
Chapter 7 

Density Inhomogeneities 

This chapter reviews the gravitational inverse problem with a view to applications to 
global geodesy and geophysics. It has a physical and heuristic character. A profound 
discussion would require the deep mathematical tools of modern potential theory (cf. 
Schulze, 1977; Schulze and Wildenhain, 1977; Anger, 1990). This is not attempted 
here: our treatment will be mathematically as elementary as possible. 

After a rather detailed discussion of general aspects of the gravitational inverse 
problem, we shall in sec. 7.6 then consider the problem of finding continuous density 
distributions inside a sphere which produce a given external potential. We shall 
find an explicit, very simple and practically applicable, representation of the set of 
all density distributions that are compatible with the given potential, valid to any 
prescribed degree of accuracy. 

Finally, the important but little known solution of Lauricella by means of Green's 
function will be described. 

7.1 The Gravitational Inverse Problem 

Assume a body bounded by a smooth surface S with a distribution of density p which 
is piecewise continuous. By "smooth" we mean "differentiable as far as required" 
(differentiable once or several times, depending on the circumstances), and by "pie­
cewise continuous" we mean that the regions (within a body) in which the density 
is continuous, are separated by smooth surfaces. As an example we may take the 
earth: inner core, out er core, mantle and crust are separated by "discontinuities": 
the core-mantle boundary, the Mohorovicic discontinuity, etc. 

To the mathematician, these assumptions are neither very sharp nor the weakest 
possible, eut they are intuitive and physically meaningful and sufficient for the present 
discussion. 

Then the gravitational potential V of this body (volurne potential) is given by the 
standard Newtonian integral (1-1), written in the form 

V(P) = G J J J Pl~~) dVQ 
v 

(7-1) 
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where P denotes the point at which V is considered, Q is the point to which the volume 
element dv, and hence also the density p, refer, IpQ is the distance between P and Q, 
v is the volume enclosed by our surface, and G denotes the gravitational constant as 
usual. To the physicist it is clear that we are working in Euclidean three-space R3

• 

The essential point is that (7-1) is linear in p. We may thus write symbolically 

V=Np (7-2) 

where N denotes the linear "Newtonian operator" defined by eq. (7-1): N acts on 
the function p to give the function V. Both functions are defined all over R 3 : V 
is continuous and differentiable everywhere, and p piecewise continuous, being zero 
outside S. 

The gravitational or gravimetrie inver8e problem then may be formulated (and 
formally solved) by inverting (7-2): 

(7-3) 

The operator N-1 would be one-to-one if V were given all over R3
, because by 

Poisson's equation 

so that in this case 

.6. V = -4-rrGp 

N-1 = __ 1_.6. 
4-rrG 

.6. denoting the Laplace operator, or Laplacian: 

in Cartesian coordinates xyz. 

82 82 82 

.6. = 8x 2 + 8y2 + 8z2 

(7-4) 

(7-5) 

In reality, of course, V is given only out8ide S, and this is what makes the gravita­
tional inverse problem a real problem: the operator N- 1 then becomes one to infinitely 
many. In fact, it is weIl known that there are infinitely many density distributions that 
are compatible with a given external potential Vj the solution (7-3) is not unique. 

Since p = 0 outside S, eq. (7- 4) gives 

.6. V = 0 outside S (7-6) 

V is a harmonie function there. Thu8 it i8 8uffieient to know V on S: the solution of 
the exterior Dirichlet problem gives V outside S. It is also suflicient, e.g., to know 
the gravity veetor 

(
8V 8V 8V) 

g = gradV = 8x' 8y' Tz 
on S: the solution of Molodensky's problem then gives V outside and on S. (We are 
disregarding the centrifugal force to keep the argument as transparent as possible.) 

The situation is quite similar to an underdetermined system of linear equations 
y = N x with formal solution x = N-1y. (Note that ordinary letters are employed for 
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"algebraic" vectors z and y, as will be done, e.g., also in sec. 7.6.2; cf. a corresponding 
remark in sec. 1.2. Briefly, boldface is only used when there is a danger of confusion: 
of the vector g with gravity g, or of the position vector x with the coordinate z.) Then 
N-1 is a generalized inverae matriz which is weil known to be non-unique. In fact we 
may try to expand the functions p and V into a complete set of three-dimensional 
orthonormal base functions: this would transform the Newtonian operator N into an 
infinite matrix, and N-1 would be a generalized inverse of this matrix. This is the 
correspondence between linear operators and infinite matrices weil-known since the 
foundations of quantum mechanics before 1930 (Schroedinger's formulation in terms 
of linear operators and Heisenberg's matrix mechanics). For a geodetic reference cf. 
(Moritz, 1980, sec. 4). 

In his pioneering work, Dufour (1977) has treated the gravitational inverse problem 
for the sphere by such an orthonormal expansion. In sec. 7.6, we shall first present a 
similar approach which at the same time is more general and more elementary, using 
a polynomial representation for the radial dependence of the density. The problem 
will be reduced to a finite system of linear equations for which the generalized matrix 
inverse is extremely simple. Finally, the transition to the elegant approach of Dufour 
will be made. 

Relation to improperly poaed problema. A problem is called properly poaed if the 
solution satisfies the following three requirements: 

1. existence, 
2. uniqueness, 
3. stability. 

This means that a solution must exist for arbitrary (within a certain range) data, 
there must be only one solution, and the solution must depend continuously on the 
data. If one or more of these requirements are violated, then we have an improperly 
poaed, or ill-poaed, problem. 

For a long time it was thought that only properly posed problems are physically 
meaningful. In fact, deterministic processes, as considered in classical mechanics, 
depend uniquely and continuously on the initial data - this is the essence of causality 
- and thus correspond to properly posed problems (or at least it was thought so). 

Only relatively recently it was recognized that many important problems are not 
properly posed. Not only most inverse problems, from geophysics to medicine and 
to scientific inference in general, are improperly posed - this thesis is convincingly 
proposed in the introductory chapter ("On the interpretation of nature") of the book 
(Anger, 1990) - but even deterministic processes of classical mechanics need not be 
stable - ·this is the nowadays extremely fashionable idea of "deterministic chaos"; cf. 
(Schuster, 1988). 

The gravitational inverse problem was recognized as one of the first improperly 
posed problems (Lavrentiev, 1967). Of other geophysical inverse problems we men­
tion seismic inversion, from the determination of global earth models such as PREM 
(Preliminary Reference Earth Model, cf. sec. 1.5) to seismic tomography. There is a 
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huge literature on this subject; we can only mention arecent textbook (Tarantola, 
1987) but cannot help quoting the fundamental paper (Backus, 1970). 

7.2 Zero-Potential Densities 

Since N-I is non-unique, it is fundamental to investigate the kernel (or nullJpace) 
of the operator N: the set of all density distributions Po within 8 that produce zero 
external potential: 

N Po = 0 outside 8 (7-7) 

Such density distributions Po will be called zero-potential densities. We repeat: the 
Jet of all p088ible zero-potential den8itie8 form8 the kernel of the Newtonian operator 

N, symbolized by ker(N) = N-I(O). 
Clearly, Po must be alternatively positive and negative, so that the total mass 

is zero; otherwise (7-7) would be impossible. Contrary to the usage of much of 
standard potential theory, we do not require P to be positive now. In fact, in practical 
applications, V will represent potential anomalie8 rat her than potentials, and the 
corresponding P will be den8ity anomalie8 which may be positive or negative. 

It is extremely easy to find a rat her general method of determining ker(N). Take 
any function Vo that is zero outside 8 and continued in a continuous and differentiable 
manner to the inside of 8 in such a way that it is also twice piecewise differentiable 
within S. This is illustrated in Fig. 7.1 for one instead of three dimensions; then the 

v 

interior 

exterior exterior 

--------------~~~~~--~----\_------------~~----------------x 

FIGURE 7.1: Two possible functions Vo in one dimension 

boundary 8 consists of two points 8 1 and S2' 
Return to R 3

• Since after continuation to the inside of 8, Vo is now defined 
throughout RS, the corresponding density Po is given by (7-4): 

1 
Po = --f!.Vo (7-8) ~ 

kG , 
Outside S this gives Po = 0 as it should, and inside, the zero potential density Po is Ih 
piecewise continuous according to our differentiability assumptions concerning Vo· ta 
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