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This is permissible since u/ly in V" is never greater than the terrain inclination, which
is considered small. By substituting the series (8-57) into (8-53) and integrating with
respect to v we find

V" = Vel Va4 Vi (8-58)
with
A=A
L, 2 L tR
Vi = GoR [/ .
pooll g i (8-59)
V; = —ZGpR [ T

This method of expanding into a series of powers of (h — hp)/ly was used by Molo-
densky in a different context (cf. Moritz, 1980, p. 360).
Thus we have from (8-47) and (8-52)

V =4nrGphpR+ Vi + Vo + - -- (8-60)

Neglecting terms of higher order, we have as a linear approzimation:

h—hp
lo

V = 4nGphpR + GpR? // do . (8-61)

This expression will be needed later.
8.2.2 Attraction of Topography

The vertical attraction A of the topographic masses is the negative vertical derivative
of the potential:
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in agreement with (8-40) and comparable to (8-31a). By differentiating (8-42) we

find
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This can be written as

)
. (l) o anion. b (8-64)
Brp l 27‘p13 27‘pl
This transformation, simple as it is, will be fundamental for what follows.
By substituting (8-64) into (8-62) we find
i
A=BYaW (8-65)
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where V is the potential considered in the preceding section, and

=% o

The quantity B can be essentially simplified by the use of the planar approxima-
tion. With rp = R, 7 +7p = 2R and with (8-44) and (8-46) we obtain

B = —GpR? (8-67)

o =0

This expression is comparable to (8-45) and will be split up in an analogous way:

B=B+B" (8-68)
with
hp h
n—np
B' = —-GpR? ———dodn , (8-69)
I
B" = —GpR? (8-70)
o n=hp

Here B’ represents the effect of the “spherical Bouguer plate”. The attraction of
this plate is expressed by

p_ OV _GM
a’l'p 1’?; 2

in agreement with (8-50). With (8-51), considering R/rp = 1, we find

A' = 4nGphp (8-71)
which represents the attraction of the spherical Bouguer plate, which is well known
to be twice the attraction of the plane Bouguer plate of the same thickness hp. We
now obtain B’ from (8-65) as

1
- e 2
Sl (8-72)

Using (8-71) and (8-52) we obtain with rp = R

B' = 2nGphp . (8-73)

Thus the contribution of the spherical Bouguer plate to B is numerically equal to the
attraction of the corresponding plane Bouguer plate. This simple fact will be of basic
significance for a deeper understanding of the Bouguer reduction; see sec. 8.2.5.
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Let us now consider B”, given by (8-70). As the integrand is easily seen to
decrease very rapidly to zero with increasing distance I, it is sufficient to consider a
neighborhood of, say, 50 km around the computation point P. Thus it is admissible
to replace the sphere by its tangential plane at P, which is taken as the zy-plane; see
Fig. 8.12. Then

Rdo = dzdy

l=\/:1:2+y’-{-(7]—’7vp)2 )

and (8-70) becomes
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B'=—6p [ [ i dodydy . 8-74
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Since the integral is extended over the region that is crosshatched in Fig. 8.12,
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FIGURE 8.12: The terrain correction

we recognize (8-74) easily as the mathematical expression of the (negative) terrain
correction C; see sec. 8.1.5. Thus we have

JZ iG] (8-175)
Combining (8-73) and (8-75) we find
B= 2nCphs—C . (8-76)

The conventional Bouguer reduction is based on (8-38), which is formally identical
with the right-hand side of (8-76); this again indicates the fact that the auxiliary
quantity B has some connection with Bouguer reduction; see sec. 8.2.5.

The planar approximation of (8-70) is obtained by replacing ! by lp = 2Rsin ’f
Now we can readily integrate with respect to 7 to get B” or C, by (8-75). The result

is
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Nor is it difficult to integrate (8-70) with respect to 7 if [ is expressed by (8-54).
The result is

1 il
B = 2xGphp + GoR? | <T = T) do s (8-78)
1 0

where lp and I; are given by (8-55) and (8-54) with n = h. This was already found
by Pellinen (1962).

Now it is easy to obtain the attraction A. Combining (8-65), with rp = R, and
(8-76) we have

1
A—21erhp—C+-2§V : (8-79)

We finally note that B has to A the same relation as the gravity anomaly Ag
to the gravity disturbance §g: compare (8-65) with eq. (2-151e) of (Heiskanen and
Moritz, 1967).

8.2.3 Condensation on Sea Level
The linear approximation (8-61) admits of a simple interpretation. We consider a
layer of surface density

Kk = ph (8-80)

on the mean terrestrial sphere 7 = R which represents the sea level. The potential of
this surface layer at a point P, of the surface is given by

—c [ 5 Rdo=cor? [[ 2 =
VS_G[/IoRda—GpR [/loda . (8-81)
This can be transformed as
d h—h
Vs = GpR*hp // 1_: + GpR? // s Pl . (8-82)

The first term on the right-hand side is the potential of a homogeneous spherical
surface layer, which is given by the same formula (8-50) as the potential of a homo-
geneous sphere or of a spherical shell. Since even (8-51) holds for our surface layer
(now rp = R exactly), the first term of (8-82) is given by (8-52), and we have

. ==
Vs = 4nGphpR + GpR? / / l—’“’ iz . (8-83)
- 0

This formula, which is rigorously valid for a spherical surface layer of density
(8-80), is seen to agree with the linear approximation (8-61) to the potential of the
topographic masses.

This immediately suggests a relation to the well-known condensation reduction
of Helmert (Heiskanen and Moritz, 1967, p. 145), in which the topographic masses
are compressed into a surface layer of density (8-80) on the geoid. We thus see that
the change of potential because of the condensation, V — Vs, is a small quantity of
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