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To be sure, this example is so simplified as to be almost trivial, but it illustrates 
the geometrical situation very clearly. . 

7.7 Lauricella's Use of Green's Function 

Finally we shall treat a very general explicit solution of the gravimetrie inverse prob­
lem due to Lauriceila (1911, 1912), which forms part ofimportant work done by Italian 
mathematicians such as T. Boggio, U. Crudeli, E. Laura, R. Marcolongo, C. Mineo, 
P. Pizzetti, and C. Somigliana between 1900 and 1930. This work is not so weil 
known as it deservesj an exceilent review is (Marussi, 1980), where also references to 
the original papers are found. 

We shall here foilow the book (Frank and Mises, 1961, pp. 845-862), translating 
that treatment from the two-dimensional to the three-dimensional case. 

7.7.1 Application of Green's Identity 

Green's second identity may be written: 

III (U 6.F - F6.U)dv = ff (U~~ - F~~) dS 
v 5 

(7-75) 

this is eq. (1-28) of (Heiskanen and Moritz, 1967, p. 11) with F instead of V. It 
is valid for arbitrary functions U and F (which are, of course, "smooth", that is, 
sufficiently often differentiable, but this will be taken for granted in the sequel without 
mentioning). Here v denotes the volume enclosed by the surface S, with volume 
element dv and surface element dS as usual, 6. is Laplace's operator and 8/ 8n denotes 
the derivative along the normal pointing away from v. The formula (7-75) is standard 
in physical geodesYj derivations may be found in (SigI, 1985, pp. 30-32) or (Keilogg, 
1929, pp. 211-215). 

We now put 
F=6.V (7-76) 

the Laplacian of the gravitational potential V, obtaining 

(7-77) 

In this equation we inter change U and V and subtract the new equation from (7-77). 
The result is 

I/! 2 2 I! (86.U 8V 8U 86.V) (U6. V-Vß U)dv= -V--+ßU--ßV-+U-- dS 
8n 8n 8n 8n 

v 5 

(7-78) 
Let us now daydream. Suppose we can select U such that 

(7-79) 
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and that, in some miraculous way, the third and the fourth term on the right-hand 
side of (7-78) could be made to vanish, whereas in some no less miraculous way Vp 

(V at some interior point P) would show up as an additive term. Then the result 
would obviously be 

(7-80) 

expressing Vp as a combination of linear functionals applied to the boundary values 
V and 8V/8n on Sand to tlp (which, by (7-4), is proportional to tl2V entering on 
the left-hand side of (7-78)). Since the boundary values Vs and (8V/8n)s are given, 
a very general solution would be obtained since the Laplacian of the density, tlp, may 
be arbitrarily assigned. 

This daydream can be made true through the use of a so-called Green'8 function. 
Thus it is hoped that the reader is sufficiently motivated to follow the mildly intricate 
mathematical development to be presented now. 

7.7.2 Transformation of Green's Identity 

Let us first put 
(7-81) 

where 1 denotes the distance from the point P(xp, yp, zp) under consideration to a 
variable point (x, y, z) (Fig. 7.9): 

[2 = (x _ Xp)2 + (y _ yp)2 + (z _ zp)2 (7-82) 

Then, with 
821 821 821 

tll = 8x2 + 8y2 + 8z2 

as usual, we immediately calculate 

tll 

(7-83) 

(7-84) 

(7-85) 

so that (7-79) is satisfied. The only problem is tl).e singularity of 1/1 at P (that is, 
for 1 = 0). Therefore, we cannot apply (7-78) directly but must use a simple trick 
(which, by the way, is also responsible for the difference between Green's second and 
third identities j cf. (Heiskanen and Moritz, 1967, pp. 11-12) and, for more detail, 
(Sigi, 1985, pp. 92-94» . 

We apply (7-78) not to v, but to the region Vi obtained from v by cutting out a 
small sphere Sh of radius h around P. This region Vi is bounded by S and by Sh, 
where the normal nh to Sh points away from Vi, that is towards P (Fig. 7.9). Thus 
(7- 78) is replaced by 

rrr 2 JI ( 8 (1) 28V 8l 8tlV) JJJ ltl Vdv = -2V an T + T an - tlV 8n + l--a:;;- dS , 
,, , S,sh 

(7-86) 
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FIGURE 7.9: illustrating the method of Green's function 

209 

1) where we have already taken into account (7-81), (7-84), and (7-85) and where we 
have used the abbreviation 

82) 

3) 

4) 

5) 

J J dS = J J dS + J J dSh (7-87) 
s.s. s s. 

Now 

(7-88) 

since, because of the continuity of V, V ~ Vp inside and on Sh, the approximation is 
becoming better and better as h --+ O. Fig. 7.9 shows that 

so that 

a 
az 

a~h G) = -~ (D = ~ = ~2 
since 1= h on Sh' Furthermore 

(7-89) 

(7-90) 

with du denoting the element of the unit sphere as usual. Thus the integral (7-88) 
becomes 

(7-91) 
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which providea the "miraculoua appearance" of Vp aa promiafd towarda the end of 
aec. 7.7.1! 

Having achieved this, we shall kill the remaining terms in the integral over Sh' In 
fact, 

rr~8V dSh = rr~8V h2dlT=2 rr 8V hdlT-+O 
}} / 8n }} h 8n JJ 8n 
s, 

as h -+ O. Furthermore, 

since 
8/ 81 81 
-=-=--=-1 
8n 8nh 81 

and 

Hence in the limit h -+ 0, eq. (7-86) reduces to 

III lß2
Vdv = -87rVp + 

v 

1i( 8 (1) 28V 81 8ßV) + -2V- - +---ßV-+l-- dS 
8n/ /8n 8n 8n 

s 

(7-92) 

(7-93) 

(7-94) 

(7-95) 

This equation has exact1y the same relation to (7-78) as Green's third identity has 
to Green's second identity (cf. Heiskanen a,nd Moritz, 1967, pp. 11-12). 

7.7.3 Lauricella's Theorems 

Wh at we still have to achieve is to eliminate the third and fourth terms of the integral 
on the right-hand side of (7-95). For this purpose we introduce an auxiliary function 
H which is biharmonic and regular (twice continuously differentiable) throughout v 
and assumes, together with its normal derivative, on the boundary surface S the same 
boundary values as the function (7-81): 

H s = ls , (7-96) 

The difference between the functions U = I and H thus is that His regular throughout 
v, whereas U has a singularity in its Laplacian at the point Pi cf. (7-84). The point 
P is considered fixed in this context. IUI 

The existence and uniqueness of a solution H of the biharmonic equation Pr, 

(7-97) 
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satisfying the boundary eonditions (7-96) is guaranteed for suffieiently smooth bound­
ary surfaees S (Frank and Mises, 1961, p. 858). Sinee H is regular in the whole region 
v including its boundary S, we may apply (7-78) without problems, obtaining with 
(7-96) and (7-97) 

rrr Hß2Vdv = rr (_V
8ßH + ßH

8V 
_ ßV

8H + H 8ßV
) dS JJJ JJ 8n 8n 8n 8n 

u 5 

(7-98) 

Now we may subtract (7-98) from (7-95). Putting 

G=/-H (7-99) 

we thus obtain 

(7-100) 

the remainder eaneels in virtue of the very eonditions (7-96) (whieh hold only on S, 
exactly where we need them!). The function (7-99) now is Green's function for our 
present problem. 

We thus get 

(7-101) 

whieh furnishes the promised representation of V = Vp sinee 

ßV = -47rGp , (7-102) 

by Poisson's equation (7-4). 
In order to avoid a eonflict of notation, we shall now restrict the use of the symbol 

G to the gravitational eonstant as in (7-102), using 

G2 = % x Green's function G (7-103) 

Then (7-101) beeomes 

Vp = - 4~G II 8~~2 V dS + 4~G II t:>.G 2 ~: dS + III G2 t:>.pdv (7-104) 
5 5 

this is Laurieella's formula. Note that Pis a point in the interior v of S . 
We shall distinguish two eases: 
1. t:>.p = 0 (harmonie density). Then V may be prescribed on S, and the so­

lution of the exterior Dirichlet problem gives the harmonie function outside V with 
preseribed boundary values Vs . This also provides the gravity vector 

g = grad V (7-105) 
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outside and, by eontinuity, also on Sj (8V/8n)s is the normal eomponent of gon S 
and is therefore uniquely defined by Vs. Thus (7-104) gives 

1 ~J 8ßG2 1 ~J 8V VB =-- --VdS+- ßG2-dS 
47l'G 8n 47l'G 8n 

(7-106) 
s s 

uniquely furnishing V in the interior of Sand henee also the harmonie density PB by 
(7-4). This is Lauricella's First Theorem. 

2. V = 0 = 8V/8n on and outside S (the ease of a zero potential density, cf. 
sec. 7.2). Then (7-104) re duces to 

(7-107) 

as an explieit determination of the interior potential eompatible with zero outside 
potential, cf. eq. (7-9). ßp can be prescribed arbitrarily. This is Lauricella'8 Second 
Theorem. 

As we have remarked in sec. 7.4, the general solution of our problem is 

Vp = VB + Vo (7-108) 

as the sum of the uniquely defined potential with harmonie density and the "zero­
potential density potential", to use an awkward but not inappropriate expression. 
Thus (7-108) gives the set of all possible smooth density distributions whieh are 
eompatible with a given external potential, the arbitrariness of ßp expressing the 
non-uniqueness of the solution. 

In other terms, (7-108) provides a "eonstructive" representation of the set of all 
solutions of the gravimetrie inner problem! 

As a matter of fact, this sweeping statement must be taken with a grain of salto 
What has been aehieved is a solution of the inhomogeneous "bipotential equation" 

(7-109) 

where 
(7-110) 

inside S. A solution of (7-109), however, is only possible if f and henee ßp satisfy 
eertain regularity eonditions, for instanee, if they are eontinuous with eontinuous 
derivatives everywhere within S. This is a mueh stronger eondition than the mere 
eontinuity of p presupposed in sec. 7.6. 

This immediately excludes diseontinuous density jumps within the earth. How­
ever, this limitation is practieally less serious than it looks sinee the density jumps 
ean always be smoothed out to an arbitrarily high aeeuraey (also the polynomials 
used in sec. 7.6 are infinitely differentiable!). 

Henee it is reasonable to say that Laurieella's solution (7- 108) can be used to 
provide arbitrarily good approximations to the density anomalies inside the earth, 
and this m ay be just what we praetieally need. 

T 
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1.1.4 Green's Function for the Sphere 

It is easy to give Green's function G (7-99) if the boundary surface S is a sphere. 
Submit the point P (to which Vp refers) to a Kelvin transformation, or inversion in 

a sphere. Cf. (Kellogg, 1929, pp. 231-223); for a different application see (Heiskanen 
and Moritz, 1967, pp. 143-144). 

Fig. 7.10 shows the geometrie situation. The inversion in the sphere transforms P 
into a point P' on the same radius as P, such that 

(7-111) 

Define a function 11 by 

P' 

R 

s 

FIGURE 7.10 : Kelvin transformation as an inversion in the sphere 

r I 

h = li l . (7- 112) 

Then the auxiliary function H in (7- 99) simply is 

1 F 1 
H = - - + - 11 

2 11 2 
(7-113) 

so that Green 's function (7-99) becomes 

1 12 1 
G = 1- - - - -11 

2 11 2 
(7-114) 

(Marcolongo, 1901). 
With coordinates for P(zp, yp, zp), P'(zp, YP' zp) and Q(z, y, z) we thUB have 

R2 
I 

Zp = ;2zp , 
I 

zp = (7-115) 
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x~ + y~ + z~ , 
(x - Xp)2 + (y _ yp)2 + (z _ zp)2 

(x - X~)2 + (y _ y~)2 + (z _ Z~)2 

It is straightforward though somewhat cumbersome to compute 

(7-116) 

(7-117) 

(7-118) 

(7-119) 

and to find that it is zero and regular even at P, so that His indeed a regular solution 
of the biharmonic equation D.. 2 H = O. 

P ' 

s 

FIGURE 7.11: The point Q lies on the sphere S 

There remains to verify the boundary conditions (7-96) on the sphere S. If Q lies 
on S, then (Fig. 7.11) 

r 2 + R 2 - 2rRcos7jJ , (7-120) 

R 4 R 3 

r '2 + R 2 
- 2r'Rcos7jJ = 2"" + R 2 

- 2- cos'IjJ 
r r 

R
2 

[2 

r 2 
(7-121) 

so that by (7- 112), 

[1 = 2:.. [' = 2:.. !!:. 1 = 1 on S . 
R R r 

(7-122) 

Hence (7- 113) gives 
H = I on S (7-123) 

which is our first boundary condition. 

Or 

for 
ehe 

POt 
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To get the seeond one, we differentiate (7-113): 

8H 8H I 81 1 z2 811 1 811 

8n = 8R = ~ 8R - 2lf 8R + 2 8R 
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(7-124) 

(The differentiation is eonsidered to be earried out in such a way that, for the moment 
only, R varies sinee 8/8n = 8/8R for the sphere, whereas the points P and P' , and 
henee 7' and 7", are unehanged and kept eonstant.) After differentiation, we set again 
/ 1 = 1 on S by (7-122) to get from (7-124): 

n 8H 8H 81 81 S 
8n 8R 8R 8n on (7- 125) 

so that our seeond boundary eondition is satisfied as weil. This proves that (7-114) 
in fact represents Green's function for the sphere. 

7.7.5 Stokes' Constants and the Harmonie Density 

Let F be an arbitrary function whieh is twiee eontinuously differentiable inside a 
surfaee S and eontinuous and differentiable on S. Let furt her U be an arbitrary 
regular harmonie function inside S, that is 

b..U = 0 inside S (7-126) 

and eontinuous and differentiable on S. Then Green's identity (7-75) immediately 
gives 

JJf U b..Fdv = ff (U~~ - F~~) dS 
u s 

(7-127) 

Thus the integral (7-127) doe3 not ezplicitly depend on the value3 0/ U in8ide v but 
only on the boundary values U and 8U/8n on S, as the right-hand side shows. Such 
an integral is ealled a Stokes' constant (cf. Wavre, 1932, p. 43). 

Examples of Stokes' constants are the quantity GM and the other spherieal­
harmonie eoeffieients Anm and Bnm in (1-36); in this ease, the functions U are the 
inner zonal harmonies (1-35a), as the expressions (2-38) of (Heiskanen and Moritz, 
1967, p. 59) show; Fis proportional to the inner potential V sinee - 47rGp = b..V. 

Let now F be the potential Vo of a zero-potential density, that is , Vo -I 0 inside S 
but Vo == 0 on and outside S, so that also 8Vo/8n = 0 on S. Then (7-127) reduees to 

(7- 128) 

or 

(7- 129) 

for any zero-potential density Po and any regular harmonie function U. This is a nice 
characterization 0/ zero-potential den3itie3: all their Stokes' constants are zero, in 
partieular all their spherical-harmonie coefficients must vanish (Pizzetti, 1909 , 1910) . 
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As we have seen in sec. 7.4, any density P may be written 

P = PH + Po (7-130) 

as the sum of a harmonic density PH and a zero-potential density Po. Consider now 

(7-131) 
v 

which equals 

III p~dv + 2 III PHPodv + III p~dv (7-132) 

Regarding (7-131) as the definition of a norm 1111 for the function p: 

(7-133) 
v 

we may write (7-132) in the form 

(7-134) 

with an obvious definition and notation for the inner product of the functions PH and 
Po. Now (7-129), with U = PH (which is harmonic!), immediately shows that 

(7-135) 

that is, the densities PH and Po are mutually "orthogonal". 
Thus (7-134) re duces to 

(7-136) 

proving the minimum norm property 01 the harmonie density mentioned in sec. 7.3 
(Marussi, 1980; Sanso, 1980). 

~1 
19 
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