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4.1 Internal Potential

The gravitational potential at a point P in the interior of the body bounded by the

surface S is
v(P)= [[[Bav=[[[+ [[[ =vp)+ V() | (4-6)

where Ip denotes the interior of the surface Sp of constant density labeled, as usual,

by a parameter g, and Fp denotes its exterior, that is, the layer between Sp and S
(Fig. 4.2).

boundary S
q=R

FIGURE 4.2: Illustrating the computation of V(P)

4.1.1 Potential of Interior Ip

V,»:G/I{/’%dv . (4-17)

Consider first only

For 1/1 we have the usual series

1 el ,’,In
7= 2 mogq Palcos®) (4-8)

n=0

which converges if ' < 7. The problem is that for r = rp = OP (Fig. 4.3), this
convergence condition may be violated: r’ may be greater than r.
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FIGURE 4.3: Illustrating the computation of V;

The trick is to leave Ip but to calculate V first at a point P, which lies on the radius
vector of P but outside Sp in such a way that 7' < r is always satisfied (Fig. 4.3).
Thus we compute

oo

V(BN = G/// % dv=>" 1"‘% G/// pr'™ P, (cos )dv (4-9)
Ip I Ip

=0

(the interchange of sum and integral offers no problem because of the absolute con-
vergence of the integrand series). Since V;(P,) is harmonic, the shell between Sp and
S being disregarded for the time being, and because of rotational symmetry, (4-9)
must necessarily have the form (1-37) with zonal harmonics only:

VA2 = io rﬁl P, (cos8)
vi(p) = K00, Ko@) p (o0 g)  FHD p(cas) (+10)

neglecting higher-order terms. Here r, 8, A are the spherical coordinates of P, as
usual; because of rotational symmetry there is no explicit dependence on longitude A
(no tesseral terms); and there are only even-degree zonal terms because of symmetry
with respect to the equatorial plane. The coefficients K,, evidently depend on Sp and
hence on its label gq.

4.1.2 Change of Variable

The equation of any surface of constant density may be written as

hof

T
8t
fol[o
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r = (1+Ze,, cosO)

n=1

q (1 + €3 P3(cos 8) + €4 Py(cos b)) (4-11)

Il

again neglecting higher-order terms and taking into account the equatorial symmetry.
This has the general form

it e (R (4-12)
Considering both # and g as variable, this may be regarded as a transformation

equation between the triples (r, 8, A) and (g, 8, A), both triples being viewed as spatial
curvilinear coordinates. The complete transformation equations then are

r = r(q, 0) asgiven by (4-11),
P (4-13)
A

For the volume element in spherical coordinates we have by (2-46)
dv = r’sin §drdfd)\ = r’drdo . (4-14)

The change of volume element in a coordinate transformation is expressed by the
well-known formula

drdfd) = Jdqdfd)\ : (4-15)
with the Jacobian determinant
gr gy - O
8qg 086 oA ér Oor 5
Pl 96 06 Diida 0 4-16
B T T L TN [ T R [ (=14}
aoaal [0 01
8q 88 o)

in view of (4-13). Working out the determinant gives

= ﬁ 4-17
¥ . dq ) ( B )

8o that (4-14) becomes
dv = r? —8— dqdo . (4-18)

This form is surpnsmgly simple, especially in view of the fact that the coordinate

system g, 6, ) is easily seen to be non-orthogonal. In this transformation we have
followed Kopal (1960, p. 9).
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Now we can transform the integral

[ [ dv (4-19)

as
~(8,))

// / 'zdrda'—// / '2aldq'da' : (4-20)

The integration variables are now 7', 8', X’ or ¢/, ', A’ with
do =sin 0'df'd)' . (4-21)
The variable upper limit 7(€, A) on the left-hand side of (4-20) denotes the equation
of the surfaces Sp bounding Ip, for which ¢ is constant (Fig. 4.2). The advantage
of the transformation (r, 8, A) — (g, 8, A) thus consists in transforming the integral

(4-19) into an integral with constant limits of integration. Then we can also invert
the order of the integrals, writing

// dv—/// dqda . (4-22)

Here, of course, r' = r(¢', 8') as given by (4-11) with primed variables.
Hence the integral in (4-9) becomes

G/// pr'"P,(cos)dv =
=G / dq'p(qd // '"+2 P, (cosv)do

+3/dq P(q)//a - (r'"*3) Py(cos p)do . (4-23)

By raising (4-11) to the appropriate power we get an expression of the form
P8 = ¢34 (¢') + Bn(q')Pa(cos 8') + C,(q')Ps(cos 8')] . (4-24)
This form will be justified and the functions A4,,, B, and C, will be explicitly given

below. Substitute this into (4-23) and integrate over o. Orthogonality will then
remove all terms except certain terms with n = 0, 2, 4 for which

P,(cos ) (4-25)

; o
[ P,(cos 0")P,(cos?p)do = T
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by (1-49). The result is (4-10) with
Ko(q) = % O/q p(q)di [4o(g)e°] dg
Ky(g) = 4WG/ pla) 3 [Bz(q)q‘] dg , (4-26)
Ki(g) = 4WG / p(Q)— [Cu(9)q"] da

Here we have omitted the prime in the integration variable ¢’ as we did before. The

argument ¢ of K;(g), of course, is identical with the upper limit of the integral (but
not with the integration variable!).

4.1.3 Potential of Shell Ep

We now consider the potential of the “shell” Ep bounded by the surfaces Sp and S.
We apply the same trick as before (sec. 4.1.1., Fig. 4.3). We calculate V, first not at

P, but at a point P; situated on the radius vector of P in such a way that » < ' is
always satisfied and the series corresponding to (4-8),

FIGURE 4.4: Illustrating the computation of V,

il =

-
7% 20—7""“ P,(cos®) , (4-27)

always converges (Fig. 4.4). For this “harmless” point we have

V,(P;)=Géf/%dv=gr"-G/E//F'%Pﬂ(cos¢)dv . (4-28)
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in analogy to (4-9). We again perform the change of variable of sec. 4.1.2, so that
the integral in (4-28) becomes

G/// r’f"'l P,(costp)dv =
Ep
R

- f dq'p(g) [/ 57 () Palcos p)do (429)

In analogy to (4-24) we put

727" = ¢'*"" [D,(q') + En(g')Pz(cos 8') + F,(q')Ps(cos 8)] (4-30)
and substitute. Orthogonality will again remove most terms, and using (4-25) we get
Ve(P:) = Lo(q) + L2(q)r” Pa(cos 8) + La(g)r* Py(cos 6) (4-31)
with
7o
Lo(q) = 2nG .,/ P(‘I)d—q [Do(9)e?] dg
. (4-32)
L) = ~22 / o5 [Fa)a? da

in perfect analogy to (4-26).
The case n = 2 requires special treatment: we cannot use the third line of (4-29)
because then 2 —n = 0, but we can use the second line, where n — 1 =1 and

T 0 (4-33)
r Oq dq
From (4-11) we get
1117‘ = ].11 q + ln(l + ézpz + €4P4) 5 (4“34)
Applying the well-known series
il
In(1 +2) =2 - ;% (4-35)
we thus have 1
1117' =l.nq+ezP2 +€4P4'— EegP; 8 (4'—36)

Here we note that e; = O(f), €& = O(f?), e = O(f?) where f is the flattening
(this will be confirmed below). Hence €2 would already be O(f*) and thus is to be

neglected.
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For P} we have the formula

PO = £ + 2 P + 32 Plt) (4-37)

which expresses the square of the Legendre polynomial P, as a linear combination
of P, and P;. This formula, which can be verified immediately by substituting the
defining expressions (1-33), will play a basic role in our second-order theory.

Since we are considering L;(g), we need only the coefficient of P, (all other terms
are removed by orthogonality), so that (4-36) gives

lnr =+ (6 = 7 )Pa(cosd) + (- )Palcosd) (4-38)

(—=1/7) in (4-38) results as the product of (—1/2) in (4-36) and (2/7) in (4-37).
We take into account (4-38) and substitute (4-33) in the second line of (4-29).
Orthogonality and (4-25) with n = 2 then give immediately

Litg) = =2 / o) g (o= 7 g . (4-39)

4.1.4 Computation of K,(q) and L,(q)

For this purpose we need (4-24) and (4-30). For n = 0 we have by raising (4-11) to
the third power:
1‘3 = qs(l + 363P) B 364P4 + 36;}):)

b

to O(f?) and omitting the primes. For P? we use (4-37) to get

] 3
Aolg) =1+3g- L =1+7€q ; (4-40)

:: and A, are removed by orthogonality, so that we do not need them. For n = 2 we
ave

r® = ¢*(1 + 56, P; + 5e, P + 1062 P2)
so the only required term in (4-24) is

2 -4
B;=563+10€;-?=5(62+;6;) A (4-41)
For n = 4 we similarly find

o7

Cy

q'(1 + Tea Py + Teg Py + 21EP2)

1

18 54
Teq + 2162 g =T (Cq g — 35 ) . (4—42)
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In (4-30) we have for n = 0 and 4:

7-2 = q2(1 + 2€2P2 + 254P4 =5 6§P22) )

i
Dy = 1456 ; (e
=2 = q—-2(1 — 26, Py — 2e4Py + 36§P22) ’
27
F, = -2 (64 ~ 35 52) . (=t

Finally we introduce the flattening f. In (4-3) we put

12
cost . = 3 + 5 Py(cosb)
8 8 32
[ | - - s Y
sin®20 = 15 SIS 21 2 35 P4 ) (4—45)

which is directly verified by inserting (1-33).
Substituting into (4-3) and putting P, = P, = 0 (the average of P, is zero!) we
get the mean radius

13 el )
Y - Ta e o B 4-46
P (1 e i o (e
This is solved for a and substituted into (4-3), together with (4-45). The result is
2 25, 4 4, ]
oy o2 o B = 47
r q[l 3(f+42f +7n)Pz+35(3f + 8k)P, (4-47)

with P, = P,(cos#8), up to O(f?).
Following de Sitter, we introduce, instead of f, the auxiliary quantity

Ber i
= 4-48
g =y o

which we shall call ellipticity. (The ellipticity e is not to be confused with the first
excentricity (1-55)!) To our approximation we may put

gt =i (4-49)

note also that x = O(f?) = O(€?).
In terms of e, (4-47) simplifies to

r=gq [1 - g (e -+ § ez) Py(cos 8) + 34—5 (3€* 4 8k)Py(cos 9)] : (4-50)

We notice that the second-order coefficient no longer contains the deviation k: re-
memberthat x represents the deviation of our spheroid from the ellipsoid (cf. Fig. 4.1),
which holds for the internal equidensity surfaces (¢ < R) as well as for the bounding

surface ¢ = R.
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The comparison between (4-11) and (4-50) immediately gives

2 2 4
s fzz—g(e‘*'gez) ) €4=3—(352+8’°) - (4-51)

it This is substituted into the expressions (4-40) through (4-44), whence (4-26) and
- (4-32), as well as (4-39), become

.' 4rG | d 4 5\
o = 2 o2 (11 4) s
i fd S0
Lo(q) = 21rG/p—q[<l+Ee>q]dq ,
q
8rG | d 2
Holy) = —=—+ /PZI [(e+;ez) q‘] dg , (4-52)
(1]
BECL Food 6
L et § e
25 i /pdq(e+215)dq ’

|

0
R
4G d (32
L = — | p— = —2)
4(q) 5 q/pdq (35~q dg
Note that p = p(q), e = e(q), and k = k(q).

4.1.5 Gravitational Potential at P

The potential V consists of V; and V, according to (4-6). The first part of the trick
was to compute V; at a point P, (Fig. 4.3) and the potential V, at a point P; (Fig. 4.4)
for which the critical series (4-8) and (4-27) always converge. Thus we have satisfied
the desideratum of Tisserand (Tisserand, 1891, p. 317; Wavre, 1932, p. 68) of working
with convergent series only.

The result were the finite (truncated!) expressions (4-10) and (4-31); finite be-
cause the terms with n > 4 would already be O(f*) which we have agreed to neglect.
These formulas represent functions which are harmonic and hence analytic in the
“empty” regions Ep for V; and Ip for V,; see Figs. 4.3 and 4.4. Being analytic, these
expressions hold throughout Ep for V; and Ip for V,; in view of the continuity of the
potential they must hold also at the point P itself! This transition P, — P, P; — P
forms the second part of the trick.

This simple argument shows that we may use the expressions (4-10) and (4-31)
also for P, so that the total gravitational potential V is their sum:
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V) =V(e,0) = D1 L) +
e [K:_:(;q) i Tsz(q)] Py(cosd) +
+ [K:—Eq) + r4L,,(q)] Py(cos) . (4-53)

Here 7 and 6 denote the spherical coordinates of the internal point P; the surface of
constant density passing through P bears the label g (Fig. 4.2).

This reasoning also holds for n > 4: we are working with convergent series only.
Thus we have achieved very simply the same result which Wavre has obtained by
means of his very complicated “procédé uniforme”. Quite another question is whether
the resulting series is convergent. We have avoided this question by the simple (and
usual) trick of limiting ourselves to the second-order (in f) approximation only, which
automatically disregards higher-order terms.

Still the question remains open as a theoretical problem: the convergence of a
spherical harmonic series at the boundary surface Sp. Nowadays we know much more
about the convergence problem of spherical harmonic series than, say, twenty years
ago; cf. (Moritz, 1980, secs. 6 and 7), especially the Runge—Krarup theorem. There
may also be a relation to the existence proof by Liapunov and Lichtenstein mentioned
in sec. 3.1. Another approach due to Trubitsyn is outlined in (Zharkov and Trubitsyn,
1978, sec. 38) and in (Denis, 1989).

The correctness of our second-order theory, however, is fully confirmed also by its
derivation from Wavre’s geometric theory to be treated in sec. 4.3, which is based on
a completely different approach independent of any spherical-harmonic expansions.

4.2 Clairaut’s and Darwin’s Equations

4.2.1 Internal Gravity Potential

Following de Sitter (1924) we normalize the mean radius ¢ and the density p by
introducing the dimensionless quantities

q mean radius of Sp
=== 4-54
A R  mean radius of earth ( )
and ENE
R it . (4-55)

pm  mean density of earth

The standard auxiliary expressions
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