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4.1 Internal Potential 

The gravitational potential at a point P in the intenor of the body bounded by the 
surface S is 

V(P) = III Gydv = III + III = V;(P) + V.(P) (4-6) 
lp Ep 

where I p denotes the interior of the surface Sp of constant density labeled, as usual, 
by a parameter q, and Ep denotes its exterior, that is, the layer between Sp and S 
(Fig. 4.2). 

o 

boundary S 
q=R 

FIGURE 4.2: lliustrating the computation of V(P) 

4.1.1 Potential of Interior I p 

Consider first only 

V; = G /JJ ydv 
I p 

For 1/1 we have the usual senes 

( 4-7) 

(4-8) 

which converges if r' < r. The problem is that for r = rp OP (Fig. 4.3), this 
convergence condition may be violated: r ' may be greater than r . 



82 CHAPTER 4 SECOND-ORDER THEORY OF EQUILIBRIUM FIGURES 

o 

FIGURE 4.3: lliustrating the computation of V; 

The trick is to leave Ip but to calculate V first at a point p. which lies on the radius 
vector of P but outside Sp in such a way that r ' < r is always satisfied (Fig. 4.3). 
Thus we compute 

( 4-9) 

(the interchange of sum and integral oifers no problem because of the absolute con­
vergence of the integrand series). Since V;(P.) is harmonie, the shell between Sp and 
S being disregarded for the time being, and because of rotational symmetry, (4-9) 
must necessarily have the form (1-37) with zonal harmonies only: 

or 
V;(P.) = Ko(q) + K 2 (q) P

2
(cos(J) + K4 (q) P

4
(cos(J) 

r r 3 r 6 
( 4-10) 

neglecting higher-order terms. Here r, (J, ). are the spherical coordinates of p. as 
usual; because of rotational symmetry there is no explicit dependence on longitude >­
(no tesseral terms) ; and there are only even-degree zonal terms because of symmetry 
with respect to the equatorial plane. The coefficients K n evidently depend on Sp and 
hence on its label q. 

4.1.2 Change of Variable 

The equation of any surface of constant density may be written as 

T 



4.1 INTERNAL POTENTIAL 83 

r q (1 + ~ EnPn( cos 0)) = 

q(l + E2P2(COSO) + E4P4(COSO)) (4-11) 

again neglecting higher-order terms and taking into account the equatorial symmetry. 
This has the general form 

r=r(q,O) (4-12) 

Considering both 0 and q as variable, this may be regarded as a transformation 
equation between the triples (r, 0, >') and (q, 0, >'), both triples being viewed as &patial 
curvilinear coordinates. The complete transformation equations then are 

r 

o 
>. 

r(q,O) as given by (4-11), 
o 
>. 

For the volume element in spherical coordinates we have by (2-46) 

(4-13) 

( 4-14) 

The change of volume element in a co ordinate transformation is expressed by the 
well-known formula 

drdOd>' = J dqdOd)" 

with the Jacobian determinant 

8r 8r 8r 

8q 80 8>' 8r 

80 80 80 8q 
J= 

8q 80 8>' 0 

8>' 8>' 8)" 0 

8q 80 8)" 

in view of (4-13). Working out the determinant gives 

so that (4-14) b ecomes 

J = 8r 
8q 

8r 
dv = r 2 8q dqdu 

(4-15) 

8r 

80 
0 

1 0 
(4-16) 

0 1 

( 4-17) 

(4-18) 

This form is surprisingly simple, especially in view of the fact that the co ordinate 
system q, 0, ).. is easily seen to be non-orthogonal. In this transformation we have 
followed Kopal (1960, p. 9). 
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N ow we can transform the integral 

III dv 
Ip 

as 
r(8,>.) q 

II I r,2dr'der = II I 
CF r'=O U q'=O 

,2
Br' d 'd r - q er 
Bq' 

The integration variables are now r', fJ', >..' or q', fJ', >..' with 

der = sin fJ' dfJ' d>..' 

(4-19) 

(4-20) 

(4-21) 

The variable upper limit r(fJ, >..) on the left-hand side of (4-20) denotes the equation 
of the surfaces Sp bounding Ip , for which q is constant (Fig. 4.2). The advantage 
of the transformation (r, fJ, >..) --+ (q, fJ, >..) thus consists in transforming the integral 
(4-19) into an integral with con3tant limits of integration. Then we can also invert 
the order of the integrals, writing 

III dv = j II r,2 ::: dq' der 
Ip q'=O U 

(4-22) 

Here, of course, r' = r( q', fJ') as given by (4-11) with primed variables. 
Hence the integral in (4-9) becomes 

G III pr,npn(cos'lj;)dv = 
Ip 

( 4-23) 

By raising (4-11) to the appropriate power we get an expression of the form 

( 4-24) 

This form will be justified and the functions An, Bn and Cn will be explicitly given 
below. Substitute this into (4-23) and integrate over er. Orthogonality will then 
remove all terms except certain terms with n = 0, 2, 4 for which 

( 4-25) 
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by (1-49). The result is (4-10) with 

q 

Ko(q) = 4~G J p(q): [Ao(q)q3] dq , 
o q 

4 G q d 
K 2(q) ;5 J P(q)d [B2(q)q5] dq 

o q 
(4-26) 

4 G q d 
K4 (q) = ;3 J P(q)d [c4 (q)l] dq 

o q 

Here we have omitted the prime in the integration variable ql as we did before. The 
argument q of Ki ( q), of course, is identical with the upper limit of the integral (but 
not with the integration variable!). 

4.1.3 Potential of Shell E p 

We now consider the potential of the "shell" E p bounded by the surfaces Sp and s. 
We apply the 6ame trick as before (sec. 4.1.1., Fig. 4.3). We calculate V. first not at 
P, but at a point Pi situated on the radius vector of P in such a way that r < r l is 
always satisfied and the series corresponding to (4-8), 

I p 

empty 0 

FIGURE 4.4: lliustrating the computation of V. 

1 00 r" 
-/ = '" -lP,,(cos'!fJ) L.., r,n+ 

n=O 

always converges (Fig. 4.4). For trus "harmless" point we have 

V.(P;) = G III ydv = fr".G III r l :+1 P,,(cos'!fJ)dv , 
Ep n=O Ep 

( 4-27) 

(4-28) 
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in analogy to (4-9). We again perform the change of variable of sec. 4.1.2, so that 
the integral in (4-28) becomes 

G J J J r':+l Pn(cos7f;)dv = 
Ep 

R 8' 
= G J dq'p(q') rr ~l 8r 

Pn(cos7f;)du }} r,n- q' 
q'=q (T 

R 

= ~Jdq'p(q') rr 88 (r'2-n)Pn(cos7f;)du 
2-n )} q' 

q <T 

In analogy to (4-24) we put 

r,2-n = q'2-n [Dn(q') + En(q')P2(cosB') + Fn(q')P4(cos B')J 

( 4-29) 

( 4-30) 

and substitute. Orthogonality will again remove most terms, and using (4-25) we get 

( 4-31) 

with 

( 4-32) 

in perfect analogy to (4-26). 
The case n = 2 requires special treatment: we cannot use the third !ine of (4-29) 

because then 2 _. n = 0, but we can use the ~econd line, where n - 1 = 1 and 

From (4-11) we get 

18r 8lnr 
-; 8q = ----aq 

ln r = ln q + ln(l + €2P2 + €4P4) 

Applying the well-known series 

we thus have 

1 2 ln(l + x) = x - -x ... 
2 

(4-33) 

(4-34) 

(4-35) 

!O 

1 2 2 
ln r = ln q + €2P2 + €4P4 - 2€2 P2 (4-36) POl 

Here we note that €2 = OU), €~ = O(P), €4 = O(P) where f is the flattening 
(this will be confirmed below). Hence €~ would already be O(j4) and thus is to be 
neglected. 
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For P; we have the formula 

( 4-37) 

wruch expresses the square of the Legendre polynomial P2 as a linear combination 
of P, and P4 • Trus formula, wruch can be verified i=ediately by substituting the 
defining expressions (1-33), will playabasic role in our second-order theory. 

Since we are considering L2 ( q), we need only the coefficient of P2 (all other terms 
are removed by orthogonality), so that (4-36) gives 

lnr = ... + (f, - ~ f~)P2(cos9) + ( .. ·)P4 (cos9) ; ( 4-38) 

(-1/7) in (4-38) results as the product of(-1/2) in (4-36) and (2/7) in (4-37). 
We take into account (4-38) and substitute (4-33) in the second line of (4-29). 

Orthogonality and (4-25) with n = 2 then give immediately 

(4-39) 

4.1.4 Computation of Kn(q) and Ln(q) 

For trus purpose we need (4-24) and (4-30). For n = 0 we have by raising (4-11) to 
the trurd power: 

r 3 = q3(1 + 3f,P2 + 3f4P4 + 3f~Pi) , 

to O(P) and omitting the primes. For P; we use (4-37) to get 

() 
21 3, 

Ao q = I + 3f, . - = 1 + -f, ; 
5 5 

(4-40) 

A, and A4 are removed by orthogonality, so that we do not need them. For n = 2 we 
have 

r
6 = q6(1 + 5f,P, + 5f4P4 + 10f~Pi) , 

so the only required term in (4-24) is 

B ' 2 ( 4 2) , = 5f] + IOf2 . "1 = 5 f2 + "1 f 2 

For n = 4 we similarly find 

(4-41) 

( 4-42) 
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In (4-30) we have for n = 0 and 4: 

Do 
-2 r 

Finally we introduce the flattening f. In (4-3) we put 

1 2 
3 + 3P2(cosll) 

8 8 P 32 P 
15 + 21 2 - 35 4 

which is directly verified by inserting (1-33). 

(4-43) 

(4-44) 

( 4-45) 

Substituting into (4-3) and putting P2 = P4 = 0 (the average of Pn is zero!) we 
get the mean radius 

( 4-46) 

This is solved for a and substituted into (4-3), together with (4-45). The result is 

[ 
2 ( 23 2 4) 4 2 )] 

r = q 1 - 3 f + 42 f +"1 It P2 + 35 (3f + 81t P4 ( 4-47) 

with Pn = Pn ( cos 8), up to O(P). 
Foilowing de Sitter, we introduce, instead of f, the auxiliary quantity 

( 4-48) 

which we shall call ellipticity. (The ellipticity e is not to be confused with the first 
excentricity (I-55)!) To our approximation we may put 

(4-49) 

note also that It = O(P) = O( e2
). 

In terms of e, (4-47) simplifies to 

( 4-50) 

We notice that the second-order coefficient no longer contain~ the deviation It: re­
member that It represents the deviation of our spheroid from the ellipsoid (cf. Fig. 4.1), 
which holds for the intern al equidensity surfaces (q < R) as weil as for the bounding 
surface q = R. 
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The comparison between (4-11) and (4-50) immediately gives 

(4-51) 

This is substituted into the expressions (4-40) through (4-44), whence (4-26) and 

(4-32), as weil as (4-39), become 

Ko(q) = 4~G j P:q [(1+ 1~e2)l]dq 
o 
R 

Lo(q) 27rG J P:q [(1+ 4~e2)l]dq 
q 

Note that P = p(q), e = e(q), and K. = K.(q). 

4.1.5 Gravitational Potential at P 

(4-52) 

The potential V consists of V; and V. according to (4-6). The first part of the trick 
was to compute V; at a point p. (Fig. 4.3) and the potential V. at a point Pi (Fig. 4.4) 
{ar which the critical senes (4-8) and (4-27) always converge. Thus we have satisfied 
the de3ideratum 01 Tiuerand (Tisserand, 1891, p. 317i Wavre, 1932, p. 68) of working 
with convergent senes only. 

The result were the finite (truncated!) expressions (4-10) and (4-31)i finite be­
cause the terms with n > 4 would already be OCr) which we have agreed to neglect. 
These formulas represent functions which are harmonie and hence analytic in the 
"empty" regions E p for V; and I p {or V.i see Figs. 4.3 and 4.4. Being analytic, these 
expressions hold throughout E p for V; and I p for V.i in view of the continuity of the 
potential they must hold also at the point P itself! This transition Pe -> P, Pi -> P 
{arms the 3eeond part of the trick. 

This simple argument shows that we may use the expressions (4-10) and (4-31) 
alsa for P, so that the total gravitational potential V is their sum: 
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V(P) = V(q, ()) Ko(q) + Lo(q) + 
r 

+ [K;;q) +r2L2(q)] P2(COS()) + 

+ [K;~q) +r4L4(q)] P4(COS()) (4-53) 

Here rand () denote the spherical coordinates of the internal point Pj the surface of 
constant density passing through P bears the label q (Fig. 4.2). 

This reasoning also holds for n > 4: we are working with convergent &erie& only. 
Thus we have achieved very simply the same result which Wavre has obtained by 
means of his very complicated "procede uniforme". Quite another quest ion is whether 
the re3ulting series is convergent. We have avoided this question by the simple (and 
usual) trick of limiting ourselves to the second-order (in J) approximation only, which 
automatieally disregards higher-order terms. 

Still the question remains open as a theoretical problem: the convergence of a 
spherical harmonic series at the boundary surface Sp. Nowadays we know much more 
ab out the convergence problem of spherical harmonic series than, say, twenty years 
agOj cf. (Moritz, 1980, secs. 6 and 7), especially the Runge-Krarup theorem. There 
may also be a relation to the existence proof by Liapunov and Liehtenstein mentioned 
in sec. 3.1. Another approach due to Trubitsyn is outlined in (Zharkov and Trubitsyn, 
1978, sec. 38) and in (Denis, 1989). 

The correctness of our second-order theory, however, is fully conflrmed also by its 
derivation from Wavre's geometrie theory to be treated in sec. 4.3, which is based on 
a completely different approach independent of any spherical-harmonic expansions. 

4.2 Clairaut's and Darwin's Equations 

4.2.1 Internal Gravity Potential 

Following de Sitter (1924) we normalize the mean radius q and the density P by 
introducing the dimensionless quantities 

and 

ß = !l = mean radiusofSp 

R mean radius of earth 

b = J!-.- = density 
Pm mean density of earth 

The standard auxiliary expressions 

(4-54) 

( 4-55) 

~! 

is 

1'1 

4\ 
Ilsi: 
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