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The eompanson of (8-95) and (8-96) gives (8-94). 
Substituting (8-93) into (8-91) we find 

(8-97) 

so that by (8-92), 

(8-98) 

Aeeording to our model, assuming erust and mantle to be homogeneous, the gra­
vity anomaly ßg is eaused only by the eombined effect of topography and eompen-
sation: 

ßg = A - Ac (8-99) 

where Ais the attraetion of topography. Substituting (8-79) and (8-98) we thus have 

1 
ßg = 27rGp(hp - hm ) - C + 2R (V - Vc ) (8-100) 

The last term, whieh is very small (of order 1 mgal) beeause V and Vc are almost 
equal, will be negleeted, and there remains (on omitting the subseript P) 

(8-101) 

This equation expresses the "free-air" gravity anomaly ßg (see below) eorrespon­
ding to our model. We clearly see the linear eorrelation with elevation, and we see 
at onee that the linear correlation $hould be even more pronounced if the terrain 
correction C i$ added to ßg beeause 

(8-102) 

The Bouguer anomaly is generally defined as 

(8-103) 

by (8-36) and (8-38) with 9 - 'Y = ßg; thus in our model (homogeneous erust and 
mantle!) we simply have 

ßgB = -27rGphm (8-104) 

The isostatie anomaly is obviously zero for the model: 

(8-105) 

8.2.5 Conclusions Regarding Gravity Anomalies 

Thus our model gives a reasonably realistie interpretation of the following empirie al 
facts (Heiskanen and Moritz, 1967, pp. 281- 285): 

1. The free-air anomalies (see below) fluctuate around zero but are linearly eorre­
lated with elevation. 
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2. The Bouguer anomalies in mountain areas are systematieally negative and in-
erease in magnitude by b 

27rGp == 100 mg als (8-106) 

per km of mean elevation hm. 

These facts, whieh are well known from observation to hold quite generally and of 
whieh one is a eonsequenee of the other, ean be explained by isostatie eompensation 
as we shall diseuss now in more detail. 

Correlation with elevation. The free-air anomaly is defined by 

/1g = gp + F - I (8-107) 

cf. sec. 8.1.5 (only the free-air reduction F is applied) and (Heiskanen and Moritz, 
1967, pp. 146 and 293). Empirieally, free-air anomalies are linearly correlated with 
elevation, that is, approximately they satisfy a linear relation 

/1g = a + bh (8-108) 

where a and b are more or less eonstants. 
On disregarding the terrain eorreetion C, eq. (8-101) beeomes 

(8-109) 

The eomparison with (8-108) shows that 

(8-110) 

and that 
(8-111) 

essentially is not hing else than the Bouguer anomaly (8-104). 
Linear eorrelation me ans that a linear functional relation is satisfied, not exactly 

but on the average. Fluctuations oeeur for three main reasons: 

1. Density anomalies in the erust and the mantle and, possibly, in the eore have 
been disregarded. 

2. Isostatie equilibrium is not exact: loeal deviations from equilibrium oeeur. 
These are the main reasons. 

3. The terrain eorrection C has been disregarded. This indieates that the "modified 
free-air anomaly" /1g + C should exhibit this eorrelation even better than /1g 
itself, according to (8- 102) . 

It is also clear that the parameter b in (8-108) is, for constant density p, really a 
constantj cf. (8- 110). The parameter a, however, is essentially the Bouguer anomaly, 
by (8- 104) and (8-111), and is therefore at best a "regional constant", that is, it 
varies, but much more slowly than /1g . 
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Thus an expression such as (8-111) explains the facts we have mentioned at the 
beginning of this section: the Bouguer anomalies in mountain areas are essentially 
negative and approximately proportional to a mean elevation hm in such a way that 
a change in hm of 1000 meters corresponds to a change in the Bouguer anomaly of 
about 100 mgalsj for an application see (Heiskanen and Moritz, 1967, p. 328). 

On the other hand, a look on (8-109) explains why the free-air anomaly exhibits 
no systematic tendency to either positive or negative (such a tendency is removed by 
h m being subtracted from h) although it is approximately a linear function of h. 

Our model corresponds to complete isostatic compensation but the manner of 
compensation is quite unrealistic: we have assumed the compensating masses forilling 
a surface layer situated at a constant depth T below sea level. The purpose of this 
model, however, was only to furnish the simplest mathematical description of the 
surface gravity field, and as such it is quite adequate. If a more realistic model, for 
instance of Airy, Pratt, or even Vening Meinesz type, is considered, then the definition 
(8-93) of hm will be replaced by a more complicated one, but this is rather the only 
change. The relevant formulas, such as (8-101), will still be valid, with hm being 
still some sort of a mean elevation, but with different weighting. The only essential 
prerequisite is that the compenJating maJJeJ produce approzimately the Jame potential 
and the Jame attraction at the correJponding pointJ P and Po (Fig. 8.13). If the major 
part of the compensating masses is sufficiently deep, this will certainly be true. The 
validity of our results is thus far wider than the rather special model would indicate. 

The reason may be summarized as: equation (8-101) is valid in any isostatic model 
if hm is suitably definedj and the succeeding argument is based only on (8-101) and 
on the prerequisite just mentioned. 

The dipole character of isostasy is particularly evident from equations such as 
(8-109). 

Aremark on the Bouguer reduction. As we have seen (eq. (8-71)), the attraction 
of a spherical Bouguer plate is 47rGph and not 27rGph. Thus, strictly speaking, it is 
wrong to eonsider the term (8-39) as the attraction of an "infinite Bouguer plate". In 
fact, eq. (8-84) indicates that 27rGph is in reality related to the diseontinuity 27rG", 
oi the attraction of an arbitrary surfaee layer rat her than to the attraction oi a plane 
plate. 

Thus, so to speak, the term 27rGph represents the "loeal" effeet oi the Bouguer 
plate, and this is exactly what we want. Standing at a point oi elevation h p , it would 
be grossly unrealistic to assume that the actual earth's surfaee ean be approximated 
by a "spherieal Bouguer plate" extending with eonstant elevation hp all around the 
earth! The major part oi the earth is covered by the oceans for which h = 0, so that 
we can operate with a Bouguer plate only locally, and this local effect is 27rGphp even 
ior the sphere. This justifies the eonventional way oi computing Bouguer anomalies. 
A further justification is provided by the fact that Bouguer anomalies usually are 
not an end in themselves, but that they are, e.g., a means for computing isostatic 
anomalies, for whieh 

A-Ae ='= B - Be (8-112) 
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by (8-65) and (8-92), since V == Vc and hence (V - Vc )/2R is very nearly zero; and 
Bis associated with the factor 27r and not 47r, as (8-76) shows. 

8.3 Inverse Problems in Isostasy 

Consider Pratt's model (sec. 8.1.1) . The compensation takes place along vertical 
columns; this is loeal eompen3ation. There is a variable density contrast t::.p given 
in terms of elevation h by (8-3). The corresponding isostatic gravity anomaly t::.gI 

(8-37) will in general not be zero, partly because of imperfections in the model. The 
inverse problem consists in trying to make 

t::.gI == 0 (8-113) 

by determining a 3uitable dütribution t::.p( z) 0/ the den3ity anomaly in each vertical 
column. 

On the other hand, consider isostatic models of Airy and Vening Meinesz type. 
Here the density eontrast t::.p is eon3tant, but the Moho depth T is variable, depending 
on the topography locally (Airy) or regionally (Vening Meinesz) in a prescribed way 
(now T and Ta are again used in the sense of sec. 8.1!). Here the inverse problem 
would consist in making t::.gI zero by determining a suitable variable Moho depth T 
for a prescribed constant density contrast t::.p, which need not be 0.6 g/ cm3 but can 
be any given value between 0 and 0.7g/cm3 (say). 

Rather than making t::.gI zero, we may also prescribe the Bouguer anomaly field. 
This amounts to the same since by (8-37), t::.gI = 0 implies 

(8-114) 

So the problem is in fact: given Ac, to determine the compensating masses that 
produce it. In the inverse Pratt problem this is done by seeking an appropriate 
density contrast t::.p, in the inverse Vening Meinesz problem this is achieved by suitably 
selecting the Moho depth T. Thus we have genuine inverse problems (with given 
constraints) in the sense of Chapter 7 (cf. also Barzaghi and Sanso, 1986). 

8.3.1 The Inverse Pratt Problem 

The basic paper is (Dorman and Lewis, 1970) . Consider a column defined by fixing 
the spherical coordinates (0, )..); the column extends from the earth's surface radially 
to the earth's center (theoretically : this corresponds to D = R in sec. 8.1.1). In each 
column t::.p is a function of the radius veetor r (or of depth), which accounts for the 
functional dependence 

t::.p = t::.p(r, 0, )..) (8-115) 

One assumes t::.p to be linearly related to the topography (height h) bya "convolution" 

t::.p(r' , 0' , )..') = II h(O/l , )../I)K(r', 7jJ')du (8-116) 
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