by (R/r)n+1, ibid., eq. (1-87b). The same holds for Stokes' integral, 
ibid., eq. (2-163a), whose spectral equivalent is 

(8-130) 

(ibid., p. 97)j thus the spectrum is multiplied by R/(n - 1). Many other examples 
could be stated. In fact, a convolution is not hing else than an üotropic linear integral 
operator on the spherej cf. also (Meissl, 1971). 

Now let us return to our problem. Expand 

00 n 

Ac(R, B, A) L L AnmYnm(B, A) (8-131) 
n=Om=-n 

00 n 

h(B, A) L L HnmYnm(B, A) (8-132) 
n=Om=-n 

00 

F(tP) L FnP,.(costP) (8-133) 
n=O 

using the notation of sec. 7.6.1. The expansion (8-133) is purely "zonal" since it 
depends on tP only. Let us verify the convolution theorem in the present case. 

Eq. (8-128) may be written 

Ac(R, B, A) = !! h(B', A')F('1jJ)du (8-134) 

We substitute (8-133) to get 

Ac(R, B, A) = f Fn!! h(O', A')Pn(costP)du 
n=O (T 

(8-135) 

which by (1-49) equals 

00 F. oon F. 
47T L _n_ Yn(B, A) = 47T L L _n_ Hnm Ynm(O, A) 

n=O 2n + 1 n=O m:- n 2n + 1 
(8-136) 
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expressing the Laplaee harmonie Y,,(O, .A) of h in terms of the base functions (7-24). 
The eomparison with (8-131) gives 

(8-137) 

that is, multiplication of the spectra, up to a faetor 47r/(2n + 1) whieh is due to the 
fact that the base functions (7-24) are orthogonal but not normalized. Sinee Ac, h, 
and F are arbitrary functions, we have, by the way, proved the spherical convolution 
theorem for the general cau! 

Thus (8-137) gives 

(8-138) 

which is independent of m. This eondition must be satisfied by the elevation h and 
the attraetion Ac (or the Bouguer anomaly), if the assumption of isotropy is justified. 
This already gives the isostatic response function by (8-133). 

More diffieult is the determination of the isostatic density anomaly ßp. For this 
we need the kernel K by (8-116): if 

(8-139) 
",rn 

(in full analogy to (7-26)!) and 

00 

K(r, 'I/J) = L::K,,(r)P,,(eos'I/J) (8-140) 
n=O 

in analogy to (8-133), then by an appropriate applieation of (8-137) we have 

(8-141) 

There remains the determination of K,,(r). The spectral equivalent (convolution 
corresponds to multiplication) of (8-127) is 

R 

F" = _2
47r J K,,(r')D,,(r')dr' 

n+1 
,.'=0 

(8-142) 

Now what is D,,(r')? By (8-121) we have, using the standard Legendre series 

1 

I 

D(r', 'I/J) 

co Tin 

L:: r,,+l P,,( COs 'I/J) , 
n=O 

00 r'n 
Gr,2 L::(n + 1) R;n+2 P,,(cos'I/J) 

n=O 

(putting r = R after differentiation) or 

00 r'n+2 
D(r', 'I/J) = G L::(n + 1) R,,+2 F,,(eos 'I/J) 

n::::O 

(8-143) 

(8-144) 
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This is written in the form (8-140), replaeing r ' by r 

D(r, 'l/J) = L Dn(r)Pn(eos'l/J) (8-145) 
n=O 

The eomparison between (8-144) and (8-145) shows that 

(8-146) 

Now we are almost through. Substituting (8-146) into (8-142) we get (with r ' 
replaeed by r) 

Putting 

we obtain 

r 
-=ß 
R 

1 

Fn = 47rGR
2
:: 11 J Kn(ß)ßn+2dß 

o 

(8-147) 

(8-148) 

(8-149) 

where Kn(ß) is Kn(r) expres5ed in terms of (8-148); it would have been more exact 
to write Kn(Rß). 

Given Fn by (8-138), we ean find functions Kn(ß) that satisfy (8-149). Obviously 
there are infinitely many possible solutions, sinee eaeh Kn(ß) must satisfy only one 
eondition (8-149), independently of the others. 

Local eompen~ation. To get a unique sofution, Dorman and Lewis (1970) assume 
that the eompensation is strietly loeal, whieh means that it takes plaee immediately 
underneath the point at whieh the load ü applied. Thus the eonvolution (8-116) is 
replaeed by multiplieation by h (omitting the primes): 

!:l.p(r, 0, ).) = h(O, ).)K(r) (8-150) 

This exactly eorresponds to (8-3) if in the denominator, D + h is approximately 
replaeed by D so as to obtain the linear relation 

Po 
6.p = -h , 

D 
(8-151 ) 

exeept that Dorman and Lewis allow h to be multiplied by a faetor variable with 
depth. This confirms the initial statement that we have an inverse problem for a 
compensation of Pratt type. 

Retaining the original convolution (8-116) we should get a regional compensation, 
but then the mathematics would be more complicated. 
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We get (8-150) from (8-116) by formally putting 

K(r, 'IjJ) = K(r)6('IjJ) , 

where the delta function 6( 'IjJ) has the property 

6('IjJ) 0 except for 'IjJ = 0 , 

!! 6('IjJ)du = 1 . 
er 

This is the exact spherical analogue of (3-100) and (3-101) . 
What is the spectrum of this function 6( 'IjJ)? As usual, we write 

00 

6('IjJ) = L: 6n Pn (cos'IjJ) 
n::::O 

Then eq. (1-46), with m = 0, gives 

by (8-153) and (8- 154), or 
6

n 
= 2n + 1 

471' 
since Pn (l) = 1 for all n. Hence, by (8-152) we get 

Then (8-149) becomes 

2n+ 1 
Kn(r) = K(r)6n = --K(r) 

471' 

1 

Fn = GR(n + 1) ! K(ß)ßn+2dß 
o 

253 

(8-152) 

(8-153) 

(8-154) 

(8-155) 

(8-156) 

(8-157) 

Now, in contrast to (8-149), there is only one unknown function K(ß) which has 
to satisfy infinitely many conditions (8-158). The integral in (8- 158), for various 
n, defines all "moments" of the function K(ß), Fn being known from (8-138). The 
determination of the function from its moments is called the moment problem. 

One possible solution of the moment problem may be outlined as follows . Consider 
the moments 

1 

Mn = / K(ß)ßndß . (8-158) 
o 

If K(ß) were defined in the interval [- 1, 1], then an expansion into Legendre polyno­
mials Pn(ß) (sec. 1.3) would offer itself: there is the basic orthogonality relation: 

1 { 0 / Pn(ß)Pn,(ß)dß = _2_ 
-1 2n + 1 

if n' in, 
if n' = n 

(8-159) 
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this follows from (1-41) and the first equation of (1-42), with t = cos(} replaced by 

ß· 
Now, however, K(ß) is defined in the interval [0, 1]. Defining 6hifted Legendre 

polynomia16 by 
(8-160) 

(Abramowitz and Stegun, 1965, pp. 774), we have 

j P;(ß)P;, (ß)dß = ~ j Pn(t)Pn,(t)dt = { ~ 
o -1 2n + 1 

if n' # n , 
(8-161) 

if n' = n 

which immediately follows by substituting t = 2ß - 1 and considering (8-159). This 
shows that the P: are orthogonal in the interval [0, 1]. 

Now, Pn(ß) by (1-33) and hence P:(ß) by (8-160) are polynomials of degree n in 
ß: 

n 

P~(ß) = L ankßk (8-162) 
k=O 

with coefficients ank that follow direct1y !rom (1-33) and (8-160); cf. also (Abramowitz 
and Stegun, 1965, p. 790). 

Now everything is straightforward. Expand K(ß) into the series 

00 

K(ß) = L knP;(ß) . (8-163) 
n=O 

Then we find the coefficients by multiplication by P:,(ß) and integration !rom 0 to 1: 

1
00

1 J K(ß)P;, (ß)dß = L kn Ip;(ß)p;,(ß)dß . 
o n=O 0 

Orthogonality kills all terms except n' = n, and by (8-161) we have 

1 

kn = (2n + 1) J K(ß)P:(ß)dß . 
o -

The coefficients kn , however, can be expressed in terms of the given moments (8-158), 
using (8-162): 

n 

kn = (2n + 1) L ankMk (8-164) 

Hence the series (8-163) solves our problem. The moments M k are defined by 
(8-158); the missing moments Mo and M 1 may simply be put equal to zero. (Note 
that just now we have used the Legendre polynomials Pn , or their shifted counterparts 
(8-160), in a conceptually completely different sense than in sec. 1.3: there we consi­
dered orthogonal functions on the 6phere; here the Legendre polynomials are used in 

c, 
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their capacity as orthogonal functions on a line interval, -1 S; ß S; 1 or 0 S; ß S; 1, 
respectively. ) 

Finally, (8-150) gives the density contrast ll.p corresponding to isostatic compen­
sation. The plane approximation to the present theory may be found in (Dorman and 
Lewis, 1970). For practical results see, e.g., (Lewis and Dorman, 1970), (Bechtel et 
al., 1987) and (Hein et al., 1989). 

8.3.2 The Inverse Vening Meinesz Problem 

Here the density contrast ll.p is considered constant but the Moho depth T is to be 
determined from the condition (8-113) or, equivalently, from the given attraction Ac 
which the compensating masses exert at sea level, cf. (8-114) . 

Let us thus compute the attraction Ac of the compensating masses, bounded by 
the sphere r = R - To representing the "normal Moho" (corresponding to anormal 
crustal thickness around To = 30 km as mentioned in sec. 8.1.2) and the actual Moho, 
assuming constant density contrast: 

ll.p = const. (8-165) 

The corresponding potential is expressed by 

R-To 1 

Vc(P) = Gll.p // / I r 2drdu (8-166) 
U r=R-T 

again using (8-123), without primes, for the volume element dv. Further, by Fig. 8.15, 
we have 

(8-167) 

The attraction is 

8V. R-To 8 
Ac = - 8; = -Gll.p // / 8R G) r

2
drdu (8-168) 

U r=R-T 

considering (for one moment only!) R in the integrand as variable. The limits of 
integration remain unchanged because, as the point P can be imagined to move in 
conformity with 8/8R, the layer between r = R - T and r = R - To stays in place. 

Changing the upper limit to R only implies the addition of a constant since 

and the last integral is easüy seen to be a global constant over the sphere r = R : it 
represents the attraction of a spherical shell of constant density bounded by the two 
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sphere representing p 

.. ncrmal Mohc" 
mantle 

R 

center 0/ earth 

FIGURE 8.15: Notations for the inverse Vening Meinesz problem 

concentric spheres r = R - Tc and r = R. Disregarding this constant, which will be 
justified later, we may thus replace (8-168) by 

R' 

Ac = -GßP!! ! 8~ G) r
2
drdu (8-169) 

er r=R-T 

Now, to a very good approximation 

(8-170) 

This can be seen because if the sphere is replaced by aplane, the xy-plane, then the 
distance I between two points (x, y, z) and (x', y', z') is given by 

1= J(x - x'F + (y - y'F + (z - z'F 

and 
81 81 
8z 8z' 

is immediately verified by direct computation. In the spherical case, (8- 170) holds as S' 
a "planar approximation" (sec. 8.2.1); to the same approximation we may replace r 2 
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by R 2 , in view of (8-44). Thus (8-169) becomes 

R 8 (1) 
Ac = Gb..pR

2 !! ! 8r 1 drdu , (8-171) 

U r=R-T 

and the integration with respect to r can be performed immediately, giving 

Ac = Gb..pR
2 !! (~ -k) du , (8-172) 

" 
lo and lt being shown in Fig. 8.15; cL also eq. (8-78). 

Now, by (1-53) we have 

(8-173) 

and, formally, since now r = R, 

1 00 R:' 
- = L: - p. (cos'IjJ) 
lo n=O Rn+l n 

(8-174) 

Introducing the auxiliary quantities 

H(n) = Rn_(R-T)n =l_(l_~)n 
Rn R 

(8-175) 

we may thus write (8-172) as 

Ac = Gb..pR !! f H(n)Pn(cos'IjJ)du 
u n=O 

(8-176) 

We expand the function H(n) as aseries of Laplace spherical harmonics: 

H(n)(o, >') = f H~~)(O, >') , (8-177) 
n/=O 

with the degree now denoted by n'. Then the terms with n' i= n in (8-176) are 
removed by orthogonality, and by the integral formula (1-49) we get with the only 
remaining terms for which n' = n: 

A = 47rG6. R ~ H~n)(o, >') 
c P ~ 2n +1 (8-178) 

Since 
T 60km 
R < 6000 km = 0.01 , 
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the binomial series for (1 - T/R)" in (8-175) will eonverge, and H(n) beeomes 

putting 

H(n) = n~ - ( ; ) (~r + ( ; ) (~r -+ ... 

nT - ( ; ) T
2 + ( ; ) T3 

... 

Thus (8-178) assurnes the form (there is no term n = 0): 

(8-179) 

(8-180) 

Ac = 47rGfl.pR [f _n_ Tn _ f ~(n - 1)) (T 2 )n + 
n=1 2n + 1 n=1 2 2n + 1 

+ ~ n(n - l)(n - 2) (T3)n ... ] 
~ 6(2n+1) (8-181) 

This will be our basie formula. Its meaning is the following. Take the Moho depth T 
and divide by R to get 

Raise this function to the seeond, third, ete., powers: 

[T(8, >.W = 12(8, >') 
[T(8, >.)]3 = 13(8, >') 

(8-182) 

(8-183) 

(8-184) 

all being functions of 8 and >.. Now T n [= T n (8, >')] is the n-th Laplaee surfaee harmo­
nie, given by (1-49), of the function (8-182), (T2)n is the Laplaee surfaee harmonie of 
the function (8-183), (T3)n of (8-184), and so on. 

Expand also Ac as aseries of Laplaee harmonies of type (1-48): 

(8-185) 

This expression starts with n = 1: there must be no eonstant term for whieh 
n = o. This means that any non-zero global average must be subtracted. This 
proeedure also removes the eonstant introdueed by the transition from (8-168) to 
(8-169), whieh finally justifies this transition. 

Then (8-181) shows that 

a (8 >') - _n_ T. _ n(n - 1) (T2) n(n - l)(n - 2) (T3) 
n, - 2n + 1 n 2(2n + 1) n + 6(2n + 1) n 

(8-186) 

relating the known attraetion Ac(8, >') to the unknown Moho depth T(8, >'). 
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This equation can be solved iteratively, writing it as 

(0 
') _ 2n + 1 n -1 ( 2) _ (n -l)(n - 2) ( 3) 

T n ,A - an + T n T n 
n 2 6 

and 

As a first approximation we disregard T
2

, Tl, ... , obtaining 

oe 2n + 1 
Tapprox = I: -- an . 

n=l n 

259 

(8-187) 

(8-188) 

(8-189) 

This approximate value is applied to compute approximate functions T 2 , T 3 , ••• These 
functions are expanded into series of Laplace harmonies which are then used on the 
right-hand side of (8-188) to compute a better left-hand side T(O, A) . This procedure 
can be repeated as necessary, hoping that it converges . 

An integral formula for the principal term. As the series in (8-188) converge 
slowly, it is preferable to convert them to integral formulas. 

Since by (8-185) 

oe Ac 
I:an(O, A) = G R =a(O, A) , 
n=l 47r ßp 

(8-190) 

we have 

(8-191) 

Now, by (1-49), 

fan 
n=l n er 

!! a({}', A')M(1fJ)du (8-192) 

where 
1 oe 2n + 1 

M(1fJ) = - L --Pn(cos1fJ) 
47r n=l n 

(8-193) 

Putting, according to (Moritz, 1980, p. 182) 

(8-194) 

with q < 1 and 
t=cos1fJ , (8-195) 
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as weil as 
1 00 2n + 1 n 

M(q, 1/J) = - L --q Pn(t) 
411" n=! n 

(8-196) 

we get 

M(q,1/J) 

(8-197) 

or, by (eqs. (23-29) and (23-31), ibid., p. 185), 

1 ( 2 2) M(q, 1/J) = 47T" -2 + L + ln N (8-198) 

with (ibid., eq. (23-32)) 
N = 1 + L - q cos 1/J . (8-199) 

In these formulas we may put q = 1 (q < 1 has served only as an auxiliary "conver­
gen ce factor") to obtain 

2 . 1/J 
Sill 2 ' 

2 ( 
. 21/J . 1/J) 

sm 2 + Sill 2 

so that (8-198) and hence (8-193) become 

M(1/J) = 2.- [_.1 __ 2 -ln (sin2 t + sin t)] 
47T" Sill ~ 2 2 

(8-200) 

(8-201) 

(8-202) 

which shows some similarity to Stokes' function (Heiskanen and Moritz, 1967, 
eq. (2-164)). 

Secondary term8. Consider now the second term on the right-hand side of (8-188) 

(8-203) 

This is equivalent to (the SUffi may start with zero now) 

1 2 1 ~ ( 2) II = -- -r + - L..J n -r n . 

2 2 n=O 

(8-204) 

Now the integral formula (1-102) of (Heiskanen and Moritz, 1967, p. 39) comes in 
handy. With V = -r 2

, R = 1, and 10 = 2 sin ~ we thus get 

(8-205) 
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where (in the integral only) r~ refers to the point P at which 11 is to be computed, 
and r 2 to the surface element du; ,p is the spherical distance between P and du. Thus 
(8-204) becomes simply 

1 1 J.i r
2 

- r~ 11 = __ r 2 - - --- du 
2 3271" sin3 t 

" 2 

(8-206) 

Finally we consider the last term in (8-188): 

(8-207) 

This term being very small, we may retain the highest power of n only, so that , to a 
sufficient approximation, 

(8- 208) 

Now we perform a particularly insidious trick, which, however, is familiar to some 
people in physical geodesy. Multiplication of the spectrum by n corresponds to the 
(negative) integral operator LI defined by (8-205). Multiplication ofthe spectrum by 
n 2 thus means applying the operator LI twice. Thus, with 

1 2 
L 2 = "2 L l 

(Moritz, 1980, p . 385, eq. (45-37)) we get 

1 3 III=-3 L2(r) , 

(8-209) 

(8-210) 

which, by (ibid., eqs. (45-36), (45-35), and (45-34», becomes with 0 = 90° - 4> and 
R= 1 

(8-211 ) 

(8-212) 

in a local system xy in the tangential plane. The reader will, of course, recognize the 
Laplacian surface operator in the plane (8-212) and on the sphere (8-211) . 

By the way, the simplifications involved in the transition !rom (8-207) to (8-208) 
precisely correspond to the "planar approximation" , as the reader may verify. 

Using (8-191), (8-192), (8-206), and (8-212), eq. (8-188) becomes 

r(O,;\) = 2a(0,;\) + !! aW, A')M(,p)du - ~r2_ 
" 

(8- 213) 
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as our final equation (which may be new) for determining the Moho depth T = T / R 
from the attraction Ac of a regional isostatic compensation reaching with constant 
density contrast ßp to depth T. Eq. (8-213) is dimensionless; the quantity aCe, >') is 
related to the attraction Ac by (8-190), and the function M('ljJ) is given by (8-202). 

Eq. (8-213) lends itself to an iterative solution which can be described as follows. 
Given Ac, we compute aCe, >') by (8-190). A first approximation for T(e, >') is ob­
tained by disregarding in (8-213) the terms T 2 and T 3 • These terms can then be 
approximately computed by raising the approximate function T( e, >') to the second 
and third powers. The functions T

2(e, >') and T
3(e, >') may be used on the right-hand 

side of (8-213) to compute a better approximation to T(e, >.). The iteration may be 
repeated as necessary. 

Since already the last term in (8-213) is very local and, above all, extremely 
sensitive to data noise, a further approximation (to T\ etc.), although possible in 
principle, probably will not make much sense. 

The convergence behavior seems to be similar to that of the Molodensky series 
weIl known in physical geodesy: although the series may not be convergent in a 
mathematical sense, it is probably "practically convergent" in the sense that the first 
few terms give a good approximation provided the data are suitably smoothed. For 
a general discussion of such cases see (Moritz 1980, pp. 413-414). 

Note that neither (8-188) nor (8-193) contain a term n = 0, so that the present 
method defines the Moho depth T only up to an additive global constant or, geometri­
cally speaking, up to a constant vertical shift. This shift can obviously be determined 
from seismic observations. 

Finally we note that the plane approximation of this problem with the geoid or 
terrestrial sphere replaced by aplane, is weIl known, especially in applied geophysics 
(cf. Parker, 1972; Oldenburg, 1974; Granser, 1986, 1987), and has also been applied 
to the determination of the Moho (Granser, 1988). The present approach is spherical, 
corresponding to a global inverse problem. . 

8.3.3 Concluding Remarks 

Some isostatic compensation exists without any doubt whatsoever. This is plausible 
physically and has recently been confirmed on a global scale by Sünkel (1985j 1986b, 
p . 450), who has shown that the "degree variances" (cf. Heiskanen and Moritz, 1967, 
p. 259), which describe the average power of the gravitational spectrum, from degree 
15 or 20 onwards can almost completely be explained by the combined effect of to­
pography and compensationj cf. also (Rummel et al., 1988). The lower harmonics, of 
course, come almost exclusively from the mantlej and harmonics of the very rughest 
frequencies are due to uncompensated local topography. 

Besides trus global result, it is surprising that even the Alps seem to be relati­
vely weIl compensated: isostatic reduction considerably diminishes the size of gravity 
anomalies and deflections of the vertical, cf. (Sünkel, 1987, p. 62); see also (Wagini et 
al., 1988) and (Steinhauser and Pustizek, 1987). 
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These computations basically use a standard Airy-Heiskanen model. Prom a phys­
ical point of view, the Airy model appears more plausible than the Pratt model, 
although the latter may seem to bear some relation to the modern concept of the 
lithosphere (consisting of the crust and of part of the upper mantle). Even more 
plausible is the regional model of Vening Meinesz, although its definitive conceptual 
superiority remains to be tested empirically. Regionality can also be achieved by an 
appropriate smoothing of the compensation of an Airy model; cf. (Sünkel, 1986b, 
sec. 4.1). 

However, all these apriori isostatic assumptions represent models rather than 
reality. This is why isostatic inverse problems become important. The inverse problem 
of Pratt type as proposed by (Dorman and Lewis, 1970) represents a pioneering' work 
although their basic assumptions: strictly local compensation to arbitrary depth, are 
rather questionable. Also their first results (Lewis and Dorman, 1970): maxima and 
minima of D..p increasing periodically to a depth of 400 km, do not seem very realistic. 
Still, their theory rightly has become very infiuential recently; cf. (Bechtel et al., 1987) 
and (Hein et al., 1989), with an extensive bibliography. 

A Vening Meinesz-type inversion seems to be more realistic, although the question 
of the size and the constancy of the density contrast at the Mohorovicic discontinuity 
is still much discussed (cf. Geiss, 1987a). Adetermination of the Moho in the Alps by 
gravimetry was made by Granser (1988) as mentioned above. Geiss (1987a, b, with 
many references) has used a combination of seismic and gravity data to compute the 
Moho in the Mediterranean area. 

Since (8-113) is never fulfilled ezactly, by imposing it we may do undue violence to 
nature, but the results may nevertheless be expected to provide important geophysical 
information. 

It should be kept in mind that the MohoroviCic discontinuity is primarily defined 
seismically. To identify it with a gravimetrically defined supposed density contrast 
surface is natural but not a logical necessity ; cf. (Scheidegger, 1982) for a geophysical 
background. 

The Bouguer anomalies D..gB essentially represent the attraction of compensation 
Ac by (8-114). However, they must be freed from 

(a) lower degree harmonics arising from the mantle, say by using a spherical­
harmonie reference model to degree 15 or 20; 

(b) very high frequencies due to imperfect isostatic compensation and, above all, 
to density anomalies in the crust, by determining these density anomalies (cf. 
Walach, 1987) and by cutting off such high frequencies (cf. Granser, 1986, 1988). 

Qnly then, a Vening Meinesz-type of isostatic inversion to get Moho depths, by the 
metho"d of sec. 8.3.2 or by alternative approaches , may give results which are geo­
physically really meaningful, in spite af the limitations mentioned above . For related 
geophysical aspects cL (Dahlen, 1982) . 

At any rate we are entitled to say that gravimetrie and isostatic methods represent 
a powerful tool far the study of the lithosphere. The best results can obviously be 
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expeeted from a eombination of gravimetrie and seismie data. 
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