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To be sure, this example is so simplified as to be almost trivial, but it illustrates
the geometrical situation very clearly.

7.7 Lauricella’s Use of Green’s Function

Finally we shall treat a very general explicit solution of the gravimetric inverse prob-
lem due to Lauricella (1911, 1912), which forms part of important work done by Italian
mathematicians such as T. Boggio, U. Crudeli, E. Laura, R. Marcolongo, C. Mineo,
P. Pizzetti, and C. Somigliana between 1900 and 1930. This work is not so well
known as it deserves; an excellent review is (Marussi, 1980), where also references to
the original papers are found.

We shall here follow the book (Frank and Mises, 1961, pp. 845-862), translating
that treatment from the two—dimensional to the three~dimensional case.

7.7.1 Application of Green’s Identity

Green’s second identity may be written:

// (UAF — FAU) dv_f/ (Ua—F—F )dS ; (7-75)

this is eq. (1-28) of (Heiskanen and Moritz, 1967, p. 11) with F instead of V. It
is valid for arbitrary functions U and F (which are, of course, “smooth”, that is,
sufficiently often differentiable, but this will be taken for granted in the sequel without
mentioning). Here v denotes the volume enclosed by the surface S, with volume
element dv and surface element dS as usual, A is Laplace’s operator and 8/8n denotes
the derivative along the normal pointing away from v. The formula (7-75) is standard
in physical geodesy; derivations may be found in (Sigl, 1985, pp. 30-32) or (Kellogg,
1929, pp. 211-215).

We now put
F=AV , (7-76)
the Laplacian of the gravitational potential V, obtaining
OAV ou
2y, 44 oY ou. L
// (UA?V — AVAU)dv {/ (U = — AV an) s . (7-77)

In this equation we interchange U and V and subtract the new equation from (7-77).
The result is

BAU v ou AV
UA?V — 20 = gl i =
///( VA )do = //( +AUS AV 4 U an)ds
(7-78)
Let us now daydream. Suppose we can select U such that

AU =0 (7-79)
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and that, in some miraculous way, the third and the fourth term on the right-hand
side of (7-78) could be made to vanish, whereas in some no less miraculous way Vp
(V at some interior point P) would show up as an additive term. Then the result
would obviously be

v
Vp = LIVS + Lz (a—‘) + LgAp 3 (7—80)
B/.s

expressing Vp as a combination of linear functionals applied to the boundary values
V and 8V/8n on S and to Ap (which, by (7-4), is proportional to A?V entering on
the left-hand side of (7-78)). Since the boundary values Vs and (8V/8n)s are given,
a very general solution would be obtained since the Laplacian of the density, Ap, may

be arbitrarily assigned.
This daydream can be made true through the use of a so-called Green’s function.
Thus it is hoped that the reader is sufficiently motivated to follow the mildly intricate

mathematical development to be presented now.

7.7.2 Transformation of Green’s Identity

Let us first put

=1 (7-81)
where [ denotes the distance from the point P(zp, yp, zp) under consideration to a
variable point (z, y, z) (Fig. 7.9):

P=(z—2zp)+(y—yp)+ (2 —2p)* . (7-82)
Then, with
(i R N

L TS 7-83
. Oz? . dy? & 0822 ( )

as usual, we immediately calculate
A= % , (7-84)
A%l =22 G) =) - (7-85)

so that (7-79) is satisfied. The only problem is the singularity of 1/l at P (that is,
for I = 0). Therefore, we cannot apply (7-78) directly but must use a simple trick
(which, by the way, is also responsible for the difference between Green’s second and
third identities; cf. (Heiskanen and Moritz, 1967, pp. 11-12) and, for more detail,
(Sigl, 1985, pp. 92-94)).

We apply (7-78) not to v, but to the region v’ obtained from v by cutting out a
small sphere S, of radius h around P. This region v’ is bounded by S and by S,
where the normal ny to Sj points away from v/, that is towards P (Fig. 7.9). Thus
(7-78) is replaced by

8 1\ 28V al  8AV
war = [[[—av 2 (L) £ 28V _Ap8L . 04V 7-86
// IA*V dv S/!( 2V6n<l)+lan AV +1 )dS ., (7-86)
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FIGURE 7.9: Illustrating the method of Green’s function
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where we have already taken into account (7-81), (7-84), and (7-85) and where we

have used the abbreviation
/de:/ ds+//ds,, : (7-87)
S.Su S Sh

Jii (_Wain,, G)) asy = —2vp [ a—‘:—h G) ds, (7-88)
Sh Sy

since, because of the continuity of V, V = Vp inside and on S}, the approximation is

82)

84) becoming better and better as h — 0. Fig. 7.9 shows that
8) &} 8
silonpdiny 45 7—
T o
5
i so that
3nd

oy _dmy_1_1
T T R T
since | = h on S};. Furthermore
dSy, = hdo (7-90)

with do denoting the element of the unit sphere as usual. Thus the integral (7-88)

becomes 3
—2Vp // 5 hido = —2Vp/ do = 83V (7-91)

o
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which provides the “miraculous appearance” of Vp as promised towards the end of

sea
Having achieved this, we shall kill the remaining terms in the integral over S;. In

fact,
[ [ s Foases
ol 4 4 '

as h — 0. Furthermore,

- / / AV—dS,, = / AVh?do — 0 (7-93)
since
B, o Ao B
on  Ony al i
and
//lﬂdsh / —h3a—»0 : (7-94)

h

Hence in the limit A — 0, eq. (7-86) reduces to

/ / AV do'= _frVid

2 OV oAV
+//( 2Van( )+7%~Ava za—)ds . (1-9)

This equation has exactly the same relation to (7-78) as Green’s third identity has
to Green’s second identity (cf. Heiskanen and Moritz, 1967, pp. 11-12).

7.7.3 Lauricella’s Theorems

What we still have to achieve is to eliminate the third and fourth terms of the integral
on the right-hand side of (7-95). For this purpose we introduce an auxiliary function
H which is biharmonic and regular (twice continuously differentiable) throughout v
and assumes, together with its normal derivative, on the boundary surface S the same

boundary values as the function (7-81):

O6H ol
= — = — _ —96
da=ls (3")5 (‘9”)5 e

The difference between the functions U = [ and H thusis that H is regular throughout
v, whereas U has a singularity in its Laplacian at the point P; cf. (7-84). The point
P is considered fixed in this context.

The existence and uniqueness of a solution H of the biharmonic equation

A’H =0 (7-97)
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satisfying the boundary conditions (7-96) is guaranteed for sufficiently smooth bound-
ary surfaces S (Frank and Mises, 1961, p. 858). Since H is regular in the whole region
v including its boundary S, we may apply (7-78) without problems, obtaining with
(7-96) and (7-97)

// HA’Vdv—//( VaA—H+AHZn ZZ+H§§K) ds . (1-98)

Now we may subtract (7-98) from (7-95). Putting

G=I1-H (7-99)

we thus obtain
// GAVdy = —8rVp — [/ VaAG ds + // AG—dS ; (7-100)

the remainder cancels in virtue of the very conditions (7-96) (which hold only on S,

exactly where we need them!). The function (7-99) now is Green’s function for our
present problem.

We thus get
Va—Ag s + AG— ds — — GAVdv (7-101)
81r

which furnishes the promised representation of V' = Vp since
AV = —4xGp , A’V = —4rGAp (7-102)

by Poisson’s equation (7-4).
In order to avoid a conflict of notation, we shall now restrict the use of the symbol
G to the gravitational constant as in (7-102), using

G
G, = Tha Green’s function G . (7-103)

Then (7—101) becomes

== /f e VdS+41r = / AGz dS+ /// GyApdv ;  (7-104)

this is Lauricella’s formula. Note that P is a point in the interior v of S.

We shall distinguish two cases:

1. Ap = 0 (harmonic density). Then V may be prescribed on S, and the so-
lution of the exterior Dirichlet problem gives the harmonic function outside V with
prescribed boundary values V. This also provides the gravity vector

g=grad V (7-105)
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outside and, by continuity, also on S; (8V/8n)s is the normal component of g on S
and is therefore uniquely defined by Vs. Thus (7-104) gives

8AG,
= 4wG// dS+— /AG,—ds ! (7-106)

uniquely furnishing V in the interior of S and hence also the harmonic density pg by
(7-4). This is Lauricella’s First Theorem.

2. V =0 = 8V/0n on and outside S (the case of a zero potential density, cf.
sec. 7.2). Then (7-104) reduces to

V= // GaApdy (7-107)

as an explicit determination of the interior potential compatible with zero outside
potential, cf. eq. (7-9). Ap can be prescribed arbitrarily. This is Lauricella’s Second
Theorem.

As we have remarked in sec. 7.4, the general solution of our problem is

Ve=Va+W , (7-108)

as the sum of the uniquely defined potential with harmonic density and the “zero-
potential density potential”, to use an awkward but not inappropriate expression.
Thus (7-108) gives the set of all possible smooth density distributions which are
compatible with a given external potential, the arbitrariness of Ap expressing the
non-uniqueness of the solution.

In other terms, (7-108) provides a “constructive” representation of the set of all
solutions of the gravimetric inner problem!

As a matter of fact, this sweeping statement must be taken with a grain of salt.
What has been achieved is a solution of the inhomogeneous “bipotential equation”

AR (7-109)

where

f=—-4rGAp (7-110)
inside S. A solution of (7-109), however, is only possible if f and hence Ap satisfy
certain regularity conditions, for instance, if they are continuous with continuous
derivatives everywhere within S. This is a much stronger condition than the mere
continuity of p presupposed in sec. 7.6.

This immediately excludes discontinuous density jumps within the earth. How-
ever, this limitation is practically less serious than it looks since the density jumps
can always be smoothed out to an arbitrarily high accuracy (also the polynomials
used in sec. 7.6 are infinitely differentiable!).

Hence it is reasonable to say that Lauricella’s solution (7-108) can be used to
provide arbitrarily good approximations to the density anomalies inside the earth,
and this may be just what we practically need.
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7.7.4 Green’s Function for the Sphere

It is easy to give Green’s function G (7-99) if the boundary surface S is a sphere.
Submit the point P (to which Vp refers) to a Kelvin transformation, or inversion in
a sphere. Cf. (Kellogg, 1929, pp. 231-223); for a different application see (Heiskanen
and Moritz, 1967, pp. 143-144).
Fig. 7.10 shows the geometric situation. The inversion in the sphere transforms P
into a point P’ on the same radius as P, such that

re'=R? . (7-111)

Define a function !; by

FIGURE 7.10: Kelvin transformation as an inversion in the sphere

T
L=<l . -
= x (7-112)
Then the auxiliary function H in (7-99) simply is

11
Hi EH-{-EII 3 (7_113)
50 that Green’s function (7-99) becomes
e 1
G=l=gs~2h (7-114)

(Marcolongo, 1901).
With coordinates for P(zp, yp, zp), P'(zp, ¥p, zp) and Q(z, y, z) we thus have
) R R? . R

e e o y}:=§yp. AP T (7-115)
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v’ = zhtyptap (7-116)
P = (z—2p)+(@y—yp) +(2—2p)* , (7-117)
" = (2—2p) +(y—9p) +(z - 2p)" . (7-118)

It is straightforward though somewhat cumbersome to compute

(Gl 3 B’) (BZH 8*H 8’H)

e Lt En s g

AYH = ( (7-119)

and to find that it is zero and regular even at P, so that H is indeed a regular solution
of the biharmonic equation A*H = 0.

FIGURE 7.11: The point @ lies on the sphere §

There remains to verify the boundary conditions (7-96) on the sphere S. If @ lies
on S, then (Fig. 7.11)

? = v+ R —2rRcosy , (7-120)
R R?
1% = 24+ R* =9r'"Rcosp = 1-_2+R2_27 cos

2
£ R;zl’ k (7-121)
r
so that by (7-112), N
T 7-122)
h=gl=%_l=l on 5 . ( )
Hence (7-113) gives
H—= I on" ¥S (7-123)

which is our first boundary condition.
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To get the second one, we differentiate (7-113):

ag. g ol o litaely 1.8y
SN PN o g, g 7-124
Bn OR LOR 2BORT20R (H24)
(The differentiation is considered to be carried out in such a way that, for the moment
only, R varies since 8/8n = 8/8R for the sphere, whereas the points P and P’, and
hence r and 7', are unchanged and kept constant.) After differentiation, we set again
l; =1 on S by (7-122) to get from (7-124):
oH _oH _o_al
dn ~ 8R  OR  on
so that our second boundary condition is satisfied as well. This proves that (7-114)
in fact represents Green’s function for the sphere.

om S , (7-125)

7.7.5 Stokes’ Constants and the Harmonic Density

Let F' be an arbitrary function which is twice continuously differentiable inside a
surface S and continuous and differentiable on S. Let further U be an arbitrary
regular harmonic function inside S, that is

AU =0 inside'S , (7-126)

and continuous and differentiable on S. Then Green’s identity (7-75) immediately

gives
// UAde_//( e g )dS . (1-127)

Thus the integral (7-127) does not ezplicitly depend on the values of U inside v but
only on the boundary values U and 8U/8n on S, as the right-hand side shows. Such
an integral is called a Stokes’ constant (cf. Wavre, 1932, p. 43).

Examples of Stokes’ constants are the quantity GM and the other spherical-
harmonic coefficients A,,, and B,,, in (1-36); in this case, the functions U are the
inner zonal harmonics (1-35a), as the expressions (2-38) of (Heiskanen and Moritz,
1967, p. 59) show; F is proportional to the inner potential V since —4rGp = AV.

Let now F' be the potential V; of a zero-potential density, that is, V; # 0 inside S
but V5 = 0 on and outside S, so that also 8V,/8n = 0 on S. Then (7-127) reduces to

/f/ UAVody =0 (7-128)
/// oy =0 (7-129)

for any zero-potential density p, and any regular harmonic function U. This is a nice
characterization of zero-potential densities: all their Stokes’ constants are zero, in
particular all their spherical-harmonic coefficients must vanish (Pizzetti, 1909, 1910).

or
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As we have seen in sec. 7.4, any density p may be written
P =pu+ Po (7-130)

as the sum of a harmonic density pg and a zero-potential density py. Consider now

JIf o= [[[ e+ poiv (1-131)
///Pfydv+ 2///PHPodv +///p§dv : (7-132)

Regarding (7-131) as the definition of a norm || || for the function p:

leli? = [[[ ptaw (7-133)

we may write (7-132) in the form

which equals

ell?=Ilpa ||+ 2(pm, po) + Il P31l (7-134)

with an obvious definition and notation for the inner product of the functions pg and
po- Now (7-129), with U = pg (which is harmonic!), immediately shows that

(pry P0) =0 (7-135)

that is, the densities pg and po are mutually “orthogonal”.
Thus (7-134) reduces to

el =l I* +llpoll* Z llpmll* (7-136)

proving the minimum norm property of the harmonic density mentioned in sec. 7.3
(Marussi, 1980; Sanso, 1980).

el s L e
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