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The comparison of (8-95) and (8-96) gives (8-94).
Substituting (8-93) into (8-91) we find

Bg = 2nGph,, (8-97)
so that by (8-92), :
Ac — 21I'Gphm 4 EE VC . (8—'98)

According to our model, assuming crust and mantle to be homogeneous, the gra-
vity anomaly Ag is caused only by the combined effect of topography and compen-
sation:

Ag=A—-A; , (8-99)

where A is the attraction of topography. Substituting (8-79) and (8-98) we thus have
1

Ag =2nGp(hp — hy) — C + E(V -Ve) . (8-100)

The last term, which is very small (of order 1 mgal) because V' and Vg are almost
equal, will be neglected, and there remains (on omitting the subscript P)

Ag =27Gp(h — h,) —C . (8-101)

This equation expresses the “free-air” gravity anomaly Ag (see below) correspon-
ding to our model. We clearly see the linear correlation with elevation, and we see
at once that the linear correlation should be even more pronounced if the terrain
correction C is added to Ag because

Ag+ C =2nGp(h — h,) . (8-102)
The Bouguer anomaly is generally defined as
Agp = Ag —2rGph+C (8-103)

by (8-36) and (8-38) with g — v = Ag; thus in our model (homogeneous crust and
mantle!) we simply have

Agp = —27Gph,, . (8-104)

The isostatic anomaly is obviously zero for the model:
Agr=0 . (8-105)

8.2.5 Conclusions Regarding Gravity Anomalies

Thus our model gives a reasonably realistic interpretation of the following empirical
facts (Heiskanen and Moritz, 1967, pp. 281-285):

1. The free-air anomalies (see below) fluctuate around zero but are linearly corre-
lated with elevation.
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2. The Bouguer anomalies in mountain areas are systematically negative and in-
crease in magnitude by
2wGp = 100 mgals (8-106)
per km of mean elevation h,,.

These facts, which are well known from observation to hold quite generally and of
which one is a consequence of the other, can be explained by isostatic compensation
as we shall discuss now in more detail.

Correlation with elevation. The free-air anomaly is defined by

Ag=gp+F—v ; (8-107)

cf. sec. 8.1.5 (only the free-air reduction F' is applied) and (Heiskanen and Moritz,
1967, pp. 146 and 293). Empirically, free-air anomalies are linearly correlated with
elevation, that is, approximately they satisfy a linear relation

Ag=a-+bh , (8-108)

where a and b are more or less constants.
On disregarding the terrain correction C, eq. (8-101) becomes

Ag =2wGp(h — hy) . (8-109)
The comparison with (8-108) shows that
b=2rGp (8-110)
and that
@ = —27Gphp (8-111)

essentially is nothing else than the Bouguer a}lomaly (8-104).
Linear correlation means that a linear functional relation is satisfied, not exactly
but on the average. Fluctuations occur for three main reasons:

1. Density anomalies in the crust and the mantle and, possibly, in the core have
been disregarded.

2. Isostatic equilibrium is not exact: local deviations from equilibrium occur.
These are the main reasons.

3. The terrain correction C has been disregarded. This indicates that the “modified
free-air anomaly” Ag + C should exhibit this correlation even better than Ag
itself, according to (8-102).

It is also clear that the parameter b in (8-108) is, for constant density p, really a
constant; cf. (8-110). The parameter a, however, is essentially the Bouguer anomaly,
by (8-104) and (8-111), and is therefore at best a “regional constant”, that is, it
varies, but much more slowly than Ag.
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Thus an expression such as (8-111) explains the facts we have mentioned at the
beginning of this section: the Bouguer anomalies in mountain areas are essentially
negative and approximately proportional to a mean elevation h,, in such a way that
a change in h,, of 1000 meters corresponds to a change in the Bouguer anomaly of
about 100 mgals; for an application see (Heiskanen and Moritz, 1967, p. 328).

On the other hand, a look on (8-109) explains why the free-air anomaly exhibits
no systematic tendency to either positive or negative (such a tendency is removed by
h., being subtracted from h) although it is approximately a linear function of h.

Our model corresponds to complete isostatic compensation but the manner of
compensation is quite unrealistic: we have assumed the compensating masses forming
a surface layer situated at a constant depth T" below sea level. The purpose of this
model, however, was only to furnish the simplest mathematical description of the
surface gravity field, and as such it is quite adequate. If a more realistic model, for
instance of Airy, Pratt, or even Vening Meinesz type, is considered, then the definition
(8-93) of h,, will be replaced by a more complicated one, but this is rather the only
change. The relevant formulas, such as (8-101), will still be valid, with h,, being
still some sort of a mean elevation, but with different weighting. The only essential
prerequisite is that the compensating masses produce approzimately the same potential
and the same attraction at the corresponding points P and P, (Fig. 8.13). If the major
part of the compensating masses is sufficiently deep, this will certainly be true. The
validity of our results is thus far wider than the rather special model would indicate.

The reason may be summarized as: equation (8-101) is valid in any isostatic model
if h,, is suitably defined; and the succeeding argument is based only on (8-101) and
on the prerequisite just mentioned.

The dipole character of isostasy is particularly evident from equations such as
(8-109).

A remark on the Bouguer reduction. As we have seen (eq. (8-71)), the attraction
of a spherical Bouguer plate is 4rGph and not 2wrGph. Thus, strictly speaking, it is
wrong to consider the term (8-39) as the attraction of an “infinite Bouguer plate”. In

fact, eq. (8-84) indicates that 2wrGph is in reality related to the discontinuity 2rGk
of the attraction of an arbitrary surface layer rather than to the attraction of a plane
plate.

Thus, so to speak, the term 2rGph represents the “local” effect of the Bouguer
plate, and this is exactly what we want. Standing at a point of elevation hp, it would
be grossly unrealistic to assume that the actual earth’s surface can be approximated
by a “spherical Bouguer plate” extending with constant elevation hp all around the
earth! The major part of the earth is covered by the oceans for which h = 0, so that
we can operate with a Bouguer plate only locally, and this local effect is 2rGphp even
for the sphere. This justifies the conventional way of computing Bouguer anomalies.
A further justification is provided by the fact that Bouguer anomalies usually are

not an end in themselves, but that they are, e.g., a means for computing isostatic
anomalies, for which

A—Ag=B-Bg (8-112)
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by (8-65) and (8-92), since V = Vi and hence (V — V;)/2R is very nearly zero; and
B is associated with the factor 27 and not 4, as (8-76) shows.

8.3 Inverse Problems in Isostasy

Consider Pratt’s model (sec. 8.1.1). The compensation takes place along vertical
columns; this is local compensation. There is a variable density contrast Ap given
in terms of elevation h by (8-3). The corresponding isostatic gravity anomaly Ag;
(8-37) will in general not be zero, partly because of imperfections in the model. The
inverse problem consists in trying to make

Agr=0 (8-113)

by determining a suitable distribution Ap(z) of the density anomaly in each vertical
column.

On the other hand, consider isostatic models of Airy and Vening Meinesz type.
Here the density contrast Ap is constant, but the Moho depth T is variable, depending
on the topography locally (Airy) or regionally (Vening Meinesz) in a prescribed way
(now T and T; are again used in the sense of sec. 8.1!). Here the inverse problem
would consist in making Agy zero by determining a suitable variable Moho depth T
for a prescribed constant density contrast Ap, which need not be 0.6 g/cm® but can
be any given value between 0 and 0.7 g/cm® (say).

Rather than making Agy zero, we may also prescribe the Bouguer anomaly field.
This amounts to the same since by (8-37), Agr = 0 implies

Ao =—Agp . (8-114)

So the problem is in fact: given Ay, to determine the compensating masses that
produce it. In the inverse Pratt problem this is done by seeking an appropriate
density contrast Ap, in the inverse Vening Meinesz problem this is achieved by suitably
selecting the Moho depth 7. Thus we have genuine inverse problems (with given
constraints) in the sense of Chapter 7 (cf. also Barzaghi and Sanso, 1986).

8.3.1 The Inverse Pratt Problem

The basic paper is (Dorman and Lewis, 1970). Consider a column defined by fixing
the spherical coordinates (8, A); the column extends from the earth’s surface radially
to the earth’s center (theoretically: this corresponds to D = R in sec. 8.1.1). In each
column Ap is a function of the radius vector 7 (or of depth), which accounts for the
functional dependence

Ap=Ap(r 0 X)), (8-115)
One assumes Ap to be linearly related to the topography (height k) by a “convolution”

Ap(r', 8, X') = / / (6", N'\K (', %')do (8-116)
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